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Pulsar timing array experiments have reported evidence for a stochastic background of
nanohertz gravitational waves consistent with the signal expected from a population of supermassive
black hole binaries. Their analyses assume power-law spectra for intrinsic pulsar noise and for the
background, as well as a Hellings-Downs cross-correlation pattern among the gravitational-wave-
induced residuals across pulsars. These assumptions may not be realized in actuality. We test them in the
NANOGrav 15 yr dataset using Bayesian posterior predictive checks. After fitting our fiducial model to
real data, we generate a population of simulated dataset replications. We use the replications to assess
whether the optimal statistic significance, interpulsar correlations, and spectral coefficients are
extreme. We recover Hellings-Downs correlations in simulated datasets at significance levels consistent
with the correlations measured in the NANOGrav 15 yr dataset. A similar test on spectral coefficients
shows that their values in real data are not extreme compared to their distributions across replications.
We also evaluate the evidence for the stochastic background using posterior predictive versions
of the frequentist optimal statistic and of Bayesian model comparison and find comparable significance
(3.2σ and 3σ respectively) to what was previously reported for the standard statistics. We conclude with
novel visualizations of the reconstructed gravitational waveforms that enter the residuals for each
pulsar. Our analysis strengthens confidence in the identification and characterization of the gravita-
tional-wave background.

DOI: 10.1103/PhysRevD.111.042011

I. INTRODUCTION

In June 2023, four separate publications based on
the observations of five pulsar timing array (PTA)
collaborations reported strong evidence for a nanohertz
gravitational-wave (GW) background [1–4], spurring
interest in the implications of its spectral properties
and spatial correlations for astrophysics and fundamental

physics [5–8]. If the signal originates from a population
of supermassive black hole binaries (SMBHBs), its
spectrum is expected to approximate a power law [9,10],
but deviations can be caused by a large number of
potential effects. For example, at low frequencies, inter-
actions between the binaries and the surrounding gas
may result in a spectral turnover; at high frequencies, the
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finite number of binaries emitting in each frequency
bin may result in bin-to-bin fluctuations [5,7,11]. If the
signal originates from new physics, the spectrum can
point to the mechanism of its generation, and a large
number of models are currently consistent with the
data [6,12].
Spatial correlations between pulse times of arrival

(TOAs) for different pulsars were found to be consistent
with the Hellings-Downs function, the correlation pattern
induced by an isotropic GW background [13–15].
Deviations could be caused by anisotropy in the back-
ground, by a signal from a loud individual SMBHB.
Measuring anisotropy would constrain black hole pop-
ulation properties [16], while detecting an individual
SMBHB would offer a prime target for multimessenger
follow-up. However, dedicated searches for anisotropy
and individual sources have so far produced null
results [17–19]. Systematic errors could also induce
correlations between pulsars, e.g., monopolar correlations
due to clock errors or dipolar correlations induced by
errors in the Solar System ephemeris [20,21]. There is
slight evidence for monopolar correlations presented in
the NANOGrav 15 yr dataset [1].
Simulations can address the expected level of anisotropy

from a population of SMBHBs [16,22] and its detectability
using standard PTA models, which assume an isotropic
GW background with Gaussian statistics and a stationary
power-law spectrum. Indeed, Refs. [23,24] found that the
GW signal from a realistic SMBHB population would still
be detected using standard models. Thus, current PTA
observations [1–4,25] do not preclude the presence of
astrophysically interesting deviations from power-law
spectrum or isotropy.
In this paper, we ask whether the power-law and

Hellings-Downs assumptions are supported by observed
data, independent of any specific alternative physical
model. Our starting point is a fiducial Bayesian analysis
of NANOGrav’s 15 yr dataset [26] under the standard
power-law, Hellings-Downs model. We test these
assumptions by way of “posterior predictive model
checks” [27] as proposed in the context of PTA data in
Refs. [28,29]. These checks consist of creating popula-
tions of replicated datasets from real-data parameter
posteriors and using these replications to evaluate
whether real data is “typical” (i.e., not a statistical outlier)
according to a variety of detection, spectral, and corre-
lation statistics. Similar types of checks are becoming
increasingly common in the realm of binary black hole
population analyses as well [30–38].
Specifically, following Ref. [28] we reevaluate the

significance of Hellings-Downs correlations and search
for alternative spatial correlations using a new detection
statistic that marginalizes p-values over noise-parameter
posteriors. Following Ref. [29] we test the power-law
assumption by comparing intrinsic-noise and GW

power-spectrum posteriors as computed for real and repli-
cated data, and we perform a similar test for the binned
angular correlations between pulsars. We also carry out
leave-one-out cross validation to identify possible mis-
modeling in individual pulsars and to compute the
pseudo-Bayes factor (a cross-validation metric of model
comparison) between the standard Hellings-Downs model
and a null model in which common excess power has no
interpulsar correlations.
The rest of this paper is organized as follows. In Sec. II

we describe our data and data model, and we introduce
two sets of data replications that we will use for model
checking. In Sec. III we test Hellings-Downs correlations
using “Bayesian p-values” [28] for the optimal
statistic [39,40]; these p-values are marginalized over
GW and intrinsic-noise posteriors, and therefore account
fairly for the risk of false positives when the null
distribution is uncertain. We find evidence for Hellings-
Downs correlations at the 3.2σ level. We also evaluate the
evidence for additional background components with
monopolar or dipolar correlations and find none.
In Sec. IV we compare real-data and replicated-data

posteriors to search for deviations from a power-law
spectrum and from Hellings-Downs correlations. We find
no evidence that any individual frequency bin deviates from
the power-law model for either intrinsic pulsar noise or the
GW background, consistent with Ref. [41]. We also find no
evidence that any of the binned interpulsar correlations
deviate from the Hellings-Downs curve.
In Sec. V we examine the predictive power of the

standard PTA model as fit to the NANOGrav 15 yr data.
We perform a leave-one-out analysis where we fit Hellings-
Downs and uncorrelated models to Np − 1 pulsars and use
the models to predict the Nth

p pulsar’s data. The resulting
pseudo-Bayes factors favor Hellings-Downs correlations at
the 3σ level. Using simulations, we show that the distri-
bution of the factors across pulsars is consistent with what
would be expected for a power-law, Hellings-Downs-
correlated GW background with parameters from our
fiducial analysis.
Last, in Sec. VI we present the gravitational waveforms

that can be reconstructed for each pulsar from our fiducial
posteriors. These reconstructions are akin to the waveform
reconstructions for stellar-binary coalescences based on
LIGO data [42,43], with the distinction being that in this
case we show the estimated realization of a broadband,
spatially correlated stochastic signal, as opposed to the
gravitational waveform produced by a single binary sys-
tem. Pulsar J1909-3744 offers the best view so far of the
GW background reported in [1–4,25]. In Sec. VII we offer
concluding remarks.

II. DATA, MODEL, AND DATA REPLICATIONS

In this section we introduce the NANOGrav 15 yr
dataset, the modeling that is performed on each pulsar,
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and the full PTA models used to search for a GW back-
ground. We then discuss data replications based on our
typical PTA models, which we use in subsequent sections
to compare to the 15 yr dataset for the purposes of model
checking and model comparison.

A. Data

We use the NANOGrav 15 yr dataset, which contains 67
pulsars that have been timed for more than 3 yr, with 16.03 yr
of data between the first and the last time of arrival in the
dataset [26]. We use the DMX dispersion measure noise
model [44] and white noise parameters included in the
NANOGrav 15 yr data release [26]. For each pulsar, a
best-fit timing model is constructed that accounts for deter-
ministic effects like Roemer delay, proper motion, parallax,
binary orbits, etc., which is then subtracted from the TOAs to
produce a set of timing residuals for eachpulsar, δt. Stochastic
processes like achromatic intrinsic spin wandering and GW
background-induced delays are included in this initial fit as a
single “total red noise” contribution, as the first pass analysis
is done on a pulsar-by-pulsar basis and so we cannot separate
intrinsic pulsar noise from the GW background.

