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Abstract

Pulsar timing array (PTA) searches for gravitational waves (GWs) aim to
detect a characteristic correlation pattern in the timing residuals of galactic
millisecond pulsars. This pattern is described by the PTA overlap reduction
function (ORF) T, (£45), which is known as the Hellings—Downs (HD) curve
in general relativity (GR). In theories of modified gravity, the HD curve often
receives corrections. Assuming, e.g. a subluminal GW phase velocity, one
finds a drastically enhanced ORF in the limit of small angular separations
between pulsar a and pulsar b in the sky, &, — 0. In particular, working in
harmonic space and performing an approximate resummation of all multipole
contributions, the auto correlation coefficient I',, seems to diverge. In this
paper, we confirm that this divergence is unphysical and provide an exact and
analytical expression for I',, in dependence of the pulsar distance L, and the
GW phase velocity vpp. In the GR limit and assuming a large pulsar distance,
our expression reduces to I',, = 1. In the case of subluminal phase velocity,
we show that the regularization of the naive divergent result is a finite-distance
effect, meaning that I",,, scales linearly with fL,, where f is the GW frequency.
For superluminal phase velocity (subluminal group velocity), which is relevant
in the case of massive gravity, we correct an earlier analytical result for I'.
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Our results pave the way for fitting modified-gravity theories with nonstandard
phase velocity to PTA data, which requires a proper understanding of the auto
correlation coefficient I,,.

Keywords: pulsar timing arrays, gravitational waves, modified gravity
1. Introduction

In recent years, the field of pulsar timing array (PTA) searches for gravitational waves
(GWs) [1] has entered an exciting phase, with several PTAs now being on the brink of dis-
covering a stochastic GW background at nHz frequencies [2-5]. The central observables in
PTA measurements are timing residuals for a set of galactic millisecond pulsars, R,, which
correspond to the differences between observed pulse times of arrivals (TOAs) on the one
hand and theoretically expected TOAs (according to sophisticated timing models) on the other
hand. The timing residuals for each pulsar in the PTA are affected by various noise contribu-
tions; however, on top of these noise contributions, GWs can leave an imprint in the R, in the
form of a characteristic correlation pattern. The GW contribution to the timing residuals, RaGW,
can notably be written as a time integral over GW-induced redshifts, z,, which quantify the
instantaneous shift in the pulse TOAs caused by GWs [6, 7],

RSV (1) = / dt’ 2, ("), (1)
0
and whose correlator reads
2 o0
GO 0) =3 [ ST (&S0, @

Here, ), is the GW strain power spectrum of the GW Fourier modes hy (f,n) with polarization
A, frequency f, and propagation direction 7 that make up the GW background in the nHz
frequency band, which we assume to be stochastic, Gaussian, unpolarized, stationary, and
isotropic in this paper,
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and the function I',;, denotes the PTA overlap reduction function (ORF) (see [8] for a pedago-
gical review),
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In this expression, L, and L; denote the distances to pulsars a and b, respectively; the unit
vectors p,, and p,, indicate the positions of pulsars a and b on the celestial sphere, respectively;
&ap is the angular separation of the two pulsars in the sky, £, = arccos (p,, - p,,); Vpn is the GW
phase velocity, which does not necessarily coincide with the speed of light in modified gravity;
and F} and F)} are the PTA detector pattern functions [9],
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where e; and eijx- are the two GW polarization tensors,

ef () = biy — 0,6, ey () = 6i0; + 0y, (6)
which can be constructed in terms of the unit basis vectors q?) and 9,
b= (sin¢,—cos¢,O)T, 6 = (cosfcos ¢,cos€sin¢7—sin9)T. (7)

In this paper, we are interested in the properties of I'y, in theories beyond general relativ-
ity (GR) [10-18]. In particular, we shall consider the possibility of a nonstandard GW phase
velocity, vpn 7 1, which is realized in various modified-gravity models. At nHz frequencies,
GWs may, e.g. exhibit a dispersion relation of the form

w(k):"phkv k= k|, Vph < L. (8)

