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As we move into an era of more sensitive pulsar timing array datasets, we may be able to resolve
individual gravitational wave sources from the stochastic gravitational wave background. While some of
these sources, like orbiting massive black hole binaries, have well-defined waveform models, there could
also be signals present with unknown morphology. This motivates the search for generic gravitational-wave
bursts in a signal-agnostic way. However, these searches are computationally prohibitive due to the
expansive parameter space. In this paper we present QuickBurst, an algorithm with a redefined
likelihood that lets us expedite Markov chain Monte Carlo sampling for a subset of the signal parameters by
avoiding repeated calculations of costly inner products. This results in an overall speedup factor of ∼200 on
realistic simulated datasets, which is sufficient to make generic gravitational-wave burst searches feasible
on current and growing pulsar timing array datasets.
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I. INTRODUCTION

The North American Nanohertz Observatory for
Gravitational Waves (NANOGrav), the Parkes Pulsar
Timing Array (PPTA), the European Pulsar Timing Array
(EPTA), and the Chinese Pulsar Timing Array (CPTA) have
found evidence for a stochastic gravitational-wave (GW)
background (GWB) with varying level of significance
[1–4]. This is exciting for both multimessenger astrophysics
and future prospects for detecting individual binary systems
[5–7]. In addition to the persistent stochastic signal of the
GWB, there are many other possible sources of short-
duration GW bursts. Examples are transient deterministic
signals whose persistence is less than the dataset time span,
and these signals have the potential to be observed via
pulsar timing arrays (PTAs) [8,9]. In order to agnostically
search for these potential sources, we can use a generic
GW burst model to find transient GWs with a variety of
waveforms.
Previous searches have been done for gravitational wave

burst signals in LIGO data (see e.g. [10,11]) using various
techniques [12–16]. Various techniques have also been
proposed in other GW frequency bands, including LISA
[17] and PTA data [7,18,19]. One prominent approach is to
model the waveform with a collection of wavelets, where
the number of these wavelets used is also a free model
parameter, allowing for flexible signal modeling. This
previously proposed wavelet-based technique would take

months to perform on PTA datasets in comparison to
∼week time-frame it takes to do a single analysis run
for GWB searches on cutting edge hardware. This is
because of the large parameter space needed to fully model
a GW burst in PTA data. To feasibly do a generic GW burst
search on current and future data sets, we need to improve
the efficiency of our generic GW burst search algorithms.
In this paper, we present QuickBurst [20], a Bayesian

generic GW burst search algorithm that consists of a trans-
dimensional reversible-jump Markov chain Monte Carlo
(RJMCMC) sampler [21,22] and a factorized likelihood
template that utilizes the properties of a deterministic signal
model for improved computational efficiency. Recent work
has shown that for some deterministic signals, a faster
search algorithm can be achieved by precalculating and
storing components of the likelihood calculation that do
not change [23]. The work presented here is built upon
BayesHopperBurst and QuickCW, the algorithms
presented in [7,23] respectively. BayesHopperBurst
uses an RJMCMC sampler to search for generic GW burst
signals, but does not utilize more efficient sampling
methods, of which their usefulness has been demonstrated
in QuickCW.
In Sec. II, we derive the Bayesian likelihood for a generic

GW burst signal modeled as a superposition of Morlet-
Gabor wavelets. We also describe the techniques employed
in our Markov chain Monte Carlo (MCMC) sampling
algorithm that take advantage of our likelihood
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formulation. Then, we present the expected computational
efficiency improvements that these techniques produce,
as well as our verification tests to ensure the operational
quality of the algorithm. In Sec. III, we demonstrate the
capabilities of QuickBurst by performing searches
on simulated datasets that resemble the NANOGrav
15-year dataset [24]. Furthermore, we test the effects
of a common uncorrelated red noise (CURN) process on
QuickBurst’s ability to recover a GW burst signal.
Finally, in Sec. IV we discuss future applications involving
QuickBurst to search for gravitational wave burst
signals in PTA data.

II. QUICKBURST METHODS

A. Models

We can model the timing residuals for the PTA as a
vector

δt ¼

2

666664

δt1
δt2

..

.

δtNpsr

3

777775
; ð1Þ

where Npsr is the number of pulsars in the PTA. The timing
residuals in the ith pulsar is then modeled as

δti ¼ Miδξi þ ni þ gi þωiðθsÞ þ ViðθnÞ: ð2Þ

In this formalism, Mi is our design matrix with dimen-
sions (NTOA × Npar), where NTOA represents the number of
times-of-arrival (TOAs) in the ith pulsar and Npar represents
the number of timing model parameters in this pulsar, δξi is
a vector of shape Npar that accounts for a small error in this
pulsar’s timing model, ni represents intrinsic noise in this
pulsar, gi represents the contribution from spatially uncor-
related noise common to all pulsars, ωi is the contribution
from a generic gravitational wave burst signal, and Vi
represents the contribution to this pulsar’s timing residuals
of any incoherent noise transients that are unique to this
pulsar. θs and θn are the parameters that describe the GW
burst signal and transient noise respectively. δti, ni, gi, ωi,
and Vi are all vectors with dimensions of NTOA.
Morlet-Gabor wavelets (sine-Gaussian wavelets) are a

robust basis for generically modeling transient signals.
First, the transient noise Vi may be written as a linear
combination of these wavelets:

ViðθnÞ ¼
XNi

j¼1

Ψðti; λijÞ; ð3Þ

where Ni is the number of noise transient wavelets in the
ith pulsar, ti is the vector of timing observations for the

ith pulsar, and λij are the parameters for the jth wavelet for
the ith pulsar. Each wavelet can be expressed as a vector

Ψðti; λijÞ ¼

2

666664

Ψðti1; λijÞ
Ψðti2; λijÞ

..

.