B. PTA model

In this subsection, we discuss the full PTA model that is
used to search for a GW background. Readers familiar with
this already can skip to Sec. III, although later we will make
frequent reference to equations introduced in this section.
For a more in-depth presentation of the PTA analyses, see
Refs. [45–47].
The starting point for the analysis are the timing

residuals, δt. We characterize stochastic processes like
intrinsic pulsar noise and the GW background in the
frequency domain using a Fourier matrix F and associ-
ated amplitudes a [48]. The stochastic processes are
covariant with elements of the timing model (specifically
the frequency, spin-down, and dispersion measure var-
iations), and so we also introduce deviations from the
best-fitting timing model parameters, ϵ. We assume these
deviations are small, such that changes in δt are linear in
changes in ϵ with a design matrix M made up of
derivatives of δt with respect to the timing model
parameters. Putting these effects together, we have a
model for the residuals

r ¼ δt − Tb; ð1Þ

where we have consolidated the frequency domain
representation and timing model corrections,

T ¼ ½M F %; ð2Þ

b ¼
!
ϵ

a

"
: ð3Þ

If radio frequency interference is effectively excised and
standard pulse profiles are accurate, the resulting noise is
dominated by radiometer noise and “pulse profile jitter”
which is traditionally assumed to be frequency independent
and Gaussian. This leads to a Gaussian likelihood for the
timing residuals

lnpðδtjbÞ ¼ −
1

2
½rTN−1rþ ln detð2πNÞ%; ð4Þ

where the covariance matrix N describes the measurement
noise of the individual observations and is block diagonal.
TOA at different radio frequencies from the same individ-
ual observation are correlated with one another due to pulse
profile jitter [49], but TOAs from different observations are
uncorrelated.
We assume that the GW background and the intrinsic

pulsar noise are stationary, and so they can be characterized
by the power spectrum of the GW background, correlations
between pulsars, and the power spectrum of the intrinsic
pulsar noise in each pulsar. The assumption of stationarity
for the GW background should hold if the dominant
contribution to the background is an ensemble of
SMBHBs emitting at roughly constant frequencies. The
assumption that intrinsic pulsar noise is stationary is one of
expedience that should be tested. Tests on the European
Pulsar Timing Array second data release show no signs of
nonstationarity [50].
Information about the power-law amplitude and spectral

index for the intrinsic pulsar noise and the GW background
is encoded in the covariance matrix of the sine and cosine
amplitudes a across pulsars. We introduce a set of hyper-
parameters Λ to characterize these power laws. We place a
Gaussian prior on b,

lnpðbjΛÞ ¼ −
1

2
½bTB−1bþ ln detð2πBÞ%; ð5Þ

where B ¼
!∞ 0

0 φðΛÞ

"
: ð6Þ

We use an improper uniform prior on ϵ so that its posterior
is determined by the likelihood. This prior is now broadcast
across b parameters for each pulsar. The covariance matrix
of the a coefficients is given by φðΛÞ, which contains
blocks corresponding to correlations of the Fourier modes
between pulsars. Diagonal blocks encode information
about the power spectrum of the total red noise for a given
pulsar, including the intrinsic pulsar noise ηaðΛÞ (where the
a subscript labels the pulsar) and the GW background
spectrum ρðΛÞ. Off-diagonal blocks between pulsars a and
b contain (scaled) contributions from the GW background.
Putting all of this together, the covariance matrix for a is

φðΛÞðai;bjÞ ¼ Γabρ2i ðΛÞδij þ η2aiðΛÞδijδab; ð7Þ

THE NANOGRAV 15 YR DATASET: POSTERIOR PREDICTIVE … PHYS. REV. D 111, 042011 (2025)

042011-3



where i and j label frequencies and Γab corresponds to the
correlations between pulsars. Different angular correlation
patterns correspond to different models. In this paper we
consider four models. The first states that Γab follows the
Hellings-Downs curve (HDmodel) that is expected from an
isotropic GW background,

Γab ¼
1

2
δab þ

1

2
−
ζab
4

þ 3

2
ζab ln ζab; ð8Þ

ζab ¼
1 − cos θab

2
; ð9Þ

where θab is the angle between pulsars a and b on the sky.
The second is that Γab ¼ δab, which we call the common
uncorrelated red noise (CURN) model. We will also
consider a MONO model that is characterized by monop-
olar correlations, Γab ¼ 1, and a model with dipolar
correlations (DIP) with Γab ¼ cos θab. Theoretical models
indicate that ρiðΛÞ will roughly take the form of a power
law, and past empirical studies suggest that ηaiðΛÞ often
follows a power law as well,

η2aiðΛÞ ¼
A2
rn;a

12π2

#
fi
fyr

$−γrn;a f−3yr
T

; ð10Þ

ρ2i ðΛÞ ¼
A2
gw

12π2

#
fi
fyr

$−γgw f−3yr
T

; ð11Þ

where Agw is the amplitude of the GW background at
fyr ¼ ð1 yrÞ−1, γgw is the negative spectral index, Arn;a is
the amplitude of intrinsic pulsar noise for pulsar a, and γrn;a
its associated spectral index. The frequency is given by
fi ¼ i=T, and T is the time between the first and last TOAs
in the dataset. For intrinsic pulsar noise we use 30
frequencies, i∈ ½1; 30% and for the GW background we
use i∈ ½1; 14%. These numbers were chosen based on
individual-pulsar fitting (for the intrinsic pulsar noise)
and a dedicated CURN analysis that allows for the common
spectrum to “flatten” at high frequencies, where it then
becomes indistinguishable from white noise.
The power-law models for the GW background and

intrinsic pulsar noise spectra have amplitudes and spectral
indices associated with them: Agw, γgw for the GW back-
ground and Arn;a, γrn;a for each of the Np pulsars in the
array. We collectively denote these parameters as Λ. To
reduce the total number of parameters we need to infer, we
typically marginalize over the model parameters b, leaving
a posterior on the hyperparameters

pðΛjδtÞ ¼
Z

dbpðδtjbÞpðbjΛÞpðΛÞ; ð12Þ

¼ pðΛÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
detð2πCÞ

p exp
#
−
1

2
δtTC−1δt

$
: ð13Þ

The covariance matrix is now C ¼ ðNþ TBTTÞ, and we
introduced a prior on the hyperparameters pðΛÞ. We also
note that pðbjδt;ΛÞ ∝ pðδtjbÞpðbjΛÞ ¼ N ðb̂;ΣÞ, which
is normal with mean and covariance given by

b̂ ¼ ΣTTN−1δt; ð14Þ

Σ ¼ ðTTN−1TþB−1Þ−1: ð15Þ

We estimate the marginalized posterior on Λ using
stochastic sampling methods [51] because of the large
dimension of Λ (2Np þ 2 in the case described above).
This yields Ns samples fΛsgNs

s¼1 approximately drawn from
the posterior,

Λs ∼ pðΛjδtÞ: ð16Þ

C. Data replications

Below we use δt to refer to generic timing residuals,
δt15 yr to refer to residuals from the 15 yr dataset, and δtrep

to refer to data replications. We use two models to create
sets of data replications to compare to the collected data.
Each method proceeds along similar lines:
(1) Choose Λ by drawing randomly from pðΛjδt15 yrÞ.
(2) Draw b ∼ pðbjΛÞ. The choice of pðbjΛÞ depends

upon the set of replications we are performing. We
specify details below when we discuss individual
replication sets. This method nominally calls for us
to draw from the improper prior on ϵ, yielding
unusable timing residuals. Therefore, we do not
simulate timing model variations, and fix ϵ ≈ 0.

(3) Draw δtrep ∼N ðTb;NÞ where b comes from the
previous step.

The data replications use different models at each stage.
We outline the different data replication sets, their purpose,
and what models they use to carry out the procedure
described above.

(i) CURNPosteriorDraws: We create simulated datasets
based on the CURN model which we index with
s. We draw Λs ∼ pðΛjδt15 yr; CURNÞ, and bs∼
N ð0;BðΛsÞjCURNÞ, Eqs. (5) and (6). The condi-
tioning on CURN implies no correlations between
pulsars,Γab ¼ δab.We do not simulate timingmodel
variations, i.e., ϵ ¼ 0. These sets of data replications
are compared to the data and recovered model
parameters.

