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Abstract— Recently non-linear control methods like Model
Predictive Control (MPC) and Reinforcement Learning (RL)
have attracted increased interest in the quadrotor control
community. In contrast to classic control methods like cascaded
PID controllers, MPC and RL heavily rely on an accurate
model of the system dynamics. The process of quadrotor system
identification is notoriously tedious and is often pursued with
additional equipment like a thrust stand. Furthermore, low-
level details like motor delays which are crucial for accu-
rate end-to-end control are often neglected. In this work,
we introduce a data-driven method to identify a quadrotor’s
inertia parameters, thrust curves, torque coefficients, and first-
order motor delay purely based on proprioceptive data. The
estimation of the motor delay is particularly challenging as
usually, the RPMs can not be measured. We derive a Maximum
A Posteriori (MAP)-based method to estimate the latent time
constant. Our approach only requires about a minute of flying
data that can be collected without any additional equipment
and usually consists of three simple maneuvers. Experimental
results demonstrate the ability of our method to accurately
recover the parameters of multiple quadrotors. It also facilitates
the deployment of RL-based, end-to-end quadrotor control of
a large quadrotor under harsh, outdoor conditions.

SUPPLEMENTARY MATERIAL

Video: https://youtu.be/G3WGthRx2KE

Code: https://github.com/arplaboratory/data-driven-system-i

dentification

Project page: https://sysid.tools

I. INTRODUCTION

Aerial vehicles, such as Micro Aerial Vehicle (MAV),

have proven to be a versatile platform for numerous real-

world problems like search and rescue, infrastructure in-

spection, or package delivery. While the applications have

been evolving, the dominating control stack in terms of

real-world deployment (e.g., as part of the PX4 Autopilot)

has not changed at the same pace. To this date, this cas-

cade of Proportional–Integral–Derivative (PID) controllers

has proven itself by market demand but from a theoretical

perspective, it is not satisfying as it may leave performance

at the table (as discussed e.g., in [1]). Moreover, from an

end-user perspective, tuning the PID controller parameters
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is a notoriously daunting task. Modern alternatives to this

Variable Description

p / v Global position / velocity

q / R(q) Orientation: quaternion / rotation matrix

fi Thrust produced by motor i

ωm / ωsp Motor RPMs: state / setpoints

ωb / oacc Angular rate / accelerometer meas. (body frame)

m / g Mass / gravity

rpi / rfi / rτi Motor i: position / force / torque

J / Tm Inertia matrix / Motor delay time constant

Kτi / Kfij Motor i: torque coeff. / thrust coeff. (exponent j)

Defined in terms of

or not relevant to the system identification

observable (proprioceptive), known (a priori), unknown

TABLE I: Notation.

control stack like MPC or end-to-end RL bear promising

theoretical properties and have shown good performance

under controlled conditions, but to date did not see large-

scale adoption. One limitation and major difference of MPC

and RL from the PID controllers is that they require an

accurate model of the system dynamics. Theoretically, RL-

based trial-and-error learning could be directly applied to

the system but in practice this is not feasible due to the

sample complexity. This is particularly true in the case of

quadrotors, due to the wear and tear caused by the required

random exploration (i.e., crashes).

Hence, for widespread adoption of these non-linear control

approaches on a diverse set of platforms, a simple and robust

system identification method is required. It should decrease

the burden that comes with the system identification process

to a point where it is lower than the burden of PID tuning.

In this work, we tackle this problem and propose a novel

method for quadrotor system identification in form of the

following major contributions

1) Data-driven system identification method that in-

cludes motor delays and only relies on propriocep-

tive observations (accelerometer, gyroscope, and motor

commands) and simple measurements (mass, rotor-

positions).

2) Comparative study of identified parameters on a

commercially available aerial robot with parameters

identified in prior works.

3) Real-world demonstration of an end-to-end RL pol-

icy deployed on a large quadrotor, trained in simula-

tion, and based on the parameters identified from only

73 s of flight data.

4) Open source release of the implementation of our
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method including an example for easy reproduction

of all the system identification results presented in this

work.

5) System identification software for even simpler iden-

tification of quadrotor parameters. We provide an

open-source, interactive and web-based software for

researchers and practitioners to identify quadrotor pa-

rameters by uploading their PX4 ULog or Crazyflie

logfiles which are popular logging formats in research

and industry.