ΨðtiNTOA
; λijÞ

3

777775
; ð4Þ

where the elements in this vector are described by

Ψðti; λijÞ ¼ Aeðtin−t0Þ
2=τ2 cosð2πf0ðtin − t0Þ þ ϕ0Þ: ð5Þ

In this wavelet formulation, A is an overall amplitude, tin is
the nth observation time in the ith pulsar, t0 is the central
time for the wavelet, τ is the characteristic duration, f0 is
the central frequency, and ϕ0 is the initial phase.
For the signal model, the contributions from a GW burst

may also be written as a sum of these Morlet-Gabor
wavelets further modulated by the antenna response of
the PTA based on GW polarization and source sky location.
Because GWs perturb spacetime based on both GW
polarization and propagation direction, we sum together
our sine-Gaussian wavelets for the signal, and project
the signals onto the lines of sight of the pulsars in our
array, which are dependent on the corresponding antenna
responses and ensures coherence between the pulsars in our
array. Quantitatively, we can write the photon time integral
of the metric perturbation as a linear combination of
wavelets

Hþ ¼
XN

j¼1

Ψðt; t0;j; f0;j; τj; Aþ;j;ϕ0;þ;jÞ; ð6Þ

H× ¼
XN

j¼1

Ψðt; t0;j; f0;j; τj; A×;j;ϕ0;×;jÞ; ð7Þ

where Hþ and H× are the plus and cross GW polarizations
respectively, and have independent amplitudes Aþ and A×,
with independent phases ϕ0;þ and ϕ0;×. This leaves t0, f0,
and τ as common parameters between both polarizations.
Furthermore, we model the phases independently, as not all
GWs have the same 90° phase shift relationship between
the plus and cross polarizations.
Next, we perform a rotation around the propagation

direction of the GW, which is given by

H̄× ¼ H× cosð2ψgwÞ −H× sinð2ψgwÞ; ð8Þ

H̄þ ¼ Hþ sinð2ψgwÞ þHþ cosð2ψgwÞ; ð9Þ
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where ψgw is the polarization angle of the GW. Finally, the
contribution of the signal to the timing residual can be
expressed as

ωiðθsÞ¼−FþðΩi;ΩgwÞH̄þðti;λ0Þ−F×ðΩi;ΩgwÞH̄×ðti;λ0Þ;
ð10Þ

where FþðΩk;ΩgwÞ and F×ðΩk;ΩgwÞ are the plus and
cross polarization mode antenna responses, respectively.
For further details on the geometric response, see [25].
Equation (10) assumes that the only contribution to the
signal is from the Earth term (ET) and not the pulsar term
(PT). This is a result of our current observing baseline
(∼20 years) being significantly shorter than the light travel
time between the Earth and any pulsar in the PTA
(∼103 years). Thus, any GW bursts which appear in only
one pulsar will not affect the residuals in any other pulsar
(unless two or more pulsars are within a few degrees of
each other), nor will it reach the Earth within the time frame
of the experiment. As such, this burst will appear as a single
noise transient in that particular pulsar. For more details on
the geometric time delay between the ET and the PT, see
Section 2.1 in Ref. [7].
Then, for Np pulsars, the ET signal-to-noise ratio

(SNR) is larger than the PT SNR by a factor of
ffiffiffiffiffiffi
Np

p
.

The SNR scaling for the ET also becomes larger when
considering that an ET search will allow us to see a
common signal in all pulsars in our PTA, while the PT
search will only show a signal in one pulsar and can be
modeled as a noise transient. For additional details on
these arguments, see [7,26]. Moreover, it is expected that
the number of events that we can possibly observe in the
ET only search scales with the number of pulsars ∼N3=2

p .
However, the PT only search scales as ∼Np due to the
extended timing baseline when combining individual
pulsar data. As a result, the number of possible observed
events in the ET only search exceeds the number of
possible observed events in the PT only search by ∼N1=2

p .
Considering current PTAs contain of order 100 pulsars,
there is potential to observe ∼10× more events in the ET
only search.

B. Likelihood

We use a factorized likelihood, which allows us to
simplify some of our likelihood calculations depending
on which parameters in our model we want to vary. We can
demonstrate how to generically rewrite a standard like-
lihood given a specific generic GW burst model template.
For any signal, the likelihood can be written as

logL¼
XNpsr

i¼1

"
−
1

2
ðδti−sijδti−siÞ−

1

2
logdetð2πCiÞ

#
; ð11Þ

where si is our GW burst signal and Ci is the noise
covariance matrix for the ith pulsar. Because we assume
that there are no spatially correlated signals, we can
guarantee that the full PTA covariance matrix is block-
diagonal. Thus, we can separate the individual pulsar
covariance matrices. We define a noise-weighted inner
product between any two vectors a and b as

ðajbÞ ¼ aTC−1b; ð12Þ

where

C−1 ¼ N−1 −N−1TΣ−1TTN−1 ð13Þ

is the inverse of the covariance matrix for a particular pulsar
given by the Woodbury identity [27], and

Σ ¼ B−1 þ TTN−1T: ð14Þ

B is the prior matrix for the hyperparameters, and T is the
design matrix for the timing model, red noise (RN) and
jitter (see [28]). The design matrix includes additional
models for dispersion measure (DM), specifically modeling
DM as an epoch-by-epoch DM offset. This model is
referred to as DMX [28].
For the PTA, we can write the vector of GW burst

contributions to the timing residuals in Eq. (1) as

s ¼

2

666664

s1
s2

..

