
Accelerating CKKS Homomorphic Encryption with

Data Compression on GPUs

Quoc Bao Phan, Linh Nguyen, and Tuy Tan Nguyen

School of Informatics, Computing, and Cyber Systems

Northern Arizona University

Flagstaff, AZ 86011, USA

tuy.nguyen@nau.edu

Abstract—Homomorphic encryption (HE) algorithms, particu-
larly the Cheon-Kim-Kim-Song (CKKS) scheme, offer significant
potential for secure computation on encrypted data, making
them valuable for privacy-preserving machine learning. However,
high latency in large integer operations in the CKKS algorithm
hinders the processing of large datasets and complex computa-
tions. This paper proposes a novel strategy that combines lossless
data compression techniques with the parallel processing power
of graphics processing units to address these challenges. Our
approach demonstrably reduces data size by 90% and achieves
significant speedups of up to 100 times compared to conventional
approaches. This method ensures data confidentiality while mit-
igating performance bottlenecks in CKKS-based computations,
paving the way for more efficient and scalable HE applications.

Index Terms—Homomorphic encryption, graphics processing
units, data compression, CKKS, privacy-preserving.

I. INTRODUCTION

The ever-growing volume of personal, organizational, and

transactional data in the global intelligent technology land-

scape necessitates efficient storage and robust security mea-

sures [1]. This data surge, fueled by e-commerce, online trans-

actions, and the Internet of Things (IoT), intensifies cyberse-

curity threats, even for seemingly innocuous data like personal

details [2]–[4]. As a response, advancements in cryptographic

techniques, specifically homomorphic encryption (HE), are

gaining traction. HE allows computations on encrypted data,

preserving confidentiality. Cheon-Kim-Kim-Song (CKKS) al-

gorithm [5] exemplifies this innovation, addressing key HE

challenges by enabling computations on real numbers and

performing arithmetic operations on encrypted data.

Existing approaches for the CKKS algorithm are often

hampered by large datasets and CPU-bound processing delays

[6], [7]. This paper proposes a novel method to improve the

efficiency of the CKKS algorithm by combining advanced data

compression and acceleration techniques. Our contributions in-

clude: (1) employing two distinct data compression algorithms

to process data in CKKS algorithm: dictionary-based com-

pression (DBC) and discrete cosine transform (DCT), tailored

for text and images, with efficacy analysis; (2) leveraging the

parallel processing power of graphics processing units (GPUs)

with compute unified device architecture (CUDA) cores to

accelerate the number theoretic transform (NTT)-based poly-

nomial multiplication algorithm and the entire system; and

(3) conducting a comparative performance analysis between

our system and Microsoft simple encrypted arithmetic library

(SEAL) [8].

The remaining sections of the paper are structured as

follows: In Section II, we introduce the background of CKKS

and data compression algorithms. Section III introduces the

acceleration techniques. Section IV simulates and compares

the performance of the proposed approach with Microsoft

SEAL. The paper is concluded in Section V.

II. BACKGROUND

A. CKKS Algorithm

The CKKS scheme initializes with a security parameter λ.

The ring dimension N is determined, being a power of two.

Small distributions (χkey, χerr, and χenc) over the ring R are

established for secret key, error, and encryption, respectively.

Key generation produces both public and secret keys. The

secret key (sk) is a random polynomial s sampled from χkey,

while the public key (pk) comprises a random polynomial a
from Rql (for given ciphertext modulus level l) and an error

polynomial e from χerr. The public key pk is shared with

clients for encryption. During encryption, plaintext m is scaled

and encoded into polynomial m̂ using the Encode function

with scaling factor γ. Random polynomials v are sampled

from χenc, and error polynomials e0 and e1 from χerr. The

ciphertext (ct) is computed as ct = v · pk + (m̂ + e0, e1)
mod ql, where ql denotes ciphertext modulus for level l. For

decryption, ciphertext ct decrypts as m̂ = c0+ c1 · s mod ql,
where ct = (c0, c1). Homomorphic operations are supported,

including adding and multiplying encrypted ciphertexts, relin-

earization for noise reduction, and rotation for operations on

different ciphertext parts.

