2024 IEEE 67th International Midwest Symposium on Circuits and Systems (MWSCAS) | 979-8-3503-8717-9/24/$31.00 ©2024 IEEE | DOI: 10.1109/MWSCAS60917.2024.10658747

Accelerating CKKS Homomorphic Encryption with
Data Compression on GPUs

Quoc Bao Phan, Linh Nguyen, and Tuy Tan Nguyen
School of Informatics, Computing, and Cyber Systems
Northern Arizona University
Flagstaff, AZ 86011, USA
tuy.nguyen @nau.edu

Abstract—Homomorphic encryption (HE) algorithms, particu-
larly the Cheon-Kim-Kim-Song (CKKS) scheme, offer significant
potential for secure computation on encrypted data, making
them valuable for privacy-preserving machine learning. However,
high latency in large integer operations in the CKKS algorithm
hinders the processing of large datasets and complex computa-
tions. This paper proposes a novel strategy that combines lossless
data compression techniques with the parallel processing power
of graphics processing units to address these challenges. Our
approach demonstrably reduces data size by 90% and achieves
significant speedups of up to 100 times compared to conventional
approaches. This method ensures data confidentiality while mit-
igating performance bottlenecks in CKKS-based computations,
paving the way for more efficient and scalable HE applications.

Index Terms—Homomorphic encryption, graphics processing
units, data compression, CKKS, privacy-preserving.

I. INTRODUCTION

The ever-growing volume of personal, organizational, and
transactional data in the global intelligent technology land-
scape necessitates efficient storage and robust security mea-
sures [1]. This data surge, fueled by e-commerce, online trans-
actions, and the Internet of Things (IoT), intensifies cyberse-
curity threats, even for seemingly innocuous data like personal
details [2]-[4]. As a response, advancements in cryptographic
techniques, specifically homomorphic encryption (HE), are
gaining traction. HE allows computations on encrypted data,
preserving confidentiality. Cheon-Kim-Kim-Song (CKKS) al-
gorithm [5] exemplifies this innovation, addressing key HE
challenges by enabling computations on real numbers and
performing arithmetic operations on encrypted data.

Existing approaches for the CKKS algorithm are often
hampered by large datasets and CPU-bound processing delays
[6], [7]. This paper proposes a novel method to improve the
efficiency of the CKKS algorithm by combining advanced data
compression and acceleration techniques. Our contributions in-
clude: (1) employing two distinct data compression algorithms
to process data in CKKS algorithm: dictionary-based com-
pression (DBC) and discrete cosine transform (DCT), tailored
for text and images, with efficacy analysis; (2) leveraging the
parallel processing power of graphics processing units (GPUs)
with compute unified device architecture (CUDA) cores to
accelerate the number theoretic transform (NTT)-based poly-
nomial multiplication algorithm and the entire system; and
(3) conducting a comparative performance analysis between

our system and Microsoft simple encrypted arithmetic library
(SEAL) [8].

The remaining sections of the paper are structured as
follows: In Section II, we introduce the background of CKKS
and data compression algorithms. Section III introduces the
acceleration techniques. Section IV simulates and compares
the performance of the proposed approach with Microsoft
SEAL. The paper is concluded in Section V.

II. BACKGROUND
A. CKKS Algorithm

The CKKS scheme initializes with a security parameter \.
The ring dimension NN is determined, being a power of two.
Small distributions (Xkey, Xerr> and Xenc) Over the ring R are
established for secret key, error, and encryption, respectively.
Key generation produces both public and secret keys. The
secret key (sk) is a random polynomial s sampled from Xiey,
while the public key (pk) comprises a random polynomial a
from Rq! (for given ciphertext modulus level /) and an error
polynomial e from .. The public key pk is shared with
clients for encryption. During encryption, plaintext m is scaled
and encoded into polynomial using the Encode function
with scaling factor . Random polynomials v are sampled
from Yenc, and error polynomials ey and e; from xey. The
ciphertext (ct) is computed as ct = v - pk + (M + eg,e1)
mod ql, where ¢l denotes ciphertext modulus for level /. For
decryption, ciphertext ct decrypts as m = cg+c¢1-s mod ¢,
where ¢t = (cg, ¢1). Homomorphic operations are supported,
including adding and multiplying encrypted ciphertexts, relin-
earization for noise reduction, and rotation for operations on
different ciphertext parts.

