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The pulsar timing array community has recently reported the first evidence of a low-frequency stochastic
gravitational wave background. With longer observational time spans we expect to be able to resolve
individual gravitational wave sources in our data alongside the background signal. The statistical modeling
and Bayesian searches for such individual signals is a computationally taxing task that is the focus of many
different avenues of methods development. We present a pipeline for performing efficient joint searches for
gravitational waves originating from individual supermassive black hole binaries as well as a gravitational
wave background using a Hamiltonian Monte Carlo sampling scheme. Hamiltonian sampling proposes
samples based on the gradients of the model likelihood, and can both converge faster to more complicated
and high-dimensional distributions as well as efficiently explore highly covariant parameter spaces such as
the joint gravitational wave background and individual binary model. We show the effectiveness of our
scheme by demonstrating accurate parameter estimation for simulated datasets containing low- (6 nHz)
or high- (60 nHz) frequency binary sources. Additionally we show that our method is capable at more
efficiently generating skymaps for individual binary sources—maps displaying the upper limits on the
gravitational wave strain of the source, &, as a function of sky location—by sampling over larger portions
of the full sky. Comparing against results for the NANOGrav 12.5-year dataset, we find similar
reconstructed upper limits on the gravitational wave strain while simultaneously reducing the number

of required analyses from 72 independent binned searches down to a single run.
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I. INTRODUCTION

The first evidence of a low-frequency stochastic gravi-
tational wave (GW) signal reported [1-4] by the North
American Nanohertz Observatory for Gravitational Waves
(NANOGrav) [5], European Pulsar Timing Array [6],
Indian Pulsar Timing Array [7], Parkes Pulsar Timing
Array [8], and Chinese Pulsar Timing Array [4] has opened
anew chapter in the field of GW astrophysics. Pulsar timing
array (PTA) [9-11] collaborations search for nHz frequency
GWs by analyzing the times-of-arrival (TOAs) of radio
pulses emitted by millisecond pulsars. By regularly observ-
ing such pulsars over a decades-long time span PTAs can
reach the sensitivity necessary to probe the nHz band. The
recently identified stochastic GW signal displayed, to
varying levels of significance, the expected Hellings-
Downs (HD) [12] spatial correlation signature between
pulsars that is indicative of the signal being a gravitational
wave background (GWB).

One possible source describing the nHz GWB is the
collective signal from the population of supermassive black
hole binaries (SMBHBs) present in the observable uni-
verse [13]. All massive galaxies hold a supermassive black
hole, typically of mass 10°~10'°M,, at their centers [14].
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Galactic merger events consequently lead to the formation
of SMBHB systems. When the component black holes
reach inspiral phase, the emission of GWs becomes the
dominant force behind the system’s evolution. To date there
have been no confirmed observations of SMBHBs at sub-
parsec separations. With the discovery of a GWB signal, a
next major step for PTA science is to search for particularly
loud individual binaries that may be detected among
the stochastic ensemble within the next decade [15-18].
Measurements of GWs from individual sources, collo-
quially referred to as continuous waves (CWs) due to
their minimal frequency evolution, would provide useful
constraints on the astrophysical environments of
SMBHBs [19,20] and could be coupled with electromag-
netic observations to study galactic evolution and further
multimessenger astrophysical research (e.g. [21]).

Single source searches prove inherently more computa-
tionally taxing than a comparable GWB analysis. Modeling
GWs from an individual SMBHB adds to the already large
PTA parameter space, and such parameters bring cova-
riances among themselves as well as with other red-noise
processes present in the data. The computational cost
additionally compounds with increased data volume, which
includes longer observation span and new pulsars added to
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the array. This complication is particularly apparent for
efforts at combining datasets from multiple PTAs, yielding
highly sensitive yet computationally overwhelming data
products. Multiple techniques at exploring the CW
parameter space have been developed [22-26], and recent
improvements have led to a 100-fold speed up of the
full analysis through the use of a tailored likelihood
calculation [26].

