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Abstract. Probabilistic Model Checking (PMC) is a valuable tool for
automated analysis of systems exhibiting stochastic behavior. However,
the effectiveness of PMC algorithms is limited to systems that can be
modeled by a finite state-space. Chemical Reaction Networks (CRNs) are
commonly used to describe biochemical systems. Since there are usually
no upper-bounds on the population of species in a CRN, they can only
be modeled as an infinite-state stochastic model. This paper proposes a
new approach that can analyze infinite-state CRNs by bounding their
state-space. For a property indicating that the probability of the event
of interest is less than a certain threshold value, the objective is to gen-
erate a bounded range on the population of each species in the CRN
such that this bounded CRN already retains sufficient probability to re-
fute the property under investigation. The effectiveness of this approach
is demonstrated by analyzing rare-event properties on a number of bio-
chemical systems.
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1 Introduction

Stochastic behavior of systems can be modeled using probabilistic formalisms
such as Markov chains. Once a system is modeled as a Markov chain, it’s be-
havior can be quantitatively analyzed using probabilistic model checking (PMC).
PMClis a formal verification technique for verifying quantitative properties of
systems that exhibit stochastic behavior[17]. Probabilistic model checkers verify
stochastic models against formally specified properties by computing the proba-
bility of those properties using numerical methods. For instance, these properties
can specify the states in which the given system is failing, enabling PMC to cal-
culate the probability of such failures occurring.

Chemical Reaction Networks (CRNs) are commonly used to describe bio-
chemical systems. A CRN describes the evolution of a biochemical system con-
sisting of a set of chemical species based on a set of chemical reaction rules [3].
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Stochastic temporal behavior of a a CRN can be modeled as a Continuous Time

Markov Chain (CTMC). An event of the form ¢ : X =T, 9 is characterized
by the population of species X reaching 6 molecules within T time units of the
initial condition. The probability of the event ¢ on the CTMC model of a CRN
is traditionally estimated by statistical approaches like Stochastic Simulation
Algorithm (SSA) [10]. However, statistical approaches like SSA are inefficient
for estimating the probability of rare-events as the number of simulations re-
quired for computing an accurate estimate can grow very large [1]|. Since PMC
algorithms calculate the probability of properties using numerical methods, the
computational cost of analyzing a property is mostly related to the size and
structure of the state-space rather than the magnitude of the probability, there-
fore motivating analysis of rare-events using PMC.

Manually setting upper-bounds on the population of chemical species without
in-depth insight into the dynamics of a CRN can lead to mistakenly removing
critical behavior from the model. Therefore, there are usually no upper-bounds
on the population of species in a CRN and the CTMC models of CRNs have
infinite state-spaces. Prominent PMC algorithms require an explicit or symbolic
representation of the model’s state-space to be stored in the computer memory.
As a result, these algorithms are incapable of directly analyzing most CRNs.

This paper presents an approach to analyze infinite-state CRNSs’ stochastic
behavior that applies the concept of bounded model checking (BMC) [4]. Fig. 1

shows the overview of the proposed framework. The inputs of the framework
are an unbounded CRN C and a property P<pl¢ : X =T, ). The property

Poylp - X =1, 0] specifies that the probability of the event ¢ is less than or
equal to the threshold value p. Starting with K = 1, the framework first generates
a set of constraints restricting the range of the values that species’ population can
take in the CRN’s state-space. These constraints are derived such that any state
refuting them is guaranteed not to be present on any witness trace of length up to

K. A witness trace for an event X -5 @ is a finite, time-abstracted, alternating
sequence of states and transitions that starts in the initial state of the model and
ends in a state where the population of the species X equals to 6§ molecules. The
length of a witness trace is defined as the number of transitions in that trace.
After the constraints for bound K are derived, the probabilistic program of the
bounded CRN conforming to these constraints is constructed. This probabilistic
program represents a finite state-space, and probabilistic model checkers like
STORM can be used to calculate the probability of events on this program. If
the probability of event ¢ on the bounded CRN is greater than the specified
threshold p, the bounded CRN is returned as a counterexample to the property.
Otherwise, K is incremented iteratively until a counterexample is formed, or
until the allocated computing resources are exhausted. The probability of the
event reported at the last iteration before the exhaustion of computing resources
is a lower-bound on the actual probability of the event.

