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Abstract—This paper presents a novel approach for classifying
electrocardiogram (ECG) signals in healthcare applications using
federated learning and stacked convolutional neural networks
(CNNs). Our innovative technique leverages the distributed
nature of federated learning to collaboratively train a high-
performance model while preserving data privacy on local
devices. We propose a stacked CNN architecture tailored for
ECG data, effectively extracting discriminative features across
different temporal scales. The evaluation confirms the strength
of our approach, culminating in a final model accuracy of 98.6%
after 100 communication rounds, significantly exceeding baseline
performance. This promising result paves the way for accurate
and privacy-preserving ECG classification in diverse healthcare
settings, potentially leading to improved diagnosis and patient
monitoring.

I. INTRODUCTION

Cardiovascular diseases continue to be a leading cause of

morbidity and mortality worldwide, underscoring the critical

importance of accurate and timely diagnosis in healthcare

[1]. Among the diagnostic modalities, the electrocardiogram

(ECG) signal is a fundamental tool for monitoring cardiac

activity. Its intricate waveform provides valuable insights into

the heart’s electrical activity, aiding clinicians in identifying

abnormalities and making informed decisions about patient

care. The advent of machine learning (ML) has revolutionized

medical diagnostics, offering the potential to enhance the

accuracy and efficiency of ECG signal classification [2], [3].

ML models, when trained on vast datasets, can discern subtle

patterns and anomalies in ECG signals that may elude conven-

tional diagnostic methods. This transformative capability has

paved the way for more precise and timely cardiac diagnoses,

contributing to improved patient outcomes.

However, the utilization of ML models in healthcare raises

concerns about data privacy and security. To address these

challenges, federated learning (FL) emerges as a promising

paradigm [4]. FL enables the training of ML models across

decentralized devices without sharing sensitive data centrally.

In the context of ECG signal classification, the integration of

FL not only safeguards patient privacy but also facilitates col-

laborative model training across diverse healthcare institutions

[5], [6].
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This paper explores the intersection of healthcare, ML, and

FL, aiming to advance the field of ECG signal classification.

By leveraging the power of ML models and the privacy-

preserving capabilities of FL, we seek to enhance the accuracy

and security of cardiac diagnoses, ultimately contributing to

more effective and patient-centric healthcare practices. Our

contributions are described as follows:

• We introduce novel ML models with convolutional neural

networks (CNNs) for ECG signal classification, enhanc-

ing the accuracy and efficiency of cardiac diagnoses.

• We integrate an FL system to address privacy concerns,

ensuring decentralized model training and safeguarding

sensitive patient data.

• We offer insights into the nuances of accuracy vari-

ations between local and server-side implementations,

furnishing valuable information for the deployment of

FL-enhanced models in real-world healthcare scenarios.

• We conduct a comprehensive comparison with existing

work to demonstrate the efficiency of our classification

approach.

II. SYSTEM DESIGN AND IMPLEMENTATION

Our presented FL framework designed for healthcare places

a primary emphasis on safeguarding data privacy and fostering

collaborative learning. Fig. 1 presents an overview of the pro-

posed system, offering a detailed portrayal of its fundamental

structure and components specifically crafted for healthcare

applications. This depiction encompasses essential elements,

including distributed nodes, model training processes, and the

aggregation of a global model. Furthermore, the illustration

delves into the communication protocol employed within the

system, underscoring the secure exchange of global model

updates among the nodes actively participating in the collab-

orative learning process.

A. ECG Classification with Stacked CNN Architecture

In this paper, we present a robust ECG signal classification

model using a stacked CNN architecture. Stacked CNNs, cho-

sen for their ability to capture hierarchical features, outperform

normal CNNs in ECG classification. The increased depth

enables them to excel in learning intricate temporal patterns,

automatically extracting nuanced representations from raw

data. This depth is crucial for discerning diverse cardiac

conditions, whereas shallower architectures of normal CNNs

may struggle to capture complex variations. The mathematical

formulation of a stacked CNN’s forward pass, involving layer-

wise computations, further enhances its capacity to model
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Fig. 1. An overview of the proposed system.

intricate temporal dependencies, contributing to superior ECG

classification performance.