.

sNpsr

3

777775
; ð15Þ

where we decompose the signal si in the ith pulsar as a sum
of filter functions SkiðθsÞmultiplied by coefficients σkiðθpÞ,

si ¼
X

k¼1;2

σkiðθpÞSkiðθsÞ: ð16Þ

Direct substitution of Eq. (16) into Eq. (11) yields

logL ¼
XNpsr

i¼1

"

−
1

2
ðδtijδtiÞ −

1

2
log detð2πCiÞ

þ
XNF

v¼1

"
X

k¼1;2

σkiNk
i −

1

2

X

k¼1;2

X

l¼1;2

σkiσliMkl
i

##

;

ð17Þ

where the last two terms are inner products between the
ith pulsar residuals and the filter functions for that pulsar,
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as well as the inner product between the pairs of
filter functions respectively. These inner products are
defined as

Nk
i ¼ ðδtijSkiÞ; ð18Þ

and

Mkl
i ¼ ðSkijSliÞ; ð19Þ

where a filter function Ski is a vector of size NTOA (which
has the same structure as δti). Lastly, NF is the number of
wavelets present in the signal model.
Now, we combine Eqs. (6)–(10) to get the filter functions

and filter coefficients for the noise transients and the GW
burst signal based on Eq. (16). In doing this, we get

S1in ¼ eðtin−t0Þ
2=τ2 cosð2πf0ðtin − t0ÞÞ; ð20Þ

S2in ¼ eðtin−t0Þ
2=τ2 sinð2πf0ðtin − t0ÞÞ; ð21Þ

which are the elements of our filter functions SkiðθsÞ from
Eq. (16) for the ith pulsar and the nth TOA, and the
corresponding signal coefficients for a single wavelet are
given by

σ1i ¼ − cosð2ψgwÞ½Fi;þAþ cosðϕ0;þÞ þ Fi;×A× cosðϕ0;×Þ&
þ sinð2ψgwÞ½Fi;þA× cosðϕ0;×Þ − Fi;×Aþ cosðϕ0;þÞ&;

σ2i ¼ cosð2ψgwÞ½Fi;þAþ sinðϕ0;þÞ þ Fi;×A× sinðϕ0;×Þ&
þ sinð2ψgwÞ½Fi;×Aþ sinðϕ0;þÞ − Fi;þA× sinðϕ0;×Þ&:

ð22Þ

The corresponding noise transient coefficients for a
single wavelet are given by

σ1i ¼ A cosðϕ0Þ;
σ2i ¼ −A sinðϕ0Þ: ð23Þ

We can now see why writing this factorized likelihood
opens the door for more efficient calculations. For the
signal model, we have separated all of the terms that are
inherently tied to the pulsar TOA data into the Nk

i and Mkl
i

terms, so the coefficients can be recalculated without doing
any of the costly inner products in these matrices. On the
other hand, the coefficients, which are cheap to recalculate,
can be independently calculated during runtime.
Based on Eq. (22), we can now define our sets of shape

and projection parameters, which are parameters that are
either non-separable or separable from pulsar TOAs,
respectively. For noise transients, based on Eq. (5), our
shape parameters (θs) and projection parameters (θp) are

θs → ðτ; t0; f0Þ;
θp → ðA;ϕ0Þ: ð24Þ

For our generic GW burst signal, our shape and projection
parameters are

θs → ðτ; t0; f0Þ;
θp → ðθgw;ϕgw;ψ ; Aþ; A×;ϕ0;þ;ϕ0;×Þ: ð25Þ

We can see from Eq. (24), the number of shape and
projection parameters for noise transient wavelets in our
model go as 3 × Nn and 2 × Nn, respectively for Nn noise
transient wavelets. From Eq. (25), the number of shape and
projection parameters in our model will scale as 3 × Ns and
3þ 4 × Ns respectively for Ns GW signal wavelets, since
all wavelets share the same sky location and polarization
angle. Notably, in previous work using the signal template
defined by [23] for continuous waves, there are always the
same number of shape and projection parameters. Our
model has more projection than shape parameters, which
will mean a larger percent of our model will be calculated
with the more efficient methods in our algorithm.
Conveniently, the shape parameters are the same for

noise transients and our signal, which necessitates fewer
recalculations during sampling. Due to GW information,
however, the coefficients σki depend on the antenna
patterns and GW polarization, making them more tedious
to recalculate.

C. Sampling

The likelihood factorization that results from utilizing
our signal template, as shown in Eq. (17), allows us to avoid
recalculating components of the likelihood depending
on what parameters we are varying in any given step.
These correspond to the two aforementioned types of
parameters, shape parameters and projection parameters,
as described in Eqs. (24) and (25). Sampler steps that only
change projection parameters do not require recalculating
any components of Nk

i and Mkl
i . We call these projection

parameter updates “fast jumps” because the coefficients are
several orders of magnitude faster to recalculate than the
filter functions. This results in these steps being faster than
all other parameter jumps we can do, which vary over
various subsets of shape parameters (see Table I).
We use similar jump techniques as BayesHopper-

Burst [7] when exploring intrinsic pulsar RN, white noise
(WN), or a CURN process. It is worth noting that these do
require recalculating more pieces of the likelihood than
signal parameter jumps. Based on Eq. (17), our options for
parameter types to vary are (in order of decreasing
computational expense):
(1) Intrinsic pulsar noise and CURN: All terms in the

likelihood are recalculated as a result of the noise
covariance matrix C changing.

(2) Shape parameters: Parts of the terms which include
our signal model need to be recalculated when
varying shape parameters. We only recalculate the
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elements of Mi and Ni that are changing, while all
other elements are stored for the next likelihood
calculation.

(3) Projection parameters: Only the filter function co-
efficients are recalculated.

We also need to allow the dimensions of our parameter
space to change during sampling depending on how
many GW signal wavelets or transient wavelets the model
prefers. To properly explore these models, we apply trans-
dimensional proposals to probe more or less signal or noise
transient parameters [21,22] as the sampler evolves. These
transdimensional proposal steps are labeled as TD in
Table I. Additionally, we apply Fisher matrix proposals
and τ-scan proposals to increase sampling efficiency.
For Fisher matrix proposals, we can numerically con-

struct a matrix from the covariance between our model
parameters by computing second derivatives of the like-
lihood via finite differences. Then, the eigenvectors of the
Fisher matrix can be used to change model parameters
between MCMC steps based on the covariance between
these model parameters. These Fisher matrices are con-
structed for various sets of model parameters separately
from each other (i.e. for intrinsic pulsar noise, signal
and noise transient wavelets, CURN, etc.), which allows
us to make more informed MCMC jump proposals
based on the type of step taken during sampling.
Additionally, these fisher matrices can be recalculated
during runtime based on the location of the MCMC
sampler in parameter space to better inform our Fisher
steps during sampling. For more details on how these
matrices are computed, see [29].
Additionally, we can compute a global proposal for all

wavelets to draw from in what we call τ-scan proposals.

