
Astronomy
&Astrophysics

A&A, 692, A170 (2024)
https://doi.org/10.1051/0004-6361/202450740
© The Authors 2024

Pulsar timing methods for evaluating dispersion measure
time series

F. Iraci1,2,ω , A. Chalumeau3,4 , C. Tiburzi1 , J. P. W. Verbiest5 , A. Possenti1 , G. M. Shaifullah3,4 ,
S. C. Susarla6 , M. A. Krishnakumar7,8,9 , M. T. Lam10,11,12 , H. T. Cromartie 13,

M. Kerr14 , and Jean-Mathias Grießmeier15,16

1 INAF – Osservatorio Astronomico di Cagliari, via della Scienza 5, 09047 Selargius (CA), Italy
2 Dipartimento di Fisica, Università di Cagliari, Cittadella Universitaria, 09042 Monserrato (CA), Italy
3 Dipartimento di Fisica “G. Occhialini”, Università degli Studi di Milano-Bicocca, Piazza della Scienza 3, 20126 Milano, Italy
4 INFN, Sezione di Milano-Bicocca, Piazza della Scienza 3, 20126 Milano, Italy
5 Florida Space Institute, University of Central Florida, 12354 Research Parkway, Orlando, FL 32826, USA
6 Physics, School of Natural Sciences, Ollscoil na Gaillimhe – University of Galway, University Road, Galway, H91 TK33, Ireland
7 Max-Planck-Institut für Radioastronomie, Auf dem Hügel 69, 53121 Bonn, Germany
8 Fakultät für Physik, Universität Bielefeld, Postfach 100131, 33501 Bielefeld, Germany
9 National Centre for Radio Astrophysics, Pune University Campus, Pune 411007, India

10 SETI Institute, 339 N Bernardo Ave Suite 200, Mountain View, CA 94043, USA
11 School of Physics and Astronomy, Rochester Institute of Technology, Rochester, NY 14623, USA
12 Laboratory for Multiwavelength Astrophysics, Rochester Institute of Technology, Rochester, NY 14623, USA
13 National Research Council Postdoctoral Associate, National Academy of Sciences, Washington, DC 20001, USA resident at Naval

Research Laboratory, Washington, DC 20375, USA
14 Space Science Division, Naval Research Laboratory, Washington, DC 20375–5352, USA
15 LPC2E – Université d’Orléans / CNRS, 45071 Orléans cedex 2, France
16 Observatoire Radioastronomique de Nançay (ORN), Observatoire de Paris, Université PSL, Univ Orléans, CNRS, 18330 Nançay,

France

Received 16 May 2024 / Accepted 19 October 2024

ABSTRACT

Context. Radio pulsars can be used for many studies, including the investigation of the ionized interstellar medium and the solar wind
via their dispersive effects. These phenomena affect the high-precision timing of pulsars and are among the main sources of noise in
experiments searching for low-frequency gravitational waves in pulsar data.
Aims. In this paper, we compare the functionality and reliability of three commonly used schemes to measure temporal variations in
interstellar propagation effects in pulsar timing data.
Methods. We carried out extensive simulations at low observing frequencies (100–200 MHz) by injecting long-term correlated noise
processes with power-law spectra and white noise, to evaluate the robustness, accuracy, and precision of the following three mitigation
methods: epoch-wise (EW) measurements of interstellar dispersion; the DMX method of simultaneous, piece-wise fits to interstellar
dispersion; and DM GP, which models dispersion variations through Gaussian processes using a Bayesian analysis method. We then
evaluated how reliably the input signals were reconstructed and how the various methods reacted to the presence of achromatic long-
period noise.
Results. All the methods perform well, provided the achromatic long-period noise is modeled for DMX and DM GP. The most precise
method is DM GP, followed by DMX and EW, while the most accurate is EW, followed by DMX and DM GP. We also tested different
scenarios including simulations of L-band times of arrival and realistic DM injection, with no significant variation in the obtained
results.
Conclusions. Given the nature of our simulations and our scope, we deem that EW is the most reliable method to study the Galactic
ionized media. Follow-up works should be conducted to confirm this result via more realistic simulations. We note that DM GP and
DMX seem to be the best-performing techniques in removing long-term correlated noise, and hence for gravitational wave studies.
However, full simulations of pulsar timing array experiments are needed to support this interpretation.

Key words. methods: data analysis – pulsars: general

1. Introduction

Pulsars are highly magnetized, rapidly rotating neutron stars
that emit beams of radiation, mainly in the radio band, from
their magnetic poles. Therefore, pulsars are visible as periodic
sources to terrestrial observers. The extremely regular rotation

ω Corresponding author; francesco.iraci@inaf.it

of a pulsar allows one to predict the time of arrival (ToA) of its
radiation at a radio observatory and to extract from these data
information about the pulsar itself, its environment, and perturb-
ing effects through the pulsar timing procedure (e.g., Lorimer &
Kramer 2005). The model that contains the parameters neces-
sary to describe the signal propagation, usually referred to as
the timing model, is used to calculate expected ToAs, which
are then compared with observed ones to create and analyze the
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timing residuals (the difference between the observed ToAs and
the ones predicted by the timing model). The parameters in the
timing model are iteratively fit to minimize the timing residuals
and to achieve a more and more precise description of the ana-
lyzed pulsars. The shorter the spin period and the brighter the
pulsar, the smaller its weighted root-mean-square (RMS) timing
residuals and the more precisely determined the timing-model
parameters. The most rapidly rotating pulsars are known as “mil-
lisecond pulsars” (Backer et al. 1982) because they have spin
periods on the order of milliseconds. The technique of pulsar
timing opens up the study not only of the physical characteris-
tics of pulsars, but also other effects, such as propagation effects
through ionized media (Rickett 1990; Foster & Cordes 1990), the
most conspicuous of which is dispersion.

Dispersion is a phenomenon caused by the dependency of a
medium’s refractive index, µ, on the frequency, ε, of the prop-
agating radiation and on its own free-electron density, ne. In
particular:

µ =

√(
1 → fp
ε

)
, (1)

with fp, the plasma frequency, defined as

fp =

√
e2ne

ϑme
, (2)

where e and me are, respectively, the electron electric charge and
mass. The net effect of these two dependencies is an absolute
delay in the arrival time of the radiation bundle after propagat-
ing through an ionized medium (such as the interstellar medium,
which hosts an ionized component, or the solar wind), and a rel-
ative delay among the radiation at different frequencies within
that bundle. In particular, we can write the delay, ∆t, for radiation
with a frequency ε ↑ fp as:

∆t = DDM
ε2
, (3)

where D is the dispersion constant (Lorimer & Kramer 2005),
and the DM parameter is the dispersion measure, defined as

DM =
∫

LoS
nedl, (4)

where the integral is performed along the line of sight (LoS) and
the units are pc cm→3. The dispersion measure (DM) of a pulsar
is one of the parameters included in its timing model.

Equation (3) can be rewritten following (Verbiest &
Shaifullah 2018)

∆t = 4.15 ↓ 103DM
(

2B
ε2c

)
, (5)

where B is the fractional bandwidth, (ε2 → ε1)/εc, and εc is the
central frequency of the observing band.

