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Abstract— Accurate modeling of system dynamics is crucial
for achieving high-performance planning and control of robotic
systems. Although existing data-driven approaches represent a
promising approach for modeling dynamics, their accuracy is
limited to a short prediction horizon, overlooking the impact of
compounding prediction errors over longer prediction horizons.
Strategies to mitigate these cumulative errors remain underex-
plored. To bridge this gap, in this paper, we study the key design
choices for efficiently learning long-horizon prediction dynamics
for quadrotors. Specifically, we analyze the impact of multiple
architectures, historical data, and multi-step loss formulation.
We show that sequential modeling techniques showcase their
advantage in minimizing compounding errors compared to
other types of solutions. Furthermore, we propose a novel
decoupled dynamics learning approach, which further simplifies
the learning process while also enhancing the approach modu-
larity. Extensive experiments and ablation studies on real-world
quadrotor data demonstrate the versatility and precision of the
proposed approach. Our outcomes offer several insights and
methodologies for enhancing long-term predictive accuracy of
learned quadrotor dynamics for planning and control.

SUPPLEMENTARY MATERIAL

Video: https://youtu.be/MPUJunMD11U

Code: https://github.com/arplaboratory/long-horizon-dynam

ics

I. INTRODUCTION

Unmanned Aerial Vehicles (UAVs), including quadrotors,

are becoming integral to a variety of applications, includ-

ing logistics, reconnaissance missions, search and rescue,

and inspections scenarios [1]. These tasks require UAVs to

precisely navigate through unknown cluttered environments,

which demands planning collision-free paths and controlling

the UAV to closely follow these paths [2]. The effectiveness

of both planning and control critically relies on the accurate

prediction of action sequence outcomes, necessitating precise

system dynamics modeling [3]. Yet, modeling these dynam-

ics is often challenging due to complex aerodynamic forces,

interactions between propellers, and other nonlinear phe-

nomena experienced during different operating conditions,

which traditional physics-based models often fail to capture

accurately [4], [5]. These limitations can result in suboptimal

flight performance and, eventually, catastrophic failures.
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Fig. 1: Illustration of how errors in dynamical models accu-

mulate over time. Each subsequent prediction integrates the

errors from all previous steps, leading to increased cumula-

tive error and reduced accuracy in long-term predictions.

Recent advances have seen a shift towards data-driven ap-

proaches for modeling system dynamics, offering promising

improvements in flight performance through offline learning

and online adaptation [6]–[8]. Nonetheless, existing method-

ologies primarily focus on short-term predictive models,

overlooking the significance of long-horizon predictions.

Forecasting over long horizons is necessary for effective

planning and high performance control of robotic systems.

For instance, long-horizon predictive capability enables plan-

ning algorithms to anticipate how the system will behave

under long sequences of control actions, a crucial aspect

for executing complex maneuvers precisely. Moreover, in

the context of optimal control and model-based reinforce-

ment learning [9], accurate long-horizon predictions allow

agents to foresee future actions that lead to maximization of

expected cummulative rewards. Despite leveraging learned

dynamics models for planning or control tasks by recursively

applying them to forecast long-horizon trajectories, current

methodologies often fall short due to the compounding error

phenomenon, where each subsequent prediction incorporates

all past errors, leading to cumulative inaccuracies over time

(Figure 1). While prior studies have acknowledged the

challenge of compounding errors [9]–[17], comprehensive

strategies to address it, particularly through design and ar-

chitectural considerations for long-term predictive accuracy,

remain largely unexplored. Our research aims to address this

critical gap. We propose and and evaluate various model

architectures tailored to sequential modeling tasks and design
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choices to enhance the expressiveness of learning-based

dynamics for long-term prediction capability.

The key contributions can be summarize as follows. First,

we propose and analyze several key design choices in the

learning process, including historical data and multi-step loss

formulation, to enhance long-term prediction accuracy. We

demonstrate that employing sequential modeling techniques

for quadrotor system dynamics is particularly advantageous.