In this paper we detail an additional procedure for
achieving efficient CW searches through a Monte Carlo
routine established through sample proposals based in
the gradient of the model likelihood. This utilizes a
Hamiltonian Monte Carlo (HMC) [27,28] sampler to
replace the random-walk nature of traditional MCMC
methods with a simulation of Hamiltonian dynamics on
the target probability distribution. The algorithm concen-
trates on drawing subsequent samples at much further
distances in the multidimensional parameter space, trading
pure speedups of the likelihood calculation for higher
sample acceptance rates and an efficient exploration
of the distribution. Within the realm of PTA science,
HMC was first utilized in the development of a model-
independent approach to Bayesian inference with PTA
data [29], and soon after to the task of outlier removal in
single-pulsar data. In a previous paper [30], we demon-
strated the effectiveness of using HMC to perform Bayesian
GWRB searches with the full marginalized PTA likelihood.
Here we extend the methods and previous results to
allow for joint inference of individual binary sources and
common-process signals.

This paper is outlined as follows. In Sec. II we review the
signal model of a single binary and describe the current
Bayesian formalism for searching for such sources in the
context of PTA data. We describe the Hamiltonian
Monte Carlo sampling procedure and introduce a new
pipeline, predicated on this algorithm, for performing the
analyses in a more efficient manner. In Sec. III we validate
this pipeline against a suite of simulated PTA datasets. We
assess the efficiency of this new analysis prescription on the
NANOGrayv 12.5-year dataset in Sec. IV. Lastly, in Sec. V
we summarize and discuss opportunities for future develop-
ment of this work.

II. METHODOLOGY AND SOFTWARE

Here we provide a brief overview of the data, PTA signal
model, and likelihood function used in this paper, as well as
characterize the GW signal for an individual binary. We
then describe the HMC algorithm, and introduce our code
and pipeline tailored to applying this method to CW
searches.

A. PTA likelihood

First we discuss pulsar timing data and the structure of
the PTA likelihood. Pulsar observational data exists in the

form of pulse times-of-arrival (TOAs). After subtracting
from each pulsar’s TOAs a timing model comprised of
parameters such as proper motion, parallax, spin period,
spin period derivative, and other orbital parameters, we are
left with timing residuals ot that we can characterize as a
linear combination of noise sources and GW signals

5t:M€+nRN+nCRN+nWN+S. (1)

The first term Me represents inaccuracies originating
from subtracting the linearized timing model solution. Next
the term ngy denotes effects due to low-frequency “red”
noise that are intrinsic to each pulsar. The following term
ncry again describes red-noise sources, but this time
specifically references sources that are common among
all of the pulsars, including for example a GWB. Here we
model the common spectrum process with a fiducial power-
law spectrum with a characteristic strain 4. and cross-
power spectral density S,

he(f) = Agy (fi) )

Aéw (i>_yf}7r3, (3)
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where the spectral index y = 3 — 2a. In the case where the
common-process signal represents a background generated
by the GW emission from a population of inspiraling
SMBHBs in circular orbits, we have a = -2/3 and
y =13/3 [31]. The function I',,, called the overlap
reduction function (ORF), defines the average correlations
between a set of two pulsars a and b based on their relative
angular separation. For common uncorrelated red-noise
(CURN) processes the ORF is equal to 1. For an isotropic,
stochastic GWB it is given by the Hellings-Downs corre-
lation function [12]
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with x,, = (1 —cosé,,)/2 for an angular separation &,
between two pulsars. Following the common-process noise
signals is a term nyy encoding all high-frequency “white”
noise sources present in the data, including constant
multiplicative correction factors to TOA uncertainties
(EFAC), additional noise added in quadrature (EQUAD),
and observational epoch-correlated noise (ECORR) that is
uncorrelated across separate epochs. Lastly the vector s
represents the component of the timing residuals caused by
additional deterministic signals. Here we treat s as the
signal induced by an individual binary, and is outlined in
more detail in Sec. I B.
Finally, we construct the form of the PTA likelihood
for use in our Bayesian inference pipelines. First we

063038-2



EFFICIENT PIPELINE FOR JOINT GRAVITATIONAL WAVE ...