From these equations, it is easy to infer that (i) the DM is a
direct measure of the free-electron content along a given LoS and
(ii) large delays between radiation emitted at different frequen-
cies of the same bundle are shown over low central observing
frequencies and/or large fractional bandwidths. We note that, in
practice, an absolute value of DM can never be achieved due
to the evolution of pulsar profiles with the observing frequency

(e.g., Hassall et al. 2012). To complicate matters further, pulsars
are high-velocity objects, following the kick that they receive
during the supernova event (Hobbs et al. 2005). This implies
that they move rapidly across the sky, and hence the LoS varies
significantly as well. In doing so, different parts of the ionized
interstellar medium (IISM) are crossed, with different associ-
ated values for ne, and hence the value of DM changes with time
(Lam et al. 2016). This is why simple polynomial models of DM
time evolution are often included in the timing model. Neverthe-
less, the turbulence in the IISM cannot be correctly described via
derivatives only, and hence there are a large number of studies in
the literature reporting on the time series of DM variations and
their connection with the physics of plasma in the Galaxy.

Recently, Donner et al. (2020) reported the DM variations for
36 millisecond pulsars observed for about 7 years at low radio
frequency (100–200 MHz) with the LOFAR (LOw Frequency
ARray; see van Haarlem et al. 2013) interferometer, achieving a
very low median DM uncertainty on the order of 10→5 pc/cm3

for a significant fraction of the sample. Besides, DM varia-
tions were detected when the median DM uncertainty was lower
than a few in 10→4 pc/cm3. Krishnakumar et al. (2021) have
presented the 1-year long DM time series of four millisecond
pulsars observed with uGMRT using BAND3 (400–500 MHz)
and BAND5 (1360–1460 MHz). They show that the DM pre-
cision improves up to 10→4 pc/cm3 when combining data from
both of the bands. Agazie et al. (2023) and Jones et al. (2017)
reported on the DM variations of up to 68 millisecond pulsars
with mainly the Green Bank (722–1885 MHz) and the Arecibo
(302–2400 MHz) radio telescopes, highlighting their monotonic
trends and the presence of annual IISM signatures for almost 20
of them. Lastly, Keith et al. (2024) calculated the DM time series
for almost 600 long-period pulsars observed with the MeerKAT
telescope in the L band (896–1671 MHz) and a large fractional
bandwidth, reporting a broad linear correlation between the DM
and its first derivative.

While DM variations allow for the investigation of Galac-
tic plasma, when they are unaccounted for they may become
a nuisance in other experiments, such as pulsar timing arrays
(PTAs; Tiburzi 2018; Verbiest et al. 2021; Taylor 2021) that
search for low-frequency gravitational waves (GWs; Maggiore
2018) in pulsar data. In particular, GWs are expected to cause
long-term, space- and time-correlated perturbations in pulsar
timing residuals, usually characterized by a steep, red power
spectrum (Phinney 2001). The PTAs search for these effects by
cross-correlating the timing residuals of pairs of selected pul-
sars, to identify the predicted signature following the so-called
Hellings and Downs curve in the case of an isotropic GW back-
ground (Hellings & Downs 1983). One of the most challenging
parts of PTA analyses is the characterization of signals that are
not GWs but that also induce long-term, time-correlated struc-
tures in the timing residuals (see, e.g., Verbiest & Shaifullah
2018); in other words, that are sources of red noise (RN). The
red-noise processes with the highest amplitudes have two main
contributions. The first is often called timing noise, or spin noise,
and refers to rotational instabilities of the targeted pulsar (Hobbs
et al. 2004). The second is the aforementioned time variabil-
ity in the amount of interstellar dispersion affecting the pulsar
radiation (hereafter referred to as DM noise). The PTAs have
historically been focused on high-frequency bands (↔1→3 GHz),
small fractional bandwidths, and/or asynchronous timing obser-
vations at different frequency bands (see Lam et al. 2015, where
they demonstrated that multi-frequency asynchronous observa-
tions will never reduce the timing error due to DM noise below
10 ns). Therefore, while the DM noise does indeed have an
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impact on the GW search, PTA data have a poor sensitivity
toward it (see also Fig. 6 in Verbiest & Shaifullah 2018). This is
why PTAs are starting to use observing campaigns obtained with
low-frequency, large-bandwidth facilities such as LOFAR and
NenuFAR (the New Extension in Nançay Upgrading LOFAR;
see Zarka et al. 2012; Donner et al. 2020; Tiburzi et al. 2021;
Bondonneau et al. 2021).

In this paper, we aim to assess the performances in terms
of precision and accuracy of three methods of calculating DM
variations that have been used to study Galactic plasma or to
model the DM noise impact in PTA data, based on a compre-
hensive series of simulations. In Sect. 2, we describe these three
approaches and the simulations. In Sect. 3, we report the simu-
lation results, which are discussed in Sect. 4. Finally, in Sect. 5
we draw our conclusions.

We do not assess the impact of GWs on the DM recov-
ery methods; nor do we check the impact of these schemes on
the timing model parameters. These aspects will be tested in
future works.

We stress that there are also other effects that might affect
pulsar timing at low radio frequencies. With LOFAR obser-
vations, the ToAs are generated using a frequency-resolved
template (see, e.g., Donner et al. 2020; Tiburzi et al. 2021),
and hence interstellar scintillation does not affect the timing
solution. Pulse broadening and scattering variations are two
other features that might be present in low-frequency observa-
tions. In this paper, we do not take into account these effects
and we simulate a more commonly occurring scenario, without
frequency-dependent contributions other than DM variations.

2. Simulations and methods for the analysis

2.1. Simulations

To compare the effectiveness of the various PTA methods of cal-
culating and accounting for DM variations, we evaluated their
application to simulated data, which were produced using the
libstempo software package (Vallisneri 2020).

2.1.1. Simulations with libstempo

libstempo is a Python wrapper of the TEMPO2 software pack-
age (Edwards et al. 2006) that allows the use of all of the TEMPO2
functionalities within a Python-based environment. In particular,
we exploited the libstempo.toasim.fake_pulsar library to
simulate 10 narrow-band ToAs per observing epoch in the most
commonly used LOFAR frequency band for pulsar observations,
between 100 and 200 MHz, with 5 µs fixed ToA template-fitting
error bars. The simulated observing epochs have a regular fort-
nightly cadence and cover a time span of Tspan = 3000 days.
To build simulations as close as possible to the typical PTA
dataset, we injected stochastic noise in the form of white noise
(WN), achromatic (i.e., radio-frequency-independent) RN, and
DM variations.

The WN reflects instrumental errors and instrumental sen-
sitivity, as well as intrinsic pulse jitter. We modeled it by
considering two parameters: EFAC, which is a multiplicative
factor that takes into account ToA measurement errors; and
EQUAD, which is added in quadrature and accounts for any
other WN that may be given by profile variations and possible
systematic errors. The final ToA uncertainty is then

ϖToA =

√
(EFAC · ϖtemp)2 + EQUAD2, (6)

where ϖtemp is the template-fitting error, and it was given as an
input to our simulations1.

