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Abstract
Pulsar timing array (PTA) searches for gravitational waves (GWs) aim to
detect a characteristic correlation pattern in the timing residuals of galactic
millisecond pulsars. This pattern is described by the PTA overlap reduction
function (ORF) !ab (ωab), which is known as the Hellings–Downs (HD) curve
in general relativity (GR). In theories of modified gravity, the HD curve often
receives corrections. Assuming, e.g. a subluminal GW phase velocity, one
finds a drastically enhanced ORF in the limit of small angular separations
between pulsar a and pulsar b in the sky, ωab → 0. In particular, working in
harmonic space and performing an approximate resummation of all multipole
contributions, the auto correlation coefficient Γ aa seems to diverge. In this
paper, we confirm that this divergence is unphysical and provide an exact and
analytical expression for Γ aa in dependence of the pulsar distance La and the
GW phase velocity vph. In the GR limit and assuming a large pulsar distance,
our expression reduces to !aa = 1. In the case of subluminal phase velocity,
we show that the regularization of the naive divergent result is a finite-distance
effect, meaning that Γ aa scales linearly with fLa, where f is the GW frequency.
For superluminal phase velocity (subluminal group velocity), which is relevant
in the case of massive gravity, we correct an earlier analytical result for Γ ab.
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Our results pave the way for fitting modified-gravity theories with nonstandard
phase velocity to PTA data, which requires a proper understanding of the auto
correlation coefficient Γ aa.

Keywords: pulsar timing arrays, gravitational waves, modified gravity

1. Introduction

In recent years, the field of pulsar timing array (PTA) searches for gravitational waves
(GWs) [1] has entered an exciting phase, with several PTAs now being on the brink of dis-
covering a stochastic GW background at nHz frequencies [2–5]. The central observables in
PTA measurements are timing residuals for a set of galactic millisecond pulsars, Ra, which
correspond to the differences between observed pulse times of arrivals (TOAs) on the one
hand and theoretically expected TOAs (according to sophisticated timing models) on the other
hand. The timing residuals for each pulsar in the PTA are affected by various noise contribu-
tions; however, on top of these noise contributions, GWs can leave an imprint in the Ra in the
form of a characteristic correlation pattern. The GW contribution to the timing residuals, RGW

a ,
can notably be written as a time integral over GW-induced redshifts, za, which quantify the
instantaneous shift in the pulse TOAs caused by GWs [6, 7],

RGW
a (t) =

ˆ t

0
dt → za (t →) , (1)

and whose correlator reads

〈za (t)zb (t)〉=
2
3

ˆ ∞

0
df!ab (ωab, f)Sh ( f) . (2)

Here, Sh is the GW strain power spectrum of the GW Fourier modes h̃A ( f, n̂)with polarization
A, frequency f, and propagation direction n̂ that make up the GW background in the nHz
frequency band, which we assume to be stochastic, Gaussian, unpolarized, stationary, and
isotropic in this paper,

)
h̃A ( f, n̂) h̃∗A′

[
f →, n̂ →]〉=

1
8π

δAA′ δ ( f− f →) δ(2)
[
n̂− n̂ →] Sh ( f) , (3)

and the function Γ ab denotes the PTA overlap reduction function (ORF) (see [8] for a pedago-
gical review),

!ab (ωab, f) =
3
2

ˆ
d2n̂
4π

[
1− e−2π i f La(1+n̂·p̂a/vph)

][
1− e2π i f Lb(1+n̂·p̂b/vph)

] ∑

A=+,×
FAa (n̂)F

A
b (n̂) .

(4)

In this expression, La and Lb denote the distances to pulsars a and b, respectively; the unit
vectors p̂a and p̂b indicate the positions of pulsars a and b on the celestial sphere, respectively;
ωab is the angular separation of the two pulsars in the sky, ωab = arccos(p̂a · p̂b); vph is the GW
phase velocity, which does not necessarily coincide with the speed of light in modified gravity;
and F+

a and F×
a are the PTA detector pattern functions [9],

FAa (n̂) =
pia p

j
aeAij (n̂)

2(1+ n̂ · p̂a/vph)
, (5)
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where e+ij and e
×
ij are the two GW polarization tensors,

e+ij (n̂) = φ̂iφ̂j− θ̂iθ̂j, e×ij (n̂) = φ̂iθ̂j+ θ̂iφ̂j, (6)

which can be constructed in terms of the unit basis vectors φ̂ and θ̂,

φ̂= (sinφ,−cosφ,0)T , θ̂ = (cosθ cosφ,cosθ sinφ,−sinθ)T . (7)

In this paper, we are interested in the properties of Γ ab in theories beyond general relativ-
ity (GR) [10–18]. In particular, we shall consider the possibility of a nonstandard GW phase
velocity, vph %= 1, which is realized in various modified-gravity models. At nHz frequencies,
GWs may, e.g. exhibit a dispersion relation of the form

ω (k) = vph k, k= |k| , vph < 1. (8)

In this case, the GW phase and group velocities, vph = ω (k)/k and vgr = ∂ω (k)/∂k, are
identical, and GWs propagate at subluminal speed. Another attractive benchmark consists in
massive gravity, where

ω (k) =
√
m2

g + k2, (9)

withmg denoting the graviton mass. Now, the phase velocity becomes superluminal, while the
group velocity remains subluminal. In fact, in the case of massive gravity, the two velocities
are just the inverse of each other,

vph =
√
1+(mg/k)

2, vgr =
1√

1+(mg/k)
2
. (10)

In order to be able to fit these two benchmark scenarios of modified gravity to PTA data [19–
24], it is crucial to have a precise understanding of the ORF, both for separate pulsars at angular
separation ωab as well as for individual pulsars. Earlier work mostly focused on the cross cor-
relations coefficients !a&=b. The goal of the present paper therefore is to provide an in-depth
discussion of the auto correlation coefficient Γ aa, including new exact and analytical expres-
sions that are valid both for models with sub- and superluminal phase velocities.

