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Pulsar timing arrays (PTAs) hunt for gravitational waves (GWs) by searching for the correlations that
GWs induce in the time-of-arrival residuals from different pulsars. If the GW sources are of astrophysical
origin, then they are located at discrete points on the sky. However, PTA data are often modeled, and
subsequently analyzed, via a “standard Gaussian ensemble.” That ensemble is obtained in the limit of an
infinite density of vanishingly weak, Poisson-distributed sources. In this paper, we move away from that
ensemble, to study the effects of two types of “source anisotropy.” The first (a), which is often called “shot
noise,” arises because there are N discrete GW sources at specific sky locations. The second (b) arises
because the GW source positions are not a Poisson process, for example, because galaxy locations are
clustered. Here, we quantify the impact of (a) and (b) on the mean and variance of the pulsar-averaged
Hellings and Downs correlation. For conventional PTA sources, we show that the effects of shot noise (a)

are much larger than the effects of clustering (b).
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I. INTRODUCTION

As pulsar timing arrays (PTAs) work towards 5o
detections of gravitational waves (GWs) [1-4], there is
growing interest in how they might be used to study
important questions in cosmology and astrophysics.

PTA data is often modeled and analyzed by assuming that
the GW sources form a standard Gaussian ensemble [5—11].
This ensemble is obtained from randomly placed discrete
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sources in the limit as the spatial density of sources goes to
infinity, with the average strength of each source taken to
zero, in a way that leaves the mean-squared GW strain a
constant [12,13]. The resulting source ensemble is often
called “purely isotropic.”

Here, we investigate two approaches to constructing more
realistic source models. First, by assuming that the sources
are discrete, meaning that there is a finite number of them, at
specific (but unknown) sky locations, and second, by
assuming that the sources have correlations in their spatial
or angular locations. Our approach complements prior work
on the effects of source discreteness, e.g., [14—18].

The first type of anisotropy occurs in a purely Poisson
process, for which the probability that a source is located in
some small volume dV is proportional to dV and indepen-
dent of where any other sources might be located. Its effects
are inversely proportional to the number of point sources and
vanish in the limit of an infinite number of sources. In the
cosmic microwave background and galaxy structure liter-
ature, this is often called “shot noise” [19,20].

Published by the American Physical Society
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The second type of anisotropy arises from correlations in
the positions of the different sources. Such correlations
would arise, for example, if the GW sources were located in
galaxies, since galaxies tend to clump into clusters and
filaments [21].

The purpose of this paper is to assess the impact of these
two types of anisotropy on the mean and (co)variance of
Hellings and Downs correlation. We estimate the order-of-
magnitude of the effects described above. A brief outline of
the paper follows.

Our approach exploits recent work on modeling nontrivial
source angular distributions/correlations [22,23]. That work
employs an ensemble of functions y(Q) on the two-sphere.
In Sec. II, we construct a rotationally invariant ensemble of
functions whose supportis at N discrete points on the sphere.
We then compute the first (y,) and second (y W)
moments of y’s harmonic expansion coefficients, and
the correlation function (w(Q)w(Q')) and covariance
C(Q.Q) = (w(Qu(Q)) — (w(Q))(w()). In Sec. I
we use these with the general framework developed
in [22,23] to compute the cosmic variance for the discrete
ensemble of N sources. This provides a quantitative measure
of how the discreteness of GW sources affects the Hellings
and Downs correlation. In Sec. IV, we derive the same
cosmic variance with a different but equivalent approach.
Rather than employing a masking function, we instead
construct an ensemble of discrete sources, whose amplitudes
are drawn from a Gaussian ensemble. This demonstrates that
our physical interpretation of the masking function is correct.
In Sec. V, we extend this work by constructing an ensemble
in which the number N of discrete point sources is not fixed,
but instead follows a Poisson distribution with mean M.
Finally, in Sec. VI, we use these results to estimate the impact
of GW source discreteness and correlations on current GW
searches and on our ability to reconstruct the Hellings and
Downs correlation. For the expected PTA sources, the effects
of shot noise are small, but still large enough that they
dominate the effects of galaxy structure correlations. (The
same is true for the current generation of ground-based
audio-band GW detectors, though that may change with the
next generation.) This is followed by a short conclusion.

Note that the meaning of “shot noise” depends upon the
context. The term “Schroteffekt” was originally coined by
Schottky [24] to describe the discrete fluctuations in current
due to individual electrons; the German word ‘“Schrot”
refers to small pellets or shot, as used in ammunition. It was
later applied more broadly by Rice [25] [Eq. (1.5-1)] to
describe asum ) a;f(t — t;) of identical functions of time
f (1), scaled in amplitude and displaced in time. Typically,
the #; are Poisson distributed, and the a; are Gaussian
distributed. These can be used, for example, to model
random fluctuations in pulsar pulse arrival times [26]. In
this paper, “shot noise” refers to the statistical effects that
arise because, as seen from Earth, gravitational wave
sources are located at specific points on the sky. So, in

our context, shot noise means a discrete spatial point
process on the two-sphere, as is used in the literature on
cosmological structure [21,27]. The term “shot noise” has
also been used in this way to describe the temporal and
spatial statistics of GW sources for ground-based audio-
band detectors such as LIGO and Virgo [28,29].

II. AN ENSEMBLE OF MASKING FUNCTIONS
w(Q) ON THE TWO-SPHERE

Recent work [22,23,30] has provided a formalism for
computing the mean, variance, and covariance of the
Hellings and Downs correlation for anisotropic source
distributions. These can encompass both the effects of
having a discrete set of sources, and the effects of having
correlations in those source locations.

We begin by using those methods to model the effects of
discreteness in the source locations. Later, in Sec. IV, we
show that identical results can be obtained by using the
“discrete point source” formalism in [12,13], but assuming
that the source amplitudes have a Gaussian distribution.

To apply the methods of [22,23], we need to construct an
ensemble of functions y(Q). These are functions on the
sphere, which encode the “discreteness” of the source
locations.