These techniques excel at minimizing compounding errors

by accurately representing time-correlated features. Second,

we propose a novel decoupled dynamics learning framework

that unlike conventional frameworks that directly forecast

complete state information, breaks down system dynamics

into manageable subproblems. This promotes modularity and

enables independent optimization for each component to en-

hance long-horizon prediction capability. Finally, we conduct

extensive experiments and ablation studies of the framework

across diverse real-world quadrotor data. These experiments

demonstrate the versatility and predictive precision of the

framework in real-world scenarios.

This refined focus on sequential modeling, alongside a

methodical examination of design choices, sets our work

apart, offering new insights and methodologies for improving

the performance of UAV planning and control problems.

II. RELATED WORKS

A. Dynamics Learning for One-step Forecasts

One-step dynamics learning models have proven to be

highly effective in addressing a diverse array of robotics

tasks. For instance, Gaussian Processes (GPs) have suc-

cessfully tackled various lower-dimensional robotic learning

challenges, demonstrating their proficiency in managing un-

certainty in a structured manner [18], [19]. However, GPs

face scalability limitations, especially with tasks involving

high dimensions and large datasets. On the contrary, deep

neural networks have exhibited remarkable scalability to

higher dimensions and the ability to handle large amounts

of data effectively. For instance, [20] adopted a Multi-

Layer Perceptron (MLP) to capture helicopter dynamics.

[21] employed a shallow MLP to learn the full system

dynamics of a quadrotor. Moreover, a diverse array of archi-

tecture types, incorporating sequence modeling techniques,

has found practical utility in the realm of learning robot

dynamics. Examples include the application of Recurrent

Neural Networks (RNNs) [22] and Temporal Convolutional

Networks (TCNs) [4], [23], [24]. Furthermore, other data-

driven methods such as structured mechanical models [25]

and Lagrangian networks [26] leverage deep learning to

satisfy smooth constraints. Despite the versatility offered by

all these models, a common challenge arises, particularly

in tasks requiring long-horizon planning and control, where

they often encounter compounding errors.

B. Compounding Errors in Multi-step Forecasts

The compounding error problem has been previously

studied under the context of model-based reinforcement

learning [10], [11], where a dynamic model of the system

is iteratively learned and recursively applied to derive a

control policy. For instance, [12] addresses compounding

error in model prediction using real observations, aiming

to avoid distribution drift. [13] tackles the problem with

short horizons, at the expense of long-term capabilities. Other

approaches involve tweaking model optimization, including

imitation-learning-inspired models [14], multi-step estima-

tors [15], and flexible prediction horizons [16].

The model proposed by [9] introduces a new training

paradigm to mitigate compounding error by embedding time

dependence in predictions. However, it is currently limited

by its requirement for closed-form controllers. Recently,

[17] investigated various factors that influence the magni-

tude of long-term prediction error. Yet, this work primarily

aims at understanding the properties and conditions causing

compounding errors. The challenge of compounding error

remains not fully understood in terms of design choices,

techniques, and model architectures for enhancing long-

horizon predictions of learning dynamic models. To address

this gap, we present a specific set of network design and

training choices to mitigate this challenging problem.

III. BACKGROUND

A. Modeling the System Dynamics

Consider the system’s state xt ∈ R
n at time t, influenced

by the action ut ∈ R
m. Modeling the system dynamics

requires finding a function f : Rn × R
m → R

n such that

xt+1 = f(xt,ut). (1)

The quadrotor’s state at a given time index is given by

xt =
[

p¦

t v¦

t q¦

t ω
¦

t

]¦
, where pt ∈ R

3 and vt ∈ R
3

are the robot’s position and velocity expressed in the inertial

frame, qt ∈ R
4 is the robot’s attitude using the unit

quaternion representation with respect to the inertial frame,

and ωt ∈ R
3 is the robot’s angular velocity in the body

frame. Furthermore, the control action is represented by

ut ∈ R
4 and corresponds to the motor speeds.

B. Learning One-step System Dynamics

The common practice for learning the system dynamics in-

volves training a one-step predictive model hθ , parametrized

by θ, on a dataset of N collected state-action trajectories

D = {(xi,ui,xi+1)}
N
i=1. The input to the neural network

consists of linear velocity v, angular velocity ω, attitude q,

and control inputs u. Position information is omitted, as-

suming position-independent system dynamics, as the robot’s

positional changes can be recovered via Euler integration.