(ii) HDPosteriorDraws: We create simulated datasets based
on the HD model which we index with s. We draw
Λs ∼ pðΛjδt15 yr; HDÞ, and bs ∼N ð0;BðΛsÞjHDÞ.
The conditioning on HD implies we include
Hellings-Downs correlations between pulsars during
simulation. We do not simulate timing model var-
iations, i.e., ϵ ¼ 0. These sets of data replications are
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compared to the real data and recovered model
parameters to assess how consistent the data are
with the HD model.

III. POSTERIOR PREDICTIVE NULL
HYPOTHESIS TESTING

Given Λs ∼ pðΛjδtÞ, we perform “posterior predictive
checks” by checking whether specific desired properties of
the model are consistent in the data. To do this, we
construct a test statistic Tðδt;ΛÞ that is sensitive to the
property we are interested in, and we compare that test
statistic calculated in the 15 yr data to the same statistic
calculated over data replications. Using this method we
check (1) whether the 15 yr data are consistent with the lack
of correlations assumed by the CURN model; (2) whether
the 15 yr data have correlations that are consistent with the
HD curve; and (3) whether the 15 yr data show evidence for
alternative spatial correlations, e.g., monopolar or dipolar,
inconsistent with both the HDmodel and the CURNmodel.

A. CURN model tests

The CURN model is characterized by a lack of spatial
correlations between pulsars, Γab ¼ δab. To reject this
model, we use the optimal statistic signal-to-noise ratio
(SNR) as our test statistic [39,40,52,53]. The SNR, for a
given choice of noise parameters, is distributed according
to a generalized χ2 distribution [54]; it is large when
Hellings-Downs correlations are present and centered
around zero when no spatial correlations are present.
The optimal statistic depends upon the total red noise in

each pulsar (intrinsic pulsar noise and GW background),
which we do not know a priori. Therefore, current analyses
average the SNR over the posterior distribution on the noise
parameters,

SNR ¼
Z

dΛpðΛjδt15 yrÞSNRðδt15 yr;ΛÞ

≈
1

Ns

XNs

s¼1

SNRðδt15 yr;ΛsÞ; ð17Þ

where in the second line we perform a Monte Carlo integral
using a finite set of Ns posteriors samples [53]. SNR is then
used as the test statistic for null hypothesis testing. The
motivation for using this “noise marginalized optimal
statistic” is that we are marginalizing over uncertainty in
the noise and signal parameters when we calculate stat-
istical significance. One uses “phase shifts” [55], “sky
scrambles” [56], or data replications to estimate the null
distribution of SNR and calculate a p-value for the
measured SNR. In Ref. [1], SNR ≈ 5, which falls at the
3.5 − 4σ level in the null distributions, indicating that
the CURN model does not fully describe the data.

Here, we use a more conservative statistic that gives
more weight to low-SNR outliers and lower weight to high-
SNR outliers than the noise marginalized optimal
statistic [28]. The cumulative distribution function is not
linear in the SNR, and so we first calculate the p-value of
the SNR calculated on each Λs, and then average those
p-values together. The resulting p-value will be less
significant than the one calculated on SNR. Conceptually,
this can be thought of as averaging over the risk of rejecting
the null hypothesis by placing more weight on the most
conservative noise realizations. By contrast, calculating
a p-value on SNR weighs high-SNR (and therefore less
conservative noise realizations) equally to low-SNR noise
realizations.
We compare the value of the optimal statistic on the

observed data to its value on data replications from the
posterior predictive distribution. We calculate a p-value on
each SNRðδt15 yr;ΛsÞ and average those p-values. This
final, averaged p-value is referred to as a posterior
predictive p-value or a Bayesian p-value because it is
marginalized over the posterior predictive distribution for
the data [27,57,58]. We can do this generically, when we do
not know the distribution of the test statistic, by calculating

pB ¼
Z Z

Θ½SNRðδtrep;ΛÞ − SNRðδt15 yr;ΛÞ%

× pðδtrepjΛ;CURNÞpðΛjδt15 yrÞdðδtrepÞdΛ: ð18Þ

Here Θ is the Heaviside function, and pðδtrepjΛ;CURNÞ
could be one of the data replications described in Sec. II C,
or it could be a set of “bootstrapped” data replications like
sky scrambles or phase shifts.1 If the analytic distribution
for the SNR for a given choice of Λs is known, then we do
not need to actually perform data replications, andR
Θ½·%pðδtrepjΛ;CURNÞdδtrep is the inverse cumulative

distribution function for the SNR. The Bayesian p-value
reduces to

pBðδt15 yrÞ¼
Z

P½SNRðδtrep;ΛÞ>SNRðδt15 yr;ΛÞ%

×pðΛjδt15 yrÞdΛ

≈
1

Ns

XNs

s¼1

P½SNRðδtrep;s;ΛsÞ>SNRðδt15 yr;ΛsÞ%;

ð19Þ

1We use δtrep to also denote sky scrambled and phase shifted
datasets, in addition to actual simulated datasets. This is some-
what poor notation. When performing sky scrambles and phase
shifts the timing residuals themselves are the same as δt15 yr and it
is the sky position (sky scrambles) or F (phase shifts) that
changes. Nevertheless, we use δtrep to refer generically to any
datasets or schemes used to construct the null distribution, for
simplicity.
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where in the second line we evaluate the integral
numerically using draws from pðΛjδt15 yrÞ. The super-
script “rep” indicates that the inverse cumulative distri-
bution function on the measured SNRðδt15 yr;ΛÞ is
calculated over (theoretical or actual) data replications
or sky scrambles.
The probability distribution function for the optimal

statistic SNR for fixed Λs, under the noise model, is a
generalized χ2 distribution [54] which we will refer to as
GX2 moving forward. In Fig. 1 we show SNRðδt15 yr;ΛsÞ
for 100 draws along the bottom, and each blue
curve is P½SNRrep;sðδtrep;s;ΛsÞ > SNRðδt15 yr;ΛsÞ%, calcu-
lated using the GX2 distribution. The dashed red line
gives pB ¼ 7 × 10−4, which corresponds to 3.2σ signifi-
cance in favor of rejecting the CURN model. By contrast,
the significance of the SNR maximum-likelihood
draw from pðΛjδtÞ calculated using GX2 was ≈2 ×
10−4 or 3.5σ.
In using the GX2 distribution, we assumed that the noise

model is correct. Instead, we can construct replications of
our dataset that break correlations due to GWs, but preserve
any mismodeling in the noise that might cause large SNR
values in favor of correlations. The two main methods for
doing this are sky scrambles [56] and phase shifts [55]. For
each Λs, we perform 400,000 sky scrambles, where we
artificially move the location of the pulsars to different
positions on the sky drawn uniformly on the two-sphere
and calculate a “new” Hellings-Downs curve using these
new positions. Using these sky scrambles, we build a null
distribution and calculate significance. We repeat this for

100 draws of Λs and average the inverse cumulative
distribution functions (CDFs) as in Eq. (19). Under this
procedure, we find pB ¼ 1 × 10−4, which corresponds to
an equivalent Gaussian significance of 3.7σ. Using sky
scrambles, Ref. [1] found p ¼ 5 × 10−5 using the tradi-
tional procedure of building a null distribution for SNR.
The results are shown in Fig. 2, where the inverse CDFs for
sky scrambles (green) in general fall off faster than for the
GX2. However, there are some outliers resulting in pB

being larger than the p-value calculated on SNR using
scrambles.
It is unclear why the inverse CDF for sky scrambles

generally falls off faster than for the GX2; this is an open
area of investigation [59]. In previous work, methods of
generating a background distribution from sky scrambling
or phase shifting use a “match statistic,” in an attempt to use
scrambles or shifts that are quasi-independent of one
another and the Hellings-Downs curve [60,61]. Recently,
in Ref. [62], the authors suggested only sky scrambles that
produce correlation curves that are independent of one
another should be used, where independence is achieved by
insisting the match statistic disappear. In Ref. [1], the
condition is that the match threshold between any one sky
scramble and all others is≲0.2. Here we do not use a match
statistic, as our goal is to estimate the probability that the
pulsars would be arranged on the sky in such a way that
noise fluctuations would produce Hellings-Downs corre-
lations. To test this, we must draw the positions uniformly
on the sky. How to produce reliable null distributions for
datasets that preserve potentially unmodeled noise is still
subject to exploration.