Achromatic RN, and DM variations, are both time-correlated
noise processes that are modeled with a Fourier basis of Nf coef-
ficients and a power-law power spectrum (EPTA Collaboration
& InPTA Collaboration 2023). We distinguished between chro-
matic and achromatic noise processes using a chromatic index,
ϱ, equal, respectively, to 2 and 0. The time delay induced on a
ToA with frequency, ε, at an epoch, t, is then:

tdelay(t) =
N f∑

i=1

√
PiFi

(
ε

εref

)→ϱ
. (7)

Pi is the power-law power spectral density with hyperparameters
Â, the normalized amplitude at the frequency of 1 yr→1, and ς,
the spectral index. It is written as follows:

Pi =
Â2

n

12ϑ2
yr3

Tspan

(
fi

1yr→1

)→ςn

, (8)

with n = RN or DM, and we refer to the amplitude as An =
log10(Ân). F is the matrix of the cosine functions at each Fourier
frequency, fi = i/Nf , and time, t:

Fi(t) =
↗

2 cos (2ϑ fit + φ) , (9)

with φ being a random phase drawn from U(0, 2ϑ). The radio
frequency is ε and the reference frequency, εre f , was set to
1.4 GHz. The time series of the injected noise signal is then a
sum over a finite number, Nf , of cosine functions (see the second
and third rows of Fig. 1 for an example). For both RN and DM
noise, we considered Nf = 30 components. This corresponds to a
frequency of about 1.15↓ 10→7 Hz, which is close to the Nyquist
one that, given our 14 days of cadence, is at around 2 ↓ 10→7 Hz.

2.1.2. Simulation parameters

Table 1 shows all the parameters adopted for our simulations,
withϖtemp, EFAC, and EQUAD being fixed, respectively, to 5 µs,
1.2, and 2 µs for all the cases. Concerning the noise spectral
indices, we first assumed a realistic spectral index for DM varia-
tions from the Kolmogorov turbulence theory (Armstrong et al.
1995) (ςDM = 8/3) and a steeper one for the RN (ςRN = 3.7).
Secondly, we considered a different pair of spectral indices:
ςDM = 3.2 and ςRN = 2.5. For each pair of spectral indices, we
have studied three fixed values of amplitude of the power spec-
trum for both of the noise processes, producing a total of nine
datasets per pair of spectral indices. ARN and ADM have been cho-
sen within the range of values reported by EPTA Collaboration
& InPTA Collaboration (2023).

For each specific set of ARN and ADM and pair of spectral
indices, we generated a total of 100 timing residuals realiza-
tions. In each realization, the seed for the injected RN was kept
constant to maintain the same RN signature across all timing
residuals, while the DM noise seed varies with each iteration,
resulting in distinct DM time series for all 100 realizations.

Figure 1 clarifies our simulation process by reporting three
different scenarios, each of them with a different ADM that
increases going from left to right. The first row reports the over-
all timing residuals; the second row shows the delay due to the
1 We have used the same convention as EPTA Collaboration & InPTA
Collaboration (2023) for ϖToA; however, some PTA collaborations use
the TEMPO2 definition (see Verbiest et al. 2016).

A170, page 3 of 15



Iraci, F., et al.: A&A, 692, A170 (2024)

Fig. 1. Simulations carried out with injected values of ςRN , ARN , and ςDM of, respectively, 3.7, →13.3, and 8/3. The columns are associated with
increasing values of ADM , left to right (as is indicated at the bottom). First row: 1 out of the 100 simulated timing residuals with a color map
associated with the observing frequency (as is reported in the top right corner). Second row: injected RN signal. Third row: 1 out of the 100
different injections of the DM time series. On the right y axis, we report the corresponding time delay at the reference frequency of 150 MHz.
Fourth row: Power spectra of the injected noise processes; WN (black), RN (red), and DM variations at LOFAR central frequency of the band of
↔150 MHz (light blue). The dashed vertical gray lines are the 30 Fourier frequency bins.

Table 1. Input noise parameter values adopted for our simulations.

EFAC = 1.2 EQUAD = 2 · 10→6 s
(ςRN = 3.7; ςDM = 8/3) or (ςRN = 2.5; ςDM = 3.2)

ARN = –12.3
ADM= –12.6

ARN = –12.3
ADM= –13.6

ARN = –12.3
ADM= –14.6

ARN = –13.3
ADM= –12.6

ARN = –13.3
ADM= –13.6

ARN = –13.3
ADM= –14.6

ARN = –14.3
ADM= –12.6

ARN = –14.3
ADM= –13.6

ARN = –14.3
ADM= –14.6

Notes. The WN parameters EFAC and EQUAD were fixed in all the
realisations, respectively, to 1.2 and 2 µs and ϖtemp = 5 µs. We used
two different pairs of spectral indices: the first and more realistic with a
steeper RN (ςRN = 3.7, ςDM = 8/3); and the second and opposite case,
which was produced with a flatter RN spectrum (ςRN = 2.5, ςDM = 3.2).
For each pair, we used nine different combinations of (ARN , ADM), as is
reported in each cell.

injected RN; and the third row illustrates the DM variations
introduced in our dataset. The last row represents the power spec-
trum of the noise processes involved in the three scenarios. We
note that the first and third rows of each column each report only
1 of the 100 realizations that have been created for that set of
parameters.

2.2. Dispersion measure recovery methods

Each generated series of timing residuals was analyzed with the
following methods.

2.2.1. Epoch-wise dispersion measure

The epoch-wise (EW) DM (EW, e.g. Donner et al. 2019; Tiburzi
et al. 2019) models a DM value and a constant offset, C, via
TEMPO2 over the parsed ToAs for each simulated observing
epoch. In particular, the fit functional form is

∆t =
DM
ε2
+C, (10)

where the parameters are the dispersion measure, DM, and C, a
constant offset that is supposed to absorb any unaccounted-for
achromatic process. The observing frequency, ε, corresponds in
our simulations to an array of 10 values in the LOFAR frequency
range 110–190 MHz and ∆t is the time delay contained in the
measured ToAs. This EW analysis returns a pair of DMs and its
corresponding 1ϖ uncertainty given by the fit for each observa-
tion. The advantage of EW is that it simultaneously accounts for
the DM and RN effects on the set of parsed ToAs that corre-
sponds to the ToA set for a single observing epoch. Hence, we
did not need to separately model the RN.
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Table 2. Mean uncertainty on the DM measurements for each method and pair of (ARN , ADM) values in the case of ςRN = 3.7, ςDM = 8/3.

↘ϖDM≃ · 10→5 (pc cm→3)

ARN EW DMX DM GP DMX no RN DM GP no RN ADM

→12.6 5.0 1.3 1.0 0.8 0.6 →12.3
→13.6 5.0 1.1 0.7 0.8 0.5 →12.3
→14.6 5.0 1.0 0.6 0.8 0.5 →12.3

→12.6 5.0 1.3 1.0 0.8 0.6 →13.3
→13.6 5.0 1.1 0.6 0.8 0.5 →13.3
→14.6 5.0 1.0 0.7 0.8 0.5 →13.3

→12.6 5.0 1.3 0.8 0.8 0.4 →14.3
→13.6 5.0 1.1 0.5 0.8 0.4 →14.3
→14.6 5.0 1.1 0.4 0.8 0.4 →14.3

2.2.2. DMX

DMX is a method developed by the NANOGrav collaboration
(e.g., Agazie et al. 2023, Sect. 4.1) that performs a piece-wise
constant fit of a DM value across an a priori specified temporal
window. In our simulations, each window is such that it contains
the 10 ToAs of a single observing epoch so that, at the end of the
procedure, we obtain as many DMX parameters as the number of
observing epochs. In this way, DMX is extremely similar to EW,
with two important differences: it uses the PINT software (Luo
et al. 2021) suite to perform the fit, and it does not model the
constant offset, C. This means that fitting for the DMX parame-
ters does not account for any RN process in the data and, in order
to do so, the procedure to calculate an unbiased DM time series
is divided into three steps: a first fit for the DMX parameters; an
RN modeling round (while correcting for the initial DMX mea-
sures) with the enterprise software suite (Ellis et al. 2020);
then a second DMX fit. In the end, DMX will also provide a DM
value, with the corresponding uncertainty, for each observation.

