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Abstract
1. Global change is impacting biodiversity across all habitats on earth. New selec-
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tivities are creating heterogeneous ecological and evolutionary responses across
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ducible tools to effectively predict the resulting patterns in species vulnerability
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to declines or range changes.

. We developed an informatic toolbox that integrates ecological, environmental

and genomic data and analyses (environmental dissimilarity, species distribution
models, landscape connectivity, neutral and adaptive genetic diversity, genotype-
environment associations and genomic offset) to estimate population vulnerabil-
ity. In our toolbox, functions and data structures are coded in a standardised way
so that it is applicable to any species or geographic region where appropriate data
are available, for example individual or population sampling and genomic datasets
(e.g. RAD-seq, ddRAD-seq, whole genome sequencing data) representing envi-
ronmental variation across the species geographic range.

. To demonstrate multi-species applicability, we apply our toolbox to three georef-

erenced genomic datasets for co-occurring East African spiny reed frogs (Afrixalus
fornasini, A. delicatus and A. sylvaticus) to predict their population vulnerability, as
well as demonstrating that range loss projections based on adaptive variation can
be accurately reproduced from a previous study using data for two European bat

species (Myotis escalerai and M. crypticus).

. Our framework sets the stage for large scale, multi-species genomic datasets

to be leveraged in a novel climate change vulnerability framework to quantify
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1 | INTRODUCTION

Global climate change is affecting biodiversity in unprecedented
ways, compounded by other anthropogenic impacts such as hab-
itat degradation, fragmentation and loss (IPBES, 2019). For exam-
ple, increased temperatures and frequencies of extreme climatic
events are predicted to create new selection pressures by rapidly
altering resource availability, exposure to pathogens and the struc-
ture and functioning of trophic networks for many species (Bellard
et al., 2012; Hoffmann & Sgro, 2011; Pinsky et al., 2019). How spe-
cies respond to these new selection pressures depends on their
‘vulnerability’ (IPCC, 2007), which is defined as the combination
of the stress to which a system is exposed, its sensitivity and as-
pects of its adaptive capacity (Foden et al., 2019). Climate change
vulnerability assessments first emerged in the 1990s, as a tool that
accounts for aspects of natural hazard and disaster planning, climate
change effects and endangered species research. In their early it-
erations, vulnerability was mainly focused on people and commu-
nities (IPCC, 2014), though this was later applied to species and
ecosystems.

Until recently, accounting for differences in vulnerability
among populations within species was largely ignored in climate
change vulnerability assessment approaches. However, high-
lighting intraspecific populations that are most at risk of local
extinction, or identifying those with pre-adapted genotypes
that can be sources for assisted gene flow and evolutionary res-
cue (Bell & Gonzalez, 2009), could greatly improve biodiversity
conservation management by safeguarding populations and ge-
netic diversity beneficial for resilience to future environmental
change (Hoban et al., 2021, 2022; Laikre et al., 2010). Neutral
genetic diversity is important in this respect as it provides the
basis for future evolution and could become selected upon when
environmental conditions or geographic distributions change.
Populations with higher neutral genetic diversity may therefore
have a higher chance of supporting individuals with advanta-
geous mutations or traits (@rsted et al., 2019). To address the
risk of local extinction we refer throughout this manuscript to
‘Exposure’ (i.e. the nature, magnitude and rate of environmental
change), ‘Sensitivity’ (i.e. the underlying neutral and adaptive ge-
netic diversity which may buffer against environmental change)
and ‘Landscape barriers’ (i.e. limitation to track favourable envi-
ronmental conditions (Parmesan, 2006; Pecl et al., 2017) and to
potentially spread beneficial neutral and adaptive genomic vari-
ation (Razgour et al., 2018)). We emphasise here that ‘Landscape
barriers’ is a proxy for potential spread of genomic variation and
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intraspecific differences in genetic diversity, local adaptation, range shifts and

population vulnerability based on exposure, sensitivity and landscape barriers.

adaptation, circuit theory, climate change vulnerability assessment, conservation, genomics,
global change, informatics, predictive modelling

does not account for dispersal capacity or number of generations
across the analysed time periods. During the past decades, the
dominant approach to climate change vulnerability assessments
were based on forecasts of how species ranges are predicted to
change using species distribution models (SDMs; Barbet-Massin
et al., 2012; Elith & Leathwick, 2009; Guisan & Thuiller, 2005;
Pacifici et al., 2015; Urban, 2015), in some cases refined using ge-
netic data to build SDMs independently for intraspecific popula-
tions that have divergent ecological niches (e.g. Bittencourt-Silva
et al., 2017; Collart et al., 2021; lkeda et al., 2017). However, even
when accounting for neutral population structure, a major limita-
tion of these approaches has been that intraspecific local adapta-
tion and differential responses to climate change have been largely
ignored, potentially leading to inaccurate predictions of future dis-
tributions and misplaced conservation efforts (Foden et al., 2019;
Hallfors et al., 2016). Adaptation to local environmental condi-
tions is widespread across the tree of life (Hereford, 2009), and
the geographic distribution of adaptive variation likely plays a
fundamental role in the ability of populations within species to
respond to global change (Capblancq et al., 2020; Exposito-Alonso
etal., 2018, 2022; Forester et al., 2022). Assessing SDMs together
with local adaptation, neutral genetic diversity and landscape
connectivity and potential gene flow (e.g. Brennan et al., 2022;
McGuire et al., 2016; Parks et al., 2022) is therefore essential to
understand geographic differences in vulnerability under future
global change scenarios.

Recent calls were made in the emergent field of climate change
genomics (Lancaster et al., 2022) for the integration of genomic
data to improve the accuracy of climate change vulnerability assess-
ments (Capblancq et al., 2020; Fitzpatrick & Keller, 2015; Nadeau &
Urban, 2019; Pauls et al., 2013; Waldvogel, Feldmeyer, et al., 2020).
Conceptual and analytical developments enabling the incorpora-
tion of intraspecific adaptations across species ranges (e.g. Aguirre-
Liguori et al., 2021; Bay et al., 2018; Forester et al., 2023; Razgour
et al., 2018, 2019; Ruegg et al., 2018), and phenotypic plasticity
(Benito Garzon et al., 2019) have led to major advances in our ability
to assess how population vulnerability varies across species ranges.
Despite these recent advances, we lack practical and integrative tools
to implement analyses across multiple taxonomic groups and geo-
graphic regions (see Pinsky et al., 2022). Due to the high multidiscipli-
narity and diversity of analyses required for most integrated climate
change vulnerability assessments, researchers often tailor their ap-
proach to their own study system, without creating standardised data
structures and code that can be applied more widely to any system
(see Johnston et al., 2023; Waldvogel, Schreiber, et al., 2020).
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To address this gap in our ability to predict population vulnerabil-
ity to global change, we introduce ‘Life on the edge’ (hereafter LotE),
an analytical toolbox to integrate ecological (species distributions
and their ecological requirements), environmental (environmental
dissimilarity and landscape connectivity) and genomic information
(neutral and adaptive sensitivity) in a novel climate change vulner-
ability assessment toolbox. Throughout the LotE toolbox, all data
inputs are standardised and all code is open source, generalised and
parallelised, so it is applicable across any number of different spe-
cies from any geographic area for which suitable genomic, ecological
and environmental data exist. Our toolbox is based on the concepts
introduced in the IPCC 4th assessment (IPCC, 2007) and Razgour
et al. (2018, 2019) to leverage information obtained from the raw
data to estimate ‘Exposure’ (estimated from the magnitude of pre-
dicted climate change), ‘Sensitivity’ (estimated from both neutral and
adaptive genetic diversity) and ‘Landscape barriers’ (the estimated
limitations for future distributional shifts and evolutionary rescue
given predicted future climate change). Landscape barriers is not
included in the IPCC 4th assessment but may be particularly rele-
vant for populations without sufficient standing genetic variation
to adapt in-situ quickly, or for long-lived species with long gener-
ation times where shifting their range is a more likely response to
environmental change than rapid adaptation, unless a sufficiently
large fraction of individuals already possess pre-adapted genotypes
(Razgour et al., 2018). Together, exposure, sensitivity and landscape
barriers are mapped separately to identify populations with lower
or higher scores for each metric and also combined as an average
or custom combination to predict population vulnerability to global
change across a species' range. We define population vulnerability
as the likelihood that a population will become locally extinct due

to global change impacts rather than other anthropogenic pressures
such as overharvesting. Our population vulnerability metric is an ap-
proximation given the available genomic, spatial and environmental
data, but it should be understood that it does not include any kind of
population viability analysis.

