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Abstract

Pulsar timing arrays have found evidence for a low-frequency gravitational-wave background (GWB). Assuming
that the GWB is produced by supermassive black hole binaries (SMBHBs), the next gravitational-wave (GW)
signals astronomers anticipate are continuous waves (CWs) from single SMBHBs and their associated GWB
anisotropy. The prospects for detecting CWs and anisotropy are highly dependent on the astrophysics of SMBHB
populations. Thus, information from single sources can break degeneracies in astrophysical models and place much
more stringent constraints than the GWB alone. We simulate and evolve SMBHB populations, model their GWs,
and calculate their anisotropy and detectability. We investigate how varying components of our semianalytic
model, including the galaxy stellar mass function, the SMBH–host galaxy relation (MBH–Mbulge), and the binary
evolution prescription, impact the expected detections. The CW occurrence rate is greatest for few total binaries,
high SMBHB masses, large scatter inMBH–Mbulge, and long hardening times. The occurrence rate depends most on
the binary evolution parameters, implying that CWs offer a novel avenue to probe binary evolution. The most
detectable CW sources are in the lowest frequency bin for a 16.03 yr PTA, have masses from ∼109 to 1010 Me, and
are ∼1 Gpc away. The level of anisotropy increases with frequency, with the angular power spectrum over
multipole modes ℓ varying in low-frequency Cℓ>0/C0 from ∼5× 10−3 to ∼2× 10−1, depending on the model;
typical values are near current upper limits. Observing this anisotropy would support SMBHB models for the
GWB over cosmological models, which tend to be isotropic.

Unified Astronomy Thesaurus concepts: Gravitational waves (678); Supermassive black holes (1663);
Galaxies (573)

1. Introduction

Supermassive black hole binaries (SMBHBs) are predicted
to result from galaxy mergers. Two galaxies, each hosting a
central supermassive black hole (SMBH; Richstone et al.
1998), merge as predicted by hierarchical structure formation
(Lacey & Cole 1993). Then, their SMBHs sink to the center of
the merged galaxies via dynamical friction, become gravita-
tionally bound, and form a binary with roughly parsec
separation. Stellar scattering and circumbinary disk torques
harden the binary to small separations (∼10−2 pc; Begelman
et al. 1980; Quinlan 1996; Cuadra et al. 2009; Kelley et al.
2017), beyond which they evolve primarily by emitting
gravitational waves (GWs).

The superposition of these continuous waves (CWs) from
many SMBHBs across the Universe creates an incoherent
stochastic GW background (GWB; Rajagopal & Romani 1995;
Jaffe & Backer 2003; Burke-Spolaor et al. 2019), like that for
which pulsar timing arrays (PTAs) have recently found strong
evidence (Agazie et al. 2023a; EPTA Collaboration et al.
2023aa; Reardon et al. 2023; Xu et al. 2023). In the likely
scenario that the PTA-observed GWB is produced by SMBHBs
(Agazie et al. 2023b; Antoniadis et al. 2023c), CWs from
individual, loud SMBHBs are the next highly anticipated GW
signal PTAs could detect. PTA searches have yet to find a CW
source (Agazie et al. 2023c; Antoniadis et al. 2023b), but

simulation-based predictions suggest that single-source CWs
could be detected within a few years of the GWB (Kelley et al.
2018). These single sources will likely brighten certain regions
of the GW sky, inducing anisotropy in the background (Pol
et al. 2022) before they can be individually resolved.
Cosmological models (cosmic inflation, phase transitions,

cosmic strings, domain walls, etc.) for the GWB have also been
suggested (Antoniadis et al. 2023c; Afzal et al. 2023). These
are more likely to be isotropic. Thus, measuring anisotropy in
the GWB would serve as compelling evidence for SMBHBs
being the source. This anisotropy has been predicted using
analytic (Mingarelli et al. 2013; Hotinli et al. 2019; Sato-Polito
& Kamionkowski 2023), semianalytic (Mingarelli et al. 2017),
and simulation-based (Taylor & Gair 2013; Taylor et al. 2020;
Bécsy et al. 2022; Agazie et al. 2023d) methods. We conduct
the first study into what information content GW anisotropy
contains about astrophysical models. Further, this paper offers
the first look at how single-source detection statistics and
anisotropy are related.
Past works have predicted the amplitude and shape of the