2.2.3. DM GP

The EPTA and PPTA collaborations use a fully Bayesian-based
noise-analysis approach carried out with the enterprise soft-
ware suite, able to describe the WN with the EFAC and EQUAD
parameters (described in Sect. 2.1.1), and the achromatic RN
and DM variations, which are modeled as stationary Gaussian
processes (GPs; see details in Appendix A and van Haasteren
& Vallisneri 2014), while the Bayesian inference is performed
via the Markov chain Monte Carlo sampler PTMCMCSampler
(Ellis & Van Haasteren 2017). In this approach, the time delay
induced on a ToA with radio frequency, ε, at an epoch, t, is
written as

↼t(t) =
N f∑

i=1

[
ai sin(2ϑt fi) + bi cos(2ϑt fi)

]
(
ε

εref

)→ϱ
, (11)

where εre f , ϱ, and fi are the same as in Eq. (7). The number of
frequency components we used was the same as for the injec-
tion: Nf = 30 for both RN and DM. The weights, ai and bi,
followed a multivariate Gaussian distribution with zero mean
and a covariance matrix, Σ jk, that in the frequency domain is
given by

Σ jk = PL( f j)
↼ jk

Tspan
, (12)

with j, k = 1...Nf , the Kronecker delta, ↼ jk, and the power
spectrum, PL:

PL( f ) =
A2 yr3

12ϑ2

(
f

1yr→1

)→ς
. (13)

By marginalizing over the ai and bi parameters, this analysis
yields the posterior distributions for EFAC and EQUAD, and
for the hyperparameters, A and ς, of RN and DM power spec-
tra. The posteriors describing the DM power spectrum allow
one to reconstruct the DM noise via the LaForge software suite
(Hazboun 2020), as a sum over a set of Nf Fourier components,
as is described in Appendix A.

In particular, we gave as input to LaForge a large number,
N, of random posterior samples of the noise parameters, and
we obtained as output N different time-domain realizations of
the time delays corresponding to the same noise process. These
delays were then converted into DM values by inverting Eq. (3),
and hence yielded a set of N DM time series (i.e., a DM proba-
bility distribution for each epoch). In order to compare the DM
GP output with the results of the other two methods, we com-
puted the mean DM and standard deviation, ϖDM , at each epoch,
and hence obtained one reference value per observation.

3. Results

We present here the results of the analysis with each method. A
total of three main methods have been considered (EW, DMX,
and DM GP), along with two additional ones in which the RN
is not modeled (DMX no RN and DM GP no RN)2. In Fig. 2
are shown the DM time series recovered with the three main
methods on the same noise realization, accompanied by the cor-
responding DM residuals obtained by subtracting the recovered
and injected DMs. An example of the DM residuals that can
be obtained by combining all the 100 realizations generated for
each simulation is shown in Fig. 3, with the bottom panel rep-
resenting the RN signal injected in all realizations. In Tables 2
and 3, we report the mean error on the DM estimates for each
method and for each set of parameters. Figures 4 and 5 report
DM residual histograms summarizing the results obtained for all
the simulations per pair of spectral indices. In particular, the val-
ues reported in the histograms were obtained by normalizing the
DM residuals by their error bars, in order to have insights about
2 RN modeling is an inherent part of EW, so no separate analysis is
possible.
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Fig. 2. DM time series and DM residuals recovered by EW (blue, first and second panels), DMX (red, third and fourth panels), and DM GP (green,
fifth and sixth panels). The black line is the injected DM time series. In the last two panels, we overplot, respectively, the DM time series and
the DM residuals for the three methods. The DM and RN injected parameters for this realization are: ςRN = 3.7, ςDM = 8/3, ARN = →12.6, and
ADM = →13.3.

their Gaussianity by fitting them via a Gaussian function. The ↽2

of these fits are given in Tables 4 and 5.
We also present our results on the achromatic noise recovery

in Appendix B.

4. Discussion

4.1. Absorption of red noise in the dispersion measure
reconstruction

The presence of both RN and DM noise in our initial dataset
allows us to compare the ability of each method to correctly iden-
tify the chromatic noise processes when achromatic signals are

also present. The DM residuals reported in the top panel of Fig. 3
show that none of the methods that model RN display any evi-
dent structure. On the other hand, DM GP no RN and DMX
no RN show evident corruptions in the DM recovery, whose
structure matches the injected RN signal (bottom panel). The
same conclusion can be drawn by looking at the first column
of Figs. 4 and 5, in which the distributions of the normalized
DM residuals calculated for those two methods are not symmet-
ric and not centered around zero. This indicates that modeling
by DM GP and DMX is not inherently restricted to model-
ing frequency-dependent signals, but is susceptible to absorbing
frequency-independent signals as well, especially if those are not
being independently modeled in the analysis. This is true as long
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Fig. 3. Top panel: DM residuals of the 100 realizations for the five considered methods – EW(blue), DMX no RN (magenta), DM GP no RN
(orange), DMX (red), and DM GP (green) – for the following set of input parameters: ςRN = 3.7, ςDM = 8/3, ARN = →12.6, and ADM = →13.3.
Bottom panel: RN signal injected (the same for all of the 100 realizations; see Sect. 2).

Table 3. Mean uncertainty on the DM measurements for each method and pair of (ARN , ADM) in the case of ςRN = 2.5, ςDM = 3.2.

↘ϖDM≃ · 10→5 (pc cm→3)

ARN EW DMX DM GP DMX no RN DM GP no RN ADM

→12.6 5.0 1.3 0.9 0.8 0.6 –12.3
→13.6 5.0 1.1 0.6 0.8 0.5 –12.3
→14.6 5.0 1.0 0.6 0.8 0.5 –12.3

→12.6 5.0 1.3 0.9 0.8 0.5 –13.3
→13.6 5.0 1.0 0.6 0.8 0.5 –13.3
→14.6 5.0 1.0 0.6 0.8 0.5 –13.3

→12.6 5.0 1.3 0.7 0.8 0.4 –14.3
→13.6 5.0 1.0 0.4 0.8 0.4 –14.3
→14.6 5.0 1.0 0.4 0.8 0.4 –14.3

as the RN signal is sufficiently “loud” to rise above the WN level.
When this condition is not satisfied, or when the power spectrum
of the RN exceeds the WN power by only a few frequency bins,
then the DM recovery is not affected as much by the absence of
RN modeling. This can easily be seen in the second and third
columns of Figs. 4 and 5, where the distributions are very simi-
lar to each other because of the low amplitude of the RN (→13.3
and →14.3, respectively).