• Input layer:

Input layer = X (1)

Equation (1) implies the input layer operation where X

is the raw ECG signal data.

• Convolutional layers:

hi,j = ReLU

(

∑

m,n

(Fi,j(m,n) ·X(m,n) + bi,j)

)

(2)

This equation defines the output feature map of the j-th

filter in the i-th convolutional layer. It applies the ReLU

activation function to introduce non-linearity.

• Activation functions and pooling:

ai,j = ReLU(hi,j), (3)

Pi,j = MaxPooling(ai,j). (4)

Equation (3) represents the output after applying the

ReLU activation function, introducing non-linearity.

Equation (4) performs max pooling to reduce spatial

dimensions while retaining essential information.

• Stacking for depth: The stacked nature of the CNN

model facilitates the learning of intricate representations.

Deeper layers can comprehend abstract features crucial

for discriminating between different ECG signal classes.

• Flattening and fully connected layers:

V = Flatten(Pfinal), (5)

Zi,j = ReLU

(

∑

k

(Wi,j,k · Vk + bi,j)

)

. (6)

Equation (5) flattens the hierarchical representation into

a one-dimensional vector. Equation (6) defines the output

of the fully connected layer with ReLU activation.

• Output layer:

O = σ(Zfinal) (7)

Equation (7) represents the output probability for the pos-

itive class (abnormal ECG) using the sigmoid activation

function σ.

B. Federated Operations

To extend our model to a FL system, we consider a scenario

where multiple clients (C1, C2, . . . , Cn) collaborate without

sharing raw ECG data. Each client Ci has its dataset Di and

trains the model locally.

1) Initialization: Initialize the stacked CNN model archi-

tecture: Begin by defining the architecture of the stacked CNN

model, where W and b are the outputs needed. Distribute the

initial model to all participating nodes: Share the initial model

parameters (W and b) with each node to start the FL process.

2) Local Model Training:

• Train the local model on ECG datasets: Each node

independently optimizes its local model by minimizing

the loss function (L) using FL techniques:

min
W,b

L(W, b,Xlocal, Ylocal) (8)

where Xlocal, and Ylocal are the local ECG dataset and

corresponding labels, respectively.

• Utilize backpropagation and optimization algorithms: Up-

date the model parameters using backpropagation and

optimization by using stochastic gradient descent (SGD)

algorithms:

Wnew, bnew = SGD(∇L,W, b). (9)

3) Model Aggregation:

• Use weighted averaging for importance: Employ

weighted averaging to give more significance to clients:

Weighted Average =

∑

i wi ·Mi
∑

i wi

(10)

where Mi represents the model parameters from node i

and wi is the weight assigned to node i.
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Fig. 2. Data visualization.

• Aggregate locally trained models: Combine the locally

trained models (Wnew and bnew) from all nodes to obtain

a global model:

Wglobal, bglobal = Average(Wi,new, bi,new) (11)

4) Communication and Iterative Process: In the proposed

iterative process, the global model parameters (Wglobal and

bglobal) are communicated to all participating nodes, initiat-

ing local training and subsequent model aggregation. This

iterative cycle repeats for a predefined number of iterations,

progressively improving the global model. Convergence is

monitored throughout the process by assessing changes in the

loss function and performance metrics. The training concludes

either upon achieving convergence or after a set number of

iterations, ensuring an effective and optimized FL system.

III. SYSTEM SETUP

A. Data Collection and Preprocessing

The PTB diagnostic ECG database [7] comprises 14,552

binary-classified ECG signal samples from Physionet’s PTB

diagnostic database. Recorded at 125Hz, each sample repre-

sents the heart’s electrical activity. Fig. 2 visualizes the data.

Preprocessing ensures uniformity, involving handling missing

values, normalizing amplitudes, and aligning signals. The

dataset is split for training and testing, with measures like data

augmentation and addressing class imbalances implemented.