Metric theories of gravity beyond GR can accommodate up to six GW polarization
states [25, 26], i.e. two scalar and two vector modes on top of the two tensor modes described
by equation (6). We expect that much of the machinery that we are going to develop in the
present paper can also be applied in a straightforward manner to these non-Einsteinian polariz-
ation states, their correspondingORFs [12], and in particular their auto correlation coefficients.
Nonetheless, we shall follow [9] in this work and restrict ourselves to the two ordinary plus
and cross tensor modes, i.e. the type of modes that are generically produced from astrophys-
ical and cosmological sources, whereas other modes are often screened in modified-gravity
scenarios [27–31].

The rest of the paper is organized as follows. In the next section, we will briefly review
the computation of the ORF in GR, which we will use as an opportunity to fix the overall
normalization of the ORF. In section 3, we will then turn to the decomposition of the ORF in
Legendre polynomials. In the context of this discussion, we will notably encounter a spurious
divergence at ωab = 0 in the case of subluminal vph, which serves as a main motivation for
much of the subsequent analysis. Indeed, in section 4, we will present an exact and analytical
expression for the auto correlation coefficient Γ aa, which confirms that the ORF does in fact
not diverge. In addition, we will derive a useful and considerably simpler expression for Γ aa

that manages to approximate the full result with excellent precision at vph < 1. Similarly, in
section 5, we will derive a useful and simple expression for Γ aa that approximates the full

3
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result in the case of massive gravity (i.e. for vph > 1) with excellent precision. Section 6, finally,
contains our conclusions and an outlook on remaining open questions and our next steps.

2. Hellings–Downs (HD) curve

The two square brackets in equation (4) account for the so-called earth-term and pulsar-term
contributions to the GW-induced redshifts za and zb, respectively. In the GR limit, vph → 1, the
pulsar-term contributions (i.e. the exponential factors inside the square brackets) yield only
fast-oscillating terms that turn out to be numerically negligible when integrated over. In the
GR case, one therefore typically only keeps the earth-term contributions (i.e. the factors of 1
inside the square brackets), such that Γ ab obtains the simple form

!HD
ab (ωab)

a &=b
=

3
2

ˆ
d2n̂
4π

∑

A=+,×

piap
j
aeAij (n̂)

2(1+ n̂ · p̂a)
pkbp

l
be
A
kl (n̂)

2(1+ n̂ · p̂b)
. (11)

Note that this expression no longer depends on the GW frequency f. The integral in
equation (11) can be evaluated explicitly and results in the HD curve [32], the hallmark signa-
ture of GWs in PTA data in GR,

!HD
ab (ωab)

a &=b
=

3
2
xab lnxab−

xab
4

+
1
2
, xab =

1
2
(1− cosωab) . (12)

The expressions in equations (11) and (12) apply to the case of separate pulsars, a %= b, and
hence describe the cross correlation between the timing residuals Ra and Rb. Starting from
equation (4), we can, however, also consider the case of just one pulsar, a= b, and compute
the auto correlation coefficient Γ aa. In this case, the correlation between the two pulsar terms
is exactly of the same size as the correlation between the two earth terms,

[
1− e−2π i f La(1+n̂·p̂a)

][
1− e2π i f La(1+n̂·p̂a)

]
= 2+ fast-oscillating terms, (13)

which means that we need to multiply the HD curve by an extra factor of 2 in the case of
identical pulsars,

!HD
ab (ωab) = (1+ δab)

[
3
2
xab lnxab−

xab
4

+
1
2

]
. (14)

Furthermore, for identical pulsars, the two position vectors p̂a and p̂b are of course the same,
such that ωab = 0 and xab = 0. In this case, the square brackets in equation (14) yield a factor
of 1/2, which, together with the prefactor 1+ δab, results by construction in an auto correlation
coefficient of!aa = 1. This convenient normalization of the ORF is a consequence of the factor
of 2/3 in equation (2) and the corresponding factor of 3/2 in equation (4).

3. Legendre decomposition

In the more general case of vph %= 1, it is less straightforward to evaluate the ORF in
equation (4). In particular, if vph < 1, it is crucial to retain the pulsar terms in the integrand.
Otherwise, the factor 1+ n̂ · p̂a/vph in the denominator of the detector pattern function can res-
ult in a spurious numerical singularity. A common approach in the literature therefore consists

4
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Figure 1. Coefficients a! in the Legendre decomposition of the ORF for different values
of the GW phase velocity vph, see equation (15) (left panel); and the corresponding
approximate ORF based on the first 20 terms in this decomposition, see equation (17)
(right panel).

in decomposing the ORF into Legendre polynomials P" [33], which allows for an approximate
numerical evaluation of Γ ab order by order in higher multipole contributions,

!ab (ωab, f) =
∞∑

"=2

a" ( f)P" (cosωab) , a" ( f) =
3
2
(2)+ 1)

()− 2)!
()+ 2)!

|c" ( f)|2

16
. (15)

In GR, the coefficients c" evaluate to c" = (−1)" 4, while in the more general case, we need
to compute

c" ( f) =
ˆ +1

−1
dx
[
1− e−i 2π f L(1+x/vph)

] [1− x2
]2

1+ x/vph

d2

dx2
P" (x) , (16)

assuming all pulsars to be located at roughly the same distance, La ∼ Lb ∼ L. Keeping only a
finite number of terms in the decomposition in equation (15) will always result in a continuous
and smooth approximation of the ORF. By construction, this approach is therefore incapable of
encoding the correct auto correlation coefficient Γ aa, which represents a discontinuous jump
in the limit of zero angular separation, !aa %= limξab→0+ !ab.