In this case, the GW phase and group velocities, vy, = w (k) /k and vg = Ow (k) /Ok, are
identical, and GWs propagate at subluminal speed. Another attractive benchmark consists in
massive gravity, where

w(k) = /m2+ K2, )

with m, denoting the graviton mass. Now, the phase velocity becomes superluminal, while the
group velocity remains subluminal. In fact, in the case of massive gravity, the two velocities
are just the inverse of each other,

1
voh = \/ 1+ (mg k), Vg = — . (10)

1+ (mg/k)2

In order to be able to fit these two benchmark scenarios of modified gravity to PTA data [19-
241], it is crucial to have a precise understanding of the ORF, both for separate pulsars at angular
separation &, as well as for individual pulsars. Earlier work mostly focused on the cross cor-
relations coefficients I',2,. The goal of the present paper therefore is to provide an in-depth
discussion of the auto correlation coefficient I',,, including new exact and analytical expres-
sions that are valid both for models with sub- and superluminal phase velocities.

Metric theories of gravity beyond GR can accommodate up to six GW polarization
states [25, 26], i.e. two scalar and two vector modes on top of the two tensor modes described
by equation (6). We expect that much of the machinery that we are going to develop in the
present paper can also be applied in a straightforward manner to these non-Einsteinian polariz-
ation states, their corresponding ORFs [12], and in particular their auto correlation coefficients.
Nonetheless, we shall follow [9] in this work and restrict ourselves to the two ordinary plus
and cross tensor modes, i.e. the type of modes that are generically produced from astrophys-
ical and cosmological sources, whereas other modes are often screened in modified-gravity
scenarios [27-31].

The rest of the paper is organized as follows. In the next section, we will briefly review
the computation of the ORF in GR, which we will use as an opportunity to fix the overall
normalization of the ORF. In section 3, we will then turn to the decomposition of the ORF in
Legendre polynomials. In the context of this discussion, we will notably encounter a spurious
divergence at £, = 0 in the case of subluminal vy, which serves as a main motivation for
much of the subsequent analysis. Indeed, in section 4, we will present an exact and analytical
expression for the auto correlation coefficient I',,, which confirms that the ORF does in fact
not diverge. In addition, we will derive a useful and considerably simpler expression for I,
that manages to approximate the full result with excellent precision at vp, < 1. Similarly, in
section 5, we will derive a useful and simple expression for I',, that approximates the full

3
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resultin the case of massive gravity (i.e. for v, > 1) with excellent precision. Section 6, finally,
contains our conclusions and an outlook on remaining open questions and our next steps.

2. Hellings—-Downs (HD) curve

The two square brackets in equation (4) account for the so-called earth-term and pulsar-term
contributions to the GW-induced redshifts z, and z;, respectively. In the GR limit, vp, — 1, the
pulsar-term contributions (i.e. the exponential factors inside the square brackets) yield only
fast-oscillating terms that turn out to be numerically negligible when integrated over. In the
GR case, one therefore typically only keeps the earth-term contributions (i.e. the factors of 1
inside the square brackets), such that I";, obtains the simple form

w3 [ pipaey (R)  phphet, ()
oy

FI(;IIP (fab) = = -
A 20 ap) 2(1+1-py)
Note that this expression no longer depends on the GW frequency f. The integral in
equation (11) can be evaluated explicitly and results in the HD curve [32], the hallmark signa-
ture of GWs in PTA data in GR,

a#b 3 X, 1 1
FZIIP (fab) i ~ Xab lnxub _ e + = Xab = E (

1 —cos&yy). 12
5 1 T cos &ap) (12)

