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Abstract

1. Global change is impacting biodiversity across all habitats on earth. New selec-

tion pressures from changing climatic conditions and other anthropogenic ac-

tivities are creating heterogeneous ecological and evolutionary responses across 
many species' geographic ranges. Yet we currently lack standardised and repro-

ducible tools to effectively predict the resulting patterns in species vulnerability 
to declines or range changes.

2. We developed an informatic toolbox that integrates ecological, environmental 
and genomic data and analyses (environmental dissimilarity, species distribution 
models, landscape connectivity, neutral and adaptive genetic diversity, genotype- 
environment associations and genomic offset) to estimate population vulnerabil-
ity. In our toolbox, functions and data structures are coded in a standardised way 
so that it is applicable to any species or geographic region where appropriate data 
are available, for example individual or population sampling and genomic datasets 
(e.g. RAD- seq, ddRAD- seq, whole genome sequencing data) representing envi-
ronmental variation across the species geographic range.

3. To demonstrate multi- species applicability, we apply our toolbox to three georef-
erenced genomic datasets for co- occurring East African spiny reed frogs (Afrixalus 

fornasini, A. delicatus and A. sylvaticus) to predict their population vulnerability, as 
well as demonstrating that range loss projections based on adaptive variation can 
be accurately reproduced from a previous study using data for two European bat 
species (Myotis escalerai and M. crypticus).

4. Our framework sets the stage for large scale, multi- species genomic datasets 
to be leveraged in a novel climate change vulnerability framework to quantify 
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1  |  INTRODUC TION

Global climate change is affecting biodiversity in unprecedented 
ways, compounded by other anthropogenic impacts such as hab-

itat degradation, fragmentation and loss (IPBES, 2019). For exam-

ple, increased temperatures and frequencies of extreme climatic 
events are predicted to create new selection pressures by rapidly 
altering resource availability, exposure to pathogens and the struc-

ture and functioning of trophic networks for many species (Bellard 
et al., 2012; Hoffmann & Sgrò, 2011; Pinsky et al., 2019). How spe-

cies respond to these new selection pressures depends on their 
‘vulnerability’ (IPCC, 2007), which is defined as the combination 
of the stress to which a system is exposed, its sensitivity and as-

pects of its adaptive capacity (Foden et al., 2019). Climate change 
vulnerability assessments first emerged in the 1990s, as a tool that 
accounts for aspects of natural hazard and disaster planning, climate 
change effects and endangered species research. In their early it-
erations, vulnerability was mainly focused on people and commu-

nities (IPCC, 2014), though this was later applied to species and 
ecosystems.

Until recently, accounting for differences in vulnerability 
among populations within species was largely ignored in climate 
change vulnerability assessment approaches. However, high-

lighting intraspecific populations that are most at risk of local 
extinction, or identifying those with pre- adapted genotypes 
that can be sources for assisted gene flow and evolutionary res-

cue (Bell & Gonzalez, 2009), could greatly improve biodiversity 
conservation management by safeguarding populations and ge-

netic diversity beneficial for resilience to future environmental 
change (Hoban et al., 2021, 2022; Laikre et al., 2010). Neutral 
genetic diversity is important in this respect as it provides the 
basis for future evolution and could become selected upon when 
environmental conditions or geographic distributions change. 
Populations with higher neutral genetic diversity may therefore 
have a higher chance of supporting individuals with advanta-

geous mutations or traits (Ørsted et al., 2019). To address the 
risk of local extinction we refer throughout this manuscript to 
‘Exposure’ (i.e. the nature, magnitude and rate of environmental 
change), ‘Sensitivity’ (i.e. the underlying neutral and adaptive ge-

netic diversity which may buffer against environmental change) 
and ‘Landscape barriers’ (i.e. limitation to track favourable envi-
ronmental conditions (Parmesan, 2006; Pecl et al., 2017) and to 
potentially spread beneficial neutral and adaptive genomic vari-
ation (Razgour et al., 2018)). We emphasise here that ‘Landscape 
barriers’ is a proxy for potential spread of genomic variation and 

does not account for dispersal capacity or number of generations 
across the analysed time periods. During the past decades, the 
dominant approach to climate change vulnerability assessments 
were based on forecasts of how species ranges are predicted to 
change using species distribution models (SDMs; Barbet- Massin 
et al., 2012; Elith & Leathwick, 2009; Guisan & Thuiller, 2005; 

Pacifici et al., 2015; Urban, 2015), in some cases refined using ge-

netic data to build SDMs independently for intraspecific popula-

tions that have divergent ecological niches (e.g. Bittencourt- Silva 
et al., 2017; Collart et al., 2021; Ikeda et al., 2017). However, even 
when accounting for neutral population structure, a major limita-

tion of these approaches has been that intraspecific local adapta-

tion and differential responses to climate change have been largely 
ignored, potentially leading to inaccurate predictions of future dis-

tributions and misplaced conservation efforts (Foden et al., 2019; 

Hällfors et al., 2016). Adaptation to local environmental condi-
tions is widespread across the tree of life (Hereford, 2009), and 
the geographic distribution of adaptive variation likely plays a 
fundamental role in the ability of populations within species to 
respond to global change (Capblancq et al., 2020; Exposito- Alonso 
et al., 2018, 2022; Forester et al., 2022). Assessing SDMs together 
with local adaptation, neutral genetic diversity and landscape 
connectivity and potential gene flow (e.g. Brennan et al., 2022; 

McGuire et al., 2016; Parks et al., 2022) is therefore essential to 
understand geographic differences in vulnerability under future 
global change scenarios.

Recent calls were made in the emergent field of climate change 
genomics (Lancaster et al., 2022) for the integration of genomic 
data to improve the accuracy of climate change vulnerability assess-

ments (Capblancq et al., 2020; Fitzpatrick & Keller, 2015; Nadeau & 
Urban, 2019; Pauls et al., 2013; Waldvogel, Feldmeyer, et al., 2020). 
Conceptual and analytical developments enabling the incorpora-

tion of intraspecific adaptations across species ranges (e.g. Aguirre- 
Liguori et al., 2021; Bay et al., 2018; Forester et al., 2023; Razgour 
et al., 2018, 2019; Ruegg et al., 2018), and phenotypic plasticity 
(Benito Garzón et al., 2019) have led to major advances in our ability 
to assess how population vulnerability varies across species ranges. 
Despite these recent advances, we lack practical and integrative tools 
to implement analyses across multiple taxonomic groups and geo-

graphic regions (see Pinsky et al., 2022). Due to the high multidiscipli-
narity and diversity of analyses required for most integrated climate 
change vulnerability assessments, researchers often tailor their ap-

proach to their own study system, without creating standardised data 
structures and code that can be applied more widely to any system 
(see Johnston et al., 2023; Waldvogel, Schreiber, et al., 2020).

intraspecific differences in genetic diversity, local adaptation, range shifts and 
population vulnerability based on exposure, sensitivity and landscape barriers.