FIG. 1. Null hypothesis testing results using the GX2 distri-
bution. The inverse CDF curve is shown in blue for 100 draws
from a CURN posterior distribution. The optimal statistic SNR
for each of those draws is indicated by the black lines at the
bottom, and histogrammed in black in the top panel. We show pB,
averaged over p-values calculated using the GX2 distribution,
with the red dashed line. The histogram of the p-value calculated
for each draw is shown in the blue histogram in the right panel.
The green dot-dashed line indicates SNR. The gray horizontal
lines correspond to different Gaussian equivalent σ levels.

FIG. 2. Same as Fig. 1, but for sky scrambled distributions.
Each green line corresponds to an inverse CDF for a given Λs.
The green histogram in the right panel corresponds to the p-value
of the SNRðδt15 yr;ΛsÞ for each Λs, and the blue dashed line in
the middle and right panels corresponds to the average of those
p-values, which is pB for sky scrambles. In the center panel, we
have included the blue GX2 inverse CDFs from Fig. 1 for
reference. The sky scrambles result in a more significant p-value
and pB.
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B. Consistency with the HD model

In the previous subsection, we reject the null hypothesis
of the CURNmodel at the 3.2σ level. In this section, we use
the same scheme to test whether the data are consistent with
Hellings-Downs correlations. Given that we only have an
analytic null distribution for the optimal statistic, we use a
Monte Carlo integral for Eq. (18) to evaluate pB in the
presence of a potential signal,

pB ≈
1

N

XN

s¼1

Θ½SNRðδtrep;ΛsÞ − SNRðδt15 yr;ΛsÞ%; ð20Þ

where we average over N ¼ 1000 HDPosteriorDraws replica-
tions. We show a scatter plot in Fig. 3, where the x-axis
shows SNRðδt;ΛsÞ and the y-axis shows SNRðδtrep;s;ΛsÞ,

and pB corresponds to the fraction of points above the line
y ¼ x. In this case, we find pB ¼ 0.534, indicating that the
15 yr NANOGrav data are consistent with data replications
that assume Hellings-Downs correlations.

C. Additional spatial correlations

The model for a GW background assumes spatial
correlations that follow the HD curve, but other spatial
correlations could arise either from statistical fluctuations
or due to mismodeling. Monopolar correlations could arise
due to an error in the clock at each site, corresponding to a
correlated offset that is common to all pulsars. Dipolar
correlations could arise due to an error in the effective
location and motion of the Solar System barycenter [20].
We use the multiple component optimal statistic [52],
which estimates the amplitude of monopolar, dipolar, and
Hellings-Downs correlations simultaneously, to test
whether our estimate of these correlations in the 15 yr
dataset is consistent with data replications from a pure HD
model. The results and methods here follow Appendix H
of Ref. [1]. The analysis is nearly identical, but with more
simulations used to calculate pB. The results and con-
clusion are the same as that analysis, but we include it
here both for completeness and because it is strongly
related to the rest of the new tests we have performed in
this section.
The multiple component optimal statistic simultaneously

produces the SNR for all three spatial correlations,
SNRMONO

MC , SNRDIP
MC, and SNRHD

MC where the superscript
corresponds to the spatial correlation and the subscript
indicates that we are using the multiple component optimal
statistic. We again use 1000 HDPosteriorDraws data replica-
tions described in Sec. II and calculate Eq. (20) substituting
SNRMONO

MC for SNR to produce pMONO
B . We produce pDIP

B
and pHD

B for dipole and Hellings-Downs correlations
defined analogously.
We show similar visualizations to the previous section in

Fig. 4. We find pHD
B ¼ 0.64, which again indicates that the

HD SNR calculated on the 15 yr data is consistent

FIG. 3. We show a comparison of SNRðδt15 yr;ΛsÞ (x-axis)
with SNRðδtrep;ΛsÞ (y-axis). Each point corresponds to a draw
from the posterior Λs. The fact that roughly half the points fall
above the line y ¼ x, and pB ¼ 0.53 indicates that the measured
SNR for Hellings-Downs correlations on the 15 yr data is
consistent the 1000 HDPosteriorDraws replications.

FIG. 4. We compare SNRMONOðδt15 yr;ΛsÞ (x-axis) with SNRMONOðδtrep;ΛsÞ (y-axis) in the left panel (DIP and HD in center and right
panels respectively), using the HDPosteriorDraws data replications. There is broad consistency between SNRHD in replications and 15 yr
dataset. For the DIP and MONO models we find that the recovered SNR is consistent with data replications that include only Hellings-
Downs correlations.
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with what we expect from the pure HD model. Likewise,
we find pDIP

B ¼ 0.26, consistent with no dipolar correla-
tions. Finally, we find pMONO

B ¼0.11, which is largely
consistent with no monopolar correlations.

IV. TESTING SPECTRUM AND
CORRELATION MODELS

In this section, we assess the power-law assumption for
the GW background and the intrinsic pulsar noise. We
recap how to estimate the posterior distribution on the
Fourier coefficients for the red noise, a at each frequency
and for each pulsar for both the intrinsic pulsar noise and
the GW background. Using the posterior on a, we construct
the posterior distribution on the intrinsic pulsar noise and
GW background power spectrum in each pulsar, which can
now deviate from a power-law but are subject to a power-
law prior distribution. We then test for deviations in the
intrinsic pulsar noise spectrum for each pulsar and in the
total GW background spectrum.

A. Method

In this subsection, we summarize the methods outlined in
Ref. [29]. Given pðΛjδt15 yrÞ, we calculate a in two ways.
In one method, a are conditioned on δt15 yr and Λ, which
we refer to as the “inferred” coefficients (subscript “inf”)
because they are drawn from the inferred posterior on a
using information from both the power-law spectrum prior
and the real data. In the other method, a are conditioned
only on Λ, which we refer to as “predicted” coefficients
(subscript “pre”) because these are the coefficients pre-
dicted by the power-law spectrum prior. In both cases,
we marginalize over Λ and ϵ. We illustrate the workflow in
Fig. 5. The posteriors on the inferred and predicted
parameters are formally given by

pinfðajδt15 yrÞ ¼
Z

dΛdϵpða; ϵjΛ; δt15 yr; HDÞ

× pðΛjδt15 yr; HDÞ; ð21Þ

ppreðajδt15 yrÞ¼
Z

dΛdϵpða;ϵjΛ;HDÞpðΛjδt15 yr;HDÞ

¼
Z

dΛpðajΛ;HDÞpðΛjδt15 yr;HDÞ: ð22Þ

The first term in the integrand differs between the predicted
(no dependence on δt15 yr) and inferred posteriors (which
are conditioned on δt15 yr). We discuss specifics of how
these terms are evaluated below. The second term in the
integrand is the posterior on Λ, e.g., power-law amplitudes
and spectral indices.
In both Eqs. (21) and (22), we evaluate the posterior with

a Monte Carlo integral. We first draw a sample (labeled
with “s” superscript) Λs ∼ pðΛjδt15 yrÞ. We then draw from
the first term in the integrand. For the inferred coefficients
we draw from pða; ϵjΛs; δt15 yrÞ, which is a Gaussian with
mean and covariance that depend on both the prior and the
data and are given by Eqs. (14) and (15). For the predicted
coefficients, we draw from just the prior distribution (i.e.,
no dependence on data), pða; ϵjΛsÞ, which is a zero-mean
Gaussian given by Eqs. (5) and (6). More details on this
scheme are discussed in Ref. [29].
For each Λs we split a into asrn;a for intrinsic pulsar noise

and asgw;a for GWs for each pulsar a. We then reconstruct
the power spectrum for the intrinsic pulsar noise in each
pulsar and the GW power observed by each pulsar. Each
pulsar sees a different realization of the GW background,
but asgw;a are drawn from the same distribution for all
pulsars a. By contrast, the intrinsic pulsar noise is a
different power spectrum for each pulsar, and therefore