II. RELATED WORKS

Numerous works have been published, usually studying

the parameter identification of a particular system instead

of proposing a general method. Several works [2]–[6] use

white-box system-identification methods where the system

is tested using additional equipment like a thrust-stand or

even disassembled. Other works [7]–[14] can be considered

data-driven but they all use proprietary software, obstructing

reproducibility. [15]–[17] use data-driven system identifica-

tion. However, they do not take into account motor delays

and they use black-box optimization instead of closed-form

solutions where possible. Additionally, the most related work

[15] focuses on the aerodynamic effects of airfoils. Our work

instead decomposes the problem, starting from the gray-

box model, and finds closed-form solutions by casting the

parameter identification as Maximum Likelihood Estimation

(MLE), naturally giving rise to a convex optimization prob-

lem formulation. For the estimation of the motor delays we

apply MAP estimation and find that we can robustly find a

global optimum.

III. METHODOLOGY

In this section, we outline the methodology behind our

work and start by defining the standard dynamics of a

quadrotor subject to motor delay (e.g., [18]):

ṗ = v,

q̇ = q ◦ [0 ωb/2]
¦
,

v̇ =
1

m
R(q)

(
4∑

i=1

rfifi

)

+ g,

v̇ = R (q) v̇b,

v̇b = oacc + R (q)
−1

g, (1)

fi =

2∑

j=0

Kfijω
j
mi

, (2)

ω̇b = J−1 (τ + (Jωb)× ωb) , (3)

ω̇b =
d

dt
ωb, (4)

τ =
4∑

i=1

(rpi
× rfi) fi + rτiKτifi, (5)

ω̇m = Tm
−1 (ωsp − ωm) . (6)

Note that eq. (6) describes the motors as decoupled first-order

systems subject to the time-constant Tm.

Now we can solve for the thrust curve with the goal to

express it in terms of known or observable variables

R (q) v̇b =
1

m
R(q)

(
4∑

i=1

rfifi

)

+ g,

v̇b =
1

m

(
4∑

i=1

rfifi

)

+R(q)−1g,

v̇b −R(q)−1g =
1

m

4∑

i=1

rfifi.

Inserting eq. (1) and eq. (2):

oacc + R (q)
−1

g −R(q)−1g =
1

m

4∑

i=1

rfi

2∑

j=0

Kfijω
j
mi

,

moacc =

4∑

i=1

2∑

j=0

Kfijrfiω
j
mi

.

This is linear in the unknowns Kfij .

Goal: writing this in the form Ax = b with

b :=moacc,

x := [Kf10 ,Kf11 ,Kf12 , . . . ,Kf40 ,Kf41 ,Kf42 ]
¦
,

A :=[rf0ω
0
m0

, rf0ω
1
m0

, rf0ω
2
m0

, . . .

. . . , rf4ω
0
m4

, rf4ω
1
m4

, rf4ω
2
m4

].
(7)

The only missing part for the linear equation to be fully

specified are the rotor speeds ωmi
∀i ∈ 1 . . . 4. We can not

directly observe ωmi
(which would also allow solving for

the time constant in closed-form, like the other parameters),

but we can solve for it by solving the first-order Ordinary

Differential Equation (ODE) assuming a given time-constant

Tm and the Revolutions Per Minute (RPM) setpoints ωsp

(time-dependent). Since the dynamics of the motors are

independent we can solve them per motor as:

ω̇mi
(t) = Tm

−1
(
ωspi

(t)− ωmi
(t)
)
.

Ansatz for solving the integral: multiply by µ (t) = e
t

Tm

µ (t) ω̇mi
(t) + µ (t)Tm

−1ωmi
(t) = µ (t)Tm

−1ωspi
(t) ,

d

dt
(µ (t)ωmi

(t)) = µ (t)Tm
−1ωspi

(t) ,
∫ t

0

d

ds
(µ (s)ωmi

(s)) ds =

∫ t

0

µ (s)Tm
−1ωspi

(s) ds,

µ (t)ωmi
(t) =

∫ t

0

µ (s)Tm
−1ωspi

(s) ds.
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Then ωmi
(t) can be expressed in terms of an integral

transformation

ωmi
(t) = e−

t
Tm

∫ t

0

e
s

Tm Tm
−1ωspi

(s) ds

= Tm
−1

∫ t

0

e
s−t

Tm ωspi
(s) ds

= Tm
−1

∫ t

0

e
−(t−s)

Tm ωspi
(s) ds.