The expressions in equations (11) and (12) apply to the case of separate pulsars, a # b, and
hence describe the cross correlation between the timing residuals R, and Rj. Starting from
equation (4), we can, however, also consider the case of just one pulsar, a = b, and compute
the auto correlation coefficient I',,. In this case, the correlation between the two pulsar terms
is exactly of the same size as the correlation between the two earth terms,

[1 . e—27rifLa(1+fl‘ﬁa):| [1 _ eZTFifLa(1+fl‘ﬁa):| = 2 + fast-oscillating terms, (13)

which means that we need to multiply the HD curve by an extra factor of 2 in the case of
identical pulsars,

3 X4 1
FaHIP (€ar) = (1 +6ap) |:2xablnxab - Tb + 2:| . (14)

Furthermore, for identical pulsars, the two position vectors p,, and p,, are of course the same,
such that &, = 0 and x,, = 0. In this case, the square brackets in equation (14) yield a factor
of 1/2, which, together with the prefactor 1 4 4,5, results by construction in an auto correlation
coefficient of I';, = 1. This convenient normalization of the ORF is a consequence of the factor
of 2/3 in equation (2) and the corresponding factor of 3/2 in equation (4).

3. Legendre decomposition

In the more general case of vpy 7# 1, it is less straightforward to evaluate the ORF in
equation (4). In particular, if vy, < 1, it is crucial to retain the pulsar terms in the integrand.
Otherwise, the factor 1 +7-p,,/ vph in the denominator of the detector pattern function can res-
ult in a spurious numerical singularity. A common approach in the literature therefore consists

4
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Figure 1. Coefficients a, in the Legendre decomposition of the ORF for different values
of the GW phase velocity vy, see equation (15) (left panel); and the corresponding
approximate ORF based on the first 20 terms in this decomposition, see equation (17)
(right panel).

in decomposing the ORF into Legendre polynomials P, [33], which allows for an approximate
numerical evaluation of I',;, order by order in higher multipole contributions,

0=2)! e ()
(20+1) E£+2)!%. (15)

l\)\b.)

ab gubaf Zaé PZ COos 6ab> ap (f)

In GR, the coefficients ¢, evaluate to ¢y = (— l)z 4, while in the more general case, we need
to compute

+1 ' (1 _x2)2 a2
_ | — e—i2n/L(1+x/y h)} p 1
ce(f) /_] dx[ ¢ ' 1+ x/vph dx? ex), (16)

assuming all pulsars to be located at roughly the same distance, L, ~ L, ~ L. Keeping only a
finite number of terms in the decomposition in equation (15) will always result in a continuous
and smooth approximation of the ORF. By construction, this approach is therefore incapable of
encoding the correct auto correlation coefficient I',,, which represents a discontinuous jump
in the limit of zero angular separation, I'y, # limg,, o+ I'ap.

For subluminal phase velocity, the coefficients a; decrease less slowly with £ as in GR (see
the left panel of figure 1), which results in a slow convergence of the Legendre decomposition
in equation (15). To see this, consider truncating the expansion in equation (15) after £ = 20,
which results in the following approximate ORF,

T30 (€. f) = Zae IACIE amn

We plot F( % for different values of the phase velocity in the right panel of figure 1, which
illustrates that, for vy < 1, naively summing the first ¢'(10) contributions to the Legendre
decomposition does not yet yield a satisfactory result. Because of the slow convergence of the
coefficients ay, the approximate ORF Fiio) still features spurious oscillations, which ought to
be absent in the full nonperturbative result.
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Figure 2. Comparison between the resummed ORF F(Oo) in equation (19) (solid lines)
and the approximate ORF ng ) in equation (17) (dashed lines) for different subluminal

GW phase velocities vpn. The orange line shows Fff” in the GR limit, which requires
no improvement.