B. Data Compression Techniques

The DBC algorithm [9]–[11], a widely used technique for

lossless data compression, achieves compression by identi-

fying and replacing recurring sequences of symbols with

shorter codes. Initially, it builds a dictionary containing all

unique symbols from the input data. As processing progresses,

the DBC algorithm dynamically expands this dictionary to

include frequently encountered longer substrings. During the

encoding phase, these identified substrings are replaced with

their corresponding codes from the dictionary, resulting in

compressed data.

20
24

 IE
EE

 6
7t

h
In

te
rn

at
io

na
l M

id
w

es
t S

ym
po

siu
m

 o
n

Ci
rc

ui
ts

 a
nd

 S
ys

te
m

s (
M

W
SC

AS
) |

 9
79

-8
-3

50
3-

87
17

-9
/2

4/
$3

1.
00

 ©
20

24
 IE

EE
 |

 D
OI

: 1
0.

11
09

/M
W

SC
AS

60
91

7.
20

24
.1

06
58

74
7

Authorized licensed use limited to: NORTHERN ARIZONA UNIV. Downloaded on March 28,2025 at 21:04:45 UTC from IEEE Xplore. Restrictions apply.

(a) (b)

Fig. 1. Diagram illustrating accelerated compression techniques on GPU for (a) series data and (b) image data.

Furthermore, DCT serves as another crucial tool for signal

and image processing, as detailed in [12]. It operates by

transforming data from the spatial domain, where it represents

positions in space, to the frequency domain, which reveals

the distribution of energy across different frequencies. This

transformation is achieved by decomposing the signal or

image into smaller blocks, applying the DCT to each block

individually, and then quantizing the resulting coefficients. No-

tably, quantization reduces the precision of these coefficients,

enabling efficient compression while preserving an acceptable

level of visual fidelity.

III. ACCELERATING CKKS HOMOMORPHIC ENCRYPTION

This work investigates various methods for compressing

CKKS input data, along with their corresponding GPU im-

plementations, to accelerate computations within the CKKS

homomorphic encryption algorithm. These compression tech-

niques are also integrated with NTT polynomial multiplication

to further improve performance for CKKS-based applications.

A. Accelerating CKKS Algorithm with Data Compression

We introduce CKKS-based security for both series and

image data. However, compressing image data presents unique

challenges due to the inherent complexity of large datasets,

making it computationally expensive to achieve effective com-

pression [13]. To address these compression challenges, we

propose a two-part approach. First, we employ DBC for

efficient compression of series data. Second, we leverage

DCT for effective image compression, utilizing dimension

expansion to handle the inherent complexity of image data.

Both techniques are optimized for CUDA cores to maximize

performance. The detailed structures of these techniques are

illustrated in Fig. 1.

1) Series Data: The DBC compression algorithm leverages

the parallel processing capabilities of GPUs by distributing

the workload across numerous cores for concurrent execu-

tion. This approach significantly reduces processing times.

To achieve this parallelism, each CUDA block is configured

with n threads. Each thread handles a specific portion of the

input data, enabling simultaneous processing. For instance, if

the input data size is 1024 bits, it is initially divided into n
chunks, with each chunk containing 1024/n bits. Each CUDA

thread concurrently executes dictionary operations, searching

for sequences and adding new sequences. This distribution of

tasks among threads facilitates efficient management of the

Fig. 2. GPU settings and communications.

Authorized licensed use limited to: NORTHERN ARIZONA UNIV. Downloaded on March 28,2025 at 21:04:45 UTC from IEEE Xplore. Restrictions apply.

dictionary, hash tables, and dictionary partitioning. Specifi-

cally, each thread is responsible for searching the dictionary to

identify the longest prefix of the current sequence found in the

dictionary: LongestPrefix(C) = max{j − i | C[i : j] ∈ D}.

Upon identification, the thread outputs the corresponding code.

It contributes to adding the new sequence to the dictionary

with a new code, represented as D[S] = NextCode and

NextCode = NextCode + 1. This parallel process continues

iteratively until the entire input sequence is processed. As

a result, the algorithm generates a compressed output with

variable-length codes representing the input data.