This form can also be trivially reformulated in terms of a

convolution but for our application, we are interested in a

discrete-time solution. To find a discrete-time solution, first

we find the continuous time solution for a time step ∆t

ωmi
(0) = 0,

ωmi
(t+∆t) = Tm

−1

∫ t+∆t

0

e
−(t+∆t−s)

Tm ωspi
(s) ds

= Tm
−1

∫ t

0

e
−(t+∆t−s)

Tm ωspi
(s) ds

+ Tm
−1

∫ t+∆t

t

e
−(t+∆t−s)

Tm ωspi
(s) ds

= e
−∆t

Tm

ωmi
(t)

︷ ︸︸ ︷

Tm
−1

∫ t

0

e
−(t−s)

Tm ωspi
(s) ds (8)

+ Tm
−1

∫ t+∆t

t

e
−(t+∆t−s)

Tm ωspi
(s) ds.

In the following, we take advantage of the recursive structure

in eq. (8). Now we can move to discrete-time control inputs

ωspi
by assuming g (t) = ωspi

(t) is constant for ∆t

ωmi
(t+∆t) = e

−∆t

Tm ωmi
(t)

+ Tm
−1ωspi

(t)

∫ t+∆t

t

e
−(t+∆t−s)

Tm ds

= e
−∆t

Tm ωmi
(t)

+ Tm
−1ωspi

(t) e
−(t+∆t)

Tm

∫ t+∆t

t

e
s

Tm ds

︸ ︷︷ ︸
[

Tme
s

Tm

]t+∆t

t

= e
−∆t

Tm ωmi
(t) + ωspi

(t) e
−(t+∆t)

Tm

[

e
s

Tm

]t+∆t

t

= e
−∆t

Tm ωmi
(t) + ωspi

(t)
[

1− e
−∆t

Tm

]

.

We recognize the form of an Exponential Moving Average

(EMA) which provides a computationally efficient way to

infer the motor speeds based on motor speed setpoints

α := e
−∆t

Tm ,

ωmi
(t+∆t) = αωmi

(t) + ωspi
(t) [1− α] .

Using the motor model and given a Tm, we can retrieve the

motor speeds at any point in time. This fully specifies A

(cf. eq. (7)) and hence the linear equation Akxk = bk where

each sample k gives rise to 3 linear equations.

To find Tm, we define the conditional likelihood of our

dataset D by using an isotropic Gaussian observer model

p (D|Tm) =

|D|
∏

k=1

p (bk|Ak) ,

p (bk|Ak) = N (bk;Akx, I) ,

p (Tm|D) ∝ p (D|Tm) p (Tm)

=

|D|
∏

k=1

p (bk|Ak) p (Tm) .

We want to find the MAP estimate of Tm

argmax
Tm

p (Tm|D) = argmax
Tm

log p (Tm|D)

= argmax
Tm

|D| log p (Tm) +

|D|
∑

k=1

log p (bk|Ak) .

Assuming a uniform prior p (Tm) over Tm

argmax
Tm

p (Tm|D) = argmax
Tm

|D|
∑

k=1

log p (bk|Ak)

= argmax
Tm

|D|
∑

k=1

logN (bk;Akx, I)

= argmax
Tm

−
1

2

|D|
∑

k=1

∥bk −Akx∥
2
2 + C

= argmin
Tm

|D|
∑

k=1

∥bk −Akx∥
2
2. (9)

This has the form of a non-linear least squares problem

(non-linear in Tm):

A =






A1

...

A|D|]




 , b =






b1

...

b|D|]




 . (10)

Since the argmax does not generally have a closed-form

solution, we solve the optimization problem by a one-

dimensional sweep over reasonable values of Tm (bounded

by the chosen support of the prior p (Tm)). This sweep

showing the Root-Mean-Square Error (RMSE) depending on

Tm can be seen in Figure 2 in Section IV-A. Note that this

optimization will yield Tm as well as x which contains the

parameters of the motor model/thrust-curve Kfij .