2 | MATERIALS AND METHODS
2.1 | Modelling objective

Our overarching goal was to build an informatic toolbox to predict
population vulnerability to global change, integrating and general-
ising code to make analyses applicable to any suitable population
genomic dataset. To build our toolbox we expanded upon two re-
cently published conceptual and analytical frameworks (Razgour
etal., 2018, 2019) for climate change vulnerability assessments. Each
of the two frameworks integrates genomic and environmental data
to assess climate change vulnerability by incorporating a combina-
tion of SDMs, landscape connectivity analyses (using electrical cir-
cuit theory) and genetic diversity (neutral and adaptive). Candidate
genomic regions under selection are identified using genotype-
environment association (GEA) methods, which may be validated in
our simulation scripts (see Figure 1, Figure S1) following a similar
approach to Salmoén et al. (2021) using randomisations and permuta-
tion tests (see Section 2.3 for full details). This information is then
used to quantify ‘genomic offset’ per population based on the pre-
dicted mismatch of locally adapted genotypes to the predicted fu-
ture climates in their current location, indicating the potential levels
of their future maladaptation (Fitzpatrick & Keller, 2015). Therefore,

Exposure

Predictive distribution modelling

Identify populations
under threat from
global change

Species distribution modelling (SDM) under current and
future conditions to estimate geographic range changes
Worldclim2/CHELSA, Biomod2

SDM dissimilarity
Comparison between current and future habitat suitability
to quantify magnitude of predicted change

pf
Identify adaptive SNPs under selection and assess spatial
distribution of local adaptations and genomic offset
LFMM, RDA, genomic offset

Neutral sensitivity
Estimate neutral (non-adaptive) genetic diversity Plink

Landscape barriers

Predictive landscape genetics

Predict population connectivity based on parameterized
resistance costs of landscape

Circuitscape, Julia

\

Population vulnerability

J

Vulnerability calculated for each
population with data

FIGURE 1 Conceptual and analytical framework for the Life on the edge toolbox, incorporating ‘Exposure’ (current and projected
future species distribution models (SDM) and Species their dissimilarity), ‘Sensitivity (adaptive and neutral sensitivity), ‘Landscape barriers'
(predicted population connectivity) to predict a final ‘Population vulnerability’ metric for each population (which is a weighted combination
of the other metrics). Software packages used are denoted in blue text (LFMM, latent factor mixed models; RDA, redundancy analysis).
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higher genomic offset is an indication of higher adaptive sensitiv-
ity to future global changes. We further enable the spatial mapping
of categorised local adaptations across individuals and populations
(see Table 1, Table S1). We integrate SDMs to assess dissimilarity in
future environmental conditions (‘Exposure’), landscape connectiv-
ity (‘Landscape barriers’), standing genetic diversity (‘Neutral sen-
sitivity’) and adaptive genetic diversity (‘Adaptive sensitivity’), to
estimate population vulnerability for all unique geographic locations
with samples across species ranges. We highlight areas where all vul-
nerability metrics are in the upper and lower quantiles of the species
results and highlight the highest and lowest metric values per popu-
lation to guide conservation priorities. Our highly flexible toolbox
makes it possible to ‘plug in’ any species with suitable data so that
standardised analyses and comparisons across different taxa and re-
gions can be readily made. The LotE toolbox therefore establishes
the backbone of a generalised framework that aims to stimulate a
new wave of data synthesis, increase reproducibility and standardise
reporting for population level and species-level climate change vul-
nerability assessments (Waldvogel, Feldmeyer, et al., 2020). For ease
of interpretation, Figure 2 summarises the main inputs, analyses and

outputs for the toolbox.
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To assign how metrics are quantified for exposure, neutral sensi-
tivity, adaptive sensitivity, landscape barriers and population vulner-
ability, user-defined thresholds should be specified to the params file
in a comma separated list for each individual metric (see Table S1).
For example, to assign the neutral sensitivity metric in increments
of 0.1 so that a genetically diverse population with a high nucleotide
diversity value of 0.225 gives a low neutral sensitivity value (i.e. =1)
and a low nucleotide diversity value of 0.025 gives a high neutral
sensitivity value (i.e. =10), define the variable neutral_sensitivity_nu-
cleotide_diversity_thresholds as ‘0, 0.025, 0.05, 0.075, 0.1, 0.125,
0.15,0.175,0.2,0.225.

2.2 | Running the toolbox

Life on the edge integrates diverse genomic and spatial analyses
to create metrics of exposure, neutral and adaptive sensitivity
and population vulnerability. The run_life_on_the_edge.sh wrapper
script can be used to run each part of the toolbox as required by
calling the desired functions. If users wish to provide carefully cu-

rated inputs without parameterising all steps of the toolbox (e.g.

TABLE 1 Summary of modelling outputs and methodologies incorporated for the LotE toolbox.

Modelling output General methodology employed

Exposure e Species distribution models (SDMs)

Sensitivity o |dentify climate adaptive loci
e Investigate the sensitivity and

robustness of identified climate adaptive

loci using simulations
o Categorise sampled individuals in
adaptive ordination space
e Quantify adaptive genetic sensitivity
e Quantify neutral genetic sensitivity
e Rerun SDMs based on categorised
individual

Landscape barriers e Run circuitscape to assess change in
movement potential between current
and future environmental conditions

Population vulnerability o Create final population vulnerability
scores and outputs

Specific steps and [functions]

e Downloading and preparing spatial [prepare_spatial_data()] and
environmental data [prepare_environmental_data()]

e Spatially rarefying presence data and generating
background (pseudoabsence) data for SDMs
[spatially_rarefy_presences_and_create_background_data()]

e Building and evaluating ensemble SDMs for current and future
conditions [sdms_biomod2]

e Calculating “Exposure” for each population [exposure()]

e Impute missing data [impute_missing_data()], LFMM [gea_
Ifmm()], RDA [gea_rda()] to identify adaptive loci

e RDA to categorise climate adapted individuals
[gea_rda_individual_categorisation()]

e Count numbers of adapted individuals per population
[quantify_local_adaptation()]

o Validate adaptive signal in the genomic data using randomisation
simulations [-00_parameter_exploration-.R, -01_empirical_
data-.R, -02_randomise_data-.R, -03_perform_simulations-.R,
-04_evaluate_significance-.R]

e Calculate neutral genetic sensitivity based on nucleotide
diversity (default) or heterozygosity [neutral_sensitivity()]

o Calculate adaptive sensitivity based on results from GEAs and
local adaptation/genomic offset results [adaptive_sensitivity()]

e Build refined SDMs using only individuals that are categorised in
specific adaptive ordination space [adaptive_sdms()]

o Create circuitscape input and parameter files [create_
circuitscape_inputs()], categorise and plot “Landscape barriers”
per population results [landscape_barriers()]

e Assimilate Exposure, Sensitivity, and Landscape barriers results
to create population vulnerability metric and map all metrics
[population_vulnerability()]

o Create final summary PDF of all results [summary_pdfs()]

Note: Specific steps for each method are detailed, along with toolbox functions used in each case.
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INPUTS ANALYSES
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Final_summary.pdf
(e.g. see Appendix S2) L™=

parameter combinations

Input SDMs if required (current and future, .asc format) --------------- 1

Downloaded from
Worldclim2 or CHELSA
(see Methods)