This paper first presents a method to derive a bounded range on the pop-
ulation of chemical species such that all the states that could be present on
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Fig. 1: The flow of the counterexample generation framework.

witness traces of length up to K are included within these ranges. Next, this
paper presents a procedure to generate a probabilistic program of a CRN that
conforms to the derived bounded ranges without undermining the semantics of
the original CRN. The results of applying this approach to four biochemical
systems are reported in the Experiments section.

1.1 Related Work

Several approximate methods have been proposed for model-checking infinite-
state Markov models. These methods report a range of probabilities (an upper-
bound and a lower-bound) for the probability of an event instead of a single
value. INFAMY [12] is an infinite-state Markov chain model checker that explores
the infinite state-space of the model up to a finite depth K. If the probability
range for an event on this constructed finite state-space is not tight enough, K
is incremented. STAMINA [15,20] works similarly by generating a finite state-
state from the model’s original infinite state-space, but the exploration of the
state-space is based on the time-abstracted reachability probability rather than
depth. The framework presented in this paper is similar to these approximate
approaches in terms of iteratively expanding the state-space. The expansion of
the state-space is however guided by the property under verification. This is
essential for rare-event properties, as blindly exploring the state-space based
on depth or reachability probability can result in exploring a large number of
states before any state of interest is encountered. The proposed framework also
constructs a probabilistic program instead of an explicit state-space, enabling
the use of different model-checking engines.

Counterexample generation in probabilistic settings has been extensively
studied. Han and Katoen [13] previously reduced the problem of finding the mini-
mal witness set refuting a property in a Discrete Time Markov Chain (DTMC) to
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computing (hop-constrained) K-Shortest Paths (KSP) in the state-space. They
further extended their work with an approximate method to generate coun-
terexamples for CTMC models [14]. However, since traditional KSP algorithms
assume finite graphs as input, this approach can not be applied to most CRNs.

The set of witness traces required to form a counterexample can be very
large. Therefore, many approaches have been developed that return a critical
subsystem of the original model as a counterexample, instead of a witness set.
A critical subsystem is a subset of a model’s states and transitions with enough
probability to refute the property under investigation. A subsystem of a model is
bounded by the model’s size and can provide a more compact representation of
the witness set. Aljazzar and Leue [2] proposed a variation of Best First Search
called eXtended Best First Search (XBF) over KSP where a subsystem of the
original model is returned as a counterexample. XBF expands the state-space on
the fly, so it can be applied to systems with infinite state-spaces. However, best
first search traversals are not guaranteed to terminate on infinite state-spaces.
Wimmer et al. [23] use SMT-solving and MILP (Mixed Integer Linear Program-
ming) to find minimal critical subsystem in DTMCs and MDPs. Funke et al. [8]
propose an approach to reduce the problem of computing the minimal critical
subsystem in DTMCs and MDPs to finding a polytope of Farkas certificates
with maximal number of zeros in a vertex. Both of these approaches depend on
a finite set of target states, i.e. states where the condition of the event is satisfied,
and as a result cannot be directly applied to infinite-state systems.

Dehnert et al. [6] propose an approach that returns a sub-model of the origi-
nal PRISM model as the counterexample to the property, as opposed to a critical
subsystem. A sub-model is defined to be a subset of the model’s original com-
mands. Returning a sub-model as the counterexample is advantageous since it
is more comprehensible than a partial state-space, and insight into the dynamic
of the erroneous behavior of the model can be obtained possibly without re-
quiring post-processing of counterexamples. Their approach cannot be directly
applied to infinite-state systems since a sub-set of the model’s command could
still represent an infinite state-space.

2 Background

2.1 Chemical Reaction Networks

Here, a formal description of chemical reaction networks is given that is later
used for encoding the population constraints as a constraint solving problem.
Let Z, Z*, and Ny be the set of integers, the set of positive integers, and
the set of non-negative integers, respectively. A CRN consists of a finite set
of N chemical species S = {57, 53, ..., Sy} interacting through a finite set of
M reaction channels R = {R;, Ra, ..., Rys}. The population of species S; are
represented by variables defined over Ny. A reaction (p,m,A\) € R defines a rule
on the evolution of the system, where p C S is a set of species called reactants,
m C S is a set of species called products, and A, which is a positive real number,
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is the coefficient associated with the rate of the reaction. The sets p and 7 can
be empty. A reaction R is typically written as

CiTXSi—l—CjTXSj—|—...L)CipXSi—I—ijXSj—I—...

where ¢, € ZT and ¢,, € Z" are stoichiometric coefficients indicating the
molecule count of reactants and products that are consumed and produced,
respectively, when a reaction fires.