These proposals are informed by a 3D map over our shape
parameters [see Eqs. (24) and (25)] where we find some
excess power in our data. τ-scan proposals have been used
previously in BayesHopperBurst, and can be utilized
in our algorithm to improve sampling efficiency specifi-
cally in our shape parameters. More details on τ-scan
proposals can be found in Sec. 2 of [7].

D. Verification and timing

Before analyzing efficiency improvements, we first
present comparisons between the Bayesian likelihood imple-
mented in QuickBurst and BayesHopperBurst.
As BayesHopperBurst utilizes the software package
ENTERPRISE [30] to evaluate the Bayesian likelihood, we use
these values as a benchmark for our algorithm. The like-
lihood comparisons are evaluated using a simple data set
consisting of two sine-Gaussian wavelets. Our comparisons
show that the two signal models yield likelihoods that are
equivalent up to 10−10 precision. When including either
intrinsic pulsar red noise or CURN, compounding numerical
errors in likelihood evaluations increase differences to
∼10−5. However, the spread in likelihood differences is still
centered around a difference of zero. Additionally, the signal
reconstruction for a single pulsar from this run can be seen
in Fig. 1.
With consistency between ENTERPRISE andQuickBurst

established, we can now proceed to demonstrating the
improved computational efficiency of QuickBurst. To
do so,we simulate datasets as close to the15yearNANOGrav
dataset as possible (see Sec. III for simulation details) and
time our various types of steps. The timing for these steps
correspond to runs on the SIM-MID dataset detailed in
Table II, which only vary our GW signal and noise transient
parameters. However, in order to time noise jumps, we
allow intrinsic pulsar RN to vary. It is worth noting that the
timing runs do not include CURN, which is handled in the
“regular Fisher” jump proposals. The average timing for
these jumps is around 0.51 s if CURN is included. The
results can be seen in Table I.
There are some notable takeaways from this timing data.

First, we see QuickBurst yields a ∼1.5 × −2× increase
in time per step for jumps that vary shape parameters
compared to ENTERPRISE. These include τ-Scan, trans-
dimensional (TD), and Regular Fisher jumps. Second, we
see QuickBurst has an 8× increase in time per step
compared to ENTERPRISE for Noise jumps, which vary
intrinsic pulsar noise. This is due to an increase in the
number of inner products required for deterministic signal
models. In expanding the likelihood to account for this
deterministic model [as shown in Eq. (17)], we have a

factor of N2
Fþ5NF

2 increase in the number of inner products
we need to calculate during these Noise jumps in the M and
N matrices seen in both Eqs. (18) and (19), which accounts
for the time increase shown.

TABLE I. Timing of different parameter jump types in seconds,
from runs on the SIM-MID dataset as described in Table II. The
total speed up is calculated with a ratio of 10,000 Fast samples to
any one other jump sample. All results were obtained using single
personal computers (PCs) utilizing Intel I9-10900k CPUs with 20
cores at 3.7 GHz and 64 GBs of memory at speeds of 3200 MHz.
The steps labeled as “TD” are averages over both the whole step,
while all other timings come from the likelihood calls. This is
done because the time per likelihood call for TD steps can vary
greatly depending on if the model is adding or removing
parameters.

Jump types QuickBurst (s) BayesHopperBurst (s)

TD signal 0.50 0.20
TD noise transient 0.41 0.18
Signal τ scan 0.30 0.21
Noise transient τ scan 0.24 0.18
Regular Fisher 0.23 0.13
Noise 0.66 0.08
Fast 1.5 × 10−5 N/A

Total speed up ×186 for 10,000 Fast/Slow
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Despite these increases, we still see a significant speed up
thanks to our parameter separation as described in Sec. II B.
QuickBurst samples our “fast” jumps—which only
recalculate σkiðθpÞ—up to 10;000× faster than ENTERPRISE.
With this advantage over ENTERPRISE, we see a factor of
186× speed up overall for generic GW burst searches in
comparison to BayesHopperBurst, even when includ-
ing RN and CURN timing. If we exclude both CURN and
RN, this factor improves up to approximately 204×.
These times were calculated by averaging over

the timing table jump types for QuickBurst and
BayesHopperBurst, and computing the average time
over 100 samples for each algorithm. Note that the timing
for an ENTERPRISE likelihood calculation for an equivalent
fast jump is on average 100 μs, which is omitted in the
Table I given that BayesHopperBurst does not have
the ability to perform this type of parameter jump.

III. ANALYSIS OF SIMULATED DATA SETS

A. Datasets

To test QuickBurst, we simulate four datasets that
include a burst signal of varying amplitude. These

simulations are based on the Astro4Cast simulations
presented in [31] and realistically emulate the 15 year
NANOGrav dataset. This means our observing epochs
(including gaps) as well as the injected RN and WN in
every pulsar are based on measured values. However, to
ensure a realistic-sized data set, we do not average the
residuals over each observing epoch, and instead retain
and analyze all of them. One dataset contains no GW
burst signal injection, while the other three datasets
include an injected GW burst signal in the form of a
parabolic encounter of two SMBHs [32] each with a mass
of 109M⊙, an impact parameter of 120M⊙, a sky location
of (θgw ¼ π=2, ϕgw ¼ 4.0) and while varying the source
luminosity distance. These four datasets form four signal
regimes: a high amplitude (SIM-HIGH), medium ampli-
tude (SIM-MID), low amplitude (SIM-LOW), and no
signal case. All datasets contain pulsar noise properties as
found in Sec. V in [33]. For these four datasets, we are
disregarding the inclusion of a CURN process. See
Sec. III B 3 for generic GW burst analysis includ-
ing CURN.
We quantify the signal strength by calculating the SNR

of our GW burst injection. The SNR is given by

SNRðhÞ ¼
ffiffiffiffiffiffiffiffiffiffiffi
ðhjhÞ

p
ð26Þ

for any signal h. For all three nonzero amplitude datasets,
the signal SNR and luminosity distances can be found in
Table II. We calculate the SNR in two cases for each
dataset: one case where we only include intrinsic pulsar
WN in our covariance matrix, and another case where
we include intrinsic pulsar RN and WN in our model.
The difference between these SNR values indicates how
much the detectability of the burst is affected by RN.