The training process optimizes θ to minimize the prediction

error of hθ over D as follows

min
θ

1

N

∑

D

||xt+1 − x̂t+1||
2
2, (2)

where x̂t+1 = hθ(xt,ut). Rather than solely predicting the

true state observation as x̂t+1 = hθ(xt,ut), an alternative

approach involves predicting the change in the current state,

expressed as x̂t+1 = xt+hθ(xt,ut). This technique, widely

adopted [13], [27], is popular in regularizing the prediction

distribution. Therefore, we employ it in this work.
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Fig. 2: Full State Predictor predicts complete state vectors, Multi Head Predictor uses separate heads for velocity and attitude

prediction, while our proposed Decoupled Predictor decomposes the problem into velocity and attitude prediction modules,

introducing a novel approach for enhanced modularity and long-horizon prediction.

C. Compounding Errors in Multi-step Forecasts

When forecasting the outcome for a given sequence of

control actions T steps in the future, the one-step dynamics

model is recursively applied as

x̂t+T = hθ(. . . hθ(hθ(xt,ut),ut+1) . . . ,ut+T ). (3)

However, any prediction error caused by inaccurately model-

ing the system dynamics, namely ϵt = ||xt−x̂t||
2
2, undergoes

multiplicative growth due to each subsequent prediction’s

input being influenced by past errors. Formally, the com-

pounding error problem in multi-step forecasts over a T time

horizon can be formulated as

x̂t+1 = hθ(xt,ut) + ϵt,

x̂t+2 = hθ(x̂t+1,ut+1) + ϵt+1,

...

x̂t+T = hθ(x̂t+T−1,ut+T−1) + ϵt+T .

(4)

This compounding effect of errors is a consequence of each

subsequent prediction incorporating all past errors, leading

to a cumulative effect on the overall prediction accuracy.

IV. METHODOLOGY

A. Model Architectures

The inherent challenge in data-driven dynamics learning

lies in the degradation of state and action information by

sensor noise. Consequently, the Markovian assumptions on

the robot dynamics and full observability are constrained.

Recognizing this, previous studies explored the integration

of historical information to address these limitations. Lever-

aging recently observed states and actions, which retain

redundant patterns, provides a mechanism for data-driven

models to mitigate the effects of noise [4]. Formally, this

integration involves histories of states Xt = [x¦

t−H . . .x¦

t ]
¦,

and control inputs, denoted as Ut = [u¦

t−H . . .u¦

t ]
¦, both

with a length of H , enabling the prediction of the state at

time t+ 1 as x̂t+1 = xt + hθ(Xt,Ut).
While historical information has demonstrated effective-

ness in learning accurate dynamics, its potential with dif-

ferent model architectures tailored to capturing long-range

time dependencies remains largely unexplored, particularly

in addressing the compounding error problem. Traditional

MLPs, commonly employed for such tasks, struggle to

leverage temporal context effectively due to inherent ar-

chitectural limitations. This leads to inaccuracies and high

variance in predictive capability. To bridge this gap, our study

focuses on benchmarking several state-of-the-art recurrent

architectures, including Long Short-Term Memory (LSTM)

[28], Gated Recurrent Unit (GRU) [29], and TCN [30].

LSTM and GRU, being variants of RNNs, are specifically de-

signed to capture long-range dependencies in sequential data.

Specifically, LSTMs incorporate memory cells and multiple

gating mechanisms, while GRUs simplify this architecture

by combining gates. While LSTMs are computationally ex-

pensive, GRUs offer performance with lower computational

complexity. TCNs, leveraging causal convolutions, provide

efficient training and scalability. However, they may require

more data for optimal performance.

B. Multi-Step Loss

Recent works on learning dynamics models [4], [5] utilize

a single step loss, where the model is trained to predict

the immediate next state. The loss function is computed as

shown in eq. (2). This formulation focuses on short-term

prediction accuracy and often fails in applications involving

long-horizon planning and control. To tackle this problem,

recent approaches [9]–[11] have adopted a multi-step loss

formulation which improves the long-term predictive capa-

bility. The multi-step loss formulation involves predicting

multiple future states beyond just the immediate next step.

