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Abstract

Recent studies highlight the potential of textual modalities in
conditioning the speech separation model’s inference process.
However, regularization-based methods remain underexplored
despite their advantages of not requiring auxiliary text data dur-
ing the test time. To address this gap, we introduce a timed text-
based regularization (TTR) method that uses language model-
derived semantics to improve speech separation models. Our
approach involves two steps. We begin with two pretrained
audio and language models, WavLM and BERT, respectively.
Then, a Transformer-based audio summarizer is learned to align
the audio and word embeddings and to minimize their gap. The
summarizer Transformer, incorporated as a regularizer, pro-
motes the separated sources’ alignment with the semantics from
the timed text. Experimental results show that the proposed
TTR method consistently improves the various objective met-
rics of the separation results over the unregularized baselines.
Index Terms: Speech source separation, language model, mul-
timodal learning

1. Introduction

Recent studies have shown significant progress in deep
learning-based audio source separation [1, 2, 3, 4, 5, 6], among
which end-to-end approaches are popular approaches. For
example, Conv-TasNet [7] established the encoder-separator-
decoder structure, which removed traditional time-frequency
feature extraction, such as magnitude spectrogram or mel-
frequency cepstral coefficients. Dual-Path RNN [8] followed
to capture both the temporal and spatial dependencies through
modeling across both directions. In addition, introducing the
Transformer [9] architectures to source separation also ad-
vanced the performance due to their self-attention mechanism,
such as Dual-Path Transformer [10] and SepFormer [11, 12].
Another category of studies focuses on leveraging cross
modality clues, e.g. visual and textual queries, as auxiliary in-
formation that conditions the separation system. Hence, this
type of systems is suitable for extracting out a source of inter-
est defined by the cue, which is a task often called rarget source
extraction (TSE). Query-based approaches have been widely in-
vestigated in the fields of singing voice separation [13], speech
separation [14], and sound separation [15, 16, 17, 18]. Among
these works, the text modality has been one of the primary
ways to convey information about the target source. For exam-
ple, in [15], textual description or sample audio from the same
speaker is used to designate the target speaker; LASS-Net [16]
conditions the hidden vectors in the separation network with a
Transformer-based query network to extract textually described
sounds; CLIPSep [17] used contrastive language-image-audio
pretraining to learn a joint embedding for trimodal representa-
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Figure 1: The proposed TTR-SS training pipeline. The yellow
and green areas represent the traditional training of a speech
separation model and the proposed TTR, respectively. The test-
time inference only uses the yellow area.

tion and used it for TSE; in [18], a heterogeneous TSE task is
defined to condition the separation network using various con-
cepts such as gender, language, and loudness.

Although these successful TSE systems use auxiliary in-
formation for effective conditioning, using other modalities to
regularize the separation task during training has not been stud-
ied in depth. The Voice ID loss [19] is an example, where the
speech enhancement model is regularized to reduce both the
typical reconstruction and the speaker verification loss. The
prototypical speaker-interference (PSI) loss [20] also uses a
speaker-level representation loss to regularize a TSE system.
While these regularization methods are effective, they are lim-
ited to the audio modality, leaving room for investigating other
modalities, such as text. For example, using an ASR loss jointly
with the signal reconstruction loss is another promising multi-
modal approach while they are more focused on the ASR per-
formance than reconstruction and do not consider inter-word
relationships as in our method [21, 22, 23].

In this work, our main contribution is the multimodal rep-
resentation loss defined between timed text and speech audio
to regularize speech separation models. Compared to the other
TSE methods, where the separation model is indirectly condi-
tioned by auxiliary text [15, 16] or an unaligned script [13],
our text modality is high-quality and strongly associated with
the source audio. In particular, we use source-specific scripts
of all the clean utterances for training, assuming their word-
level synchronization with the audio frames. This assumption
is rather strong to condition the model during testing as in the
TSE methods because acquiring a time-aligned transcript of the



test-time sources is extremely difficult. On the contrary, the pro-
posed TTR method provides consistent performance improve-
ment at no additional cost, i.e., without asking the user for a
time-aligned transcript of the target source. Furthermore, since
the proposed method is to regularize the training objectives, it
does not add any computational cost to the test-time inference.

