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Fig. 1: Overview of the benchmark study: we investigate the impact that different input configurations have on the ability

of Deep Reinforcement Learning control policies to fly a real drone with zero-shot sim-to-real adaptation.

Abstract— In the last decade, data-driven approaches have
become popular choices for quadrotor control, thanks to their
ability to facilitate the adaptation to unknown or uncertain
flight conditions. Among the different data-driven paradigms,
Deep Reinforcement Learning (DRL) is currently one of the
most explored. However, the design of DRL agents for Micro
Aerial Vehicles (MAVs) remains an open challenge. While some
works have studied the output configuration of these agents (i.e.,
what kind of control to compute), there is no general consensus
on the type of input data these approaches should employ.
Multiple works simply provide the DRL agent with full state
information, without questioning if this might be redundant and
unnecessarily complicate the learning process, or pose superflu-
ous constraints on the availability of such information in real
platforms. In this work, we provide an in-depth benchmark
analysis of different configurations of the observation space.
We optimize multiple DRL agents in simulated environments
with different input choices and study their robustness and
their sim-to-real transfer capabilities with zero-shot adaptation.
We believe that the outcomes and discussions presented in
this work supported by extensive experimental results could
be an important milestone in guiding future research on the
development of DRL agents for aerial robot tasks.

I. INTRODUCTION

Recent years have seen the emergence of MAVs platforms

like quadrotors that has revolutionized the research and com-

mercial fields of robotics. Their agility and maneuverability

make them suitable to be effectively deployed in several ap-

plication scenarios including, but not limited to surveillance,

environmental monitoring, and search and rescue [1].
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In the last decades, quadrotor control solutions have pri-

marily relied on model-based [2] and model-free approaches

[3] stemming from control system theory. However, recently

data-driven methods have shown their ability to infer the

control policies from data and experience and are able to

directly map sensor readings to control actions. This relaxes

or eliminates the need for modular architectures (e.g., a con-

troller coupled with a state estimator), or knowledge about

the system dynamics [4] consequently reducing the control

latency and potentially increasing the system adaptation to

multiple flight conditions. Among these, the Reinforcement

Learning (RL) paradigm is certainly one of the most promis-

ing strategies to enable the design of end-to-end controllers.

However, existing works on RL-based control of aerial

robots propose different model designs without a general

consensus on which is the most suitable input set that

is sufficient for the policy network to guarantee effective

control. Indeed, the RL control agents proposed in literature

are designed to process observations of the full system state,

indirectly assuming that more information leads to better

performance [5], [6]. This hypothesis might not hold for two

main reasons: i) some observations might not be available

on the real drone platform; ii) providing more information

does not necessarily ease the optimization of the RL agent,

which might instead be more complex due to the increased

dimension and redundant information of the input space.

Motivated by these considerations, in this work, we con-

duct an in-depth analysis on multiple possible information

choices provided to the RL agent to compute the control

policy for quadrotor control. For this purpose, different input

modalities are considered and several RL agents are trained

in simulation. Evaluation, on the other hand, is performed

by deploying these models (without any fine-tuning) on

real drone platforms. This allows to study the robustness

of the different input modalities to non-ideal conditions not

modeled in simulation. More broadly, this allows to assess

the sim-to-real capabilities of the different models providing

to the community an analysis that can be directly exploited

to design drone controllers for practical applications. Under-
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standing the effect that different input configurations have on

the performance and on the sim-to-real transfer capabilities

of RL-based drone controllers is crucial to design robust

and reliable systems. Is it more convenient to provide the

policy network with all the available information on the

robot state (e.g., position and orientation in the real-world

fixed frame, angular velocities, and accelerations), leaving

to the RL algorithm the role of combining and mapping

data to control actions? Or is providing additional much

(and possibly redundant) information harmful to the RL

optimization process?

These questions are still unanswered and, in general, an

analysis of the impact of the input data on the RL-based

controller performance is still missing. Therefore, this paper

presents the following key contributions

• We propose the first benchmark analysis of RL-based

control policy for aerial robots focused on input config-

urations. We consider multiple possible design choices

optimizing in simulation environments different models

that process different data types ranging from minimal

sensor readings to the full drone state information.