The model is trained to forecast the system’s behavior over a

longer horizon by recursively predicting U future steps. The

loss function is computed based on the cumulative error over

all predicted future steps compared to their corresponding

actual future states as

min
θ

1

UN

∑

D

U
∑

i=1

∥xt+i − x̂t+i∥
2
2. (5)

This approach provides a more comprehensive evaluation of

the model predictive performance over longer time horizons

and is beneficial for tasks requiring foresight and planning.
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TABLE I: Impact of historical data and multi-step loss on long-term prediction. TCN achieves superior performance with

a history of 20 and a multi-step horizon of 10 for loss computation. All models use the decoupled predictor type and are

evaluated over 60 time steps on unseen trajectories, averaging results over 3 training runs with different seeds. Blank entries

denote that LSTM, GRU, and TCN, tailored for sequential data, exclude history information, indicating no sequence data.

H U
PI-TCN [4] NeuroBEM [5]

MLP LSTM GRU TCN MLP LSTM GRU TCN

δv δq δv δq δv δq δv δq δv δq δv δq δv δq δv δq

1 1 1.325 0.366 − − − − − − 1.335 0.334 − − − − − −
5 1 0.872 0.301 0.326 0.289 0.467 0.278 0.192 0.140 0.808 0.103 0.489 0.089 0.468 0.083 0.201 0.072

5 5 0.722 0.289 0.318 0.240 0.426 0.243 0.184 0.112 0.728 0.098 0.402 0.081 0.442 0.078 0.199 0.066

5 10 0.532 0.277 0.207 0.202 0.365 0.200 0.180 0.102 0.688 0.090 0.389 0.079 0.399 0.076 0.188 0.060

10 1 0.780 0.200 0.210 0.143 0.415 0.156 0.156 0.087 0.487 0.077 0.281 0.063 0.300 0.665 0.128 0.046

10 5 0.692 0.160 0.204 0.114 0.388 0.100 0.154 0.064 0.365 0.056 0.221 0.054 0.278 0.059 0.112 0.036

10 10 0.546 0.121 0.200 0.091 0.316 0.098 0.132 0.054 0.307 0.049 0.145 0.050 0.207 0.047 0.094 0.025

20 1 0.487 0.100 0.155 0.066 0.302 0.082 0.102 0.034 0.234 0.039 0.101 0.030 0.172 0.036 0.078 0.012

20 5 0.499 0.098 0.124 0.055 0.263 0.073 0.090 0.023 0.183 0.030 0.091 0.027 0.125 0.025 0.055 0.007

20 10 0.357 0.088 0.089 0.048 0.138 0.062 0.062 0.016 0.125 0.025 0.077 0.011 0.090 0.010 0.042 0.006

C. Dynamics Decoupling

The formulation of learning dynamics models involves

various strategies, among which the full-state predictor and

the multi-head predictor are prominent (Figure 2). The full-

state predictor aims to directly forecast the complete state

vector, encompassing linear velocity v, angular velocity ω,

and attitude q, offering a comprehensive view of system

dynamics. However, its holistic approach may encounter

challenges in capturing long-term dependencies due to the

complexity of underlying dynamics and the high-dimensional

output space, potentially increasing sensitivity to data noise.

Conversely, the multi-head predictor divides the prediction

task into separate heads, typically focusing on velocity

and attitude independently. While this specialization allows

tailored modeling of different state aspects, it introduces co-

ordination challenges. Dividing the prediction task can hinder

effective prediction coordination, leading to inconsistencies

and limited information sharing between the decoders, reduc-

ing predictive accuracy. In contrast, our proposed modular

approach decouples system dynamics into manageable sub-

problems. By focusing on distinct components, such as ve-

locity and attitude, decoupled predictors promote modularity,

simplify learning and enable independent optimization. This

strategy enhances the model’s capability to capture complex

dynamics and facilitates more accurate long-term predictions,

addressing the limitations of traditional predictors. Specifi-

cally, we introduce two key modules: the Velocity Predictor

and the Attitude Predictor. The Velocity Predictor is designed

to forecast the change in velocity at the next time step.