For subluminal phase velocity, the coefficients a" decrease less slowly with ) as in GR (see
the left panel of figure 1), which results in a slow convergence of the Legendre decomposition
in equation (15). To see this, consider truncating the expansion in equation (15) after )= 20,
which results in the following approximate ORF,

!(20)
ab (ωab, f) =

20∑

"=2

a" ( f)P" (cosωab) . (17)

We plot !(20)
ab for different values of the phase velocity in the right panel of figure 1, which

illustrates that, for vph < 1, naively summing the first O (10) contributions to the Legendre
decomposition does not yet yield a satisfactory result. Because of the slow convergence of the
coefficients a", the approximate ORF !(20)

ab still features spurious oscillations, which ought to
be absent in the full nonperturbative result.

5
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Figure 2. Comparison between the resummed ORF Γ(∞)
ab in equation (19) (solid lines)

and the approximate ORF Γ(20)
ab in equation (17) (dashed lines) for different subluminal

GW phase velocities vph. The orange line shows Γ
(20)
ab in the GR limit, which requires

no improvement.

In order to improve the approximate ORF!(20)
ab , it has been proposed to resum the remaining

terms in equation (15) [9], making use of the fact that, for vph < 1, the coefficients a" remain
nearly constant at large ),

!(∞)
ab (ωab, f) =

20∑

"=2

a" ( f)P" (cosωab)+Θ(− log10 v)a20 ( f)
∞∑

"=21

P" (cosωab) , (18)

which can also be written as

!(∞)
ab (ωab, f) =

20∑

"=2

a" ( f)P" (cosωab)

+Θ(− log10 v)a20 ( f)

[
1≃

2− 2cosωab
−

20∑

"=0

P" (cosωab)

]
, (19)

where we used the following sum rule for the Legendre polynomials,
∞∑

"=0

P" (cosωab) =
1≃

2− 2cosωab
. (20)

The factorΘ in equation (19) denotes the Heaviside theta function, i.e.Θ(x) = 1 for x> 1 and
Θ(x) = 0 for x! 0.

The resummed ORF !(∞)
ab is shown in figure 2, from which it is evident that it significantly

improves over the approximate !(20)
ab . For practical applications, !(∞)

ab thus provides a reas-
onable approximation of the exact cross correlation coefficients Γ ab—at least, at sufficiently
large angular separations. In the limit ωab → 0, though, the resummed ORF is unfortunately
not well-behaved, since the (2− 2cosωab)

−1/2 term in equation (19) causes a divergence at
ωab = 0. This divergence has been known in the literature for some time [9, 23, 24]3. Still,

3 See also [11] for a discussion of related divergences in the ORFs of other, non-Einsteinian GW polarization states..
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thus far, it has remained unclear how to regularize the divergence in the resummed ORF,
which poses a severe obstacle to using !(∞)

ab in realistic data analyses. Indeed, fitting modified-
gravity models with a nonstandard GW phase velocity to PTA data requires knowledge of the
auto correlation coefficients Γ aa, which are typically (much) larger than the cross correlation
coefficients at nonvanishing angular separation, !a=b " !a&=b. As a consequence, most of the
sensitivity to the GW power spectrum Sh in equation (3) derives from measuring the auto
correlations of individual pulsars, 〈RaRa〉; the information contained in the cross correlations
〈RaRb〉, on the other hand, rather serves as a means to confirm the GW nature of the signal. In
other words, a successful fit of a modified-gravity model to PTA data must be able to reproduce
the expected hierarchy between the auto and cross correlation terms in the correlation matrix
〈RaRb〉. Without a proper understanding of the auto correlation coefficients Γ aa, fit analyses
of this type are not feasible.

In summary, we conclude that the resummed ORF in equation (19) is not only incapable of
resolving the discontinuous jump from limξab→0+ !ab to Γ aa at ωab = 0; it does not even yield
a finite result for limξab→0+ !ab. The reason for this breakdown of !(∞)

ab in the zero-ωab limit
clearly lies in the assumption that the coefficients a" at large ) can all be approximated by a20.
If we did not make this assumption and instead summed all exact multipole contributions up
to )→∞, we would expect to obtain a finite result at ωab = 0. In [24], the authors speculate
in particular that, when pushing the Legendre decomposition to ) values at least as large as
)∼ fLa, where La is the pulsar distance and f the GW frequency, finite-distance effects should
become important and regulate the coefficients a" and hence ultimately lead to a finite ORF at
ωab = 0. In practice, however, such an approach appears infeasible (or at least, less practicable),
since fLa ∼ O (100 · · ·1000) for typical pulsars.