GWB using host galaxy populations generated from galaxy
formation simulations (Kelley et al. 2017; Bécsy et al. 2022;
Sykes et al. 2022; Bécsy et al. 2023), dark matter (DM) merger
trees (Izquierdo-Villalba et al. 2022), galaxy catalogs (Mingar-
elli et al. 2017), or semianalytic models (Sesana et al. 2008;
Agazie et al. 2023b), and others have predicted single-source
CWs using galaxy simulations (Kelley et al. 2018), DM merger
trees (Sesana et al. 2009), and semianalytic SMBHB assembly
models (Rosado et al. 2015). Such studies have historically
focused on specific hardening processes (Kelley et al. 2018;
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Siwek et al. 2020) or accretion scenarios and SMBH–host
galaxy relations (Sesana et al. 2005). To advance this field, we
predict the parametric dependence of the likelihood and nature
of low-frequency CW signals on the most complete SMBHB
assembly and evolution models to date. This is the first
systematic investigation of model parameter space and the
information content of single CW sources.

We generate SMBHB populations using holodeck (L. Z.
Kelley et al. 2024, in preparation) as explained in Section 2.1,
extract the loudest single sources, and calculate GWs and
binary properties of both the background and single sources as
described in Section 2.2. We present the resulting characteristic
strain spectra, total masses, and final comoving distances,
for variations on several model components, including the
galaxy stellar mass function (GSMF; Section 3.1.1), the
SMBH–host relations (Section 3.1.2), and the binary evolution
(Section 3.1.3). Then, we calculate single-source detection
statistics for simulated PTAs using the methods described in
Section 2.3. The resulting single-source occurrence rates and
predicted properties (mass, distance, and frequency) are given
in Sections 3.2.1 and 3.2.2, respectively. Finally, we calculate
the GWB anisotropy from these SMBHB populations as
described in Section 2.4, with the resulting angular power
spectrum presented in Section 3.3. We discuss caveats to our
model and future steps in Section 4, and we summarize our key
findings in Section 5.

2. Methods

2.1. Model for SMBHB Populations

Using holodeck (L. Z. Kelley et al. 2024, in preparation),
we assemble a population of galaxy mergers with comoving
volumetric number density dN dVcgal gal gal gal–h º - (Chen et al.
2019),
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We direct the reader to Agazie et al. (2023b) for a full
description of the semianalytic model components, including
the galaxy pair fraction P and galaxy merger time Tgal–gal, both
of which are power-law functions of galaxy stellar mass må1,
galaxy mass ratio qå, and initial redshift z¢.

The components of the model that we investigate in this
paper are (1) the normalization ψ0 and characteristic mass mψ,0
of the GSMF Ψ, (2) the dimensionless mass normalization
μ and intrinsic scatter òμ of the SMBH mass–bulge mass
(MBH–Mbulge) relation, and (3) the binary lifetime τf and “inner-
regime” power-law index νinner of the phenomenological
hardening model, each of which is summarized below. We
study the effects of each of these six parameters in isolation, by
independently varying one parameter across the range listed in
Table 1 while fixing the five other parameters to the fiducial
values listed there and all other model components to the
fiducial values in Table B1 of Agazie et al. (2023b). We
examine a wide range of parameter space corresponding to the
same range explored in Agazie et al. (2023b). While this range
extends beyond currently predicted uncertainties, several model
components remain poorly constrained by observations, and
exploring above and below likely values allows us to clearly
identify the impact of each model component and where GWs
provide constraining power.

GSMF. The GSMF is the number density of galaxies per
decade of stellar mass that determines the initial distribution of
galaxies. We represent the GSMF as a single Schechter
function (Schechter 1976),
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where må1 is the primary galaxy stellar mass; Ψ0, Mψ, and αψ

are phenomenological functions parameterized over redshift as
in Chen et al. (2019) such that
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The population of merged galaxies is derived from this
distribution through the galaxy pair fraction and galaxy merger
time specified in Agazie et al. (2023b) using a fixed power-law
dependence on mass, redshift, and mass ratio. While the GSMF
is well constrained by current astrophysics, varying our GSMF
normalization captures changes in the coefficients normalizing
the pair fraction and merger time as well, thus representing the
overall number of merged galaxies.
SMBH–Host Relation. The SMBH masses are related to their

host galaxies’ bulge masses Mbulge by assuming an MBH–Mbulge
relation defined by dimensionless mass normalization log10 m
and power-law index αμ, in addition to a random normal
distribution of log10 scatter 0, ( )m with standard deviation òμ:
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The bulge mass is calculated as a fraction of the total galaxy
stellar mass= få,bulge ·må1, with få,bulge= 0.615 based on
empirical observations from Lang et al. (2014) and Bluck
et al. (2014).
Applying the MBH–Mbulge relation in Equation (4), the

number density of merged galaxies in Equation (1) translates to
the number density of SMBHBs by
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Hardening. To model GWs detectable by PTAs, the
population of SMBHBs must be evolved in time and separation
to rest-frame orbital frequencies fp corresponding to GW