Input files required by the user to ' Data folder, scripts and R_functions interact with Params.tsv file to perform analyses . Outputs per species created when running the toolbox, all processes logged and
run LotE for a given species : (map_data already contains the relevant shapefiles when downloaded with LotE) | summary PDF of all plots and information created for evaluation
1
!
1
!
s LT ' Kdata- \ ' -outputs- =
39.121 -3.944 1 e
i 53 ' : g
e i spatial_data N\ : £
311506 -7.0 1 N N El
1 Species_binomial : Z
Sample Species_binomial_samples.csv | log._files z
in .csv format | ' 2.
| H Species_binomial D ]
E map_data : Species_binomial.log
1 ne_50m_admin_0_countries.shx :
: ne_50m_admin_0_countries.cpg 1 \
| ne_50m_admin_0_countries.dbf : Species_binomial 3
H . I
1 ne_50m_adm!n_o_countr!es.prJ : Exposure ‘;
i ne_50m_admin_0_countries.shp o= =
H -scripts- and R_functions 1 N &
! © (see Methods for details) vl g
: environmental_data 1 2
[N Scripts and functions use i Sensitivity g
1 " i =3
! D adjustable parametersfrom 1 4 Population_vulnerability =
i future this file for each analysis (see ! ‘Adaptive Stivi
e E Params.tsv | Table 51) | 3 ‘ ------ i StveSsenSuviD) Exposure, neutral and
TG ¢ 1 o HE adaptive sensitivity, and
E fz. E ! genomic_data Landscape_barriers landscape barriers metrics are
1 Species_binomial - combined to generate final
PLINK files (.map, .ped P " i i 5 Afraof
(.map, .ped) ' Spec!es_b!nom!al,map run_life_on_the_edge.sh wrapper J population vulnerability index
i Species_binomial.ped i .
H script to loop across species and/or
'
1
1
1
|
!
1
'
'

Input imputed genotype data if
required (.csv, .geno, .Ifmm, .raw)

:-----"‘ Input list of adaptive SNPs if required (.txt) -----------

Input Circuitscape parameterised resistance input here if required (.asc)

FIGURE 2 Maininputs and data (yellow boxes), analyses (blue box) and outputs (green boxes) of the LotE toolbox. ‘Species_binomial’ is
the name of the analysis for any given species, using genus name followed by species name separated by an underscore. Directory names
are highlighted in bold, ‘Exposure’, ‘Sensitivity’ (including neutral and adaptive sensitivity) and ‘Landscape barriers’ become populated with
the relevant output files for each analysis upon running LotE, which are then used to calculate output metrics per population. Information
on specific R functions within the blue box and how they interact with the output directories can be found in Figure S1. The -scripts- and
R_functions folders contain all the toolbox scripts and functions, and the -outputs- folder stores all output files in relevant subdirectories
when running the toolbox. Blue lines represent locations for input files, dotted blue lines represent locations for input files if the user wants
to circumvent the full toolbox workflow with their own input data (e.g. pre-prepared SDMs, a list of adaptive SNPs so that GEA analysis is
unnecessary, imputed missing genotype data, or an already parameterised circuitscape input layer).

SDMs, imputed genotype data, GEA analyses, recommended for
non-expert users), then parameters can be modified so that the
toolbox recognises this, and the parameterisation steps for these
analyses will be skipped (see adjustable parameter list in Table S1
for details). In Supporting Information Text S1, we provide a de-
tailed overview of the input data and structure required and the
main methods adopted by the LotE toolbox at each step, how these
are implemented and which aspects are modifiable by the user.
Table 1 provides further details on the modelling output, steps
taken to achieve that output and which functions in the toolbox
are used at each step. The functions and scripts used (written in R,
bash and Julia) are available in the LotE website (https://cd-barra
tt.github.io/Life_on_the_edge.github.io/) and an accompanying vi-
gnette on example usage is available at https://cd-barratt.github.
io/Life_on_the_edge.github.io/Vignette. The toolbox enables
HPC parallelisation, which is particularly useful for computation-
ally intensive steps. We provide example benchmarking times for
analyses to complete (Table 2) to provide users with an overview
of processing times.

2.3 | Inputdata

Users may store the toolbox in any location but need to adhere to
the directory structure shown in Figure 2. The -data- folder contains

four main directories, one of which contains mapping data (world
shapefile files available from http://naturalearthdata.com, already
provided), another the environmental data, the other two contain-
ing folders for each species' genomic and spatial data. To run the
toolbox, appropriate environmental predictor data must first be
downloaded (e.g. global data in .tif raster format) and stored in the
environmental_data folder, the params (Params.tsv) file must be pop-
ulated with the relevant parameters for each step of the analyses
(see Table S1 for a description of each parameter and the vignette).
Environmental data downloads can be automated if requested
using the geodata R package (Hijmans et al., 2023) by setting the
env_data_download parameter to ‘yes’ in the params file as well
as providing the resolution requested (climate_res_download), the
shared socioeconomic pathway scenario (ssp_scenario_download),
general circulation model (gcm_download) and the time of the fu-
ture projection (time_proj_download). The three input files required
to run a species dataset are the spatial coordinates of the genomic
samples (Sample name, decimal Longitude, Latitude, in .csv format),
and two standard PLINK (Purcell et al., 2007) formatted files (.ped
and .map) for the genomic data (Figure 2). Conversion from other
formats for genomic data such as the widely used VCF (variant call
format) may be converted to PLINK format readily using available
tools (e.g. Danecek et al., 2011). Details of data naming conventions
can be found in the vignette, along with example input data avail-
able in the DRYAD repository (https://datadryad.org/stash/datas
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TABLE 2 Example benchmarking time
for completion of the toolbox on the
published data utilised for the three focal
species.

Species

Afrixalus delicatus

Afrixalus sylvaticus

Afrixalus fornasini

Myotis escalerai

Myotis crypticus

Methods in Ecology and Evolution EE&“JEEM
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#pops #SNPs #cells SDM details Runtime
14 8961 329,222 9 predictors, 510 8h 49 min
models (CTA, ANN, [+16h 32
RF, GAM, Maxent) simulation
validation]
20 12,842 62,972 9 predictors, 510 3h 51 min
models (CTA, ANN, [+11h 43
RF, GAM, Maxent) simulation
validation]
32 7309 304,616 9 predictors, 510 8h 58min
models (CTA, ANN, [+16h 14
RF, GAM, Maxent) simulation
validation]
67 18,356 345,042 6 predictors, 204 94h 27 min
models (Maxent,
CTA)
41 20,750 122,958 6 predictors, 204 25h 48 min

models (Maxent,
CTA)

Note: #pops refers to the number of unique geographic locations (i.e. populations), #SNPs refers
to the number of bi-allelic SNPs in the dataset, #cells refers to the number of grid cells (i.e. pixels)
in the rasters used for spatial analyses. Genomic data pre-processing times are not included, and
the extra simulation validation runtimes are listed. All analyses were each run as separate jobs
on a single HPC cluster core (8 threads, non-volatile memory express storage) with 80GB RAM

allocated.

et/doi:10.5061/dryad.2rbnzs7t4). To provide reliable outputs using
LotE, we advise that the genomic samples cover an adequate range
of environmental conditions that the species as a whole experiences
(i.e. a representative proportion of the species range, see Vajana
et al., 2023), and the number of SNPs should be sufficient to de-
tect accurate signals of local adaptation (minimising false positives),
covering a large proportion of the genome, though this will depend
on the genomic characteristics and the degree of local adaptation
in each species. To explore and validate signals of local adaptation
detected in datasets, the sensitivity and simulation scripts we pro-
vide follow the approach outlined in Salmén et al. (2021). In brief,
100 simulations of the empirical data are created with randomised
genotype-environment relationships, GEA analyses are performed
on each of these simulations, tracking the p-values of all SNPs and
then the adaptive signal in the empirical data is determined using a
significance threshold (using z-scores; e.g. a significance threshold of
>0.95) for the empirical data against the simulations data to identify
statistically significant SNPs that are above this. These statistically
significant SNPs may then be used for all local adaptation analyses
going forward (using the ‘use_only_statistically_significant_snps’ set
to ‘ves’ and ‘which_loci’ option set to ‘O’ in params). For more details
see Supporting Information Text S2, which also gives details on how
to perform sensitivity analyses using LotE given different parameter
combinations of thresholds for determining candidate SNPs using
our implemented GEA methods.