4.2. Comparison of the methods based on precision and
accuracy

We have based our comparison of the methods on both the
yielded precision and accuracy. We define precision as the
uncertainty on the measured DM. The method that gives mea-
surements with the lowest uncertainties, and that hence is the
most precise, is DM GP, followed by DMX and then EW. This
can be inferred from Tables 2 and 3, where we report the mean
uncertainty on the DM recoveries for each method and set of
parameters. The mean uncertainties of DM GP are around one
order of magnitude smaller than the EW ones, while DMX sits

in the middle of the two. When the noise model lacks the RN
component (DMX no RN, DM GP no RN), and hence we fit
the residuals only with the DM and WN, the mean DM uncer-
tainty is systematically lower than for the full noise model that
includes WN, RN, and DM. This is expected because without
fitting for the RN we are reducing the number of parameters in
the model. The behavior of the DM residuals when we consider
all the 100 simulated realization together is shown in Fig. 3 for
each of the five methods. The least precise method, EW, is also
associated with the largest spread in the residuals, while DM GP
(with RN modeled) produces a much smaller deviation of the
residuals around zero.

While precision informs about the uncertainty level, it does
not report how far the data points are from the true value. We
define accuracy as the level of agreement between a test result
and the true value3. The accuracy test was conducted by studying
the histograms in Figs. 4 and 5. These were obtained by normal-
izing the DM residuals by their uncertainties, and hence offering

3 ISO 5725-1:2023 in International Organization for Standardization
(https://www.iso.org/home.html).
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Fig. 4. Histograms of DM residuals normalized by their uncertainty for EW (blue), DMX no RN (magenta), DM GP no RN (orange), DMX (red),
and DM GP (green). ARN decreases going from left to right (as is indicated at the bottom of the columns); ADM increases going upward (as is
indicated on the right of each row). The spectral indices are ςRN = 3.7 and ςDM = 8/3.

Fig. 5. As in Fig. 4, but the spectral indices are ςRN = 2.5 and ςDM = 3.2.
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Table 4. Reduced ↽2 of a Gaussian fit to the histograms reported in Fig. 4. ςRN = 3.7, ςDM = 8/3.

↽2
red

ARN EW DMX DM GP DMX no RN DM GP no RN ADM

→12.6 0.95 1.37 1.53 1108.49 2691.50 →12.3
→13.6 0.91 1.04 1.73 1.34 18.75 →12.3
→14.6 0.91 1.10 1.21 0.80 1.25 →12.3

→12.6 0.87 0.78 1.67 6154.89 6538.24 →13.3
→13.6 0.88 1.01 2.45 1.33 26.07 →13.3
→14.6 0.90 0.84 1.35 0.76 1.00 →13.3

→12.6 0.89 0.86 1.63 1104.90 1579.96 →14.3
→13.6 0.89 0.71 5.25 1.53 71.90 →14.3
→14.6 0.87 0.83 1.26 0.73 0.93 →14.3

Table 5. Reduced ↽2 obtained from a Gaussian fit on the histograms reported in Fig. 5. ςRN = 2.5, ςDM = 3.2.

↽2
red

ARN EW DMX DM GP DMX no RN DM GP no RN ADM

→12.6 1.35 0.98 1.96 365.57 218.71 →12.3
→13.6 1.35 0.82 1.45 0.90 1.99 →12.3
→14.6 1.35 1.03 1.09 0.94 0.98 →12.3

→12.6 1.17 1.49 3.35 168.97 194.42 →13.3
→13.6 1.16 1.32 1.58 1.02 1.20 →13.3
→14.6 1.17 0.76 1.13 0.97 1.12 →13.3

→12.6 0.98 1.29 2.20 33.12 141.30 →14.3
→13.6 0.98 0.96 0.95 0.74 1.79 →14.3
→14.6 0.98 0.95 0.77 0.77 1.45 →14.3

a measure that serves as a proxy for the deviation of each bin in
the histogram from the true value in terms of sigmas.

At first, we checked the fraction of residuals that lies within
the 3ϖ threshold for each method, which for a Gaussian distri-
bution is expected to be 99.7%. For EW, more than 99.9% of
the values fall within 3ϖ, and this happens mostly because the
uncertainties on the DM measurements are the highest among
the methods. DMX is the second most accurate method, with a
percentage of data points within 3ϖ greater than 99.5%, followed
by DM GP with 98.5%. The remaining methods converge on
higher percentages, comparable with the three just mentioned,
only when the RN amplitude is at the lowest simulated level
(→14.3).

4.3. Whitening of the dispersion measure residuals

Other than precision and accuracy, we also investigated the abil-
ity of each method to whiten the DM residuals, meaning that
we checked whether they are random and independent, without
exhibiting correlated structures. This is extremely important for
noise modeling, since any structure left in the DM residuals is
associated with either the absorption of power in other noise
components or with artifacts introduced by the method itself.
We have conducted a Gaussianity test on the normalized DM
residuals, and the associated reduced chi-squared values ↽2

red are
reported in Tables 4 and 5. For EW, 0.87 ⇐ ↽2

red ⇐ 1.35, which
implies that the data are well described by a Gaussian distribu-
tion and that there are no, or very few, remaining time-correlated

structures in the DM residuals. For DMX, 0.71 ⇐ ↽2
red ⇐ 1.49,

showing that EW does not appreciably outperform DMX in
whitening the DM residuals. For DMX no RN and DM GP no
RN, the results are as expected: as long as ARN is high, they
are not able to properly recover the DM values, and hence the
↽2

red associated with the histograms of the normalized residuals
is very high. If ARN = →13.6, DMX no RN can reach ↽2

red values
that are closer to 1 with respect to DM GP no RN, which does
so only when ARN = →14.6. Lastly, DM GP, even though it is the
most precise method, is not the most accurate and also not the
best at whitening the DM residuals. The distributions in Figs. 4
and 5 are most of the time similar to the DMX ones, but the
corresponding ↽2

red are not as close to 1. Time-correlated struc-
tures, both short- and long-term, are still present in DM GP DM
residuals, emphasized by the aforementioned reduced error bars.
The short-term time correlated structures are caused by the high-
Fourier-frequency components of the injected signal (the highest
of which is f30 = 30/Tspan), while long-term ones are mainly
due to the presence of RN in the data. A more explicit repre-
sentation of this feature is shown in Fig. 6, where the first two
rows show DM residuals for a single realization and 100 realiza-
tions, respectively, using DM GP (similar results to DM GP can
be obtained with DMX). The third row reports the comparison
between the structure left in the DM residuals and the injected
RN, showing that the DM modeling is indeed absorbing power
from the RN process, as it displays the same signature as the
injected RN signal. However, we also need to consider whether
these structures have a significant impact on the timing residuals
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Fig. 6. The top panel shows the DM residuals obtained by applying DM GP (with RN modeling) to an individual simulation over the 100 realizations
for values of the noise parameters ARN = →13.6, ADM = →13.3, ςRN = 3.7, ςDM = 8/3, EFAC and EQUAD as in Table 1, and ϖToA = 5µs. The
second panel reports an average of the DM residuals left by DM GP over the 100 simulations performed with the same parameters. The bottom
panel shows the injected RN signal (red dots) compared to the time delay associated with the mean DM GP (shaded green). Note that we have a
shaded region because a single DM value causes a frequency-dependent delay. Hence, the edges of the green region correspond to the maximum
and minimum frequencies of the band.