FIG. 5. Workflow for the analysis of Sec. IV based on predicted and inferred Fourier coefficients for the GWand individual-pulsar red
noise spectrum. The black line corresponds to estimating pðΛjδt15 yrÞ directly after analytically marginalizing over the Fourier
coefficients and directly estimating the amplitude and spectral index for the power-law GW background and intrinsic pulsar noises. The
blue line corresponds to generating predicted coefficients using the power spectrum to simulate Fourier coefficients. The maroon line
indicates the inferred coefficients, which use the power-law power spectrum as a prior, combined with δt, to further constrain a.
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asrn;a are drawn from a different distribution for each
individual pulsar.
For the inferred coefficients, by conditioning on the data,

the power spectrum will deviate from a power law if the
true data-generating process differs from a power law. For
the predicted spectrum, we obtain different realizations of a
power spectrum that are consistent with a power law. In
Sec. IV B, we discuss results for the inferred and predicted
intrinsic pulsar noise and GW spectra for each pulsar and
compare them to an “excess noise” analysis done in
Ref. [41]. At each frequency, we use a modified version
of the optimal statistic2 to combine individual-pulsar
coefficients to estimate the total GW power across the
PTA in that frequency bin [63]. We present the results in
Sec. IV C 1.
Finally, for each Λs, we produce pulsar pairwise

correlations and compare them to the expected Hellings-
Downs curve. To do this, we draw coefficients from
pinfðajδt15 yr; HDÞ and ppredðajδt15 yr; HDÞ and use the
optimal statistic to construct pairwise correlations. In the
case of the predicted parameters, this will give us an
expected spread on correlation vs angular separation for a
given model. For the inferred parameters, by conditioning
on the data, the correlations can deviate from the model. In
Sec. IV C 2, we look at reconstructions of the pairwise
correlations as a function of angular separation and search
for deviations from the Hellings-Downs curve.

B. Power spectra of individual pulsars

Power spectra for each pulsar in the NANOGrav array
are explored in Ref. [41], it is therefore worth contrasting
the two results. First, Ref. [41] simultaneously estimated
the total red noise (ρ2i þ η2ai) in each frequency bin i,
performing a separate analysis for each individual pulsar a.
A Savage-Dickey Bayes factor was calculated to estimate
the significance of the total red noise at each frequency for
each pulsar. Next, both the common red noise and intrinsic
pulsar noise were fixed to the maximum likelihood values
estimated from a CURN analysis that assumes these spectra
follow a power law. Once fixing these parameters in their
model, excess noise in each frequency bin for each pulsar
was searched for. No evidence for excess noise was found,
the power-law model for intrinsic pulsar noise and the
common red noise processes are therefore sufficient.
In this work, we instead separate intrinsic pulsar noise

and GW background contributions when drawing param-
eters from the inferred and predicted distributions, and we
produce a posterior distribution on both contributions in
each frequency bin for each pulsar. This way we are testing
both the intrinsic pulsar noise and GW background power-
law assumptions at the same time, while constructing full
posteriors on the intrinsic pulsar noise and the GW

background. This is in contrast to the search for excess
noise on top of a power-law common red noise and intrinsic
pulsar noise. Another difference is that in this work,
individual frequency bin estimates are subject to a prior
that follows a power law, while Ref. [41] used a log-
uniform prior on the power in each frequency bin.
In Fig. 6, we show results for two pulsars with strong

intrinsic pulsar noise, B1937þ 21 and J1012þ 5307 (top
two panels), and J1909-3744 which has no measurable
intrinsic pulsar noise, but a contribution attributed to the
GW background. The green boxes correspond to the
estimates of the total red noise power from [41], which
was discussed above. The blue and pink boxes correspond
to the inferred intrinsic pulsar noise and GW background
contributions respectively, orange boxes correspond to the
predicted intrinsic pulsar noise, and yellow boxes corre-
spond to the predicted GW background in the bottom
panel. Similar plots for each pulsar are included in
Supplemental Material [64].
In the top two panels, the intrinsic pulsar noise (inferred

in blue boxes, predicted in orange boxes) typically agrees
with the total red noise (green boxes) from Ref. [41]—
indicating that the total red noise is dominated by intrinsic
pulsar noise. The GW background is significantly below
the intrinsic pulsar noise and the total red noise.
Additionally, the orange distributions, corresponding to
predicted intrinsic pulsar noise, agree with the inferred
intrinsic pulsar noise. We quantify this agreement below. In
the bottom panel, the total red noise agrees with the GW
background, while the intrinsic pulsar noise is significantly
lower. This is consistent with the GW background con-
tributing significantly to δt15 yr in this pulsar, with no
intrinsic pulsar noise contribution. In a few cases the free-
spectrum total red noise (green boxes) deviates further from
the power law than the inferred intrinsic pulsar noise (blue
boxes). This is due to the power-law prior used for the
inferred intrinsic pulsar noise, which will tend to move
those parameters closer to the power law.
In a few situations, e.g., the first and fifth through

seventh bins for J1909-3744, the estimated total red noise
(green boxes) appears to be lower than the predicted
(yellow boxes) and inferred spectra (pink boxes) for the
GW background. The low total noise are consistent with
the predicted distributions, which follow a χ2 with 2 degrees
of freedom, and therefore have large support at those low
values (despite what the box and whiskers show). The
inferred distributions broadly agree with the predicted
distributions, but both do look inflated compared to the
total red noise. However, simply combining the GW
background and intrinsic pulsar noise spectra in each bin
may not reproduce the green boxes for a few reasons. First,
interference between these two contributions may cancel or
amplify the estimated total red noise above or below what
we would expect from naively adding their contributions
incoherently. Second, a log-uniform prior on the power in2See Sec. IV B 2 in Ref. [29] for a discussion.
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FIG. 6. We show the total red noise (green, ρ2i þ η2ai) [41], the inferred and predicted intrinsic pulsar noise (blue, η
2
ai;inf ; orange, η

2
ai;pred),

and inferred and predicted GW background (pink, ρ2ai;inf ; yellow, ρ
2
ai;pred) for B1937þ 21 (top), J1012þ 5307 (middle), J1909-3744

(bottom). The boxes indicate the 50%credible interval, while thewhiskers show the 5th and 95th percentiles. The red dashed line shows the
maximum likelihood (ML) intrinsic pulsar noise power law, and the black dashed line shows the same for the GW background. To reduce
clutter, we only show η2ai;pred in the top two panels and ρ

2
ai;pred in the bottom panel. The top two pulsars exhibit strong intrinsic pulsar noise,

that is larger than the estimated background, because the green and blue boxes are larger than the pink ones. In the bottom panel, total red
noise (green) is dominated by the GW background (pink, yellow), while the intrinsic pulsar noise (blue) is not detectable. In some
frequency bins, there appears to be a lack of red noise, but this is consistent with what is expected from a power-law model. There is little
evidence for excess noise, the strongest evidence being the 26th bin for J1012þ 5307 (marked with a red arrow), which has a Bayesian
p-value of 0.03, which we discuss in the text.
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each frequency will likely reduce the upper limit on the
estimated power in that bin when no red noise detection is
made when compared to the upper limit we would set using
a prior informed by the power-law model.
We then quantify excess intrinsic pulsar noise in indi-

vidual frequency bins for each pulsar. For each pulsar a and
frequency bin i we calculate

pB ¼ 1

N

XN

s¼1

Θðη2inf;ai − η2pred;aiÞ; ð23Þ

where η2inf;ai are drawn from pinfðajδt15 yrÞ and correspond
to the inferred power spectrum, while η2pred;ai are drawn
from ppredðajδt15 yrÞ and correspond to the predicted power
spectrum due to a power law. Each η2 carries with it an
implicit s index, which we have suppressed. We also use
the HDPosteriorDraws simulations to calculate

psim
B ¼ 1

N

XN

s¼1

Θ½η2inf;ai − ðη2inf;aiÞrep%; ð24Þ

where the superscript “rep” indicates it is the inferred
estimate on the power in that frequency calculated on the

replicated data. Note that η2inf;ai and ðη2inf;aiÞrep are calculated
using the same Λs. We find that these two methods produce
nearly identical results, and so we report results for pB
instead of psim

