2024 IEEE/RS]J International Conference on Intelligent Robots and Systems (IROS) | 979-8-3503-7770-5/24/$31.00 ©2024 IEEE | DOI: 10.1109/IROS58592.2024.10801793

2024 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS)

October 14-18, 2024. Abu Dhabi, UAE

Learning Long-Horizon Predictions for Quadrotor Dynamics

Pratyaksh Prabhav Rao!, Alessandro Saviolo!', Tommaso Castiglione Ferrari?, and Giuseppe Loianno

Abstract— Accurate modeling of system dynamics is crucial
for achieving high-performance planning and control of robotic
systems. Although existing data-driven approaches represent a
promising approach for modeling dynamics, their accuracy is
limited to a short prediction horizon, overlooking the impact of
compounding prediction errors over longer prediction horizons.
Strategies to mitigate these cumulative errors remain underex-
plored. To bridge this gap, in this paper, we study the key design
choices for efficiently learning long-horizon prediction dynamics
for quadrotors. Specifically, we analyze the impact of multiple
architectures, historical data, and multi-step loss formulation.
We show that sequential modeling techniques showcase their
advantage in minimizing compounding errors compared to
other types of solutions. Furthermore, we propose a novel
decoupled dynamics learning approach, which further simplifies
the learning process while also enhancing the approach modu-
larity. Extensive experiments and ablation studies on real-world
quadrotor data demonstrate the versatility and precision of the
proposed approach. Our outcomes offer several insights and
methodologies for enhancing long-term predictive accuracy of
learned quadrotor dynamics for planning and control.

SUPPLEMENTARY MATERIAL

Video: https://youtu.be/MPUJunMD11U
Code: https://github.com/arplaboratory/long-horizon-dynam
ics

I. INTRODUCTION

Unmanned Aerial Vehicles (UAVs), including quadrotors,
are becoming integral to a variety of applications, includ-
ing logistics, reconnaissance missions, search and rescue,
and inspections scenarios [1]. These tasks require UAVs to
precisely navigate through unknown cluttered environments,
which demands planning collision-free paths and controlling
the UAV to closely follow these paths [2]. The effectiveness
of both planning and control critically relies on the accurate
prediction of action sequence outcomes, necessitating precise
system dynamics modeling [3]. Yet, modeling these dynam-
ics is often challenging due to complex aerodynamic forces,
interactions between propellers, and other nonlinear phe-
nomena experienced during different operating conditions,
which traditional physics-based models often fail to capture
accurately [4], [5]. These limitations can result in suboptimal
flight performance and, eventually, catastrophic failures.
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Fig. 1: Illustration of how errors in dynamical models accu-
mulate over time. Each subsequent prediction integrates the
errors from all previous steps, leading to increased cumula-
tive error and reduced accuracy in long-term predictions.

Recent advances have seen a shift towards data-driven ap-
proaches for modeling system dynamics, offering promising
improvements in flight performance through offline learning
and online adaptation [6]—[8]. Nonetheless, existing method-
ologies primarily focus on short-term predictive models,
overlooking the significance of long-horizon predictions.
Forecasting over long horizons is necessary for effective
planning and high performance control of robotic systems.
For instance, long-horizon predictive capability enables plan-
ning algorithms to anticipate how the system will behave
under long sequences of control actions, a crucial aspect
for executing complex maneuvers precisely. Moreover, in
the context of optimal control and model-based reinforce-
ment learning [9], accurate long-horizon predictions allow
agents to foresee future actions that lead to maximization of
expected cummulative rewards. Despite leveraging learned
dynamics models for planning or control tasks by recursively
applying them to forecast long-horizon trajectories, current
methodologies often fall short due to the compounding error
phenomenon, where each subsequent prediction incorporates
all past errors, leading to cumulative inaccuracies over time
(Figure 1). While prior studies have acknowledged the
challenge of compounding errors [9]-[17], comprehensive
strategies to address it, particularly through design and ar-
chitectural considerations for long-term predictive accuracy,
remain largely unexplored. Our research aims to address this
critical gap. We propose and and evaluate various model
architectures tailored to sequential modeling tasks and design
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choices to enhance the expressiveness of learning-based
dynamics for long-term prediction capability.