Fig. 7. Power spectra of the DM residuals left by the EW (left panel), DMX (central panel), and DM GP (right panel) methods. We also show the
WN level (black) and the power spectra for different RN amplitudes: ARN = →14.6 (orange with vertical dashes); ARN = →13.6 (green with dots);
and ARN = →12.6 (blue with oblique dashes). With DM GP, we modeled the noise up to a Fourier-frequency of 30/Tspan ↔ 1.15 ↓ 10→7 Hz, the
same as the injected signal. That is why in the right-hand panel there is a drop at that specific frequency in the power spectrum of the DM GP
residuals.

by comparing their power spectrum with the WN level. To do
so, we computed a discrete Fourier transform and subsequently
the power spectrum of the DM residuals at different ARN and
compared it with the level of the WN injected for each of
the three methods. The result is shown in Fig. 7. On average,
the WN dominates over the DM residuals, which confirms that
the signature remaining in the DM residuals cannot significantly
be detected, and therefore will not affect the timing residuals. On
the other hand, we can say that EW is not affected at all by the
strength of the RN, while it significantly influences DM GP and
DMX.

Importantly, Fig. 7 shows that the remaining power associ-
ated with the DM residuals is the lowest for DM GP (and DMX).
This hints that DM GP (and DMX) diminishes the dispersive
noise level in the ToAs to the minimum among the techniques
tested, a result that would be beneficial in studies that need the

most optimal noise mitigation possible. Hence, while a full study
of the DM GP analysis and its interaction with various types of
RN (particularly GWs) is beyond the scope of this paper, this
finding indicates that DM GP (and DMX) might work best for
whitening timing residuals; for example, in a context such as the
search for low-frequency GWs.

4.4. Alternative simulation settings

Here, we test the methods on datasets that we simulated by vary-
ing specific settings. First, we reduced the uncertainties of the
simulated ToAs from our initial value (from 5 to 1µs and 0.1µs)
to improve our sensitivity to the RN process and DM variations,
and then we simulated the ToAs at L-band frequencies. Finally,
we changed the injected DM time series.
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Table 6. Mean DM uncertainty across methods (EW, DMX, DM GP)
for simulated ToAs with fixed uncertainties of 1 and 0.1 µs.

ϖtemp ↘ϖDM≃ · 10→6 (pc cm→3)

EW DMX DM GP

1µs 6.3 2.0 1.6
0.1µs 0.6 0.5 0.2

4.4.1. Testing different time-of-arrival uncertainties

We used ϖtemp = 5µs, since it represents the typical mean uncer-
tainties on ToAs obtained from LOFAR observations (Donner
et al. 2020). However, there might be pulsars with higher ToA
precision, and we expect that future facilities such as the low-
frequency part of the Square Kilometer Array (Janssen et al.
2015) will improve the ToA sensitivity. For this reason, we ran
two new simulation sets, with decreased values for the ϖtemp,
firstly at 1µs and then at 0.1µs. Furthermore, as this reduces the
WN floor level, we enhanced the methods’ capability to iden-
tify RN and properly disentangle it from DM variations. The
WN parameters injected in the simulations were also changed
to: EFAC = 1, EQUAD = 10→8 s. Chromatic and achromatic
red processes were both set to 30 Fourier-frequency components,
with ςRN = 3.7, ςDM = 8/3, ARN = →13.6, and ADM = →13.3.

In Table 6, we report the DM uncertainty levels for each
method and each uncertainty. Given the smaller error bars of the
ToAs, the precision on the DM measurements increases, as was
expected. As we did previously, we can rank DM GP as the most
precise method, followed by DMX and EW.

We recall that an important finding from our simulations (see
Sect. 4.3) was about the RN signal left in the DM residuals. In
fact, Fig. 6 (bottom panel) shows that the signal left in the DM
residuals matches exactly the one of the injected RN. The cor-
responding delay, which is thus left on average in the timing
residuals, is about ±2 µs. This changes in the two new cases
characterized by low ToA uncertainties: when ϖtemp = 1 µs, the
mean DM signal that is left due to an erroneous RN absorption
contributes to the timing residuals at the level of ±150 ns; when
ϖtemp = 0.1 µs, this becomes ±20 ns. Since the injected RN sig-
nal was the same, we can confirm that higher precision on the
ToAs allows to increase the sensitivity to the RN and improve
the accuracy of the measurements of DM variations.

4.4.2. Testing times of arrival in the L band

In this part, we report the results obtained by applying the
DM computation methods to L-band ToAs. To simulate high-
frequency ToAs, we refer to the data collected by the Nançay
decimeter radiotelescope (NRT), which has a relatively large
bandwidth (512 MHz) centered at 1.4 GHz divided into four sub-
bands (EPTA Collaboration 2023). The input parameters were:
EFAC = 1, EQUAD = 10→8 s, ADM = →13.3, and ςDM = 8/3.
We used a conservative 1 µs ToA template-fitting error.

Concerning the precision of the methods, the results are sim-
ilar to the ones in the LOFAR frequency case: DM GP is the
most precise, followed by DMX and EW. However, the size of
these errors is now larger by approximately two orders of mag-
nitude (see Table 7). This is due to two main reasons: the first
is the increased central frequency of the analysed ToAs (which
is 1.4 GHz against the 153 MHz of the previous LOFAR-like
case), because DM is inversely proportional to the squared of the

Table 7. As in Table 6, but for L-band ToAs with ϖtemp = 1 µs and
injected DM noise parameters of ADM = →13.6 and ςDM = 3.7.

↘ϖDM≃ · 10→4 (pc cm→3)

EW DMX DM GP

7.8 2.1 0.7

Table 8. Reduced ↽2 of the normalized DM residuals.

↽2
red

EW DMX DM GP

1.07 1.10 1.54

Notes. Obtained from a Gaussian fit on histograms of DM residuals
normalized by their uncertainty for the EW, DMX, and DM GP meth-
ods, over ToAs simulated in the L band with ϖtemp = 1 µs and injected
DM noise (ADM , ςDM = –13.3, 8/3).

Fig. 8. Top panel: DM residuals left by the EW (blue), DMX (red),
and DM GP (green) methods when run over the 100 realizations of
L-band ToAs. Bottom panel: histograms of the DM residuals normal-
ized by their uncertainty. The input noise parameters are ADM = →13.3
and ςDM = 8/3.

observing frequency. The second is the fractional bandwidth, B
(see Eq. (5)): the higher B, the better the precision in the DM
measurements (Verbiest & Shaifullah 2018). For the NRT-like
case, B ⇒ 0.34, while for the LOFAR-like case, B ⇒ 0.41. Con-
cerning accuracy, we also report similar conclusions as before:
EW has more than 99.76% of the values within 3ϖ and it is
the most accurate method, followed by DMX with more than
99.44% and finally DM GP with 99.2%. In addition, the Gaus-
sianity test provides similar results to the LOFAR-like case. In
Table 8 are listed the reduced ↽2 values, which confirm that on
average EW and DMX are marginally better at whitening the
residuals due to their larger error bars (and thus lower precision),
on single DM recoveries. In the top panel of Fig. 8 are presented
the DM residuals for each of the three methods, while the corre-
sponding normalized histograms are reported in the bottom plot.
Figure 9 shows the power spectra of the DM residuals compared
with the injected signal. Despite the fact that the WN is domi-
nating in most of the frequency bins, all of the three methods can
model the long-term structures present in the data. At the high-
est frequencies in the spectra, EW and DMX cannot match the
injected signal anymore due to the limits imposed by the WN.
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Fig. 9. Power spectra of the DM residuals obtained using EW (left), DMX (center), and DM GP (right), compared with the injected signal (light
blue) in the L band. The input noise parameters are ADM = →13.3 and ςDM = 8/3. The injected signal power (light-blue) drops at a frequency of
30/Tspan ↔ 1.15 ↓ 10→7 Hz. We used the same number of frequency components in the modeling with DM GP.