• We present an extensive experimental campaign to study

the performance of different RL agents and compare

their sim-to-real transfer capabilities. To achieve this,

the controllers are trained in simulation on a randomized

family of MAV dynamic models, and are deployed

without any fine-tuning on a real quadrotor platform,

presenting characteristics that inevitably differ from

those of the simulated systems. This approach allows

for accurate comparison of the models’ performance in

real-world scenarios, which is crucial for their practical

applications.

• We highlight that increasing the information provided

to the DRL agent does not necessarily enhance the

performance. Furthermore, we show that configurations

with a limited observation space (e.g., containing only

relative position data) are able to learn robust flying

policies and can achieve comparable performance with

respect to models with more privileged information.

The rest of the paper is organized as follows. Section

II summarizes the state-of-the-art on control strategies for

quadrotors, highlighting that nearly no works have studied

the design choices for successfully sim-to-real transfer of the

RL agents. Subsequently, Section III introduces the proposed

methodology, while Section IV presents several experimental

tests and discusses the results. Finally, Section V concludes

the paper and reports possible future research directions.

II. RELATED WORK

Classic Control Methods. Stabilization and position

control of aerial platforms have gathered significant atten-

tion in literature, leading to the development of multiple

classic control techniques [7]. These methods encompass

both model-free approaches, such as proportional-integral-

derivative (PID) controllers, and model-based strategies,

including Linear Quadratic Regulator (LQR) and Model

Predictive Control (MPC). The PID stands out as the most

popular choice due to its ability to achieve good set-point sta-

bilization performance [8], [9] with minimal implementation

effort. However, since aerial platforms are highly non-linear

and under-actuated systems [10], the performance of PID

controllers considerably decreases in more challenging sce-

narios where agile flight with low position error is required.

More advanced solutions that exploit the knowledge

of the dynamic model have, therefore, emerged. Among

those, feedback linearization approaches [11]–[13] have been

widely explored. They transform the non-linear dynamics

of the drone into an equivalent linear model so that a

suitable flight controller can be designed with the linear

control theory. However, these controllers often exhibit lack

of robustness since the equivalent system may hold zero

dynamics (i.e., states which are unobservable from system

output), causing instability. Backstepping control approaches

are another possible solution [14], [15]. The main advantage

is that this family of techniques inherently ensures robustness

and prevents the cancellation of valuable non-linearities. An

additional popular alternative that allows to optimize the

performance while considering trajectory constraint is repre-

sented by non-linear MPC strategies [16], [17]. However, this

framework relies heavily on the availability of an accurate

model of the quadrotor, an assumption that, in practice, is

often difficult to satisfy and therefore it should be learned.

Furthermore, it is computationally expensive and may be

difficult to be deployed on platforms with low computing

capacity.

Learning-based Methods. For these reasons, learning-

based techniques have recently drawn the attention of the

robotics community. In [18] an iterative learning MPC is

proposed to improve task performance over many trials,

while in [19] the authors employ deep neural networks in

the MPC prediction step to achieve real-time computation

on an embedded platform. While these solutions heavily

rely on the combination between a module that learns the

model dynamics and a classic controller, many recent works

are moving toward end-to-end approaches that leverage rein-

forcement learning to directly learn the control policy from

experience. This allows to obtain effective control policies

that are capable to generalize over complex scenarios without

the need for prior knowledge about the non-linear system.

For example, the authors in [20] show a reinforcement

learning controller trained to directly map state representa-

tions to actuator commands. The authors demonstrate the

ability of their solution to stabilize the quadrotor even under

extremely challenging conditions, while remarkably reducing

computation time by two orders of magnitude if compared

to conventional trajectory optimization algorithms. While in

[20] only hovering stabilization is considered, more recent

works manage to develop policies able to perform robust

target tracking [21], champion-level drone racing [22] and

aggressive quadrotor flight [23]. Further constraints such as

the time of flight and the presence of obstacles are taken into

consideration in [24], where a RL neural-network controller

is able to perform minimum-time quadrotor flight in cluttered

environments.