The key contributions can be summarize as follows. First,
we propose and analyze several key design choices in the
learning process, including historical data and multi-step loss
formulation, to enhance long-term prediction accuracy. We
demonstrate that employing sequential modeling techniques
for quadrotor system dynamics is particularly advantageous.
These techniques excel at minimizing compounding errors
by accurately representing time-correlated features. Second,
we propose a novel decoupled dynamics learning framework
that unlike conventional frameworks that directly forecast
complete state information, breaks down system dynamics
into manageable subproblems. This promotes modularity and
enables independent optimization for each component to en-
hance long-horizon prediction capability. Finally, we conduct
extensive experiments and ablation studies of the framework
across diverse real-world quadrotor data. These experiments
demonstrate the versatility and predictive precision of the
framework in real-world scenarios.

This refined focus on sequential modeling, alongside a
methodical examination of design choices, sets our work
apart, offering new insights and methodologies for improving
the performance of UAV planning and control problems.

II. RELATED WORKS
A. Dynamics Learning for One-step Forecasts

One-step dynamics learning models have proven to be
highly effective in addressing a diverse array of robotics
tasks. For instance, Gaussian Processes (GPs) have suc-
cessfully tackled various lower-dimensional robotic learning
challenges, demonstrating their proficiency in managing un-
certainty in a structured manner [18], [19]. However, GPs
face scalability limitations, especially with tasks involving
high dimensions and large datasets. On the contrary, deep
neural networks have exhibited remarkable scalability to
higher dimensions and the ability to handle large amounts
of data effectively. For instance, [20] adopted a Multi-
Layer Perceptron (MLP) to capture helicopter dynamics.
[21] employed a shallow MLP to learn the full system
dynamics of a quadrotor. Moreover, a diverse array of archi-
tecture types, incorporating sequence modeling techniques,
has found practical utility in the realm of learning robot
dynamics. Examples include the application of Recurrent
Neural Networks (RNNs) [22] and Temporal Convolutional
Networks (TCNs) [4], [23], [24]. Furthermore, other data-
driven methods such as structured mechanical models [25]
and Lagrangian networks [26] leverage deep learning to
satisfy smooth constraints. Despite the versatility offered by
all these models, a common challenge arises, particularly
in tasks requiring long-horizon planning and control, where
they often encounter compounding errors.

B. Compounding Errors in Multi-step Forecasts

The compounding error problem has been previously
studied under the context of model-based reinforcement
learning [10], [11], where a dynamic model of the system

is iteratively learned and recursively applied to derive a
control policy. For instance, [12] addresses compounding
error in model prediction using real observations, aiming
to avoid distribution drift. [13] tackles the problem with
short horizons, at the expense of long-term capabilities. Other
approaches involve tweaking model optimization, including
imitation-learning-inspired models [14], multi-step estima-
tors [15], and flexible prediction horizons [16].

The model proposed by [9] introduces a new training
paradigm to mitigate compounding error by embedding time
dependence in predictions. However, it is currently limited
by its requirement for closed-form controllers. Recently,
[17] investigated various factors that influence the magni-
tude of long-term prediction error. Yet, this work primarily
aims at understanding the properties and conditions causing
compounding errors. The challenge of compounding error
remains not fully understood in terms of design choices,
techniques, and model architectures for enhancing long-
horizon predictions of learning dynamic models. To address
this gap, we present a specific set of network design and
training choices to mitigate this challenging problem.

III. BACKGROUND
A. Modeling the System Dynamics

Consider the system’s state x; € R™ at time ¢, influenced
by the action u; € R™. Modeling the system dynamics
requires finding a function f : R™ x R”™ — R"™ such that

X1 = f(xe, W) (1)
The quadrotor’s state at a given time index is given by
X, — [ T T T ., 717 3 3
t = |P; Vi Qg wt},whereptER and v, € R

are the robot’s position and velocity expressed in the inertial
frame, q; € R* is the robot’s attitude using the unit
quaternion representation with respect to the inertial frame,
and w; € R3 is the robot’s angular velocity in the body
frame. Furthermore, the control action is represented by
u; € R* and corresponds to the motor speeds.

