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Abstract

Pulsar timing arrays (PTAs) are sensitive to low-frequency gravitational waves (GWs), which induce correlated
changes in millisecond pulsars’ timing residuals. PTA collaborations around the world have recently announced
evidence of a nanohertz gravitational wave background (GWB), which may be produced by a population of
supermassive black hole binaries (SMBHBs). The GWB is often modeled as following a power-law power
spectral density (PSD); however, a GWB produced by a cosmological population of SMBHBs is expected to
have a more complex power spectrum due to the discrete nature of the sources. In this paper, we investigate
using a r-process PSD to model the GWB, which allows us to fit for both the underlying power-law amplitude
and spectral index as well as deviations from that power law, which may be produced by individual nearby
binaries. We create simulated data sets based on the properties of the NANOGrav 15 yr data set, and we
demonstrate that the t-process PSD can accurately recover the PSD when deviations from a power law are
present. With longer timed data sets and more pulsars, we expect the sensitivity of our PTAs to improve, which
will allow us to precisely measure the PSD of the GWB and study the sources producing it.

Unified Astronomy Thesaurus concepts: Gravitation (661); Computational methods (1965); Markov chain
Monte Carlo (1889); Gravitational wave astronomy (675)

1. Introduction

Massive objects orbiting each other radiate away energy in the
form of gravitational waves (GWs). Supermassive black hole
binaries (SMBHBs), which form following massive galaxy
mergers, emit GWs with frequencies ranging from 10~ to
10~ Hz when they are at ~10~ =102 pc separations (A. Sesana
2013; S. Burke-Spolaor et al. 2019). Pulsar timing arrays (PTAs)
detect GWs at nanohertz frequencies by looking for the time
delay induced in the pulses of a collection of rapidly spinning
millisecond pulsars (MSPs; M. V. Sazhin 1978; S. Detweiler
1979; R. W. Hellings & G. S. Downs 1983). MSPs are recycled
neutron stars with extremely low spin-down rates, and their
rotational stability makes them ideal for GW detection
(R. S. Foster & D.C. Backer 1990).

The superposition of GWs emitted by a cosmological
population of SMBHBs is expected to give rise to a stochastic
gravitational wave background (GWB; M. Rajagopal &
R. W. Romani 1995; A. H. Jaffe & D.C. Backer 2003;
J. S. B. Wyithe & A. Loeb 2003; P. A. Rosado et al. 2015).
Recently, the North American Nanohertz Observatory for
Gravitational Waves (NANOGrav), the European Pulsar
Timing Array (EPTA), the Indian Pulsar Timing Array
(InPTA), the Parkes Pulsar Timing Array (PPTA), and the
Chinese Pulsar Timing Array announced the first evidence for
a GWB at nanohertz frequencies (G. Agazie et al. 2023a;
EPTA Collaboration et al. 2023; D. J. Reardon et al. 2023;
H. Xu et al. 2023). The observed signal is consistent with a
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GWB produced by SMBHBs (G. Agazie et al. 2023b; EPTA
Collaboration et al. 2024), but it is also consistent with a
GWB produced by other sources such as inflation, phase
transitions, and cosmic strings (e.g., A. Afzal et al. 2023). An
analysis by the International Pulsar Timing Array (IPTA)
found that the results from NANOGrav, the EPTA, the
InPTA, and the PPTA are broadly consistent with one another
(G. Agazie et al. 2024a), and work is underway preparing the
third IPTA data set that will combine these data with data
from the MeerKat Pulsar Timing Array (M. T. Miles et al.
2023), the Canadian Hydrogen Intensity Mapping Experiment
(CHIME /Pulsar Collaboration et al. 2021), and the Low-
Frequency Array (M. P. van Haarlem et al. 2013). With longer
timing baselines and more pulsars, the sensitivity of PTAs
will increase, allowing for more precise measurements of the
GWB and the study of its astrophysical or cosmological
sources (X. Siemens et al. 2013).

For a population of circular SMBHBs evolving only due to
GW emission, the GWB power spectral density (PSD) is
expected to follow P(f)ocf~'3/3 (E. S. Phinney 2001).
However, the PSD for an astrophysically realistic GWB is
expected to be more complicated. Environmental effects such
as stellar hardening and alpha-disk interactions accelerate the
orbital evolution at large separations, resulting in different
power-law spectral indices at the low-frequency and high-
frequency ends of the spectrum (M. Milosavljevié &
D. Merritt 2003; B. Kocsis & A. Sesana 2011; L. Sampson
et al. 2015), while the presence of a significant fraction of
SMBHBs with nonnegligible eccentricity will result in a
flattening of the GWB spectrum (A. Susobhanan et al. 2020;
F. Fastidio et al. 2024). Because of the discrete nature of the
sources, we also expect to find deviations from a power-law
PSD at higher frequencies where fewer sources are contribut-
ing to the GWB. There may also be excess power at
individual frequencies caused by a small number of loud,
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nearby sources (B. Bécsy et al. 2022; G. Agazie et al. 2024b).
The finiteness of the population of SMBHBs can lead to
spectral variation in the GWB, as shown in W. G. Lamb &
S. R. Taylor (2024).