PHYS. REV. D 110, 063038 (2024)

dramatically reduce the dimensionality of our posterior by
marginalizing over the timing model parameters [29,32].
Then by constructing the total PTA covariance matrix
C = N + TBTT, with N the white noise covariance matrix,
T the design matrix for the timing model, red noise, and
ECORR signals, and B the prior covariance matrix for
those three sets of parameters, we can state the multivariate
Gaussian likelihood function used for the analyses in this

paper:

X

where q denotes the vector of varying parameters existing
in our model in both deterministic signals s as well as the
total noise covariance matrix C.

B. CW signal

We now review the signal model for GWs originating
from an SMBHB and their effect on PTA residuals. The
GW signal can be written as

s(1.Q) = FH(Q)As, (1.Q) + F*(Q)As, (1.Q). (6)

with the scripts {+x} denoting the plus and cross polari-
zation modes, respectively, the two tensor polarizations
allowed by general relativity, and € is a unit vector pointing
from the GW source to the solar system barycenter. The
functions F* and F* represent the antenna pattern func-
tions that describe the response of a given pulsar to the
emitting source, and are composed of the binary sky
location polar and azimuthal angles @ and ¢, respectively,
and GW polarization angle y (for a complete description,
see [33]. The terms As, ,(f) account for the fact that the
Earth and pulsar see the induced GW signal at different
times in the binary evolution, and therefore define the
difference between the “pulsar-term” and “Earth-term”

A

AS-§—,><(t’ Q) = S+,><(tp) — sy x(1), (7)

where 7, is the time measured at the pulsar and 7 the time
measured at the solar system barycenter. The two times are
geometrically related according to:

t,=t—L(1+Q-0), (8)

p

where L is the distance to the pulsar and # represents a line
of sight vector to the pulsar. For the analyses present in the
remainder of the paper, we focus only on searching for the
Earth-term component of the full signal:

se(t,Q) = FF(Q)s. (1) + F*(Q)s,(1). ©)

The exact forms of s, () for a circular binary are given,
to zeroth post-Newtonian (0-PN) order, by

5/3
S+(l‘) = —WSIHZq)(Z’)(l -+ COS2 l), (10)
5/3
sy (1) = #2%5 20(¢) cosi. (11)

The parameter M represents the binary chirp mass M =
(mym,)3/3 /(m; + my)'/> for the component black hole
masses m; and m,. The parameters d; and : are the
luminosity distance to the binary and the source inclination
angle, respectively. The time-dependent angular frequency
and phase functions are, for reference Earth-term frequency
@, and phase @,

-3/8
w(r):w0[1—22—6/\45/3603/3(;—;0)] . (12)

@(1) = @y + 5 M [ — ()] (13

Additionally, one can define the overall strain amplitude,
hg, as

_ 2M5/3(”f0w)2/3

h b

(14)

with the GW frequency fgw related to the initial angular
frequency w, by wg = 7 fgw. We note that Eq. (14) shows a
degeneracy between hy, M, fgw, and d;, allowing us to
choose three of those four quantities when constructing our
complete parameter vector. In practice we typically exclude
the luminosity distance in favor of Ay, M, and fgw. The
full Earth-term CW source is therefore completely para-
metrized by (0, ¢, 1, w, g, hg, M, fow)-

In order to further elucidate the complications in sam-
pling joint CW and common-process models, we compute
Eq. (5) for an individual binary and particular noise
realization. We plot the Earth-term only likelihood surface
in Fig. 1 as a function of the CW sky location parameters.
The surface displays highly nontrivial structure and dem-
onstrates some of the difficulties in efficiently sampling
the full parameter space. There are numerous local extrema
where a random-walk MCMC sampler is liable to get
trapped and be unable to fully explore the full posterior.
This highlights the need for more sophisticated sampling
routines and corresponding pipelines.