Authorized licensed use limited to: New York University. Downloaded on March 28,2025 at 21:41:05 UTC from IEEE Xplore.  Restrictions apply. 



Despite the promising results shown by RL-based ap-

proaches, to foster future research in this direction, it is

necessary to perform in-depth studies on the design choices

of the RL framework. In this work, we specifically focus

on the data input choices since most of the aforementioned

works make different choices regarding the sensor data pro-

vided as input to the policy network or the output signal that

it computes (e.g., collective thrust and body rates or single

motor thrusts) without analyzing the effect that these choices

have on the system performance. This analysis is even more

critical if we consider that RL algorithms usually trained in

simulation environments cannot be directly optimized on real

drone platforms due to battery constraints and safety aspects.

Therefore, the design strategy might have a significant impact

on the generalization capabilities of the policy network.

The first benchmark study of different configurations of

the policy output is proposed in [25], where RL model that

computes linear velocities, single-rotor thrusts and collective

thrust and body rates are compared. The authors show that

the latter strategy is the most robust and effective, particularly

with respect to the sim-to-real transfer. Nonetheless, to the

best of our knowledge, the impact of the input configuration

on the learned policy has not been investigated in the state

of the art. Specifically, the following questions still remain

unanswered: i) What is the minimum information required by

the network to compute the output command? and ii) What

combination of input data provides the best performance?

III. METHODOLOGY

A. Quadrotor Dynamic Model

Training RL methods directly on real drones is impracti-

cal and unfeasible due to time-consuming and costly real-

world experiments, as well as safety concerns regarding

potential crashes and hazardous situations. Consequently,

the RL agents described in the following are optimized by

leveraging a simulator of the quadrotor dynamic model in

which the drone is controlled by collective thrust and body

rates (CTBR). The output of the policy has been chosen to

be CTBR as suggested by the study presented in [25].

Following [26], we assume that the quadrotor is a 6

degrees-of-freedom rigid body of mass m and moment of

inertia matrix J = diag(Jx, Jy, Jz) in which the evolution

of the collective thrust f and the angular velocities ω =
(ωx, ωy, ωz) are modeled as first-order systems with time

constant kf and kω , respectively. Consequently, the state

space is 19-dimensional and the dynamics of the system in

the world frame W can be expressed as follows
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where p, v and R are the quadrotor absolute position, velocity

and rotation matrix, respectively. The gravity vector is de-

noted by g =
[

0 0 −9.81m/s2
]¦

while fdrag is a linear

drag term obtained as fdrag = −
[

kvxvx kvyvy kvzvz
]¦

where (kvx, kvy, kvz) are suitable drag coefficients. Rj de-

notes the j-th column of R and [ω]× is the skew-symmetric

representation of ω. The input to the system is represented

by fcmd and ωcmd, which are respectively the commanded

total thrust and body rates. Furthermore, in order to adapt the

quadrotor dynamics for the reinforcement learning training

process, a zero-order-hold discretization technique is applied.

B. Problem Formulation

The primary focus of this work is to conduct a study to

demonstrate the impact that different input configurations

have on end-to-end DRL policies trained in simulation and

then deployed on a real quadrotor without any form of fine-

tuning. More specifically, we are interested in showing which

information is essential to fly, and which leads to better or

worse performance. To this aim, we consider a point-to-

point navigation task in which the quadrotor starts from a

perturbed initial condition, and the goal is to reach a fixed

target position yr as fast as possible, hovering in-place once

reached. The different controllers are optimized with an end-

to-end Deep Reinforcement Learning (DRL) strategy to learn

a model that directly maps the observation o(k) to the control

action u(k). As in standard RL, training is performed by

observing the environment rewards r(k) obtained through

interactions with the environment across multiple episodes.