In this paper, we explore the validity of detecting deviations
from a power-law PSD. We create simulations of the
NANOGrav 15yr data sets, consisting of 67 pulsars, and
employ a Bayesian analysis to fit multiple PSD models. We
introduce a “t-process” model, which consists of an under-
lying power law convolved with multiplicative variables, each
described by an inverse gamma distribution prior, at each
frequency and compare the findings to other standard PSD
models used in PTA analyses.

This paper is organized as follows. In Section 2 we give an
overview of PTAs, we discuss the 7-process model as well as
the other models used to describe the GWB PSD, and we
describe our analysis methods. In Section 3 we present the
results of our analysis, comparing the results of the 7-process
to other PSD models across different simulations containing a
pure power-law GWB, a GWB with excessive noise at a
single frequency component, and a simulated astrophysical
background from SMBHBs. Finally, in Section 4 we
summarize our results and look to the future.

2. Model and Methods
2.1. PTA Overview

Pulsar timing residuals are the difference between the
observed times of arrival and the expected, deterministic
times of arrival. It can also be represented as a combination of
noise processes:

6t =Me+ Fa + n, 1)

where Me are linear perturbations to the timing model, Fa is
the the contribution from intrinsic red noise as well as the
common process (GWB), and n is the contribution of white
noise. The intrinsic red noise can be modeled as a power law
with an amplitude and a spectral index:

Paf) =Ai[fi) v ®)

yr

Each pulsar is expected to be affected by intrinsic red noise
processes (e.g., spin noise (R. M. Shannon & J. M. Cordes 2010;
M. T. Lam et al. 2017; M. E. Lower et al. 2020), variations in the
interstellar medium (M. L. Jones et al. 2017; M. T. Lam et al.
2017)), white noise processes (e.g., radiometer noise, pulse jitter;
J. M. Cordes & G. S. Downs 1985; M. T. Lam et al. 2016, 2019;
A. Parthasarathy et al. 2021), and the GW background itself. It
has been shown that in some cases that intrinsic red noise can be
mistaken for a common process (B. Goncharov et al. 2021;
A. Zic et al. 2022; B. Goncharov et al. 2022; R. van
Haasteren 2024) and is very dependent on the Bayesian priors
chosen. However, we can distinguish between intrinsic red noise
and the GWB based on the correlations between pairs of pulsars
—the GWB induces interpulsar correlations that follow the
Hellings—Downs curve (R. W. Hellings & G. S. Downs 1983),
while noise processes will be uncorrelated or induce other types
of correlations (C. Tiburzi et al. 2016).
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2.2. Common Red Noise Signal

The incoherent superposition of GWs produced by a
population of SMBHBs leads to a GW background that can
be described in terms of its characteristic strain h.(f). For a
population of circular SMBHBs evolving only due to GW
emission, this is predicted to follow a power law
(E. S. Phinney 2001),

—2/3
he = Agw(fi) , 3)

yr

where f is the GW frequency and A is the amplitude at a
reference frequency of fy, =1 yr ' =31.7nHz. It is common
to use a reference frequency of 1yr~', but other reference
frequencies such as 0.1 yr~' may be used.

PTAs detect GWs by measuring the redshift induced in the
pulses of a collection of MSPs. The response in a PTA is a
time delay induced in the pulse arrival times of all the pulsars.
The measured residual PSD is related to the characteristic
strain spectrum according to

h(f)
1273f3

Ang f - If i
12;12(fyr) ’ ( )

Ba(f) =

af

where A,,, is the amplitude of the characteristic strain from
Equation (3), df = 1/ Tspan, the total time span of the PTA, and
Yew is the spectral index in the PSD. For purely circular
SMBHBSs, 7ey = 13/3.

On average, we expect the GW background to produce a
residual power spectrum according to Equation (4). However,
an astrophysically realistic spectrum will deviate from a
power-law PSD due to the finite number of binaries
contributing to the spectrum (A. Sesana et al. 2008). There
also may be a turnover in the spectrum at low frequencies if
interactions with the environment extend into the PTA band
(L. Sampson et al. 2015). At high frequencies, the power
spectrum of the residuals flattens due to white noise.