For environmental data, we provide global terrestrial Worldclim2
data (30 arc seconds, clipped to East Africa) for testing purposes,
but as mentioned previously, this can be automatically down-
loaded (at lower resolutions using the geodata R package; Hijmans

et al., 2023) if required. Many users will require different spatial
extents or higher resolution data if available for building accurate
SDMs and detecting fine-scale environmental variation and local
adaptation across populations on land. Marine or freshwater data
could also be used here if focal taxa are non-terrestrial, however it
is important that the environmental data are standardised to be the
same spatial resolution and extent. These data can be, for example,
georeferenced .tif files (e.g. bioclim or elevation) downloaded from
public databases (e.g. Worldclim2 or CHELSA (Fick & Hijmans, 2017;
Karger et al., 2017) for current and selected future conditions and
SSP scenarios), or any other predictor data relevant to the study
species that is available in raster format (e.g. land cover data). The
user should decide on which spatial resolution, future time period
and scenario is needed. The georeferenced genomic data will serve
as known presence points for SDMs, which can be integrated with
GBIF data that are cleaned and finalised using the toolbox, as well
as the generation of appropriate pseudoabsence data. All input
environmental data needs to be at the same spatial resolution and
extent, an R script (00_process_environmental_data.R) is provided
to assist the user in setting up environmental predictor data in the
correct format for Worldclim2 and CHELSA data (i.e. separating a
multi-band file representing many predictors together into individ-
ual predictor .tif files for current and future conditions). We recom-
mend that before inputting genomic data (.ped and .map files), best
practices (Paris et al., 2017) are followed to maximise polymorphism
in input data while reducing potential ‘false’ loci caused by over- or
under merging SNP loci, as well removing poorly sequenced individ-
uals causing high levels of allelic dropout and lower numbers of loci
and SNPs (Cerca et al., 2021).
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2.4 | Dataset-specific parameterisation

Several important decisions relevant to each species dataset are
required throughout the LotE toolbox. If users are not comfortable
with the parameterisation of specific steps within LotE—particu-
larly building SDMs, performing GEA analyses to identify candi-
date SNPs under selection, imputation of missing genotype data or
the parameterisation of input connectivity layers for circuitscape
analysis, we recommend that these are performed with assistance
from relevant expertise as part of multidisciplinary teams, possi-
bly outside of the toolbox and supplied as inputs to LotE. Running
analyses without support or full understanding of the conceptual
backgrounds and potential pitfalls of each method used in LotE will
almost certainly lead to unreliable results. If any of the skip_sdm,
skip_impute_genotypes, skip_gea, skip_circuitscape_layer_param-
eterisation parameters are set to ‘yes’, the toolbox will not perform
these analyses and instead expect the relevant input files in the
correct directories (details in Supporting Information Text S1).
First, regarding environmental data, the selection of envi-
ronmental predictors for SDMs and GEAs should be ecologically
relevant to the study species. If required, multiple environmental
predictor variables may be condensed into principal components
(PCs) and those can be used as predictors in the GEAs. Predictor
variables should be at a suitable spatial grain to be able to de-
tect signals of local adaptation if they exist, sufficiently variable
between sampled populations and expected to influence the dis-
tribution and/or genetic diversity of the species in question. The
threshold g-values to determine which SNPs are putatively ‘adap-
tive’ are recommended to be set at a very conservative (e.g. False
Discovery Rate >0.01 for LFMM analyses) and standard deviation
from the mean loading (SD >2.5 for RDA analyses) by default to
minimise false positives, but this can be modified in the params
file if required (Ifmm_FDR_threshold’ and ‘rda_SD_threshold’).
Furthermore, by using the simulation scripts of LotE (built-in by de-
fault), it is possible to estimate an acceptable false discovery rate
of SNPs for a given dataset and then validate the adaptive signal
using our simulation approach. For GEAs, if categorising local adap-
tations in individuals and populations, we have restricted analyses
to two predictors simultaneously to easily parse adaptation to dif-
ferent conditions (e.g. hot-dry and cold-wet). However, more com-
plex scenarios of adaptation to multiple predictors can be assessed
by analysing pairs of additional predictors separately (see Barratt,
Prei3ler, et al., 2024). Second, spatial occurrence data (presences)
should be checked thoroughly to ensure that incorrect or unreal-
istic presence data are not included for SDMs (i.e. outside of the
native range, or inverted coordinates for example) and that correct
taxonomy is followed (e.g. only confirmed species records are in-
cluded). We have taken measures using the CoordinateCleaner R
package (Zizka et al., 2019) to deal with these potential problems,
but data should be carefully inspected before analysis and inter-
pretation of results. Additionally, SDMs require consideration of
the geographic modelling extent, selection of background (pseudo-
absence) data, data partitioning (training vs. testing) strategy and

model evaluation in order to follow best practices in the field (see
Araujo et al., 2019; Merow et al., 2013; Zurell et al., 2020 for guide-
lines), and the SDM output itself should be inspected to confirm
that it is a reasonable prediction for the species and thus suitable
for further use. Similarly, genomic offset predictions can be clipped
to a buffer around the known presences to avoid predicting mal-
adaptation in geographic space that is most likely to be unreach-
able by the species (see Table S1). Third, if using LotE on RAD-seq/
ddRAD-seq type data, an understanding of the types of errors
that are associated with these kinds of data and how to minimise
them is fundamental—we strongly advise that datasets have been
appropriately analysed and curated before performing LotE analy-
ses. Additionally, when assessing neutral and adaptive sensitivity,
including the imputation of missing data and accounting for neutral
population structure for GEA analysis, decisions are required to
test a reasonable number of genetic clusters (k) represented by the
data. In the GEA analyses themselves, the thresholds for defining
putatively adaptive SNPs are also flexible to enable decisions on
how tolerant the user is of false positives (see Forester et al., 2018;
Francois et al., 2016). If there are adaptations to opposing condi-
tions in the same population, this could be a genuine biological
signal as a result of local gene flow, or that adaptive equilibrium
may not have been reached across the landscape and thus the GEA
approaches may not be suitable. In a case such as this, exploring
parameter variation for GEA analyses using the simulation scripts
we provide may help to more thoroughly evaluate false positives.
Candidate SNPs with low statistical significance compared to sim-
ulations are automatically removed from the list of adaptive loci
using the ‘remove_low_significance_adaptive_SNPs’ and ‘SNP_sim-
ulation_significance_threshold’ parameters in the params file (see
Table S1), and this will be reported in the summary PDFs to as-
sist evaluation of the adaptive signal for a given dataset. Fourth,
for assessing ‘Landscape barriers’, parameterisation of landscape
resistance surfaces should be based on the ecology of the spe-
cies in question, with higher resistance values assigned to less
permeable landscape/environmental features. The default func-
tion for this within LotE is coded to generate resistance surfaces
based on the current SDM output, current climate (the selected
variables used in the GEA analyses), slope and land cover which
is reclassified based on the ecology of the species (by default less
resistance for forest habitats). The resistance surfaces and how
they are weighted together to create a cumulative resistance sur-
face for quantifying landscape barriers may be parameterised in
the params file, or alternatively prepared outside the LotE toolbox
using software such as ResistanceGA (Peterman, 2018). Finally, de-
cisions need to be made by the user about how to quantify each
of the final exposure, neutral sensitivity, adaptive sensitivity and
landscape barriers metrics (Table S1), and how to combine them
for the final population vulnerability metric (e.g. by using the mean
across all, or weighting them based on a specific conservation goal
of weighting neutral sensitivity more highly than the other metrics,
or reducing the weighting of adaptive sensitivity due to uncertainty
for example, see Box 1 and Supporting Information Text S1). If
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conducting comparative multi-species analysis the user can use the
same defined thresholds when calculating exposure, neutral sensi-
tivity, adaptive sensitivity and landscape barriers to enable direct
comparisons between species. Furthermore, if a species contains
multiple intraspecific lineages (i.e. potential candidate species), we
recommend analysing all lineages together as one species rather
than separating them, unless reproductive isolation (and thus spe-
ciation) is confirmed. More details on these considerations are dis-

cussed with examples in Supporting Information Text S1.
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2.5 | Installation and dependencies

Users of the LotE toolbox should be proficient in R and bash. As the
toolbox utilises several programming languages which in turn require
dependencies, correct initial setup is essential. A working installa-
tion of PLINK (Purcell et al., 2007) and circuitscape (Anantharaman
et al., 2019) is required as well as a recent version of R (4.1.3 or
later), a bash shell and a version of Singularity (Kurtzer et al., 2017).