In order to improve the approximate ORF I‘ﬁo) ,it has been proposed to resum the remaining
terms in equation (15) [9], making use of the fact that, for vy, < 1, the coefficients a, remain
nearly constant at large l,

57 (€apf) = Zae ) Py (coséap) + O (—logygv)ax (f Z Py(coséw), (18)
=21
which can also be written as

L350 (€annf) = Zae ) Pe(cos&ap)

+0 (—log,yv) ax (f) m ZPZ c0s Eap) (19)

where we used the following sum rule for the Legendre polynomials,

oo 1
ZP@ (cos&uy) = V2 —2coséy, -

The factor © in equation (19) denotes the Heaviside theta function, i.e. © (x) = 1 forx > 1 and
©(x)=0forx<0.
The resummed ORF F‘(;o) is shown in figure 2, from which it is evident that it significantly

improves over the approximate Fg)o)_ For practical applications, 1"((1;0) thus provides a reas-
onable approximation of the exact cross correlation coefficients I',;, — at least, at sufficiently
large angular separations. In the limit £,, — 0, though, the resummed ORF is unfortunately

not well-behaved, since the (2 —2cos 5,1;7)71/ * term in equation (19) causes a divergence at
& = 0. This divergence has been known in the literature for some time [9, 23, 2473, Still,

3 See also [11] for a discussion of related divergences in the ORFs of other, non-Einsteinian GW polarization states..
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thus far, it has remained unclear how to regularize the divergence in the resummed OREF,
which poses a severe obstacle to using F((;o) in realistic data analyses. Indeed, fitting modified-
gravity models with a nonstandard GW phase velocity to PTA data requires knowledge of the
auto correlation coefficients I',,, which are typically (much) larger than the cross correlation
coefficients at nonvanishing angular separation, I',—j, 2 I's-;. As a consequence, most of the
sensitivity to the GW power spectrum S; in equation (3) derives from measuring the auto
correlations of individual pulsars, (R,R,); the information contained in the cross correlations
(R4Rp), on the other hand, rather serves as a means to confirm the GW nature of the signal. In
other words, a successful fit of a modified-gravity model to PTA data must be able to reproduce
the expected hierarchy between the auto and cross correlation terms in the correlation matrix
(R,Ryp). Without a proper understanding of the auto correlation coefficients I',,, fit analyses
of this type are not feasible.

In summary, we conclude that the resummed ORF in equation (19) is not only incapable of
resolving the discontinuous jump from limg,, _,o+ I'gp to 'y, at £ = 05 it does not even yield

a finite result for limg, _,o+ I'45. The reason for this breakdown of FLSZO) in the zero-£,;, limit
clearly lies in the assumption that the coefficients a, at large £ can all be approximated by axo.
If we did not make this assumption and instead summed all exact multipole contributions up
to £ — oo, we would expect to obtain a finite result at £, = 0. In [24], the authors speculate
in particular that, when pushing the Legendre decomposition to ¢ values at least as large as
{ ~ fL,, where L, is the pulsar distance and f the GW frequency, finite-distance effects should
become important and regulate the coefficients a, and hence ultimately lead to a finite ORF at
&u» = 0. In practice, however, such an approach appears infeasible (or at least, less practicable),
since fL, ~ ¢ (100---1000) for typical pulsars.

4. Auto correlation coefficient

In this paper, we will therefore follow a different approach. We shall abandon the decomposi-
tion in Legendre polynomials and the analysis of the ORF in harmonic space and return to the
expression for the ORF in equation (4). As it turns out, this expression is perfectly suitable to
compute the auto correlation coefficient I',, in modified-gravity scenarios with vy, # 1. To do
so, let us consider a single pulsar a located in the direction of p,, in the sky. Without loss of gen-
erality, we can always choose our coordinate system such that p, = (0,0, l)T. Then, together
with 7 = (sinf cos ¢, sin 0 sin ¢, cos H)T, the auto correlation coefficient I',, can be written as

d*n - N : S s
| (f) = 5/47: {1 — eizW’fLﬂ(lﬂL"‘Pu/Vph)} {1 — eZwthl,(qun-pu/vph)}