B. Learning One-step System Dynamics

The common practice for learning the system dynamics in-
volves training a one-step predictive model hg, parametrized
by 0, on a dataset of N collected state-action trajectories
D = {(xi,u;,xi+1)}Y ;. The input to the neural network
consists of linear velocity v, angular velocity w, attitude q,
and control inputs u. Position information is omitted, as-
suming position-independent system dynamics, as the robot’s
positional changes can be recovered via Euler integration.
The training process optimizes @ to minimize the prediction
error of hg over D as follows

o1 N
min g |[xe+1 — Ker1]]3, 2)

where X;11 = he(x¢, u;). Rather than solely predicting the
true state observation as X;y1 = hg(X¢,u;), an alternative
approach involves predicting the change in the current state,
expressed as X;11 = X; +ho(x¢, ut). This technique, widely
adopted [13], [27], is popular in regularizing the prediction
distribution. Therefore, we employ it in this work.
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Fig. 2: Full State Predictor predicts complete state vectors, Multi Head Predictor uses separate heads for velocity and attitude
prediction, while our proposed Decoupled Predictor decomposes the problem into velocity and attitude prediction modules,
introducing a novel approach for enhanced modularity and long-horizon prediction.

C. Compounding Errors in Multi-step Forecasts

When forecasting the outcome for a given sequence of
control actions 7' steps in the future, the one-step dynamics
model is recursively applied as

,U-t+T)~ 3)

However, any prediction error caused by inaccurately model-
ing the system dynamics, namely ¢; = ||x; —%;||3, undergoes
multiplicative growth due to each subsequent prediction’s
input being influenced by past errors. Formally, the com-
pounding error problem in multi-step forecasts over a 7" time
horizon can be formulated as

&tJrT = hg( .. hg(hg(xt, ut), ut+1) cee

Xer1 = ho(x¢, up) + €4,

Rito = ho(Req1, Wep1) + €141,

“4)

X4 = ho(Xepr—1, Wepr—1) + €147

This compounding effect of errors is a consequence of each
subsequent prediction incorporating all past errors, leading
to a cumulative effect on the overall prediction accuracy.

IV. METHODOLOGY
A. Model Architectures

The inherent challenge in data-driven dynamics learning
lies in the degradation of state and action information by
sensor noise. Consequently, the Markovian assumptions on
the robot dynamics and full observability are constrained.
Recognizing this, previous studies explored the integration
of historical information to address these limitations. Lever-
aging recently observed states and actions, which retain
redundant patterns, provides a mechanism for data-driven
models to mitigate the effects of noise [4]. Formally, this
integration involves histories of states X; = [x,_ - x0T
and control inputs, denoted as U; = [u,] 5. ] both
with a length of H, enabling the prediction of the state at
time ¢t + 1 as )A(t_i_l =X; + ho(Xt7Ut).

While historical information has demonstrated effective-
ness in learning accurate dynamics, its potential with dif-
ferent model architectures tailored to capturing long-range
time dependencies remains largely unexplored, particularly

in addressing the compounding error problem. Traditional
MLPs, commonly employed for such tasks, struggle to
leverage temporal context effectively due to inherent ar-
chitectural limitations. This leads to inaccuracies and high
variance in predictive capability. To bridge this gap, our study
focuses on benchmarking several state-of-the-art recurrent
architectures, including Long Short-Term Memory (LSTM)
[28], Gated Recurrent Unit (GRU) [29], and TCN [30].
LSTM and GRU, being variants of RNNGs, are specifically de-
signed to capture long-range dependencies in sequential data.
Specifically, LSTMs incorporate memory cells and multiple
gating mechanisms, while GRUs simplify this architecture
by combining gates. While LSTMs are computationally ex-
pensive, GRUs offer performance with lower computational
complexity. TCNs, leveraging causal convolutions, provide
efficient training and scalability. However, they may require
more data for optimal performance.