Installation of package dependencies from within R needs to be

BOX 1 Default metric quantification in the Life on the Edge toolbox. Metric calculations may be parameterised
(see Table S1 for details)

LotE calculates metrics for each sampled population with georeferenced genomic data to quantify ‘Exposure’, ‘Neutral
sensitivity’, ‘Adaptive sensitivity’ and ‘Landscape barriers’ based on the analytical outputs generated by the toolbox. These
metrics are then combined to calculate a final ‘Population vulnerability’ metric per population (see Table S1). Calculations
are as follows:

Exposure is calculated for each environmental predictor and the SDM based on the scaled environmental dissimilarity
(between 1 and 10) for sampled populations in current and future environmental conditions. Scaling of dissimilarities for
environmental predictors and SDMs are defined in the params file (see Table S1). To create the overall Exposure metric,
default behaviour is to take the mean of the metrics for each of your environmental predictors and the SDM as in the
equation below, though this can be modified using the ‘exposure rule’ variable in the params file (see Table S1):

Exposure = scaled SDM_ dissimilarity

Neutral sensitivity is calculated based on the neutral nucleotide diversity (IT) per population (after masking out the
adaptive SNPs identified by GEAs). Populations are assigned a neutral sensitivity value by subtracting the neutral
nucleotide diversity from 1 (i.e. so neutral sensitivity is low if nucleotide is high, and vice versa):

Neutral sensitivity = 1— nucleotide diversity

Adaptive sensitivity is calculated based genomic offset calculated per population using the params option ‘genomic
offset_thresholds’ to assign a score between 1 and 10. If genomic offset is low, adaptive sensitivity will be lower, and
vice versa:

Adaptive sensitivity = scaled genomic offset

Landscape barriers is calculated by evaluating the circuitscape connectivity analyses and taking the mean connectivity
for each population to all neighbouring populations within the radius a defined dispersal distance
(max_dispersal distance km):

Landscape barriers = X population connectivity within defined radius

number of populations within defined radius

Population vulnerability is calculated as the mean of ‘Exposure’, ‘Neutral sensitivity’, ‘Adaptive sensitivity’ and
‘Landscape barriers’ by default, though this can be modified using the ‘vulnerability rule’ variable in the params file (see
Table S1):

Population vulnerability =  Exposure + Neutral sensitivity + Adaptive sensitivity + Landscape barriers

4
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performed upon first running the toolbox (see 00_setup.R). The LotE
toolbox is designed to run in a high performance computing (HPC)
environment given the computational resources required especially
for large datasets with high numbers of samples (e.g. >250) and sam-
pling localities (>50). For smooth HPC integration we recommend
using the supplied Singularity container in the LotE github repository
containing a working R version (4.1.3) where relevant R packages are

installed and LotE can be run.

2.6 | Modularity

The LotE toolbox is fully transparent and parameterisable, with
standardised workflows following best practices for running species
distribution models (Aradjo et al., 2019), and genotype-environment
association analyses, (Capblancq & Forester, 2021; Forester
et al., 2018). Transparency allows all results to be traced back to
the data and helps avoid the toolbox being a ‘black box'. We recom-
mend user feedback and sanity checks at several decision-making
points of the workflow in order to follow best practices in the rel-
evant subfields of ecology and evolution. Our toolbox can be used
as a single pipeline (e.g. from processed sequence and spatial data
through to predicting population vulnerability) or in a modular fash-
ion using specific functions. Furthermore, the toolbox offers flexibil-
ity, so if users wish to supply their own data (e.g. environmental data,
SDMs, imputed genotypes, list of adaptive SNPs or input files for
circuitscape analysis to assess landscape connectivity) it is possible
to circumvent steps within the toolbox by simply adding the relevant
files to the appropriate directories (see vignette).

2.7 | Empirical datasets to demonstrate the
utility of the LotE toolbox

2.71 | Afrixalus fornasini, A. delicatus and A.
sylvaticus—'Novel’ LotE analysis (including genomic
data processing)

To demonstrate the utility of the LotE toolbox we ran the toolbox
in its entirety for three co-occurring East African spiny reed frog
species, Afrixalus fornasini, A. delicatus and A. sylvaticus. Field work
licences and permits are described in Barratt et al. (2018). We
processed georeferenced genome-wide RAD-seq data from Barratt
et al. (2018) (SRA accession number: PRJNA472166, Table S2)
in Stacks 2 (Rochette et al., 2019), optimising the parameters
to maximise information (Paris et al., 2017) and remove poorly
sequenced samples (Cerca et al., 2021) and collated spatial data
including published data in Barratt et al. (2018) and cleaned records
from the Global Biodiversity Information Facility (GBIF.org, 2023).
Environmental data from Worldclim2 was used—bioclim layers
1-19 and slope (Fick & Hijmans, 2017) and land cover (Schipper
et al., 2020) at 30s spatial resolution (recategorised into 9 classes
following Razgour et al., 2019 to reduce complexity in the model

(‘landcovl’) see Table S3). We defined our modelling extent to
capture the known range of each of the three species across East
Africa, encompassing sampled populations across Tanzania, Kenya,
Mozambique and Malawi, used variance inflation factors (VIFs) to
reduce spatial autocorrelation in input SDM predictor variables,
and quantified local adaptation to maximum temperatures of the
warmest month (bioclim_5) and precipitation of the warmest quarter
(bioclim_18) as these are known to be important predictors of the
species distributions (Barratt et al., 2017, 2018). We also predicted
genomic offset per population, with the resulting prediction
clipped to a 2 degree buffer around sampled populations using
the genomic_offset_buff_dist_degrees option in the params file
to avoid predicting maladaptation in areas where the species is
unable to disperse to. We retained only statistically significant
SNPs using our simulation scripts to reduce the likelihood of false
negative genotype-environment associations being included in
our analyses. We parameterised a cumulative resistance surface
using five ecologically relevant variables (current SDM, slope, land
cover, bioclim_5 and bioclim_18), with respective weights of 0.25,
0.1, 0.25, 0.2, 0.2 which were defined based on our ecological
knowledge of the species and predictor effects on their dispersal.
Exposure, neutral sensitivity, adaptive sensitivity, landscape barriers
and population vulnerability were all quantified using the ‘defined’
option, reading defined thresholds for each variable from the params
file to determine scores. Full parameter settings for the Afrixalus
fornasini, A. delicatus and A. sylvaticus analyses can be found in
Table S4.