. 2
Phpac); (i)
P 21
" 2<1+n-pa/vph>] @y
= sin’ 0 sin® (7fL, 1+ 1, cosf
SR (L (1 Yoy eost)) 22)
0

2
(1 + l/vph cos 9)

This integral can be solved exactly,
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Figure 3. Auto correlation coefficient 4, as a function of the GW phase velocity
vph for three choices of fL,. The thick black lines show the exact analytical result in
equation (23); the red and gray lines refer to the approximate results in equations (34)
and (28), respectively.

i
64y3
+3x% 0% [Si(x4) — Si(x_)] +3 (24 x4 x_) (x_ cosx; — x4 cosx_)

+6 [1 - (3 + 1/vph) yx_} sinx, — 6 {1 - (3 - 1/vph) ny sinx_ } @)

Tw(f) = 3vgh - 2\)12)}1 + {24yx; x_[Ci(xy)—Ci(x_) — 2arcoth (vpy)]

where we introduced the shorthand symbols x1 and y, and where Ci and Si are the cosine and
sine integrals,

2 +1 o t * sint
wp = 20mED Ci(x) = —/ a8 si) = / a2 4
Vph x t 0 t
The auto correlation coefficient I',, in equation (23) represents the main result of this paper;
see figure 3 for a plot of I',, as a function of the GW phase velocity vy, and for three different
values of the product fL,,.
We shall now discuss some of the properties of the result in equation (23). First, let us
consider the GR limit,
3[1 —sinc (47 fL,)]

Pat (f) = Jim Do (f) =1- =— oL (25)

Of course, we could have obtained the same result by simply setting vy, to the speed of light
in equation (22),

ror (== =1- : (26)

3 /” » sin® @ sin” (7 fL, (1 + cos#)) 3[1 — sinc (47 fL,)|
4 Jo (1 +cos)? 8 (mfLy)?
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Interestingly enough, this result for 'SR retains the dependence on the GW frequency f and
pulsar distance L,. In this sense, 'SR differs from the HD result, which just assigns an auto
correlation coefficient of I'IP = | to each pulsar. This means that, in principle, the diagonal
terms in the correlation matrix (R,R;) do not come with exactly the same correlation coeffi-
cients. Instead, the different distances to the pulsars in the PTA result in minuscule corrections
to the HD result. In practice, however, this effect is safely negligible. Indeed, because PTAs

operate in the long-arm limit, we always have fL, > 1, such that to excellent approximation,

Taa (f)
On top, cosmic variance inherent to the HD curve is guaranteed to overshadow any effect
of order (fL,) " in the pulsar correlations [34, 35]. The distinction between I'SR and T'HD is
therefore of little relevance in practice. Nonetheless, we mention that the same result for TSR
was already derived in [15], which presents a fully analytical expression for the ORF in GR that
retains the full dependence on the pulsar terms in equation (4). In the limit of identical pulsars,
&up — 0 and a = b, this analytical expressions reduces exactly to the result in equation (26).
Next, we observe that the full result in equation (23) can be drastically simplified in the
large-fL, limit. Expanding in inverse powers of fL,, we find that I',, simply scales linearly
with fL, to leading order,

Mgt pHD (py 1 27)

0
1 3 2
Tua (f) = Flt;ao H+o <<ﬂ,) ) ) FI&? (f)=0 (_10g10VPh> Zﬂ'zﬂw Vph (Vgh - 1) :
a

(28)
This result for T'LO confirms that the divergence that appears in I' at small angular separ-
ations £, and in the regime of subluminal phase velocity vy, is indeed regulated by a finite-
distance effect. Moreover, it illustrates that, as soon as vpy, is no longer close to the speed of
light, such that (vgh — 1)? no longer constitutes a limiting suppression factor, I",, becomes of
the order of fL, and hence parametrically enhanced compared to the cross correlation coeffi-
cients ', at nonzero angular separations. In order to assess the velocity threshold below which
this enhancement becomes relevant, we solve the condition T'5® > 1 for vy, which results in