B .
For intrinsic pulsar noise across all pulsars and frequen-

cies, we find a minimum of pB ¼ 0.03, for J1012þ 5307,
f ¼ 51 nHz, which is the box that is visibly above the max
likelihood curve in the middle panel of Fig. 6, marked with
the red arrow. This is not a significant p-value, given that
we are analyzing 67 pulsars and 30 frequency bins, and so
we cannot conclude that this represents a deviation from a
power law. This is the same conclusion as Ref. [41]. The
minimum and maximum pB for the GW background power
spectrum across all pulsars are 0.16 and 0.84.
Deviations from the power-law model may not just take

the form of excess noise at individual frequencies. For
example, one could have a broken power law or excess
noise across multiple frequencies that are not individually
detectable. We do not develop a statistic to measure this
here, as it requires a specific model to compare to the
power-law model and there are a broad range of potential
models. However, such an analysis should be done in the
future.
We show a plot of pB for intrinsic pulsar noise for each

pulsar in the top panel of Fig. 7 and for the GW background

FIG. 7. For each pulsar on the horizontal axis we show pB for all 30 (14) frequency bins in the top (bottom) panel. For most pulsars pB
is near 0.5, indicating that the inferred and predicted power spectra agree with one another, and so a power law is an appropriate model
for the intrinsic pulsar noise. For several pulsars, there is a broader spread in pB, including two of the pulsars that we show in Fig. 6.
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in each pulsar in the bottom panel. The horizontal axis
corresponds to each pulsar, while the vertical axis corre-
sponds to pB; each point represents a pB for each pulsar
and each frequency bin. When the inferred and predicted
power-spectrum estimates agree at a given frequency bin,
we expect pB ≈ 0.5. We see that a few noisy pulsars show
pB values that stray away from 0.5, including the pulsars in
the top two panels of Fig. 6. As stated before, no individual
frequency bin shows an extreme value of pB, e.g., pB <
0.01 or pB > 0.99, meaning we cannot state there are
individual bins with excess noise. However, pulsars like
B1937þ 21 and J1012þ 5307 do show quite a few
frequency bins with pB deviating from 0.5, meaning they
may benefit from a more flexible model in the future. It is
currently prohibitively computationally expensive to esti-
mate intrinsic pulsar noise separately in each frequency bin
for each pulsar when we estimate pðΛjδt15 yrÞ. However,
with future computational improvements, we may be able
to do this for a limited number of pulsars, and this method
provides a good starting point for choosing those pulsars.

C. Full-array results for the
gravitational-wave background

1. Spectral shape

To get a full-PTA estimate of the GW background power
in each frequency bin, we use a modified version of the
optimal statistic [29,40,53] that estimates the Hellings-
Downs-correlated GW power in each individual frequency
bin. The details of this statistic are discussed in Sec. IV B 2
of Refs. [29,63].
In Fig. 8 we show results for the estimated power in each

frequency bin for the inferred parameters (blue), the
predicted parameters (orange), and a fully frequentist
estimate that depends only on the data (green). The boxes
correspond to the interquartile range of the GW power in
each bin, estimated over draws from pðΛjδt15 yrÞ, and the
whiskers are the 5th and 95th percentiles. In showing these
together, we compare predicted, inferred, and data-only
results. There is no visible evidence for a deviation from a
power law, which is indicated by the gray shaded region,
which encompasses draws from pðΛjδt15 yrÞ. The inter-
quartile ranges for the predicted, inferred, and data-only
power overlap in most frequency bins. In a few places, the
data-only results appear to differ from the inferred and
predicted results, e.g., 9th–11th bins, but the data are
weakly informative and the inferred parameters are closer
to the predicted parameters.
The per-frequency optimal statistic, used to combine agw

across pulsars, allows for negative power in situations
where the data are uninformative. Like the traditional
optimal statistic, when no correlated signal is present,
the distribution of the statistic is GX2 centered at zero.
This is why the whiskers for several frequencies leave the
bottom of the plot, and in two cases (bins 9 and 14) the

data-only interquartile ranges are negative. This does not
change our conclusions, as we find that our results at
frequencies where we know we should see correlated GW
power show such power (specifically the lowest five
frequency bins). This is consistent with the HD free-
spectrum results in Ref. [1].
We use the HDPosteriorDraws data replications to compare

simulations from a power-law model to the results in Fig. 8.
We find that the spectral results are consistent with a power-
law model with Hellings-Downs correlations—the lowest
and highest pB comparing inferred parameters from sim-
ulations with inferred parameters on the 15 yr dataset are
0.30 and 0.72.

2. Spatial correlations

In Sec. III, we showed broad consistency between the
data and the HD model, and we showed that there is no
evidence for additional monopolar or dipolar correlations.
Those tests compare plausible alternative analytic correla-
tion models to the expected correlation model. In this
section, we search for isolated deviations in the binned
spatial correlations from the Hellings-Downs curve. We use
the optimal statistic on the inferred and predicted coef-
ficients, as well as directly on the data, and compare the
inferred, predicted, and data-only binned reconstructions to
search for potential deviations from the Hellings-Downs
curve that are not just monopolar or dipolar.

FIG. 8. We show reconstructed GW power in each frequency
bin for inferred (blue) and predicted (orange) coefficients and a
data-only (green) reconstruction. The boxes correspond to
interquartile ranges and the whiskers are the 5th and 95th
percentiles. Power-law draws from pðΛjδt15 yrÞ are shown in
light black. The blue and orange distributions agree with one
another at most frequencies. In a few places, the green boxes
differ from the predicted or inferred distribution (e.g., 20 and
22 nHz), but the data are weakly informative, as the inferred and
predicted distributions agree with one another in those cases. In a
few frequencies the data-only distribution shows evidence for
negative power, this is to be expected when the data are not
informative (discussed further in the text).
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To construct the binned correlations, we perform an
inverse-noise-weighted average over correlations for all
pulsar pairs whose angular separation falls in a given
angular-separation bin. An example for 11 bins of equal
width is shown in Fig. 9. We compare the inferred (blue),
predicted (orange), and data-only (green) estimates of the
binned correlations. The spread comes from calculating
the mean and variance of the correlation across pulsar
pairs for a given posterior draw, sampling from a uni-
variate Gaussian with that mean and variance, and then
repeating over many draws from pðΛjδtÞ. The variance for
the bin for a given draw includes covariance between pairs
of pulsars due to the non-zero GW background [65]. The
bars indicate the 5th and 95th percentiles of the resulting
distribution.
We find that the data and inferred correlations are

consistent with the predicted correlations. We also use the
HDPosteriorDraws replications and find that none of the
inferred or data-only binned correlations differ signifi-
cantly from those calculated with the data replications.
The two bins with the most extreme pB

3 are the third and
fifth bins, with pB ¼ 0.87, 0.88 respectively, indicating
that, if we take Hellings-Downs correlations as our prior,
we do not have evidence for deviations from the Hellings-
Downs curve. This does not mean that we are fully
consistent with Hellings-Downs correlations (as subtle
changes in each bin could result in a different overall
correlation pattern), but it does indicate that there are no
obvious “spikes” in correlations on small angular scales.
Changing the choice of binning does not change the
qualitative conclusion.