We model the red noise processes using a Fourier series
with linearly spaced frequencies f; =i/ Tipan, Where Ty, is
the total span of the data and i is an integer. For our analyses
we use i = 1, 2,...,30, which corresponds to a frequency range
of 1.98-59.3 nHz. To capture the subtleties at each frequency
component, one can make use of a free spectral approach,
which treats the power at each frequency as an independent
parameter,

h(f
Pfs(ﬁ) = 126 (f},)g df = 6tdzelay(](z")' ()

7 2 i
By design, there is no relation between the power at different
frequencies: the free spectral is completely model agnostic
and purely measures the power at each frequency
individually.

The t-process model is a modification to the power law
where every frequency component has a multiplicative factor
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Figure 1. Reconstructed GWB PSD for power-law simulations using a r-process model (blue), free spectral model (red), and power-law model (green). The violins
and shaded region show the 90% confidence interval. The injected PSD is shown as the black dashed line. The standard power law recovers the injected PSD the
best, although all three models recover the injected PSD accurately at low frequencies.

governed by an inverse gamma distribution prior,

Fp(f) = aiBa(f)

a; ~ invgam(1, 1). (6)
The inverse gamma function follows a probability of
invgam(ay, 1, 1) = La’2 ex ,i @)
8 i> 1, T i p o s

where P, (f;) is the standard power-law model from
Equation (4) and «; is a multiplicative factor that adjusts to
power at a frequency f; compared to the underlying power-law
PSD. This model is a good compromise between the power-
law model, which assumes a relationship between the power
at different frequencies, and the agnostic free spectral model
since it allows for deviations in the PSD from a power law.
This model was previously used to describe the intrinsic red
noise of pulsar J0613—0200 in Z. Arzoumanian et al. (2020)
since that pulsar showed both low-frequency red noise and
excess noise at f,,, = 15 nHz. In this work, we use it to model

the GWB because it is able to model the underlying power-
law PSD of the GWB as well as capture and quantify
deviations from the power law.

2.3. Bayesian Methods and Software

We create simulations of the NANOGrav 15 yr data set
using the enterprise (J. A. Ellis et al. 2019) and
enterprise_extensions(S. R. Taylor et al. 2021)
packages. Our likelihood is modeled as a Gaussian,

exp<f%5tTE*1(§t)
[2r(dety)

where 6t is the vector of residuals of all pulsars, ¢ is the vector
of parameters drawn from the priors, and X is the covariance
block matrix of all pulsars. We use PTMCMCSampler
(J. Ellis & R. van Haasteren 2019) to draw values from the
posteriors for intrinsic red noise and common red noise
parameters using a Markov Chain Monte Carlo approach. For

®)

ptlg) =
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Figure 2. Combined posterior plot for all 50 simulations of log Agw, Yew, and log a; for the power-law recovery (blue) and t-process recovery (green). We see that
the standard power law recovers the injected amplitude and spectral index value very accurately. The #-process is also able to recover the injected values but
underestimates the amplitude and overestimates the spectral index. We also see that log oy is centered at 0, implying there is no deviation from a power-law PSD at
that frequency. The other «; values not shown have similar distributions, with increasing variance as we go to higher frequencies.

the purposes of this paper, interstellar variations/dispersion
medium, pulse jitter, and correlated white noise are not
considered.

2.4. Simulations

Our simulated PTA is based on the NANOGrav 15 yr data
set G. Agazie et al. (2023a), which contains 67 pulsars and a
baseline of 16.03 yr. In each of our simulations, the injected
uncertainty in time-of-arrivals (TOAs) and intrinsic pulsar red
noise are equal to the measured quantities in the pulsars in the
15 yr data set (the injected values are given in Table 1). This is
done by running a Bayesian analysis with intrinsic red noise
included for each pulsar as well as a common red noise

process across the entire array. We then only consider the
maximum likelihood intrinsic red noise values (this is to
prevent contamination of the pulsar-dependent red noise with
the common red noise signal present in the data set). We then
inject a new common red noise spectra using enterprise
and analyze the results.