2) Image Data: The image compression process is opti-

mized through the use of the CUDA parallelism paradigm,

which ensures efficient execution. The image is first segmented

into N 8×8 blocks, denoted by f(x, y). To distribute the work-

load across multiple threads, we assign n threads, with each

thread handling N/n blocks. These threads then concurrently

compute the DCT F (u, v) for their assigned blocks using (1).

(1)

F (u, v) =

7
∑

x=0

7
∑

y=0

f(x, y) cos

[

(2x+ 1)uπ

2 · 8

]

cos

[

(2y + 1)vπ

2 · 8

]

Once the DCT is computed, parallelism is also utilized

in subsequent quantization, where each thread independently

quantizes its block subset. Quantization involves dividing DCT

coefficients by a pre-defined quantization matrix Q(u, v) and

rounding for compression efficiency. Threads then perform

inverse quantization in parallel. During decompression, the

inverse DCT is used to reconstruct the block from frequency

data by (2). This process is executed by threads concurrently.

(2)

f(x, y) =
1

4 · 82

7
∑

u=0

7
∑

v=0

C(u)C(v)F (u, v)

cos

[

(2x+ 1)uπ

2 · 8

]

cos

[

(2y + 1)vπ

2 · 8

]

Here, C(u) and C(v) are normalization factors. This ap-

proach harnesses the parallel processing power of the GPU

to significantly accelerate image compression and decompres-

sion.

B. Accelerating CKKS Algorithm with NTT Polynomial Mul-

tiplication on GPU CUDA Cores

We take advantage of the parallel GPU with CUDA cores to

speed up the NTT-based polynomial multiplication [14] in the

CKKS scheme, as depicted in Fig. 2. During the encryption

phase, each element of a two-dimensional input sequence of

size s = x · y, where x and y are the dimensions along the

first and second axes, respectively, is mapped to a unique index

using ix and iy . These indices range from 0 to x−1 and y−1,

respectively, and are combined as i = ix + iy · x, linking the

matrix to a linear sequence of size s. We introduce kx and

ky as transformed sequence indices, with kx ranging from 0

to x − 1 and ky from 0 to y − 1. The transformed sequence

is accessed via ky + kx · y. Each element fky+kx·y in the

transformed sequence is computed as in (3).

fky+kx·y =
x−1
∑

ix=0

y−1
∑

iy=0

xix+iy·x · θyiy·ky · θsix·ky · θxix·kx (3)

Expanding the exponent of θn:

θs(ix+iy·x)·(ky+kx·y) = θyiy·ky · θsix·ky · θxix·kx (4)

Utilizing the properties of roots of unity:

θs(ix+iy·x)·(ky+kx·y) = θyiy·ky · θsix·ky · θxix·kx (5)

After decryption, each thread applies the INTT to recover the

original sequence f from its transformed counterpart f̂ :

(6)
xix+iy·x =

1

s

x−1
∑

kx=0

y−1
∑

ky=0

f̂ky+kx·y

· (θ−s(ix+iy·x)·(ky+kx·y)) · (θxix·kx) · ky

The final step involves aggregating the results from all

threads to generate the final approximate result and saving

it to global memory.

IV. EXPERIMENTAL EVALUATION

This section evaluates the performance gains achieved by

combining data compression and GPU acceleration within

the CKKS algorithm. We leverage a computing environment

equipped with an Intel Core i9-13900 CPU and an NVIDIA

GeForce RTX 3050 GPU for our experiments. These experi-

ments are conducted using CUDA Toolkit 12.3.

A. Impact of Data Compression

Our simulations yielded significant reductions in file size

for both general data and images, as demonstrated in Figs. 3a

and 3b. By harnessing the power of 128 CUDA threads for

parallel processing, our implemented compression algorithm

delivered impressive compression ratios ranging from 23% to

48%. This trend was similarly observed in image compression.

Notably, larger images displayed a positive correlation with

compression ratio, spanning from 60% for smaller images

to an outstanding 90% for larger ones. The attained high

compression ratios directly contribute to optimized digital

asset management and efficient data storage and transmission.

However, a trade-off arises between compression ratio and

processing time for both file size and image compression.