TABLE II. Table consisting of luminosity distance, and signal
SNR in the cases of including only intrinsic pulsar WN or both
intrinsic pulsar RN and WN. The quoted SNR values were
computed with only 24 of 67 NANOGrav pulsars, which
correspond to pulsars with more than 10 years of observations.

Parameters SIM-LOW SIM-MID SIM-HIGH

luminosity distance 120 Mpc 60 Mpc 30 Mpc
WN SNR 4.7 9.5 19.0
WNþ RN SNR 3.9 7.8 15.7

FIG. 1. Waveform reconstructions for a simulated dataset containing two sine-Gaussian signal wavelets with an SNR of 17.9. The
recovered waveform has an SNR of 16.3, and a match of M ¼ 0.97 with the injected signal [see Eq. (27)].
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The subsequent analysis performed on these four datasets
in Sec. III B includes both intrinsic pulsar RN and WN.
Another important note is that the burst epoch in all

datasets is at 55,000 MJD, which is in the first half of the
dataset. This is an arbitrary choice. Many pulsars do not
have TOAs around this burst epoch, and will not provide
additional significance on GW burst recovery. As such,
we truncate the list of pulsars involved in our searches
on the datasets described in Table II to only include
pulsars with more than 10 years of data, which is 24 of the
68 pulsars in the NANOGrav 15 year PTA. Note that we
only use 67 of these pulsars (see [1,24] for details). Doing
so improves the efficiency of our generic GW burst
search, as the model has fewer pulsars to fit a GW burst
to. Such a PTA reduction may be possible for real
datasets, even without knowing the burst epoch, by
investigating the SNR contributions from individual
pulsars. See Appendix A for further discussion. However,
this does reduce our sky coverage, which is discussed in
Sec. III B 2 in further detail.

B. Analysis

Now we present the results of the analysis of datasets of
varying signal strengths. We first analyze the no signal
regime, and then analyze the datasets that have a signal
present. Since the parameters of our generic model have
no physical meaning, the pipeline’s performance is best
characterized by how well the waveform of the GW signal
is reconstructed. To quantify our signal recovery, we can
see how close the injected (h) and recovered (h0) wave-
forms are to each other by computing a normalized noise
weighted inner product between h and h0 over the entire
PTA. This match M is defined as

M ¼ ðhjh0Þ
SNRðhÞ × SNRðh0Þ

ð27Þ

where a value of M ¼ 1 is a perfect overlap between h
and h0, while M ¼ 0 is no overlap between the two
waveforms. More details on this statistic can be found in
Sec. 2 of [7].
Described in Table III are the priors assigned to both

shape and projection parameters. Given the exploratory
nature of our testing, we use wide ranges on many of our
priors. We use a uniform prior for all of our signal
parameters.

1. Zero amplitude dataset

To establish a baseline, we have tested QuickBurst on
a dataset with no GW burst injection, while keeping all
intrinsic pulsar noise as realistic as possible. As expected,
our analysis shows preference for no signal wavelets being
included in our signal model, in addition to no noise
transient wavelets, as shown by the histogram in Fig. 2.

2. Nonzero signal amplitude datasets

Here we show our analysis of the three non-zero SNR
signal simulated datasets described in Table II. Given that
the waveform shape can vary widely based on the orbit
parameters of the two SMBHs, a good indicator for
QuickBurst’s ability to recover our signal is to accu-
rately reconstruct the signal waveform after performing
searches in our datasets.
In Fig. 3, we show the results of our GW signal and noise

transient reconstructions in PSR B1937þ 21. This pulsar
has a significant burst amplitude present in all three
datasets, with single pulsar GW burst SNR values of
2.8, 1.4, and 0.7 for the SIM-HIGH, SIM-MID, and
SIM-LOW datasets respectively. The plots on the left show
the epoch averaged residuals for B1937þ 21 with the RN
and best fit timing model parameters [ni þ gi and Miδξi in
Eq. (2), respectively] subtracted out. Additionally, the solid
red line is the median waveform reconstruction for the GW
burst, and the red shaded region is the 90% credible region.

TABLE III. Table of prior ranges used for signal parameters in analysis of the datasets described in Table II. Tmax
refers to the maximum observation time span in a given dataset with respect to the starting MJD, which is an MJD of
∼5855 for these datasets. All angles are in units of radians.

Shape parameters Projection parameters

Parameters τ (yrs) t0 (yrs) log10ðf0Þ cos θgw ϕgw ψgw Aþ A× ϕ0;þ ϕ0;×

Range 0.2, 5.0 0.0; Tmax −8.46;−7 −1, 1 0; 2π 0; π 10−10;10−5 10−10;10−5 0; 2π 0; 2π

FIG. 2. Histogram for recovered noise transients and signal
wavelets for our NANOGrav 15-year like dataset with no GW
burst injection. We note that the model prefers no signal wavelets
to be present in the model at all times in sampling.
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The solid green line is the median noise transient
reconstruction, and the shaded green region is the 90%
credible region for the noise transient (if any are present).
The plots on the right show the posteriors for the number of

signal wavelets and noise transient wavelets for these
analyses. The three columns from top to bottom correspond
to the three analyzed datasets, SIM-HIGH, SIM-MID, and
SIM-LOW, respectively (see Table II).