To test the f-process, we use three different types of
injected common signal. We use (1) a pure power law, (2) a
power law with a known amount of excess noise at 5.93 nHz
(the third frequency bin), and finally (3) an astrophysically
realistic background from a simulated population of SMBHBs
created by the holodeck® (G. Agazie et al. 2023b)

4 https://github.com/nanograv /holodeck
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Figure 3. The log-PSD values (top) and the distribution of Hellinger
distances for the first frequency (1.98 nHz) of the pure power-law injection
(bottom) of all 50 simulations. The black curve indicates the convolution of
the log Agy, Ygw posteriors and the inverse gamma prior. We see that the PSD
is accurately recovered at the maximum PDF of the convoluted prior,
implying that there is no adjustment of the «; parameter. This is the null
distribution of Hellinger distances (no deviations from the power law), and at
1.98 nHz the 90% confidence interval is between 0.146 and 0.163.

simulation package. To create a realistic simulation of the
GWB, we must take into account the evolution and
merging of galaxies that host the SMBHs. The holodeck
package uses a semianalytical model, which includes
hyperparameters (the injected values are listed in Table 2)
for galactic merger time, galaxy stellar mass function,
galaxy close pair fraction, and SMBH mass—host galaxy

Sardesai, Simon, & Vigeland

relation to get a differential number density of SMBHBs
(J. J. Simon 2017). The characteristic strain from a popu-
lation of SMBHBs is then calculated by E. S. Phinney
(2001), A. Sesana et al. (2008), S. T. McWilliams et al.
(2012), and L. Sampson et al. (2015):

2(f) = AN e
W = [z fam [dgotmm i)

Here, N is the total number of SMBHBs present within each
bin of total mass M, mass ratio g, redshift z, and log frequency
Inf. Since we are dealing with discrete sources, we must
modify our integral to be a sum. The holodeck package
uses a Poisson distribution to estimate the number of binaries
within a range of dz, dM, and dgq at each d In f to calculate the
overall characteristic strain from individual sources as shown
in J. J. Simon (2017) and G. Agazie et al. (2023b):

N hi(f)

h2(f) = ——— AMAgAzAInf | 222

(f) M%;JP(@M@qazalnf an nf)Alnf’
(10)

where P indicates a random number drawn from a Poisson
distribution with the mean value given by the number of
binaries in each bin of M, ¢, z, and In f. For a large population
of sources, h2 closely follows a power law, as described in
Equation (3). However, when the signal is dominated by a
small number of discrete sources, there is a breakdown of
stochasticity and a subsequent deviation from power-law
behavior: this can be due to the signal being dominated by a
single loud binary or because the binaries are evolving
quickly at high GW frequency.

3. Results

For all of our simulations, we use three models to
reconstruct the PSD: a power law, a t-process, and a free
spectrum. We show reconstructions of the PSDs using all
three models and compare to the injected GWB. For the
power-law and #-process models, we also show corner plots
for the model parameter posteriors. This allows us to
compare the recovered parameter posteriors to the injected
values, as well as explore the covariances between model
parameters.

For the r-process model, the o parameters provide a way to
measure deviations from a power-law PSD. If there are no
deviations present, the posteriors for « will peak at 1. In order
to assess the significance of deviations, we use the Hellinger
distance (E. Hellinger 1909) to compare the posteriors and
priors. The Hellinger distance is a measure of the similarity
between two distributions: a Hellinger distance of 0 means the
two distributions are the same and 1 means the two are
completely different. Because there is a large covariance
between the log Agy, Yew, and the o; parameters, instead of
comparing the prior and posterior distributions for the a;, we
compare distributions for the power at a given frequency f;.
We construct convolved priors using the posteriors for log Agy,
and -y and the prior on ¢;, then compute the Hellinger distance
between these distributions and the posteriors on the power at
fi» according to Equation (6).
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Figure 4. Reconstructed GWB PSD for excess power simulation using a t-process model (blue), free spectral model (red), and power-law model (green). The
violins and shaded region show the 90% confidence interval. The injected is shown in the black dashed line. For these simulations, the PSD follows a power-law
PSD with excess power at 5.93 nHz. The t-process and the free spectral are able to recover the bump as well as the rest of the injection, whereas the standard power

law overestimates the amplitude of the entire PSD.

3.1. Pure Power-law Background

We generate simulated data sets containing a GWB
described by a power-law PSD with an amplitude of
Agy =2 % 107" and a spectral index of 7, = 13/3. This
simulation can be thought of as a litmus test to see how the -
process model recovers the PSD when there are no deviations
present. For an ideal recovery, the #-process would find the
injected amplitude and spectral index, and we expect the
log o; posteriors to have maximum PDF values at 0 Vf..