K E Y W O R D S

adaptation, circuit theory, climate change vulnerability assessment, conservation, genomics, 
global change, informatics, predictive modelling
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To address this gap in our ability to predict population vulnerabil-
ity to global change, we introduce ‘Life on the edge’ (hereafter LotE), 
an analytical toolbox to integrate ecological (species distributions 
and their ecological requirements), environmental (environmental 
dissimilarity and landscape connectivity) and genomic information 
(neutral and adaptive sensitivity) in a novel climate change vulner-
ability assessment toolbox. Throughout the LotE toolbox, all data 
inputs are standardised and all code is open source, generalised and 
parallelised, so it is applicable across any number of different spe-

cies from any geographic area for which suitable genomic, ecological 
and environmental data exist. Our toolbox is based on the concepts 
introduced in the IPCC 4th assessment (IPCC, 2007) and Razgour 
et al. (2018, 2019) to leverage information obtained from the raw 
data to estimate ‘Exposure’ (estimated from the magnitude of pre-

dicted climate change), ‘Sensitivity’ (estimated from both neutral and 
adaptive genetic diversity) and ‘Landscape barriers’ (the estimated 
limitations for future distributional shifts and evolutionary rescue 
given predicted future climate change). Landscape barriers is not 
included in the IPCC 4th assessment but may be particularly rele-

vant for populations without sufficient standing genetic variation 
to adapt in- situ quickly, or for long- lived species with long gener-
ation times where shifting their range is a more likely response to 
environmental change than rapid adaptation, unless a sufficiently 
large fraction of individuals already possess pre- adapted genotypes 
(Razgour et al., 2018). Together, exposure, sensitivity and landscape 
barriers are mapped separately to identify populations with lower 
or higher scores for each metric and also combined as an average 
or custom combination to predict population vulnerability to global 
change across a species' range. We define population vulnerability 
as the likelihood that a population will become locally extinct due 

to global change impacts rather than other anthropogenic pressures 
such as overharvesting. Our population vulnerability metric is an ap-

proximation given the available genomic, spatial and environmental 
data, but it should be understood that it does not include any kind of 
population viability analysis.

2  |  MATERIAL S AND METHODS

2.1  |  Modelling objective

Our overarching goal was to build an informatic toolbox to predict 
population vulnerability to global change, integrating and general-
ising code to make analyses applicable to any suitable population 
genomic dataset. To build our toolbox we expanded upon two re-

cently published conceptual and analytical frameworks (Razgour 
et al., 2018, 2019) for climate change vulnerability assessments. Each 
of the two frameworks integrates genomic and environmental data 
to assess climate change vulnerability by incorporating a combina-

tion of SDMs, landscape connectivity analyses (using electrical cir-
cuit theory) and genetic diversity (neutral and adaptive). Candidate 
genomic regions under selection are identified using genotype- 
environment association (GEA) methods, which may be validated in 
our simulation scripts (see Figure 1, Figure S1) following a similar 
approach to Salmón et al. (2021) using randomisations and permuta-

tion tests (see Section 2.3 for full details). This information is then 
used to quantify ‘genomic offset’ per population based on the pre-

dicted mismatch of locally adapted genotypes to the predicted fu-

ture climates in their current location, indicating the potential levels 
of their future maladaptation (Fitzpatrick & Keller, 2015). Therefore, 

F I G U R E  1  Conceptual and analytical framework for the Life on the edge toolbox, incorporating ‘Exposure’ (current and projected 
future species distribution models (SDM) and Species their dissimilarity), ‘Sensitivity (adaptive and neutral sensitivity), ‘Landscape barriers' 
(predicted population connectivity) to predict a final ‘Population vulnerability’ metric for each population (which is a weighted combination 
of the other metrics). Software packages used are denoted in blue text (LFMM, latent factor mixed models; RDA, redundancy analysis).
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higher genomic offset is an indication of higher adaptive sensitiv-

ity to future global changes. We further enable the spatial mapping 
of categorised local adaptations across individuals and populations 
(see Table 1, Table S1). We integrate SDMs to assess dissimilarity in 
future environmental conditions (‘Exposure’), landscape connectiv-

ity (‘Landscape barriers’), standing genetic diversity (‘Neutral sen-

sitivity’) and adaptive genetic diversity (‘Adaptive sensitivity’), to 
estimate population vulnerability for all unique geographic locations 
with samples across species ranges. We highlight areas where all vul-
nerability metrics are in the upper and lower quantiles of the species 
results and highlight the highest and lowest metric values per popu-

lation to guide conservation priorities. Our highly flexible toolbox 
makes it possible to ‘plug in’ any species with suitable data so that 
standardised analyses and comparisons across different taxa and re-

gions can be readily made. The LotE toolbox therefore establishes 
the backbone of a generalised framework that aims to stimulate a 
new wave of data synthesis, increase reproducibility and standardise 
reporting for population level and species- level climate change vul-
nerability assessments (Waldvogel, Feldmeyer, et al., 2020). For ease 
of interpretation, Figure 2 summarises the main inputs, analyses and 
outputs for the toolbox.

To assign how metrics are quantified for exposure, neutral sensi-
tivity, adaptive sensitivity, landscape barriers and population vulner-
ability, user- defined thresholds should be specified to the params file 
in a comma separated list for each individual metric (see Table S1). 
For example, to assign the neutral sensitivity metric in increments 
of 0.1 so that a genetically diverse population with a high nucleotide 
diversity value of 0.225 gives a low neutral sensitivity value (i.e. =1) 
and a low nucleotide diversity value of 0.025 gives a high neutral 
sensitivity value (i.e. =10), define the variable neutral_sensitivity_nu-

cleotide_diversity_thresholds as ‘0, 0.025, 0.05, 0.075, 0.1, 0.125, 
0.15, 0.175, 0.2, 0.225’.

2.2  |  Running the toolbox

Life on the edge integrates diverse genomic and spatial analyses 
to create metrics of exposure, neutral and adaptive sensitivity 
and population vulnerability. The run_life_on_the_edge.sh wrapper 
script can be used to run each part of the toolbox as required by 
calling the desired functions. If users wish to provide carefully cu-

rated inputs without parameterising all steps of the toolbox (e.g. 

TA B L E  1  Summary of modelling outputs and methodologies incorporated for the LotE toolbox.

Modelling output General methodology employed Specific steps and [functions]

Exposure • Species distribution models (SDMs) • Downloading and preparing spatial [prepare_spatial_data()] and 

environmental data [prepare_environmental_data()]

• Spatially rarefying presence data and generating 
background (pseudoabsence) data for SDMs 
[spatially_rarefy_presences_and_create_background_data()]

• Building and evaluating ensemble SDMs for current and future 
conditions [sdms_biomod2]

• Calculating “Exposure” for each population [exposure()]

Sensitivity • Identify climate adaptive loci
• Investigate the sensitivity and 

robustness of identified climate adaptive 
loci using simulations

• Categorise sampled individuals in 
adaptive ordination space

• Quantify adaptive genetic sensitivity
• Quantify neutral genetic sensitivity
• Rerun SDMs based on categorised 

individual

• Impute missing data [impute_missing_data()], LFMM [gea_

lfmm()], RDA [gea_rda()] to identify adaptive loci
• RDA to categorise climate adapted individuals 

[gea_rda_individual_categorisation()]

• Count numbers of adapted individuals per population 
[quantify_local_adaptation()]

• Validate adaptive signal in the genomic data using randomisation 
simulations [−00_parameter_exploration- .R, −01_empirical_
data- .R, −02_randomise_data- .R, −03_perform_simulations- .R, 
−04_evaluate_significance- .R]

• Calculate neutral genetic sensitivity based on nucleotide 
diversity (default) or heterozygosity [neutral_sensitivity()]

• Calculate adaptive sensitivity based on results from GEAs and 
local adaptation/genomic offset results [adaptive_sensitivity()]

• Build refined SDMs using only individuals that are categorised in 
specific adaptive ordination space [adaptive_sdms()]

Landscape barriers • Run circuitscape to assess change in 
movement potential between current 
and future environmental conditions

• Create circuitscape input and parameter files [create_

circuitscape_inputs()], categorise and plot “Landscape barriers” 
per population results [landscape_barriers()]

Population vulnerability • Create final population vulnerability 
scores and outputs