B. Multi-Step Loss

Recent works on learning dynamics models [4], [5] utilize
a single step loss, where the model is trained to predict
the immediate next state. The loss function is computed as
shown in eq. (2). This formulation focuses on short-term
prediction accuracy and often fails in applications involving
long-horizon planning and control. To tackle this problem,
recent approaches [9]-[11] have adopted a multi-step loss
formulation which improves the long-term predictive capa-
bility. The multi-step loss formulation involves predicting
multiple future states beyond just the immediate next step.
The model is trained to forecast the system’s behavior over a
longer horizon by recursively predicting U future steps. The
loss function is computed based on the cumulative error over
all predicted future steps compared to their corresponding
actual future states as

Z 1%t4i = Kl (5)

D i=1

This approach provides a more comprehensive evaluation of
the model predictive performance over longer time horizons
and is beneficial for tasks requiring foresight and planning.
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TABLE I: Impact of historical data and multi-step loss on long-term prediction. TCN achieves superior performance with
a history of 20 and a multi-step horizon of 10 for loss computation. All models use the decoupled predictor type and are
evaluated over 60 time steps on unseen trajectories, averaging results over 3 training runs with different seeds. Blank entries
denote that LSTM, GRU, and TCN, tailored for sequential data, exclude history information, indicating no sequence data.

PI-TCN [4] NeuroBEM [5]
Hou MLP LSTM GRU TCN MLP LSTM GRU TCN
Oy 0q Oy dq Oy 0q Oy 0q Oy dq Oy 0q Ov 0q Ov 0q
1 1 1.325 0.366 — — — — — — 1.335 0.334 — — — — — -
5 1 0872 0301 0.326 0.289 0.467 0.278 0.192 0.140 0.808 0.103 0.489 0.089 0.468 0.083 0.201 0.072
5 5 0.722 0.289 0.318 0.240 0.426 0.243 0.184 0.112 0.728 0.098 0.402 0.081 0.442 0.078 0.199 0.066
5 10 0.532 0.277 0.207 0.202 0.365 0.200 0.180 0.102 0.688 0.090 0.389 0.079 0.399 0.076 0.188 0.060
10 1 0.780 0.200 0.210 0.143 0.415 0.156 0.156 0.087 0.487 0.077 0.281 0.063 0.300 0.665 0.128 0.046
10 5 0692 0.160 0.204 0.114 0.388 0.100 0.154 0.064 0.365 0.056 0.221 0.054 0.278 0.059 0.112 0.036
10 10 0.546 0.121 0.200 0.091 0.316 0.098 0.132 0.054 0.307 0.049 0.145 0.050 0.207 0.047 0.094 0.025
20 1 0.487 0.100 0.155 0.066 0.302 0.082 0.102 0.034 0.234 0.039 0.101 0.030 0.172 0.036 0.078 0.012
20 5 0499 0.098 0.124 0.055 0.263 0.073 0.090 0.023 0.183 0.030 0.091 0.027 0.125 0.025 0.055 0.007
20 10 0.357 0.088 0.089 0.048 0.138 0.062 0.062 0.016 0.125 0.025 0.077 0.011 0.090 0.010 0.042 0.006
. . 2004

C. Dynamics Decoupling LSTM
The formulation of learning dynamics models involves E) GPfU

various strategies, among which the full-state predictor and % 150 TCN

the multi-head predictor are prominent (Figure 2). The full- &

state predictor aims to directly forecast the complete state 8 100! = NG = SN\ o o o o o o o

vector, encompassing linear velocity v, angular velocity w, 5 realtime

and attitude q, offering a comprehensive view of system =

dynamics. However, its holistic approach may encounter

challenges in capturing long-term dependencies due to the ; o 5

complexity of underlying dynamics and the high-dimensional
output space, potentially increasing sensitivity to data noise.

Conversely, the multi-head predictor divides the prediction
task into separate heads, typically focusing on velocity
and attitude independently. While this specialization allows
tailored modeling of different state aspects, it introduces co-
ordination challenges. Dividing the prediction task can hinder
effective prediction coordination, leading to inconsistencies
and limited information sharing between the decoders, reduc-
ing predictive accuracy. In contrast, our proposed modular
approach decouples system dynamics into manageable sub-
problems. By focusing on distinct components, such as ve-
locity and attitude, decoupled predictors promote modularity,
simplify learning and enable independent optimization. This
strategy enhances the model’s capability to capture complex
dynamics and facilitates more accurate long-term predictions,
addressing the limitations of traditional predictors. Specifi-
cally, we introduce two key modules: the Velocity Predictor
and the Attitude Predictor. The Velocity Predictor is designed
to forecast the change in velocity at the next time step.
Formally, it is expressed as