1+ +/37%fL,

37 fLa

For typical GW frequencies and pulsar distances, we have fL, ~ ¢ (100---1000), which
means that deviations of vy, from the speed of light by a few percent are enough to cause a
large hierarchy between the auto and cross correlations coefficients, as illustrated in the left
panel of figure 4. One must therefore be careful not to be misled by the fact that a decrease in
the GW phase velocity by just a few percent leaves much of the ORF at nonzero &, more or
less affected. While it is true that, for 1 — vy, ~ & (0.01), the changes in the cross correlations
of separate pulsars are practically negligible, it is important to account for the fact that even
a small decrease in vy, can drastically increase the ratio I',—; /T . We therefore conclude
that the OREF is, in fact, more sensitive to a small decrease in vp, than one may have naively
expected; at the smallest possible value of its argument, i.e. at £, = 0 and for @ = b, small
changes in v, can have a big effect. The reason for this enhancement consists in the fact that,
for vpn < 1, the PTA detector pattern functions in equation (5) become resonantly amplified if
the GW propagation direction # and the pulsar direction p,, satisfy i1 -p, = —vpp. In GR, this
is only possible if 2 = —p,,, i.e. for a relative angle between 72 and p, of § = w. At § =, the
integrand of the integral in equation (26), however, vanishes, such that the (1 + cos 9)2 term

e

vph<\7ph:1—

~

= Fa:h 2 1 z Fa;é}r (29)

9
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Figure 4. Modifications of the HD curve in models with a subluminal (left panel) or
superluminal (right panel) GW phase velocity.

in the denominator has no chance of enhancing the overall result. The situation is different

2
in the case of a subluminal phase velocity, where the (1 +1 /Vph cos 9) term in equation (22)

can boost the value of the integrand around 6 values for which cos ¢ ~ —v;,. The propagation
direction of the corresponding GWs is thus not antiparallel to the pulsar position, but satisfies
instead 71 - p, = —vpp. In passing, we also mention that, despite the fact that the denominator
of the PTA detector pattern functions reaches zero at 0 < 6 < T, the integrand in equation (22)
actually never diverges. As discussed at the beginning of section 3, the reason for this is that
all pulsar terms are kept in deriving equation (22).

The observation that the auto correlation coefficient I',, becomes strongly enhanced for
vph < 1 has important implications for the analysis of PTA data. That is, for v, (much) smaller
than the upper limit in equation (29), it becomes a reasonable approximation to simply neglect
all cross correlations and work with

_ 3 2
Voh S Vph = Lap (f) = Oap szfLa Vph (Vgh —-1)". (30)

In the analysis of PTA data, this expression enters the cross power spectrum for the timing
residuals R, which is closely related to the correlator in equation (2) and constructed from the
ORF and the strain power spectrum Sy,

S (f)
6m2f2’
Then, if we express Sy, in terms of the characteristic strain amplitude, S, = h2/ (2f), and choose
a power-law ansatz for h., we find the following timing-residual cross power spectrum for
modified gravity with vpn S Vpn,

2
B f « N vph(vf,h—l) A? f - B
hc(f)—A<fref> L Swlh)~ abﬂam(ﬁd) C a—3ooa
(32)

Sa (f) :Fab(f) (€19

ref

This template for S,;, shares some similarity with the usual template for a common-spectrum
spatially uncorrelated red-noise (CURN) process, in the sense that S,; o d,,. The dependence
on fL,, however, represents a departure from a universal ‘common spectrum’ for all pulsars.
Moreover, the large values of the auto correlation coefficient will cause a suppression in the
inferred amplitude A compared to the CURN case. We plan to confirm this expectation in

10
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future work by fitting both our full result for the timing-residual cross power spectrum as well
as the approximate result in equation (32) to recent PTA data sets.