A. Solving for the inertia matrix

Based on the identified motor model we can now identify

the inertia matrix. The angular dynamics are characterized by

eq. (3) with the angular accelerations being either observable
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directly (e.g., in PX4) or through a finite-difference approx-

imation based on angular velocity observations (eq. (4)).

Without loss of generality (w.l.o.g) we assume that the inertia

matrix is aligned with the principal axes of the rigid body

and hence has diagonal form: J = diag (Ixx, Iyy, Izz). We

insert eq. (5) and obtain

Jω̇b − (Jωb)× ωb = τ

=

4∑

i=1

(rpi
× rfi) fi + rτiKτifi

Jω̇b − (Jωb)× ωb −
4∑

i=1

rτiKτifi

︸ ︷︷ ︸

Ax

=

4∑

i=1

(rpi
× rfi) fi

︸ ︷︷ ︸

b

,

where fi is given by eq. (2) and the thrust curve parameters

estimated in Section III. To cast this into the form Ax = b

we can reformulate the above terms as

(Jωb)× ωb =





0 ωbyωbz −ωbzωby

−ωbxωbz 0 ωbzωbx

ωbxωby −ωbyωbx 0





︸ ︷︷ ︸

B





Ixx
Iyy
Izz





Jω̇b =





ω̇bx 0 0
0 ω̇by 0
0 0 ω̇bz





︸ ︷︷ ︸

C





Ixx
Iyy
Izz





Boiling down to

Jω̇b − Jωb × ωb −
4∑

i=1

rτiKτifi = b

= B





Ixx
Iyy
Izz



−C





Ixx
Iyy
Izz



−
4∑

i=1

rτiKτifi = b

= AJ





Ixx
Iyy
Izz



+AKτ






Kτ1

...

Kτ4




 = b,

Ax = b,

with

AJ :=





ω̇bx −ωbyωbz ωbzωby ,
ωbxωbz ω̇by −ωbzωbx

−ωbxωby ωbyωbx ω̇bz



 , (11)

AKτ
:=
[
−rτ1f1 . . . −rτ4f4

]
,

A :=
[
AJ AKτ

]
,

x :=
[
Ixx Iyy Izz Kτ1 . . . Kτ4

]¦
,

b :=
4∑

i=1

(rpi
× rfi) fi = Rpf f ,

Rpf =
[
rp1

× rf1 . . . rp4
× rf4

]
,

f =
[
f1 . . . f4

]¦
.

1) Purely vertically actuated quadrotors: In practice, with

quadrotors that have all their motors pointing straight into the

z direction, Rpf can have a reduced row rank. This means

that e.g. the z equation is homogeneous and hence can carry

an ambiguity between Izz and Kτ . This is especially the case

if the data has been collected around the hovering point with

low angular velocities. In this case, the off-diagonal terms

of eq. (11) vanish. If there were high angular velocities,

we might be able to recover the grounded value for Izz
through the precession terms. If this is not the case we get

a decoupled homogeneous system of equations of the form

ω̇bzIzz −
∑4

i=1 Kτifi = 0 which is only defined up to a

constant factor and also has a trivial solution.

In practice, we find that using the upper 2×2 submatrix of

A with the small angular velocity assumption to be sufficient

to get a good estimate of the inertial terms around the roll

and pitch axis

A := diag (AJ)1:2 =

[
ω̇bx 0
0 ω̇by

]

, (12)

x :=
[
Ixx Iyy

]¦
, (13)

b := (Rpf f)1:2 .

Since A and b are defined for each timestep we assemble

them in the same way as described in eq. (10) to yield a

least squares problem.

As previously described, we would still like to identify

Izz but for purely vertically actuated quadrotors with data

collected around the hovering point, the z row of each data-

sample yields a homogeneous least squares problem. This

means we can measure the input-output behavior of the

yaw dynamics but we can only identify the ratio Izz/Kτ .

Here we assume all the motors have the same Kτi := Kτ .