Zir1 = Z¢ + hgoet (X, Uy), (6)

where Z;1 and z; denote the predicted velocity and current
velocity, encompassing both linear and angular changes -
z [v w]T. On the other hand, the Attitude Predictor
forecasts the change in attitude quaternion at the next time
step and is formulated as

Qi1 = hgart (X4, Uy) © qy, (N

No. of Parameters [Millions]

Fig. 3: Selecting model parameters ensuring real-time per-
formance on embedded systems. The parameter bound is
determined by selecting the model with the lowest parameter
count capable of real-time performance. LSTM achieves real-
time predictions with up to 5.2 million parameters. We freeze
this bound across all models to have a fair comparison.

where © represents the quaternion-vector product, and §;1
and q; denote the predicted and current attitude, respectively.

V. EXPERIMENTAL SETUP
A. Datasets

We extensively perform experiments on two well-known
open-source real-world quadrotor datasets to analyze the
long-term predictive performances of the neural models.

PI-TCN. This dataset [4] includes 68 trajectories with a
total flight time of 58 min 3 sec. These cover a diverse range
of motions, including straight-line accelerations, circular
movements, parabolic maneuvers, and lemniscate trajecto-
ries. The dataset is designed to capture complex effects,
pushing the quadrotor to its physical limits with speeds of 6
ms !, linear accelerations of 18 ms~2, angular accelerations
of 54 rads~2, and motor speeds of 16628 rpm. Data is
sampled at 100 Hz. We use 54 trajectories for training, 10
for validation, and 4 for testing, ensuring a comprehensive
evaluation across various challenging scenarios.

NeuroBEM. This dataset [5] comprises 96 flights with
a total flight time of 1 hr 15 min, encapsulating the entire
performance envelope of the platform up to observed speeds

12761

Authorized licensed use limited to: New York University. Downloaded on March 28,2025 at 21:38:36 UTC from IEEE Xplore. Restrictions apply.



of 18 ms™! and accelerations of 46.8 ms~2. While the
original dataset is sampled at 400 Hz, we resampled it at
100 Hz for all experiments. We utilize 67 trajectories for
training, 17 for validation, and 12 for testing.

B. Training

We carefully chose the model architecture parameters to
ensure real-time performance on an embedded platform. By
analyzing the inference speed of baseline models relative to
their parameter count (see Figure 3), we establish a parameter
bound by identifying the model with the lowest parameter
count capable of real-time performance. LSTM demonstrates
real-time predictions with up to 5.2 million parameters. To
ensure fair comparisons, we select this parameter bound
across all models. All models adopt an encoder-decoder
structure. For consistency, all encoders feature three layers.
The MLP encoder consists of layers with 1024, 512, and
512 neurons, respectively. Similarly, the LSTM and GRU
encoders consist of three layers with 512 neurons each in
the hidden state. The TCN encoder integrates three hidden
layers with sizes of 512, 256, and 256 neurons, leveraging
temporal convolutional layers with a LeakyReLU activation
function, batch normalization, kernel size of 3, and a dilation
factor of 2. All architectures incorporate an MLP decoder
composed of three layers with 512, 256, and 256 neurons.
In our training process, we chose not to normalize the
input state and actions (motor speed), as we notice no
significant performance improvement. However, we scale the
motor speed data by multiplying them by 103 to ensure
equal distribution of data component scales, allowing the
neural network to assign equal importance to all components.
We employ the AdamW optimizer for training over 50 K
iterations, 5, and s set to 0.9 and 0.999, respectively, and
a weight decay of 10~%. We train models with a batch size of
512, constant learning rate warm up, lasting for 5K iterations,
followed by a cosine annealing learning rate scheduler.

C. Evaluation Metric

We employ a sliding window approach with size H along
the unseen testing trajectory. At each state-control slice of H,
the velocity predictor forecasts linear and angular velocities
T steps ahead, and we compute the velocity error between
predicted and ground truth velocity values

(zi — 2:) " (zi — 24), (8)

where z; represents the ground truth velocities at time index
i, and z; denotes the predicted velocities at time index 1.
Similarly, the attitude predictor forecasts unit quaternion
states T steps ahead, and we compute the quaternion error
with respect to the ground truth unit quaternion. We consider
that the orientation is not an element of the Euclidean
space [31]. Therefore, to compute the quaternion error we
take the logarithm of the rotation difference between the

predicted and ground truth quaternion. The error is

=
da =700 ©)
=0
where, for a given time index i, 6; is calculated as

A E_DITOI”
0; = arctan (M> .