Formally, it is expressed as

ẑt+1 = zt + hθvel(Xt,Ut), (6)

where ẑt+1 and zt denote the predicted velocity and current

velocity, encompassing both linear and angular changes -

z =
[

v ω
]¦

. On the other hand, the Attitude Predictor

forecasts the change in attitude quaternion at the next time

step and is formulated as

q̂t+1 = hθatt(Xt,Ut)» qt, (7)
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Fig. 3: Selecting model parameters ensuring real-time per-

formance on embedded systems. The parameter bound is

determined by selecting the model with the lowest parameter

count capable of real-time performance. LSTM achieves real-

time predictions with up to 5.2 million parameters. We freeze

this bound across all models to have a fair comparison.

where » represents the quaternion-vector product, and q̂t+1

and qt denote the predicted and current attitude, respectively.

V. EXPERIMENTAL SETUP

A. Datasets

We extensively perform experiments on two well-known

open-source real-world quadrotor datasets to analyze the

long-term predictive performances of the neural models.

PI-TCN. This dataset [4] includes 68 trajectories with a

total flight time of 58 min 3 sec. These cover a diverse range

of motions, including straight-line accelerations, circular

movements, parabolic maneuvers, and lemniscate trajecto-

ries. The dataset is designed to capture complex effects,

pushing the quadrotor to its physical limits with speeds of 6

ms−1, linear accelerations of 18 ms−2, angular accelerations

of 54 rads−2, and motor speeds of 16628 rpm. Data is

sampled at 100 Hz. We use 54 trajectories for training, 10
for validation, and 4 for testing, ensuring a comprehensive

evaluation across various challenging scenarios.

NeuroBEM. This dataset [5] comprises 96 flights with

a total flight time of 1 hr 15 min, encapsulating the entire

performance envelope of the platform up to observed speeds
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of 18 ms−1 and accelerations of 46.8 ms−2. While the

original dataset is sampled at 400 Hz, we resampled it at

100 Hz for all experiments. We utilize 67 trajectories for

training, 17 for validation, and 12 for testing.

B. Training

We carefully chose the model architecture parameters to

ensure real-time performance on an embedded platform. By

analyzing the inference speed of baseline models relative to

their parameter count (see Figure 3), we establish a parameter

bound by identifying the model with the lowest parameter

count capable of real-time performance. LSTM demonstrates

real-time predictions with up to 5.2 million parameters. To

ensure fair comparisons, we select this parameter bound

across all models. All models adopt an encoder-decoder

structure. For consistency, all encoders feature three layers.

The MLP encoder consists of layers with 1024, 512, and

512 neurons, respectively. Similarly, the LSTM and GRU

encoders consist of three layers with 512 neurons each in

the hidden state. The TCN encoder integrates three hidden

layers with sizes of 512, 256, and 256 neurons, leveraging

temporal convolutional layers with a LeakyReLU activation

function, batch normalization, kernel size of 3, and a dilation

factor of 2. All architectures incorporate an MLP decoder

composed of three layers with 512, 256, and 256 neurons.

In our training process, we chose not to normalize the

input state and actions (motor speed), as we notice no

significant performance improvement. However, we scale the

motor speed data by multiplying them by 10−3 to ensure

equal distribution of data component scales, allowing the

neural network to assign equal importance to all components.

We employ the AdamW optimizer for training over 50 K

iterations, ´1 and ´2 set to 0.9 and 0.999, respectively, and

a weight decay of 10−4. We train models with a batch size of

512, constant learning rate warm up, lasting for 5K iterations,

followed by a cosine annealing learning rate scheduler.

C. Evaluation Metric

We employ a sliding window approach with size H along

the unseen testing trajectory. At each state-control slice of H ,

the velocity predictor forecasts linear and angular velocities

T steps ahead, and we compute the velocity error between

predicted and ground truth velocity values

¶z =
1

T

T−1
∑

i=0

(zi − ẑi)
¦(zi − ẑi), (8)

where zi represents the ground truth velocities at time index

i, and ẑi denotes the predicted velocities at time index i.
Similarly, the attitude predictor forecasts unit quaternion

states T steps ahead, and we compute the quaternion error

with respect to the ground truth unit quaternion. We consider

that the orientation is not an element of the Euclidean

space [31]. Therefore, to compute the quaternion error we

take the logarithm of the rotation difference between the

predicted and ground truth quaternion. The error is

¶q =
1

T

T−1
∑

i=0

¹i, (9)

where, for a given time index i, ¹i is calculated as

¹i = arctan

(

∥∆qerror
i ∥

∆qerror
i

)