A. One masking function y(Q) for N points
on the sphere

We start by constructing a single function y(Q), to
encode the positions of N points, located at positions Q; on
the unit two-sphere for j = 1, ..., N. This provides an exact
and rigorous mathematical description of one instance or
realization of a shot noise process. The (real) masking
function is

Q)——Zézgg (2.1)

Note that with this overall 4z/N normalization factor,

/dQ w(Q) = 4z, (2.2)
where the integral over the two sphere has the usual solid-
angle measure dQ = sin 0 dfd¢.

The two-dimensional delta function on the sphere may
be written (or alternatively defined) as

[Se]

33 na@r,@)

=0 m=-1

S(Q.Q) (2.3)

where the Y, are normal (scalar, spin-weight zero)
spherical harmonics on the sphere. Going forward we will
indicate sums of this form with >_,,,.
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The harmonic transform of y can now be obtained by
inserting (2.3) into (2.1). We obtain

Q) = Zl//lm Yin (Q)

Im

(2.4)

where the harmonic coefficients are

477: Z Ylm

We define the rotationally invariant coefficients

(2.5)

2
v = m Z 7

(2.6)

where we used the addition theorem for spherical harmon-
ics to go from the second to the third line. On the final line,
we have broken the sum into diagonal terms for which
j = k and off-diagonal terms for which j # k, then used
P,;(1) = 1. This and the previous equations hold for any set
of N points on the sphere.

B. A rotationally invariant ensemble of y(Q)

We now consider a rotationally invariant ensemble of
functions (). This provides an exact and rigorous
mathematical description of a “statistically rotationally
invariant” shot noise process on the sphere. The ensemble
of functions y(Q) is constructed by taking a large number
of realizations, each of which has N points distributed at
random, uniformly and independently, on the sphere. Angle
brackets now refer to averages over that ensemble of
different functions or equivalently, different choices of
point locations on the sphere. Every realization in the
ensemble has the same number N of points.

The first moment of the harmonic coefficients (2.5) is

dg N
l//1m :ﬁz

Since the expected value is an average over all realizations
of N points randomly selected on the sphere, the right-hand
side is a Monte Carlo approximation of the average value of
the spherical harmonic function over the sphere. For a large
number of realizations we thus have, independent of N, that

(2.7)

@) = [ TVi@) = = dudi (28)

the only case which does not integrate to zero is if
[ = m = 0, for which the spherical harmonic is a constant.
Thus, combining (2.7) and (2.8) gives

Wim) = \/4'_ﬂ5105m0' (2.9)

Note that (2.9) implies

(w(Q) = (2.10)

which is also consistent with our normalization condition
on y given in (2.2). This is also the normalization condition
given in [22] [Eq. (9.2)].

The second moment of the coefficients is not needed (it
is enough to work with y;) but since it is easy to compute,
we do that also. It is helpful to first compute the ensemble
average of Y,,(Q;)Y}, (). Since the Q; are chosen

J
independently, if j # k then this simply factors to give

for j# ki (Y, ()Y}, (1)) = (Y1 () (Y7, ()

1

=—6.8,,0100,0. (2.11
4 1I'Pmm'“10Ym0 ( )

Here, we have used the ensemble average (Y,,(Q;)) =
81060/ /4, which follows immediately from (2.8), since
every term that appears in the sum must have the same
value. For j = k the arguments of the spherical harmonics
are equal, and we obtain

; dQ
for j = ki (¥in ()i () = [ 57 ¥in(@)Y ()
1
= —01Omm 2.12
4 WYmm'» ( )

which follows from the orthonormality of the spherical
harmonic functions on the sphere. If desired, the formulas
for the cases j # k and j = k can be combined into a single
form which is valid for all j and &:

<Ylm( ) I'm ’(Qk)> 41 511’5mm |: Jk + (1 )5105n101|

(2.13)

With this, it is trivial to compute the second moment of the
coefficients y,,.

From (2.5), it follows immediately that the second
moments are
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=1 k=1
47\2[ N N(N-1
— <N> E611’5mm’ +%6U’5mm’5105m0
4
= Wﬂ [1 +(N- 1)5105”,0} 011 O » (2.14)

where we have broken the sum into N diagonal terms for
which j =k and we used (2.12), and N(N —1) off
diagonal terms for which we used (2.11). The correlation
function is then

W QW) =D Wit Y im( Q)Y ()

Im I'm'

4
= Nﬂ — [1 + (N_ 1)5105m0i| Ylm (Q) Y}km (Q/)
_4_” 2 ’ N-1
= N5 (Q,Q)+—N . (2.15)
The covariance [22] [Eq. (9.3)] is
C(Q, Q) = (y(Qu(Q)) — (w(Q)){w())
Ao on L
= N5 (Q,Q) N (2.16)

where we have used (2.10) to obtain the second equality.
Note that both sides can be written as a function of Q - Q'
returning to (2.15) and using the addition theorem, we can
write the correlation function in the form

. 21+1
WQu(@) = 1+ Y "= PI(@-Q).  (217)
=1
The covariance then takes the form
2. 20+ 1
Cc(Q,Q) = — P, (Q- Q). 2.18
@)=Y —P(@-Q). (18

=1

Using the notation of [22] [Eq. (9.4)] this corresponds to
expansion coefficients

for [ =0

C = {0 (2.19)
4z/N for [ > 0.

Note that it is only in the limit N — oo that this ensemble of
Poisson-distributed point sources has all C; vanish, corre-
sponding to the standard Gaussian source ensemble.

We can obtain an identical result by computing the
ensemble average of y; given in (2.6). This follows
immediately from (2.6) because

1 1
5/ dZP[(Z) = 510.

(2.20)

This implies that the ensemble average of P;(Q; - €;) for
J # k is unity for [ = 0 and vanishes for [ > 0. Hence,

A for [ =0
<l//1> =

(2.21)
4z/N for I > 0.

This is consistent with the C; given in (2.19), since
C; = (y,) for I > 0 and Cy = (y,) — 4n.

III. EFFECTS OF ANISOTROPY ARISING
FROM THE DISCRETENESS OF THE GW
SOURCE LOCATIONS

We now use the results of the previous section to compute
the effects of the discreteness of the source locations on
the mean, cosmic variance, and cosmic covariance of the
Hellings and Downs correlation. For this, we use the
formalism of [22,23]. To follow the details of the calculations
below, the reader must consult Sec. IX of [22].