4. Auto correlation coefficient

In this paper, we will therefore follow a different approach. We shall abandon the decomposi-
tion in Legendre polynomials and the analysis of the ORF in harmonic space and return to the
expression for the ORF in equation (4). As it turns out, this expression is perfectly suitable to
compute the auto correlation coefficient Γ aa in modified-gravity scenarios with vph %= 1. To do
so, let us consider a single pulsar a located in the direction of p̂a in the sky.Without loss of gen-
erality, we can always choose our coordinate system such that p̂a = (0,0,1)T. Then, together
with n̂= (sinθ cosφ,sinθ sinφ,cosθ)T, the auto correlation coefficient Γ aa can be written as

!aa ( f) =
3
2

ˆ
d2n̂
4π

[
1− e−2π i f La(1+n̂·p̂a/vph)

][
1− e2π i f La(1+n̂·p̂a/vph)

]

⇒
∑

A=+,×

[
pia p

j
aeAij (n̂)

2(1+ n̂ · p̂a/vph)

]2
(21)

=
3
4

ˆ π

0
dθ

sin5 θ sin2
(
π fLa

(
1+ 1/vph cosθ

))

(
1+ 1/vph cosθ

)2 . (22)

This integral can be solved exactly,

7
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Figure 3. Auto correlation coefficient Γ aa as a function of the GW phase velocity
vph for three choices of fLa. The thick black lines show the exact analytical result in
equation (23); the red and gray lines refer to the approximate results in equations (34)
and (28), respectively.

!aa ( f) = 3v4ph − 2v2ph +
v5ph
64y3

{ 24yx+ x− [Ci(x+)−Ci(x−)− 2arcoth(vph)]

+3x2+x
2
− [Si(x+)− Si(x−)] + 3(2+ x+ x−)(x− cosx+ − x+ cosx−)

+6
[
1−

(
3+ 1/vph

)
yx−
]
sinx+ − 6

[
1−

(
3− 1/vph

)
yx+
]
sinx−

}
, (23)

where we introduced the shorthand symbols x± and y, and where Ci and Si are the cosine and
sine integrals,

x± =
2y(vph ± 1)

vph
, y= π fLa, Ci(x) =−

ˆ ∞

x
dt

cos t
t

, Si(x) =
ˆ x

0
dt

sin t
t

. (24)

The auto correlation coefficientΓ aa in equation (23) represents themain result of this paper;
see figure 3 for a plot of Γ aa as a function of the GW phase velocity vph and for three different
values of the product fLa.

We shall now discuss some of the properties of the result in equation (23). First, let us
consider the GR limit,

!GR
aa ( f) = lim

vph→1
!aa ( f) = 1− 3 [1− sinc(4π fLa)]

8(π fLa)
2 . (25)

Of course, we could have obtained the same result by simply setting vph to the speed of light
in equation (22),

!GR
aa ( f) =

3
4

ˆ π

0
dθ

sin5 θ sin2 (π fLa (1+ cosθ))

(1+ cosθ)2
= 1− 3 [1− sinc(4π fLa)]

8(π fLa)
2 , (26)

8
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Interestingly enough, this result for !GR
aa retains the dependence on the GW frequency f and

pulsar distance La. In this sense, !GR
aa differs from the HD result, which just assigns an auto

correlation coefficient of !HD
aa = 1 to each pulsar. This means that, in principle, the diagonal

terms in the correlation matrix 〈RaRb〉 do not come with exactly the same correlation coeffi-
cients. Instead, the different distances to the pulsars in the PTA result in minuscule corrections
to the HD result. In practice, however, this effect is safely negligible. Indeed, because PTAs
operate in the long-arm limit, we always have fLa * 1, such that to excellent approximation,

!GR
aa ( f)

fLa(1
≈ !HD

aa ( f) = 1. (27)

On top, cosmic variance inherent to the HD curve is guaranteed to overshadow any effect
of order ( fLa)

−2 in the pulsar correlations [34, 35]. The distinction between !GR
aa and !HD

aa is
therefore of little relevance in practice. Nonetheless, we mention that the same result for !GR

aa
was already derived in [15], which presents a fully analytical expression for the ORF in GR that
retains the full dependence on the pulsar terms in equation (4). In the limit of identical pulsars,
ωab → 0 and a= b, this analytical expressions reduces exactly to the result in equation (26).

Next, we observe that the full result in equation (23) can be drastically simplified in the
large-fLa limit. Expanding in inverse powers of fLa, we find that Γ aa simply scales linearly
with fLa to leading order,

!aa ( f) = !LO
aa ( f)+O

((
1
fLa

)0
)
, !LO

aa ( f) =Θ(− log10 vph)
3
4
π2fLa vph

[
v2ph − 1

]2
.

(28)

This result for !LO
aa confirms that the divergence that appears in !(∞)

aa at small angular separ-
ations ωab and in the regime of subluminal phase velocity vph is indeed regulated by a finite-
distance effect. Moreover, it illustrates that, as soon as vph is no longer close to the speed of
light, such that (v2ph − 1)2 no longer constitutes a limiting suppression factor, Γ aa becomes of
the order of fLa and hence parametrically enhanced compared to the cross correlation coeffi-
cientsΓ ab at nonzero angular separations. In order to assess the velocity threshold belowwhich
this enhancement becomes relevant, we solve the condition !LO

aa " 1 for vph, which results in

vph # v̄ph = 1− 1+
√
3π2fLa

3π2fLa
⇒ !a=b " 1" !a&=b. (29)

For typical GW frequencies and pulsar distances, we have fLa ∼ O (100 · · ·1000), which
means that deviations of vph from the speed of light by a few percent are enough to cause a
large hierarchy between the auto and cross correlations coefficients, as illustrated in the left
panel of figure 4. One must therefore be careful not to be misled by the fact that a decrease in
the GW phase velocity by just a few percent leaves much of the ORF at nonzero ωab more or
less affected. While it is true that, for 1− vph ∼ O (0.01), the changes in the cross correlations
of separate pulsars are practically negligible, it is important to account for the fact that even
a small decrease in vph can drastically increase the ratio !a=b/!a&=b. We therefore conclude
that the ORF is, in fact, more sensitive to a small decrease in vph than one may have naively
expected; at the smallest possible value of its argument, i.e. at ωab = 0 and for a= b, small
changes in vph can have a big effect. The reason for this enhancement consists in the fact that,
for vph < 1, the PTA detector pattern functions in equation (5) become resonantly amplified if
the GW propagation direction n̂ and the pulsar direction p̂a satisfy n̂ · p̂a =−vph. In GR, this
is only possible if n̂=−p̂a, i.e. for a relative angle between n̂ and p̂a of θ = π. At θ = π, the
integrand of the integral in equation (26), however, vanishes, such that the (1+ cosθ)2 term