• Assimilate Exposure, Sensitivity, and Landscape barriers results 
to create population vulnerability metric and map all metrics 
[population_vulnerability()]

• Create final summary PDF of all results [summary_pdfs()]

Note: Specific steps for each method are detailed, along with toolbox functions used in each case.
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SDMs, imputed genotype data, GEA analyses, recommended for 
non- expert users), then parameters can be modified so that the 
toolbox recognises this, and the parameterisation steps for these 
analyses will be skipped (see adjustable parameter list in Table S1 

for details). In Supporting Information Text S1, we provide a de-

tailed overview of the input data and structure required and the 
main methods adopted by the LotE toolbox at each step, how these 
are implemented and which aspects are modifiable by the user. 
Table 1 provides further details on the modelling output, steps 
taken to achieve that output and which functions in the toolbox 
are used at each step. The functions and scripts used (written in R, 
bash and Julia) are available in the LotE website (https:// cd-  barra 
tt. github. io/ Life_ on_ the_ edge. github. io/ ) and an accompanying vi-
gnette on example usage is available at https:// cd-  barra tt. github. 
io/ Life_ on_ the_ edge. github. io/ Vignette. The toolbox enables 
HPC parallelisation, which is particularly useful for computation-

ally intensive steps. We provide example benchmarking times for 
analyses to complete (Table 2) to provide users with an overview 
of processing times.

2.3  |  Input data

Users may store the toolbox in any location but need to adhere to 
the directory structure shown in Figure 2. The - data-  folder contains 

four main directories, one of which contains mapping data (world 
shapefile files available from http:// natur alear thdata. com, already 
provided), another the environmental data, the other two contain-

ing folders for each species' genomic and spatial data. To run the 
toolbox, appropriate environmental predictor data must first be 
downloaded (e.g. global data in .tif raster format) and stored in the 
environmental_data folder, the params (Params.tsv) file must be pop-

ulated with the relevant parameters for each step of the analyses 
(see Table S1 for a description of each parameter and the vignette). 
Environmental data downloads can be automated if requested 
using the geodata R package (Hijmans et al., 2023) by setting the 
env_data_download parameter to ‘yes’ in the params file as well 
as providing the resolution requested (climate_res_download), the 
shared socioeconomic pathway scenario (ssp_scenario_download), 
general circulation model (gcm_download) and the time of the fu-

ture projection (time_proj_download). The three input files required 
to run a species dataset are the spatial coordinates of the genomic 
samples (Sample name, decimal Longitude, Latitude, in .csv format), 
and two standard PLINK (Purcell et al., 2007) formatted files (.ped 

and .map) for the genomic data (Figure 2). Conversion from other 
formats for genomic data such as the widely used VCF (variant call 
format) may be converted to PLINK format readily using available 
tools (e.g. Danecek et al., 2011). Details of data naming conventions 
can be found in the vignette, along with example input data avail-
able in the DRYAD repository (https:// datad ryad. org/ stash/  datas 

F I G U R E  2  Main inputs and data (yellow boxes), analyses (blue box) and outputs (green boxes) of the LotE toolbox. ‘Species_binomial’ is 
the name of the analysis for any given species, using genus name followed by species name separated by an underscore. Directory names 
are highlighted in bold, ‘Exposure’, ‘Sensitivity’ (including neutral and adaptive sensitivity) and ‘Landscape barriers’ become populated with 
the relevant output files for each analysis upon running LotE, which are then used to calculate output metrics per population. Information 
on specific R functions within the blue box and how they interact with the output directories can be found in Figure S1. The - scripts-  and 

R_functions folders contain all the toolbox scripts and functions, and the - outputs-  folder stores all output files in relevant subdirectories 
when running the toolbox. Blue lines represent locations for input files, dotted blue lines represent locations for input files if the user wants 
to circumvent the full toolbox workflow with their own input data (e.g. pre- prepared SDMs, a list of adaptive SNPs so that GEA analysis is 
unnecessary, imputed missing genotype data, or an already parameterised circuitscape input layer).
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et/ doi: 10. 5061/ dryad. 2rbnz s7t4). To provide reliable outputs using 
LotE, we advise that the genomic samples cover an adequate range 
of environmental conditions that the species as a whole experiences 
(i.e. a representative proportion of the species range, see Vajana 
et al., 2023), and the number of SNPs should be sufficient to de-

tect accurate signals of local adaptation (minimising false positives), 
covering a large proportion of the genome, though this will depend 
on the genomic characteristics and the degree of local adaptation 
in each species. To explore and validate signals of local adaptation 
detected in datasets, the sensitivity and simulation scripts we pro-

vide follow the approach outlined in Salmón et al. (2021). In brief, 
100 simulations of the empirical data are created with randomised 
genotype- environment relationships, GEA analyses are performed 
on each of these simulations, tracking the p- values of all SNPs and 
then the adaptive signal in the empirical data is determined using a 
significance threshold (using z- scores; e.g. a significance threshold of 
>0.95) for the empirical data against the simulations data to identify 
statistically significant SNPs that are above this. These statistically 
significant SNPs may then be used for all local adaptation analyses 
going forward (using the ‘use_only_statistically_significant_snps’ set 
to ‘yes’ and ‘which_loci’ option set to ‘0’ in params). For more details 
see Supporting Information Text S2, which also gives details on how 
to perform sensitivity analyses using LotE given different parameter 
combinations of thresholds for determining candidate SNPs using 
our implemented GEA methods.

For environmental data, we provide global terrestrial Worldclim2 
data (30 arc seconds, clipped to East Africa) for testing purposes, 
but as mentioned previously, this can be automatically down-

loaded (at lower resolutions using the geodata R package; Hijmans 

et al., 2023) if required. Many users will require different spatial 
extents or higher resolution data if available for building accurate 
SDMs and detecting fine- scale environmental variation and local 
adaptation across populations on land. Marine or freshwater data 
could also be used here if focal taxa are non- terrestrial, however it 
is important that the environmental data are standardised to be the 
same spatial resolution and extent. These data can be, for example, 
georeferenced .tif files (e.g. bioclim or elevation) downloaded from 
public databases (e.g. Worldclim2 or CHELSA (Fick & Hijmans, 2017; 

Karger et al., 2017) for current and selected future conditions and 
SSP scenarios), or any other predictor data relevant to the study 
species that is available in raster format (e.g. land cover data). The 
user should decide on which spatial resolution, future time period 
and scenario is needed. The georeferenced genomic data will serve 
as known presence points for SDMs, which can be integrated with 
GBIF data that are cleaned and finalised using the toolbox, as well 
as the generation of appropriate pseudoabsence data. All input 
environmental data needs to be at the same spatial resolution and 
extent, an R script (00_process_environmental_data.R) is provided 
to assist the user in setting up environmental predictor data in the 
correct format for Worldclim2 and CHELSA data (i.e. separating a 
multi- band file representing many predictors together into individ-

ual predictor .tif files for current and future conditions). We recom-

mend that before inputting genomic data (.ped and .map files), best 
practices (Paris et al., 2017) are followed to maximise polymorphism 
in input data while reducing potential ‘false’ loci caused by over-  or 
under merging SNP loci, as well removing poorly sequenced individ-

uals causing high levels of allelic dropout and lower numbers of loci 
and SNPs (Cerca et al., 2021).