. (10)

The terms ∆qerror
i and ∆qerror

i denote the vector and scalar

components of the quaternion respectively, and ∆qerror
i is

∆qerror
i = q

gt
i » (qpred

i )−1, (11)

where q
gt
i and q

pred
i represent the ground truth and pre-

dicted quaternions, respectively. Finally, log∆qerror
i = u¹i,

where u = ∆qerror
i /∥∆qerror

i ∥. Both ¶z and ¶q are averaged

across all slices of different testing trajectories to evaluate

the model’s predictive accuracy. We evaluate the ability

to predict horizons of 60 steps across the unseen testing

trajectories of both datasets for all experiments. The reported

experimental results are obtained by averaging the models

trained with 3 different random seeds, ensuring robustness

and reliability, unless explicitly stated otherwise.

VI. RESULTS

A. Impact of History Length and Multi-step Loss

In this section, we investigate the impact of incorporating

historical information and utilizing multi-step loss formula-

tion on model performance, with all models in this experi-

ment employing the decoupled predictor type. Subsequently,

we conduct an ablation study to showcase the superior

performance of the decoupled predictor type compared to the

previously mentioned predictor types, thereby further validat-

ing our proposed approach. We begin by comparing MLP

models with and without history information, highlighting

the importance of temporal context in predictive modeling.

By leveraging historical data, the model improves its ability

to capture system dynamics, as evidenced by quantitative

results (Table I). Additionally, we investigate multi-step loss

formulation’s effectiveness in enhancing long-term predictive

accuracy, presenting comparative analysis between single-

step and multi-step loss functions. Our study reveals that

optimizing error over multiple future time steps U reduces

prediction errors and improves model robustness for mit-

igating compounding errors over long-horizon predictions.

Unroll length of 1 serves as the baseline, representing single-

step loss with no unrolling. Our findings suggest an optimal

configuration of a history length of 20 paired with an unroll

length of 10, and is selected for all subsequent experiments.

Exceeding an unroll length of 10 leads to training instabilities

due to large gradient values. We also notice that if we go

beyond a history length of 20, the error increases. Beyond a

certain history length, the relevance of past observations may

diminish, and including excessively distant past information

may introduce noise or irrelevant patterns, hindering the

model’s ability to generalize effectively to unseen data.

Furthermore, we observe MLP’s limitations in effectively
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Fig. 4: Mean Squared Error per-step among baseline neural networks models on unseen test trajectories. The MLP model

demonstrates higher error variance across diverse unseen trajectories compared to other sequential models, attributed to the

absence of architectural priors for capturing spatio-temporal dependencies across datasets.

TABLE II: Comparative performance of predictor types across trajectories with varied aggressiveness. The predictors utilize

TCN architecture, a history length of 20, and a multi-step horizon of 10 for loss computation. Evaluation are conducted

over 60 time steps on unseen trajectories by averaging the results over 10 training runs with different seeds.

Trajectory vmean [ms−1] vmax [ms−1]
Full State Multi Head Decoupled

δv δq δv δq δv δq

P
I-

T
C

N
[4

]

Ellipse 1 1.21 1.59 0.023 0.034 0.011 0.019 0.007 0.012

WarpedEllipse 1 1.61 2.44 0.082 0.083 0.016 0.021 0.008 0.014

Parabola 2.36 3.97 0.112 0.083 0.102 0.051 0.039 0.026

ExtendedLemniscate 2.44 4.25 0.321 0.104 0.564 0.059 0.122 0.032

Lemniscate 2.46 4.73 0.690 0.089 0.245 0.076 0.050 0.036

WarpedEllipse 2 2.90 4.88 0.135 0.032 0.107 0.035 0.019 0.010

TransposedParabola 2.73 4.93 0.431 0.065 0.650 0.069 0.187 0.019

Ellipse 2 3.27 5.57 0.266 0.034 0.192 0.017 0.030 0.015

N
eu

ro
B

E
M

[5
]