Table 1
Astrophysical Parameters of the Model Components Investigated in This
Paper, while the Rest Remain Fixed to the Fiducial Values in Table B1 of

Agazie et al. (2023b)

Model Component Parameter Range Fiduciala

GSMF ψ0 [−3.5, −1.5] −2.50
mψ,0 [10.5, 12.5] 11.50

MBH–Mbulge μ [7.6, 9.0] 8.30
òμ [0.0, 0.9] 0.45

phenom da
dt( ) τf [0.1, 11.0] 5.55

νinner [−1.5, 0.0] −0.75

Note.
a The fiducial values are calculated as the mean across the varying ranges,
which correspond to the uniform priors in Agazie et al. (2023b).
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frequencies of a few nanohertz. This binary hardening is
described in terms of a rate of decreasing separation,
da/dt= (da/dt)gw+ (da/dt)phenom, i.e., the sum of a GW
component
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dt
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A double power law allows for distinct asymptotic behavior in
the small-separation “inner” regime and large-separation
“outer” regime, distinguished by a critical break separation
ac. Ha is a normalization factor, calibrated for every binary
such that it has a total binary lifetime from initial separation
ainit to coalescence at the innermost stable circular orbit aisco of

da
dt

da. 8f
a

a 1

init

isco ⎛⎝ ⎞⎠ ( )òt =
-

This serves as a self-consistent approach to modeling binary
evolution, without depending on assumptions about the binary
hardening processes or galactic environment. We also
investigate the effects of varying our four GSMF and
MBH–Mbulge parameters for the GW-only model as in Agazie
et al. (2023b), which is not self-consistent, because GWs alone
cannot bring the binaries to small enough separations to emit
nanohertz GWs, but serves as a useful comparison.

2.2. Binary Properties and Gravitational Waves

The analytic model described in Section 2.1 determines a
comoving volumetric number density of SMBHBs

M q z

3h¶
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,
from which we calculate a continuous number of SMBHBs per
mass M, ratio q, redshift z (at the time of GW emission), and
log rest-frame orbital frequency fln p (Sesana et al. 2008):
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This continuous distribution sets a fractional expectation value
for the number of binaries. In reality, GWs are produced by a
discrete population of binaries. We generate random Universe
realizations of this population by selecting a number of binaries
N(M, q, z, f ) in each parameter bin of ΔM, Δq, Δz, and

fln p( )D from a Poisson distribution () centered at the
aforementioned expectation value,
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We assume circular orbits for all binaries and assign them the M,
q, z, and fp values corresponding to their bin centers. These define
their chirp mass m m M Mq q11 2

3 5 1 5 3 5 6 5 ( ) ( )º = + ,
comoving distance dc, observer-frame GW frequency f=
(2fp)/(1+ z), and the (sky- and polarization-averaged) GW strain

amplitude of Finn & Thorne (2000):
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Because the loudest single source may not be the most
detectable, depending on sky position, inclination, etc., the ten
loudest single sources (i.e., with the greatest hs) in each
frequency bin are then extracted from this population. Their
individual characteristic strains are calculated as (Rosado et al.
2015)
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HereΔf is the frequency bin width and arises when considering
a finite number of sources in finite frequency bins N∼
f ∗ T∼ f/Δf, over an observing duration T.
The GWB is then calculated as the sum of GWs from all

background binaries
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Here we define background binaries to include all but the single
loudest at each frequency because the most immediate
observational application of this work will be the detection of
one CW source, before PTAs can resolve multiple of them.
When considering the GW-only model without phenomenolo-
gical hardening, this, in combination with the GW hardening
rate (da/dt)gw, leads to the hc,BG∝ f−2/3 power law often used
as a comparison point for the characteristic strain spectra. In
reality, we expect deviations from this power law not only due
to the phenomenological hardening before GWs dominate the
evolution (Kocsis & Sesana 2011) but also due to the
discretization of sources where the power law would otherwise
predict fractional binaries (Sesana et al. 2008). We also
calculate the characteristic mass, mass ratio, redshift, comoving
distance, separation, and angular separation for the SMBHBs
contributing most to the background at each frequency. To do
so, we perform an hc,BG-weighted average over all background
binaries emitting at that frequency.