The semantics of a CRN C is generally given in terms of a discrete-state
continuous-time stochastic process. A state of a CRN, x(t), is a vector repre-
senting the populations of species S at time ¢ > 0. A state without time explicitly
represented is simply written as . Firing of a reaction causes a state change
by changing populations of some species. Let «[S;] denote the population of
species \S; in state  and 6(S;, R;) denote the net effect of reaction R;’s firing
on the population of species S;. A reaction R = (p, 7, \) is enabled in state x
if VS; € p,x[S;] > cir. The effect of firing a reaction R on the population of a
species is defined by the function below.

—Cir if S;ep\m

e if Sien\p
6(5;, R) = Cip—Cirif S;€emNp
0 ifSi¢7TUp

Firing a reaction R in state x leads to a new state =’ such that
VS, €S iL'I[Sz] = {B[Sz] + 5(SZ,R)

The initial state of a CRN is denoted as xg.

Stochastic temporal behavior of a CRN C can be modeled as a countably
infinite continuous-time Markov chain (CTMC) M = (£2,x¢, R) where xg is
the initial state of C, §2 the set of reachable states from x( via a valid sequence
of reaction firings, and R the set of transitions. Each transition in R is given by
x 5 z' if there is a reaction R = (p,7,)\) and a state x such that firing R in
state x leads to a new state x’. The transition rate r is defined by a propensity

function as follows. S
2l
r=ax I ( Z ) W
vs.ep N T

Note that the set of transitions R can also be expressed as a transition rate
matrix as in the traditional CTMC definition. As an example, the simple single
species production and degradation CRN [16] is considered.

R1151>\—1>51+52, R2252>\—2>® (2)

where the populations of species S; and S5 in the initial state are 1 and 40,
respectively, and the reaction rate constants of reactions R; and Ry are Ay = 1.0
and Ao = 0.025, respectively. For this model the § function is defines as:

5(S1,R1) =0 6(Se,Ri)=1 6(S1,Rs)=0 (S, Rs)=—1
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2.2 Probabilistic Guarded Command Language

This paper considers a simplified version of the PRISM[18]’s guarded command
language that only considers flattened CTMC models comprising only one mod-
ule, without any synchronizations between the commands.

Definition 1 (Probabilistic Program, Command). A probabilistic pro-
gram is a tuple ¢ = (Var, vinit, I') where Var is a set of integer variables, vinit
is the initial variable valuation and I' is a finite set of commands.

Each command v € I' is of the form v = g — r : uw where g, referred to as the
guard of the command, is a logical expression over Var encoding the enabling
conditions of the command, r is the rate by which update u takes place and
the update u is a function that takes the current variable valuations in Var and
returns a new valuation for each of those variables.

Any CRN can be modeled by a probabilistic program by the following pro-
cedure. First, for each species S; in the CRN, an integer variable S; is added
to the set of variables Var that represents the population of species S; at any
given state. The initial value for S; is set to be the initial population of species
S;. Next, for each reaction R; in the CRN, a command ~; is added to the pro-
gram’s set of commands I'. The guard of this added command, g;, encodes the
enabling conditions of the corresponding reaction, that is the value assigned
to each variable v; € Var in a state must be at least equal to the amount
of S; consumed in the firing of the reaction. The update of this added com-
mand, u; is the effect that the corresponding reaction’s firing would have on
the variables in Var. As an example the single species production and degrada-
tion CRN can be modeled as a probabilistic program ¢ = (Var, vin, I') where
Var = {int S1,int S} is the set of integer variables tracking the population
of each species , vinie = (S1 = 1,52 = 40) is the initial population assigned to
each species and I' = {v;,72} is a set of commands modeling the reactions of
the CRN as follows:

'71:(.5'1>0)—>(Sl*52*)\1):(S{le&Sézsz—kl)
’YQ:(SQ>0)—>(SQ*)\2):(81251&55252_1)

with S1 and S being the new assignments to the variables S; and Sy after the
command fires.