Aqe_:rror (10)

The terms Aq{™" and Aq{"™ denote the vector and scalar
components of the quaternion respectively, and Aq{™" is

Ag™ =g’ © (qf") 7, (11)
where q/* and ¢

. d represent the ground truth and pre-
dicted quaternions, respectively. Finally, log Aq{™" = u#;,
where u = Ag{"™"/||Aq™||. Both ¢, and J, are averaged
across all slices of different testing trajectories to evaluate
the model’s predictive accuracy. We evaluate the ability
to predict horizons of 60 steps across the unseen testing
trajectories of both datasets for all experiments. The reported
experimental results are obtained by averaging the models
trained with 3 different random seeds, ensuring robustness

and reliability, unless explicitly stated otherwise.

pre

VI. RESULTS
A. Impact of History Length and Multi-step Loss

In this section, we investigate the impact of incorporating
historical information and utilizing multi-step loss formula-
tion on model performance, with all models in this experi-
ment employing the decoupled predictor type. Subsequently,
we conduct an ablation study to showcase the superior
performance of the decoupled predictor type compared to the
previously mentioned predictor types, thereby further validat-
ing our proposed approach. We begin by comparing MLP
models with and without history information, highlighting
the importance of temporal context in predictive modeling.
By leveraging historical data, the model improves its ability
to capture system dynamics, as evidenced by quantitative
results (Table I). Additionally, we investigate multi-step loss
formulation’s effectiveness in enhancing long-term predictive
accuracy, presenting comparative analysis between single-
step and multi-step loss functions. Our study reveals that
optimizing error over multiple future time steps U reduces
prediction errors and improves model robustness for mit-
igating compounding errors over long-horizon predictions.
Unroll length of 1 serves as the baseline, representing single-
step loss with no unrolling. Our findings suggest an optimal
configuration of a history length of 20 paired with an unroll
length of 10, and is selected for all subsequent experiments.
Exceeding an unroll length of 10 leads to training instabilities
due to large gradient values. We also notice that if we go
beyond a history length of 20, the error increases. Beyond a
certain history length, the relevance of past observations may
diminish, and including excessively distant past information
may introduce noise or irrelevant patterns, hindering the
model’s ability to generalize effectively to unseen data.
Furthermore, we observe MLP’s limitations in effectively
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Fig. 4: Mean Squared Error per-step among baseline neural networks models on unseen test trajectories. The MLP model
demonstrates higher error variance across diverse unseen trajectories compared to other sequential models, attributed to the
absence of architectural priors for capturing spatio-temporal dependencies across datasets.

TABLE II: Comparative performance of predictor types across trajectories with varied aggressiveness. The predictors utilize
TCN architecture, a history length of 20, and a multi-step horizon of 10 for loss computation. Evaluation are conducted
over 60 time steps on unseen trajectories by averaging the results over 10 training runs with different seeds.