As specified above, we follow [25] and define a continuous

actions space with two signals {fcmd(k), ωcmd(k)}, i.e., the

collective thrust and the body rates (CTBR). In addition,

to reject constant disturbance accelerations, we augment the

thrust signal with an integral contribution in the form of

fcmd(k) = fcmd(k − 1) + df(k) ∗ ts, where ts is the

sampling time and uk = (df(k), ωcmd(k)) is the output

of the learned policy in which df(k) represents a collective

thrust increment.

To study the effect of the different observation space

configurations, we design and optimize multiple DRL agents.

The considered configurations take inspiration from choices

made in several previous works [20]–[25]. Specifically, the

observation processed by each agent is composed of different

combinations of the following information: the position error

of the quadrotor with respect to the target position e = yr−p,

the current rotation matrix R between the body and the

world frame, the angular velocities ω of the drone, and the

action u(k − 1) computed by the DRL controller at the

previous time step. Two reference frames are considered for

the position error vector: the world frame W and the body

frame B. We study also this aspect since absolute or relative

position information might be available depending on the

onboard sensors. For instance, absolute positioning might be

provided by a GPS sensor, while relative information could

be obtained through vision devices.

We consider a history of H = 10 observations to build

the input vector of the DRL agent, resulting in o(k) =
{o(k), o(k − 1), · · · , o(k − H + 1)} at the timestep k.

Therefore, eight different DRL agents are considered, each

one with the observation space configuration reported in
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TABLE I: The considered observation space configurations and their corresponding information.

Input Information
Observation Space Configurations

{eW ,R,ω,u} {eW ,R,u} {eW ,ω,u} {eW ,u} {eB,R,ω, u} {eB,R,u} {eB,ω,u} {eB,u}

Position Error (eW , eB) 6 6 6 6 6 6 6 6

Rotation Matrix (R) 6 6 : : 6 6 : :

Angular Velocities (ω) 6 : 6 : 6 : 6 :

Previous Control Action (uk−1) 6 6 6 6 6 6 6 6

Table I. For brevity, in the following of the paper we refer

to the learned models by using their respective observation

space such as {eW ,R,ω,u}, where the bold is used to

indicate that for each information we collect the last H
readings. It follows that the considered hovering problem

requires to learn a suitable DRL policy π capable of bringing

the position error e to zero using the learned control action

u(k) = π(o(k)) assumed to take values in a continuous

action space.

The reward signal r(k) is designed to address the naviga-

tion problem. Since the main control objective is to reduce

the position error to zero, we define the following reward

re(k) = (rx(k) ry(k) rz(k))
β , (2)

where

rj = max(0, 1− |ej |),

rj and ej are the j-th entries of re and e, respectively, and

β > 0 is an appropriate exponent. It should be noted that

re(k) is maximized when the quadrotor reaches the target

position. Furthermore, to also optimize the control effort,

we define a penalty ru as

ru(k) =
∥u(k)∥

1 + ∥u(k)∥
. (3)

To speed up the training process, we provide the DRL agent

with a high negative reward when the quadrotor deviates

excessively from the desired target point. Therefore, the

overall reward function is

r(k) =

{

re(k)−kuru(k) ∥e(k)∥ < em

−c, otherwise
, (4)

where ku > 0 is a weighting parameter that allows a trade-off

between the two reward terms, em is the maximum distance

allowed, and c is a large positive constant.

C. Deep Reinforcement Learning Approach

Since in the quadrotor setting, both the observation and the

output spaces are continuous, we leverage the popular policy

gradient paradigm to design the DRL agents. Specifically, we

exploit the asymmetric actor-critic framework [27], [28] and

use Deep Neural Networks (DNNs) approximators to im-

plement the two distinct actor and critic architectures. More

specifically, the actor (A-DNN) learns the optimal control

policy π(o(k)) while the critic (C-DNN) is responsible for

evaluating such a policy at training time.