Species #pops #SNPs #cells SDM details Runtime

Afrixalus delicatus 14 8961 329,222 9 predictors, 510 
models (CTA, ANN, 
RF, GAM, Maxent)

8 h 49 min 
[+16 h 32 
simulation 
validation]

Afrixalus sylvaticus 20 12,842 62,972 9 predictors, 510 
models (CTA, ANN, 
RF, GAM, Maxent)

3 h 51 min 
[+11 h 43 
simulation 
validation]

Afrixalus fornasini 32 7309 304,616 9 predictors, 510 
models (CTA, ANN, 
RF, GAM, Maxent)

8 h 58 min 
[+16 h 14 
simulation 
validation]

Myotis escalerai 67 18,356 345,042 6 predictors, 204 
models (Maxent, 
CTA)

94 h 27 min

Myotis crypticus 41 20,750 122,958 6 predictors, 204 
models (Maxent, 
CTA)

25 h 48 min

Note: #pops refers to the number of unique geographic locations (i.e. populations), #SNPs refers 
to the number of bi- allelic SNPs in the dataset, #cells refers to the number of grid cells (i.e. pixels) 
in the rasters used for spatial analyses. Genomic data pre- processing times are not included, and 
the extra simulation validation runtimes are listed. All analyses were each run as separate jobs 
on a single HPC cluster core (8 threads, non- volatile memory express storage) with 80GB RAM 
allocated.

TA B L E  2  Example benchmarking time 
for completion of the toolbox on the 
published data utilised for the three focal 
species.
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2.4  |  Dataset- specific parameterisation

Several important decisions relevant to each species dataset are 
required throughout the LotE toolbox. If users are not comfortable 
with the parameterisation of specific steps within LotE—particu-

larly building SDMs, performing GEA analyses to identify candi-
date SNPs under selection, imputation of missing genotype data or 
the parameterisation of input connectivity layers for circuitscape 
analysis, we recommend that these are performed with assistance 
from relevant expertise as part of multidisciplinary teams, possi-
bly outside of the toolbox and supplied as inputs to LotE. Running 
analyses without support or full understanding of the conceptual 
backgrounds and potential pitfalls of each method used in LotE will 
almost certainly lead to unreliable results. If any of the skip_sdm, 
skip_impute_genotypes, skip_gea, skip_circuitscape_layer_param-

eterisation parameters are set to ‘yes’, the toolbox will not perform 
these analyses and instead expect the relevant input files in the 
correct directories (details in Supporting Information Text S1).

First, regarding environmental data, the selection of envi-
ronmental predictors for SDMs and GEAs should be ecologically 
relevant to the study species. If required, multiple environmental 
predictor variables may be condensed into principal components 
(PCs) and those can be used as predictors in the GEAs. Predictor 
variables should be at a suitable spatial grain to be able to de-

tect signals of local adaptation if they exist, sufficiently variable 
between sampled populations and expected to influence the dis-

tribution and/or genetic diversity of the species in question. The 
threshold q- values to determine which SNPs are putatively ‘adap-

tive’ are recommended to be set at a very conservative (e.g. False 
Discovery Rate >0.01 for LFMM analyses) and standard deviation 
from the mean loading (SD >2.5 for RDA analyses) by default to 
minimise false positives, but this can be modified in the params 
file if required (‘lfmm_FDR_threshold’ and ‘rda_SD_threshold’). 
Furthermore, by using the simulation scripts of LotE (built- in by de-

fault), it is possible to estimate an acceptable false discovery rate 
of SNPs for a given dataset and then validate the adaptive signal 
using our simulation approach. For GEAs, if categorising local adap-

tations in individuals and populations, we have restricted analyses 
to two predictors simultaneously to easily parse adaptation to dif-
ferent conditions (e.g. hot- dry and cold- wet). However, more com-

plex scenarios of adaptation to multiple predictors can be assessed 
by analysing pairs of additional predictors separately (see Barratt, 
Preißler, et al., 2024). Second, spatial occurrence data (presences) 
should be checked thoroughly to ensure that incorrect or unreal-
istic presence data are not included for SDMs (i.e. outside of the 
native range, or inverted coordinates for example) and that correct 
taxonomy is followed (e.g. only confirmed species records are in-

cluded). We have taken measures using the CoordinateCleaner R 
package (Zizka et al., 2019) to deal with these potential problems, 
but data should be carefully inspected before analysis and inter-
pretation of results. Additionally, SDMs require consideration of 
the geographic modelling extent, selection of background (pseudo-

absence) data, data partitioning (training vs. testing) strategy and 

model evaluation in order to follow best practices in the field (see 
Araújo et al., 2019; Merow et al., 2013; Zurell et al., 2020 for guide-

lines), and the SDM output itself should be inspected to confirm 
that it is a reasonable prediction for the species and thus suitable 
for further use. Similarly, genomic offset predictions can be clipped 
to a buffer around the known presences to avoid predicting mal-
adaptation in geographic space that is most likely to be unreach-

able by the species (see Table S1). Third, if using LotE on RAD- seq/
ddRAD- seq type data, an understanding of the types of errors 
that are associated with these kinds of data and how to minimise 
them is fundamental—we strongly advise that datasets have been 
appropriately analysed and curated before performing LotE analy-

ses. Additionally, when assessing neutral and adaptive sensitivity, 
including the imputation of missing data and accounting for neutral 
population structure for GEA analysis, decisions are required to 
test a reasonable number of genetic clusters (k) represented by the 
data. In the GEA analyses themselves, the thresholds for defining 
putatively adaptive SNPs are also flexible to enable decisions on 
how tolerant the user is of false positives (see Forester et al., 2018; 

François et al., 2016). If there are adaptations to opposing condi-
tions in the same population, this could be a genuine biological 
signal as a result of local gene flow, or that adaptive equilibrium 
may not have been reached across the landscape and thus the GEA 
approaches may not be suitable. In a case such as this, exploring 
parameter variation for GEA analyses using the simulation scripts 
we provide may help to more thoroughly evaluate false positives. 
Candidate SNPs with low statistical significance compared to sim-

ulations are automatically removed from the list of adaptive loci 
using the ‘remove_low_significance_adaptive_SNPs’ and ‘SNP_sim-

ulation_significance_threshold’ parameters in the params file (see 
Table S1), and this will be reported in the summary PDFs to as-

sist evaluation of the adaptive signal for a given dataset. Fourth, 
for assessing ‘Landscape barriers’, parameterisation of landscape 
resistance surfaces should be based on the ecology of the spe-

cies in question, with higher resistance values assigned to less 
permeable landscape/environmental features. The default func-

tion for this within LotE is coded to generate resistance surfaces 
based on the current SDM output, current climate (the selected 
variables used in the GEA analyses), slope and land cover which 
is reclassified based on the ecology of the species (by default less 
resistance for forest habitats). The resistance surfaces and how 
they are weighted together to create a cumulative resistance sur-
face for quantifying landscape barriers may be parameterised in 
the params file, or alternatively prepared outside the LotE toolbox 
using software such as ResistanceGA (Peterman, 2018). Finally, de-

cisions need to be made by the user about how to quantify each 
of the final exposure, neutral sensitivity, adaptive sensitivity and 
landscape barriers metrics (Table S1), and how to combine them 
for the final population vulnerability metric (e.g. by using the mean 
across all, or weighting them based on a specific conservation goal 
of weighting neutral sensitivity more highly than the other metrics, 
or reducing the weighting of adaptive sensitivity due to uncertainty 
for example, see Box 1 and Supporting Information Text S1). If 
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conducting comparative multi- species analysis the user can use the 
same defined thresholds when calculating exposure, neutral sensi-
tivity, adaptive sensitivity and landscape barriers to enable direct 
comparisons between species. Furthermore, if a species contains 
multiple intraspecific lineages (i.e. potential candidate species), we 
recommend analysing all lineages together as one species rather 
than separating them, unless reproductive isolation (and thus spe-

ciation) is confirmed. More details on these considerations are dis-

cussed with examples in Supporting Information Text S1.