(a)

(b)

(c)

FIG. 3. (a) 30 Mpc SMBHB parabolic encounter dataset with an injected signal SNR of 15.7 and M ¼ 0.96. (b) 60 Mpc SMBHB
parabolic encounter dataset with an injected signal SNR of 7.8 and M ¼ 0.86. (c) 120 Mpc SMBHB parabolic encounter dataset with an
injected signal SNR of 3.9 and M ¼ 0.84. For each dataset, (left) Signal reconstruction in B1937þ 21. (right) Number of recovered
signal and noise transient wavelets. The waveform reconstructions are created using the La Forge software package [34].
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First, we see that the waveform for the GW bursts in
these three datasets are accurately reconstructed. We find
that the median reconstructions match the injected wave-
forms with values M ¼ 0.96, M ¼ 0.86, M ¼ 0.84 for the
SIM-HIGH, SIM-MID, and SIM-LOW dataset respec-
tively. We also see the match monotonically increase with
GW burst SNR as expected [35].
Next, for the recovered signal wavelets, it has been seen

in other generic GW burst algorithms that utilize a sine-
Gaussian basis (see [36]), where the number of recovered
wavelets scales with GW burst SNR, as the model can fit
for more features in a higher SNR signal. This is consistent
with the signal wavelet posteriors in Fig. 3. Regarding the
SIM-LOW dataset, we find that due to the significantly
lower signal SNR, convergence took ∼3× longer than the
SIM-MID and SIM-HIGH analyses. This is a result of
marginal differences in the Bayesian likelihood when
proposing GW signal wavelets at this SNR. Furthermore,
we see there is a significant preference for no noise
transient wavelets in all three cases, and that our recon-
structions are always consistent with zero. Despite this,
there is still a non-negligible percentage of samples at
greater than zero noise transients. Having no noise tran-
sients in our model is preferred, but having a few noise
transients cannot be completely ruled out. This is expected,
as white noise fluctuations can be fitted with a small
amplitude wavelet.
We also test that QuickBurst can properly recover the

sky location of a GW burst. In Fig. 4 we show the sky
recovery results of three different runs. In the top two plots,
we plot the sky location recovery for a search on the SIM-
MID dataset, both where we include only our longest timed
pulsars (top figure), and where we include all the pulsars in
the NANOGrav 15 year PTA (middle figure). We then
display the sky location recovery for a run on the SIM-MID
dataset, but with a shifted GW burst sky location (bottom
figure, referred to as the “SIM-MID sky shifted” dataset).
For the original SIM-MID search, the burst is only

constrained to around a quadrant of the sky. We see,
however, that including all NANOGrav 15 year pulsars
(as shown in the middle figure) does not provide additional
constraints on our sky location recovery for this particular
GW burst signal. The pulsars labeled by black dots are the
additional pulsars we are adding, but there is limited data
for those pulsars around the burst epoch, despite lying in a
more sensitive sky region. It is also important to note that
GW burst signals of this type have a finite width. While
there are small changes in the posterior between the top two
panels, the overall shape is the same between the 24 pulsar
case and the 67 pulsar case. This is expected behavior given
that these additional pulsars contribute little new GW burst
information.
To explore whether this is a feature of the SIM-MID

dataset or our pipeline, we can simply change our sky

FIG. 4. Sky location recovery for a search on the SIM-MID
dataset that includes either 24 NANOGrav pulsars, (top) and
(bottom), or 67 NANOGrav pulsars (middle). The 10 year and
higher baseline pulsars are displayed as red dots, while the
pulsars with less than a 10 year baseline are displayed as black
dots. The lines indicate injected sky location parameters, which
are at ϕgw ¼ 4 and θgw ¼ π=2 for (top) and (middle), but are
shifted to ϕgw ¼ 5.0; θgw ¼ π=2, and ψgw ¼ −0.3 for (bottom).
All angles are in units of radians.
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location of the burst to have overlap with more of our
longer timed pulsars. Moreover, we ensure that the total
GW burst SNR is close to the signal SNR in the SIM-MID
dataset. In doing so, we create a new dataset that is almost
identical to the SIM-MID dataset, except the burst location
is now at ϕgw ¼ 5.0 rad; θgw ¼ π=2, and ψgw ¼ −0.3 rad.
Based on the bottom figure in Fig. 4, we clearly recover the
injected burst location with a shifted burst location. In
comparison with the sky location recovery efforts (as
shown in the top and middle panels of Fig. 4), we see
that having better sky coverage allows us to better recover
both θgw and ϕgw, so these sky recovery differences are
features of the datasets, and not a limitation of the sampler.
We will discuss the issue of sky coverage and GW burst
sensitivity more in Appendix A.

3. Common red noise effects

The analysis we have discussed so far does not include
a common uncorrelated red noise, or CURN. This shows
the effectiveness of QuickBurst in a simpler context,
but as we have seen from the NANOGrav 15 year GWB
results [1], there is strong evidence for a correlated GWB.
While it is beneficial to analyze the impacts of a correlated
RN process on GW burst analysis, it is not expected that
adding in Hellings-Downs (HD) correlations produces
significant additional covariance with our wavelet model
(see Appendix B for more details). Therefore, we will
show QuickBurst can disentangle a GW burst from a
CURN process.
To isolate the effects a CURN process would have on our

dataset, we test on a simple simulated data set of 20 pulsars
with evenly sampled data that includes simulated pulsar
WN, CURN, and a GW burst signal from a parabolic
SMBH encounter at a sky location of ϕgw ¼ 3.7 rad;
θgw ¼ π=2, and ψgw ¼ 0.2 rad (unlike the results in
Fig. 3 which used a more realistic dataset made to resemble
the NANOGrav 15 yr dataset). This dataset consists of a
CURN injection with an amplitude of A ¼ 6.0 × 10−15, a
spectral index of γ ¼ 13=3, and 1 μs of intrinsic pulsar WN
(which sets the CURN process to be larger than the WN at
the lowest frequencies).
First, we perform a search with QuickBurst where we

fix our CURN process to the injected CURN values. In
doing so, we recover a significant portion of our injected
signal, boasting a recovered SNR of 6.4 (injected SNR of
6.8) and a match of M ¼ 0.82. We then perform a run on
the same dataset where we simultaneously vary both
wavelet parameters and CURN spectral parameters, which
is displayed in Fig. 5(a). Results indicate a match of
M ¼ 0.79 and a recovered SNR of 10.2 (injected SNR
of 9.0). Furthermore, in comparison to histograms shown in
Fig. 3, the distribution of signal wavelets and noise
transient wavelets are wider. This is likely due to covari-
ance between the CURN process at overlapping frequen-
cies, which can result in some of the GW burst power being

absorbed into the CURN model. This suggests that even
in strongly red noise dominated data, it is possible to
disentangle the signal. There may be additional compli-
cations on real data in the future, where additional
methods may help to better disentangle these two signal
types, if a GW burst is present.