In Figure 1 we present the reconstructed PSD at each
frequency component for all three models. We find good
agreement between the reconstructed PSDs using all three
models at low frequencies: at higher frequencies, the
reconstructed PSD using the free spectral model has much
larger variances compared to the other two because the
reconstruction is dominated by pulsar white noise. By
design, the free spectral model does not assume any
relationship between power at different frequencies, whereas
the power-law and t-process models do. In Figure 2, we

present the posteriors of recovered parameters for the power-
law and ¢-process models. We find that the power-law
model best recovers the injected values of logAg, and 7,
while the t-process slightly underestimates the amplitude
and slightly overestimates the spectral index. We also see
that the posteriors of loga; are recovered with maximum
posterior values at 0, which is consistent with a pure
power-law PSD injection. For the other components, we also
see a log ; distribution that is centered close to 0, and as we
go to higher frequencies, the variance of the distribution
increases.

In Figure 3 we present the posterior of the log PSD (top)
and the distribution of Hellinger distances (bottom) of the first
frequency component (1.98nHz) for all 50 simulations.
Across these simulations, the Hellinger distances range from
0.146 to 0.163 (90% confidence interval), indicating that the
posteriors are very similar to the priors.

Since this is the pure power-law simulation, the Hellinger
distances we calculate can be treated as a “null distribution,”
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histograms and contours are for the standard power-law recovery. We can clearly see that the standard power-law model is completely skewed toward higher log A
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i.e., the distribution of the Hellinger distances in the
absence of deviations from a power law. We use these
results as a metric for determining the significance of
deviations from a power law when analyzing our other
simulations.

Our sensitivity to deviations varies as a function of frequency.
The range of Hellinger distances shown in Figure 3 are typical
for low frequencies up to ~13.8nHz. As we move to higher
frequencies, the signal is contaminated by pulsar white noise,
resulting in smaller Hellinger distances since the recovered
posteriors are more similar to the priors. The lowest Hellinger
distance occurs at 16/Tpan ~ 1yr71 where we are least sensitive
to GWs due to the Earth’s orbital period.

3.2. Excess Power at Single Frequency

In order to test how well we can characterize deviations
from a power-law PSD, we generate simulations where the
GWRB follows a power-law PSD with a known value of excess
power at a single frequency. Such a feature could be produced
by a single nearby circular individual SMBHB, although the
detection of such a source would require performing a search
using the appropriate deterministic signal model.

A search of the NANOGrav 15yr data set found no
evidence of GWs from individual SMBHBs in G. Agazie
et al. (2023c¢), but with longer baselines and more pulsars, we
expect the sensitivity of PTAs to improve to the point where a
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handful of sources will be detectable (P. A. Rosado et al.
2015; C. M. F. Mingarelli et al. 2017; B. Bécsy et al. 2022).
Excess correlated noise could also be produced by common
sources, such as error in the solar system ephemeris
(G. Hobbs et al. 2012; E. Roebber 2019; M. Vallisneri et al.
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2020), as well as contributions from solar wind (C. Tiburzi
et al. 2021).

We generate the simulated data sets with a common process
with an amplitude of 2 x 10~ ' and a spectral index of 13 /3,
then multiply the power at 5.93 nHz (the third frequency
component in our Fourier basis) by a factor of 10. In terms of
the z-process model, this corresponds to logasz =1 and
log oy = 0 for i == 3. This excess noise could be caused by a
feature of the background or an unmodeled red noise process.
An important note here is the fact that the source of excess
noise will likely be at a frequency different than the bin
center. PTAs have a finite frequency resolution in Fourier
space (Af = ngin). Any excess power within the frequency
bin edges will be recovered at the bin centers our PTA is
sensitive to. When excess power is in between two Fourier
bins, both bins see an excess of power. In this toy-model
case, we have chosen to inject the excess power at the bin
center so that the only one « parameter sees the deviation. We
consider the case where multiple Fourier bins are affected in
Section 3.3.

In Figure 4 we present the reconstructed PSDs for each of
the three models for all 50 simulations. We find that the #-
process model accurately recovers the injected PSD. The free
spectral model accurately recovers the PSD at low frequen-
cies, but at high frequencies the spread in the recovered power
is significant due to the presence of pulsar white noise. The
power-law model is not able to accurately recover the injected
PSD because it cannot recover the deviation at 5.93 nHz.

In Figure 5 we present the posterior distributions for the
parameters of the 7-process and power-law models. For the 7-
process model, we find that the amplitude is slightly
underestimated while the spectral index is slightly over-
estimated, as was the case for the power-law simulation
(Figure 2). We also find that the posterior for log a3 has a
maximum PDF value at 1, indicating that the magnitude of the
deviation is accurately recovered, while the posterior at log o,
where there is no deviation, has a maximum PDF value at 0.
In contrast, the power-law model overestimates both the
amplitude and spectral index in an attempt to fit the excess
power at 5.98 nHz. This shows that the #-process can recover
deviations without significantly biasing the recovery of
log Agw and 7,y, unlike the recovery with the power-law
model. For all other frequency components, log o; peaks close
to 0 and the variance of each distribution increases as we go to
higher frequencies.