Theoretically, we can estimate separate Kτi up to a common

constant which would be lumped into the ratio Izz/Kτ but

practically we find a common Kτ to be sufficient

ω̇bzIzz = Kτ (Rpf f)3 , (14)

ω̇bz

Izz
Kτ

= (Rpf f)3 ,

A = ω̇bz , x =
Izz
Kτ

, b = (Rpf f)3 .

Hence we can again assemble a least squares problem

according to eq. (10) and find the ratio.

Theoretically the ratio Izz/Kτ is enough to simulate the

dynamics of the drone accurately but we would like to

decompose it into inertia and torque coefficient for better

interpretability. Since most quadrotor-drones have similar

shapes, we can establish a common linear relationship be-

tween Ixx, Iyy and Izz . We are able to accurately estimate

the former two and would like to find a simple (e.g., linear)

relationship to fix an Izz so that the resulting inertia tensor

resembles a quadrotor. The inertia components of a particular

model (constant shape, constant density and mass distribu-

tion) usually scale to the power of 5. Using a simple example,

we can show that under the previously mentioned conditions,

scaling a model also just scales the inertia. For a simplified
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model m Ixx Iyy Izz Cxy→z

x500 (PX4 Gazebo) 2.000e+00 2.200e-02 2.200e-02 4.000e-02 1.818

Leshikar et al., 2021 [19] 2.500e+00 5.470e+01 1.560e+01 5.720e+01 1.627

Kaputa et al., 2020 [20] 2.500e-01 4.270e-04 6.090e-04 1.500e-03 2.896

Flightmare [21] 7.300e-01 7.911e-03 7.911e-03 1.231e-02 1.556

Iris (PX4 Gazebo) 1.500e+00 2.913e-02 2.913e-02 5.523e-02 1.896

px4vision (PX4 Gazebo) 1.500e+00 2.913e-02 2.913e-02 5.523e-02 1.896

X-wing [22] 1.532e+00 1.840e-01 1.910e-01 3.360e-01 1.792

Crazyflie 2.0 [2] 2.700e-02 1.660e-05 1.670e-05 2.930e-05 1.760

Crazyflie 2.0 [23] 2.700e-02 2.400e-05 2.400e-05 3.230e-05 1.346

Crazyflie (disk model) 2.700e-02 1.389e-05 1.389e-05 2.734e-05 1.968

Crazyflie [24] 2.700e-02 1.248e-05 1.248e-05 2.342e-05 1.876

Crazyflie [3] 2.700e-02 1.400e-05 1.400e-05 2.170e-05 1.550

Median Crazyflie 2.700e-2 1.400e-05 1.400e-05 2.734e-05 1.760

Mean Cxy→z 1.832

TABLE II: Inertia matrix entries of various quadrotors and the relationship

between Ixx, Iyy and Izz as described in Figure 1 (note the axes’ descriptions).

1024 1022 100 102

1.832 ç Ixx + Iyy

2 [kg ç m2]

1023

1021

101

I zz
[k

gç
m

2 ]

Predicted
Data

Fig. 1: Data from Table II.

example we consider a box of dimensions a×b×c of uniform

density ρ and we assume that r >> x ∀x ∈ {a, b, c} so that

we can approximate the inertia I at a radius r as a point

mass m. The geometry is scaled by a factor s:

I = mr2,

m = abc · ρ,

m(s) = (sa) (sb) (sc) · ρ = s3 · abc · ρ,

I(s) = s3 · abc · ρ (sr)2 = s5abc · ρ · r2 = s5I.

We can see that by purely scaling the geometry by s (under

constant shape, density and mass distribution) the inertia I
is also just scaled by a factor s5.

Hence for a constant geometry, the ratio Izz(s)/Ixx(s) =
s5Izz/(s

5Ixx) = Izz/Ixx is constant across different scales.

Based on this insight we collected inertia matrix values from

various quadrotors in Table II. From Fig. 1 we can see that

there is a very clear linear relationship. Note the loglog scale

maintains the linearity for b = 1 (slope 1 in loglog ô slope

1 in the original coordinates):

y = (ax)b,

log(y) = b log(ax) = log(ax).