9
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Figure 4. Modifications of the HD curve in models with a subluminal (left panel) or
superluminal (right panel) GW phase velocity.

in the denominator has no chance of enhancing the overall result. The situation is different

in the case of a subluminal phase velocity, where the
(
1+ 1/vph cosθ

)2
term in equation (22)

can boost the value of the integrand around θ values for which cosθ -−vph. The propagation
direction of the corresponding GWs is thus not antiparallel to the pulsar position, but satisfies
instead n̂ · p̂a =−vph. In passing, we also mention that, despite the fact that the denominator
of the PTA detector pattern functions reaches zero at 0< θ < π, the integrand in equation (22)
actually never diverges. As discussed at the beginning of section 3, the reason for this is that
all pulsar terms are kept in deriving equation (22).

The observation that the auto correlation coefficient Γ aa becomes strongly enhanced for
vph < 1 has important implications for the analysis of PTA data. That is, for vph (much) smaller
than the upper limit in equation (29), it becomes a reasonable approximation to simply neglect
all cross correlations and work with

vph # v̄ph ⇒ !ab ( f)≈ δab
3
4
π2fLa vph

[
v2ph − 1

]2
. (30)

In the analysis of PTA data, this expression enters the cross power spectrum for the timing
residuals Ra, which is closely related to the correlator in equation (2) and constructed from the
ORF and the strain power spectrum Sh,

Sab ( f) = !ab ( f)
Sh ( f)
6π2f 2

. (31)

Then, if we express Sh in terms of the characteristic strain amplitude, Sh = h2c/(2f), and choose
a power-law ansatz for hc, we find the following timing-residual cross power spectrum for
modified gravity with vph # v̄ph,

hc ( f) = A
(

f
fref

)α

, Sab ( f)≈ δab fLa
vph
(
v2ph − 1

)2
A2

16f3ref

(
f
fref

)−γ

, γ = 3− 2α.

(32)

This template for Sab shares some similarity with the usual template for a common-spectrum
spatially uncorrelated red-noise (CURN) process, in the sense that Sab ∝ δab. The dependence
on fLa, however, represents a departure from a universal ‘common spectrum’ for all pulsars.
Moreover, the large values of the auto correlation coefficient will cause a suppression in the
inferred amplitude A compared to the CURN case. We plan to confirm this expectation in

10
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future work by fitting both our full result for the timing-residual cross power spectrum as well
as the approximate result in equation (32) to recent PTA data sets.

5. Massive gravity

Finally, we turn to superluminal phase velocities (subluminal group velocities), i.e. to
modified-gravity scenarios characterized by the massive dispersion relation in equation (9).
In this case, the leading-order result in equation (28), which simply vanishes at vph $ 1, no
longer suffices. We therefore need to include the next-to-leading order contribution to Γ aa

when expanding the full result in equation (23) in inverse powers of fLa,

!NLO
aa ( f) =

3
2
v3ph
[
v2ph − 1

]
ln
(
|vph − 1|
vph + 1

)
+ 3v4ph − 2v2ph. (33)

Together with the leading-order result in equation (28), we thus obtain

!aa ( f) = !LO
aa ( f)+!NLO

aa ( f)+O

((
1
fLa

)1
)
, (34)

!LO
aa ( f) =Θ(− log10 vph)

3
4
π2fLa vph

[
v2ph − 1

]2
, (35)

!NLO
aa ( f) =

3
2
v3ph
[
v2ph − 1

]
ln
(
|vph − 1|
vph + 1

)
+ 3v4ph − 2v2ph. (36)

In the GR limit, !LO
aa → 0 and !NLO

aa → 1, in accord with the fact that !GR
aa ≈ 1, up to corrections

of order ( fLa)
−2. The above estimate of the exact auto correlation coefficient in equation (23)

is valid at vph $ 1 and at vph < 1; see figure 3, in which we compare our three results for
Γ aa: the full result in equation (23), the leading-order expression in equation (28), and the
combination of the leading-order and next-to-leading-order terms in equation (34). In view of
this plot, we conclude that !LO

aa serves as an excellent approximation of Γ aa at subluminal vph,
while the combination !LO

aa +!NLO
aa provides an accurate approximation of Γ aa at subluminal

and superluminal vph.
In massive gravity, one may prefer to express the dependence of the ORF on the GW speed

in terms of the group velocity rather than the phase velocity, vgr = 1/vph. Our result for !NLO
aa

in terms of vgr then reads

!NLO
aa ( f) =

1
2v5gr

[
6vgr − 4v3gr + 3

[
v2gr − 1

]
ln
(
1+ vgr
1− vgr

)]
. (37)

This expression does not depend on the GW frequency f explicitly, but only implicitly via the
group velocity,

vgr =
1√

1+(mg/k)
2
=

√

1−
(
fg
f

)2

, (38)

11



Class. Quantum Grav. 42 (2025) 015003 N Cordes et al

where we used that ω = 2π f =
√
m2

g + k2 in massive gravity, and where fg is the graviton
Compton frequency,

fg =
mg

2π
- 24.18nHz

( mg

10−22 eV

)
. (39)