2.3. Detection Statistics

Given the hc,SS and hc,BG spectra, we calculate single-source
and background detection statistics following the formalism in
Rosado et al. (2015). This includes the background signal-to-
noise ratio (S/NBG) and detection probability (DPBG) and each
individual source’s S/N (S/NSS,i) and detection probability
(DPSS,i). The probability of detecting any single source is then
(Rosado et al. 2015)

DP 1 1 DP , 14
i

iSS SS,[ ] ( )= - -

and the expected number of detections for that realization is

N DP . 15
i

iSS SS, ( )åá ñ =

In this prescription, single-source detection probabilities are
given by integrating over the e -statistic from some threshold

e̄ to infinity, where e̄ is set to give a false-alarm probability
(FAP) of 10−3. Even with no signal present, the area under this
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curve will produce a nonzero total detection probability (DPSS)
equal to the FAP. Thus, 10−3 is the lower limit on detection
probabilities calculated in Equation (14) and should be treated
effectively as 0.

In light of the strong evidence for a GWB in current PTA
data (Agazie et al. 2023a; EPTA Collaboration et al. 2023aa;
Reardon et al. 2023; Xu et al. 2023), we study the single-source
detection probability under the same conditions that are likely
to produce measurable GWB evidence by calibrating every
realization to DPBG= 0.50. We use a white-noise-only
simulated PTA of 40 pulsars at randomly assigned sky
positions, 16.03 yr duration (corresponding to Agazie et al.
2023a), and 0.20 yr cadence Δt. Our fiducial method of
calibration is to vary the level of white noise SWN, given by the
error in pulsar times of arrival σ (Rosado et al. 2015):

S t2 , 16WN
2 ( )s= D

until achieving 0.49<DPBG< 0.51. We calculate 〈NSS〉 using
the same pulsar positions and σ, with all characteristic strains
except that of the source in question considered additional
noise,
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h h
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Then, we normalize for small variations around DPBG= 0.50
with
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For one realization of background and single-source character-
istic strain, we calibrate the PTA to the background, then create
100 “sky realizations”—the random position, inclination,
polarization, and phase assignment for single sources—and
conduct single-source detection statistics for each. By calculat-
ing detection statistics for ten single sources for each frequency
of each realization, we allow for the most detectable to depend
on both strain amplitude and random location/orientation. This
is repeated for 500 “strain realizations” of hc,BG and
hc,SS—those created by Poisson sampling in Equation (10),
each with their own background-calibrated PTA—to create
50,000 combined “strain+sky realizations.”

Next, we predict the most likely frequencies of detection by
calculating the DPSS,i-weighted average frequency of all n
loudest single sources across all realizations of a given model:

f
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The likely frequency of detection is sensitive to the shape of the
PTA noise. Thus, we explore different noise models inspired
by realistic sensitivity curves and intrinsic pulsar red noise in
the Appendix.

2.4. GWB Anisotropy

We measure the anisotropy corresponding to each model by
decomposing a simulated GW sky into spherical harmonics, as
in Agazie et al. (2023d). To generate this GW sky, we create a
HEALpix map (Górski et al. 2005) of hc

2 DW (Ω being solid
angle, or equivalently, pixel area) at each frequency of each
realization by assigning the single sources to random pixels and
distributing the remaining hc,BG evenly among all the pixels.
Then, we can decompose this sky into an angular power

spectrum of multipole modes ℓ and m each accompanied by a
coefficient aℓm such that the total GW power is the sum of each
aℓm times the real-valued spherical harmonic Yℓm. The
anafast code, via healpy (Zonca et al. 2019), calculates
these coefficients with the estimator (Gorski et al. 1999)

a
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where N N12pix side
2= is the number of pixels, indexed by p at

positions γp, and f (γp) is hc
2 DW in each pixel.

Using anafast, we calculate the corresponding angular
power spectrum

C
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where Cℓ represents the measure of fluctuations (i.e., aniso-
tropy) on the angular scale θ≈ 180°/ℓ. C0 represents the purely
isotropic average component; thus, we normalize our results by
Cℓ/C0.
This method is tested for 10, 100, and 1000 loudest single

sources per frequency bin, by which point our results are
insensitive to the addition of more single sources. By placing
these sources randomly and treating the remaining signal as
purely isotropic, we do not weigh in possible correlations with
large-scale-structure, making this a conservative estimate for
anisotropy. We also test the resolution and find Cℓ to be
indistinguishable for Nside= 8 up to Nside= 32. Thus, we adopt
Nside= 8 (Npix= 768) to efficiently calculate the spherical
harmonic decomposition for each realization and present the
results in Section 3.3.