C. Hamiltonian Monte Carlo sampling

The HMC algorithm [27,28], an extension of the tradi-
tional Metropolis-Hastings technique [34], tackles the
problem of sampling high-dimensional and covariant state
spaces by using Hamiltonian dynamics to generate pro-
posal states that are distant relative to each other in the para-
meter space. Compared to a standard Gaussian proposal
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FIG. 1. Likelihood surface for an Earth-term only CW signal as

a function of sky position. The x and y axes represent 8 and ¢ for
the source, respectively. The z axis shows the PTA log-likelihood
function evaluated at a particular (0, ¢), then subtracting off the
minimum log-likelihood value for the grid. On the plane z = 0 we
plot a 2D color map contour of the surface. We see that the
contours of the likelihood surface have many sharp peaks and
valleys, indicating difficult regions of parameter space to
sample over.

scheme, this reduces the overall correlation in the Markov
chain while maintaining a high sample acceptance rate.
It proceeds by first introducing an auxiliary momentum
vector p alongside the model parameters q. The
Hamiltonian to be simulated is the log of the joint density
of p and q, which can be separated into a potential energy
term U(q) and kinetic energy term K(p)

H(p.a) = U(q) + K(p) = ~L(a) + 30"M'p, (15)

where £(q) is the log of the likelihood function for the
target parameter distribution, and M a “mass matrix”
typically taken as the identity. The evolution of this system

through time can then be simulated by numerically solving
Hamilton’s equations

dq oH

dt op’

dp oH
a - o (16)

This integration proceeds for a set number of steps L,
typically accomplished through a second-order symplectic
“leapfrog” integrator, and ends by proposing some final
position and momentum states.

The relative performance of the HMC algorithm is then
determined by two factors: the computational cost of

calculating the gradient of the log likelihood function for
the target distribution, and the proper tuning of two user-
defined parameters: the number of steps L and integration
step size €. The first factor is driven entirely by the
complexity of the model in question, and whether or not
the log likelihood gradient can be computed exactly or
requires numerical differentiation. The second factor can be
resolved by automatically tuning the two extra parameters
through the use of a No-U-Turn Sampler [35]. This sampler
uses a recursive doubling algorithm to build a binary tree of
sample proposals, simulating Hamiltonian dynamics either
forward or backward in time at random for 2/ iterations
with j denoting the height of the tree. The process
continues until the position-momenta pairs q*, p* and
q~, p~ of the left- and rightmost leafs of the tree satisfy the
condition:

(q*=q7)-p~<0 or (q"-q7)-p* <0. (17)

In effect this monitors the trajectory of proposals and
stops when it begins to double back on itself, or make a
“U turn.” At this point a sample is chosen at random from
the tree and accepted or rejected according to the
Metropolis algorithm [34].

D. Software

Our new code, freely and publicly available on
GitHub under the package ETUDES,' includes an analysis
suite capable of performing HMC sampling with PTAs.
Although this paper focuses on joint searches for a CW
signal and common red-noise process, the modularity
of the code allows for the addition of a wide array of
other GW sources of interest, such as multiple binaries
[36,37], GW memory [38], eccentric binaries [39-42], or
advanced pulsar noise modeling [43,44]. It can also be
natively run on GPUs, drastically dropping the runtime
of CW analyses to timescales of hours for simulated data
and days for production data. The code is under further
active development to accommodate other searches of
interest.

While there are renewed efforts toward utilizing hierar-
chical modeling for PTAs [45], This work solely uses the
marginalized PTA likelihood, meaning that we need not
apply coordinate transformations, such as a decentered
reparameterization, designed to deal with Markov chain
mixing rates and other sampling issues commonly asso-
ciated with hierarchical funneling. Instead all analyses here,
and the default setup for our pipeline, use a single change of
coordinates known as an interval transform. This maps all
model parameters from their default prior ranges g € [a, b]
to the real line ¢’ € (—o0, o) via:

lhttps:// github.com/gabefreedman/etudes.
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:10g<z:2>, (18)
_ (b—a)exp(q')
1= +exp(q) (19)

where we use the Jacobian dg'/dq and its reciprocal to
convert between the original and transformed probability
spaces.