Lemniscate 1.67 3.51 0.047 0.042 0.102 0.129 0.017 0.004

Random Points 2.38 8.25 0.182 0.089 0.211 0.101 0.076 0.007

Lemniscate 3.21 7.04 0.199 0.031 0.482 0.015 0.094 0.007

Melon 3.57 7.63 0.543 0.034 0.941 0.028 0.107 0.004

Slanted Circle 6.92 10.75 0.524 0.029 1.226 0.116 0.140 0.004

Linear Oscillation 7.25 16.95 1.545 0.043 1.953 0.078 0.214 0.008

Race Track 7.64 13.14 2.993 0.092 3.656 0.071 0.697 0.006

Melon 7.74 13.55 1.842 0.101 2.921 0.077 0.091 0.004

Slanted Circle 8.57 13.32 0.598 0.043 1.206 0.087 0.141 0.002

Race Track 9.94 17.81 4.434 0.087 5.024 0.107 0.709 0.109

Lemniscate 12.01 19.83 2.563 0.054 3.344 0.106 0.711 0.005

Ellipse 15.02 19.20 6.235 0.065 6.813 0.073 1.528 0.024

extracting temporal context from historical data, motivating

further exploration of sequential architectures designed to

handle temporal data processing.

B. Sequential Models Performance

In this section, we assess the performance of sequential

models, including LSTM, GRU, and TCN, in comparison to

MLP, highlighting their effectiveness in capturing temporal

dependencies and reducing compounding errors. Figure 4

illustrates the mean and variance of composed predictions to

evaluate the long-term predictive capability of these models

on various unseen test trajectories. Notably, the mean and

variance of MLP predictions are observed to be higher than

those of the sequential models, indicating the ability of the

latter to leverage temporal dependencies for more accurate

predictions. This discrepancy arises primarily due to the

inherent limitations of MLP architectures in capturing tem-

poral dependencies effectively. As a result, MLPs struggle to

leverage temporal context from historical information, lead-

ing to less accurate predictions over longer time horizons.

Additionally, another factor contributing to the higher mean

and variance in MLP predictions is the loss of causality

in time-dependent signals. Unlike sequential models, which

inherently preserve the temporal order of data through re-

current connections or 1-D convolutional operations, MLPs

process input data in a feedforward manner, disregarding the

sequential nature of the information. This lack of causality

can lead to discrepancies in predictions, especially over

longer time horizons, where the relationships between data

points play a critical role in accurate forecasting.

Furthermore, we observe that TCN outperforms all base-

line models across various experiments, exhibiting superior

performance in terms of predictive accuracy and stability.

Moreover, our experiments reveal that TCN achieves a 21×
reduction in velocity error and a significant 23× reduction

in attitude error compared to MLP with no history on the

PI-TCN dataset. Similarly, on the NeuroBEM dataset, TCN

demonstrates a remarkable 31× reduction in velocity error

and an impressive 56× reduction in attitude error compared

to MLP with no history. These findings further underscore

the superiority of sequential models, particularly TCN, in

dynamics learning tasks, emphasizing their ability to capture
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TABLE III: Performance of predictor models with varied input state configurations. Given the critical role of control action

in influencing system dynamics, it is included in all input configurations tested. Incorporating the full state information as

input, consisting of linear velocity, angular velocity, attitude, and control action, results in the best performance.

*The attitude predictor is evaluated using the quaternion error.

INPUT PREDICTOR

v ω q v ω q∗

PI-TCN NeuroBEM PI-TCN NeuroBEM PI-TCN NeuroBEM

6 : : 0.102 0.422 – – – –
6 6 : 0.072 0.324 0.162 0.414 – –
6 : 6 0.014 0.108 – – 0.071 0.054

: 6 : – – 0.194 0.554 – –
: 6 6 – – 0.121 0.212 0.061 0.016

: : 6 – – – – 0.086 0.116

6 6 6 0.009 0.072 0.008 0.091 0.021 0.006
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Fig. 5: Mean and standard deviation of the best-performing

predictors across 10 random trials, evaluating velocity and

attitude error. A, B, and C correspond to Full-State, Multi-

Head, and Decoupled, respectively.

complex temporal patterns and improve predictive accuracy.