3. Results

3.1. Characteristic Strain and Binary Properties

In this section we present the characteristic strain hc, total
mass M, and final comoving distance dc of GWB and CW
sources as a function of frequency. The first column of Figure 1
includes three models with varying GSMF normalization,
ψ0=−3.5, −2.5, and −1.5, while all other parameters remain
fixed to their fiducial values listed in Table 1. Information
about the CW sources is shown in green for these three models.
This includes the 68% confidence intervals (CIs; shaded
regions) across 500 realizations of the single loudest source
at each frequency. The 95th percentile of these sources’ hc,SS
and MSS and the 5th percentile of these sources’ dc,SS are also
shown (points). For comparison, hc,BG and the hc,BG-weighted
average properties (〈M〉BG and 〈dc〉BG) of the background (all
but the loudest single sources at each frequency) are shown in
corresponding shades of gray, with dashed lines representing
their medians.
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The same is shown for models of varying mψ,0 in the second
column of Figure 1, for μ and òμ in Figure 2, and for τf and
νinner in Figure 3. The following three sections describe the
physical scenarios producing these results for each model
component: the GSMF (Section 3.1.1), theMBH–Mbulge relation
(Section 3.1.2), and binary evolution (Section 3.1.3).

3.1.1. GSMF

The GSMF parameters shape the masses of galaxies and thus
their residing SMBHBs for fixed MBH–Mbulge. The masses in
each SMBHB directly determine its strain amplitude as
hs

5 3µ (Equation (11)). When considering the character-
istic strain from many background sources or from a single
source sampled probabilistically from a distribution, hc,SS and
hc,BG also have mass dependence in their GW strains, their
hardening timescales, and their number density, such that
h M q z, ,c

5 6 ( )hµ . By varying GSMF parameters, we
examine the η(M, q, z) component of the mass distribution.
Changes to the distribution of SMBHB masses also result
secondarily in small dc variations owing to the mass
dependence of hardening rate versus frequency (described
below).

Following the Schechter GSMF, the number of SMBHBs
decreases with increasing mass. When this expectation value
approaches zero, few random realizations contain a source in
that bin. When ψ0 increases, the number of sources in every bin
increases. After sampling, this translates to the loudest
randomly realized sources having higher masses.

The background sees a similar increase in the mass of its
dominating sources. In addition to this, it also has a larger
number of contributing sources in every mass and frequency

bin. Thus, hc,BG increases near uniformly across all frequen-
cies. Its amplification matches that of hc,SS at high frequencies
and exceeds that of hc,SS at low frequencies. There, SMBHB
numbers are the largest because sources harden more slowly at
low frequencies. This is particularly true of high-mass sources,
whose numbers dwindle at high frequencies where they harden
quickly by emitting more GWs. Thus, scaling up the number of
sources in every bin leads to many more massive sources
contributing to the low-frequency GWB.

Figure 1. Characteristic strain (top row), total mass (middle row), and final
comoving distance (bottom row), for varying ψ0 (left column) and mψ,0 (right
column). Shaded green regions represent 68% CIs of the single loudest source
at each frequency, with markers to indicate the 95th percentiles for hc,SS and
MSS and 5th percentiles for dc,SS. Dashed lines represent the median
background (all but the single loudest source per frequency) characteristic
strain hc,BG and the hc-weighted background properties (〈M〉BG and 〈dc〉BG).
mψ,0 increases from −3.5 to −2.5 to −1.5 and ψ0 increases from 10.5 to 11.5 to
12.5 for darkening shades of green/gray.

Figure 2. Same as Figure 1, but for the MBH–Mbulge parameters: increasing μ
(left column) from 7.60 to 8.30 to 9.00 and increasing òμ (right column) from
0.00 to 0.45 to 0.90 for darkening shades of orange (single sources) and gray
(background).

Figure 3. Same as Figure 1, but for the phenomenological hardening
parameters: increasing τf (left column) from 0.10 to 5.55 to 11.00 Gyr and
flattening νinner (right column) from −1.50 to −0.75 to 0.00 for darkening
shades of blue (single sources) and gray (background).

5

The Astrophysical Journal, 965:164 (13pp), 2024 April 20 Gardiner et al.



The GSMF characteristic mass mψ,0 (Figure 1, right column)
sets where the expected number of binaries drops off. Thus,
varying mψ,0 only significantly impacts mass bins corresp-
onding to the lowest end of our varying mψ,0 range
(mψ,0= 10.5) and above. Thereby, Figure 1 shows that
increasing mψ,0 from 10.5 to 12.5 raises the MSS 68% CIs
most dramatically (∼1.6 dex) at low frequencies, where
massive sources are more common and more moderately
(∼0.5 dex) at high frequencies.