While achieving these remarkable compression ratios, process-

ing time also exhibits a positive correlation with data size,

increasing by a factor of up to 12 for larger files.

B. Performance Evaluation on CKKS Operations

Table I presents a comparison of processing efficiency

between Microsoft SEAL and our proposed work across

various operations. Notably, our work consistently outperforms

Microsoft SEAL in terms of encryption and decryption times

for different settings when considering randomly generated

data. For instance, in the (32768, 740) setting, encryption

Authorized licensed use limited to: NORTHERN ARIZONA UNIV. Downloaded on March 28,2025 at 21:04:45 UTC from IEEE Xplore. Restrictions apply.

(a) (b)

Fig. 3. Compression performance with 128 CUDA threads on (a) series data and (b) image data.

TABLE I
PERFORMANCE EVALUATION

Type of message Function

Microsoft SEAL

(modulus degree, coefficient bits)

This Work

(modulus degree, coefficient bits)

(8192, 160) (16384, 280) (32768, 740) (8192, 160) (16384, 280) (32768, 740)

Random

Generated Data

Encode 0.327 0.971 6.092 0.021 0.028 0.374

Encryption 1.790 5.060 30.135 0.110 0.118 0.453

Decryption 0.101 0.163 2.401 0.001 0.002 0.018

Decode 0.504 1.758 15.394 0.039 0.055 0.904

Original

Image Data

Encode 10.363 12.038 16.259 0.365 0.535 4.339

Encryption 2.119 5.285 30.514 0.255 0.510 0.613

Decryption 0.161 0.288 1.873 0.013 0.015 0.018

Decode 1.889 2.115 17.709 0.784 1.049 1.319

Compressed

Image Data

Encode 5.3661 10.108 12.409 0.311 0.417 3.409

Encryption 3.137 4.871 25.860 0.127 0.240 0.355

Decryption 0.061 0.204 1.514 0.011 0.013 0.014

Decode 1.636 2.032 13.744 0.637 0.973 1.034

time for our work is significantly lower (0.453 ms) compared

to Microsoft SEAL (30.135 ms), indicating a substantial

reduction in processing overhead. Similarly, decryption time

decreases from 2.401 ms to 0.018 ms, further highlighting

the superior performance of our work in handling encryption

and decryption tasks efficiently. Moreover, the impact of data

compression on the efficiency of CKKS operations becomes

evident when comparing original and compressed data.

Data compression consistently leads to significant reduc-

tions in both encryption and decryption times. In the (32768,

740) setting, for example, encryption time decreases from

0.613 ms to 0.355 ms, and decryption time diminishes from

0.018 ms to 0.014 ms when working with compressed image

data instead of uncompressed data. The benefits of data

compression extend beyond encryption and decryption, as

evidenced by the observed improvements in encoding and

decoding tasks, thereby underscoring its positive impact on

overall system performance and efficiency.

V. CONCLUSION

Our research highlights the promising integration of the

CKKS algorithm with data compression techniques and GPU

implementation. Through meticulous analysis of this integra-

tion, we achieve impressive efficiency improvements, includ-

ing a notable compression rate of 90% and processing speeds

surpassing the traditional SEAL-based CKKS algorithm by up

to 100 times. This convergence not only enables secure and

large-scale data computations but also enhances agility and

efficacy in handling extensive datasets. By leveraging GPU

architecture for accelerated throughput and parallel process-

ing, coupled with the advanced compression techniques, our

approach represents a significant stride towards optimizing

resource utilization and bolstering system performance across

various domains.

ACKNOWLEDGMENT

This material is based upon work supported by the National

Science Foundation under Grant No. 2348464.

Authorized licensed use limited to: NORTHERN ARIZONA UNIV. Downloaded on March 28,2025 at 21:04:45 UTC from IEEE Xplore. Restrictions apply.

REFERENCES

[1] AAG IT, “The latest cyber crime statistics,” https://aag-it.com/
the-latest-cyber-crime-statistics/, 2024, Accessed: 3/14/2024.

[2] B. Nour, M. Pourzandi, and M. Debbabi, “A survey on threat hunting in
enterprise networks,” IEEE Communications Surveys Tutorials, vol. 25,
no. 4, pp. 2299–2324, 2023.