V. LEAVE-ONE-OUT ANALYSES

Although individual pulsars can exhibit unique chro-
matic noise features, profile changes, and red noise
properties, similar noise models are fit to each pulsar in
the array. In this section, we seek to identify whether
certain pulsars are poorly fit by these models. We perform
a leave-one-out analysis, where we calculate a posterior
predictive likelihood for the timing residuals in one pulsar,
given the data in all other pulsars [29]. This analysis is
similar to the one in Ref. [1], with a few key differences.
First, we use 14 frequency bins for the analysis, and we
include the negative spectral index of the GW back-
ground, γ, in the initial fit. In Ref. [1], γ is fixed to 13=3.
We also use a larger number of CURN simulations to
evaluate the significance of the GW background and
perform a new comparison between simulated and real
data on each individual pulsar.
Both the CURN and the HD models can be used to

predict features in one pulsar, given a model fit to the
other pulsars in the array. The CURN model, for example,
can only predict the variance of the common-process-
induced timing residuals, while the HD model, which
includes GW-induced correlations, makes a prediction
for both the variance of the timing residuals and their
waveform.4

We compare the predictive power of these two models
by calculating a pseudo-Bayes factor (PBF), which
is the ratio of the posterior predictive likelihood for
the HD and the CURN models. We calculate this on both
a pulsar-by-pulsar basis, to identify potential pulsars that
are not well predicted by the models, and also across the
full pulsar timing array to construct a new detection
statistic.
We denote the “left-out” pulsar with subscript a and the

rest of the dataset excluding that pulsar with a subscript −a.
The posterior predictive likelihood is

pðδtajδt−aÞ ¼
Z

dΛdadϵpðδtaja; ϵ;ΛÞpða; ϵ;Λjδt−aÞ:

ð25Þ

As in Ref. [29], we split up the parameters and hyper-
parameters into separate pieces based on whether they
correspond to pulsar a or pulsars −a, and whether they
describe GW or red noise coefficients, Λ ¼ ½Λa;Λ−a;Λgw%,
a ¼ ½agw;a; agw;−a; aa; a−a%. We use this new notation and
evaluate Eq. (25) for the HD and the CURNmodels to find,
see Appendix A of [29],

FIG. 9. We show reconstructed binned spatial correlations. The
predicted (orange) show the expected spread around the Hellings-
Downs curve that we might expect across many realizations. The
inferred (blue) and data-only (green) recoveries broadly agree
with the orange. There are two bins (third and fifth) that show
some deviation between the green and orange bins. We find that
these bins are not statistically significant when comparing the
inferred and predicted distributions, and that changing the
binning does not have a significant affect.

3Because we are comparing two distributions, we consider
both large and small p-values to be extreme.

4This prediction is limited by the strength of the Hellings-
Downs correlations. We cannot predict the pulsar-term fluctua-
tions, but Earth-term predictions are informative.
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pHDðδtajδt−aÞ ≈
1

Ns

XNs

s¼1

Z
dΛadagw;apðδtajΛa; agw;aÞ

× pðagw;ajΛs
gw;Λs

−a; δt−aÞpðΛaÞ; ð26Þ

pCURNðδtajδt−aÞ ≈
1

Ns

XNs

s¼1

Z
dΛapðδtajΛa;Λs

gwÞpðΛaÞ:

ð27Þ

In both cases, we perform a Monte Carlo integral over the
hyperparameter posterior

Λs
gw; Λs

−a ∼ pðΛs
gw;Λs

−ajδt−aÞ: ð28Þ

The main difference between Eqs. (26) and (27) is that for
the HD model, the −a pulsars can produce a prediction for
agw;a due to the Hellings and Downs correlations, while the
CURN model cannot.
The ratio of the posterior predictive likelihoods for the

CURN and HD models is the PBF and it can be used to
compare the two models. We first calculate the PBF
pointwise across pulsars

PBFHDCURN;a ¼
pHDðδtajδt−aÞ
pCURNðδtajδt−aÞ

; ð29Þ

and then the total PBF as a pointwise product

PBFHDCURN ¼
Y

a

PBFHDCURN;a: ð30Þ

A full discussion of the differences and similarities between
a typical Bayes Factor and the PBF is given in Ref. [29], but
we summarize a few key points here. Unlike the Bayes
Factor, the PBF is not sensitive to parts of the parameter
space that have no likelihood support. The PBF compares
how well the models predict new data, while the Bayes
factor is a summary statistic comparing how well two
models fit existing data. Both statistics, however, are

uncalibrated—meaning it is unclear how to interpret
statistical significance as a function of the value of the
statistic. In this section, similar to previous sections, we use
data replications to assess the significance of the PBF.
Importantly, we can calculate the PBF on each pulsar

individually and identify whether certain pulsars are “out-
liers” that are not well predicted by a given model. This is
similar to the “dropout factor” analysis in [1,66]. In this
work, we calculate a separate predictive likelihood for each
model for each pulsar, while the dropout factor analysis
samples an indicator variable that chooses whether to
model a pulsar with the CURN or HD model. The
interpretation of the results are similar to pointwise results.
Across the array, multiplying all of the “leave-out” PBFs

we find PBFHDCURN ¼ 873. This is on a similar scale to the 14
frequency Bayes factor comparing HD and CURN [1], but
as with typical Bayes factors, there is no natural scale to use
to “calibrate” this level of significance. In Ref. [1], several
methods are used to generate a null distribution for detection
statistics, including sky scrambles [56], phase shifts [55],
and simulated datasets. In this work, we again resort to
simulated datasets. Using 600 CURNPosteriorDraws simula-
tions, we calculate PBFHDCURN on each of the simulations. We
find a Gaussian equivalent p-value of 3.0σ in favor of
Hellings-Downs correlations on the 15 yr NANOGrav data.
We also use the HDPosteriorDraws draws to test whether this

result is consistent with the HD model. We find that
PBFHDCURN falls in the 27th percentile of the HD simulations,
again confirming that our results are inconsistent with the
CURN model and are consistent with the HD model.
We show ln PBFHDCURN;a for each pulsar in Fig. 10. There

are more pulsars with ln PBFHDCURN;a > 0 than the reverse,
because the HD model is better at predicting new data than
the CURN model. There are several pulsars with
ln PBFHDCURN;a < 0. We expect this in a few pulsars due
to the specific realization of intrinsic pulsar noise and the
pulsar term from the GW background, which we cannot
predict. To understand whether the number of pulsars with

FIG. 10. We show ln PBFHDCURN;a the 67 pulsars. The pulsar best predicted by the HD model is J1909-3744, whose red noise is
predominantly due to a GW background. There are 43 pulsars with ln PBFHDCURN;a > 0 and 25 with ln PBFHDCURN;a < 0. As discussed in the
text, we find the number and level of the pulsars with ln PBFHDCURN;a < 0 to be consistent with simulations that have a GW background as
strong as what we find in the data.
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ln PBFHDCURN;a < 0 is expected, and whether the typical scale
of those downward fluctuations is “representative” of what
we would expect from a GW background, we perform
simulations. We do 200 HDPosteriorDraws simulations and
calculate ln PBFHDCURN;a for each of those simulations to
understand what the typical PBF is for the “best” and
“worst” predicted pulsars if we have a GW background
consistent with our posteriors.
We show the results of those simulations in Figs. 11

and 12. In Fig. 11, we plot ln PBFHDCURN;a for each pulsar in
red in the same order as Fig. 10. We show the distribution of
ln PBFHDCURN;a for each pulsar across 200 HDPosteriorDraws

simulations in the blue box and whisker plots. The boxes

and whiskers correspond to the 50% credible interval and
the 5th and 95th percentiles respectively. The red points
broadly agree with these distributions. The median simu-
lated distribution for each pulsar falls above zero, corre-
sponding to the HD model being preferred. Calculating the
percentile of the red point (ln PBFHDCURN;a on δt

15 yr) in each
distribution yields a set of percentiles that are consistent
with a uniform distribution between 0 and 1. This is what
we expect if each pulsar is well predicted by all of the
others. In general, the pulsars with broader distributions
and larger (positive or negative) values of ln PBFHDCURN;a
correspond to the longest-timed and lowest-noise pulsars
that have the greatest effect on the analysis.

FIG. 11. We show ln PBFHDCURN;a on δt15 yr in red. The blue box and whisker plot show the interquartile range and 5th and 95th
percentiles of the distribution of ln PBFHDCURN;a for 200 of the HDPosteriorDraws simulations for each pulsar. For most pulsars the median
falls above zero for these simulations, indicating that HD is the preferred model, as expected. Calculating the percentile of the red point
within the blue distribution for each pulsar yields a set of percentiles that are consistent with a uniform distribution between 0 and 1,
which means PBFHDCURN;a on δt15 yr is consistent with what we expect from a model with HD correlations and intrinsic pulsar noise
consistent with pðΛjδt15 yrÞ.