The A-DNN is a Multi-Layer Perceptron (MLP) with three

hidden layers, each one composed of 256 neurons and tanh
activations. The network input depends on the specific model

considered in the benchmark study and it is obtained by

flattening o(k) in a N ∗ H-dimensional vector, where N
is the length of each o(i), with i = k, . . . , k −H + 1 in the

sequence (e.g., for {eW ,R,ω,u} we have N = 19). Every

agent shares instead the output configuration, composed of

the four-dimensional vector u(k) = {df(k), ωcmd(k)} rep-

resenting the control commands to the drone. Furthermore,

to alleviate the steady-error problem derived by the critic

overestimation bias [29], we impose u(k) = u(o(k))−u(o0)
since in perfect hovering conditions, i.e., when the quadrotor

has reached the target point, the output of the network should

be zero (o0 is the observation in perfect hovering conditions).

Thanks to the asymmetric framework, we can provide the

C-DNN with more privileged information since it operates

exclusively during the training phase. In particular, the input

to the critic network is augmented with instantaneous veloc-

ities and accelerations to facilitate training, i.e., [p ṗ p̈ R ω].
The C-DNN architecture is composed of a MLP with three

hidden layers, each one with 256 neurons and ReLu activa-

tions. The final layer of the network estimates the action-

value Qπ . It is important to remark that the critic used to

optimize each DRL agent has the same network structure

and inputs.

D. Training and Implementation Details

In order to train the DRL agents we employ the Soft

Actor-Critic (SAC) [30] framework, which is one of the

most recent RL strategies in literature. SAC often exhibits

more stable training dynamics due to its use of entropy

regularization, and, thanks to its off-policy nature, can take

advantage of a replay buffer that incorporates experience

also from past episodes, which, in general, allows for more

effective generalization capabilities. Moreover, we use a

domain randomization strategy [21], [25] to achieve zero shot

sim-to-real transfer and improve robustness with respect to

model uncertainties. In particular, we randomize the mass

m and the inertia matrix J of the drone, the random bias

added to the gravity vector g, and the drag linear coefficients

(kvx, kvy, kvz) up to ±10% of their nominal values. Fur-

thermore, in order to favor robustness to the control lags on

real platforms, we add random delays to the control actions

computed by the neural network in the interval [0; 10]ms.

Each DRL agent is optimized through the Stable-

Baselines [31] implementation of SAC, which we customized

to the asymmetric actor-critic framework. The networks of

each model are trained for a total of about 800k episodes

with 8 parallel environments. We use the Adam optimizer

with a learning rate of 0.0003 and a batch size of 256.
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TABLE II: Experimental results: positional tracking error in centimeters across different scenarios.

Observation
Space

Configuration

Experimental Scenarios and Metrics

Hovering Planar Ellipse Planar Eight-Shape 3D Eight-Shape Planar Ellipse - Inc. Speed Planar Ellipse - Inc. Speed Planar Ellipse - Inc. Speed

Px Py Pz Pc Px Py Pz Pc Px Py Pz Pc Px Py Pz Pc Px Py Pz Pc Px Py Pz Pc Px Py Pz Pc

{eW ,R,ω,u} 5.0 6.9 2.1 4.6 7.9 6.6 2.7 5.7 9.8 7.1 3.4 6.8 9.6 8.5 6.0 8.1 18.3 10.4 3.5 10.7 13.8 10.4 5.0 9.7 15.0 10.3 6.9 10.7

{eW ,R,u} 2.6 2.1 3.3 2.7 2.3 3.4 3.2 3.0 2.7 2.8 4.1 3.1 2.5 2.9 6.2 3.9 3.6 10.9 3.8 6.1 4.0 3.6 4.3 4.0 3.8 3.9 5.7 4.5

{eB,R,ω,u} 4.7 3.0 3.2 3.7 6.7 4.2 4.4 5.1 9.5 3.1 3.1 5.2 8.0 2.9 6.6 5.8 7.2 15.6 9.2 10.7 9.9 4.4 4.5 6.3 10.3 4.7 7.5 7.5

{eB,R,u} 2.5 2.7 3.1 2.7 4.0 3.3 3.6 3.6 4.1 3.0 3.6 3.5 3.1 2.6 5.8 3.9 7.7 11.8 7.0 8.8 7.0 4.9 4.2 5.4 8.5 6.1 6.8 7.1