B. Data Compression Techniques

The DBC algorithm [9]-[11], a widely used technique for
lossless data compression, achieves compression by identi-
fying and replacing recurring sequences of symbols with
shorter codes. Initially, it builds a dictionary containing all
unique symbols from the input data. As processing progresses,
the DBC algorithm dynamically expands this dictionary to
include frequently encountered longer substrings. During the
encoding phase, these identified substrings are replaced with
their corresponding codes from the dictionary, resulting in
compressed data.

979-8-3503-8717-9/24/$31.00 ©2024 IEEE 1145

Authorized licensed use limited to: NORTHERN ARIZONA UNIV. Downloaded on March 28,2025 at 21:04:45 UTC from IEEE Xplore. Restrictions apply.

Buffer of Data String

(@)

.

Compressed

e‘.%

)
O
$
% =p |88 > DCT > Quantization
— A \
n threads Q-Table Compressed
Image
N :

r N

v
. <= | s ¢ IDCT < Dequantization

(d)

L

Fig. 1. Diagram illustrating accelerated compression techniques on GPU for (a) series data and (b) image data.

Furthermore, DCT serves as another crucial tool for signal
and image processing, as detailed in [12]. It operates by
transforming data from the spatial domain, where it represents
positions in space, to the frequency domain, which reveals
the distribution of energy across different frequencies. This
transformation is achieved by decomposing the signal or
image into smaller blocks, applying the DCT to each block
individually, and then quantizing the resulting coefficients. No-
tably, quantization reduces the precision of these coefficients,
enabling efficient compression while preserving an acceptable
level of visual fidelity.

IIT. ACCELERATING CKKS HOMOMORPHIC ENCRYPTION

This work investigates various methods for compressing
CKKS input data, along with their corresponding GPU im-
plementations, to accelerate computations within the CKKS
homomorphic encryption algorithm. These compression tech-
niques are also integrated with NTT polynomial multiplication
to further improve performance for CKKS-based applications.

A. Accelerating CKKS Algorithm with Data Compression

We introduce CKKS-based security for both series and
image data. However, compressing image data presents unique

challenges due to the inherent complexity of large datasets,
making it computationally expensive to achieve effective com-
pression [13]. To address these compression challenges, we
propose a two-part approach. First, we employ DBC for
efficient compression of series data. Second, we leverage
DCT for effective image compression, utilizing dimension
expansion to handle the inherent complexity of image data.
Both techniques are optimized for CUDA cores to maximize
performance. The detailed structures of these techniques are
illustrated in Fig. 1.

1) Series Data: The DBC compression algorithm leverages
the parallel processing capabilities of GPUs by distributing
the workload across numerous cores for concurrent execu-
tion. This approach significantly reduces processing times.
To achieve this parallelism, each CUDA block is configured
with n threads. Each thread handles a specific portion of the
input data, enabling simultaneous processing. For instance, if
the input data size is 1024 bits, it is initially divided into n
chunks, with each chunk containing 1024 /n bits. Each CUDA
thread concurrently executes dictionary operations, searching
for sequences and adding new sequences. This distribution of
tasks among threads facilitates efficient management of the

HOST DEVICE GRID
— allEm Key Gen Kernel
Grid 1 (l)NTTT
Block 0 Block 1 | SMEM | | SMEM | | SMEM | | SMEM
IRegistersl I I Registers
$
- Block 2 Block3 ||| pk ’
-
= |l Jclsollg - §
= s - 1 Homomorphic Homomorphic] ' ad < i
2 = e i = Functions Functions 2 Parallel Operations !
§ QED \ sk = = o
i ; 0
£ Grid 2 \ : .
2 Block 0 Block 1 \\ Local Memory — Memory E ".'h':“d.s |
\ |
\ | |Global Memory I o
| | & &
Block 2 Block 3 \ |C°“5tf’“t Memory | ;
s
¥| Texture Memory | | ‘

Fig. 2. GPU settings and communications.

1146

Authorized licensed use limited to: NORTHERN ARIZONA UNIV. Downloaded on March 28,2025 at 21:04:45 UTC from IEEE Xplore. Restrictions apply.

dictionary, hash tables, and dictionary partitioning. Specifi-
cally, each thread is responsible for searching the dictionary to
identify the longest prefix of the current sequence found in the
dictionary: LongestPrefix(C') = max{j —i | C[i : j] € D}.
Upon identification, the thread outputs the corresponding code.
It contributes to adding the new sequence to the dictionary
with a new code, represented as D[S] = NextCode and
NextCode = NextCode + 1. This parallel process continues
iteratively until the entire input sequence is processed. As
a result, the algorithm generates a compressed output with
variable-length codes representing the input data.