(a)

(b)

FIG. 5. Plots using a dataset with 20 pulsars and a CURN of
amplitude A ¼ 6.0 × 10−15. CURN parameters were allowed to
vary. (a) Histogram of recovered signal and noise transient
wavelets as found in QuickBurst while simultaneously
searching over CURN spectral parameters. (b) Corner plot of
recovered CURN power law parameters from both the Quick-
Burst run that generated the top plot (blue), and a search using
enterprise for only CURN and other noise intrinsic pulsar
(red). The injected values were γ ¼ 4.33 and log10 A ¼ −14.22
overlay-ed as black lines, while the dotted lines correspond to the
median recovered values for each run. QuickBurst recovered
median values of γ ¼ 4.90 and log10 A ¼ −14.45, while the
search with ENTERPRISE yielded median values of γ ¼ 3.96 and
log10 A ¼ −14.05. Both of these recoveries are consistent with
the injected signal within a 65% credible region.
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It is also informative for future searches to see the effects
of excluding a GW burst from our overall signal model.
To analyze these effects, we perform a search using
ENTERPRISE on our simple dataset where only CURN is
being modeled (and varied), and compare to a search using
QuickBurst where both CURN and our GW signal
wavelet parameters are varied. Figure 5(b) shows the
posterior distribution of the CURN amplitude (A) and
the spectral index (γ) from these two runs. We can see that
the difference in posteriors illuminates a bias in the
recovery of a CURN process.
In the QuickBurst search, given that there is over-

lapping frequency content between a CURN signal and a
GW burst, the GW burst signal model can absorb some of
the CURN power at the overlapping frequencies. This bias
sharpens the CURN spectrum, raising the spectral index
and lowering its amplitude at higher frequencies. Inversely,
in the ENTERPRISE search, our recovered CURN parameters
are biased toward a lower spectral index and a higher
amplitude. This is a result of the GW burst having higher
frequency content, but still having a larger SNR than the
WN present. This high frequency GW burst content flattens
the CURN spectrum while increasing its overall amplitude.
This effect means that we will have to balance using fixed
vs varied runs on real datasets to try and most accurately
recover any signals that may be present.

IV. CONCLUSIONS

We have developed a pipeline that can search for generic
GW bursts in PTA datasets using a basis of Morlet-Gabor
wavelets. This method has been demonstrated to improve
search efficiency by ∼200×. QuickBurst is capable of
recovering detectable signals in a variety of signal
strength regimes, while buried in a realistic simulated
PTA with intrinsic pulsar RN, intrinsic pulsar WN, and
non-uniform sampling/sky coverage. QuickBurst can
also be used to efficiently find noise transients in
PTA data. Mitigating such noise transients can have a
positive effect on other GW analyses, as it can help make
sure the presence of such transients do not bias the GW
parameter recovery.
With this pipeline developed, it is now computationally

feasible to search agnostically for any kind of gravitational
wave burst signal in the newest PTA datasets, like the
NANOGrav 15 yr dataset, the EPTA DR2 dataset, or the
PPTA DR3 dataset [24,37,38]. QuickBurst will also
allow us to scale this analysis to future combined datasets,
like the upcoming IPTA DR3 [39]. Future work includes
implementing the ability to simultaneously searching for a
generic GW burst signal alongside a common correlated
RN process, which would take into account the most recent
results found in [1–4]. Future work also includes expanding
this approach to include radio-frequency-dependent wave-
lets, which can be useful for modeling transient changes in
the dispersion measure or other chromatic effect (for a

review, see [33]). Lastly, DMX is a flexible model that can
easily fit features that are not in fact DM variations. This
means that DMX can make the covariance between the DM
and burst models worse than it intrinsically is, especially on
short timescales. Future work may include investigating
this covariance through modeling DM as a Gaussian
process rather than epoch-by-epoch offsets [40,41].
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APPENDIX A: PER PULSAR GENERIC GW
BURST SNR PREDICTIONS

In the search for a stochastic background, the SNR of
the HD correlations scales with the number of pairs in our
PTA [42], which motivates using all the available pulsars in
the analysis. However, for a generic GW burst, we need a
large enough observing time span for any given pulsar to
resolve burst features, and pulsars whose noise properties
are understood well enough to be subtracted out as
accurately as possible. In addition, removing pulsars
decreases the computational cost of these searches, giving
us more time to resolve the features in the most significant
pulsars. In summary, it may be more efficient to remove
pulsars with an observation time span less than the
maximum width (given by τ) of a GW burst allowed in
a GW burst search. These short timed pulsars will therefore
be uninformative regarding the morphology of a GW burst,
and can bias SNR values. These pulsars will then contribute
minimally to the total GW burst SNR [43]. For this reason,
the maximum width on the GW signal wavelets is set to
τ ¼ 5 years for analysis displayed in Sec. III B 2.
To test for uninformative pulsar SNR contributions, we

can calculate the SNR2 for each pulsar in the SIM-LOW
dataset, but not limited to pulsars with the longest obser-
vation time-span. We compute these values over 10,000
realizations and average them in two different cases: (1) the
burst epoch is fixed to MJD 55,000 (to match the analysis
described in Sec. III B 2), while the GW burst sky location
is randomized between each realization, and (2) where
both the GW burst epoch and sky location are randomized
between each realization. Assuming there is a GW burst
present, the second case is the most agnostic, as in real
datasets, we will not know when or where a GW burst will
present itself. We then take the mean SNR2 value over all
10,000 realizations in each pulsar along with the 65%
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credible regions for both cases, and these are plotted
in Fig. 6.
In the fixed epoch case (left figure), the pulsars which