Fig. 10. DM time series injected in the data with an empirical power
spectrum (Donner 2022).

Instead, DM GP is the only method that produces a power spec-
trum that does not cross the injection line, meaning that it is
not adding any more power at those frequencies. We note that
DM GP uses a power-law model to describe the noise process,
which is identical to the functional form of the injected signal.
Therefore, it is possible that the reported results show a biased
result for DM GP, since in real-life datasets we may not have pure
power-law noise processes.

To evaluate a more realistic case, in the following section we
test the methods on an injected DM time series that does not
come from a pure power law.

4.4.3. Custom dispersion measure injection

Here, we test the performance of the three considered techniques
over an individual, injected DM time-series with an empiri-
cal power-spectrum shape, derived in Donner (2022) from the
LOFAR dataset of PSR J0139+5814 (see Fig. 10). The ToAs
are still evenly spaced, with an uncertainty set to 5µs, and the
injected WN is defined by EFAC = 1.2 and EQUAD = 2µs.
Given the short timescale fluctuations in the injected signal,
we used 107 Fourier components to define the power-spectrum
used in DM GP, which corresponds to the limit imposed by
the Nyquist theorem given the 215 data points. The result of
the analysis are reported in Fig. 11, where we show the DM
residuals in the top panel and their power spectra in the bottom
panel. As was previously noted, EW and DMX provide indepen-
dent DM measurements (although DMX might introduce some
degree of correlations for close-by points; see Lam et al. 2017),
while DM GP assumes an underlying model for the power spec-
trum to describe the DM variations. The DM GP error bars are
now larger than the DMX ones, and hence the recoveries are
extremely accurate. The bottom panel of Fig. 11 shows that even
with the injected signal resembling a broken power law, DM GP

Fig. 11. DM residuals for EW (blue), DM GP (green), and DMX (red)
obtained by taking the difference of the DMs recovered by each method
and the injected DM time series of Fig. 10 with an unknown power
spectrum. The WN parameters are EFAC = 1.2 and EQUAD 2µs and
the ToA uncertainty was set at 5µs. Bottom panel: power spectra of the
injected signal (black) and of the DM residuals.

is able to absorb the signal, and hence successfully recover the
injected DM time series.

5. Conclusion

In this paper, we have carried out a series of simulations in order
to test the performance of the three main methods available in the
PTA community to calculate DM variations: EW, DM GP, and
DMX. The final aim is to provide information on the calculation
of the DM time series for, for example, studies of the IISM and
the solar wind.

Our main conclusion is that, while they all perform well, the
most accurate method of calculating DM variations is EW, but
DM GP and DMX seem to lower the level of the DM noise in
the timing residuals the most.

In more detail, we conclude that all of the methods perform
satisfactorily (as long as the RN and DM models are selected
correctly for DMX and DM GP). Figure 3 demonstrates that,
when the RN power is significant, including it in the noise model
is unavoidable; otherwise, the achromatic, time-correlated struc-
tures will be absorbed in the DM modeling in the cases of DMX
and DM GP.

With respect to the precision, the mean uncertainties ↘ϖDM≃
on the DM recoveries for EW are independent of the ampli-
tudes of the RN processes. This means that the method is only
affected by the ToA precision and the frequency coverage of
the data. For DMX and DM GP, instead, ↘ϖDM≃ depends on the
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amplitude of the injected RN process (see Tables 2 and 3). Over-
all, the method that gives the most precise DM measurements is
DM GP.

We also studied the accuracy, defined as the level of agree-
ment between a test result and the true value while taking into
account the uncertainties, by analyzing the distributions of the
normalized DM residuals (Figs. 4 and 5). Because of the larger
error bars, EW is the most accurate method, having in most of
the cases >99.9% of the data within 3ϖ. The second most accu-
rate method, according to this criterion, is DMX, while DM GP
is less accurate because of its high DM precision, which results
in more data points in the tail of the distribution. This is true not
only at LOFAR frequencies, but also in the L-band trials, where
we simulated an NRT-like frequency coverage.

The accuracy test, though, as is described above, does not
imply that the DM residuals are white. Hence, we have con-
ducted a Gaussianity test on each of the normalized DM resid-
uals distributions, which informs one about the ability of each
method to remove time-correlated structures from the ToAs. The
↽2

red of the Gaussian fits are reported in Tables 4 and 5, and
they show that EW is the method with the narrowest range of
↽2

red around 1. DMX shows similar results, but only when the
RN is modeled. However, the ↽2

red range shown by DMX fluctu-
ates more than for EW. DM GP, which uses a linear combination
of Fourier components, produces a time series where close data
points are not completely independent. This affects the overall
residual distribution, resulting in the widest ↽2

red range spanned
among the three methods.

To better understand the reasons behind the DMX and DM
GP distributions, we studied the effect of the RN on the DM
residuals. In Fig. 6, we show that even when the RN is mod-
eled, a signature can still be found in the DM residuals yielded
by DM GP and DMX. This happens when the WN level exceeds
the RN, especially at the highest Fourier frequencies. Nonethe-
less, Fig. 7 shows that, at LOFAR frequencies, the unmodeled
RN signal remains below the WN level. In order to properly
disentangle the RN and DM noise signal, it is necessary to
have high-precision ToAs. In fact, we investigated this sce-
nario by simulating datasets with reduced uncertainties, ϖToAs =
1 µs, 0.1 µs, and, as was expected, DMX and DM GP no longer
show any significant structures related to the injected RN sig-
nal in the DM residuals. The aforementioned precision-accuracy
hierarchy holds in this simulation scenario as well. Similar con-
clusions are reached in (albeit limited) simulations carried out in
the L band and with an injected DM time series with an empirical
spectral shape.

However, we stress that these results are based on simula-
tions that do not take into account uneven observational cadence,
variable ToA uncertainty, poor, if not absent, frequency cover-
age of the data, and also combination of datasets; in other words,
the most common characteristics of real-life data. When these
additional complexities are present, it is possible that DM GP
performs better than other methods thanks to its flexibility and
the fact that its characteristics allow a more optimal blending
of data with diverse properties. Moreover, the performance of
EW and DMX might be affected by more realistic datasets
because of their windowing constraints. A firmer conclusion will
be obtained once these scenarios are taken into consideration.
Also, the impact of these DM recovery schemes on timing model
parameters has not been assessed in our work, but Kramer et al.
(2021) has already shown that astrometric parameters can be cor-
rupted by some of the schemes tested. Consequently, future work
on this topic would require a complete assessment of that aspect,
as well.

Last, we reach the important conclusion that DM GP and
DMX seem to have the capacity to reduce the DM noise level
to the minimum (see Fig. 7). Future works should assess the
effectiveness of the analyzed methods in modeling DM varia-
tions as a source of noise when a GW background is also present
in the data.
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Appendix A: Evaluating time-domain realizations of
stochastic time-correlated signals with LaForge

This part describes the method used in LAFORGE software to
obtain time-domain realization of stochastic signals measured in
the frequency domain. The stochastic and time-correlated sig-
nals in PTA data such as DM variations are mainly modeled
as Gaussian processes (GPs). GPs are defined as a collection of
(infinite) random variables representing the function values (e.g.,
time delay of the modeled signal in the timing residuals) for all
input locations (i.e., observing epochs). Any finite set of these
random variables has a joint Gaussian distribution. Thus, GPs
allows us to define the mean value and the variance of the signal
at any input location.
GPs can be fully specified with one of each following approaches
(Rasmussen & Williams 2006):

– Weight-space view, where the process is defined as a lin-
ear sum of deterministic basis functions Tµ(t) multiplied by
weights aµ as

f (t) ↔
m∑

µ

aµ Tµ(t), (A.1)

with µ = 1, ...,m and where the weights are Gaussian
random variables as aµ ↔ N

(
a0
µ, φµε

)
, with a0

µ assumed to
be a zero vector in our case, and φµε corresponding to the
weights covariance matrix.