In Figure 6 we present the posterior log PSD (top) and the
distribution of Hellinger distances (bottom) at the third
frequency component (5.93 nHz) for all 50 simulations (blue
histogram). We compare these to the distribution of Hellinger
distances from the power-law simulations (red histogram). For
the excess power simulations, the Hellinger distances range
from 0.182 to 0.201 (90% confidence interval), whereas for
the power-law simulations, the Hellinger distances range from
0.114 to 0.184 (90% confidence interval). In 82% of the
excess power simulations, the Hellinger distance falls outside
the 90% confidence interval for the power-law simulations.
From this, we conclude that we can use the Hellinger
distances to determine the significance of deviations from a
power-law PSD. We also show the posterior on the recovered
power at 5.93nHz (blue histogram) to the convolved prior
(black histogram). We see the posterior differs significantly
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Figure 7. Reconstructed GWB PSD for the holodeck simulations using a t-process model (blue), free spectral model (red), and power-law model (green). The
violins and shaded region show the 90% confidence interval. The injected PSD is shown as the black dashed line. The z-process model is best able to recover the
injected PSD, while the free spectral model and power-law model recover the injected PSD well at low frequencies but not at high frequencies.

from the prior, and has a maximum posterior value of
—12.674, which is consistent with the injected PSD.

3.3. Astrophysically Realistic GWB from SMBHB Populations

In the previous subsections, we have shown how the #-
process PSD can be used to recover the GWB PSD for two
types of simulations: one where the GWB PSD follows a
power-law PSD, and one where the PSD follows a power-law
PSD with excess power at a single frequency. While these
tests show the effectiveness of the #-process, it is also
important to consider how the f-process would analyze
realistic PTA data. In this section, we present results from
analyzing simulations where we generate the GWB using
simulated populations of SMBHBs. We use holodeck to
generate the GWB PSD, using hyperparameters derived from
astrophysical priors as were shown in G. Agazie et al.
(2023b). The values used to generate these simulations are
listed in Appendix. Unlike the previous set of simulations, the
GWB measured here is generated from many individual
sources that are at frequencies between the fourier bin edges,
this leads to a more realistic case where binaries may lie

between two different frequency bins contributing to both
of them.

In Figure 7 we present the reconstructed PSDs using the #-
process, free spectral, and power-law models. We see that the
t-process accurately reconstructs the PSD across all frequen-
cies, including some of the higher frequencies that show
deviations from a power-law PSD. The free spectral model is
able to recover the PSD at low frequencies but not at high
frequencies where pulsar white noise dominates. The standard
power-law is able to recover the PSD at lower frequencies, but
fails to capture some of the deviations present at higher
frequencies.

In Figure 8 we present the posterior distributions of the
parameters for both the r-process and power-law models for
all 50 simulations. Both the #-process and power-law models
recover consistent posteriors for log Ag,, and ., although the
posteriors from the 7-process model are significantly broader.
For the 7-process model, we also show the posteriors of log oy
and log ovjs. The log o distribution peaks at 0, implying no
deviations, while the log a4 posterior shows a tail in the
posterior that extends to high values, indicating that there is



THE ASTROPHYSICAL JOURNAL, 976:212 (13pp), 2024 December 1

7.5
6.0

Yew

4.5

A
A

Sardesai, Simon, & Vigeland

I

I

H T-process
I Standard power law

s 147 .
g 07 ]

| | [ I | | [ |
—17-16-15-14 3.0 45 60 75 -2—-10 1 2

IOg Agw ’ygw

T ]
—101 2

log o log a4

Figure 8. Corner plots of all 50 holodeck simulations. The blue contours and histograms are for the #-process, while the green histograms and contours are for the
standard power-law recovery. The green and blue dashed lines indicate the 1o confidence interval. We see that both models recover the same log A and gamma
values, but the #-process can also detect the presence of a deviation at 27.7 nHz, which was seen in Figure 7, whereas the 7-process cannot detect such a deviation.
We also see that a4 component searches over more of the inverse gamma prior. The log «; distributions not shown here peak between 0.13 and 0.3, with increasing

variance as we go to higher frequencies.

some evidence of excess power at a frequency of
14 /Tgpan = 27.7 nHz. Across all other loga;, we observe a
peak close between 0.13 and 0.3 and a larger spread as we
move to higher frequencies.