The quantity I'(y) denotes the pulsar-averaged Hellings
and Downs correlation at angle y, and h> and %42 are
measures of the mean-squared GW strain at Earth. These
are defined in terms of the GW power spectrum H(f) by
Egs. (C19) and (C26) of [12]. Additional discussion can be
found in Appendices A and B of [10].

The ensemble average of the pulsar-averaged correlation is

(T(r))y = PPpa(y). (3.1)

[In this section, we use the (), notation from [22,23] to
indicate the average over a set of Gaussian subensembles
labeled by masking functions. This is indicated without a
subscript in Sec. II, and differs from the standard Gaussian
ensemble average. The meaning of () without a subscript is
context dependent.] This is proportional to the Hellings and
Downs curve y,(y) and is the same as for the standard
Gaussian ensemble. The deviation of any representative of
the ensemble away from this mean is

AT(y) =T(y) = (T(r)),-

It follows by definition that the ensemble average of AI'
vanishes: (AI'(y)),, = 0. The cosmic variance is

(3.2)

0es(r) = (AT (7))?),, = ((C(¥)?), = (C(r))y»  (3:3)
whereas the cosmic covariance is
Geos(7:7') = (AT(n)AL(Y)),,

=TIy — T TE)), (34

It follows by definition that the cosmic variance is the
diagonal part of the cosmic covariance: 62,,(y) = 620(7.7)-

While the ensemble average (3.1) of I'(y) is the same as
for the standard Gaussian ensemble, the cosmic variance
and covariance are different. Taking the ensemble average
of [22] [Eq. (9.8)], and denoting the angle between Q and
Q' by f, we obtain
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(@), [ W )mar)

e, - 12w, i

A (ulr Bl ) +ﬂ(7,ﬁ)u<7,ﬁ))]
— <h4 + %7%4),%(7)#% (v)

+241 <N—1)M2(M’), (3.5)
N

where to obtain the final equality we have substituted (2.15)

and used this to do the integrals. Here y =z —y,

Y =n—7,and =7 —p.

The Hellings and Downs curve yu,(y) and the two-point
function u(y,p) are defined and discussed in [12,22].
To evaluate the integrals we have used two properties of
the two-point function. First, that for coincident points it
reduces to the Hellings and Downs curve: u(y,0) = u,(y),
and second, that for antipodal GW source points, it vanishes:
u(y, ) = 0. To evaluate the second integral we have used
u?(y,7') as defined by [22] [Eq. (7.17) or Eq. (8.4)].

Returning to the cosmic covariance, the second term
in (3.5) is proportional to the cosmic covariance for the
standard Gaussian ensemble [22] [Eq. (7.16)], which is

cos std(y Y) - 2ﬁ4 2(7 7) (36)

Thus, subtracting the mean (3.1) from (3.5) gives the
cosmic covariance

(AT (y)AL(y")), = L)), — T, L),

= )

1
+ (1 - N) Ggos,std (7’ J//)- (37)
If we let y =¥/, then we get the cosmic variance
2 1 4,2 1 2
O'cos(}/) = ﬁﬁ’ Mu(}/) +(1- N Gcos,sld(Y)’ (38)

Thus, the cosmic variance and covariance for a discrete set
of N point sources, obtained by “masking” the standard
Gaussian ensemble, differ from those of the standard
Gaussian ensemble. The difference terms are proportional
to 1/N. Only in the N — oo limit does the masked result
agree with that of the standard Gaussian ensemble.

This result can also be obtained by substituting the C;
given in (2.21) into [22] [Eq. (9.13)] or [23] [Eq. (4.23)].

IV. COMPARISON WITH AN ENSEMBLE
OF DISCRETE SOURCES

Recent work [12,13] calculates the mean and variance of
the Hellings and Downs correlation for a set of N discrete

point sources. The ensembles used in the two citations differ
in their assumptions about the polarization properties.
However, both assume that the jth GW source has exactly
the same average-squared amplitude in every realization in
the ensemble. Here, we undertake a similar construction, but
assume that the amplitudes differ from one realization to the
next with a Gaussian distribution. We show that this
ensemble exactly reproduces the “masked” results of Sec. I11.

We begin with N arbitrary-waveform GW sources in a
single realization of the universe. These are located at
specific directions —Q ; on the sky, where j = 1, ...N labels
the sources. The jth source has an arbitrary time-domain
strain in the A = +, x polarizations given by

Ay — [ FqriA i2nf
(1) = /_oo df RA(f) e, (4.1)
T~he Fourier amplitudes 71? (f) satisfy 71;‘(— f) = 71?* (f) =
(h}(f))*, which ensures that the strains in (4.1) are real.
Provided that they satisfy this constraint, the Fourier
amplitudes ﬁj-‘ (f) may be arbitrary functions of frequency.

The (real) metric perturbation that results is a sum over
the N sources, given by

hap(1,X) =) -Q;-x)el, (Q))

N
=1 A=+ .x

.

ZZ / df R4 (f) eP 2% el (Q). (4.2)
A

J

We have taken x = 0 at the Earth/Solar System Barycenter,
and e?, (Q;) denote polarization tensors defined in Eq. (D6)
of [12]. Starting from the second equality above, unless
indicated otherwise, sums over sources (labeled by j, k, ...)
are from 1 to N and sums over polarizations (labeled by
A, A',...) are over +, X. Similarly, integrals over frequency
f.f',... are over the range (—o0,00) unless otherwise
indicated. Note that &, (¢, x) satisfies the wave equation
and is transverse, traceless, and synchronous.