2.7.2 | Myotis escalerai and Myotis crypticus—'Partial’
LotE analysis—Local adaptation and adaptive SDMs

Second, we conducted a ‘partial’ LotE toolbox run using data from
Razgour et al. (2019) (European Nucleotide Archive accession no.
PRJEB29086, Table S2) for two European bat species, Myotis escale-
rai and M. crypticus. We collated spatial (including cleaned records
from the Global Biodiversity Information Facility, GBIF.org, 2023)
and Worldclim2 environmental data at 30s spatial resolution (bio-
clim_1, bioclim_4, bioclim_7, bioclim_5, bioclim_6é, slope, Fick &
Hijmans, 2017), as well as land cover (Schipper et al., 2020) (recat-
egorised into 9 classes following Razgour et al., 2019, Table S3).
We generated background points and built SDMs using biomod2
(Thuiller et al., 2009), setting SDM parameters to match those used
in the original manuscript, namely the spatial modelling extent,
predictor variables, future time projections and general circulation
models, and SDM modelling algorithms as well as the evaluation cri-
teria for SDMs (ROC>0.8). Processed genomic data (.ped and .map
files) from Razgour et al. (2019) were input for the GEA analyses
(LFMM and RDA) to investigate local adaptation to hot-dry and cold-
wet conditions based on maximum temperatures of the warmest
month (bioclim_5) and precipitation of the warmest quarter (bio-
clim_18). Adaptive SDMs, which are not standard within a normal full
LotE analysis but can be generated easily with the adaptive_sdms()
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function of the LotE toolbox, were built using individuals parsed
into ‘hot-dry’, ‘cold-wet’ adaptive categories for present and future
conditions, again following Razgour et al. (2019). Full parameter set-
tings for the Myotis escalerai and M. crypticus analyses can be found
in Table S4. Field work licences and permits are described in Razgour
et al. (2019).

3 | RESULTS

Below we provide details on results for each of the main analyses
across the datasets we analysed. Results obtained using the LotE
toolbox on empirical data here closely matched those of the pub-
lished data for Afrixalus fornasini, A. delicatus, A. sylvaticus, Myotis
escalerai and M. crypticus, demonstrating that our toolbox is robust
as well as being able to integrate diverse analyses to assist predic-
tions of population vulnerability to global change.

3.1 | Afrixalus fornasini, A. delicatus, A. sylvaticus—
‘Novel’ LotE analyses (including genomic data
processing)

After parameter optimisation in Stacks (performed separately from
the LotE toolbox), we opted to select Stacks core parameters of
M=2,m=5 and r=80% for downstream analyses due to the trade-
off between maximising polymorphism in our data and reducing po-
tential ‘false’ loci caused by over- or undermerging loci for all three
species. Our final filtered datasets contained 7309 loci for 43 indi-
viduals (A. fornasini), 8961 loci for 22 individuals (A. delicatus) and
12,842 loci for 27 individuals (A. sylvaticus), and we retained the first
SNP from each locus in our final dataset to maintain assumptions of
linkage disequilibrium.

Assessing Exposure across species, future forecasts of the SDMs
showed that the majority of the core A. fornasini and A. delicatus dis-
tributions and habitat suitability will remain largely unchanged from
current conditions, with some predicted losses in range suitability
towards central and coastal Tanzania (Figure 3a, Appendices S2-54)
and expansions throughout northern Mozambique, parts of coastal
and central Tanzania and southern Kenya (Figure 3a). For A. sylvati-
cus, range contraction and decreased suitability is predicted largely
in coastal regions of Tanzania, Kenya and Mozambique. Neutral

genetic diversity was similar across species, albeit with some

Methods in Ecology and Evolution E"
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populations with particularly low genetic diversity, often in southern
Tanzania across the three species. For local adaptation analyses we
identified a total of 246, 383 and 427 statistically validated candi-
date SNPs for A. fornasini, A. delicatus and A. sylvaticus, respectively
after running our simulation scripts to retain SNPs only present
across simulations at the 0.95 significance level (i.e. 95%). Based on
our genomic offset predictions, populations of all species are not
strongly maladapted to projected future climate change, with the ex-
ception of the northernmost A. sylvaticus populations in Kenya and
the southern Tanzania and Mozambique populations of A. delicatus
(Figure 3b, Appendices $2-S4). Hot-dry adapted populations were
identified across most coastal Tanzanian populations for A. fornasini,
whereas colder and wetter adapted populations were located in more
mountainous regions (Udzungwa and Uluguru mountains and sur-
rounding areas in Tanzania, and throughout northern Mozambique,
Mount. Mabu, Nampula) and southern Malawi (Thyolo, adjacent to
Mt. Mulanje, Appendix S2). Similar patterns of local adaptation to
colder and wetter conditions in southern Tanzania and Mozambique
are evident for A. delicatus and A. sylvaticus (Appendix S3 and S4),
with genomic offsets being generally higher for A. sylvaticus pop-
ulations than A. delicatus populations. Landscape barriers analyses
showed generally high connectivity between coastal and lowland
populations for all species (Figure 3c, Appendices S2-54), but often
with higher landscape barrier metric values in montane or plateau
regions.

Our summary maps of exposure, neutral and adaptive sensitivity,
and landscape barriers based on the sampled populations of the three
species (Figure S2A-C) show that projected future climate change
will play a strong role in increasing the exposure of populations in
central Tanzania, southern Malawi and northern Mozambique, with
lower exposure in Northern Tanzania and Kenya where populations
are not strongly adapted to colder and wetter conditions. These ef-
fects may be mitigated by high levels of neutral genetic diversity (i.e.
low neutral sensitivity) and low adaptive sensitivity, as well as the
ability to move (i.e. low landscape barriers). Taken together, over-
all population vulnerability across the three species (Figure 3e) is
heterogeneous, with isolated populations in montane and plateau
regions which are more locally adapted to colder and wetted con-
ditions generally more susceptible to predicted global change than
those populations which are more interconnected situated in low-
land coastal regions. Full log file outputs from the ‘novel’ LotE anal-
yses for A. fornasini, A. delicatus and A. sylvaticus (Appendix S1) as

FIGURE 3 Results generated using the LotE toolbox (a-d: Afrixalus fornasini, e: Multi-species population vulnerability). Sampling locations
with genomic data represented over maps as dots, legends within each panel and plot provide information on the scale of variables. (a)
Exposure—SDM dissimilarity between current and future conditions (-1, orange=range loss, 1, green=range expansion). (b) Sensitivity—
neutral genetic diversity (nucleotide diversity, left panel) and genomic offset per population (right panel). Genomic offset predictions are
clipped to a 2 degree buffer around presence points. (c) Landscape barriers—parameterised cumulative resistance surface (left panel, ranging
from O—no resistance, to 100—complete barrier) and predicted movement density (right panel) between populations based on Circuitscape
analysis. (d) Population vulnerability, calculated as the mean of the exposure, adaptive and neutral sensitivity and landscape barriers metrics
(all ranging between 1 (low vulnerability) and 10 (high vulnerability). (€) Multi-species population vulnerability for Afrixalus fornasini, Afrixalus
delicatus and Afrixalus sylvaticus running LotE for all three species. For output summaries from the three full species analyses described

above see Appendices S2-54.
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well as a final summary PDF (Appendices S2-54) can be found in the

Supporting Information.

3.2 | Myotis escalerai and Myotis crypticus—'Partial’
LotE analysis—Local adaptation and adaptive SDMs

After inspecting p-value distributions and adjusting the genomic
inflation factor and standard deviation (SD + 3) to control false dis-
covery rate (FDR <0.05) thresholds and candidate SNP detection
for both local adaptation methods, we detected 79 RDA and 385
LFMM SNPs and 104 RDA and 176 LFMM SNPs for Myotis escale-
rai and M. crypticus, respectively. Using a conservative approach (i.e.

retaining only loci that were detected across both methods, n=50
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and n=26), we parsed individuals into the broad adaptive categories
reported in Razgour et al. (2019, Figure 4). Of these, 60 M. escalerai
and 10 M. crypticus individuals were adapted to ‘hot-dry’ conditions,
108 M. escalerai and 14 M. crypticus were ‘cold-wet’ adapted, and 48
M. escalerai and 26 M. crypticus were categorised as ‘intermediate’
(Figure 4a,c). Mapping these individuals in geographic space showed
high concentrations of local adaptation to hot-dry conditions in
southern and western sampling, and local adaptation to cold-wet
conditions in northern and eastern sampling for M. escalerai and
for M. crypticus, hot-dry individuals in northern Spain, cold-wet in-
dividuals towards the Pyrenees, closely matching the results from
Razgour et al. (2019, Figure 4b,d).