The background also sees large increases in 〈M〉BG at low
frequencies because many loud binaries remain there, even
after the loudest has been extracted, and little change in typical
mass at high frequencies, where few high-mass sources remain
after single-source extraction. This amounts to hc,SS having an
overall more significant increase than hc,BG.

While high-mass sources dwindle at high frequencies owing
to fast GW hardening, lower-mass sources are driven more
quickly through the low-frequency regime (for fixed binary
lifetime) by environmental processes. Thus, a lower mψ,0
flattens both hc,SS and hc,BG at low PTA-band frequencies
because the loss of the most massive sources is exacerbated by
the environmentally driven hardening of lower-mass sources.
The effects of environmental hardening (represented by νinner)
are explored further in Section 3.1.3, but here we find that
when the characteristic strain is dominated by less massive
binaries, environmental hardening flattens the low-frequency
spectrum more.

Regardless of the model, low-frequency sources tend to be
nearer. This is because more massive sources (which are
numerous at low frequencies) take longer to evolve to the PTA
band, as explained in greater detail in Section 3.1.3. Longer
evolution times let these massive sources reach the PTA band
at smaller redshifts and closer distances.

3.1.2. MBH–Mbulge Relation

Figure 2 shows hc, M, and dc for varying MBH–Mbulge
parameters. Given a population of host galaxies, the
MBH–Mbulge relation in Equation (4) sets the masses of these
galaxies’ central SMBHBs. Increasing the relation’s mass
normalization (μ) shifts all SMBHBs to higher masses. This
has negligible impact on low mass bins, where the number
density is large and changes gradually with mass. However, at
high masses, the number density drops off quickly with
increasing mass. This means that shifting the expected number
of sources of one bin to the next bin of increasing mass
significantly raises the chances of realizing a source in that
higher mass bin. Overall, this increases the odds of randomly
sampling a source in any high mass bin.

The left column of Figure 2 shows that a ∼1 dex increase in
MSS follows the increase in μ from 7.6 to 9.0 at low
frequencies, where massive sources are numerous. The
∼1 dex increase in mass is not as great as the ∼1.6 dex
increase in mass normalization because these higher-mass
binaries also evolve faster. At high frequencies, the 68% CIs
see a more modest increase, which follows from the fact that
these represent lower-mass sources. The changes in hc,SS are
approximately proportional to MSS

5 3 (see Equations (11) and
(12)), with deviations below this relation due to unequal mass
ratios. Meanwhile, at high frequencies, the background is
minimally affected by μ owing to the lack of massive sources,
especially after the loudest have been removed. Ultimately,
across all frequencies, increasing μ raises hc,SS more than hc,BG.

Increasing scatter òμ in the MBH–Mbulge relation preferen-
tially scatters sources to higher mass bins through Eddington
bias. Like μ, this increases the odds of sampling sources from
the highest mass bins. The right column of Figure 2 shows that
an increase in òμ from 0.0 to 0.9 increases all low-frequency hc
and hc,SS slightly more than hc,BG. This preferential scattering
effect becomes negligible at lower masses, where the mass
function flattens and number densities become large; thus, we
see that the MSS 68% CIs and 〈M〉BG medians both converge at
high frequencies, where lower-mass sources dominate. Simi-
larly to the mψ,0 scenario, anytime low-mass sources are a
greater contributor to the overall characteristic strain spectrum,
the low-frequency end of the spectrum is also flatter, due to
low-mass sources’ hardening being sped up by environmental
processes.
In addition to the preferential scattering systematically

increasing masses, introducing scatter to the MBH–Mbulge
relation adds a second element of randomness beyond the
Poisson bin sampling, widening the variance of random
realizations. This is apparent as a slight widening of the 68% CI
MSS and hc,SS regions and is more obvious in the single-source
95th percentiles, which generally increase by 0.5 dex, even at
high frequencies, where the 68% CIs converge.
The MBH–Mbulge relation slightly impacts the distribution of

dc,SS at low frequencies, with the 68% CIs including more
distant sources when òμ is higher. When scatter is low and
arbitrarily high mass sources are less likely to be sampled,
nearby sources tend to be the loudest. When the scatter is
increased, the loudest source could instead be more massive but
farther away. This effect occurs only at low frequencies
because that is where òμ causes a measurable change in MSS
and hc,SS. We also see a frequency dependence of dc,SS
matching that described in the last section: low-frequency
single sources tend to be nearer because these sources are more
massive and thus take longer to reach the PTA band.