The effect of the GW on pulsar redshift is described
in [11,12]. The redshift of pulsar p as observed at Earth at
time 7 is

=X fariguerrye)
7 A

x [1 =221, (140D (4.3)
Here, L, is the light travel time from Earth to pulsar, p is a
unit Vector from Earth to pulsar, and F’(Q;) is the antenna
pattern function for pulsar p, defined in Eq. (2.1) of [12].
The so-called “Earth term” arises from the “1” in square

brackets, and the “pulsar term” arises from the pure-phase
exponential [11] [Eq. (23)].
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The correlation between two pulsars p and ¢ is the time-
averaged product of their redshifts, which we denote Z,Z,
(but see note added in proof). Averaging this product over
the observation time interval ¢ € [-7/2, T /2| introduces a
sinc function as given below. The pulsar-averaged corre-
lation I'(y) is obtained from this by additionally averaging

over all pairs of pulsars at angular separation y:

L) =(ZpZq) pger

(4.4)
The notation (Q),, <, indicates the average of Q over all
pulsar pairs p, ¢, uniformly distributed over the sky, with
angular separation .

This pulsar-averaged correlation may be computed
from (4.3) and (4.4) as shown in [12]. The pulsar-average
of the antenna pattern functions is called the two-point
function. It is denoted

/’tAA’(V’ Qj7gk> = <F?(Qj)F2/(Qk)>pqey (45)
and is computed explicitly in [22]. Properly taking into
account the complex phase of u (described in [22], where it
is denoted y) and using the fact that Z, is real, so that it can
be replaced by its complex conjugate, we obtain

N) = 305 o [ar B R (7 iaw 2 0

Jk AA

x sinc(z(f — f)T). (4.6)
Only the Earth terms survive the pulsar average (see [12]
for more details). For the sinc function we use the
|

0 =11 (/%) 11 |tz 60 ol B 002 QR (1) B 1), 2 ),

where the measure on the functions is normalized so that
(1) = 1. The positive-definite inner product, which appears
in (4.7), is

(A.B) = / ay ADE) (48)

H(f)

where H(f) is a non-negative function whose interpretation
is given below.

We use the angle brackets to denote the full ensemble
average, and add a subscript to indicate an average over
only some of the random variables. The subscript € refers
to an average over the sky positions, and the subscript A
indicates an average over the Gaussian ensemble of
amplitudes. Thus, (Q) = (Q) 40

“mathematics” definition sinc(x) = (sinx)/x, which has
its first zero at x = 7. Note that all of the Q; dependence of
I' is via the two-point functions p,,, Whereas all of the
dependence upon the amplitudes IZ? (f) is outside of the
two-point functions.

Up to here, all of our equations describe a single
realization of the universe, in which the N GW sources
have specific (but arbitrary) directions and waveforms. To
study the statistical properties of the GW background, we
now construct an ensemble of different universes, consist-
ing of many realizations, with different source waveforms
and directions. Because we do not know the values
assumed by those quantities in our own universe, we
can employ the ensemble to make statements about the
likelihood of certain outcomes or measurements.

Each realization in the ensemble contains N GW sources.
Each realization is defined by 2N complex Fourier ampli-
tudes fzfx( f) and by source directions Q;, for j = 1, ...N.
In each of these realizations, (4.1) and (4.2) define the strain
of the GW emission from the jth source, and (4.6) is the
pulsar-averaged pulsar correlation at angle y.

In the ensemble, we will pick the source directions €Q;
uniformly and independently on the two-sphere. The
Efx( f) are chosen from a Gaussian ensemble which is
independent for each source, has vanishing mean, and has
second moment (power spectrum) H(f). [Note that H(f) is
analogous to the power spectrum H(f), but for a single
source; see discussion before (4.10).] This means that the
ensemble average of any functional Q of the GW strain can
be computed in two steps. First, one averages Q over the
Gaussian ensemble of Fourier amplitudes, and second, one
averages over the source positions. Symbolically, this is

(4.7)

In this paper, the functionals Q of interest are quadratic
or quartic functions of the Fourier amplitudes. So in
practice, to evaluate the averages over these amplitudes,
we use the first and second moments

(I (f))a =0,

AR ()4 = 4 H(f) 8(f = F)Suban- (49)

Since these variables are Gaussian, higher moments with
averages over the amplitudes A can be computed via
Isserlis’s theorem [31]. Note, however, that the full ensem-
ble is not Gaussian: Isserlis’s theorem can only be applied
to averages over the Gaussian amplitudes.
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The function H(f) is the spectral distribution of GW
power for one source; the overall factor in (4.9) is selected
for consistency with previous results and standard liter-
ature. In a universe containing N sources, the standard
|

spectral function H(f) (as used for example in Sec. III)
is H(f) = NH(f).

Computing the first moment (I'(y)) is straightforward.
Taking the ensemble average of (4.6), we obtain

ey =>>" / df [df'sinc(z(f = £)T) (BB (F)) altan (7- Q5. Q) )

Jk AN

- ZZ/df4”H<f)<ﬂAA(%Qj,

= hzﬂu (7/)

The first equality follows from the ensemble average of
(4.6), the second follows from (4.7), (4.9), and sinc(0) = 1,
the third follows by definition of 4> (immediately below),
and because Y, pisq (7, Q, Q) = py(y) is the Hellings and
Downs curve (see Appendix C of [22] for more details). We
have defined

h? = 4zN [df H(f). (4.11)

rOren=>, >

jkEm AAAT A

X <i‘;‘ (f)ﬁ?/* (f/)il?” (f”)ilfn\;”* (fm)>,4<MAA’ (7’ ij Qk)HA”A’" (7’» Q, Qm) >Q-

Q)))q

(4.10)

|
which is a measure of the mean-squared GW strain at Earth
(see Eq. (C19) of [12]). Because the different sources are
statistically uncorrelated, this is N times larger than the
mean-squared strain of a single source.