have an observing time less than 10 years of data (high-
lighted in red) show a clear trend to lower SNR2 values.
This directly results from the GW burst epoch occurring at
a time when those pulsars have no observational data and
miss most GW burst features. In the random epoch case
(right figure), the trend is less clear. Generally, there is a
higher density of longer observed pulsars having larger
SNR contributions. However, there are several exceptions
to this trend (namely pulsar J2043þ 1711) that do not
allow us to simply cut pulsars from the analysis based on
observation time span. In this case, there are 30 pulsars
whom contribute to 99% of the total GW burst SNR, but

not all of these 30 pulsars are ones with a greater than
10 year baseline. Therefore, simply dropping pulsars from
the analysis is not an advisable solution for additional
computational efficiency.
However, the expected SNR calculation presented here

provides a compelling alternative, which can be used to at
least halve the number of pulsars to analyze without losing
any significant sensitivity. Such an approach will make
future analyses of real data even more efficient. This may
also suggest performing future searches with a tiered
approach. One could start by analyzing a dataset with
the best ∼10 pulsars (which would encapsulate > 90% of
the SNR), and then perform follow up searches where more
pulsars are added. This tiered approach will increase search
efficiency by reducing the data volume being analyzed,

FIG. 6. Sky averaged burst SNR2 of pulsars in the SIM-LOW dataset. The mean SNR for the full PTA is listed at the top of each plot
for each set of 10,000 realizations. Left: mean SNR2 for all pulsars over 10,000 realizations of randomized burst locations in the sky at a
fixed burst epoch of MJD ¼ 55; 000. Right: mean SNR2 for all pulsars over 10,000 realizations for both randomized burst locations on
the sky and randomized burst epochs. Pulsars in red indicate the pulsars with less than 10 years of data, which are pulsars that were
dropped from our analyzed datasets described in Sec. III. The dashed red lines indicate the cumulative SNR2 at 50%, 90% and, 99%, and
in parenthesis are the number of pulsars that are included in the cumulative sum.
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but at the cost of GW burst sky location sensitivity, as
shown in Fig. 4.

APPENDIX B: HD CORRELATIONS
COVARIANCES WITH GENERIC WAVELET

MODELING

Recently, the first evidence for the stochastic GWB has
been found in PTA data [1–4]. This motivates considering
how HD correlations in the common red noise could impact
GW burst analysis. In this analysis, we first consider the
spectral characterizations of these common signals to see
how significant we expect the impact to be.
As seen in the results from various PTAs, the stochastic

GWB has its highest contributions in the lower frequency
bins based on free spectrum analysis, which are frequencies
ranging from ∼1 − 10 nHz. Because these GW burst
searches are intended to search for signals that persist
for less than the time span of a dataset, it is not expected
that the spectral power from the GWB will significantly
overlap with the peak spectral power of a GW burst. An
example can be seen in Fig. 3, as the wavelet model prefers
a frequency between f0 ∼ 7 − 9 nHz, which does not
overlap with the highest power contributions of a stochastic
GWB with the most recent spectral characterization of
the GWB.
To test this, we create a simulated dataset that is identical

in construction to the dataset used to analyze the inclusion
of CURN (as shown in Fig. 5), with the only difference
being including a correlated RN process with HD
correlations versus CURN, both with the same spectral
parameters. We then perform identical searches with
QuickBurst on both datasets. In both cases, we allow
the common process in both analyses vary, full knowing
QuickBurst only has the ability to model both common
processes as CURN.
In Fig. 7, we see the results of this analysis. In the top

panel, we compute the match statistic for 10,000 randomly
drawn samples from the chain returned by QuickBurst
for each dataset, and plot the distribution for each. For the
dataset containing CURN, the median value of the match
statistic is M ¼ 0.84' 0.05, and for the median for the
dataset containing HD is M ¼ 0.82' 0.04. We see that the
match statistic distributions are consistent within 1σ of each
other. The slight decrease in the match statistic distribution
for the dataset with an HD GWB is insignificant due to
significant variations between noise realizations in simu-
lations. Therefore, this shows a negligible increase in
covariance between the inclusion of HD correlations and
our wavelet model.
Moreover, in the bottom panel of Fig. 7, we see the

spectral recovery for the common signals of each dataset.
The black crosshair signifies the injected signal parameters
for each, and the dashed lines represent the median
recovered spectral parameters for each run. For the
CURN dataset, the median recovery for the spectral

parameters are A ¼ 3.5 × 10−15 and γ ¼ 4.9. For the HD
dataset, the median recovery for the spectral parameters are
A ¼ 2.5 × 10−15 and γ ¼ 5.3. Given that there are minimal
changes in the posteriors for the spectral parameters, this
implies that the model for HD correlations absorbs little
additional power than the CURN model has shown to

(a)

(b)

FIG. 7. Comparison between two datasets consisting of iden-
tical GW burst signals and intrinsic pulsar noise, but only
differing in the common noise. One dataset contains an HD
correlated signal and the other contains a CURN signal, yet
both have the same spectral parameters of A ¼ 6 × 10−15 and
γ ¼ 13=3. (a) Distribution of the match statistic from identical
analyses on both datasets. (b) Corner plot of spectral parameter
recovery between both datasets. The black crosshair indicates the
injected parameter values for both datasets, while the dashed lines
represent the median recovered vales for each dataset.
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absorb from the GW burst that is present. While we cannot
conclusively say for sure that a GW burst of any morphol-
ogy will not have significant covariance with an HD
correlated GWB based on this one example, it is promising

that adding in these correlations does not produce any
issues with our wavelet model. Similar simulations can
easily validate this for other waveforms with different time-
frequency content in the future.
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