3 Methods

3.1 Generating K-Bounded Constraints

Generating a bounded probabilistic program for a CRN by simply bounding
the the species’ populations to the range [0, K| and increasing K iteratively
results in a partial state space that likely includes states that do not appear
on any witness traces. Such states do not contribute to the probability of the
event, but instead cause the rapid growth of the state space, increasing the time



Rare-Event Guided Analysis of Infinite-State CRNs 7

KiiRy, KioRs, ... KimRy . KuRy,KipRs, ..., Ky Ry

Fig.2: General form of a witness trace starting in the initial state of the CRN
(green) and ending in a state satisfying the (time-abstracted) condition of the

event X =15 ¢ (red) that passes through an arbitrary state .

required for checking the probability of the event on the generated probabilistic
program. Therefore, identifying and excluding these states makes the framework
more efficient. The objective is to generate the tightest range of values that the
population of each species can take without excluding any states that appear on
a witness trace of length less than or equal to K. In this section, a method for
generating such K-bounded constraints is described.

Suppose that the event X ‘=T, 9 is considered for a CRN comprised of
N chemical species § = {51, So, ..., Sny } interacting through M reactions R =
{R1, ..., Ry }. Fig. 2 shows the format of a general witness trace starting in the
initial state and ending in the target state that passes through an arbitrary state
«. State « is reached by firing reaction R; K;; times, reaction Ry Ko times,
.... Note that all K, values could be zero, mapping « to the initial state of the
model. In order to form a witness, from state «, reactions Ri, Rs,... are fired
Ki1, Ko, ... times respectively. Note that all Ky, values could also be zero,
mapping « to the target state. These variables are defined as:

K, : # of times reaction R, is fired to reach state « from the initial state
Ky, : # of times reaction R, is fired to reach the target state from state «

In order to form a witness trace with length less than or equal to K, the number
of reactions taken to reach the state a and subsequently the target state must
be less than or equal to K. This condition is encoded in Formula 3.

M
& ZKiv+KtvSK (3)

v=1

The condition that the number of reaction firings is always non-negative is en-
coded in Formula 4.

& Yoel,... M : Kip, Kty >0 (4)

Also, for each species S;, the total number of molecules of S; that are consumed
along the trace must be no more than the population of species .S; in the initial
state plus the total number of the S; molecules that are produced along the
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trace. This condition is encoded in Formula 5.

M M
53 : VSz €S : Z[(sz +Ktv) Xcvr] < (wO[Sz]+Z[(sz +Ktv) XCUP]) (5)

In order to form a witness, the population of species X must reach 6 from its
value in the initial state via up to K firings of some reactions. This restriction
is encoded in Formula 6 by enforcing the net effects of the reactions’ firings to
take the model from the initial state to a target state.

M
&t o[ X]+ ) [(Kiv + Kpw) x 0(X, Ry)] =0 (6)

v=1

This encoding represents all possible firings of reactions that have the net effect
of moving the initial state to a target state. The following formula encodes the
relation between reaction firings and the population of a species S; in any state
« present on a witness trace

M
Es og; = 330[5]‘] + ZK“) X (5(5]‘7RU) (7)
v=1

where ag; is an auxiliary variable representing the population of species S; after
K, firings of each reaction R, from the initial state.

The conjunction of the above encodings, & A & A E3 A €4 N &5, includes
all possible witnesses of lengths up to K. It also carries information on the
populations of species present on any state on these witnesses. Therefore, these
encodings can be solved by a constraint solver and queried to obtain the witness
state invariants as indicated at the beginning of this section. The invariants are
formulated as

V].SjSNSZSjSOLSj/\aSjg’U,Sj (8)

where Is,,us; € Z are are lower and upper bounds of the populations of species
S; on any state on any witness traces.

In the following, a method to find the upper bound wug; is explained first.
Initially, the upper-bound on the population of species S; is set to be the popu-
lation of S; in the initial state, i.e. us, = ®o[S;]. Then the following formula is
solved by a constraint solver.