To compute the cosmic covariance, we first evaluate the
ensemble average (I'(y)['(y')). Again, all of the amplitude
dependence (indicated by the subscript .A) is via IZ’;‘ (f);all of
the dependence on source sky locations (indicated by the
subscript Q) is via the two-point functions. Thus, we can write

[at [ar far [armsinetats = £)1)sinetatr” = £

(4.12)

Since the fzj‘ (f) are Gaussian random variables, the fourth moment can be directly obtained from Isserlis’s theorem [31]:

(R ORE FORE (PR (1)) 4 = (AP HOOHFS = £8(F" = F")6ubemBan Saran

+ (4m)*H(YH(f)S(f + f)8(f + J")8;£0kmOanrOaram
+ (A H( YH(")S(f = f")5(f" = f")8jmOkeSanmSarar. (4.13)
Substituting (4.13) in (4.12), we obtain
<F(J’)F(J/)> = (477)2/df df/H(f)H(f/)Z Z</¢AA(% ijQj)ﬂA’A’(y/’Qk’Qk)>Q
ik AA
+ (4n)? / af [af HOFYH(F)sine (2(f — £)T)
X Z Z<HAA’ (7’, ij Qk)ﬂAA’(Y', Qj» Qk) + Han (77 'ij Qk)#A’A (}”7 Q, Qj)>g’ (4-14)

Jk AA

where we have relabeled some integration and summation variables. To complete the ensemble average, we need to evaluate
the average over the source directions Q. These averages do not depend upon the values of j and k, but only on whether or

not j and k are the same or different.

123507-7



ALLEN, AGARWAL, ROMANO, and VALTOLINA

PHYS. REV. D 110, 123507 (2024)

The first Q average in (4.14) is trivial. Since
D oaban(y. ;. Q;) = uy(y), which is independent of the
source direction €2;,

Z<MAA (v, Q;, Qj)ﬂA’A’ (7', ., Qk)>g
AA

= Hu (},)ﬂu (7/)
(4.15)

Note that for y = y/, the first term in (4.14) is the square of
the first moment (4.10).

The ensemble average in the final line of (4.14) can be
simplified in two steps. First, it follows from [22]
[Eq. (C4)] that puu(y,Q,Q) = pas(y,Q,Q), so the
two terms are equal. Second, from [22] [Eq. (C4)], one
can show that

Z Han (V- Q5 Qi )pan (7' Q5. Q)
AA

= L Bur ) + u B aon B,

> (4.16)

Here, cosfj, =Q; -y, Bjk =r—Pi. ¥=r—y, and
V'=r-7.

To evaluate the average over Q, we must consider j = k
and j # k separately. If j = k, then the right-hand side of
(4.16) reduces to p, (7 )uu(r") /2, which is unchanged by the
Q average. If j # k, then the Q average of (4.16) is evaluated

in [22] and gives the function /;2(7/, 7'), defined by

dQ
2(r.7) / Ju (r. B)

-2 / d(eos plulr Py )

(}’/, ﬂ]k)

quP, cosy)P;(cosy’). (4.17)
=2

Here, P;(cosy) are Legendre polynomials and the coeffi-
cients are [22] [(8.4), (2.11)]

20 +1
(I+2)*(1+1)2P(1-1)*

q = (4.18)

[Note: in the notation of [22], ¢g; = al/(ZI—l— 1).] Since
P;(cosy) = (— )ZPl(cos 7), from the last equality in (4.17)

one can see that y%(y,y') = 2(;/ ).
Combining these results gives a simple form for the
ensemble average:

)+ 1 ﬁ“ﬂu(y)ﬂu(}")

)fé“ (7)),

CTR)) = hpy(r)p

-

(4.19)

where we used (4.15), (4.16), and (4.17) and have defined a
measure of squared strain %> by

£i* = (42)°N? / af [df HOFYH( )sinc (x(f - £)T).
(4.20)

Note that 4* is Eq. (C26) of [12] with H(f) = N H(f).

Now we have all the elements to compute the cosmic
covariance of the ensemble defined by (4.7). Starting from
the definition (3.4) and using (4.10) and (4.19), the cosmic
covariance is

0eos(r:7) = (L)) = (C))T(K))
! > A (r.7)

ﬁ4/"u (}/)/’tu (7//) + (1 - Ggos std (7 4 )

(4.21)

where for the final equality we have used (3.6). This agrees
exactly with the cosmic covariance (3.7) obtained in
Sec. IIT for the masked ensemble. The cosmic variances
are obtained as shown following (3.4), and thus are also in
agreement: setting y =y’ in (4.21) reproduces (3.8).

In preparation for the following section, it is useful to
define single source versions of h> and #%*, which are
denoted with a subscript “s”. These are obtained by setting
the number of GW sources to N = 1 in (4.11) and (4.20):

h? = 4ﬂ/de(f) = h?/N,

£4 = (4n) /df df' H(FYH()sine (a(f — f)T)

= #*/N%. (4.22)
Since h?> = Nh? and %4* = N?/%, the expression for the
cosmic covariance, given by the second equality in (4.21),
becomes

O2os (1:7') = N7 [ (1)) +2(N = Dii2(r,7)]. - (4.23)

It immediately follows from this expression that
Uco€(7)|N — =0, O-coe( )|N 1= ﬁ’sl’lu( )
0%os (V) vz = 258 (13 (r) + 22(r)]. (4.24)

For no GW sources, there is no cosmic variance, because
the pulsar-averaged correlation vanishes in every realiza-
tion. For a universe containing a single source, in every
realization the pulsar-averaged correlation has exactly the
shape of the Hellings and Downs curve, since there is no
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FIG. 1. Comparison of z2(y) and ;;2(7/). Left panel: linear scale.
the two zeroes of the Hellings and Downs curve.

source interference. However, the amplitude of the corre-
lation will vary from one realization of the universe to
another, because the amplitude of the source is drawn from
a Gaussian distribution. Thus, one obtains a cosmic
variance proportional to the square of the Hellings and
Down curve, u2(y). Once there are two or more GW
sources, interference between the sources gives rise to the

additional z*(y) term, whereas the first term continues to
describe the realization-to-realization dependent variations
in the mean-squared strain at Earth. Figure 1 compares the

contributions of x2(y) and y2(y) to the cosmic variance.

V. POISSON DISTRIBUTION OF SOURCES

We have constructed ensembles in which every repre-
sentative universe has exactly N GW sources. However,
since we do not know the correct value for N, we can
construct a more realistic ensemble by combining ensem-
bles with different values of N. In this combination, we
assume that each source has a fixed mean-squared strain /2.