2) Image Data: The image compression process is opti-
mized through the use of the CUDA parallelism paradigm,
which ensures efficient execution. The image is first segmented
into NV 8 x8 blocks, denoted by f(z,y). To distribute the work-
load across multiple threads, we assign n threads, with each
thread handling N/n blocks. These threads then concurrently
compute the DCT F'(u,v) for their assigned blocks using (1).

B M [Caiy

z=0y=0

os {(2y; ;)W]

ey

Once the DCT is computed, parallelism is also utilized
in subsequent quantization, where each thread independently
quantizes its block subset. Quantization involves dividing DCT
coefficients by a pre-defined quantization matrix Q(u,v) and
rounding for compression efficiency. Threads then perform
inverse quantization in parallel. During decompression, the
inverse DCT is used to reconstruct the block from frequency
data by (2). This process is executed by threads concurrently.

f(z,y) = 82220 u)C(v)F (u,v)
" [(“25505 £)u77] o {(2;,; ;)m] ?

Here, C(u) and C(v) are normalization factors. This ap-
proach harnesses the parallel processing power of the GPU
to significantly accelerate image compression and decompres-
sion.

B. Accelerating CKKS Algorithm with NTT Polynomial Mul-
tiplication on GPU CUDA Cores

We take advantage of the parallel GPU with CUDA cores to
speed up the NTT-based polynomial multiplication [14] in the
CKKS scheme, as depicted in Fig. 2. During the encryption
phase, each element of a two-dimensional input sequence of
size s = x -y, where x and y are the dimensions along the
first and second axes, respectively, is mapped to a unique index
using %, and 7,. These indices range from 0 to z—1 and y—1,
respectively, and are combined as ¢ = i, + %, - x, linking the
matrix to a linear sequence of size s. We introduce k, and
k, as transformed sequence indices, with k, ranging from 0
to x — 1 and k, from O to y — 1. The transformed sequence

is accessed via k, + k; - y. Each element fy, yx, ., in the
transformed sequence is computed as in (3).

z—1 y—1
fku—i-k, = Z Z Tiytiyo L QYivky | gsieky | pric ke 3)
12 =01,=0
Expanding the exponent of 6™:
95(1,—0—29) (ky+key) _ Gyzy oy 051, azzT - (4)
Utilizing the properties of roots of unity:
95(LT+17J.L)(k7I+kTy) _ Gy’i?/ky . asimky . aLLTkr (5)

After decryption, each thread applies the INTT to recover the
original sequence f from its transformed counterpart f:

mlyl

Z > Frythew

Ic ,=0 ky=0
. (Q—S(iﬁ-iy-w)(kﬁkm~y)) . (977Jckx‘) ky

Liytiy-z =

6

The final step involves aggregating the results from all
threads to generate the final approximate result and saving
it to global memory.

IV. EXPERIMENTAL EVALUATION

This section evaluates the performance gains achieved by
combining data compression and GPU acceleration within
the CKKS algorithm. We leverage a computing environment
equipped with an Intel Core i9-13900 CPU and an NVIDIA
GeForce RTX 3050 GPU for our experiments. These experi-
ments are conducted using CUDA Toolkit 12.3.

A. Impact of Data Compression

Our simulations yielded significant reductions in file size
for both general data and images, as demonstrated in Figs. 3a
and 3b. By harnessing the power of 128 CUDA threads for
parallel processing, our implemented compression algorithm
delivered impressive compression ratios ranging from 23% to
48%. This trend was similarly observed in image compression.
Notably, larger images displayed a positive correlation with
compression ratio, spanning from 60% for smaller images
to an outstanding 90% for larger ones. The attained high
compression ratios directly contribute to optimized digital
asset management and efficient data storage and transmission.
However, a trade-off arises between compression ratio and
processing time for both file size and image compression.
While achieving these remarkable compression ratios, process-
ing time also exhibits a positive correlation with data size,
increasing by a factor of up to 12 for larger files.