Sampling with HMC necessarily requires taking deriv-
atives of the model likelihood. We accomplish this by
writing the PTA likelihood and its components computa-
tions entirely with JAX [46], allowing us to use automatic
differentiation to calculate gradients. To do so we decouple
the entirety of the PTA computation from NANOGrav’s
analysis suite ENTERPRISE [47], though we do make use of
the code’s data structures for holding per-pulsar TOAs,
residuals, and other timing model information. We utilize
the implementation of the NUTS algorithm present in the
BLACKJAX [48] package. All simulated PTA datasets are
created using LIBSTEMPO [49].

III. SIMULATED DATA STUDY

First in order to gauge the accuracy of our pipeline and
demonstrate its consistency in parameter estimation we
created and analyzed a collection of simulated datasets. All
datasets comprise identical TOAs, uncertainties, and timing
model solutions to the NANOGrav 12.5-year dataset [50].
This constitutes 45 pulsars in total, all with an observational
baseline of at least 3 years.

Each individual dataset contains the same per-pulsar
noise injections. We simulated “white-noise” signals,
typically instrumental noise that dominates at high frequen-
cies, at their maximum likelihood values obtained from
separate individual pulsar noise analyses. Low-frequency
“red-noise” signals, representing noise intrinsic to each
pulsar, were simulated again by referencing the same
individual noise runs. We injected the intrinsic pulsar noise
at frequencies spanning from 1/7 up to 30/T)g, with

T denoting the observational time span of each pulsar.

The NANOGrav 12.5-year dataset contained a CURN
process with a Bayes factor in excess of 10,000 relative to a
model with only intrinsic pulsar noise [51]. Therefore, for
the most accurate prescription of a realistic PTA dataset,
we also include a similar process in all of our simulations.
The most recent dataset reported evidence for this process
containing HD correlations, though we do not consider
that in this study. We inject a CURN signal characterized
by an amplitude Acyry = 2 x 1075 and spectral index
ycurn = 4.33, in line with the expected power and shape of
the spectrum.

On top of the various noise models, we inject CW
signals. We choose three instances with which to create our
data: a low-frequency source, a high-frequency source, and

a dataset with no source injection. In all cases we inject
only the Earth-term signal. The low-frequency dataset
contains a binary emitting GWs at frequency fgw =
6 nHz and an amplitude chosen to achieve a moderately
high signal-to-noise ratio (SNR) of 10.8. For the case of the
high-frequency dataset, we include a binary emitting GWs
at fgw = 60 nHz with an SNR of 9.3. In both cases the
SNR is calculated as:

V(sls) = Vs (20)

where s is the template waveform and C is the same noise
covariance matrix present in Eq. (5). This can also be
considered the expected SNR that is independent from any
particular noise realization. The dataset without any CW
injection allows us to verify the ability of our methods to
place upper limits on source properties in the absence of a
detection. For the purposes of validating our pipeline, we
create 100 simulated datasets with both the 6 and 60 nHz
injection properties. The high- and low-frequency source
properties remain fixed across their respective simulations.
This allows us to test our methods across numerous noise
realizations.

Next we outline the basic procedure for setting up our
models before performing Bayesian inference through our
HMC pipeline. Rather than simultaneously search over the
hundreds of white-noise parameters, we fix them to their
maximum likelihood values used in creating the datasets,
a commonplace procedure in production-level PTA
analyses. We model the pulsar intrinsic red-noise with a
power-law power spectral density (PSD) defined by an
amplitude log;yA.q € U[—18,—11] and spectral index
Yred € U[0, 7]. Additionally we search over the two param-
eters characterizing the CURN process, using priors of
Acurn € U[-18,—12] and ycygrn € U0, 7]. When model-
ing the CW signal all parameters are given uniform priors.
In the case of upper limit analyses, the prior on log;, A4 is
shifted from uniform in log space log; hy € U[—18, —12]
to uniform in linear space log hy € U[107'%,107'2]. The
coordinate space outlined by these priors is later trans-
formed via the procedure outlined in Sec. IID prior to
beginning the inference.