In Figure 9 we present the posterior for log PSD (top) and
the distribution of Hellinger distances (bottom) at 27.7 nHz.
While the posterior (blue histogram) and prior (black
histogram) are very similar, we note that there is a second
peak in the posterior that extends beyond the prior. This
comes from the fact that for some simulations the excess
power at this frequency can be recovered, leading to a prior
that is peaked at higher values, but for others it cannot. We

10

also show the distribution of Hellinger distances compared to
the null hypothesis at 27.7nHz. For the holodeck
simulations, the Hellinger distances range from 0.022 to
0.457 (90% confidence interval), while for the power-law
PSD simulations, the Hellinger distances range from 0.027 to
0.104 (90% confidence interval). For 24% of the holodeck
simulations, the Hellinger distance is outside of the 90%
confidence interval for the power-law simulations, indicating
that the deviation at 27.7 nHz from a power law is significant.
The holodeck simulations show additional features in the
PSD at higher frequencies; however, the distributions of
Hellinger distances at these frequencies are very similar to
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Figure 9. The recovered log PSD (top) and the distribution of Hellinger
distances (bottom) comparing all 50 of the holodeck simulations in blue to the
pure power-law simulations (null hypothesis) in red for the 14th frequency
component (27.7 nHz), where a major deviation from the power law occurs.
The astrophysically realistic simulations have a 90% confidence interval
between 0.022 and 0.457, whereas the null distribution has a 90% confidence
interval between 0.027 and 0.104. The bottom panel shows the log-PSD
posteriors (blue), and the black curve indicates the convolution of the log Agy,
Yew Posteriors and the inverse gamma prior. At the this frequency component,
the posterior tends to search over the entire prior space, but we see a deviation
for some simulations, which are able to detect the presence of excess noise at
27.7 nHz. Simulations with HD < 0.1 are the closest to the prior, whereas
simulations with HD > 0.1 display the bimodality of the posterior in the
bottom panel.

the distribution of Hellinger distances for the power-law
simulations, indicating that these deviations are not
significant.
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4. Conclusions

PTA experiments around the world have published the first
evidence of a nanohertz GWB, which is broadly consistent
with that predicted to be produced by a cosmological
population of SMBHBs. By measuring the GWB PSD, we
can learn about the astrophysical or cosmological sources
producing it. In this paper, we used simulated PTA data to
study how a f-process PSD can recover the GWB. We
considered three types of simulations: (1) a pure power-law
PSD, (2) a power-law PSD with excess power at a single
frequency component (which could be the result of the
background or an unmodeled red noise process), and (3) an
astrophysically motivated background from a simulated
population of SMBHBs. We have shown that the #-process
is able to accurately recover the PSD for all three simulation
types. In addition, the t-process model provides a way to
determine the significance of any deviations from a simple
power-law PSD.

We show that in all three different simulation types, the #-
process is accurately able to reconstruct the PSD of the GWB.
In simulation set (1), it was able to recover the PSD but has
some spread in its recovery due to the 30 extra parameters
(oy;), which complicate the model. In simulation set (2), the #-
process was able to recover not only the amplitude and
spectral index but the excess of power at the third frequency
component as well. In simulation set (3), the #-process was
able to recover the PSD accurately at lower frequencies and
was even able to detect deviations present at the higher-
frequency spectrum in a few realizations. In contrast, the
standard power-law model was only able to accurately recover
the PSD for all frequencies in simulation set (1). In simulation
set (2), it overestimated the PSD across all frequencies and
was not able to measure some of the subtleties at the higher
frequencies in simulation set (3). Across all three simulation
types, the free spectral model was able to accurately recover
the PSD at lower frequencies, but due to its model-agnostic
nature, it was contaminated by the white noise floor, which
significantly reduces the information gained at higher
frequencies (as is seen in Figures 1, 4, and 7). Furthermore,
we were able to measure the significance of deviations
measured from the power law by computing the Hellinger
distances and comparing to the distribution of Hellinger
distances for the power-law simulations.

While the observed nanohertz GWB is consistent with
predictions for a GWB generated by SMBHBs, there are
many other possible cosmological sources. An important
difference between a GWB produced by SMBHBs and
cosmological sources is that a GWB produced by SMBHBs
is being generated by a discrete number of individual sources:
this causes some degree of anisotropy in the GWB (G. Agazie
et al. 2023c) as well as affecting the GWB PSD. In this paper,
we have shown how we can use the #-process model to
reconstruct the GWB PSD and detect deviations from a power
law. With longer timing baselines and better telescopes, PTA
sensitivity will improve, allowing for more robust spectral
characterization of the common process spectrum. If or when
deviations from a power-law PSD arise, the t-process model
will play a critical role in assessing their significance and
allow the community to ultimately assess whether the GWB
source is astrophysical or cosmological.
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Appendix
Injected Parameters

We present the injected values for the intrinsic red noise
parameters (Table 1) and the injected hyperparameters for the
astrophysical simulation (Table 2).