{eB,ω,u} 2.1 3.2 2.7 2.7 3.7 5.0 3.2 4.0 3.5 4.2 3.3 3.6 4.2 4.5 5.8 4.8 9.1 9.6 4.0 7.6 4.4 5.7 3.1 4.3 5.5 6.4 5.9 5.9

{eB,u} 2.2 3.7 3.1 3.0 3.2 4.7 3.0 3.6 3.3 4.2 3.9 3.8 3.5 4.3 6.7 4.8 7.3 10.1 2.9 6.8 7.0 7.2 3.3 5.9 5.0 6.9 4.7 5.5

PID Controller 1.6 1.5 1.4 1.5 2.4 5.5 1.6 3.2 2.8 2.7 1.5 2.3 3.4 2.6 8.7 4.9 7.8 15.6 2.2 8.5 7.9 5.8 1.5 5.1 8.2 5.8 16.8 10.3

The training process is structured in episodes. At the

beginning of each one of them, the quadrotor is randomly

positioned inside the environment distant from the desired

target goal point. The drone starts from a perturbed initial

condition with random orientation, linear and angular ve-

locities (different from the hovering ones). Hence, during

a training episode the DRL agent has to perform control

actions in order to (i) recover the quadrotor from the ini-

tialization state, (ii) guide it to the desired target point, and

(iii) hover in-place once arrived at destination. An episode

terminates either if the step number k reaches a predefined

maximum limit or the distance limit from the target point

∥e(k)∥ > em is violated.

The training process of each model requires about 2 hours

and 1.1 GB of VRAM to converge on a workstation equipped

with 2 × NVIDIA RTX 2080Ti with 11GB of VRAM, an

Intel Core processor i7-9800X (3.80 GHz×16) and 64 GB

of DDR4 RAM. The inference time required for a control

action is about 3 ms on a NVIDIA Jetson Xavier NX.

IV. EXPERIMENTAL RESULTS

A. Experimental Setup and Metrics

To quantitatively evaluate the impact of each observa-

tion configuration, each DRL agent trained in simulation

is deployed on a real platform without further optimization

procedure, i.e., with zero-shot adaptation. We perform an ex-

tensive experimental campaign and evaluate the performance

of each model with respect to set-point stabilization and

tracking of different trajectories at varying velocities. Hover-

ing experiments are designed to compare how different input

configurations affect the drone stabilization capabilities. In

addition, three additional trajectories, i.e., an ellipse and two

eight-shape trajectories, one planar and one that spans the

3D space, are also considered (refer to the supplementary

multimedia material). Trajectory tracking experiments are

designed to evaluate the robustness and the capabilities of

the model to respond to set point variations across time.

In addition, to explore the responsiveness of the model, we

double the average speeds for each trajectory type trial, we

refer to these experiments as “Increased Speed" (Inc. Speed).

In each trial, the robot executes a specific trajectory

for approximately 20 seconds. To compare the models and

extract quantitative results from the experiments we employ

the following metrics

P̃j(k) =
√

∑M

k=0
(yj(k)−pj(k))2

M
,

P̃c(k) =
P̃x(k)+P̃y(k)+P̃z(k)

3 ,

where P̃j(k) is the Root Mean Square Error (RMSE) along

the trajectory of the quadrotor position with respect to the

three Cartesian j axis, and P̃c(k) is an overall trajectory

tracking score obtained by averaging the P̃j(k). Each exper-

iment is repeated three times and the RMSEs are averaged

over both the episode time and the runs performed in each

scenario, resulting in

Pm =
1

3Nc

3
∑

i=1

Nc−1
∑

k=0

(i)P̃m(k),

where m ∈ {x, y, x, c}, (i)P̃ indicates that the performance

is evaluated on the i-th run, and Nc is the number of samples

within the episode.