Figure 1 illustrates the proposed regularization method
for speech separation. First, the two pretrained audio and
text encoders, A and T, convert K separated speech sources
Skeq1,...,x) and their correspondmg timed text wy into frame-

level audio embeddings S, and subword-level text embeddings
Wy, respectively. Second, the subword-level alignment (SLA)
module associates consecutive audio embeddings with a sub-
word embedding. Third, the summarizer Transformer P fol-
lows to convert each subword-specific audio embeddings into a
summary vector, representing the subword in the audio modal-
ity. Finally, our TTR loss computes the similarity between the

subword-level aggregation of the audio embeddings S and the
corresponding subword embedding from the text encoder.

The pretrained summarizer, WavLM, and BERT, are frozen
and combined as a regularization network, which provides an
audio-text matching score to finetune the speech separation net-
work. We call the finetuned separation network Timed Text-
Regularized Speech Separation (TTR-SS). Experimental results
demonstrate that the proposed TTR-SS improves the perfor-
mance of two baseline separation systems on two and three-
speaker speech separation tasks with additive noise, perhaps due
to the sentence-level semantics introduced to the loss function.
Moreover, we note that TTR enhances the more complex Sep-
Former to a greater extent than it does the simpler Conv-TasNet,
indicating that the TTR loss introduces more information for the
network to learn from, requiring a larger model capacity.

2. Timed Text-Regularized Source
Separation

2.1. Problem Definition and the Loss Function

Given a time-domain mixture signal & that consists of K speech
sources and a non-speech source n, i.e., x = Zszl Sk +mn,a
speech separation model S is expected to estimate the sources
back, {81, 82,...,8kx} < S(x), with a potential permuta-
tion of the source order. To compare each estimate to the
best-matching target source, during training, the permutation
invariant training (PIT) scheme [24] is commonly used. In
particular, given a set of source estimates and a reconstruc-
tion loss function, e.g., negative SI-SDR, PIT searches for
the best permutation that minimizes the total loss out of K!

potential permutations, whose [-th permutation is defined by
o0 = 0Oy,

K
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2.2. Subword-Level Alignment

Timed text-regularization (TTR) takes advantage of the
sentence-level semantics to guide the training of the separation
model. To achieve this, we use a pretrained audio encoder and
a language model (LM) to extract audio and word embeddings
and then compare them to compute a regularization loss. We de-
note the extraction processes for text and audio by W = T (w)
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Figure 2: Data flow of the SLA and summerizer Transformer.
SLA divides audio embeddings into segments using subword
boundaries. The Psum. summarizes each segment into a sin-
gle vector. Pagg. aggregates the summarized vectors to mimic

the internal dependency of subword embeddings.

and S = A(s), respectively. Their input w and s are a se-
quence of subwords and a waveform, while W & RPw xM
and 8 € RPs*7 represent the word and audio embeddings that
are Dw and Dgs-dimensional vectors, respectively. Note that
M is the number of subwords, which is usually much smaller
than audio frames V.

We assume that reliable word boundaries of a ground-
truth source utterance s are available, while their subword
boundaries are not. Since a typical 7 model, e.g., BERT
[25], uses tokenized subwords as its atomic input elements,
the resulting embedding vectors W are at the subword level,
which the audio embeddings S should be aligned to. As
a remedy, we propose the subword-level alignment (SLA)
algorithm (Figure 1), which infers the subword boundaries
from the known word lengths. First, we assume the [-th
word consists of m; subwords, i.e., w“):[wgl)7 e ,wE})l].

Hence, the entire subword sequence w:[w<1) cLwP] =
[wgl) Cwh) wt? w'?) wi . <) } where L

Wrnl s WYy e e ey Wingy -+ - Wy s Winy,
denotes the total number of words in w. There-
fore, M :Zlf‘:lml. Then, for the known word lengths
b=bV, ..., bD)], we simply postulate that each word
length can be evenly divided, i.e., b(l):by)+~ . ‘+b£7l7.)l
and bg,?:b(l) /my,  VYm. The subdivision can rede-
fine b=[b{", ... b5 b b2 b b)) as
the list of subword lengths. In addition, we also define
the subword boundaries B3=[Bo, f1,...,Bm—1,Bm], Where
Bm= /_1bp, i.e., the sum of the first m subword lengths,
while 8o = 0. With this information, we can group the audio
embeddings into subword-specific sub-sequences. For example,
the ¢t-th audio embedding S. ; belongs to the m-th subword if
Bm—1<t/R<fm, where R denotes the frame rate of the audio
embedding, i.e., the number of embeddings per second.