Hence we can decompose the yaw dynamics from eq. (14)

into a new least squares problem

Cxy→z = 1.832,

Izz :=
Ixx + Iyy

2
· Cxy→z, (15)

ω̇bz

Ixx + Iyy
2

· Cxy→z = Kτ (Rpf f)3 ,

A = (Rpf f)3 , x = Kτ , b = ω̇bz

Ixx + Iyy
2

· Cxy→z.

(16)

IV. RESULTS

We apply our data-driven system identification method

to two vastly different quadrotors: a 27 g nano-quadrotor

(Crazyflie 2.1) and a large 3.35 kg quadrotor. We chose the

Crazyflie because it is a common quadrotor and multiple

works have conducted system identification for it. Hence,

using the Crazyflie as an example we can check if our

simple method infers parameters that are plausible compared

to previously estimated parameters. Additionally, we chose a

large quadrotor to show that our method works across a broad

range of platforms with vastly different dynamics. Using the

model identified for the large quadrotor we also show how

our simple system identification method can be combined

with end-to-end RL to produce robust policies that work on

large quadrotors, even under harsh, outdoor conditions.

In both cases, we find that 3 flights with a combined

duration of about a minute are sufficient to find good

estimates of the inertia and thrust-curve parameters.

A. Crazyflie

For the identification of the Crazyflie’s parameters, we

conduct three flights exciting the linear acceleration, roll and

pitch dynamics, and yaw dynamics respectively. Please refer

to the supplementary video for the recording and additional

analysis of these flights. Our data-collection method requires

no additional equipment because the flights are conducted in

manual flight mode, and because it only requires logging of

proprioceptive measurements. The measurements are logged

at a rate of 1000Hz. Compared to e.g. using a motion

capturing system and executing trajectories tailored for sys-

tem identification the data can be less “clean” but in the

following, we show that even with small amounts of data

collected under suboptimal conditions we can recover good

dynamics parameters.

Following our method described in Section III, we first

use the data from the first flight to find the motor delays

by optimizing the objective in eq. (9). The search for the

best Tm gives rise to the curve in Fig. 2 and shows a clear

optimum at Tm = 0.072 s. Based on the manufacturer’s step

response 1 we read the time constant to be ≈ 0.073 s (rising

1Crazyflie motor step response: https://web.archive.org/web/2022030909
2320/https://www.bitcraze.io/wp-content/uploads/2015/02/M1-step-respons
e.png
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Fig. 2: Crazyflie: estimating Tm.

and falling edge averaged) which is very close to our purely

data-driven estimate. Moreover, in [2] the time constant has

been estimated at 0.065 s which is still very close to our

estimate.

We can then use the identified Tm to estimate the thrust

curve. With our method (eq. (7)) we can identify individual

thrust curves for each motor. In practice, we find that taking

the mean over the found thrust curves or lumping the

polynomial basis features together based on the exponents

yields robust results. The result from fitting the thrust curve

is shown in Fig. 3. We can see that we are able to accurately

predict observed thrusts just based on the motor command

setpoints and the previously estimated motor delay. We find

the best thrust curve parameters as Ki0 = 0.0213,Ki1 =
−0.0112,Ki2 = 0.1201.
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Fig. 3: Crazyflie: resulting thrust-curve.

In Fig. 4 we compare the thrust curves identified in the

literature with our thrust curve. We also show a purely

quadratic fit (Ki2 = 0.1500) which induces a prior on the

low throttle regime (f (0) = 0) which is not covered well

by our test flight data. From the comparison in Fig. 4 we

can see that both of our identified thrust curves are in the

plausible regime. In the following, we will continue using the

thrust curve with all components as we found it to predict

the observed thrusts much better than the purely quadratic

fit.

The necessity of taking into account the motor delays can

be seen in Fig. 5 where the relationship between squared

RPM setpoints and observed accelerations (Fig. 5, left side)

is very noisy and does not even appear to be linear. Whereas,

when estimating and taking into account the motor delay, a

strong correlation can be observed (Fig. 5, right side).

We also validate the thrust curve by investigating the

distribution of ωm around the hover point (where v̇ ≈ 0).
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Fig. 4: Crazyflie: comparison of the resulting thrust curves

with [2], [3], [4], and [5] approaches respectively.
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Fig. 5: Crazyflie: comparing not modeling the motor delay

vs modeling it (same data).