2.5  |  Installation and dependencies

Users of the LotE toolbox should be proficient in R and bash. As the 
toolbox utilises several programming languages which in turn require 
dependencies, correct initial setup is essential. A working installa-

tion of PLINK (Purcell et al., 2007) and circuitscape (Anantharaman 
et al., 2019) is required as well as a recent version of R (4.1.3 or 
later), a bash shell and a version of Singularity (Kurtzer et al., 2017). 
Installation of package dependencies from within R needs to be 

BOX 1 Default metric quantification in the Life on the Edge toolbox. Metric calculations may be parameterised 
(see Table S1 for details)
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performed upon first running the toolbox (see 00_setup.R). The LotE 
toolbox is designed to run in a high performance computing (HPC) 
environment given the computational resources required especially 
for large datasets with high numbers of samples (e.g. >250) and sam-

pling localities (>50). For smooth HPC integration we recommend 
using the supplied Singularity container in the LotE github repository 
containing a working R version (4.1.3) where relevant R packages are 
installed and LotE can be run.

2.6  |  Modularity

The LotE toolbox is fully transparent and parameterisable, with 
standardised workflows following best practices for running species 
distribution models (Araújo et al., 2019), and genotype- environment 
association analyses, (Capblancq & Forester, 2021; Forester 
et al., 2018). Transparency allows all results to be traced back to 
the data and helps avoid the toolbox being a ‘black box’. We recom-

mend user feedback and sanity checks at several decision- making 
points of the workflow in order to follow best practices in the rel-
evant subfields of ecology and evolution. Our toolbox can be used 
as a single pipeline (e.g. from processed sequence and spatial data 
through to predicting population vulnerability) or in a modular fash-

ion using specific functions. Furthermore, the toolbox offers flexibil-
ity, so if users wish to supply their own data (e.g. environmental data, 
SDMs, imputed genotypes, list of adaptive SNPs or input files for 
circuitscape analysis to assess landscape connectivity) it is possible 
to circumvent steps within the toolbox by simply adding the relevant 
files to the appropriate directories (see vignette).

2.7  |  Empirical datasets to demonstrate the 
utility of the LotE toolbox

2.7.1  |  Afrixalus fornasini, A. delicatus and A. 

sylvaticus—‘Novel’ LotE analysis (including genomic 
data processing)

To demonstrate the utility of the LotE toolbox we ran the toolbox 
in its entirety for three co- occurring East African spiny reed frog 
species, Afrixalus fornasini, A. delicatus and A. sylvaticus. Field work 
licences and permits are described in Barratt et al. (2018). We 
processed georeferenced genome- wide RAD- seq data from Barratt 
et al. (2018) (SRA accession number: PRJNA472166, Table S2) 
in Stacks 2 (Rochette et al., 2019), optimising the parameters 
to maximise information (Paris et al., 2017) and remove poorly 
sequenced samples (Cerca et al., 2021) and collated spatial data 
including published data in Barratt et al. (2018) and cleaned records 
from the Global Biodiversity Information Facility (GBIF. org, 2023). 
Environmental data from Worldclim2 was used—bioclim layers 
1–19 and slope (Fick & Hijmans, 2017) and land cover (Schipper 
et al., 2020) at 30s spatial resolution (recategorised into 9 classes 
following Razgour et al., 2019 to reduce complexity in the model 

(‘landcov1’) see Table S3). We defined our modelling extent to 
capture the known range of each of the three species across East 
Africa, encompassing sampled populations across Tanzania, Kenya, 
Mozambique and Malawi, used variance inflation factors (VIFs) to 
reduce spatial autocorrelation in input SDM predictor variables, 
and quantified local adaptation to maximum temperatures of the 
warmest month (bioclim_5) and precipitation of the warmest quarter 
(bioclim_18) as these are known to be important predictors of the 
species distributions (Barratt et al., 2017, 2018). We also predicted 
genomic offset per population, with the resulting prediction 
clipped to a 2 degree buffer around sampled populations using 
the genomic_offset_buff_dist_degrees option in the params file 
to avoid predicting maladaptation in areas where the species is 
unable to disperse to. We retained only statistically significant 
SNPs using our simulation scripts to reduce the likelihood of false 
negative genotype- environment associations being included in 
our analyses. We parameterised a cumulative resistance surface 
using five ecologically relevant variables (current SDM, slope, land 
cover, bioclim_5 and bioclim_18), with respective weights of 0.25, 
0.1, 0.25, 0.2, 0.2 which were defined based on our ecological 
knowledge of the species and predictor effects on their dispersal. 
Exposure, neutral sensitivity, adaptive sensitivity, landscape barriers 
and population vulnerability were all quantified using the ‘defined’ 
option, reading defined thresholds for each variable from the params 

file to determine scores. Full parameter settings for the Afrixalus 

fornasini, A. delicatus and A. sylvaticus analyses can be found in 
Table S4.

2.7.2  |  Myotis escalerai and Myotis crypticus—‘Partial’ 
LotE analysis—Local adaptation and adaptive SDMs

Second, we conducted a ‘partial’ LotE toolbox run using data from 
Razgour et al. (2019) (European Nucleotide Archive accession no. 
PRJEB29086, Table S2) for two European bat species, Myotis escale-

rai and M. crypticus. We collated spatial (including cleaned records 
from the Global Biodiversity Information Facility, GBIF. org, 2023) 
and Worldclim2 environmental data at 30s spatial resolution (bio-

clim_1, bioclim_4, bioclim_7, bioclim_5, bioclim_6, slope, Fick & 
Hijmans, 2017), as well as land cover (Schipper et al., 2020) (recat-
egorised into 9 classes following Razgour et al., 2019, Table S3). 
We generated background points and built SDMs using biomod2 
(Thuiller et al., 2009), setting SDM parameters to match those used 
in the original manuscript, namely the spatial modelling extent, 
predictor variables, future time projections and general circulation 
models, and SDM modelling algorithms as well as the evaluation cri-
teria for SDMs (ROC > 0.8). Processed genomic data (.ped and .map 

files) from Razgour et al. (2019) were input for the GEA analyses 
(LFMM and RDA) to investigate local adaptation to hot- dry and cold- 
wet conditions based on maximum temperatures of the warmest 
month (bioclim_5) and precipitation of the warmest quarter (bio-

clim_18). Adaptive SDMs, which are not standard within a normal full 
LotE analysis but can be generated easily with the adaptive_sdms() 
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function of the LotE toolbox, were built using individuals parsed 
into ‘hot- dry’, ‘cold- wet’ adaptive categories for present and future 
conditions, again following Razgour et al. (2019). Full parameter set-
tings for the Myotis escalerai and M. crypticus analyses can be found 
in Table S4. Field work licences and permits are described in Razgour 
et al. (2019).

3  |  RESULTS

Below we provide details on results for each of the main analyses 
across the datasets we analysed. Results obtained using the LotE 
toolbox on empirical data here closely matched those of the pub-

lished data for Afrixalus fornasini, A. delicatus, A. sylvaticus, Myotis 

escalerai and M. crypticus, demonstrating that our toolbox is robust 
as well as being able to integrate diverse analyses to assist predic-

tions of population vulnerability to global change.