3.1.3. Hardening

In our phenomenological hardening model, all sources take
the same total time from galaxy merger to SMBH coalescence,
set by τf. The way this hardening rate is distributed across the
binary’s lifetime depends on its mass, such that higher-mass
sources spend less time at high frequencies. This is because (1)
more massive sources evolve more rapidly by GWs when they
reach small separations and (2) more massive sources merge at
larger separations. These combined effects require high-mass
sources to evolve slower than low-mass sources at low
frequencies, in order to meet the same fixed τf. Thus, in our
model, massive sources take longer to reach the PTA frequency
band. Lower-mass sources will reach the PTA band more
quickly and then dwell there longer, as they harden slower than
their high-mass counterparts until they eventually coalesce. The
slower evolution of massive binaries to PTA frequencies means
that they tend to be nearer when they emit in the PTA band.
However, those that start at too low of redshifts will not reach
separations small enough for PTA-band emissions by red-
shift zero.
When τf is increased, this extends the evolution time of

binaries at all masses, moving the entire populations to smaller
final comoving distances. The left column of Figure 3 shows
this to be similarly true for both the background and single
sources, with 〈dc〉BG decreasing by ∼1.0 dex and dc,SS by
∼1.1 dex when τf is raised from 0.1 Gyr (light blue) to 11.0 Gyr
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(dark blue). Second, when the hardening time is extended, the
most massive sources are unlikely to reach small enough
separations to emit at PTA-detectable frequencies, producing a
decrease in mass. This effect is largest at high frequencies, to
which binaries take the longest to evolve. Third, when the
overall binary lifetime is short, even high-mass binaries can be
driven by non-GW hardening represented by νinner, causing a
low-frequency flattening or turnover in the hc spectrum as
described in the νinner analysis below. The characteristic strain
has a greater proportional dependence on MSS than dc,SS, so the
changes in hc,SS with varying τf follow the changes in MSS.
When considering the background, the filtration of massive
sources applies to a larger number of sources at low
frequencies, where massive sources are numerous. Thus, long
τf decreases hc,BG slightly more than it decreases hc,SS at low
frequencies.

Per Equation (7), νinner sets the hardening rate in the small-
separation regime, with the asymptotic behavior of

dt
d a

a a a
ln

. 23c inner( ) ( ) ~ n

A flatter (less negative) νinner increases the hardening rate at the
lowest end of the PTA frequency regime before (da/dt)|gw
dominates (see Figure 3 in Agazie et al. 2023b). This represents
faster hardening by processes like stellar scattering and
circumbinary disk torques and produces the low-frequency
turnover in both hc,BG and hc,SS apparent in the top panels of
Figure 3.

Single sources are only impacted at low frequencies because
there, when νinner= 0, even the most massive sources will have
phenomenological hardening dominate GW hardening. The
same is true of massive binaries when the total binary lifetime
is short. Lower-mass binaries can be dominated by phenom-
enological hardening up to higher frequencies, as their GW
emission is weaker. Thus, the background—including con-
tributions from lower-mass binaries—sees a lower hc,BG across
all frequencies for flat νinner.

The bottom right panel of Figure 3 shows the 68% CIs of
low-frequency single sources to be more distant for flat νinner
than either of the other two cases. We attribute this to a
selection bias: when νinner is flat, massive sources evolve
through the low end of the PTA band quickly. Thus, there are
fewer of them. While any individual source is just as able and
likely to reach small distances, having fewer of them decreases
the odds of having an especially close source. These trends
only appear in the 68% CIs because the lower bounds of dc,SS
for νinner represent the less common cases where one of the few
loud sources just so happens to be nearby. This source can be
as near under flat νinner as it can for steep νinner; it is just less
likely to exist in the first place.

3.2. Astrophysical Dependence of CW Detections

3.2.1. CW Detection Occurrence Rate

Figure 4 shows the single-source detection probability
(DPSS) and the background detection probability (DPBG) as a
function of each varying parameter, for a fixed-PTA config-
uration. This “fixed-PTA” method involves calibrating the
PTA’s noise level so that the median hc,BG across all
realizations of the mean parameter model (i.e., with the fiducial
parameter values listed in Table 1) has a 50% DPBG. For
example, the top left panel represents varying ψ0, so the PTA is

calibrated to the median hc,BG across 500 realizations of the
ψ0=−2.5 model. This PTA is used throughout the rest of the
varying ψ0 with phenomenological hardening analysis. The
resulting DPSS medians are represented by a solid green line,
with 50% and 95% DPSS CIs represented by green shaded
regions. The resulting DPBG medians are represented by a
dashed darker green line, with 50% and 95% CIs represented
by darker green shaded regions. The rest of the panels show the
same, but for varying mψ,0, μ, òμ, τf, and νinner as labeled.
In all cases, the DPSS medians remain below DPBG,