81/\52/\53/\84A€5/\(a5j>qu) (9)

If Formula 9 is sat, it indicates that the formula allows a value larger than ug;
assigned to ag;, therefore ug; is not a true upper bound of as;. In this case,
Formula 9 is updated with ugs; changed to the value returned for asg;, and
is solved again. This process of querying the solver and updating the upper-
bound continues until the solver returns unsat. When the solver returns unsat,
it indicates that Formula 9 does not allow any value larger than ug, assigned to
as;, which implies that ug; at the termination of the solver with unsat is an
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upper bound for as;. Finding the lower bound is similar by repetitively solving
the following formula

51/\52/\83/\54/\55/\((153. < lgj) (10)

until it becomes unsat. The initial lower-bound on the population of species S;
is set to be the population of S; in the initial state, i.e. s, = xo[5;]. The above
process is repeated for every species in the CRN to find its invariants, and the
conjunction of these invariants is referred to as A in the format as specified in
Formula 8.

The theorem below shows that the K-bounded constraints generated by solv-

ing the described encodings is correct in terms of preserving the witness traces
for CRNs.

Theorem 1. Given a CRN C and an event ¢, for every witness trace w present
in C, there exists K such that w is included in the state space formed using
constraints A, where A are the constraints found for bound K.

Proof of Theorem 1 is given in the Appendix A.

It is important to highlight that the conjunction of formulas &, &, €3, £4 and
&s could encode invalid traces. This is due to the fact that &3, enforcing that the
total number of consumed molecules must be no more than the total number
of available molecules, only considers the total effect of reaction firings, and
does not enforce the enabling conditions of each individual reaction firing. This
means that solving these encodings might result in an assignment to the variables
that can only be realized by taking invalid reactions, i.e. taking reactions where
there are not enough reactant molecules necessary for their firing. Nevertheless,
this does not affect the correctness of the framework, as it is already shown
that any witness trace in the original CRN model will eventually be included by
constraints generated with some K. This implies that although the upper-bounds
(lower-bounds) found for a given K are indeed true upper-bounds (lower-bounds)
on the population of species among all witnesses of length no more than K, they
might not be the optimal upper-bounds (lower-bounds).

3.2 Probabilistic Program Conforming to K-Bounded Constraints

Section 2.2 explains how a CRN containing N species and M reactions can be
modeled as a probabilistic program with N variables and M commands. This
section describes how a probabilistic program for a CRN can be modified to
incorporate the K-bounded constraints while maintaining the semantics of the
original CRN. Suppose the CRN C with the set of species S and the set of
reactions R is modeled by the probabilistic program ¢ = (Var, vipit, ') where
vs, € Var denotes the variable tracking the population of species S; € S. The
K-bounded constraints A put upper-bound and lower-bound restrictions on the
population of each species S; € S. First, the set Var in ¢ is modified to include
the bounded range generated for the population of each species.

Vg, € Var :int vg, = int[ls,, us,] vs, (11)
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where [g, and ug, are the lower-bound and upper-bound values generated for
the species S; respectively and = represents the transformation of a variable to
its modified form.

The probabilistic program generated following this step might undermine the
semantics of the original CRN. In any given state, if the update of an enabled
reaction takes the system into a state where the constraints are invalidated, that
reaction is going to be disregarded. Disregarding such reactions would increase
the probability of the remaining outgoing reactions, and therefore disturbs the
probability distribution of witness traces. Model checking a probabilistic program
with modified probability distribution will result in an unreliable lower-bound. In
order to maintain the stochastic semantics of the original CRN, the disregarded
reactions must be identified and be directed to a sink state. The sink state is
defined as a state where 1) The guard of all of the commands is disabled and 2)
The condition of the event is not satisfied in this state.

Assume that for a command v; = (g;) = (r; : u;), the variable valuation
after the update u; is given by Var,,. In order to identify disregarded reactions
and direct them to the sink state, for each command ~; = (g;) — (75 : u;) in the
original CRN, a new command *y;mk is added to the program with the following
structure:

vji"k = (9; N (Vary,;) # A) — (r; : sink) (12)

All the variables in the probabilistic program generated following these two
steps are bounded, resulting in a finite state space. The generated probabilistic
program also maintains the stochastic semantics of the original CRN. Therefore,
the probability of an event on this program can be calculated by a model checker
and this probability is indeed a lower-bound for the probability of the event on
the original CRN.