Species distribution models predicted future contractions of

potential habitat suitability for M. escalerai across most of its range
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Individual categorisation results using RDA for Myotis escalerai and Myotis crypticus generated using the LotE toolbox. (a)

M. escalerai individual categorisation in RDA ordination space based on putatively adaptive SNPs and (b) mapped categorised individuals
in geographic space. (c) M. crypticus individual categorisation in RDA ordination space based on putatively adaptive SNPs and (d) mapped
categorised individuals in geographic space. For (b) and (d), circle sizes represent number of individuals per sampling locality.
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in the Iberian Peninsula, particularly in more arid regions (southern
Spain and Portugal), and expansions predicted in northern Portugal
and parts of the Pyrenees (Figure S3A). M. crypticus habitat suit-
ability also decreased under future climate projections, with the
Iberian region predicted to be largely unsuitable and future suit-
ability limited to high elevation regions including parts of the Alps
and the Pyrenees. Separating the different categories of individ-
uals (hot-dry and cold-wet adapted), both species results broadly
matched Razgour et al. (2019, Figure 5). In M. escalerai, suitable
environmental conditions for both categories were predicted to
shift northwards, substantially affecting the predicted ranges, in
particular the habitat suitability for cold-wet genotypes found in
northern lIberia, which substantially contracted under predicted
future conditions (Figure 5a,b). M. crypticus showed high habitat
suitability in northern parts of the Iberian Peninsula, the Pyrenees,
which were predicted to contract in future conditions, and parts
of southern Europe, which were predicted to shift northwards
in the future (Figure S3B). As with M. escalerai, hot-dry and cold-
wet adapted individuals' habitat suitability was predicted to de-
crease slightly, particularly for the latter, whose potential suitable

range throughout the Pyrenees and central and south-western

(a) Myotis escalerai

France almost completely disappeared under future predictions
(Figure 5a,b). Full log file outputs from the ‘partial’ LotE analysis
for M. escalerai and M. crypticus can be found in the Supporting

Information (Appendix S5).

4 | DISCUSSION

Current climate change genomics approaches to assess popula-
tion vulnerability lack practical and integrative tools to implement
analyses across multiple taxonomic groups and geographic re-
gions (Pinsky et al., 2022). Adaptive responses to global change are
likely to be insufficient for many species (Quintero & Wiens, 2013;
Radchuk et al.,, 2019), and we need standardised climate change
vulnerability tools incorporating genomics with ecological and envi-
ronmental data that can be applied across diverse datasets (i.e. spe-
cies/regions). Until recently, we have lacked tools that can leverage
population-level data to assess climate change vulnerability across
populations within species, and which are comparable across spe-
cies. Previous studies have predicted population vulnerability by de-

veloping custom frameworks applied to specific study systems (e.g.

Current

(b) Myotis crypticus

Current

Future

#
o

FIGURE 5 Adaptive SDMs generated using the LotE toolbox capturing intraspecific adaptations for Myotis escalerai and Myotis crypticus
based on the categorised individuals for hot-dry, cold-wet conditions shown in Figure 4. Separate SDMs were built for each category based
on the ordination of each genotype in the RDA, and maps are categorised into binary presence/absences for hot-dry adapted (red), cold-
wet adapted (blue), with overlapping areas for both categories in yellow. (a) M. escalerai adaptive SDMs (left panel: Current conditions, right
panel: Future (2070) conditions). (b) M. crypticus adaptive SDMs (left panel: Current conditions, right panel: Future (2070) conditions).
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Aguirre-Liguori et al., 2021; Bay et al., 2018; Razgour et al., 2018,
2019; Ruegg et al., 2018), but these have not been widely applicable.
With Life on the edge, we present a novel, generalised and customis-
able toolbox which can perform sophisticated analyses in a straight-
forward and reproducible way. The toolbox enables large scale data
synthesis across multiple species and geographic areas and the out-
puts address ecological and evolutionary responses to future global
change and can be used to guide conservation action, including ac-
counting for the differences in specific metrics following the princi-
ples of complementarity (e.g. Beger et al., 2015). We envisage LotE
as a key tool in the emergent field of climate change vulnerability
assessments using genomics, with scope for future development and
expansion of the concepts presented in this manuscript. Below, we
discuss applications of the LotE toolbox in its current form, its limita-

tions, and future additions, analytical and conceptual developments.

4.1 | Current applications for LotE

Life on the edge, with its geographical and taxonomic flexibility,
contributes to answering several fundamental questions in ecol-
ogy, evolution and conservation. Outputs from LotE may therefore
be utilised for informing the management of populations to main-
tain genetic diversity (e.g. nucleotide diversity and/or adaptive ge-
netic diversity) within and between populations (e.g. Segelbacher
et al., 2022). For example, suitable donor and recipient populations
for translocations/evolutionary rescue may be selected based on
a combination of nucleotide diversity estimates, local adaptations
and spatial connectivity. With these strategies, conservation man-
agers may avoid introducing maladapted individuals to unsuitable
climatic conditions (Chen, Grossfurthner, et al., 2022; Chen, Jiang,
etal., 2022), thus strengthening the overall individual fitness, genetic
diversity and adaptive potential of populations (Frankham, 2015;
Frankham et al., 2019).

At a regional scale, spatial conservation planning can benefit
from the climate change genomics perspective of the outputs gener-
ated by the LotE toolbox. For example, any of the metrics for neutral
and adaptive sensitivity or population vulnerability could be inter-
polated spatially to be useful for prioritising areas that support par-
ticularly high levels of genetic diversity or vulnerable populations,
using common software such as Zonation, Marxan and relatives (Ball
et al., 2009; Lehtomaki & Moilanen, 2013; Moilanen et al., 2005).
However, care must be taken when interpolating the data if sam-
pling is uneven, for example using kriging to account for uncertainty.
When data from multiple species in an ecological community are
available, evaluating congruence in metrics across species would
provide a representative measure of community-level genetic diver-
sity and vulnerability based on genome-wide data (e.g. Schielzeth
& Wolf, 2021; Stange et al., 2021). Alternatively, the complemen-
tarity between these metrics may be used to inform conservation
decisions in a given scenario, for example a population with low
landscape barriers and high exposure might benefit from assisted
migration, whereas a population with high landscape barriers and
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low adaptive sensitivity/high neutral sensitivity might be suitable for
protected area implementation and habitat restoration along con-
nectivity corridors. This could be scaled up (i.e. across countries and
continents) with sufficient data across taxonomic groups and can be
used to identify hotspots of vulnerability across taxonomic groups.
Similarly, investigating the ecological, environmental and anthropo-
genic correlates of LotE outputs can identify causal drivers of ob-
served vulnerability patterns for species and ecological communities
(similar to approaches in Howard et al., 2020; Maxwell et al., 2016;
Tilman et al., 2017), which can inform broad conservation actions
as well as understanding species-specific drivers of declines more
thoroughly with population level data. However, care must be used
to avoid circularity (e.g. the environmental input layers are not
meaningful as predictors of the vulnerability patterns). We further
acknowledge that phenotypic plasticity is an important component
of adaptive capacity (Foden et al., 2019; Fox et al., 2019; Merila &
Hendry, 2014), which should be included for systems where this is
known, though in our framework here we do not include this as this
information is not available for our example species.

Finally, the adaptive SDMs within the LotE toolbox (which are
an optional add-on) can contribute to more realistic estimates of
shifts in range suitability under global change scenarios, provid-
ing improved predictions of future biodiversity losses that may
be offset with appropriate conservation measures (Hoffmann &
Sgro, 2011). Overlooking intraspecific population variability, in
particular local adaptation, can result in an overestimation of fu-
ture biodiversity losses (Razgour et al., 2019), and it is increasingly
clear that predictive models informed by empirical genomic data
provide a more realistic alternative to simplistic modelling ap-
proaches that do not account for local adaptation (Bay et al., 2017;
Forester et al., 2023).