A reasonable approach is to model the possible values of
N as a Poisson process with a mean number of sources
given by some fixed M > 0. Thus, the ensemble contains
representative universes with different values of N. For this
Poisson model, the fraction of universes with N GW
sources is

MN

:WC_M. (51)

f(N)

It is easy to check that this fraction is correctly normalized,
since

> FN) =1 (5.2)
N=0
The mean number of sources is
(N)y=) Nf(N)=M (5.3)
N=0

S~

102 N e -

1074_

- )

106 . :
0° 45° 90° 135°
pulsar separation angle

Right panel: logarithmic scale, to better illustrate the regions around

This is the justification for interpreting M as the mean
number of GW sources in the ensemble. Also useful is the
second moment

(N?) = isz(N) =M(M +1). (5.4)
N=0

Together, the first and second moments (5.3) and (5.4)
imply that the variance in the expected number of sources
is (N?)y — (N)% = M. These are standard well-known
results.

A. Extending the discrete source ensemble
to a Poisson process

One way to account for the variation in N is to extend the
discrete source calculation of Sec. IV. For this, we use the
subscript N to denote averages over the Poisson distribu-
tion of N, as already used in (5.3) and (5.4). The full
ensemble average is

(©) = (@) uan =Y FNHQN) aa (59

where (Q(N)) 4 denotes an ensemble average as calcu-
lated in the previous section, for an ensemble of universes
containing N sources.

Letting h2 denote the mean-squared strain of a single
GW source, the mean of the pulsar-averaged Hellings and
Downs correlation is obtained by averaging the first
moment of I'(y) given in (4.10). We obtain

(C(r)) = (NS () = (N)wh3 pa(r) = MBS (1) (5.6)

Thus, the mean-squared GW strain is the product of the
expected number of sources M and the expected squared
GW strain h? of a single source.

The ensemble average of the pulsar-averaged correlation
is obtained directly from (4.19)
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(LETE)) = CEE)) aon

= (N2l ()i (r') + (N2 i ()i (1) + 20Ny = (N) ) A2 12 (1, 7)

= MM + 1)I5 py(V)pa(v') + MBS py (1) (Y) + 2M? 75 12 (v.7').

Subtracting the “square” of (5.6) gives the cosmic covariance

020s(1.7') = (L)L () = (C(r))(T(Y))
=M(h + %) () ()

+ 22 A (Y. (58)
This is very similar to expression (4.23), which gives the

cosmic covariance for exactly N sources, if N is replaced by
the mean number M.

B. Modifying the masking function

A second (equivalent) way to employ a Poisson dis-
tribution for the number of sources is via an ensemble of
masking functions, as constructed in Sec. II. In analogy
with (2.1), we define a masking function for N sources by

4

N
w(Q) = MHZ 2(Q,9)). (5.9)
=1

The normalization ensures that all GW sources make the
same (mean-)squared strain contribution, regardless of the
value of N. The overall factor proportional to 1/M is
chosen, as we will show below, to ensure that the ensemble
average of y is unity.

The construction of the ensemble of masking functions
proceeds as follows. (i) Initialize the ensemble to an empty
set. (ii) Fix the mean number of sources M > 0. (iii) Select
a random value of N from the Poisson distribution with
mean M [so (5.1) is the probability that any particular value
N is obtained]. (iv) Select points i, ...,Qy at random
from a uniform distribution on the sphere. (v) Insert the
masking function y defined by (5.9) into the ensemble of
masking functions. (vi) Return to step (iii).

To calculate ensemble averages involving y, we use the
same methods and constructions as in Sec. II. Because (5.9)
differs from (2.1) by a factor of N/M, the results may be
obtained from those of Sec. II via a simple recipe: (A) scale
each y by a factor of N/M, then (B) compute the ensemble
average over N by means of (5.5).

Employing this recipe, the expected values of the
spherical harmonic coefficients are obtained from (2.9)
as follows:

(N)

Wiy = TN VA4n 6196,0 = V47 61000, (5.10)

(5.7)

where the second equality follows from (5.3), The first
moment (5.10) is the same as (2.9), implying that

(w(Q)y = 1. (5.11)

The second moments are found from (2.14) by using the
recipe above:

4
M

1
=4r|— 4+ 600 61716, .1.
”[M+ 10 m0:| 11'Omm

<l//lml//7’m’>N RN)N + <N2 - N>N5106m0] 611’5mm’

(5.12)

The first equality is obtained by multiplying the final
expression in (2.14) with N>/M? and averaging over the
Poisson distribution. The second equality follows from
application of (5.3) and (5.4).

The correlation function may be obtained from (5.12) or
directly from the final expression in (2.15) by employing
the recipe above. It is

W@ () = g (N5, Q) + (N = Ny /M2
:%’52(9,9’)“. (5.13)

The covariance [22] [Eq. (9.3)] follows immediately from
(5.11) and (5.13), and is

C(Q. Q) = (w(Qu () y — (w(Q)n(w(Q))x
4_”52
M

=254, Q).

(5.14)

Hence, using the normalization conventions of [22]
[Eq. (9.4)], the covariance may be expressed as a sum
of Legendre polynomials

© 2+ 1
<—+>C1P,(Q-Q’), (5.15)
A

with coefficients C; = 4x/M for all I. (The scale inde-
pendence of these coefficients is why this is often described
as a shot noise or “white” process.) This Poisson masking
ensemble can be used to recover (5.8) via the same
computation employed in (3.5).
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VI. ESTIMATING THE EFFECTS OF SOURCE
DISCRETENESS AND GALAXY CLUSTERING
ON THE RECOVERY OF THE HELLINGS
AND DOWNS CURVE

Here, we use the results of the previous sections to
estimate the effects of source discreteness and galaxy
clustering on the recovery of the pulsar-averaged
Hellings and Downs correlation. In what follows, cosmo-
logical lengths and densities are set to correspond to a
dimensionless Hubble parameter /4,5, = 0.68 in agreement
with the “Planck” value H, = 68 kms~! Mpc™' for the
present-day Hubble expansion rate.

A. Finite number of sources (shot noise)

We first consider the effects of shot noise, resulting from
the discreteness of the GW sources. Simulations of the GW
background produced by pairs of orbiting supermassive
black holes in the centers of merging galaxies show that the
signal in the PTA band is usually dominated by a handful of
bright sources, of order 10 or less, see e.g., [17]. This is a
tiny fraction of the O(10°) such systems that are contrib-
uting to the unresolved component of the GW background.