The result in equation (37) can be compared to the known analytical expression for the ORF
in massive gravity [13, 19, 21], which follows from solving the integral in equation (4) after
discarding the pulsar terms inside the brackets,

Γmass
a "=b (ξab, f) =

1
16v5gr

[
2vgr

(
3+

(
6− 5v2gr

)
δ
)
− 6

[
1+ δ+ v2gr (1− 3δ)

]
ln
(
1+ vgr
1− vgr

)
− 3A

B
lnC

]
,

(40)

A= 1+ 2v2gr (1− 2δ)− v4gr
[
1− 2δ2

]
, B=

√
(1− δ)

[
2− v2gr (1+ δ)

]
,

C=
A− 2vgr

[
1− v2grδ

]
B

[
v2gr − 1

]2 , (41)

where the dependence on the angular separation is encoded in δ = cosωab. In the limit ωab → 0,
we find

lim
ξab→0+

!mass
a&=b (ωab, f) =

1
4v5gr

[
6vgr − 4v3gr + 3

[
v2gr − 1

]
ln
(
1+ vgr
1− vgr

)]
=

1
2
!NLO
aa ( f) , (42)

which equals exactly one half of our result for !NLO
aa . We thus conclude that the full expression

for the ORF in massive gravity, valid for both separate and identical pulsars, requires the same
1+ δab prefactor as in GR,

Γmass
ab (ξab, f) =

1+ δab
16v5gr

[
2vgr

(
3+

(
6− 5v2gr

)
δ
)
− 6

[
1+ δ+ v2gr (1− 3δ)

]
ln
(
1+ vgr
1− vgr

)
−

3A
B

lnC
]
.

(43)

To the best of our knowledge, the prefactor of 1+ δab has thus far been overlooked in earlier
studies. Just like in GR, the extra factor of 2 for a= b originates from the auto correlation of
the pulsar term in equation (13).

6. Conclusions

PTA searches for GWs require a precise understanding of the ORF Γ ab, which is sensitive to
the presence of new physics in the gravity sector. For instance, the HD curve in GR receives
corrections if the GW phase velocity vph does not coincide with the speed of light. In the
literature, the ORF had been previously calculated for such scenarios of modified gravity for
both for vph < 1 and vph > 1 by various authors.Most existing analyses, however, only consider
the case of separate pulsars (a %= b) and neglect the case of identical pulsars (a= b). In this
paper, we therefore revisited the computation of the ORF in scenarios with a nonstandard phase
velocity, supplementing the known expressions for the cross correlation coefficients !a&=b by a
careful analytical evaluation of the auto correlation coefficients !a=b; see figure 4 for a visual
illustration of our main results.

12
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In the GR limit, vph → 1, we recover the standard HD result, !HD
aa = 1, at leading order,

but also find (numerically negligible) subleading corrections of the order of ( fLa)−2, which
introduce (at least, in principle) a dependence on the pulsar distance La in the diagonal entries
of 〈RaRb〉. For subluminal vph, we confirm that the divergence of the ORF in the limit of small
angular separations that had been observed in earlier works is unphysical and instead regulated
by the finite distances to the pulsars in the PTA. At leading order, we notably find that the auto
correlation coefficient scales linearly with fLa; see equation (28). We therefore conclude that,
for a sufficiently small phase velocity, !a=b becomes parametrically enhanced compared to
!a&=b, which means that the cross correlations among pulsars become insignificant to good
approximation in this model.

Meanwhile, we remark that the known expression for Γ ab in equation (19) still suffers from
a certain degree of uncertainty at very small values of ωab. The point is: while we derived the
finite auto correlation coefficient for subluminal vph from first principles, we did not study
how the approximate resummation of higher multipole terms in the Legendre decomposition
(or any other way of computing the ORF, for that matter) needs to be modified such that Γ ab

does indeed approach Γ aa in the limit ωab → 0 and for a= b. In other words, our calculation
tells us the value that the ORF must take at ωab = 0 and for a= b; we, however, still do not
have a complete understanding of how this value is actually reached as ωab → 0 and La → Lb.
For instance, in GR and for superluminal vph, we know that the ORF first reaches a finite
value, limξab→0+ !ab, which then needs to be multiplied by a factor of 1+ δab, in order to
produce the final value of Γ aa. Moreover, a careful analysis of the behavior of the full ORF
in GR in the double limit ωab → 0 and La → Lb was performed in [36]. For subluminal vph, on
the other hand, the exact relation between limξab→0+ !ab and Γ aa remains unclear at present.
For practical applications, this limitation is of little relevance, though, as long as the angular
separations between all pulsars in the PTA are bounded from below. We checked, e.g. that the
expression in equation (19) is insensitive to changes in fLa for angular separations of at least
ωab = π/100. We therefore expect that finite-distance effects can be neglected for all but the
tiniest angular separations, which, however, are not realized in typical PTAs. In summary, this
means that, in models with vph < 1 and for PTAs in which no two pulsars are extremely close
together in the sky, it is justified to use our result for Γ aa to describe the auto correlations of
individual pulsars, in combination with equation (19) to compute the cross correlations among
pulsars. At the same time, the exact relation between limξab→0+ !ab andΓ aa for vph < 1 remains
a relevant conceptual question for future work; see [37] for recent progress in this direction.
Similarly, it would be interesting to extend the results that we obtained in the present paper to
non-Einsteinian polarization modes.

Finally, for superluminal vph, which is relevant in the case of massive gravity, we obtain
the known analytical result for Γ aa, up to a factor of 2, which had been overlooked in earlier
studies. In conclusion, the results presented in this paper now pave the way for fitting modified-
gravity models with sub- or superluminal phase velocity to PTA data.Wewill present the result
of such fits to recent PTA data in an upcoming publication.