Lastly we benchmark the speed and efficiency of both
the ETUDES pipeline and comparable run with ENTERPRISE
through a pilot inference run on one of the simulated 6 nHz
injection datasets. The full joint CURN and CW search
here constitutes 100 free parameters (2N, intrinsic red-
noise parameters for 45 pulsars, 2 parameters for the
CURN, and 8 describing the CW signal model). For the
traditional MCMC pipeline with ENTERPRISE the average
likelihood evaluation time is 200 ms on a 12-core Intel(R)
Xeon(R) E5-2680 v3 processor. Using the same CPU,
the average likelihood and gradient evaluation times with
ETUDES is 170 ms and 3.7 s, respectively, and on an
NVIDIA Tesla A100 GPU they are 17 ms and 1.6 s,

SNR =
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respectively. All of the above results are then scaled by the
average autocorrelation lengths of the corresponding MC
chains to calculate the timescales of statistically independent
sample generation. This gives an estimate of 450 s to get an
independent sample with ENTERPRISE compared to 52 s for
runs on a CPU and 25 s on a GPU for the HMC pipeline.
Overall, Hamiltonian sampling provides an increase of
roughly an order of magnitude in computational efficiency.

A. Low-frequency (6 nHz) signal

Previous NANOGrav CW searches have consistently
shown that PTAs are most sensitive to single sources at the
lower end (~1-20 nHz) of their frequency ranges. This also
happens to be where the GWB, and more generally any
CURN process, is at its strongest. With evidence for a
GWB now in hand, it is important for all future CW
searches to be capable of dealing with the covariance
between the common signal and any low-frequency single
sources. We first analyzed a signal with a frequency of
fow = 6 nHz, which places it near the peak sensitivity
of NANOGrav PTA. The chirp mass M = 10°M and
luminosity distance d; = 21.8 Mpc of the source are
chosen so that the GW amplitude gives an SNR of 10.8.
Additionally we place the source close to the most sensitive
sky location at (0, ¢) = (27/3,3x%/2). Lastly, the param-
eters (1,y,®y) = (37z/4,7/3,37/2) define the source’s
inclination, polarization, and initial phase. Together, all
of the above allows to fully classify our injected signal.

Taking the resulting chains from our analyses, we plot
both the one- and two-dimensional posterior distributions
for all eight binary parameters in Fig. 2. All parameters
have their true injected values lying within their respective
posteriors. Both the GW frequency and amplitude distribu-
tions are tightly constrained. The posterior for the chirp mass
remains entirely unconstrained as we expect for Earth-term
only searches and sources with slow frequency evolution.
The sky location of the source is very well localized to its
true value. The initial phase and polarization angles display
a set of multimodal posteriors, which we can efficiently
sample but are unable to break the multimodality.

B. High-frequency (60 nHz) signal

The long-term prospects of CW detection play crucial
role in multi-messenger analyses and astrophysical inter-
pretation of SMBHB populations and sources, and it is
important that we have the ability to do accurate
parameter estimation on possible binary candidates.
With this in mind, we analyzed a signal with a GW
frequency of fgw = 60 nHz, chosen to closely mimic that
of the potential SMBHB candidate 3C 66B [42,52,53].
The remaining parameters describing the source proper-
ties and sky location are (6, ¢, 1, w, @y, M., d;) =
(2r/3, 37/2, 3x/4, n/3, 3/2, 10°My, 91.1 Mpc). At
frequencies this high the CURN is very weak and therefore

we do not have to worry with covariances between the
common-process and binary signals.

In Fig. 3 we plot the posterior distributions for the eight
binary parameters for this model, similar to Fig. 2. Again
we find that we are able to efficiently sample the entire CW
parameter space alongside both a CURN process as well as
all intrinsic pulsar noise. We see the same structure in the
nearly all of our posteriors: the source GW frequency, GW
amplitude, and sky location are very tightly constrained,
and the multimodal structure in the polarization angle
and initial phase persist. Most importantly, all injected
values once again fall squarely within their 1D posteriors.
One notable difference is the emerging constraint on the
binary chirp mass. High-mass binaries emitting at this
frequency should show significant evolution over the
12.5-year observing window of our simulated datasets.
Consequently we find across the 100 realizations of the
data that we can place an upper limit on the binary chirp
mass. In 30 of the realizations, the chirp mass posterior was
less constrained than what the frequency evolution would
predict.