FIG. 12. We compare results on 200 HDPosteriorDraws simulations to the results on δt15 yr. The blue box and whisker plots correspond to
the distribution of the pulsar with the ith highest value of ln PBFHDCURN;a for each simulation. For example, to construct the far left box we
find the maximum ln PBFHDCURN;a for each simulation, and then build a distribution across simulations. For the far right box, we find the
minimum ln PBFHDCURN;a for each simulation and build a distribution, and so on. So the ln PBFHDCURN;a going into each blue box could be
for a different pulsar for each simulation.
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In Fig. 12 we present results from the same simulations,
but we look at the distribution of the order statistics of
ln PBFHDCURN;a. That is, the blue box and whisker to the
furthest left correspond to the distribution of the maximum
ln PBFHDCURN;a across all pulsars for each simulation, so for
each simulation we find the maximum ln PBFHDCURN;a, and
across simulations we build a distribution for that maxi-
mum. The second from left corresponds to the second
largest ln PBFHDCURN;a in each simulation, the furthest to the
right corresponds to the minimum value, and so on. We see
that our results are consistent with the simulations from the
HDmodel, and that in general we expect more pulsars to be
better predicted by the HD model. Crucially, simulations
always result in a few pulsars that are better predicted by
the CURN model, i.e., negative ln PBFHDCURN;a. Therefore,
negative ln PBF values are not immediately cause for
concern as long as they are consistent with what we expect
from simulations, which is the case here.

VI. GW BACKGROUND WAVEFORMS

The HDmodel is preferred to the CURNmodel using the
optimal statistic, Bayes factors, and PBFs. In this section,we
show reconstructions of the HD model compared to δt15 yr.
We also highlight covariances between different parts of the
model to better understand the relationship between the GW

background, the intrinsic pulsar noise, and the timing model
for each pulsar. The figures presented in this section are
meant to be representative and interpreted qualitatively to
illustrate the contribution of different models and the
covariances between those models; similar to the waveform
reconstructions shown in Refs. [42,67,68], for example.
Similar figures have been shown before for noise models,
e.g., [67–69], but not for the GW background model.
We first draw bs ∼ pðbjΛs; δtÞ using Eqs. (14) and (15),

and then construct a model fit to the data by δts ¼ Tbs for
each pulsar. As in the previous section, we separate the
Gaussian process coefficients for intrinsic pulsar noise as,
GW background asgw, and timing model corrections ϵs,
which we use to inspect contributions from each part of the
model independently.
We show waveform reconstructions for pulsar J1909-

3744 in Fig. 13. In each panel we show δt15 yr (averaged
over day-long timescales to reduce the number of points)
and the contribution of one piece of our model. For this
pulsar, the total red noise is primarily due to GWs,
indicated by the lack of intrinsic pulsar noise in the top
right panel and the fact that the GW background in the top
left panel broadly follows δt15 yr plotted in blue. In the
bottom left, we show the timing model in cyan. The spin-
down and spin frequency of the pulsar are covariant with
the lowest frequencies of the GW background. This results
in the broad uncertainties on the individual contributions
from these models, but the narrow uncertainty on the

FIG. 13. Waveform reconstruction for J1909-3744 (shaded
regions) and timing residuals (blue dots). The solid line corre-
sponds to the median reconstruction, and the shaded regions
correspond to the 90% credible interval. The blue points
correspond to epoch-averaged residuals. In the top left is the
contribution from the GW background, top right shows intrinsic
pulsar noise, bottom left shows the timingmodel, and bottom right
shows the combined total model. There is little evidence for
intrinsic pulsar noise for this pulsar, and we can see that the
frequency and spin-down components of the timing model (which
give linear and quadratic offsets) are covariant with the lowest (and
strongest) frequencies in the GW background. Regardless, the
total model (bottom right) closely follows the data.

FIG. 14. Waveform reconstruction for B1937þ 21 (shaded
regions) and timing residuals (blue dots). In the top left is the
contribution from the GW background, top right shows intrinsic
pulsar noise, bottom left shows the timing model, and bottom
right shows the combined total model. There is strong intrinsic
pulsar noise in this pulsar, and in this case frequency and spin-
down components of the timing model (which give linear and
quadratic offsets) are covariant with the lowest (and strongest)
frequencies in the intrinsic pulsar noise, while the GW back-
ground is significantly smaller than the noise. Again the total
model closely tracks the data (bottom right).
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combined contributions of all of the models in the bottom
right (orange), which tracks the timing residuals closely.
We show a similar waveform reconstruction for pulsar

B1937þ 21 in Fig. 14. The intrinsic pulsar noise domi-
nates the pulsar’s total red noise, as expected based on
Fig. 6. Waveform reconstructions for each pulsar are
included as Supplemental Material [64]. We find that, in
all cases, models represent reasonable fits to the data, which
is expected based on the residual plots made with similar
(single-pulsar) models in Ref. [26]. These figures are meant
to illustrate the different contributions of each part of the
model to the overall fit we make to each pulsar.

VII. CONCLUSIONS

The standard probabilistic model used to establish
evidence for a GW background in Ref. [1] makes two
assumptions motivated by theoretical expectations but also
by computational convenience: that the background fol-
lows a power-law spectrum and that its interpulsar corre-
lations conform to the Hellings-Downs pattern. Deviations
from these assumptions are expected from SMBHB
astronomy and astrophysics, and in certain fundamental-
physics scenarios, although it is unclear whether the
deviations would be measurable in current datasets.
In this paper, we examine the NANOGrav 15 yr

dataset [26] within the framework of Bayesian predictive
model checking [28,29], with the goal of testing the
assumptions without comparison to alternative, more com-
plex models. Themodus operandi of Refs. [28,29] is that of
using the fiducial model to simulate a population of
replicated datasets from the real-data parameter posteriors
and then comparing the values of multiple statistics of
interest in real data and across the replications.
The optimal statistic [40,53] was used in Ref. [1] to

establish the presence of interpulsar timing-residual corre-
lations. Within the replication framework, we can account
fully for the dependence of the optimal statistic on the
uncertain noise parameters [28], building a Bayesian
p-value that falsifies the no-correlation hypothesis at the
3.2σ level for the NANOGrav dataset. That is, we find that
data replications obtained from a spatially uncorrelated
model can rarely reproduce the value of the optimal statistic
seen for real data. The Bayesian p-value is averaged over
the noise-parameter posterior, accounting fairly for the
overall risk of false rejection. If instead we build our
replications from the Hellings-Downs model, we find a p-
value ∼0.5, as expected if that model is correct. We also
find no anomalies when we use optimal statistic variants
built to be sensitive to monopolar or dipolar correlations.
Moving on from the frequentist flavor of this optimal

statistic analysis to Bayesian model comparison, we evalu-
ate the relative predictive performance of the Hellings-
Downs and spatially uncorrelated models by way of the
leave-one-out cross-validation pseudo-Bayes factor [29].
We find that the Hellings-Downs model is favored at the 3σ

level. That is, we find that data replications obtained from a
spatially uncorrelated model can rarely reproduce the
pseudo-Bayes factor seen for real data. We also verify that
the binned correlation coefficients estimated from real data
are consistent with the distribution expected under the
Hellings-Downs hypothesis. Altogether, we find that the
15 yr NANOGrav dataset is consistent with the hypothesis
of Hellings-Downs correlations, with no evidence for
alternative correlation patterns.
We test the assumption that the GW background has a

power-law spectrum by comparing the real-data posteriors
of the spectral coefficients (i.e., the root-mean-square
Fourier amplitudes at each frequency) with their distribu-
tion across replicated datasets. Although some spikes are
evident in the spectral plots, we find that they are not
statistically significant—they are not unlikely in the repli-
cated population. As a by-product of this analysis, Fourier-
amplitude posteriors provide a probabilistic reconstruction
of the putative GW signal, as seen most strikingly in Fig. 13
for pulsar J1909-3744.
This paper details an extensive but certainly not exhaus-

tive reanalysis of the NANOGrav 15 yr dataset. Our overall
finding is that the data are consistent with a simple power-
law GW background with isotropic Hellings-Downs cor-
relations. Future more expansive and sensitive datasets will
require more sophisticated data models; the framework
introduced in Refs. [28,29] and exemplified here can tell us
when we have reached that threshold.
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