Table 1
The Injected Intrinsic Red Noise Parameters (Spectral Index and Log
Amplitude) for All the Simulations, as well as the Common Process Power
Law that was Used in the First Two Types of Simulations

Sardesai, Simon, & Vigeland

Table 1
(Continued)

Pulsar y log;, A Pulsar y log;, A

J1600—-3053  2.806 —16.507 J2214+43000 3.094 —16.913
J1614-2230 3.292 —17.095 1222942643 3344  —17.017
J1630+3734 3386 —16.285 1223440611 3325 -—16.138
J1640+-2224 3265 —17.170 1223440944 3.269 —16.826
J1643—-1224  1.103  —12.302 12302+4442 3349 —-16910
J1705—-1903  0.946 —11.929 J2317+1439 3.106 —17.075
J171340747 2469 —15.950 1232242057 3240 —17.014
J1719—-1438 3380 —16.506 GWB (sims.1&2) 4.333 —14.699

Table 2
The Astrophysical Parameters Injected Into the PTA for the Holodeck
Simulations

Pulsar v log;, A Pulsar v log; A Injected
B1855+09  3.718 —14.752 J1730—2304 3.007 —15.696 Parameters Value Prior
B1937421 4002 —13563  J1738+0333 3589 —16.711 Hard = 3.133 Gyr U©.1, 11)
Hard ry 1000 pc
B1953+29 2283 —12918 J174141351 3.021  —16.609 Hard repgr 100 pe
Hard ~inner —0.467 U(-1.5,0.5)
J0023+0923  3.095 —16.546 J1744—1134 3.090 —16.546
Hard Youtter 25
J0030+0451 3.834 —16.228 J1745+1017 2370 —11.838 GSMF logg 0, 140 M_2.56. 04)
J0340+4130 3.300 —16.929 J1747-4036 2712 —12.612 GSMF ¢, 0.6
040643039  3.508 16.359 51-28 3.394 16.6 GSME logjo Monuro 1370 M09, 04
J0406+ . —16. J1751-2857 3. —16.617 GSMF Moy, o011
J0437—4715  3.225 —16.721 J1802—2124 1.826 —12.284 GSMF alpha0 —1.21
GSMF alphaz —0.03
J0509+0856 3.370 —15.807 J1811—2405 3341 —16.867
GPF frac norm all q 0.033
J0557+1551 3325 —16.268 718320836 3286  —16.902 GPF m,, 0
J0605+43757 3411  —16251  JI843—1113 3251 —16.553 GPF ¢, 0
GPF 3 1
J0610-2100 3386 —12.815 J1853+1303 1.890 —14.393 GPF max frac 1
J0613—-0200 2.782 —15.311 119030327 1.603  —12.191 GMT norm 1.514 0.2, 5)
12 2 1 1 44 3282 —17.22 GMT m, 0
J0636+5128 3.258 —16.860 J1909—37 3282 —17.226 GMT q. 1
J0645+5158 1.872 —14.376 J1910+1256 3112 —16.736 GMT z4 -5
J0709+0458 3.616 —15.617 J1911+1347 3.107 —16.757 MMB log,, mamp 8.498 N6, .2)
MMB plaw 1.1
J0740+6620 3.232  —17.087 J1918—0642 3.137 —16.886 MMB scatter dex 0292 N(0.32. 0.15)
J0931-1902 3243 —16.879 7192342515 3.247  —17.103 Soulge 0.615
J1012+5307  0.627  —12.641 119440907 2550 —14.442 Note. The parameters are taken directly from the NANOGrav 15 yr
J1012—4235 3513 —15.997 7194613417 1.046 —12.462 constraints paper or are randomly sampled from astrophysical priors (if
_ ; i ) given) given in the same paper. The MMBulge relation is from Kormendy &
J1022+1001  2.694 —15.176 J2010—1323 3134 —16.934 Ho (J. Kormendy & L. C. Ho 2013).
J1024—0719  3.197 —16.755 J2017-+0603 3269 —17.160
J1125+7819  3.193 —16.863 J2033+1734 3371 —16.801 ORCID iDs
J1312+0051  3.402 —16.603 J2043+1711 3.238  —17.166 Shashwat C. Sardesai © https: //orcid.org /0009-0006-
J1453+1902 3360 —16.773 J2124-3358 3.444  —16.565 5476-3603
Joseph Simon @ https: //orcid.org/0000-0003-1407-6607
J1455-3330 3.231 —16.936 J2145-0750 0.781 —12.930
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