3.1  |  Afrixalus fornasini, A. delicatus, A. sylvaticus—

‘Novel’ LotE analyses (including genomic data 
processing)

After parameter optimisation in Stacks (performed separately from 
the LotE toolbox), we opted to select Stacks core parameters of 
M = 2, m = 5 and r = 80% for downstream analyses due to the trade- 
off between maximising polymorphism in our data and reducing po-

tential ‘false’ loci caused by over-  or undermerging loci for all three 
species. Our final filtered datasets contained 7309 loci for 43 indi-
viduals (A. fornasini), 8961 loci for 22 individuals (A. delicatus) and 
12,842 loci for 27 individuals (A. sylvaticus), and we retained the first 
SNP from each locus in our final dataset to maintain assumptions of 
linkage disequilibrium.

Assessing Exposure across species, future forecasts of the SDMs 
showed that the majority of the core A. fornasini and A. delicatus dis-

tributions and habitat suitability will remain largely unchanged from 
current conditions, with some predicted losses in range suitability 
towards central and coastal Tanzania (Figure 3a, Appendices S2–S4) 
and expansions throughout northern Mozambique, parts of coastal 
and central Tanzania and southern Kenya (Figure 3a). For A. sylvati-

cus, range contraction and decreased suitability is predicted largely 
in coastal regions of Tanzania, Kenya and Mozambique. Neutral 
genetic diversity was similar across species, albeit with some 

populations with particularly low genetic diversity, often in southern 
Tanzania across the three species. For local adaptation analyses we 
identified a total of 246, 383 and 427 statistically validated candi-
date SNPs for A. fornasini, A. delicatus and A. sylvaticus, respectively 
after running our simulation scripts to retain SNPs only present 
across simulations at the 0.95 significance level (i.e. 95%). Based on 
our genomic offset predictions, populations of all species are not 
strongly maladapted to projected future climate change, with the ex-

ception of the northernmost A. sylvaticus populations in Kenya and 
the southern Tanzania and Mozambique populations of A. delicatus 

(Figure 3b, Appendices S2–S4). Hot- dry adapted populations were 
identified across most coastal Tanzanian populations for A. fornasini, 
whereas colder and wetter adapted populations were located in more 
mountainous regions (Udzungwa and Uluguru mountains and sur-
rounding areas in Tanzania, and throughout northern Mozambique, 
Mount. Mabu, Nampula) and southern Malawi (Thyolo, adjacent to 
Mt. Mulanje, Appendix S2). Similar patterns of local adaptation to 
colder and wetter conditions in southern Tanzania and Mozambique 
are evident for A. delicatus and A. sylvaticus (Appendix S3 and S4), 
with genomic offsets being generally higher for A. sylvaticus pop-

ulations than A. delicatus populations. Landscape barriers analyses 
showed generally high connectivity between coastal and lowland 
populations for all species (Figure 3c, Appendices S2–S4), but often 
with higher landscape barrier metric values in montane or plateau 
regions.

Our summary maps of exposure, neutral and adaptive sensitivity, 
and landscape barriers based on the sampled populations of the three 
species (Figure S2A–C) show that projected future climate change 
will play a strong role in increasing the exposure of populations in 
central Tanzania, southern Malawi and northern Mozambique, with 
lower exposure in Northern Tanzania and Kenya where populations 
are not strongly adapted to colder and wetter conditions. These ef-
fects may be mitigated by high levels of neutral genetic diversity (i.e. 
low neutral sensitivity) and low adaptive sensitivity, as well as the 
ability to move (i.e. low landscape barriers). Taken together, over-
all population vulnerability across the three species (Figure 3e) is 
heterogeneous, with isolated populations in montane and plateau 
regions which are more locally adapted to colder and wetted con-

ditions generally more susceptible to predicted global change than 
those populations which are more interconnected situated in low-

land coastal regions. Full log file outputs from the ‘novel’ LotE anal-
yses for A. fornasini, A. delicatus and A. sylvaticus (Appendix S1) as 

F I G U R E  3  Results generated using the LotE toolbox (a–d: Afrixalus fornasini, e: Multi- species population vulnerability). Sampling locations 
with genomic data represented over maps as dots, legends within each panel and plot provide information on the scale of variables. (a) 
Exposure—SDM dissimilarity between current and future conditions (−1, orange = range loss, 1, green = range expansion). (b) Sensitivity—
neutral genetic diversity (nucleotide diversity, left panel) and genomic offset per population (right panel). Genomic offset predictions are 
clipped to a 2 degree buffer around presence points. (c) Landscape barriers—parameterised cumulative resistance surface (left panel, ranging 
from 0—no resistance, to 100—complete barrier) and predicted movement density (right panel) between populations based on Circuitscape 
analysis. (d) Population vulnerability, calculated as the mean of the exposure, adaptive and neutral sensitivity and landscape barriers metrics 
(all ranging between 1 (low vulnerability) and 10 (high vulnerability). (e) Multi- species population vulnerability for Afrixalus fornasini, Afrixalus 

delicatus and Afrixalus sylvaticus running LotE for all three species. For output summaries from the three full species analyses described 
above see Appendices S2–S4.
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well as a final summary PDF (Appendices S2–S4) can be found in the 
Supporting Information.

3.2  |  Myotis escalerai and Myotis crypticus—‘Partial’ 
LotE analysis—Local adaptation and adaptive SDMs

After inspecting p- value distributions and adjusting the genomic 
inflation factor and standard deviation (SD ± 3) to control false dis-

covery rate (FDR <0.05) thresholds and candidate SNP detection 
for both local adaptation methods, we detected 79 RDA and 385 
LFMM SNPs and 104 RDA and 176 LFMM SNPs for Myotis escale-

rai and M. crypticus, respectively. Using a conservative approach (i.e. 
retaining only loci that were detected across both methods, n = 50 

and n = 26), we parsed individuals into the broad adaptive categories 
reported in Razgour et al. (2019, Figure 4). Of these, 60 M. escalerai 

and 10 M. crypticus individuals were adapted to ‘hot- dry’ conditions, 
108 M. escalerai and 14 M. crypticus were ‘cold- wet’ adapted, and 48 
M. escalerai and 26 M. crypticus were categorised as ‘intermediate’ 
(Figure 4a,c). Mapping these individuals in geographic space showed 
high concentrations of local adaptation to hot- dry conditions in 
southern and western sampling, and local adaptation to cold- wet 
conditions in northern and eastern sampling for M. escalerai and 

for M. crypticus, hot- dry individuals in northern Spain, cold- wet in-

dividuals towards the Pyrenees, closely matching the results from 
Razgour et al. (2019, Figure 4b,d).

Species distribution models predicted future contractions of 
potential habitat suitability for M. escalerai across most of its range 

F I G U R E  4  Individual categorisation results using RDA for Myotis escalerai and Myotis crypticus generated using the LotE toolbox. (a) 
M. escalerai individual categorisation in RDA ordination space based on putatively adaptive SNPs and (b) mapped categorised individuals 
in geographic space. (c) M. crypticus individual categorisation in RDA ordination space based on putatively adaptive SNPs and (d) mapped 
categorised individuals in geographic space. For (b) and (d), circle sizes represent number of individuals per sampling locality.
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in the Iberian Peninsula, particularly in more arid regions (southern 
Spain and Portugal), and expansions predicted in northern Portugal 
and parts of the Pyrenees (Figure S3A). M. crypticus habitat suit-
ability also decreased under future climate projections, with the 
Iberian region predicted to be largely unsuitable and future suit-
ability limited to high elevation regions including parts of the Alps 
and the Pyrenees. Separating the different categories of individ-

uals (hot- dry and cold- wet adapted), both species results broadly 
matched Razgour et al. (2019, Figure 5). In M. escalerai, suitable 
environmental conditions for both categories were predicted to 
shift northwards, substantially affecting the predicted ranges, in 
particular the habitat suitability for cold- wet genotypes found in 
northern Iberia, which substantially contracted under predicted 
future conditions (Figure 5a,b). M. crypticus showed high habitat 
suitability in northern parts of the Iberian Peninsula, the Pyrenees, 
which were predicted to contract in future conditions, and parts 
of southern Europe, which were predicted to shift northwards 
in the future (Figure S3B). As with M. escalerai, hot- dry and cold- 
wet adapted individuals' habitat suitability was predicted to de-

crease slightly, particularly for the latter, whose potential suitable 
range throughout the Pyrenees and central and south- western 

France almost completely disappeared under future predictions 
(Figure 5a,b). Full log file outputs from the ‘partial’ LotE analysis 
for M. escalerai and M. crypticus can be found in the Supporting 
Information (Appendix S5).