C. Parameter estimation consistency

As a final test of our method’s effectiveness with
simulated data, we explore the capacity of its statistical
coverage across many noise realizations of the same
underlying data. First we create 100 iterations of our
fow = 6 nHz dataset. Next we run standard Bayesian
searches on all datasets with our HMC pipeline. Lastly,
to check the consistency of parameter recovery for our
pipeline, we consider across all 100 sets of posteriors
whether if in p% of the realizations the injected parameter
values fall within the p% credible region.

The results of this analysis, called a p — p plot, are
summarized in Fig. 4. We plot lines for CW sky location
parameters, logy iy, log;g fgw, and the CURN amplitude
and spectral index. The dotted gray lines represent 1o, 20,
and 30 confidence intervals. All parameters fall largely
within the 36 boundary indicating an unbiased recovery
of the injected values. The chirp mass, being entirely
unconstrained across all realizations due to the minimal
evolution of the particular signal, was left out off this
figure. The cosine of the binary inclination was also largely
unconstrained across all realizations and was likewise
excluded.

IV. ANALYSIS OF REAL PTA DATA

Ultimately we want to validate our methods against real
data and published results. We use the full NANOGrav
12.5-year dataset [50] to benchmark our analysis, and focus
on the particular challenge of creating sensitivity sky maps.
Given the anisotropic distribution across the sky of the
pulsars in our array, it is important to quantify how our
observing limits change in different areas. The sky maps
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FIG. 2. 1D and 2D posterior distributions for the eight parameters describing a SMBHB signal emitting GWs at fgw = 6 nHz at an

SNR of 10.8. The true values of the injected parameters are shown as solid black lines, and the priors are plotted on the 1D histograms as
horizontal, green dashed lines. All true values fall within their posteriors, with the sky location, GW frequency, and GW strain
parameters being tightly constrained. This demonstrates the capability of the HMC pipeline in accurate parameter estimation for full CW

searches.

typically describe, for a given GW frequency, the 95%
upper limits on 4 as a function of sky location. The typical
strategy for generating the plots is to bin the sky into 768
separate pixels and run an MC analysis on each individual
partition. This dense pixelation is due in part to our inability
to get similar number of MCMC samples across the full
parameter space in an all-sky search.

We analyze a CW model including a CURN process for
sky locations bounded by 0 € [z/2,3%/4), ¢ €[37/2,2x].
The bounds were chosen so as to include the most sensi-
tive sky location from the NANOGrav 12.5-year CW
analysis [33], at an RA of 19"07™30°* and a declination
angle of 30°00'00”. This range of parameter space corre-
sponds to 72 distinct pixels, and therefore typically 72
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1D and 2D posterior distributions for the eight parameters describing a SMBHB signal emitting GWs at fgw = 60 nHz at an

SNR of 9.3. The true values of the injected parameters are shown as solid black lines, and the priors are plotted on the 1D histograms as
horizontal, green dashed lines. Similar to the low-frequency injection analysis, all true values fall within their posteriors, with parameters
such as the sky location, GW frequency, and GW strain parameters being tightly constrained. The binary chirp mass posterior now
features an upper limit excluding sources that would have undergone significant frequency evolution over the data time span.

independent analyses, in the resolution of the sky map from
the NANOGrav 12.5-year CW paper. The CW frequency is
held fixed at fgw = 7.65 x 10° Hz, the most sensitive
frequency in the NANOGrav 12.5-year dataset.

Our strategy is to run one single chain with HMC
sampling and leverage the pipeline’s efficiency to fully
explore across the broader sky range, allowing us to compute
a series of GW strain upper limits as a function of sky