The PTA likelihood including a GP described in the weight-
space view can be written as

p(↼t|aµ,GP) =

exp
[
→ 1

2
∑

i, j

(
↼ti →

∑
µ aµ Tµ(ti)

)
N→1

i j

(
↼t j →

∑
µ aµ Tµ(t j)

)]

↗
(2ϑ)n det(N)

↓
exp
[
→ 1

2
∑

µ,ε aµ φ→1
µε aε

]

√
(2ϑ)m det(φ)

, (A.2)

with ↼t and N respectively corresponding to the timing resid-
uals and the covariance matrix, i, j = 1, ..., n and µ, ε =
1, ...,m.

– Function-space view, where the GP directly describes the
targeted signal as

f (t) ↔ GP
(
g(t), k(t, t⇑)


, (A.3)

including the mean function g(t) and the covariance function
k(t, t⇑), also referred to as kernel.

The PTA likelihood in that form is marginalized over the
basis weights mentioned above and can be expressed as

p(↼t|GP) =
exp
[
→ 1

2
∑

i j ↼ti (Ni j + Ki j)→1 ↼t j
]

↗
(2ϑ)n det(N + K)

, (A.4)

where K = k(t, t⇑).
In PTA analysis, we usually employ Eq. A.4 and express

k(t, t⇑) from the correspondence between both views as
(Rasmussen & Williams 2006)

k(t, t⇑) =
∑

µ,ε

Tµ(t) φµε Tε(t⇑). (A.5)

In practice, we set the basis functions T as a finite set of
sine/cosine functions and

φµε = P( fµ) ↼µε / tspan, (A.6)

with the right-hand side terms respectively corresponding to the
power spectral density (PSD), the Kronecker delta and the time
span of the data set. This approach corresponds to the Fourier-
sum approach described in (van Haasteren & Vallisneri 2014).

To summarize, we use a time-domain likelihood function
with a parameterized covariance matrix that contains a PSD
that is most often defined as a simple power-law described with
two parameters: the amplitude A, usually set at the reference
frequency of 1 yr→1 and the spectral slope ς.

The Gaussian process signal in the time-domain f (t) can be
evaluated from Eq. A.1 after estimating the weights a with Eq.
A.2. Let us now describe a method to estimate realizations of a,
where we perform a maximum likelihood estimation on Eq. A.2
(Lentati et al. 2013). Let us rewrite the logarithm of this equation
in a matrix notation,

log
[
p(↼t|a,GP)

]
= → 1

2
(↼t → aT )TN→1(↼t → aT ) → 1

2
aTφ→1a

→ 1
2
[
(n + m) log(2ϑ) + log (det (N) det (φ))

]
,

(A.7)

where the third term is just a constant number "cst," and thus

log
[
p(↼t|a,GP)

]
= →1

2

[
↼tTN→1↼t + (aT )TN→1(aT ) + aTφ→1a

]

+ (T TN→1↼t)Ta + cst

= →1
2

[
↼tTN→1↼t + aT(T TN→1T + φ→1)a

]

+ (T TN→1↼t)Ta + cst. (A.8)

Let us now write its derivative over the weights,

⇀ log
[
p(↼t|a,GP)

]

⇀a
= (T TN→1T + φ→1)a → (T TN→1↼t)T, (A.9)

and finally obtain the maximum likelihood vector of weights â,

â = (T TN→1T + φ→1)→1 (T TN→1↼t)T, (A.10)

where we evaluate φ using Eq. A.6, for which P( f ) is computed
by using posterior distributions of our model parameters (e.g.,
A and ς if defined as a power-law) evaluated from a Bayesian
analysis. Furthermore, N is computed after applying WN
parameters (e.g., EFAC, EQUAD) with values taken from the
same posterior distributions. This way, we evaluate time-domain
realizations that are marginalized over other processes included
during the Bayesian analysis.

Appendix B: Achromatic noise recoveries with
DMX and DM GP

In this section we report on how DMX and DM GP meth-
ods are able to recover achromatic noise parameters from our
simulations.
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Fig. B.1. Corner plot of WN parameters using DM GP for an individual
realization (see Sect. 2) with injected noise parameters: ADM = →13.3,
ςDM = →2.7, ARN = →13.6 and ςRN = →3.7. Black lines correspond to
the injected values.

Fig. B.2. Corner plot of WN parameters using DMX for an individual
realization (see Sect. 2) with injected noise parameters: ADM = →13.3,
ςDM = →2.7, ARN = →13.6 and ςRN = →3.7. Black lines correspond to
the injected values.

B.1. White noise

WN parameters are inferred during the DMX and DM GP anal-
ysis through Eq. (6) in the enterprise software suite. Since
in our simulations the ToA uncertainties are all the same, the
EFAC and EQUAD parameters are strongly correlated as shown
in Figs. B.1 and B.2. Overall, the EFAC parameters are always
well constrained and consistent with the injected values for both
DM GP and DMX. On the other hand, the EQUADs show a flat
posterior (meaning that they are totally unconstrained) but still
consistent with the injection. Moreover, DM GP tends to present
a small peak at higher EQUADs, while DMX does not. In order
to disentangle EFAC and EQUAD parameters, simulations with
variable ToA uncertainties are required.

B.2. Achromatic red noise

In Figs. B.3 and B.4 we report the 100 posterior distributions of
RN parameters obtained from the simulations described in Sect.
2. We show the only fiducial case with ADM = →13.3 and vary-
ing ARN . Enterprise can well constrain the RN parameters
alongside DM GP and DMX as long as the power spectrum of
the injected RN is above the WN floor (i.e., when ARN = →12.6
and barely for ARN = →13.6. See also Fig. 1). When this does not

Fig. B.3. Posterior distributions of RN parameters using DM GP for 100
realizations (see Sect. 2) with injected DM noise parameters: ADM =
→13.3, ςDM = →2.7. On the left-hand column there is the spectral index
ςRN ; on the right-hand column there is the RN amplitude ARN . Each
row correspond to a different injected ARN . Red vertical lines report the
injected values.

Fig. B.4. Posterior distributions of RN parameters using DMX for 100
realizations (see Sect. 2) with injected DM noise parameters: ADM =
→13.3, ςDM = →2.7. On th left-hand column there is the spectral index
ςRN ; on the right-hand column there is the RN amplitude ARN . Each
row correspond to a different injected ARN . Red vertical lines report the
injected values.

happen, the posterior distributions of ARN and ςRN are flat and
unconstrained. In all of the cases the recoveries are consistent
with the injected values. This result is also confirmed when we
reduce the ToA uncertainties to 1 or 0.1 µs, hence decreasing
the WN power level. In these cases the RN parameters are well
constrained and consistent with the injection even for lower ARN .
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