4  |  DISCUSSION

Current climate change genomics approaches to assess popula-

tion vulnerability lack practical and integrative tools to implement 
analyses across multiple taxonomic groups and geographic re-

gions (Pinsky et al., 2022). Adaptive responses to global change are 
likely to be insufficient for many species (Quintero & Wiens, 2013; 

Radchuk et al., 2019), and we need standardised climate change 
vulnerability tools incorporating genomics with ecological and envi-
ronmental data that can be applied across diverse datasets (i.e. spe-

cies/regions). Until recently, we have lacked tools that can leverage 
population- level data to assess climate change vulnerability across 
populations within species, and which are comparable across spe-

cies. Previous studies have predicted population vulnerability by de-

veloping custom frameworks applied to specific study systems (e.g. 

F I G U R E  5  Adaptive SDMs generated using the LotE toolbox capturing intraspecific adaptations for Myotis escalerai and Myotis crypticus 

based on the categorised individuals for hot- dry, cold- wet conditions shown in Figure 4. Separate SDMs were built for each category based 
on the ordination of each genotype in the RDA, and maps are categorised into binary presence/absences for hot- dry adapted (red), cold- 
wet adapted (blue), with overlapping areas for both categories in yellow. (a) M. escalerai adaptive SDMs (left panel: Current conditions, right 
panel: Future (2070) conditions). (b) M. crypticus adaptive SDMs (left panel: Current conditions, right panel: Future (2070) conditions).
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Aguirre- Liguori et al., 2021; Bay et al., 2018; Razgour et al., 2018, 
2019; Ruegg et al., 2018), but these have not been widely applicable. 
With Life on the edge, we present a novel, generalised and customis-

able toolbox which can perform sophisticated analyses in a straight-
forward and reproducible way. The toolbox enables large scale data 
synthesis across multiple species and geographic areas and the out-
puts address ecological and evolutionary responses to future global 
change and can be used to guide conservation action, including ac-

counting for the differences in specific metrics following the princi-
ples of complementarity (e.g. Beger et al., 2015). We envisage LotE 
as a key tool in the emergent field of climate change vulnerability 
assessments using genomics, with scope for future development and 
expansion of the concepts presented in this manuscript. Below, we 
discuss applications of the LotE toolbox in its current form, its limita-

tions, and future additions, analytical and conceptual developments.

4.1  |  Current applications for LotE

Life on the edge, with its geographical and taxonomic flexibility, 
contributes to answering several fundamental questions in ecol-
ogy, evolution and conservation. Outputs from LotE may therefore 
be utilised for informing the management of populations to main-

tain genetic diversity (e.g. nucleotide diversity and/or adaptive ge-

netic diversity) within and between populations (e.g. Segelbacher 
et al., 2022). For example, suitable donor and recipient populations 
for translocations/evolutionary rescue may be selected based on 
a combination of nucleotide diversity estimates, local adaptations 
and spatial connectivity. With these strategies, conservation man-

agers may avoid introducing maladapted individuals to unsuitable 
climatic conditions (Chen, Grossfurthner, et al., 2022; Chen, Jiang, 
et al., 2022), thus strengthening the overall individual fitness, genetic 
diversity and adaptive potential of populations (Frankham, 2015; 

Frankham et al., 2019).
At a regional scale, spatial conservation planning can benefit 

from the climate change genomics perspective of the outputs gener-
ated by the LotE toolbox. For example, any of the metrics for neutral 
and adaptive sensitivity or population vulnerability could be inter-
polated spatially to be useful for prioritising areas that support par-
ticularly high levels of genetic diversity or vulnerable populations, 
using common software such as Zonation, Marxan and relatives (Ball 
et al., 2009; Lehtomäki & Moilanen, 2013; Moilanen et al., 2005). 
However, care must be taken when interpolating the data if sam-

pling is uneven, for example using kriging to account for uncertainty. 
When data from multiple species in an ecological community are 
available, evaluating congruence in metrics across species would 
provide a representative measure of community- level genetic diver-
sity and vulnerability based on genome- wide data (e.g. Schielzeth 
& Wolf, 2021; Stange et al., 2021). Alternatively, the complemen-

tarity between these metrics may be used to inform conservation 
decisions in a given scenario, for example a population with low 
landscape barriers and high exposure might benefit from assisted 
migration, whereas a population with high landscape barriers and 

low adaptive sensitivity/high neutral sensitivity might be suitable for 
protected area implementation and habitat restoration along con-

nectivity corridors. This could be scaled up (i.e. across countries and 
continents) with sufficient data across taxonomic groups and can be 
used to identify hotspots of vulnerability across taxonomic groups. 
Similarly, investigating the ecological, environmental and anthropo-

genic correlates of LotE outputs can identify causal drivers of ob-

served vulnerability patterns for species and ecological communities 
(similar to approaches in Howard et al., 2020; Maxwell et al., 2016; 

Tilman et al., 2017), which can inform broad conservation actions 
as well as understanding species- specific drivers of declines more 
thoroughly with population level data. However, care must be used 
to avoid circularity (e.g. the environmental input layers are not 
meaningful as predictors of the vulnerability patterns). We further 
acknowledge that phenotypic plasticity is an important component 
of adaptive capacity (Foden et al., 2019; Fox et al., 2019; Merila & 
Hendry, 2014), which should be included for systems where this is 
known, though in our framework here we do not include this as this 
information is not available for our example species.

Finally, the adaptive SDMs within the LotE toolbox (which are 
an optional add- on) can contribute to more realistic estimates of 
shifts in range suitability under global change scenarios, provid-

ing improved predictions of future biodiversity losses that may 
be offset with appropriate conservation measures (Hoffmann & 
Sgrò, 2011). Overlooking intraspecific population variability, in 
particular local adaptation, can result in an overestimation of fu-

ture biodiversity losses (Razgour et al., 2019), and it is increasingly 
clear that predictive models informed by empirical genomic data 
provide a more realistic alternative to simplistic modelling ap-

proaches that do not account for local adaptation (Bay et al., 2017; 

Forester et al., 2023).