location and populate the sky map in post-processing. We
run one single analysis for M = 80, 000 samples, after which
we break up our chains into sky location bins consistent
with the full 768-pixel map. With all autocorrelation lengths
of order O(1), after thinning this results in between
700 — 1,200 independent samples per reduced sky pixel.
In Fig. 5, we plot the results of our reconstructed sky map.
The strain upper limit at the most sensitive sky location is
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FIG. 4. p — p plot displaying recovery of injected parameters
across 100 simulated PTA datasets. All datasets contain a CURN
process and a 6 nHz CW injection. Plotted are six lines
corresponding to the CW sky location parameters, log strain,
log frequency, and CURN amplitude and spectral index. The
solid black line along the diagonal represents the line of perfect
recovery. Dotted gray lines represent 1o, 20, and 30 confidence
intervals. All plotted parameters lie within these boundaries
indicating no significant bias in parameter recovery.
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FIG.5. Map displaying CW strain 95% upper limits for a range
of sky location parameters bounded by 6 € [x/2,37/4], ¢ €
[37/2,2x]. The data are taken from a single chain run with an
HMC pipeline and pixelated to match the resolution of the
analogous map for the 12.5-year data set. The analysis is run for
fow = 7.65 x 10° Hz, the most sensitive frequency searched.
Pixel to pixel uncertainties range between 1.03 x 10716 <
oy, < 1.81 x 1071

hy < (2.15 £ 0.30) x 10715, Tts coordinates exactly match
that of the most sensitive region from the full NANOGrav
12.5-year analysis, which reported a strain upper limit for

that pixel of iy < (2.66 £ 0.15) x 10~ [33]. We find the
upper limit at the least sensitive sky location to be Ay <
(5.45 4 0.36) x 10715, Unlike the corresponding analysis
and map in the NANOGrav 12.5-year CW paper, we
marginalize over the amplitude and spectral index of the
CURN process instead of fixing the signal parameters to
their maximum likelihood values. We also only search over
the Earth term of our CW signal. Therefore we do not expect
to find perfect agreement between the two results when
comparing on a pixel-to-pixel basis.

By effectively sampling over larger portions of the sky,
we can cut the computational cost of generating a full sky
map by nearly an order of magnitude. Increasing the pixel
range of our searches is also a step closer to eliminating a
grid-based structure in the otherwise fully Bayesian analy-
sis. The limiting factor in expanding the prior range is
purely the computational wall time rather than specific
choices on location binning as the HMC sampler can fully
explore the posterior even at the least-preferred sky
locations. With enough time this can develop into a single
all-sky search for producing upper limit maps, and more
easily enable making the maps at many different GW
frequencies of interest.

V. DISCUSSION

In this paper we have presented an end-to-end pipeline
for performing efficient Bayesian searches of the high
dimensional and complicated parameter spaces for joint
CW and common red-noise process signal analyses with
PTA data. Our code employs HMC sampling to conduct
accurate parameter estimation. We demonstrated the per-
formance of this sampling routine through numerous tests
across both simulated and real PTA data. We showed that
by using HMC sampling we can effectively do para-
meter estimation for both high- and low-frequency CW
signals. The methods are robust toward conducting these
analyses while simultaneously marginalizing over a
common-process signal and can accurately recover both
GW signals.

By utilizing the HMC algorithm as our default under-
lying sampler, we are able to both significantly lower the
autocorrelations in our MCMC chains as well as reduce the
total number of samples we require per run. Our ability to
evenly sample wider areas of the sky means that we are
closer to removing a binning element of our otherwise
completely Bayesian analysis. The sampler also scales
favorably with dimensionality, a positive sign as future PTA
datasets inch closer to containing O(100) pulsars and 100s
of corresponding noise parameters.

A significant long-term advantage of this pipeline is its
modularity and ability to adapt to a wide range of signal
modeling choices. The code is not designed solely for the
task of CW searches and can develop and grow into a
general purpose analysis suite similar to the current
analysis suite ENTERPRISE. For example, it can modified
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to run on models considering only a GWB signal, for which
previous efforts have already shown HMC sampling to be
increasingly useful [30]. Further development can also add
the possibility of more sophisticated pulsar noise models or
additional deterministic sources of interest in the PTA band.
The future of PTA GW analyses is in part defined by its
potential computational pitfalls: an ever-increasing data
span, noise modeling of growing complexity, and the goal
of combined international datasets. These methods will
prove a valuable tool alongside the range of computational
developments in the PTA community toward addressing
these issues before they arise, and keeping our analyses
tractable to the future.
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