4 Experiments

This section reports the results obtained by applying the proposed framework
to four CRNs. These CRNs were previously studied in the context of rare-event
simulation [16,9,5,1]. Rare-events are known to be problematic for stochastic
simulation as the number of simulations required to obtain an estimate with
a reasonable accuracy can grow very large. The authors in [1] argued that the
variance reduction techniques such as importance sampling that were previously
proposed to improve the performance of rare-event simulations are not robust
and require extensive parameter tuning. The reliance on precise parameter tun-
ing makes these techniques far from being automated and motivates the analysis
of rare-events with probabilistic model checking.

The framework is implemented in Python with Z3 [19] as the underlying
constraint solver and STORM [7] as the back-end probabilistic model-checker.
The framework is compared to the STAMINA-STORM model checker intro-
duced in [15]. STAMINA-STORM also produces a finite representation of an
infinite-state model and uses STORM as the back-end model checker. Unlike
the proposed framework in this paper, STAMINA-STORM generates an explicit
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finite state-space, as opposed to a probabilistic program. Starting from the ini-
tial state of the model, STAMINA-STORM explores the model’s state-space and
accepts all the states with time-abstracted reachability probability above a given
threshold k. It then calculates a probability range, a lower-bound and and an
upper-bound, for the probability of the event on the constructed finite state-
space. If the probability range is tighter than a specified value, the algorithm
terminates. If not, x is reduced and the state-space exploration is continued.
STAMINA-STORM is selected for comparison as it also permits model check-
ing infinite-state CRNs and uses STORM as the back-end model checker. Since
the proposed framework in this paper only returns a lower-bound for the prob-
ability of an event, the results reported for STAMINA-STORM in this section
only includes the lower-bound probability that was reported upon termination.
The results reported for STAMINA-STORM are obtained by setting the ini-
tial value for x and the reduction factor of x to their default values, which are
1.0, 1.25 respectively. For each experiment, the specified probability window for
STAMINA-STORM is initially set to its default value which is 1073. If the re-
ported lower bound upon termination is smaller than the required threshold, the
probability window is reduced by a factor of 10 and the experiment is run again.

For the experiments reported in this section, events of the form X =Ty
are considered. In each experiment, a set of increasing probability thresholds
are considered based on the probability estimate of the event. The performance
of the framework is evaluated based on the time it takes to return a lower-
bound probability greater than the given threshold, proving that the event has a
probability at least greater than this threshold. The experiments were performed
on a 3.6 GHz Intel machine with 32GBs of memory running Ubuntu 22.04. Any
experiment that took more than 1800 seconds was terminated and is marked
with T'O in the results tables.

The experiments in this section analyze rare-event properties on 4 biochem-
ical models:

— Enzymatic Futile Cycle is a CRN consisting of 6 species reacting through

6 reaction channels. The property of interest for this model is P<,[S5 =100

25]. Kuwahara et al. [16] estimate the probability of the event S L2199, o5

to be 1.7 x 1077,
— Motility Regulation is a CRN of a gene regulatory network consisting

of 9 species reacting through 12 reaction channels. The property of interest

for this model is P<p[CodY =10, 20]. In [1] the probability of the event

CodY =% 20 is estimated to be 2.16 x 10~7 by running 107 weighted

SSA [16] simulations.

— Yeast Polarization is a CRN consisting of 7 species and 8 reactions. The

property of interest for this model is P<,[Gg 1220, 50]. Roh et al. [22]

report the probability of the event to be 1.23 x 107% 4 0.05 x 1076 at two
standard-errors using weighted SSA.

— Genetic CircuitOx8E [21] is a genetic circuit consisting of 18 species and

15 reactions. The property of interest for this model is P<,[Ss L1000, 90].
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The 99% confidence interval for the probability of the event in the property
is estimated to be 8.2 x 1075 £2.33 x 10~° by running 10° SSA simulations.

The full description of the CRNs can be found in the GitHub repository acces-
sible at this link*.

Discussion. Table 1 reports the results obtained by running the proposed frame-
work and STAMINA-STORM on the selected models. In each experiment, the
probability estimate reported by stochastic simulation is used for selecting a set
of increasing probability thresholds. Assuming the probability estimate of the
event ¢ is p, a counterexample for the property P<,[¢] can be formed for all
p < D.

For enzymatic futile cycle, the first counterexample returned by the frame-
work has probability 1.54 x 10~7 which has the same order of magnitude as
the probability estimate reported by stochastic simulation. Upon termination,
STAMINA-STORM reports the lower-bound probability of 1.73 x 10~ 7.