Specifically, BERT and WavLM [26] are adopted in this
work for 7 and A for subword and audio embeddings extrac-
tion. The word-level boundaries are computed by Montreal
Forced Aligner [27], which are further divided into the subword
level using the abovementioned SLA algorithm.

2.3. Summarizer Transformer

A successful SLA results in multiple audio embeddings asso-
ciated with a subword embedding due to the audio modality’s
higher frame rate. Hence a summarizing mechanism is required,
for which we propose the summarizer Transformer function



‘P. This Transformer consists of two parts: the subword-level
summarizer Psum. and the sentence-level aggregator Pagg. as
shown in Figure 2. The subword summarizer, a two-layer
Transformer encoder, summarizes each aligned audio embed-
ding sequence within the subword boundary into a feature vec-
tor with the same dimensionality with a word embedding, i.e.,
S! . < Psum.(S.8,,_,<t<pn). By repeating the process
for all the subword-specific subsequences of S, we get S’ €
RPw XM " The sentence-level aggregator, which has an iden-
tical architecture to the summarizer, follows to transform the
sequence of subword-level summarized audio embeddings into
a final version, i.e., S < Pagg.(S’), without changing the di-
mension and length, resulting in the final audio representation
S € RPw*M Note that the sentence-level aggregation is over
the M embeddings, ensuring that the final representation S en-
codes long-term context across the entire sentence, which is oth-
erwise missing during the subword-level summarizing process
that operates within the subword boundaries.

Since the P function projects the audio embeddings S to
the Dy -dimensional space, where the audio embeddings are
learned to be comparable to word embeddings. The P func-
tion learned to minimize the following timed text-regularization
(TTR) loss function:

M Q
~ 1 S.m - W.m
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i.e., the mean of the cosine distance between each pair of
aligned subword-level embeddings from both modalities. Note
that we use clean speech sources to pretrain P, which is then
frozen during the training of the separation model S.

2.4. Timed Text-Regularized Source Separation

Figure 1 shows the finetuning pipeline for TTR-SS. The yel-
low area shows the traditional data flow of a speech separation
model S, which we pretrain using an ordinary speech separation
pipeline: it takes a mixture @ as input and predicts their con-
stituent speech sources in the optimal order with the help from
the PIT loss as shown in eq. (1). The timed-text regularizer
(TTR) is also pre-trained as described in Sec. 2.2 and 2.3, using
clean speech utterances and their corresponding timed texts.
The finetuning step further updates the separation mod-
ule S, while the summarizer Transformer, BERT, and WavLM
modules are kept frozen. The difference is that, for finetun-
ing, P takes the audio embeddings extracted from the source

estimates as input rather than the clean utterances, i.e., Sy
P(SLA(.A(8)). Finally, we jointly minimize the PIT and TTR
losses that are defined as the following total loss function:

K

Lol == Z Loir(8k, Sk) + AETTR(g'Im W), 3)
k=1

with a blending weight A chosen from {0.1, 0.5,1.0}.

3. Experimental Setup
3.1. Dataset Description & Evaluation Metrics

We use the LibriMix dataset [28] to train and validate our
proposed method. We use four subsets, Libri2Mix-Clean,
Libri3Mix-Clean, Libri2Mix-Noisy, and Libri3Mix-Noisy, that
consist of clean two- and three-speaker mixtures or their noisy
versions. The speech sources are derived from LibriSpeech

[29], while the noisy mixtures use ambient noises from the
WHAM! dataset [30]. LibriMix follows the same structure as
WHAM! and has two training sets, one validation set, and one
test set. In this work, we use the train-360, dev, and test as the
training, validation, and test sets, respectively, with an 8KHz
sample rate. In addition, we test the systems on both the clean
and noisy mixtures. Evaluation metrics used are the traditional
BSS_Eval toolbox’s decomposition of source-to-distortion ratio
(SDR) into source-to-interference ratio (SIR) [31] as well as the
scale-invariant SDR (SI-SDR) metric [32] and the short-time
objective intelligibility (STOI) score [33].

