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Federated Learning for Enhanced ECG Signal Classification with
Privacy Awareness
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Abstract—This paper presents a novel approach for classifying
electrocardiogram (ECG) signals in healthcare applications using
federated learning and stacked convolutional neural networks
(CNNs). Our innovative technique leverages the distributed
nature of federated learning to collaboratively train a high-
performance model while preserving data privacy on local
devices. We propose a stacked CNN architecture tailored for
ECG data, effectively extracting discriminative features across
different temporal scales. The evaluation confirms the strength
of our approach, culminating in a final model accuracy of 98.6 %
after 100 communication rounds, significantly exceeding baseline
performance. This promising result paves the way for accurate
and privacy-preserving ECG classification in diverse healthcare
settings, potentially leading to improved diagnosis and patient
monitoring.

I. INTRODUCTION

Cardiovascular diseases continue to be a leading cause of
morbidity and mortality worldwide, underscoring the critical
importance of accurate and timely diagnosis in healthcare
[1]. Among the diagnostic modalities, the electrocardiogram
(ECG) signal is a fundamental tool for monitoring cardiac
activity. Its intricate waveform provides valuable insights into
the heart’s electrical activity, aiding clinicians in identifying
abnormalities and making informed decisions about patient
care. The advent of machine learning (ML) has revolutionized
medical diagnostics, offering the potential to enhance the
accuracy and efficiency of ECG signal classification [2], [3].
ML models, when trained on vast datasets, can discern subtle
patterns and anomalies in ECG signals that may elude conven-
tional diagnostic methods. This transformative capability has
paved the way for more precise and timely cardiac diagnoses,
contributing to improved patient outcomes.

Howeyver, the utilization of ML models in healthcare raises
concerns about data privacy and security. To address these
challenges, federated learning (FL) emerges as a promising
paradigm [4]. FL enables the training of ML models across
decentralized devices without sharing sensitive data centrally.
In the context of ECG signal classification, the integration of
FL not only safeguards patient privacy but also facilitates col-
laborative model training across diverse healthcare institutions

(51, [6].
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This paper explores the intersection of healthcare, ML, and
FL, aiming to advance the field of ECG signal classification.
By leveraging the power of ML models and the privacy-
preserving capabilities of FL, we seek to enhance the accuracy
and security of cardiac diagnoses, ultimately contributing to
more effective and patient-centric healthcare practices. Our
contributions are described as follows:

o We introduce novel ML models with convolutional neural
networks (CNNs) for ECG signal classification, enhanc-
ing the accuracy and efficiency of cardiac diagnoses.

o We integrate an FL system to address privacy concerns,
ensuring decentralized model training and safeguarding
sensitive patient data.

o We offer insights into the nuances of accuracy vari-
ations between local and server-side implementations,
furnishing valuable information for the deployment of
FL-enhanced models in real-world healthcare scenarios.

e We conduct a comprehensive comparison with existing
work to demonstrate the efficiency of our classification
approach.

II. SYSTEM DESIGN AND IMPLEMENTATION

Our presented FL framework designed for healthcare places
a primary emphasis on safeguarding data privacy and fostering
collaborative learning. Fig. 1 presents an overview of the pro-
posed system, offering a detailed portrayal of its fundamental
structure and components specifically crafted for healthcare
applications. This depiction encompasses essential elements,
including distributed nodes, model training processes, and the
aggregation of a global model. Furthermore, the illustration
delves into the communication protocol employed within the
system, underscoring the secure exchange of global model
updates among the nodes actively participating in the collab-
orative learning process.

A. ECG Classification with Stacked CNN Architecture

In this paper, we present a robust ECG signal classification
model using a stacked CNN architecture. Stacked CNNs, cho-
sen for their ability to capture hierarchical features, outperform
normal CNNs in ECG classification. The increased depth
enables them to excel in learning intricate temporal patterns,
automatically extracting nuanced representations from raw
data. This depth is crucial for discerning diverse cardiac
conditions, whereas shallower architectures of normal CNNs
may struggle to capture complex variations. The mathematical
formulation of a stacked CNN'’s forward pass, involving layer-
wise computations, further enhances its capacity to model
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Fig. 1. An overview of the proposed system.

intricate temporal dependencies, contributing to superior ECG
classification performance.