B. Performance Evaluation on CKKS Operations

Table I presents a comparison of processing efficiency
between Microsoft SEAL and our proposed work across
various operations. Notably, our work consistently outperforms
Microsoft SEAL in terms of encryption and decryption times
for different settings when considering randomly generated
data. For instance, in the (32768, 740) setting, encryption

1147

Authorized licensed use limited to: NORTHERN ARIZONA UNIV. Downloaded on March 28,2025 at 21:04:45 UTC from IEEE Xplore. Restrictions apply.

50
r12 90 - L6
45]
:\c\ 10 "‘é’\ g 85) —
2 40 Lg o 2 80 L4 &
Z s 2 Z 4
o = 5 on
% 35 F6 2 % 5] 38
2 0]
£ 34 La 8 £ 70 (22
ko 30 £ S ~
—— Compression Rate | 3 65 —— Compression Rate [1
25 1 —®— Processing Time —@— Processing Time 0
60 3

40000 60000 80000

File Size (bytes)

20000

(2)

5000 10000 15000 20000

Image Size (n*n pixels)

(b)

Fig. 3. Compression performance with 128 CUDA threads on (a) series data and (b) image data.

TABLE 1
PERFORMANCE EVALUATION
Microsoft SEAL This Work
Type of message Function (modulus degree, coefficient bits) (modulus degree, coefficient bits)
(8192, 160) | (16384, 280) | (32768, 740) | (8192, 160) | (16384, 280) | (32768, 740)
Encode 0.327 0.971 6.092 0.021 0.028 0.374
Random Encryption 1.790 5.060 30.135 0.110 0.118 0.453
Generated Data Decryption 0.101 0.163 2.401 0.001 0.002 0.018
Decode 0.504 1.758 15.394 0.039 0.055 0.904
Encode 10.363 12.038 16.259 0.365 0.535 4.339
Original Encryption 2.119 5.285 30.514 0.255 0.510 0.613
Image Data Decryption 0.161 0.288 1.873 0.013 0.015 0.018
Decode 1.889 2.115 17.709 0.784 1.049 1.319
Encode 5.3661 10.108 12.409 0.311 0.417 3.409
Compressed Encryption 3.137 4.871 25.860 0.127 0.240 0.355
Image Data Decryption 0.061 0.204 1.514 0.011 0.013 0.014
Decode 1.636 2.032 13.744 0.637 0.973 1.034

time for our work is significantly lower (0.453 ms) compared
to Microsoft SEAL (30.135 ms), indicating a substantial
reduction in processing overhead. Similarly, decryption time
decreases from 2.401 ms to 0.018 ms, further highlighting
the superior performance of our work in handling encryption
and decryption tasks efficiently. Moreover, the impact of data
compression on the efficiency of CKKS operations becomes
evident when comparing original and compressed data.

Data compression consistently leads to significant reduc-
tions in both encryption and decryption times. In the (32768,
740) setting, for example, encryption time decreases from
0.613 ms to 0.355 ms, and decryption time diminishes from
0.018 ms to 0.014 ms when working with compressed image
data instead of uncompressed data. The benefits of data
compression extend beyond encryption and decryption, as
evidenced by the observed improvements in encoding and
decoding tasks, thereby underscoring its positive impact on
overall system performance and efficiency.

V. CONCLUSION

Our research highlights the promising integration of the
CKKS algorithm with data compression techniques and GPU
implementation. Through meticulous analysis of this integra-
tion, we achieve impressive efficiency improvements, includ-
ing a notable compression rate of 90% and processing speeds
surpassing the traditional SEAL-based CKKS algorithm by up
to 100 times. This convergence not only enables secure and
large-scale data computations but also enhances agility and
efficacy in handling extensive datasets. By leveraging GPU
architecture for accelerated throughput and parallel process-
ing, coupled with the advanced compression techniques, our
approach represents a significant stride towards optimizing
resource utilization and bolstering system performance across
various domains.

ACKNOWLEDGMENT

This material is based upon work supported by the National
Science Foundation under Grant No. 2348464.

1148

Authorized licensed use limited to: NORTHERN ARIZONA UNIV. Downloaded on March 28,2025 at 21:04:45 UTC from IEEE Xplore. Restrictions apply.

—_

—_

—

REFERENCES

AAG IT, “The latest cyber crime statistics,” https://aag-it.com/
the-latest-cyber-crime-statistics/, 2024, Accessed: 3/14/2024.