Data availability statement

No new data were created or analysed in this study.

13



Class. Quantum Grav. 42 (2025) 015003 N Cordes et al

Acknowledgments

We thank Qiuyue Liang and Mark Trodden for helpful discussions. This work was suppor-
ted by the Deutsche Forschungsgemeinschaft under Germany’s Excellence Strategy—EXC
2121 Quantum Universe—390833306. The work of K S and T S is supported by Deutsche
Forschungsgemeinschaft (DFG) through the Research Training Group (Graduiertenkolleg)
2149: Strong and Weak Interactions—from Hadrons to Dark Matter.

ORCID iD

Kai Schmitz https://orcid.org/0000-0003-2807-6472

References

[1] Taylor S R 2021 The nanohertz gravitational wave astronomer (arXiv:2105.13270 [astro-ph.HE])
[2] Agazie G et al (NANOGrav Collaboration) 2023 The NANOGrav 15 yr data set: evidence for a

gravitational-wave background Astrophys. J. Lett. 951 L8
[3] Antoniadis J et al (EPTA, InPTA: Collaboration) 2023 The second data release from the European

Pulsar Timing Array - III. Search for gravitational wave signals Astron. Astrophys. 678 A50
[4] Reardon D J et al 2023 Search for an isotropic gravitational-wave background with the parkes

pulsar timing array Astrophys. J. Lett. 951 L6
[5] Xu H et al 2023 Searching for the Nano-Hertz stochastic gravitational wave background with the

chinese pulsar timing array data release I Res. Astron. Astrophys. 23 075024
[6] Maggiore M 2007 Gravitational Waves. Vol. 1: Theory and Experiments (Oxford University Press)
[7] Maggiore M 2018 Gravitational Waves. Vol. 2: Astrophysics and Cosmology (Oxford University

Press) p 3
[8] Romano J D and Allen B 2023 Answers to frequently asked questions about the pulsar timing array

Hellings and Downs curve (arXiv:2308.05847 [gr-qc])
[9] Liang Q, Lin M-X and Trodden M 2023 A test of gravity with pulsar timing arrays J. Cosmol.

Astropart. Phys. JCAP11(2023)042
[10] Lee K, Jenet F A, Price R H, Wex N and Kramer M 2010 Detecting massive gravitons using pulsar

timing arrays Astrophys. J. 722 1589–97
[11] Chamberlin S J and Siemens X 2012 Stochastic backgrounds in alternative theories of gravity:

overlap reduction functions for pulsar timing arrays Phys. Rev. D 85 082001
[12] QinW, BoddyKK andKamionkowskiM 2021 Subluminal stochastic gravitational waves in pulsar-

timing arrays and astrometry Phys. Rev. D 103 024045
[13] Liang Q and TroddenM 2021 Detecting the stochastic gravitational wave background frommassive

gravity with pulsar timing arrays Phys. Rev. D 104 084052
[14] Ezquiaga J M, Hu W, Lagos M and Lin M-X 2021 Gravitational wave propagation beyond general

relativity: waveform distortions and echoes J. Cosmol. Astropart. Phys. JCAP11(2021)048
[15] Hu Y,Wang P-P, Tan Y-J and Shao C-G 2022 Full analytic expression of overlap reduction function

for gravitational wave background with pulsar timing arrays Phys. Rev. D 106 024005
[16] Bernardo R C and Ng K-W 2023 Stochastic gravitational wave background phenomenology in a

pulsar timing array Phys. Rev. D 107 044007
[17] Schumacher K, Yunes N and Yagi K 2023 Gravitational wave polarizations with different propaga-

tion speeds Phys. Rev. D 108 104038
[18] Anil Kumar N and Kamionkowski M 2023 All the pretty overlap reduction functions (arXiv:2311.

14159 [astro-ph.CO])
[19] Wu Y-M, Chen Z-C and Huang Q-G 2023 Search for stochastic gravitational-wave background

from massive gravity in the NANOGrav 12.5-year dataset Phys. Rev. D 107 042003
[20] Bernardo R C and Ng K-W 2023 Constraining gravitational wave propagation using pulsar timing

array correlations Phys. Rev. D 107 L101502
[21] Wu Y-M, Chen Z-C, Bi Y-C and Huang Q-G 2024 Constraining the graviton mass with the

NANOGrav 15 year data set Class. Quantum Grav. 41 075002

14

https://orcid.org/0000-0003-2807-6472
https://orcid.org/0000-0003-2807-6472
https://arxiv.org/abs/2105.13270
https://doi.org/10.3847/2041-8213/acdac6
https://doi.org/10.3847/2041-8213/acdac6
https://doi.org/10.1051/0004-6361/202346844
https://doi.org/10.1051/0004-6361/202346844
https://doi.org/10.3847/2041-8213/acdd02
https://doi.org/10.3847/2041-8213/acdd02
https://doi.org/10.1088/1674-4527/acdfa5
https://doi.org/10.1088/1674-4527/acdfa5
https://arxiv.org/abs/2308.05847
https://doi.org/10.1088/1475-7516/2023/11/042
https://doi.org/10.1088/0004-637X/722/2/1589
https://doi.org/10.1088/0004-637X/722/2/1589
https://doi.org/10.1103/PhysRevD.85.082001
https://doi.org/10.1103/PhysRevD.85.082001
https://doi.org/10.1103/PhysRevD.103.024045
https://doi.org/10.1103/PhysRevD.103.024045
https://doi.org/10.1103/PhysRevD.104.084052
https://doi.org/10.1103/PhysRevD.104.084052
https://doi.org/10.1088/1475-7516/2021/11/048
https://doi.org/10.1103/PhysRevD.106.024005
https://doi.org/10.1103/PhysRevD.106.024005
https://doi.org/10.1103/PhysRevD.107.044007
https://doi.org/10.1103/PhysRevD.107.044007
https://doi.org/10.1103/PhysRevD.108.104038
https://doi.org/10.1103/PhysRevD.108.104038
https://arxiv.org/abs/2311.14159
https://arxiv.org/abs/2311.14159
https://doi.org/10.1103/PhysRevD.107.042003
https://doi.org/10.1103/PhysRevD.107.042003
https://doi.org/10.1103/PhysRevD.107.L101502
https://doi.org/10.1103/PhysRevD.107.L101502
https://doi.org/10.1088/1361-6382/ad2a9b
https://doi.org/10.1088/1361-6382/ad2a9b