We found that taking advantage of percentiles (e.g. the 5% of

the data that is around the hovering point) is a robust way to

find the hovering distribution. Fig. 6 shows the distribution

around the hovering point and shows that our thrust curve

accurately predicts the hovering RPMs.
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Predicted: 0.66

Fig. 6: Crazyflie: distribution of (normalized) RPMs around

the hovering point.

Now we can use the estimated thrust curve to calculate

the thrust of each motor at each point in time and use

the method from eq. (12) and following to estimate the

roll and pitch inertia components. The results can be seen

in Fig. 7. We can see that the relationship is more noisy

than in the case of the linear acceleration dynamics but

we can still find a strong correlation between the estimated

input torque and the angular acceleration response of the

system. From a comparison of our parameters with the

median across parameters reported for the Crazyflie in the

literature (Table II) we can see that our inertia estimates are

very close (considering the high variance in the estimates

in the literature). In comparison to the other approaches our

method only requires a small amount of data and no complex

equipment to identify the parameters.

Finally, we use the estimated inertia components Ixx and

Iyy to estimate Izz based on the trend observed in Table II
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Fig. 7: Crazyflie: angular dynamics.
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Fig. 8: Large quadrotor: estimating Tm.

and Fig. 1. Based on this we can apply eq. (15). Using the

found Izz = 1.955 × 10−5 we can apply eq. (16) to define

a least squares problem for identifying Kτ . The relationship

of the yaw dynamics can be seen in Fig. 7. Like in the case

of the roll/pitch dynamics, the relationship is also relatively

noisy. Nevertheless, our method finds Kτ = 4.548 × 10−3

which is close to [5.96 × 10−3, 3.73 × 10−3, 6.25 × 10−3]
found by [2], [23] and [4] respectively. Note that we consider

the estimate “close” because, firstly, the uncertainty about it

is large (e.g., [4] only estimates the order of magnitude of

Kτ , without a mantissa), and secondly, the yaw dynamics

are slower and less critical for stabilization in general.

B. Large Quadrotor

We apply our method from Section III to the large quadro-

tor in the same manner as for the Crazyflie before (Section

IV-A). For the large quadrotor, we again conduct three flights

to excite the linear acceleration, angular roll/pitch dynamics,

and the yaw dynamics respectively.

We use the same approach to find the motor delay of

the large quadrotor (Fig. 8) and find that the delay is much

smaller than in the case of the Crazyflie (Fig. 2).

The resulting thrust curve for the large quadrotor shows a

very good predictive performance as can be seen in Fig. 9.

The estimates for the roll and pitch inertia in Fig. 10,

as before, are more noisy but still show a clear correlation.

Note that especially in the case of the roll (x) inertia there

appears to be another mode (with a lower slope). We find

that this mode can be found by fitting the reciprocal Ixx
−1.

Instead using the Ixx parameterization like in eq. (12) and

(13), we can formulate the reciprocal least squares problem

bx−1 = A because the system of equations is decoupled.

Here the new decision variable is xnew := x−1 and after

fitting xnew we can recover x by taking the reciprocal again.

This finding motivates future research into the impact of the

parameterization in least-squares-based system identification.
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Fig. 9: Large quadrotor: resulting thrust-curve.

The estimation of the Kτ coefficient in Fig. 10, is partic-

ularly noisy but still yields a useful model as shown in the

following.

C. Real-world deployment

In the next step, we use the previously identified model

of the large quadrotor to train an end-to-end RL policy

that directly maps the estimated state (position, orientation,

linear velocity, angular velocity, action history) to motor

outputs in the form of RPM setpoints. We use the RL

method introduced in [1] (which is built on top of [25])

and find that by solely training in simulation, using the

parameters identified by our method, the policy can fly the

real drone even under challenging conditions like strong,

gusty wind up to 8 m s−1. In Fig. 11, we can see the real-

world trajectory tracking performance at speeds of up to

5 m s−1. The trajectory tracking experiment was conducted

under realistic, outdoor conditions as can be seen in the

supplementary video.