For motility regulation, both STAMINA-STORM and the proposed frame-
work can generate counterexamples for probability thresholds up to 10~7, which
has the same order of magnitude as the estimate reported by stochastic sim-
ulation. The proposed framework generates probabilistic programs that repre-
sent smaller state-spaces and terminates faster, especially for smaller probability
thresholds.

In the yeast polarization experiment, the proposed framework can generate
a counterexample for threshold 1076, which has the same order of magnitude
as the estimate reported by stochastic simulation. STAMINA-STORM does not
terminate before the 1800 seconds timeout on this model. In fact, STAMINA-
STORM does not terminate on this CRN even if the the timeout is extended
to 24 hours. This CRN has a large disparity between the rate of the reactions.
Models showing stiffness, i.e. those with a large disparity between the rates
of transitions, are known to cause issues for probabilistic model checking algo-
rithms by increasing the computational complexity of getting an accurate result.
This signifies the importance of selecting a small subset of the original CRN’s
state-space that contains most of the witness traces. STAMINA-STORM only
considers the reachability probability of states when expanding the state-space.
This could result in selecting a large state-space, containing a large number of
non-witness traces or longer witness traces. A large, stiff state-space will signif-
icantly increases the time required by the back-end model checker to calculate
the probability of the event.

In the experiment on Circuit 0x8E CRN, STAMINA-STORM does not ter-
minate before the 1800 seconds timeout. The proposed framework can form
counterexamples for thresholds up to 10~7, but fails to return counterexamples
for thresholds greater than this value before timeout. The large growth in the
size of the state-space represented by the probabilistic program will result in
larger amount of time required by the model-checker to calculate the probability

4 https://github.com/fluentverification/bmec__counterexample/blob/
8fdbf4e710b57b13a587a2bb0843f137c9dc74ae/CRNs/Readme.md
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of the event on the program. This highlights a limitation of this approach. If the
probability of the event is not concentrated in a relatively small portion of the
CRN’s state space, forming counterexamples for larger probability thresholds re-
quire model checking probabilistic programs that represent larger state-spaces,
which can be computationally expensive.

Constraint generation step of the framework finished quickly in all experi-
ments, and the majority of the time was spent by the model checker to calculate
the probability of the event on the generated probabilistic program. For cir-
cuitOx8E, where constraint generation was slowest among all experiments, the
total amount of time spent for generating constraints was less than 2 seconds.

Although the estimates reported by stochastic simulation were used as base-
lines to evaluate the performance of the method, these estimates were obtained
by running the simulations with highly tuned importance sampling [11] parame-
ters. As argued in [1], importance sampling parameters could be highly sensitive
and tuning them requires deep insight into the dynamics of the CRN. The pro-
posed method in this paper is completely automated, eliminating the need for
knowledge about such dynamics.

Computing an upper-bound on the probability of the event. An additional lim-
itation of the current approach is that it only generates a lower-bound on the
probability of events. An upper-bound could be formed by selecting a portions of
the state space that have high reachability probability in general, but do not con-
tain witnesses to the event. An upper-bound for an event of the form F'<TX = ¢
(population of species X will eventually reaches 6 within 7' time units) can be
found by forming a lower-bound on the event G*<T X # 6 (population of species
X will not reach the value 6 in any state within T time units). The upper-bound
to the probability of F*TX = 6 can be then computed as 1 — Pr(G*<TX # 0).
The encodings proposed in this work focus on finding traces that eventually reach
the target state, and do not check for dynamic behaviors such as the population
of a species remaining below/above a certain value along a witness trace. As a
result, using these encodings to find an upper-bound on the probability of the
event will result in iterative unfolding of the state space to depth K, including
states that both satisfy and dissatisfy the property G*<T X # . Therefore, the
lower-bound found for the event G*<T X = § is not optimal (close to 0), resulting
in a weak upper-bound for the event F!STX = @ (close to 1). Improving the
upper-bound probability will require encodings that account for the dynamic
behavior of the model, and is left for future work.
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and conclusions or recommendations expressed in this material are those of the
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Additional Information All Python scripts used in this work are accessible at
https://github.com/fluentverification/bmc_counterexample/tree/QEST2024.
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Table 1: The results for running the proposed method and STAMINA-STORM
on four CRNs. For each CRN, a set of increasing probability thresholds are
considered. For each threshold, the table reports the time, the size of the partial
state-space, and the probability of the event on this partial state-space at the
first iteration where the probability of the event is greater than the provided
threshold. The time is measured in seconds. The size of the state-space is defined
as the sum of the number of states and transitions. For the proposed method in
this paper, the size of the state-space is reported by STORM after it builds the
state-space from the generated probabilistic program. T'O indicates timeout.