Class. Quantum Grav. 42 (2025) 015003 N Cordes et al

[22] Bernardo R C and Ng K-W 2023 Beyond the Hellings-Downs curve: Non-Einsteinian gravitational
waves in pulsar timing array correlations (arXiv:2310.07537 [gr-qc])

[23] Bi Y-C,WuY-M, Chen Z-C and Huang Q-G 2024 Constraints on the velocity of gravitational waves
from the NANOGrav 15-year data set Phys. Rev. D 109 L061101

[24] Liang Q, Obata I and Sasaki M 2024 Testing gravity with frequency-dependent overlap reduction
function in pulsar timing array (arXiv:2405.11755 [astro-ph.CO])

[25] Eardley DM, Lee D L and Lightman A P 1973 Gravitational-wave observations as a tool for testing
relativistic gravity Phys. Rev. D 8 3308–21

[26] Eardley DM, Lee D L, Lightman A P, Wagoner R V and Will C M 1973 Gravitational-wave obser-
vations as a tool for testing relativistic gravity Phys. Rev. Lett. 30 884–6

[27] de Rham C, Tolley A J and Wesley D H 2013 Vainshtein mechanism in binary pulsars Phys. Rev.
D 87 044025

[28] Chu Y-Z and Trodden M 2013 Retarded Green’s function of a Vainshtein system and Galileon
waves Phys. Rev. D 87 024011

[29] de Rham C, Matas A and Tolley A J 2013 Galileon radiation from binary systems Phys. Rev. D
87 064024

[30] Joyce A, Jain B, Khoury J and Trodden M 2015 Beyond the cosmological standard model Phys.
Rep. 568 1–98

[31] Dar F, De Rham C, Deskins J T, Giblin J T and Tolley A J 2019 Scalar gravitational radiation from
binaries: vainshtein mechanism in time-dependent systems Class. Quantum Grav. 36 025008

[32] Hellings RW and Downs G S 1983 Upper limits on the isotropic gravitational radiation background
from pulsar timing analysis Astrophys. J. Lett. 265 L39–L42

[33] Gair J, Romano J D, Taylor S andMingarelli CM F 2014Mapping gravitational-wave backgrounds
using methods from CMB analysis: application to pulsar timing arrays Phys. Rev. D 90 082001

[34] Allen B 2023 Variance of the Hellings-Downs correlation Phys. Rev. D 107 043018
[35] Allen B and Romano J D 2023 Hellings and Downs correlation of an arbitrary set of pulsars Phys.

Rev. D 108 043026
[36] Mingarelli CM F and Sidery T 2014 Effect of small interpulsar distances in stochastic gravitational

wave background searches with pulsar timing arrays Phys. Rev. D 90 062011
[37] Domènech G and Tsabodimos A 2024 Finite distance effects on the Hellings-Downs curve in mod-

ified gravity (arXiv:2407.21567 [gr-qc])

15

https://arxiv.org/abs/2310.07537
https://doi.org/10.1103/PhysRevD.109.L061101
https://doi.org/10.1103/PhysRevD.109.L061101
https://arxiv.org/abs/2405.11755
https://doi.org/10.1103/PhysRevD.8.3308
https://doi.org/10.1103/PhysRevD.8.3308
https://doi.org/10.1103/PhysRevLett.30.884
https://doi.org/10.1103/PhysRevLett.30.884
https://doi.org/10.1103/PhysRevD.87.044025
https://doi.org/10.1103/PhysRevD.87.044025
https://doi.org/10.1103/PhysRevD.87.024011
https://doi.org/10.1103/PhysRevD.87.024011
https://doi.org/10.1103/PhysRevD.87.064024
https://doi.org/10.1103/PhysRevD.87.064024
https://doi.org/10.1088/1361-6382/aaf5e8
https://doi.org/10.1088/1361-6382/aaf5e8
https://doi.org/10.1086/183954
https://doi.org/10.1086/183954
https://doi.org/10.1103/PhysRevD.90.082001
https://doi.org/10.1103/PhysRevD.90.082001
https://doi.org/10.1103/PhysRevD.107.043018
https://doi.org/10.1103/PhysRevD.107.043018
https://doi.org/10.1103/PhysRevD.108.043026
https://doi.org/10.1103/PhysRevD.108.043026
https://doi.org/10.1103/PhysRevD.90.062011
https://doi.org/10.1103/PhysRevD.90.062011
https://arxiv.org/abs/2407.21567

	On the overlap reduction function of pulsar timing array searches for gravitational waves in modified gravity
	1. Introduction
	2. Hellings–Downs (HD) curve
	3. Legendre decomposition
	4. Auto correlation coefficient
	5. Massive gravity
	6. Conclusions
	References