To assess the impact of the resulting shot noise, Fig. 2
compares the cosmic standard deviation of the standard
Gaussian ensemble with that for N =1, 3, 5, 10, and 100
discrete GW sources, using (3.6) and (4.23), respectively.
In the comparison, we set h2 = h?>/N and %% = /4*/N? so
that both ensembles have the same mean-squared strain at
Earth, and use 7% = 1 and 4% = 0.5622, which is appro-
priate for a binary inspiral power spectrum for timing
residual measurements (see Table 3 in [10]). The fractional
increase in the standard deviation arising from GW source
discreteness (shot noise) is of order 1/N.

— 1 source

---- 3 sources
—-—- 5 sources
-------- 10 sources
---- 100 sources
std Gaussian

135°

0° 45° 90°
pulsar separation angle ~

180°

FIG. 2. Comparison of the cosmic standard deviation for the
standard Gaussian ensemble with that for N =1, 3, 5, 10, and
100 discrete sources, calculated using (3.6) and (4.23), respec-
tively. We have matched the squared strain at Earth for the
standard Gaussian ensemble and discrete source models by
setting h2 = h?/N and %A% = %4*/N>. We have also set h> = 1
and /2 = 0.5622, which is appropriate for a binary inspiral
power spectrum for timing residual measurements.

For N = 1, we have 6..(y) = 7%2|p,(y)|, with the zeroes
of the Hellings and Downs curve noticeable in the plot. For
N < 10 discrete sources, the difference between o6(y) for
the discrete-source and standard Gaussian ensemble mod-
els is 210%, which makes a noticeable difference to the
cosmic variance, particularly at small angular separations.

B. Galaxy clustering

The matter in the universe, and galaxies in particular, are
not distributed as a random Poisson process. Galaxies tend
to be grouped into clusters, and these clusters form patterns
of filaments and voids, known as the cosmic web [21].
Filaments are threadlike formations where galaxies are
concentrated, whereas voids are vast, relatively empty
regions. This structure arises from the gravitational influ-
ence of dark matter and the universe’s initial conditions,
creating a complex large-scale galaxy distribution pattern.

The length scale of the clusters is typically ~10 Mpc,
whereas the filaments and voids have =100 Mpc length
scales. Because the number density of normal galaxies is
n,~ 1072 Mpc™ [32], these larger structures are formed
from thousands or tens of thousands of galaxies. The
pattern can be characterized by angular power spectra or
by three-dimensional power spectra [19,20].

However, when the universe is observed with PTAs, the
effects of this structure disappear. This is because the
number density ng of massive galaxies relevant to PTAs
(hosting black holes with masses greater than 10°M) is
observed/inferred to lie in the range 1.2 x 10~ Mpc~2 [33]
to 8 x 107 Mpc~3 [34]. This is shown as the lower band in
Fig. 3. Because a typical binary spends only about 20 Myr
orbiting in the PTA band, and the time between galactic
mergers is Gyr, at most 1% of these galaxies would host
PTA sources: a careful estimate yields 0.1% [35]. Thus, the
number density npy, of sources in the PTA band should lie
in the range 10~7 Mpc~3 to 10 Mpc~>. This is shown as
the upper band in Fig. 3, and is broadly consistent with the
current PTA observational evidence [36].

This means that, on the average, these PTA sources (and
host galaxies) are so far apart that the effects of the
clustering and structure are no longer apparent: all that
remains is the effect of the pointlike nature of sources, as
previously estimated. Thus, the effects of galaxy clustering
and the cosmic web are overwhelmed by the “shot noise”
associated with the Poisson random process, exactly as we
have described and calculated earlier in this paper. The
amplitude of this shot noise is inversely proportional to the
spatial number density of sources.

One way to see that shot noise dominates the effects of
clustering for PTAs is via the present-day linear-theory
matter power spectrum. This can be inferred from a variety
of different cosmological probes [37] (Fig. 19), and is
shown in Fig. 3. The solid line shows a smooth fit to the
power spectrum of density fluctuations, as a function of
spatial frequency (wave number). In comparison, the
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FIG. 3. The solid curve shows the linear-theory matter power
spectrum (at zero redshift) inferred from different cosmological
probes; the dotted curve shows the impact of nonlinear clustering
at zero redshift. The lower horizontal dashed line shows the
white “shot noise” power spectrum arising from the discreteness
of galaxies that host massive black holes. The dotted interval
around it corresponds to galaxy number densities ng in the range
1.2 x 107* Mpc™3 < ng < 8 x 107 Mpc™, as discussed in the
text. The upper horizontal dashed line and range are the quantities
relevant for PTAs. These show the white power spectra of
shot noise for the much smaller fraction of galaxies that host
massive PTA binary sources. The horizontal dashed line is for a
number density npra = 107® Mpc=3, and the dotted interval
around it corresponds to source number densities in the range
1075 Mpc™3 < npra < 1077 Mpc™3. Anywhere within this rea-
sonable range, PTA source shot noise dominates clustering at all
scales. (Plot adapted from [37] (Fig. 19), taking Aoy = 0.68.)

dashed horizontal lines show the levels of shot noise
for massive galaxies that could host PTA sources (lower
line, number density ng = 3 x 107 Mpc™) and for the
small fraction of those galaxies expected to host in-band
PTA sources (upper line, assumed number density
npra = 107% Mpc~3). The entire reasonable range of val-
ues corresponds to levels of shot noise which are larger than
the fluctuations resulting from the matter power spectrum.
Thus, the effects of galaxy clustering and structure are
hidden: the PTA sources are too few and too far apart to
reflect that structure.