3.2. Model Architecture and Training Setup

Baseline Model and Joint Finetuning We adopt Conv-TasNet
[7] and SepFormer [11, 12] as our baseline models. Conv-
TasNet consists of a 1-D convolutional encoder, a separator,
and a decoder. The convolution encoder first encodes the raw
waveforms into a 2-D feature map. The separator leverages
the temporal convolution to estimate feature masks that sepa-
rate the encoded 2-D feature map. Finally, the separated feature
maps are transformed back to waveform predictions. Specifi-
cally, the 1-D convolutional encoder contains 24 convolutional
blocks, where each block has 512 channels with a kernel size
of 16, and each kernel strides by 8. With a similar encoder-
separator-decoder structure, SepFormer mainly relies on the
Transformer-based dual-path processing blocks as the separa-
tor. SepFormer repeats the separator twice, which contains
eight layers of Transformers for inter- and intra-paths, and each
Transformer layer has eight attention heads. The baseline model
pretraining and TTR-SS finetuning share the same optimization
configuration except that the loss functions are Lprr and Liotal,
respectively. We use the Adam optimizer [34] with a learning
rate of 1072 and 1.5 x 10~* for Conv-TasNet and SepFormer,
respectively. A learning rate scheduler halves the current learn-
ing rate if the validation loss is not reduced for five epochs. The
training and finetuning are early-stopped if no improvement is
seen after 30 epochs.

WavLM and BERT Two pre-trained models, WavLM and
BERT, extract audio and word embeddings that contain pho-
netic and semantic information, respectively. Both use a Trans-
former encoder-based architecture, and we used their publicly
available pretrained versions. To minimize computational over-
head, we choose models with fewer parameters, i.e. wavlm-base
and bert-base-uncased, and run the frozen models to extract the
embeddings on-the-fly during training. The resulting dimen-
sions of audio and word embeddings are both Dw = 768.

Summarizer Transformer Both the subword-level summa-
rizer and sentence-level aggregator have 768 input dimensions,
which match WavLM’s embedding, and are based on the same
4-layer Transformer encoder structure. As positional encodings
are used in both WavLM and BERT, the summarizer Trans-
former opts not to use them. For the summarizer Transformer
pretraining, Adam is again used with the learning rate, 31, and
B2 set to be 1074, 0.9, and 0.98, respectively. No learning rate
scheduler is involved. Early stopping engages when the valida-
tion loss is not improved for 30 epochs. Lrrr in eq. (2) is used
for the pretraining, while finetuning is to reduce Lo by jointly
updating both the separator S and the summarizer P.
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Figure 3: Evaluation of the summarizer Transformer.

4. Experimental Results and Discussion
4.1. Evaluation of the Summarizer Transformer

To verify the extent to which the textual data contributes, we
evaluate the summarizer Transformer using the validation set.
In Figure 3 (a), the horizontal axis represents the 3,000 ut-
terances in the validation set, and the vertical axis stands for
the cosine distance between the projected audio embeddings
and subword embeddings. In this comparison, we show the
embeddings from the matching source S; are more similar to
the word embeddings W than the embeddings extracted from
the mixtures X are, where X < P(SLA(A(x))). All the
ETTR(S'l, W) values are sorted ascendingly, and the sorted
indices are utilized to sort the values of Lrrr (X, W). From
Figure 3 (a), we see that the overall difference of £TTR(X , W)
is higher than L7rr (81, W). Furthermore, Figure 3 (b) illus-
trates the distribution of the difference between L1rr(S1, W)
and lZTTRv(X , W). The notch indicates the 95% confidence in-
terval, with 78.87% of L1rr(X, W) > Lrrr(S1, W), and
the mean of the difference is 1.23 x 1072, These results indi-
cate that the summarizer can distinguish between clean sources
and mixtures based on the textual context.

4.2. Source Separation Performance

In this main experiment, we compare the performance of the
Conv-TasNet and SepFormer baselines, and their TTR variants.
Table 1 presents the evaluation improvement scores of the two
separation models for each metric and task. Higher scores indi-
cate better results. For a fair comparison, we use the pretrained
checkpoints provided by the authors of both baseline models.
Note that we use the SepFormer variation, which does not use
dynamic mixing or pretraining.