5. Massive gravity

Finally, we turn to superluminal phase velocities (subluminal group velocities), i.e. to
modified-gravity scenarios characterized by the massive dispersion relation in equation (9).
In this case, the leading-order result in equation (28), which simply vanishes at vy, 2> 1, no
longer suffices. We therefore need to include the next-to-leading order contribution to Iy,
when expanding the full result in equation (23) in inverse powers of fL,,

3 ‘V h — 1|
I'NLO () = Evsh (vin—1)In (vthrl + 3V — 2V (33)
Together with the leading-order result in equation (28), we thus obtain
1\
Taa () =Taq () +Taa® (f) + 0 ((ﬂ> ) , (34)
a
3 2
F]af (f) = ©(—logy, Vph) szﬂ,a Vph (Vl%h - 1) ) (35)
3 ‘V h — 1|
N0 () = Evgh (v —1)In ( Vih I ) + 3V — 2, (36)

In the GR limit, TLO — 0 and TY-© — 1, in accord with the fact that TSR 2 1, up to corrections
of order ( a)fz. The above estimate of the exact auto correlation coefficient in equation (23)
is valid at v, > 1 and at vy, < 1; see figure 3, in which we compare our three results for
T4 the full result in equation (23), the leading-order expression in equation (28), and the
combination of the leading-order and next-to-leading-order terms in equation (34). In view of
this plot, we conclude that T'LO serves as an excellent approximation of I, at subluminal Vphs
while the combination T'LO + TNLO provides an accurate approximation of I',, at subluminal
and superluminal vpy.

In massive gravity, one may prefer to express the dependence of the ORF on the GW speed
in terms of the group velocity rather than the phase velocity, ve = 1/vp. Our result for ['NLO
in terms of vy, then reads

1 1+
Ta” () =55 [6vgr—4vgr+3(v§r—1)1n< _‘v’gfﬂ. (37)
ar gr

This expression does not depend on the GW frequency f explicitly, but only implicitly via the
group velocity,

2
= = 1<];§> , (38)
1+ (myg/k)

1
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where we used that w =27f = mé + k? in massive gravity, and where f, is the graviton
Compton frequency,
fu= "% ~24.18nHz (f’ig) . (39)
27 10—22eV

The result in equation (37) can be compared to the known analytical expression for the ORF
in massive gravity [13, 19, 21], which follows from solving the integral in equation (4) after
discarding the pulsar terms inside the brackets,

mass _ 1 2 2 14 vgr 3A
a#(fuh,f)f@{2vg,(3+(675vgr)5)76[1+5+vgr(1736)]1n<1_Vzr>fFInC],
(40)
A= 14272 (1-20) = (1-25), B:\/(l—é)(Z—vér(1+5)),
A—2v, (1-126)B
C= Vg ( vgr ) , (4])

(% —1)°

where the dependence on the angular separation is encoded in § = cos &,,. In the limit £,;, — 0,
we find

, 1 1+v 1
lim [mas = —— |6ve — 4V +3(V2 — 1)1 £ ==-1No 42
£ab1—r>r(1)+ a#b (fab 7f) 4Vgr |: Vg Var + (Vgr ) n < 1— Ver 5 *aa (f) , (42)

which equals exactly one half of our result for TNO, We thus conclude that the full expression
for the ORF in massive gravity, valid for both separate and identical pulsars, requires the same

1 + 4, prefactor as in GR,

1+ 511/7
163,

s (€4, f) = 20 (34 (6—5v3) 8) —6 [1+6+vg (1 —36)]In (ﬂ) _3A lnC} .

1 —vg B
(43)

To the best of our knowledge, the prefactor of 1 + §,;, has thus far been overlooked in earlier
studies. Just like in GR, the extra factor of 2 for a = b originates from the auto correlation of
the pulsar term in equation (13).