The same conclusion was reached in [28] for current GW
detectors such as LIGO and Virgo, but may not hold for
next-generation terrestrial instruments such as Cosmic
Explorer [38] or the Einstein Telescope [39]. For such
terrestrial detectors, which operate in the audio-frequency
band, the relevant GW sources are binary neutron stars
(BNS), whose cosmological rate (per unit volume per unit
time) is much larger than that of binary black holes

(BBH) [40]. For current detectors [28], the shot noise
dominates, hiding the underlying matter power spectrum.
However, for next-generation detectors [38,39], with a
decade of observation, the shot noise should lie near the
peak of the power spectrum. This can be shown by simple
order of magnitude estimates, as follows. The number
density of normal galaxies is n,~ 107 Mpc™, and in a
decade we expect about one in a thousand of these to host a
BNS merger. Thus, since future detectors are expected to be
sensitive enough to observe all BNS mergers out to the
Hubble distance, the level of shot noise is about
1/1073n, ~ 10° Mpc?. Inspection of Fig. 3 shows that this
is comparable to the value at the peak of the power
spectrum. In such cases, where the shot noise has an
amplitude whose magnitude is comparable to that of the
power spectrum, it may be possible [27,29] to extract
additional information [41] about the underlying power
spectrum.

Note that Fig. 3 shows the power spectrum of linear-
theory matter density perturbations; the nonlinear collapse
into galaxies produces a bias that shifts the spectrum (solid
curve) upwards. Typical estimates of the bias factor [42] are
slightly less than 2. The upwards shift is proportional to the
square of the bias factor, so these effects move the curve
upwards by less than an order of magnitude. Thus, for
PTAs, the shot noise would always dominate.

This conclusion can be verified by using the angular
correlation function of galaxies. For this purpose, we derive
an upper bound on the contribution of galactic clustering to
the cosmic variance, employing a simple model for the
angular power spectrum,

Co
CL - { O
To obtain an upper bound, start with the expression for the

cosmic variance in terms of the angular power spectrum,
see (9.10) and (9.4) in [22]:

for L < L

(6.1)
for L > L.

- C
s (y) = 2% (r) + 4—0 WA (y)

1 [se]
+2fi4/ (cos B) Z()( ypm >

x CuPu(cos ) 1. B) + 12 (7. ).

(6.2)

Begin by assuming that C; = Cy for all L, so that
L .x = 0. Then the summation in (6.2) is easy to do since

i(ZL; 1>PL(cosﬁ) =6(cosp—1), (6.3)

L=0

which can be obtained from Eq. (4.2) of [22] by setting
x = cosf and x’ = 1. The integral over cos /3 is trivial, so
the third term on the right-hand side of (6.2) simplifies to
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1
third term = yp ACoul(y), (6.4)
T

where we used p?(y,0) = p2(y) and u?(7,7) = 0.

Expression (6.4) for the third term of (6.2) implies an
upper bound on the cosmic variance for the C; given in
(6.1). This is because any single C; > 0 makes a con-
tribution to the cosmic variance which is necessarily non-
negative. A proof by contradiction follows. Suppose that
for some L value

/ﬂd(cosﬂ) (2L4+ 1
0 T

Then, by choosing that C;, to be large enough to dominate
the first two terms in (6.2), we could make 62(y) < O.
This is a contradiction, since by definition o> 0.

So, we have proven that for the C; model given in (6.1)

JPuteos) 20 4125 <.
(6.5)

- 1
020s(v) S 2842 (y) + s (h* + AY)Copa(y).  (6.6)

If we now use

Cy = 0.002, Lo =50, (6.7)
to describe the effects of galaxy clustering [20], the
contribution of these C;’s to the cosmic variance is less
than one percent of that for the standard Gaussian ensem-
ble. Thus, galaxy clustering does not make a significant
contribution to the cosmic variance of the pulsar-averaged
Hellings and Downs correlation. This is consistent with the

results of [23] (see Fig. 2 there) for these small values of Cj,.

VII. CONCLUSION

This paper uses the general method developed in [22,23]
to assess the effects of (a) source discreteness and (b) galaxy
clustering on the Hellings and Downs correlation. The
impact is measured by comparing the cosmic variance of
the pulsar-averaged correlation I' in the standard Gaussian
ensemble to the same quantity in an ensemble which
models (a) or (b). Here, fluctuations in I" quantify “how
closely” the Hellings and Downs correlation is expected to
approach the Hellings and Downs curve. This provides an
order-of-magnitude estimate of the impact of these effects.

For (a) we compared ensembles containing a Poisson
distribution of N discrete sources to the Gaussian ensemble.
The latter corresponds to a very large number of very
weak sources. We found (see Fig. 2) that for typical
numbers of strong PTA sources N = 10 this shot noise
effect increases the cosmic standard deviation of the pulsar-
averaged Hellings and Downs correlation by an amount

1/N ~ 10%. For (b) we compared the Gaussian ensemble
without source correlations to an ensemble with typical
galactic structure correlations. Here, the effects are very
small, less than 1%, and completely dominated by the shot
noise contributions (a) [see Fig. 3 and text following (6.7)].
These results provide a useful quantitative test and point of
comparison for more authentic computer simulations.
Our model (ensemble) of N discrete GW sources
assumes that these have a Gaussian distribution of ampli-
tudes, drawn from a power spectrum. Physically, this
corresponds to picking N lines of sight (directions on
the sphere). Then, for each of these sky directions, a large
number of independently radiating GW sources are stacked
up “on top of each other” along that line of sight. For each
direction, enough sources are stacked that the central limit
theorem applies, and the resulting GW amplitudes along
each of the N directions has the same Gaussian distribution.
These calculations could be improved by using a more
realistic ensemble, i.e., by modifying the statistical ensem-
bles to make them more realistic. For this, along each of the
N directions, there would be one GW source, which
radiates at a single frequency with a specific (but unknown)
phase and polarization. Rather than selecting the ampli-
tudes from the same distributions, one could use distribu-
tions whose mean-squared amplitudes are largest for the
“closest” source and are smaller for more distant ones. Such
calculations are not difficult to carry out, and while we do
not expect that this will change the order of magnitudes of
the different effects, it would be helpful to quantify this.

Note added in proof.—Recent work by two of the authors
shows that the “zero lag” Hellings and Downs estimator
based on the uniform time averages of Z,Z, [as defined
before (4.4)] may have its variance reduced, and thus be
improved, by suitable frequency-space weighting [44]. This
does not affect our conclusions.
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