« Input layer:
Input layer = X (1)

Equation (1) implies the input layer operation where X
is the raw ECG signal data.
o Convolutional layers:

hij = ReLU <Z(F (m,n)- X (m,n) + bm-)) 2)
This equation defines the output feature map of the j-th
filter in the i-th convolutional layer. It applies the ReLLU
activation function to introduce non-linearity.

o Activation functions and pooling:

ai,j = ReLU(h;;), 3
P, ; = MaxPooling(a; ;). ()

Equation (3) represents the output after applying the
ReLU activation function, introducing non-linearity.
Equation (4) performs max pooling to reduce spatial
dimensions while retaining essential information.

o Stacking for depth: The stacked nature of the CNN
model facilitates the learning of intricate representations.
Deeper layers can comprehend abstract features crucial
for discriminating between different ECG signal classes.

o Flattening and fully connected layers:

V = Flatten(Pjpa), )

Zi,j = ReLLU (Z(Wi>j’k . Vk + bi,j)) . (6)
k
Equation (5) flattens the hierarchical representation into
a one-dimensional vector. Equation (6) defines the output
of the fully connected layer with ReLU activation.
o Output layer:
0= U(Zﬁnal) (7)

Equation (7) represents the output probability for the pos-
itive class (abnormal ECG) using the sigmoid activation
function o.

B. Federated Operations

To extend our model to a FL system, we consider a scenario
where multiple clients (C,Cs,...,C},) collaborate without
sharing raw ECG data. Each client C; has its dataset D; and
trains the model locally.

1) Initialization: Initialize the stacked CNN model archi-
tecture: Begin by defining the architecture of the stacked CNN
model, where W and b are the outputs needed. Distribute the
initial model to all participating nodes: Share the initial model
parameters (W and b) with each node to start the FL process.

2) Local Model Training:

e Train the local model on ECG datasets: Each node
independently optimizes its local model by minimizing
the loss function (£) using FL techniques:

II?VI}} [:(VV, b, Xiocal, leocal) (3
where Xjocar, and Yj,.q: are the local ECG dataset and
corresponding labels, respectively.

« Utilize backpropagation and optimization algorithms: Up-
date the model parameters using backpropagation and
optimization by using stochastic gradient descent (SGD)
algorithms:

Wnewy bnew = SGD(V,C, VV, b) (9)

3) Model Aggregation:
e Use weighted averaging for importance: Employ

weighted averaging to give more significance to clients:
25 wi - M;

> Wi

where M; represents the model parameters from node @
and w; is the weight assigned to node 1.

Weighted Average = (10)
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Fig. 2. Data visualization.

o Aggregate locally trained models: Combine the locally
trained models (W,,¢., and b,,¢q,) from all nodes to obtain
a global model:

ngobala bglobal = Average(Wi,newy bi,new) (1 1)

4) Communication and Iterative Process: In the proposed
iterative process, the global model parameters (Wgopq; and
bgiovar) are communicated to all participating nodes, initiat-
ing local training and subsequent model aggregation. This
iterative cycle repeats for a predefined number of iterations,
progressively improving the global model. Convergence is
monitored throughout the process by assessing changes in the
loss function and performance metrics. The training concludes
either upon achieving convergence or after a set number of
iterations, ensuring an effective and optimized FL system.

ITII. SYSTEM SETUP
A. Data Collection and Preprocessing

The PTB diagnostic ECG database [7] comprises 14,552
binary-classified ECG signal samples from Physionet’s PTB
diagnostic database. Recorded at 125Hz, each sample repre-
sents the heart’s electrical activity. Fig. 2 visualizes the data.
Preprocessing ensures uniformity, involving handling missing
values, normalizing amplitudes, and aligning signals. The
dataset is split for training and testing, with measures like data
augmentation and addressing class imbalances implemented.