When we apply the TTR loss to finetune the baseline
models, the proposed regularization introduces performance
improvements in all task variations. In Table 1, the bold-
face denotes the best results per subtask. Specifically, Conv-
TasNet+TTR outperforms its baseline in SI-SDR by 0.31 dB in
Libri2Mix-clean and 0.19 dB in Libri2Mix-noisy tasks. As for
three-source mixtures, the proposed model surpasses the base-
line by 0.43 dB for Libri3Mix-clean and 0.49 dB for Libri3Mix-
noisy subsets, respectively. Investigating SepFormer’s per-
formance, TTR successfully boosts SI-SDR by 1.47 dB in
Libri2Mix clean separation task and by 0.83 dB in Libri2Mix
noisy task. A similar trend can also be found in Libri3Mix tasks
where SI-SDR scores was improved by 1.15 dB in Libri3Mix-
clean and 1.18 dB in Libri3Mix-noisy, respectively.

Table 1: Source separation performance. SDR and SI-SDR
improvements are reported in decibel (dB), while STOI values
range between 0 and 1, where 1 is the upper bound.

Task | Model (A) | SDRi SI-SDRi  STOI
Conv-TasNet (N/A) | 15.11 14.76 0.9311

+TTR (1.0) 1542 1507  0.9342

+TTR (0.5) 1542 1508  0.9341

Libri2Mix +TTR (0.1) 1544 1510  0.9344
Clean SepFormer (N/A) | 18.68 1835  0.9574
+TTR (1.0) 20.12  19.82  0.9682

+TTR (0.5) 20.14  19.85  0.9681

+TTR (0.1) 20.17  19.87  0.9685

Conv-TasNet (N/A) | 12.36 11.80 0.8490

+TTR (1.0) 1254 1199  0.8540

+TTR (0.5) 1229 1174 0.8482

Libri2Mix +TTR (0.1) 1247 1190  0.8512
Noisy SepFormer (N/A) | 15.11 1454 0.8949
+TTR (1.0) 1599 1537  0.9103

+TTR (0.5) 16.00 1539  0.9100

+TTR (0.1) 1598 1536  0.9096

Conv-TasNet (N/A) | 1240 1198  0.8365

+TTR (1.0) 12.82 1241  0.8448

+TTR (0.5) 1276 1235  0.8439

Libri3Mix +TTR (0.1) 1277 1235  0.8438
Clean SepFormer (N/A) | 17.26 16.91 0.9141
+TTR (1.0) 1843  18.06  0.9289

+TTR (0.5) 1845  18.09  0.9292

+TTR (0.1) 1839  18.03  0.9291

Conv-TasNet (N/A) | 10.93 1039  0.7669

+TTR (1.0) 1141  10.88  0.7793

+TTR (0.5) 1137 1084  0.7776

Libri3Mix +TTR (0.1) 11.35 10.81  0.7769
Noisy SepFormer (N/A) 14.73 14.24 0.8489
+TTR (1.0) 1594 1542  0.8727

+TTR (0.5) 1588 1536  0.8717

+TTR (0.1) 15.91 1539  0.8720

Since all SDR and STOI scores follow a similar trend as
SI-SDR, we draw the conclusion that the TTR-SS models are
able to produce separated sources with higher quality and in-
telligibility. Additionally, it is evident that the performance en-
hancement derived from the SepFormer baselines surpasses that
from Conv-TasNet, suggesting that the proposed regularization
provides more information to learn for larger models.

5. Conclusion

We presented a novel timed text-based regularization method
that leverages sentence-level semantics from a language
model, enhancing speech separation performance across diverse
speaker and noise environments. For this purpose, we intro-
duced the SLA and summarizer Transformer to align and min-
imize the gap between different modalities, i.e. audio and text.
In our experiment, we demonstrated that the SLA and summa-
rizer Transformer effectively differentiate between mixtures and
clean sources by comparing them with their respective textual
representations, indicating a meaningful regularization. Con-
sequently, TTR enhances all evaluation metrics, particularly
for SepFormer, a more complex and sizable model, at higher
SNR levels. This underscores the efficacy of the proposed TTR
method, which works with the conventional PIT loss, thus im-
proving source separation tasks. The benefit comes with no
additional computational or data collection cost during the test
time due to its regularization-based approach.
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