Trajectory Vinean [ms—1] Vinax [ms—1] Full State Multi Head Decoupled
Ov 0q Ov 0q Ov 0q
Ellipse_1 1.21 1.59 0.023 0.034 0.011 0.019 0.007 0.012
WarpedEllipse-1 1.61 2.44 0.082 0.083 0.016 0.021 0.008 0.014
= Parabola 2.36 3.97 0.112 0.083 0.102 0.051 0.039 0.026
z ExtendedLemniscate 2.44 4.25 0.321 0.104 0.564 0.059 0.122 0.032
< Lemniscate 2.46 4.73 0.690 0.089 0.245 0.076 0.050 0.036
= WarpedEllipse_2 2.90 4.88 0.135 0.032 0.107 0.035 0.019 0.010
TransposedParabola 2.73 4.93 0.431 0.065 0.650 0.069 0.187 0.019
Ellipse_2 3.27 5.57 0.266 0.034 0.192 0.017 0.030 0.015
Lemniscate 1.67 3.51 0.047 0.042 0.102 0.129 0.017 0.004
Random Points 2.38 8.25 0.182 0.089 0.211 0.101 0.076 0.007
Lemniscate 3.21 7.04 0.199 0.031 0.482 0.015 0.094 0.007
i~ Melon 3.57 7.63 0.543 0.034 0.941 0.028 0.107 0.004
= Slanted Circle 6.92 10.75 0.524 0.029 1.226 0.116 0.140 0.004
E Linear Oscillation 7.25 16.95 1.545 0.043 1.953 0.078 0.214 0.008
A Race Track 7.64 13.14 2.993 0.092 3.656 0.071 0.697 0.006
% Melon 7.74 13.55 1.842 0.101 2.921 0.077 0.091 0.004
4 Slanted Circle 8.57 13.32 0.598 0.043 1.206 0.087 0.141 0.002
Race Track 9.94 17.81 4.434 0.087 5.024 0.107 0.709 0.109
Lemniscate 12.01 19.83 2.563 0.054 3.344 0.106 0.711 0.005
Ellipse 15.02 19.20 6.235 0.065 6.813 0.073 1.528 0.024

extracting temporal context from historical data, motivating
further exploration of sequential architectures designed to
handle temporal data processing.

B. Sequential Models Performance

In this section, we assess the performance of sequential
models, including LSTM, GRU, and TCN, in comparison to
MLP, highlighting their effectiveness in capturing temporal
dependencies and reducing compounding errors. Figure 4
illustrates the mean and variance of composed predictions to
evaluate the long-term predictive capability of these models
on various unseen test trajectories. Notably, the mean and
variance of MLP predictions are observed to be higher than
those of the sequential models, indicating the ability of the
latter to leverage temporal dependencies for more accurate
predictions. This discrepancy arises primarily due to the
inherent limitations of MLP architectures in capturing tem-
poral dependencies effectively. As a result, MLPs struggle to
leverage temporal context from historical information, lead-
ing to less accurate predictions over longer time horizons.
Additionally, another factor contributing to the higher mean

and variance in MLP predictions is the loss of causality
in time-dependent signals. Unlike sequential models, which
inherently preserve the temporal order of data through re-
current connections or 1-D convolutional operations, MLPs
process input data in a feedforward manner, disregarding the
sequential nature of the information. This lack of causality
can lead to discrepancies in predictions, especially over
longer time horizons, where the relationships between data
points play a critical role in accurate forecasting.

Furthermore, we observe that TCN outperforms all base-
line models across various experiments, exhibiting superior
performance in terms of predictive accuracy and stability.
Moreover, our experiments reveal that TCN achieves a 21x
reduction in velocity error and a significant 23x reduction
in attitude error compared to MLP with no history on the
PI-TCN dataset. Similarly, on the NeuroBEM dataset, TCN
demonstrates a remarkable 31x reduction in velocity error
and an impressive 56 x reduction in attitude error compared
to MLP with no history. These findings further underscore
the superiority of sequential models, particularly TCN, in
dynamics learning tasks, emphasizing their ability to capture
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TABLE III: Performance of predictor models with varied input state configurations. Given the critical role of control action
in influencing system dynamics, it is included in all input configurations tested. Incorporating the full state information as
input, consisting of linear velocity, angular velocity, attitude, and control action, results in the best performance.

*The attitude predictor is evaluated using the quaternion error.

INPUT PREDICTOR
v w q v w qx*
PI-TCN NeuroBEM PI-TCN NeuroBEM PI-TCN NeuroBEM
X X 0.102 0.422 - - - -
X 0.072 0.324 0.162 0.414 - -
X 0.014 0.108 - - 0.071 0.054
X X - - 0.194 0.554 - -
X - - 0.121 0.212 0.061 0.016
X X - - - - 0.086 0.116
0.009 0.072 0.008 0.091 0.021 0.006
1.0 PITCN 3.0 NeuroBEM Additionally, we conduct an experiment to match the
o< o total number of parameters of the full-state and multi-
g § head predictors to the decoupled predictor by doubling the
L;,0.5 L;“ parameters in both the encoder and decoder. This adjustment
g E is necessary because the decoupled framework uses two
L L . . . .
= - P independent neural networks to predict distinct modules,
0.0 0.0 whereas the other two predictors rely on a single network.
0.4 0.2 By doubling the parameters in the full-state and multi-head

Quaternion Error dq
o
(8]
Quaternion Error dq
o
=

=&
o
=&
o

I Full State I Multi Head Decoupled

Fig. 5: Mean and standard deviation of the best-performing
predictors across 10 random trials, evaluating velocity and
attitude error. A, B, and C correspond to Full-State, Multi-
Head, and Decoupled, respectively.

complex temporal patterns and improve predictive accuracy.