B. Experimental System Setup

Table I highlights key parameters and considerations for

setting up a healthcare-focused FL system using a stacked

TABLE I
SYSTEM SETUP

Parameters Initialization

Model Initialization Default parameters

Batch Size 32

Learning Rate 0.001

Training Iterations 100

Aggregation Weighting Proportional

Regularization L2 (0.01)

Optimization Algorithm SGD (momentum = 0.9)

Neural Network Xavier initialization

CNN architecture. It covers aspects like Xavier initializa-

tion, learning rate, batch size, training iterations, aggregation

weighting, regularization, and optimization algorithm (SGD

with momentum). Monitoring and logging support analysis

and debugging in the FL process.

C. Evaluation Metrics

In the evaluation of the proposed FL system for ECG signal

classification, a robust set of classification metrics is employed

to assess the model’s efficacy in accurately classifying elec-

trocardiographic patterns:

• Accuracy: ACC = TP + TN
TP + TN + FP + FN

• Precision: P = TP
TP + FP

• Recall: R = TP
TP + FN

• F1 Score: F1 = 2×P×R
P+R

where, TP represents instances correctly classified as positive,

while TN denotes instances correctly classified as negative.

Conversely, FP accounts for instances incorrectly identified as

positive, and FN encompasses instances incorrectly identified

as negative.

IV. EXPERIMENTAL RESULTS

A. Training Process

The presented figures illustrate the intricacies of the training

process for our proposed ECG signal classification model on

both the local and server sides. These visual representations

provide valuable insights into the convergence and perfor-

mance dynamics during the training phase.

In Fig. 3, the server-side training process is depicted,

offering insights into how federated learning influences model

development. The figure mirrors the structure of the local

side, presenting the progression of the model during training

iterations on the left. The accuracy visualization on the right

provides a parallel view of accuracy trends during server-

side training. Comparing patterns and accuracy trends between

local and server sides informs the effectiveness of federated

learning in harmonizing model performance across decen-

tralized datasets, contributing to crucial insights for strategy

refinement and collaborative model optimization.
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Fig. 3. Training process on server side.

TABLE II
COMPARISON BETWEEN VARIOUS CLASSIFICATION MODELS

Algorithm Platform Classification Type Accuracy F1 score Precision Recall

Ensemble Classifier [8] Local Multi-label 75.2 75.2 80.8 71.6

1D-CNN [9] Local Multi-label 98.0 93.7 95.7 91.8

AlexNet [10] Local Binary 98.2 - 93.0 92.0

FL-EDEA [11] Server Binary 98.0 - 99.0 91.0

This work

(FL-Stacked CNN)

Local Binary 95.5 94.8 96.1 93.5

Server Binary 98.6 98.8 99.1 98.6

B. Testing Performance

Table II compares various systems to solve the ECG signal

classification problem. Examining models without FL reveals

distinctive performances in various classification tasks. The

ensemble classifier achieves a balanced performance locally

with an accuracy of 75.2%, emphasizing its effectiveness in

diverse labeling scenarios. Similarly, the 1D-CNN excels on

the local platform, boasting an impressive accuracy of 98.0%

in multi-label classification. In binary classification on the lo-

cal platform, AlexNet demonstrates proficiency with a notable

accuracy of 98.2%. Transitioning to models enhanced by FL,

this work, represented by FL-Stacked CNN, achieves com-

mendable results. Locally, it attains an accuracy of 95.5% in

binary classification, maintaining a strong F1 score, precision,

and recall. On the server side, FL-Stacked CNN showcases

remarkable performance, achieving an accuracy of 98.6% with

outstanding F1 score, precision, and recall.

V. CONCLUSION

This study emphasizes the vital role of FL in healthcare,

specifically in classifying ECG signal data while prioritizing

patient privacy. We demonstrate FL’s feasibility, focusing on

scalability, communication efficiency, and model robustness.

Achieving 98.6% accuracy with a stacked CNN in a decen-

tralized setting highlights FL’s potential to address privacy

concerns in healthcare. Future research includes exploring

advanced FL architectures and optimizing communication

protocols for broader healthcare applicability.
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