Enzymatic Futile Cycle

This Method STAMINA-STORM
Thresh. Prob. ||State-Space|| Time Prob. ||State-Space||Time
1x1071°)1.54 x 1077 400 0.70 ||1.73 x 1077 782 1.44

Motility Regulation

This Method STAMINA-STORM
Thresh. Prob. ||State-Space|| Time Prob. ||State-Space||Time
1 x 1071°]|1.65 x 10710 242 0.27 [|2.41 x 1077| 13,492,874 |595.01
1x107%|5.00 x 107° 57,269 0.53 [|2.41 x 1077| 13,492,874 |595.01
1x107%(/1.80 x 1078 122, 549 0.74 ||2.41 x 1077 13,492,874 |595.01
1x1077][1.05 x 1077 | 1,354,996 7.61 ||2.41 x 1077| 13,492,874 [595.01

Yeast Polarization

This Method STAMINA-STORM
Thresh. Prob. ||State-Space|| Time Prob. ||State-Space||Time
1x107%%4.26 x 1075 1,022,702 2.80 - — TO
1x1071°)1.66 x 1076 | 2,243,533 [1723.56 - — TO

Genetic Circtuit 0x8E

This Method STAMINA-STORM
Thresh. Prob. ||State-Space|| Time Prob. ||State-Space||Time
1x10719)12.31 x 10719 4,778,902 |122.41 - — TO
1x107%|1.61x107%| 8,036,816 |252.23 - — TO
1x107%(|1.61 x 1078 | 15,658,892 |607.03 - - TO
1x1077||1.59 x 1077 | 32,858,704 |1574.96 - - TO
1x107¢ — - TO - - TO
1x107° - - TO - — TO
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5 Appendix A

Lemma 1 Let A be the constraints found for E1 N Exy N Es N Ey N E5 where &7,
&, Es, E4 and Es are defined in (3), (4), (5),(6), (7), respectively. The following
property holds.

EINEINESNELNE E A

Proof Let ls; < as; and as; < ug; be the constraints of A on species S;. The
solver terminates with unsat when

ELNEINESNELNEs N (as; > ug,) is false.

It is equivalent to that
(E1NEINEZNEL) NEs V =(as; > ug,) holds.

Again, it is equivalent to that

ENNEINEZNELNEs = as; < ug, holds.
It can be proved similarly that

E\NEINESNELNEs = s, < as; holds.
Since the above proofs hold for constraints on any species, we have proven that

EINEINESNELNEs E A
|

Theorem 1 Given a CRN C and an event ¢, for every witness trace w present
in C, there exists K such that w is included in the state space formed using
constraints A, where A are the constraints found for bound K.

Proof Let w be a witness trace with length K in C. The sum of reaction firings
on w is K, thus &; as defined in (3) holds for w and K. The number of times each
reaction is fired on w is larger than or equal to 0, thus & as defined in (4) also
holds for w. Since w is a valid witness in C, for every species, the total number of
consumed molecules along w must be no more than the total number of available
molecules, thus & as defined in (5) holds. Since w starts from the initial state
x and ends in the target state via a set of reaction firings as included in w, &,
as defined in (6) holds as well. Let a be a state on w. Then, for each reaction
R,, K;, can be found by counting the number of firings of R, on the witness
segment To to a. Since as; in &, is a free variable, For &4 to hold, ag; is set
to be equal to a[S;], the population of S} in a.

As shown above, &1 A&y AE3 N E4 A Es holds for w, and as; = aS;] holds for
any state a on w. By Lemma 1, constraint A also holds. Since both ag; = a[S}]
and Is; < as; Aas; < ug; hold, Is; < a[S;] Aa[S;] < us, holds as well. Since
this is true for any species in any state o on w, this shows that V.S; : a[S;] = A.
This implies that state « is also accepted by the constraints A. Therefore, for
every transition a; — a9 in w both a; and as are accepted by the constraints
A, resulting in w to be found in its entirety. |
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