4.2 | Future directions

In addition to applications of the current toolbox, there are three fu-
ture conceptual and analytical developments that could expand the
framework and its long-term impact and benefit to the research and
conservation community—monitoring biodiversity change over time,
performing simulations and sensitivity analyses to validate findings,
and integrating phenotypic plasticity and functional genomics data.
The toolbox has been purposely designed to be dynamic, so that ad-
ditional ‘modules’ may be created and integrated in future versions,
thus enabling it to evolve in tandem with the research community
and adopt best practices and state-of-the-art tools. New methods or
tools (for example a new and improved SDM or GEA package) that
supersedes existing methods may be integrated relatively simply
into updated versions of the toolbox by creating additional functions
to supplement or update the existing modules. This also applies to
the type of genomic data that can be analysed, which can be scaled
up from short read (RAD-seq) type data to whole genome sequenc-
ing data with ease by using alternative tools (e.g. Korneliussen
et al., 2014; McKenna et al., 2010).
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A primary focus for expanding LotE in the future is for moni-
toring biodiversity change and population vulnerability over time,
for example by linking outputs with global conservation efforts
such as the Sustainable Development Goals as well as ‘Essential
Biodiversity Variables’ (Hoban et al., 2022). By integrating time
series data and multiple biological replicates, it would be possi-
ble to track changes in exposure, sensitivity (adaptive/neutral),
landscape barriers and population vulnerability as new data be-
come available. Although suitable population-level genomic and
spatial sampling time-series replicates are currently rare (but see
Pfenninger et al., 2023), ever improving advances in sequencing
technologies and the exponential accumulation of these datain on-
line repositories (e.g. NCBI Sequence Read Archive, ENI European
Nucleotide Archive, DNA Databank of Japan) make the tantalising
prospect of genomics-informed biodiversity monitoring an achiev-
able target in the near future (Balint et al., 2018; Pfenninger &
Balint, 2022; Taus et al., 2017). Ultimately, automated ‘scraping’ of
public repositories for species datasets as new data become avail-
able could provide a near real-time assessment of species' biodi-
versity status based on the latest available genomic and spatial
information, similar to the explosion of data generation, availabil-
ity and automation to monitor recent epidemiological outbreaks
(e.g. http://nextstrain.org).

Second, validating the outputs of LotE using sensitivity anal-
yses and simulations will substantially improve predictions and
confidence intervals in results (Hoban, 2014). LotE is amenable
to parallelisation, enabling it to run across a range of parameter
settings in the params file, with which results can be harvested
and parameter variation effects on results can be explored in de-
tail. Our simulation scripts demonstrate how this may be used to
explore how parameter variation affects results and to validate
adaptive signals using simulated data, but population vulnera-
bility to climate can be empirically validated with appropriate
population trend (e.g. Bay et al., 2018) and common garden ex-
periments data (e.g. Fitzpatrick et al., 2021) where available.
The integrative analyses of LotE may complement and enhance
similar frameworks investigating genomic offset (e.g. Smith
et al.,, 2021) that on their own do not consider migration and
gene flow (e.g. Capblancq et al., 2020; Fitzpatrick & Keller, 2015;
Rellstab et al., 2021) and could be evaluated against outputs
from comparable frameworks using the same underlying data-
sets. With respect to input genomic data, we acknowledge there
has been significant debate on the power of reduced represen-
tation library (RAD/ddRAD-seq) datasets to detect sufficient
signals of local adaptation (Lowry et al., 2017, but see Catchen
et al., 2017). Ideally, high coverage whole genome sequencing
data would be the gold standard for detecting local adaptation in
populations, which will improve the ability to detect both weak
and strong signals of local adaptations. Given that these kinds of
datasets for range-wide population sampling are presently rare,
reduced representation library datasets currently offer the most

feasible approach to synthesise data across taxa and regions, but

availability of WGS datasets is rapidly increasing. Furthermore,
an important step could be to integrate simulation studies using
artificial fragmentation of whole genome sequencing datasets
combined with power analyses (e.g. Patton et al., 2019) to help
understand how signals of local adaptation using reduced rep-
resentation library data such as those demonstrated here can
adequately detect local adaptations and where the drop-off in
statistical power lies relative to whole genome datasets (e.g.
Benjelloun et al., 2019).

Third, integrating phenotypic plasticity and functional genom-
ics data are a rich potential avenue for expansion for the LotE
toolbox, for example in model systems where there is adequate
knowledge on physiological limits for species, or the underlying
genetic basis of their functional traits and reaction norms (e.g.
Oomen & Hutchings, 2022). Expansion of the toolbox to incor-
porate this information, particularly to strengthen the ‘sensitiv-
ity’ component further, for example isolating genomic regions
related to thermal stress tolerance and tracking how these vary
and are distributed geographically across populations (e.g. Pimsler
et al., 2020), or to accurately estimate how genetic load is parti-
tioned across populations would substantially add to the analytical
power of the LotE toolbox and provide integration with phenotypic
plasticity, functional trait and ecological knowledge for model sys-
tems. Furthermore, different kinds of ‘omics data (e.g. structural
variants such as copy number variants or epigenetic data) could
broaden the approach to investigate other types of genomic vari-
ants that influence adaptive responses (Layton & Bradbury, 2022;
Wollenberg Valero et al., 2022), especially when available from
multiple individuals and populations across a species’ range. From
a spatial perspective, mechanistic SDMs that explicitly incorpo-
rate process that limit species distributions (Kearney et al., 2010;
Mathewson et al., 2017) and joint distribution models that poten-
tially incorporate species interactions (Ovaskainen et al., 2016,
Poggiato et al., 2021) could be used instead of correlative SDM
outputs in the toolbox.

4.3 | Main considerations when using the LotE
toolbox

Thereis no ‘silver bullet’ solution to predicting vulnerability to global
change. Each dataset input into LotE or any other climate change
vulnerability framework has its own idiosyncrasies and biases, and
these should be taken into account when drawing conclusions, ide-
ally using sensitivity analyses to investigate the effects of specific
parameters at each step. Though no dataset is perfect, we believe
the LotE toolbox can make the most of available datasets at pre-
sent, and due to the large number of reduced representation short
read library datasets (i.e. RAD/ddRAD-seq) published over the past
decades (more than 2400 articles as of the end of 2017, Campbell
et al., 2018, to assess population structure, phylogeography, demo-

graphic history), these presently provide the most promising and
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widely applicable datasets for our approach. As sequencing technol-
ogies continue to improve, we will undoubtedly move towards larger
numbers of whole genome sequencing datasets which will provide
higher resolution data for assessing genetic diversity and local adap-
tation in particular.

5 | CONCLUSIONS

We introduce the ‘LotE’ conceptual and analytical framework, a
toolbox that facilitates the integration of environmental, molecu-
lar and ecological data to perform genomics-informed climate
change vulnerability assessments. Given the sheer number of
analyses, data preparation steps and computational power re-
quired to perform climate change vulnerability assessments, our
HPC-compatible framework is automated and standardised, but
flexible, thus making it possible to perform comparisons across
species and geographic regions. The modular structure of LotE
mean that it is not restricted to being a climate change vulner-
ability assessment tool, but can also be used for batch prepara-
tion and analysis of spatial-environmental data, building species
distribution models or circuitscape analyses, investigating local
adaptation, or mapping intraspecific neutral and adaptive genetic
diversity across species ranges. With the increasing availability
of high-quality georeferenced genome-wide datasets published
in open access online repositories, as well as constantly improv-
ing climate model simulations, the LotE framework offers a range
of tools that can be used to investigate intraspecific responses to
global change, thus providing empirical results from large genomic
and spatial datasets to inform and assist biodiversity conservation
in our rapidly changing world. Many opportunities for integrating
simulations, functional genomics data and biodiversity monitor-
ing are possible in the future, and we envisage that LotE will be a
useful tool for both the academic research and conservation prac-
titioner communities that can stimulate a new wave of data syn-
thesis, increasing reproducibility and standardised reporting when

assessing intraspecific diversity and vulnerability to global change.
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local scientists, the toolbox in this manuscript is currently being used
for region and species-specific questions in those respective coun-

tries, which do integrate local scientists prominently.
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