B. Discussion

In Table II, we report the results of the experimental

campaign. A first key finding of this study is that the

majority of the models successfully learn effective policies

for controlling the quadrotor in real-world scenarios, even

those with a less informative observation space. Only two

DRL agents do not reach convergence, i.e., those with the

{eW ,ω,u} and {eW ,u} observation space configurations

(hence, we do not report them in Table II). This result

is expected since the position error eW is given in the

world reference frame W while the action space of the

DRL controller (CTBR) is expressed in the body frame B.

Therefore, the information on the rotation matrix is crucial

to recover the orientation of the drone and control it.

Notably, our intuition that providing more information to

the agent does not necessarily lead to better performance is

supported by these results. By observing the values of the Pc

metric in the Table we notice that the models {eW ,R,ω,u}
and {eB,R,ω,u} achieve the worst performance. While this

might be surprising, it confirms that requiring the agent to

process more information increases the complexity of the

model and might hinder the optimization process. In DRL

settings, the experience needed to learn the optimal policy

grows significantly as the observation space increases and,

as in the case of these two models, could negatively impact

the training convergence.

Better scores are achieved by {eW ,R,u} and {eB,R,u}.

The former shows remarkable hovering and trajectory track-

ing capabilities in every considered scenario, while we

observe a performance degradation for the {eB,R,u} agent

when the velocity increase. Therefore, {eW ,R,u} is the

observation space configuration that attains the best per-

formance. It should be noted that this input configuration
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contains the minimum required information when position

error is expressed in the world frame.

It is also very interesting to observe that, despite being

the configurations with less information, the {eB,ω,u} and

{eB,u} agents are able to learn robust flying policies and

achieve comparable performance with respect to {eW ,R,u}.

This is remarkable if we consider that they do not have access

to the drone attitude. Moreover, the {eB,u} model shows

only a little performance drop when higher velocities are

considered and achieves better scores than the other model

with position errors expressed in the body frame. This result

is significant since it proves that it is possible to fly and

perform trajectory tracking by utilizing only relative position

information, which can be obtained from low-cost sensors

such as RGB cameras or Ultra-Wide Band (UWB) devices.

Furthermore, to better position the DRL controllers of

this benchmark study with respect to the classic control

methods, we add a comparison against a non-RL baseline.

More specifically, we implement a standard quadrotor control

architecture featuring two PID feedback loops: an outer loop

for position control and an inner one for attitude stabilization

[32], [33]. The PID parameters have been tuned experimen-

tally to achieve a suitable trade-off between responsiveness to

trajectory tracking errors and sensitivity to noise. As shown

by the results in Table II, every DRL controller exhibits

similar scores with respect to the PID counterpart, without

requiring manual parameter tuning. Moreover, the best per-

forming DRL policies such as {eW ,R,u}, {eB,ω,u} and

{eB,u} demonstrate less degradation in performance while

tracking faster trajectories and achieve higher metric scores

with respect to the PID.

Nevertheless, even if better results are achieved against

the PID baseline, it is important to highlight that this

comparison is for reference purpose only. As also shown

in [25], there are more complex controllers, such as a non-

linear MPC, capable of achieving sub-centimeter trajectory

tracking errors. However, the objective of the paper is not

to propose a novel controller, but to analyze the sim-to-real

adaptation capabilities of DRL policies with respect to the

observation space.

C. Velocity Robustness

We include a stress experiment to understand the max-

imum velocity that each DRL controller is able to track

before a failure. To this aim, we move the target point

across a circular trajectory and we gradually increase the

speed until the quadrotor loses the tracking (i.e., exceeds

50 cm of distance from the target point). In Table III, we

report the corresponding maximum supported velocity until

a failure for each DRL controller. It is important to highlight

that such analysis can be performed only on a simulation

environment, since pushing the controller to the limit of

stability can damage the real platform and pose security

issues. The numerical results reveal that {eW ,R,ω,u} and

{eB,R,ω,u} exhibit less robustness to fast trajectories,

despite having access to a more privileged observation space

compared to the other models. On the other hand, {eB,ω,u}

Fig. 2: Learning curves of the {eW ,R,u} variants trained

with a different observation length: we report the cumulative

reward reached by each agent during the training phase.

and {eB,u} are capable of tracking a target point moving at

approximately 1.2 m/s, while {eW ,R,u} and {eB,R,u}
also demonstrate remarkable performance with a maximum

velocity of about 1.0 m/s. These results further strengthen

the generalization capabilities of the DRL agents, since we

trained the controllers on a different task than fast trajectory

tracking.