C. Comparison of Predictor Types

This section analyzes the predictive performance and

stability of various predictor types across trajectories charac-

terized by diverse levels of aggressiveness. These trajectories

exhibit average velocities ranging from 1.12 ms−1 to 3.27
ms−1 for the PI-TCN dataset and 1.67 ms−1 to 15.02 ms−1

for the NeuroBEM dataset. Both velocity and attitude errors

are assessed for each predictor type. Results indicate a

consistent superiority of the decoupled dynamics predictor

over both the full-state and multi-head predictors across all

aggression levels, underlining its adeptness in handling chal-

lenging dynamic scenarios (refer Table II). Furthermore, an

in-depth analysis of the mean and standard deviation of the

best-performing predictors across 10 different random seeds

underscores the decoupled predictors’ enhanced stability and

robustness compared to their counterparts (refer Figure 5).

Notably, the instability and inaccuracy arises due to the

complexity of the underlying problem.

Additionally, we conduct an experiment to match the

total number of parameters of the full-state and multi-

head predictors to the decoupled predictor by doubling the

parameters in both the encoder and decoder. This adjustment

is necessary because the decoupled framework uses two

independent neural networks to predict distinct modules,

whereas the other two predictors rely on a single network.

By doubling the parameters in the full-state and multi-head

predictors, we aim to equalize model capacities. However,

despite the increased model complexity, performance does

not improve compared to the decoupled counterpart. This

underscores the complex nature of the problem, where simply

increasing model capacity does not enhance predictive accu-

racy. The decoupled approach resolves this by breaking down

system dynamics into manageable subproblems, promoting

modularity, simplifying learning, and enabling independent

optimization for velocity and attitude components.

D. Ablation of State Input Representation

In this experiment, we aim to assess the impact of different

input combinations on the performance of our framework

for learning dynamics. We consider as inputs the history

of velocity, angular velocity, attitude, and control action.

Given the crucial role of control action in influencing system

dynamics, it is included in all input combinations. We de-

compose the framework into three separate predictors: linear

velocity, angular velocity, and attitude predictors to better

understand the effects of different inputs on each solution.

Our observations reveal notable trends across the predic-

tors (Table III). Firstly, for the linear velocity predictor, we

observe that incorporating the full state information as input,

comprising the history of linear velocity, angular velocity,

attitude, and control action, result in the best performance.

Furthermore, there is a gradual increase in performance as we

augment the input with additional state quantities, indicating

the importance of considering the complete state information

for accurate prediction. Similar trends are observed for the

angular velocity and attitude predictors, with optimal perfor-

mance achieved when full state observations are included as

input. This ablation study highlights the significance of full

state information in capturing the intricate dynamics of the

system and achieving superior predictive accuracy.
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VII. DISCUSSION

The proposed approach offers several new valuable in-

sights and guidelines for designing data-driven solutions

for quadrotor learning dynamics. First, leveraging histor-

ical information and employing multi-step loss formula-

tion significantly enhances the model’s ability to predict

longer horizons. Second, the modular approach decouples

system dynamics into manageable subproblems, facilitating

independent optimization of each module. Finally, a TCN

architecture integrated with the two aforementioned designs,

demonstrates superior performance across diverse levels of

aggressiveness in real-world scenarios. The top-performing

model produces feasible and stable open-loop predictions for

up to 60 steps, showcasing its robustness and efficacy.

VIII. CONCLUSIONS

In summary, our work tackles the critical challenge of

achieving accurate modeling of system dynamics to en-

able effective control of quadrotors. Despite the promises

of existing data-driven approaches, their limitations in ad-

dressing compounding errors over long prediction horizons

highlight the necessity for comprehensive strategies. Through

meticulous evaluation of design choices and exploration of

sequential modeling techniques, we demonstrate strategies

in minimizing these errors. Our novel decoupled dynamics

learning framework stands out for its ability to simplify

the learning process while enhancing modularity, hence

improving long-term forecasts. Extensive experiments on

real-world datasets validate the efficacy and precision of

our approach. Future work includes integrating the proposed

framework with a controller to analyze flight performance

under challenging operating conditions.
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