V. CONCLUSION

In this work, we presented a simple, data-driven system

identification method for quadrotors. We show that our

method can recover the otherwise challenging to measure

dynamics parameters of the thrust curve, torque coefficient,

inertia matrix, and motor time-constant, while only requiring

about a minute of flight data that can be collected with

three simple maneuvers without additional equipment by just

logging proprioceptive measurements. The main limitation

is that flight data is required, but it is well known that
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Fig. 10: Large quadrotor: angular dynamics.

Fig. 11: Large quadrotor: Trajectory tracking on the real

quadrotor (subject to strong wind, cf. the supplementary

video).

e.g., using the default parameters in PX4 allows a drone

to stay in the air (albeit probably not performing as desired,

considering oscillations etc.). Hence, in combination with

model-based methods like inverse dynamics, MPC or end-to-

end RL our method can replace the tedious controller tuning

which usually takes many minutes or even hours of flight

time. We believe this will accelerate research by easing the

adoption of new, esoteric platforms as well as paving the way

for the adoption of more recent control methods in industry.

Future work will consider separate motor models for the

rising and falling edge of the control inputs (relative to

the current state), investigate the reciprocal parameterization

mentioned in Section IV-B, extend the system identification

to more platforms, and improving the system-identification

website based on user-feedback from the community.

REFERENCES

[1] J. Eschmann, D. Albani, and G. Loianno, “Learning to Fly in Sec-
onds,” IEEE Robotics and Automation Letters, pp. 1–8, 2024.

[2] J. Förster, “System identification of the crazyflie 2.0 nano quadro-
copter,” Bachelor Thesis, ETH Zurich, Zurich, 2015-08.

[3] C. Luis and J. L. Ny, “Design of a trajectory tracking controller for a
nanoquadcopter,” Master’s thesis, Polytechnique Montreal, 2016.

[4] M. Greiff, “Modelling and control of the crazyflie quadrotor for ag-
gressive and autonomous flight by optical flow driven state estimation,”
Master’s thesis, Lund University, 2017.

[5] N. V. Nguyen, H. Storro, and J. Plimpton, “Crazyflie 2.1 Quadcopter
Nonlinear System Identification,” 2023.

[6] M. Rich, “Model development, system identification, and control of a
quadrotor helicopter,” Master’s thesis, Iowa State University, 2012.

[7] M. I. Alabsi and T. D. Fields, “Real-time closed-loop system iden-
tification of a quadcopter,” Journal of Aircraft, vol. 56, no. 1, pp.
324–335, 2019.

[8] M. Alabsi and T. Fields, “Quadrotor aircraft intelligent system identi-
fication experiment design,” Proceedings of the Institution of Mechan-

ical Engineers, Part G: Journal of Aerospace Engineering, vol. 233,
no. 13, pp. 4911–4925, 2019.

[9] S. H. Cho, S. Bhandari, F. C. Sanders, M. B. Tischler, and K. Cheung,
“System identification and controller optimization of coaxial quadrotor
uav in hover,” in AIAA Scitech Forum, 2019, p. 1075.

[10] W. Wei, N. Schwartz, and K. Cohen, “Frequency-domain system
identification and simulation of a quadrotor controller,” in AIAA

Modeling and Simulation Technologies Conference, 2014, p. 1342.
[11] W. Adiprawita, A. S. Ahmad, and J. Sembiring, “Automated flight test

and system identification for rotary wing small aerial platform using
frequency responses analysis,” Journal of Bionic Engineering, vol. 4,
no. 4, pp. 237–244, 2007.

[12] C. Ivler, R. Niemiec, F. Gandhi, and F. C. Sanders, “Multirotor electric
aerial vehicle model validation with flight data: Physics-based and
system identification models,” in Vertical Flight Society 75th Annual

Forum, Philidelphia, PA, USA, 2019.
[13] B. Yuksek, E. Saldiran, A. Cetin, R. Yeniceri, and G. Inalhan, “System

identification and model-based flight control system design for an agile
maneuvering quadrotor platform,” in AIAA Scitech Forum, 2020, p.
1835.

[14] J. T. Babcock, “System identification of an s500 quadrotor uav.”
Defense Technical Information Center, 2023.

[15] M. Y. Galliker, “Data-Driven Dynamics Modelling Using Flight Logs,”
Master’s thesis, ETH Zurich, 2021.
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