6. Conclusions

PTA searches for GW's require a precise understanding of the ORF I',;,, which is sensitive to
the presence of new physics in the gravity sector. For instance, the HD curve in GR receives
corrections if the GW phase velocity vp, does not coincide with the speed of light. In the
literature, the ORF had been previously calculated for such scenarios of modified gravity for
both for vy < 1and vy, > 1 by various authors. Most existing analyses, however, only consider
the case of separate pulsars (a # b) and neglect the case of identical pulsars (a = b). In this
paper, we therefore revisited the computation of the ORF in scenarios with a nonstandard phase
velocity, supplementing the known expressions for the cross correlation coefficients I';;, by a
careful analytical evaluation of the auto correlation coefficients I',—;; see figure 4 for a visual
illustration of our main results.
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In the GR limit, vy, — 1, we recover the standard HD result, Ff}f =1, at leading order,
but also find (numerically negligible) subleading corrections of the order of (fL,)~2, which
introduce (at least, in principle) a dependence on the pulsar distance L, in the diagonal entries
of (R4Ry). For subluminal vy, we confirm that the divergence of the ORF in the limit of small
angular separations that had been observed in earlier works is unphysical and instead regulated
by the finite distances to the pulsars in the PTA. At leading order, we notably find that the auto
correlation coefficient scales linearly with fL,; see equation (28). We therefore conclude that,
for a sufficiently small phase velocity, I',—;, becomes parametrically enhanced compared to
I'4+p, which means that the cross correlations among pulsars become insignificant to good
approximation in this model.

Meanwhile, we remark that the known expression for I',;, in equation (19) still suffers from
a certain degree of uncertainty at very small values of £,,. The point is: while we derived the
finite auto correlation coefficient for subluminal vy, from first principles, we did not study
how the approximate resummation of higher multipole terms in the Legendre decomposition
(or any other way of computing the ORF, for that matter) needs to be modified such that 1",
does indeed approach I, in the limit £,, — 0 and for a = b. In other words, our calculation
tells us the value that the ORF must take at £, = 0 and for a = b; we, however, still do not
have a complete understanding of how this value is actually reached as £, — 0 and L, — L,,.
For instance, in GR and for superluminal vy, we know that the ORF first reaches a finite
value, limg,, _,o+ I's, Which then needs to be multiplied by a factor of 1+ dg, in order to
produce the final value of I',,. Moreover, a careful analysis of the behavior of the full ORF
in GR in the double limit £, — 0 and L, — L;, was performed in [36]. For subluminal vpy,, on
the other hand, the exact relation between limg, o+ 'y and I"y, remains unclear at present.
For practical applications, this limitation is of little relevance, though, as long as the angular
separations between all pulsars in the PTA are bounded from below. We checked, e.g. that the
expression in equation (19) is insensitive to changes in fL, for angular separations of at least
& = m/100. We therefore expect that finite-distance effects can be neglected for all but the
tiniest angular separations, which, however, are not realized in typical PTAs. In summary, this
means that, in models with vy, < 1 and for PTAs in which no two pulsars are extremely close
together in the sky, it is justified to use our result for I',, to describe the auto correlations of
individual pulsars, in combination with equation (19) to compute the cross correlations among
pulsars. At the same time, the exact relation between limg , o+ Iy and I, for vy, < 1remains
a relevant conceptual question for future work; see [37] for recent progress in this direction.
Similarly, it would be interesting to extend the results that we obtained in the present paper to
non-Einsteinian polarization modes.

Finally, for superluminal vy, which is relevant in the case of massive gravity, we obtain
the known analytical result for I',,, up to a factor of 2, which had been overlooked in earlier
studies. In conclusion, the results presented in this paper now pave the way for fitting modified-
gravity models with sub- or superluminal phase velocity to PTA data. We will present the result
of such fits to recent PTA data in an upcoming publication.
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