B. Experimental System Setup

Table I highlights key parameters and considerations for
setting up a healthcare-focused FL system using a stacked

TABLE I
SYSTEM SETUP

Parameters

Initialization

Model Initialization

Default parameters

Batch Size 32
Learning Rate 0.001
Training Iterations 100
Aggregation Weighting Proportional
Regularization L2 (0.01)

Optimization Algorithm

SGD (momentum = 0.9)

Neural Network

Xavier initialization

CNN architecture. It covers aspects like Xavier initializa-
tion, learning rate, batch size, training iterations, aggregation
weighting, regularization, and optimization algorithm (SGD
with momentum). Monitoring and logging support analysis
and debugging in the FL process.

C. Evaluation Metrics

In the evaluation of the proposed FL system for ECG signal
classification, a robust set of classification metrics is employed
to assess the model’s efficacy in accurately classifying elec-
trocardiographic patterns:

e Accuracy: ACC = TP + TN

TP + TN + FP + FN

cinne P — TP

e Precision: P = T +TP
R = TP
e Recall: R = TP+ N

. 1 _ 2XxPxR
e F1 Score: F1 = §+§

where, TP represents instances correctly classified as positive,
while TN denotes instances correctly classified as negative.
Conversely, FP accounts for instances incorrectly identified as
positive, and FN encompasses instances incorrectly identified
as negative.

IV. EXPERIMENTAL RESULTS
A. Training Process

The presented figures illustrate the intricacies of the training
process for our proposed ECG signal classification model on
both the local and server sides. These visual representations
provide valuable insights into the convergence and perfor-
mance dynamics during the training phase.

In Fig. 3, the server-side training process is depicted,
offering insights into how federated learning influences model
development. The figure mirrors the structure of the local
side, presenting the progression of the model during training
iterations on the left. The accuracy visualization on the right
provides a parallel view of accuracy trends during server-
side training. Comparing patterns and accuracy trends between
local and server sides informs the effectiveness of federated
learning in harmonizing model performance across decen-
tralized datasets, contributing to crucial insights for strategy
refinement and collaborative model optimization.
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Fig. 3. Training process on server side.
TABLE II
COMPARISON BETWEEN VARIOUS CLASSIFICATION MODELS
Algorithm Platform | Classification Type | Accuracy | F1 score | Precision | Recall
Ensemble Classifier [8] Local Multi-label 75.2 75.2 80.8 71.6
1D-CNN [9] Local Multi-label 98.0 93.7 95.7 91.8
AlexNet [10] Local Binary 98.2 - 93.0 92.0
FL-EDEA [11] Server Binary 98.0 - 99.0 91.0
This work Local Binary 95.5 94.8 96.1 935
(FL-Stacked CNN) Server Binary 98.6 98.8 99.1 98.6
B. Testing Performance REFERENCES

Table II compares various systems to solve the ECG signal
classification problem. Examining models without FL reveals
distinctive performances in various classification tasks. The
ensemble classifier achieves a balanced performance locally
with an accuracy of 75.2%, emphasizing its effectiveness in
diverse labeling scenarios. Similarly, the 1D-CNN excels on
the local platform, boasting an impressive accuracy of 98.0%
in multi-label classification. In binary classification on the lo-
cal platform, AlexNet demonstrates proficiency with a notable
accuracy of 98.2%. Transitioning to models enhanced by FL,
this work, represented by FL-Stacked CNN, achieves com-
mendable results. Locally, it attains an accuracy of 95.5% in
binary classification, maintaining a strong F1 score, precision,
and recall. On the server side, FL-Stacked CNN showcases
remarkable performance, achieving an accuracy of 98.6% with
outstanding F1 score, precision, and recall.

V. CONCLUSION

This study emphasizes the vital role of FL in healthcare,
specifically in classifying ECG signal data while prioritizing
patient privacy. We demonstrate FL’s feasibility, focusing on
scalability, communication efficiency, and model robustness.
Achieving 98.6% accuracy with a stacked CNN in a decen-
tralized setting highlights FL’s potential to address privacy
concerns in healthcare. Future research includes exploring
advanced FL architectures and optimizing communication
protocols for broader healthcare applicability.
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