[3] F. Valenza, E. Karafili, R. V. Steiner, and E. C. Lupu, “A hybrid threat
model for smart systems,” IEEE Transactions on Dependable and Secure

Computing, vol. 20, no. 5, pp. 4403–4417, 2023.
[4] N. Tatipatri and S. L. Arun, “A comprehensive review on cyber-attacks

in power systems: Impact analysis, detection, and cyber security,” IEEE

Access, vol. 12, pp. 18 147–18 167, 2024.
[5] J. H. Cheon, A. Kim, M. Kim, and Y. Song, “Homomorphic encryption

for arithmetic of approximate numbers,” in International Conference on

the Theory and Application of Cryptology and Information Security,
2017.

[6] S. Shen, H. Yang, Y. Liu, Z. Liu, and Y. Zhao, “CARM: CUDA-
Accelerated RNS multiplication in word-wise homomorphic encryption
schemes for Internet of Things,” IEEE Transactions on Computers,
vol. 72, no. 7, pp. 1999–2010, 2023.

[7] T. T. Nguyen, Q. B. Phan, N. T. Bui, and C. daCunha, “High-secure
data collection in IoT sensor networks using homomorphic encryption,”

in Sensors and Systems for Space Applications XVI, vol. 12546. SPIE,
2023, pp. 53–60.

[8] Microsoft, “Microsoft SEAL v4.1,” https://github.com/microsoft/SEAL,
2023, Accessed: 3/14/2024.

[9] J. Qian, P. Tiwari, S. P. Gochhayat, and H. M. Pandey, “A noble double-
dictionary-based ECG compression technique for IoTH,” IEEE Internet

of Things Journal, vol. 7, no. 10, pp. 10 160–10 170, 2020.

[10] S. B. Raut, “AOCL-compression - A high performance optimized
lossless data compression library,” in 2023 IEEE High Performance

Extreme Computing Conference (HPEC), 2023, pp. 1–7.

[11] M. Sahu and J. Panda, “A time efficient approach to data compres-
sion for LZW algorithm,” in 2023 Annual International Conference

on Emerging Research Areas: International Conference on Intelligent

Systems (AICERA/ICIS), 2023, pp. 1–3.

[12] M. Wang and X. Shang, “A fast image fusion with discrete cosine
transform,” IEEE Signal Processing Letters, vol. 27, pp. 990–994, 2020.

[13] S. Mittal and J. S. Vetter, “A survey of architectural approaches for data
compression in cache and main memory systems,” IEEE Transactions on

Parallel and Distributed Systems, vol. 27, no. 5, pp. 1524–1536, 2016.

[14] J. W. Cooley and J. W. Tukey, “An algorithm for the machine calculation
of complex Fourier series,” Mathematics of computation, vol. 19, no. 90,
pp. 297–301, 1965.

Authorized licensed use limited to: NORTHERN ARIZONA UNIV. Downloaded on March 28,2025 at 21:04:45 UTC from IEEE Xplore. Restrictions apply.

 HistoryItem_V1
 TrimAndShift

 Range: all pages
 Trim: none
 Shift: move up by 3.60 points
 Normalise (advanced option): 'original'

 32

 D:20170330081459
 792.0000
 US Letter
 Blank
 612.0000

 Tall
 1
 0
 No
 675
 322
 Fixed
 Up
 3.6000
 0.0000

 Both
 AllDoc

 PDDoc

 None
 0.0000
 Top

 QITE_QuiteImposingPlus2
 Quite Imposing Plus 2.9
 Quite Imposing Plus 2
 1

 5
 4
 5

 1

 HistoryItem_V1
 TrimAndShift

 Range: From page 1 to page 1
 Trim: none
 Shift: move up by 3.60 points
 Normalise (advanced option): 'original'

 32
 1
 0
 No
 675
 322
 Fixed
 Up
 3.6000
 0.0000

 Both
 1
 SubDoc
 1

 PDDoc

 None
 0.0000
 Top

 QITE_QuiteImposingPlus2
 Quite Imposing Plus 2.9
 Quite Imposing Plus 2
 1

 5
 0
 1

 1

 HistoryList_V1
 qi2base