TABLE III: Velocity stress experiment results (m/s).

{eW ,R, ω,u} {eW ,R,u} {eB,R, ω,u} {eB,R,u} {eB, ω,u} {eB,u}

0.73 1.06 0.74 0.98 1.21 1.19

D. Ablation Study

In order to justify two important design choices of this

benchmark, we conduct an ablation study regarding (i) the

use of a H-length window for the observation space and (ii)

the selection of the proposed input configurations.

Observation Length (H): We take into consideration the

best-performing controller of the benchmark, {eW ,R,u},

and we trained four variants by changing the length of the

window within the set {1, 2, 5, 10, 15}. As shown by the plot

in Figure 2, the use of a single observation does not lead to

convergence. However, as the length of the observation win-

dow increases, the learning process becomes more effective.

We observe performance saturation with a window length

of 10, which aligns with findings from other state-of-the-art

works [25]. Consequently, we fix the observation window

to 10, ensuring the controller’s effectiveness while avoiding

unnecessary complexity in the neural network architecture.

Observation Configuration: In order to choose the policy

input configurations, we conducted an extensive prelimi-

nary study in which a more comprehensive set of possible

information was considered, resulting in our decision to

not include the velocity and the quaternion. To prove the

effectiveness of our choices, we train two variants of the

{eW ,R,u} model. In the former, called {eW ,vW ,R,u},

we augment the observation space with the quadrotor linear

velocity w.r.t. the world frame W , while in the latter, named

{eW ,q,u}, we replace the rotation matrix with the corre-

sponding quaternion (q). As shown by the numerical results

reported in Table IV, the velocity does not improve the

performance of the DRL controller, and the rotation matrix

is the most effective representation of the orientation for the

considered task. In fact, (i) the velocity can be inferred from

a sequence of observations, and consequently, without loss
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of information, we prefer to not consider it in the benchmark,

and (ii) the rotation matrix is a non-ambiguous representation

in the space, while the quaternion is not (e.g., q is equal to

−q), and consequently, we preferred the former since using

the latter can lead to unexpected behaviors at test time.

TABLE IV: Experiments on input configurations (cm).

Observation
Space

Configuration

Experimental Scenarios and Metrics

Planar Ellipse Planar Eight-Shape 3D Eight-Shape

Px Py Pz Pc Px Py Pz Pc Px Py Pz Pc

{eW ,R,u} 2.7 11.4 2.3 5.5 3.3 2.6 1.5 2.5 2.8 2.8 4.0 3.2

{eW ,vW ,R,u} 13.2 5.5 1.4 6.7 13.8 1.2 1.9 5.6 15.0 1.5 2.8 6.4

{eW ,q,u} 5.4 10.0 4.4 6.6 4.9 2.1 2.7 3.2 5.3 2.4 6.1 4.6

V. CONCLUSION

In this work, we presented a benchmark study on how

different observation space configurations affect the per-

formance of DRL-based controllers when deployed with

zero-shot adaptation on a real quadrotor platform. Several

experiments have been performed and, to the best of our

knowledge, this is the first study that discusses these fun-

damental aspects of DRL controller design for MAVs. We

believe that this work could become an important reference

for future research by providing a guideline for selecting the

optimal observation space. More specifically, the results we

presented suggest that {eW ,R,u} and {eB,u} provide the

best point-to-point navigation performance. Moreover, since

the ability to fly is strictly needed in each task involving

quadrotors, these configurations can also be considered as

reasonable starting points for other applications.

Future works will focus on extending this benchmark by

considering agile flight maneuvers as well as other classes

of aerial robots such as fixed-wing configurations.
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