4.2  |  Future directions

In addition to applications of the current toolbox, there are three fu-

ture conceptual and analytical developments that could expand the 
framework and its long- term impact and benefit to the research and 
conservation community—monitoring biodiversity change over time, 
performing simulations and sensitivity analyses to validate findings, 
and integrating phenotypic plasticity and functional genomics data. 
The toolbox has been purposely designed to be dynamic, so that ad-

ditional ‘modules’ may be created and integrated in future versions, 
thus enabling it to evolve in tandem with the research community 
and adopt best practices and state- of- the- art tools. New methods or 
tools (for example a new and improved SDM or GEA package) that 
supersedes existing methods may be integrated relatively simply 
into updated versions of the toolbox by creating additional functions 
to supplement or update the existing modules. This also applies to 
the type of genomic data that can be analysed, which can be scaled 
up from short read (RAD- seq) type data to whole genome sequenc-

ing data with ease by using alternative tools (e.g. Korneliussen 
et al., 2014; McKenna et al., 2010).
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A primary focus for expanding LotE in the future is for moni-
toring biodiversity change and population vulnerability over time, 
for example by linking outputs with global conservation efforts 
such as the Sustainable Development Goals as well as ‘Essential 
Biodiversity Variables’ (Hoban et al., 2022). By integrating time 
series data and multiple biological replicates, it would be possi-
ble to track changes in exposure, sensitivity (adaptive/neutral), 
landscape barriers and population vulnerability as new data be-

come available. Although suitable population- level genomic and 
spatial sampling time- series replicates are currently rare (but see 
Pfenninger et al., 2023), ever improving advances in sequencing 
technologies and the exponential accumulation of these data in on-

line repositories (e.g. NCBI Sequence Read Archive, ENI European 
Nucleotide Archive, DNA Databank of Japan) make the tantalising 
prospect of genomics- informed biodiversity monitoring an achiev-

able target in the near future (Bálint et al., 2018; Pfenninger & 
Bálint, 2022; Taus et al., 2017). Ultimately, automated ‘scraping’ of 
public repositories for species datasets as new data become avail-
able could provide a near real- time assessment of species' biodi-
versity status based on the latest available genomic and spatial 
information, similar to the explosion of data generation, availabil-
ity and automation to monitor recent epidemiological outbreaks 
(e.g. http:// nexts train. org).

Second, validating the outputs of LotE using sensitivity anal-
yses and simulations will substantially improve predictions and 
confidence intervals in results (Hoban, 2014). LotE is amenable 
to parallelisation, enabling it to run across a range of parameter 
settings in the params file, with which results can be harvested 
and parameter variation effects on results can be explored in de-

tail. Our simulation scripts demonstrate how this may be used to 
explore how parameter variation affects results and to validate 
adaptive signals using simulated data, but population vulnera-

bility to climate can be empirically validated with appropriate 
population trend (e.g. Bay et al., 2018) and common garden ex-

periments data (e.g. Fitzpatrick et al., 2021) where available. 
The integrative analyses of LotE may complement and enhance 
similar frameworks investigating genomic offset (e.g. Smith 
et al., 2021) that on their own do not consider migration and 
gene flow (e.g. Capblancq et al., 2020; Fitzpatrick & Keller, 2015; 

Rellstab et al., 2021) and could be evaluated against outputs 
from comparable frameworks using the same underlying data-

sets. With respect to input genomic data, we acknowledge there 
has been significant debate on the power of reduced represen-

tation library (RAD/ddRAD- seq) datasets to detect sufficient 
signals of local adaptation (Lowry et al., 2017, but see Catchen 
et al., 2017). Ideally, high coverage whole genome sequencing 
data would be the gold standard for detecting local adaptation in 
populations, which will improve the ability to detect both weak 
and strong signals of local adaptations. Given that these kinds of 
datasets for range- wide population sampling are presently rare, 
reduced representation library datasets currently offer the most 
feasible approach to synthesise data across taxa and regions, but 

availability of WGS datasets is rapidly increasing. Furthermore, 
an important step could be to integrate simulation studies using 
artificial fragmentation of whole genome sequencing datasets 
combined with power analyses (e.g. Patton et al., 2019) to help 
understand how signals of local adaptation using reduced rep-

resentation library data such as those demonstrated here can 
adequately detect local adaptations and where the drop- off in 
statistical power lies relative to whole genome datasets (e.g. 
Benjelloun et al., 2019).

Third, integrating phenotypic plasticity and functional genom-

ics data are a rich potential avenue for expansion for the LotE 
toolbox, for example in model systems where there is adequate 
knowledge on physiological limits for species, or the underlying 
genetic basis of their functional traits and reaction norms (e.g. 
Oomen & Hutchings, 2022). Expansion of the toolbox to incor-
porate this information, particularly to strengthen the ‘sensitiv-

ity’ component further, for example isolating genomic regions 
related to thermal stress tolerance and tracking how these vary 
and are distributed geographically across populations (e.g. Pimsler 
et al., 2020), or to accurately estimate how genetic load is parti-
tioned across populations would substantially add to the analytical 
power of the LotE toolbox and provide integration with phenotypic 
plasticity, functional trait and ecological knowledge for model sys-

tems. Furthermore, different kinds of ‘omics data (e.g. structural 
variants such as copy number variants or epigenetic data) could 
broaden the approach to investigate other types of genomic vari-
ants that influence adaptive responses (Layton & Bradbury, 2022; 

Wollenberg Valero et al., 2022), especially when available from 
multiple individuals and populations across a species’ range. From 
a spatial perspective, mechanistic SDMs that explicitly incorpo-

rate process that limit species distributions (Kearney et al., 2010; 

Mathewson et al., 2017) and joint distribution models that poten-

tially incorporate species interactions (Ovaskainen et al., 2016, 
Poggiato et al., 2021) could be used instead of correlative SDM 
outputs in the toolbox.

4.3  |  Main considerations when using the LotE 
toolbox

There is no ‘silver bullet’ solution to predicting vulnerability to global 
change. Each dataset input into LotE or any other climate change 
vulnerability framework has its own idiosyncrasies and biases, and 
these should be taken into account when drawing conclusions, ide-

ally using sensitivity analyses to investigate the effects of specific 
parameters at each step. Though no dataset is perfect, we believe 
the LotE toolbox can make the most of available datasets at pre-

sent, and due to the large number of reduced representation short 
read library datasets (i.e. RAD/ddRAD- seq) published over the past 
decades (more than 2400 articles as of the end of 2017, Campbell 
et al., 2018, to assess population structure, phylogeography, demo-

graphic history), these presently provide the most promising and 
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widely applicable datasets for our approach. As sequencing technol-
ogies continue to improve, we will undoubtedly move towards larger 
numbers of whole genome sequencing datasets which will provide 
higher resolution data for assessing genetic diversity and local adap-

tation in particular.

5  |  CONCLUSIONS

We introduce the ‘LotE’ conceptual and analytical framework, a 
toolbox that facilitates the integration of environmental, molecu-

lar and ecological data to perform genomics- informed climate 
change vulnerability assessments. Given the sheer number of 
analyses, data preparation steps and computational power re-

quired to perform climate change vulnerability assessments, our 
HPC- compatible framework is automated and standardised, but 
flexible, thus making it possible to perform comparisons across 
species and geographic regions. The modular structure of LotE 
mean that it is not restricted to being a climate change vulner-
ability assessment tool, but can also be used for batch prepara-

tion and analysis of spatial- environmental data, building species 
distribution models or circuitscape analyses, investigating local 
adaptation, or mapping intraspecific neutral and adaptive genetic 
diversity across species ranges. With the increasing availability 
of high- quality georeferenced genome- wide datasets published 
in open access online repositories, as well as constantly improv-

ing climate model simulations, the LotE framework offers a range 
of tools that can be used to investigate intraspecific responses to 
global change, thus providing empirical results from large genomic 
and spatial datasets to inform and assist biodiversity conservation 
in our rapidly changing world. Many opportunities for integrating 
simulations, functional genomics data and biodiversity monitor-
ing are possible in the future, and we envisage that LotE will be a 
useful tool for both the academic research and conservation prac-

titioner communities that can stimulate a new wave of data syn-

thesis, increasing reproducibility and standardised reporting when 
assessing intraspecific diversity and vulnerability to global change.
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is mainly methodological and the underlying data are already pub-

lished. However, as well as building on and citing previous work by 
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local scientists, the toolbox in this manuscript is currently being used 
for region and species- specific questions in those respective coun-

tries, which do integrate local scientists prominently.
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