B. Nour, M. Pourzandi, and M. Debbabi, “A survey on threat hunting in
enterprise networks,” IEEE Communications Surveys Tutorials, vol. 25,
no. 4, pp. 2299-2324, 2023.

F. Valenza, E. Karafili, R. V. Steiner, and E. C. Lupu, “A hybrid threat
model for smart systems,” IEEE Transactions on Dependable and Secure
Computing, vol. 20, no. 5, pp. 4403—4417, 2023.

N. Tatipatri and S. L. Arun, “A comprehensive review on cyber-attacks
in power systems: Impact analysis, detection, and cyber security,” IEEE
Access, vol. 12, pp. 18 147-18 167, 2024.

J. H. Cheon, A. Kim, M. Kim, and Y. Song, “Homomorphic encryption
for arithmetic of approximate numbers,” in International Conference on
the Theory and Application of Cryptology and Information Security,
2017.

S. Shen, H. Yang, Y. Liu, Z. Liu, and Y. Zhao, “CARM: CUDA-
Accelerated RNS multiplication in word-wise homomorphic encryption
schemes for Internet of Things,” IEEE Transactions on Computers,
vol. 72, no. 7, pp. 1999-2010, 2023.

T. T. Nguyen, Q. B. Phan, N. T. Bui, and C. daCunha, “High-secure
data collection in IoT sensor networks using homomorphic encryption,”

[8]
[9]

[10]

[11]

[12]

[13]

[14]

1149

Authorized licensed use limited to: NORTHERN ARIZONA UNIV. Downloaded on March 28,2025 at 21:04:45 UTC from IEEE Xplore. Restrictions apply.

in Sensors and Systems for Space Applications XVI, vol. 12546. SPIE,
2023, pp. 53-60.

Microsoft, “Microsoft SEAL v4.1,” https://github.com/microsoft/SEAL,
2023, Accessed: 3/14/2024.

J. Qian, P. Tiwari, S. P. Gochhayat, and H. M. Pandey, “A noble double-
dictionary-based ECG compression technique for IoTH,” IEEE Internet
of Things Journal, vol. 7, no. 10, pp. 10 160-10 170, 2020.

S. B. Raut, “AOCL-compression - A high performance optimized
lossless data compression library,” in 2023 IEEE High Performance
Extreme Computing Conference (HPEC), 2023, pp. 1-7.

M. Sahu and J. Panda, “A time efficient approach to data compres-
sion for LZW algorithm,” in 2023 Annual International Conference
on Emerging Research Areas: International Conference on Intelligent
Systems (AICERA/ICIS), 2023, pp. 1-3.

M. Wang and X. Shang, “A fast image fusion with discrete cosine
transform,” IEEE Signal Processing Letters, vol. 27, pp. 990-994, 2020.
S. Mittal and J. S. Vetter, “A survey of architectural approaches for data
compression in cache and main memory systems,” IEEE Transactions on
Parallel and Distributed Systems, vol. 27, no. 5, pp. 1524-1536, 2016.
J. W. Cooley and J. W. Tukey, “An algorithm for the machine calculation
of complex Fourier series,” Mathematics of computation, vol. 19, no. 90,
pp. 297-301, 1965.

 HistoryItem_V1
 TrimAndShift

 Range: all pages
 Trim: none
 Shift: move up by 3.60 points
 Normalise (advanced option): 'original'

 32

 D:20170330081459
 792.0000
 US Letter
 Blank
 612.0000

 Tall
 1
 0
 No
 675
 322
 Fixed
 Up
 3.6000
 0.0000

 Both
 AllDoc

 PDDoc

 None
 0.0000
 Top

 QITE_QuiteImposingPlus2
 Quite Imposing Plus 2.9
 Quite Imposing Plus 2
 1

 5
 4
 5

 1

 HistoryItem_V1
 TrimAndShift

 Range: From page 1 to page 1
 Trim: none
 Shift: move up by 3.60 points
 Normalise (advanced option): 'original'

 32
 1
 0
 No
 675
 322
 Fixed
 Up
 3.6000
 0.0000

 Both
 1
 SubDoc
 1

 PDDoc

 None
 0.0000
 Top

 QITE_QuiteImposingPlus2
 Quite Imposing Plus 2.9
 Quite Imposing Plus 2
 1

 5
 0
 1

 1

 HistoryList_V1
 qi2base