C. Comparison of Predictor Types

This section analyzes the predictive performance and
stability of various predictor types across trajectories charac-
terized by diverse levels of aggressiveness. These trajectories
exhibit average velocities ranging from 1.12 ms~! to 3.27
ms~! for the PI-TCN dataset and 1.67 ms~! to 15.02 ms~!
for the NeuroBEM dataset. Both velocity and attitude errors
are assessed for each predictor type. Results indicate a
consistent superiority of the decoupled dynamics predictor
over both the full-state and multi-head predictors across all
aggression levels, underlining its adeptness in handling chal-
lenging dynamic scenarios (refer Table II). Furthermore, an
in-depth analysis of the mean and standard deviation of the
best-performing predictors across 10 different random seeds
underscores the decoupled predictors’ enhanced stability and
robustness compared to their counterparts (refer Figure 5).
Notably, the instability and inaccuracy arises due to the
complexity of the underlying problem.

predictors, we aim to equalize model capacities. However,
despite the increased model complexity, performance does
not improve compared to the decoupled counterpart. This
underscores the complex nature of the problem, where simply
increasing model capacity does not enhance predictive accu-
racy. The decoupled approach resolves this by breaking down
system dynamics into manageable subproblems, promoting
modularity, simplifying learning, and enabling independent
optimization for velocity and attitude components.

D. Ablation of State Input Representation

In this experiment, we aim to assess the impact of different
input combinations on the performance of our framework
for learning dynamics. We consider as inputs the history
of velocity, angular velocity, attitude, and control action.
Given the crucial role of control action in influencing system
dynamics, it is included in all input combinations. We de-
compose the framework into three separate predictors: linear
velocity, angular velocity, and attitude predictors to better
understand the effects of different inputs on each solution.

Our observations reveal notable trends across the predic-
tors (Table III). Firstly, for the linear velocity predictor, we
observe that incorporating the full state information as input,
comprising the history of linear velocity, angular velocity,
attitude, and control action, result in the best performance.
Furthermore, there is a gradual increase in performance as we
augment the input with additional state quantities, indicating
the importance of considering the complete state information
for accurate prediction. Similar trends are observed for the
angular velocity and attitude predictors, with optimal perfor-
mance achieved when full state observations are included as
input. This ablation study highlights the significance of full
state information in capturing the intricate dynamics of the
system and achieving superior predictive accuracy.
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VII. DISCUSSION

The proposed approach offers several new valuable in-
sights and guidelines for designing data-driven solutions
for quadrotor learning dynamics. First, leveraging histor-
ical information and employing multi-step loss formula-
tion significantly enhances the model’s ability to predict
longer horizons. Second, the modular approach decouples
system dynamics into manageable subproblems, facilitating
independent optimization of each module. Finally, a TCN
architecture integrated with the two aforementioned designs,
demonstrates superior performance across diverse levels of
aggressiveness in real-world scenarios. The top-performing
model produces feasible and stable open-loop predictions for
up to 60 steps, showcasing its robustness and efficacy.

VIII. CONCLUSIONS

In summary, our work tackles the critical challenge of
achieving accurate modeling of system dynamics to en-
able effective control of quadrotors. Despite the promises
of existing data-driven approaches, their limitations in ad-
dressing compounding errors over long prediction horizons
highlight the necessity for comprehensive strategies. Through
meticulous evaluation of design choices and exploration of
sequential modeling techniques, we demonstrate strategies
in minimizing these errors. Our novel decoupled dynamics
learning framework stands out for its ability to simplify
the learning process while enhancing modularity, hence
improving long-term forecasts. Extensive experiments on
real-world datasets validate the efficacy and precision of
our approach. Future work includes integrating the proposed
framework with a controller to analyze flight performance
under challenging operating conditions.
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