consistent with the expectation for GWB detection to occur
before CW detection (e.g., Rosado et al. 2015). DPBG is
remarkably well constrained (95% CIs spanning 0.5 dex),
while DPSS 95% CIs often range all the way from ∼10−3 to
∼100. These 95% CIs of DPSS can exceed DPBG in a few
corners of parameter space, most notably for ψ0− 2.3,
τf 5 Gyr, and νinner− 0.75. Thus, low mψ,0, long τf, and flat
νinner are disfavored. Recall from Section 2.3 that calculating
DPSS by integrating over the e -statistic with zero signal
present still produces a nonzero detection probability equal to
the FAP, hence the floor of DPSS� 10−3.
Although the variance between DPSS realizations is large,

there are clear trends in how both DPSS and DPBG depend on
the model parameters. For mψ,0, μ, and òμ, the DPSS medians
behave similarly to the DPBG medians, just at lower values. The
greatest difference in DPSS and DPBG behavior occurs for the
hardening parameters, both of which decrease DPBG by 3 dex
but only decrease DPSS by 0.7 dex. ψ0 also shows
significantly less impact on hc,SS than hc,BG, the hc,SS medians

Figure 4. Detection probability for a PTA calibrated to the median DPBG of the
mean parameter model (i.e., using the fiducial values in Table 1). The PTA is
calibrated once for each panel’s mean phenomenological model and once for
each panel’s mean GW-only model. The single-source detection probability is
shown in color: for varying GSMF parameters in green, for varying MBH–
Mbulge parameters in orange, and for varying hardening parameters in blue. The
DPSS medians are represented by solid lines, and the 68% and 95% CIs are
shaded. The background detection probability (DPBG) is given in darker shades
of the same colors, with medians as dashed lines and 68% and 95% CIs shaded.
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increasing only by ∼1.3 dex compared to DPBG increasing
by ∼3 dex.

In Figure 4, there are a wide range of DPBG values.
However, following recent PTA results, there is considerable
evidence for a GWB signal. Thus, in Figure 5 we calibrate a
PTA independently for each realization of each set of
parameters. This shows how single-source detection depends
on each parameter, for a fixed confidence in the GWB. Because
this “realization-calibrated” method is informed by current
evidence for the GWB and allows for a more nuanced
exploration of parameter space, we present this as our fiducial
method for identifying where in parameter space single sources
are most/least likely to be detected, with the key results being
those of Figure 5. Meanwhile, Figure 4 is useful to distinguish
effects due to background calibration from direct effects on
single sources.

Figure 5 also includes the GW-only model, which uses
similar “realization-calibrated” PTAs, with the resulting 〈NSS〉
medians in dashed–dotted light gray and 68% CIs shaded in
light gray. Note that the τf and νinner panels include constant
GW-only data because the GW-only model has no τf or νinner to
vary. The rest of the GW-only results follow the same trends as
the phenomenological cases but are lower by up to 1 dex. This
effect is similar to having a very steep νinner: both involve GW
hardening dominating the entire PTA band. Without phenom-
enological hardening speeding up the evolution, sources dwell
in the PTA band longer, increasing the number of binaries
contributing to the total hc,BG, while the individual loudest

remain unaffected (see Section 3.1.3). Since DPBG is calibrated
to 50%, we see the changes in 〈NSS〉.
Given that PTAs have not yet detected a CW, very long τf

and flat νinner, both of which predict 〈NSS〉∼ 1, are unlikely.
This is independent but consistent with the short τf constrained
by GWB data in Agazie et al. (2023b) and Antoniadis et al.
(2023c). Agazie et al. (2023b) also favor flatter νinner, with
−0.4 as their maximum likelihood posterior. There are clear
trends in the medians and 68% CIs of 〈NSS〉 for all other model
parameters as well. Thus, CW detections can inform and
constrain our astrophysical models for SMBHB populations
and evolution, beyond the constraints placed by measuring the
GWB amplitude.
GSMF. The top left panel of Figure 5 shows that 〈NSS〉

decreases smoothly from ψ0=−3.5 to ψ0=−1.5, as a result
of the more significant increases in hc,BG than hc,SS for
increasing GSMF normalization. Therefore, a larger total
number of galaxies in the Universe increases the likelihood
of any GW detection but disfavors CW detection for a fixed
DPBG. The top right panel of Figure 5 shows that 〈NSS〉
increases with mψ,0, indicating that the single-source detect-
ability increases more with GSMF characteristic mass than
background detectability does.
MBH–Mbulge Relation. Section 3.1.2 and Figure 2 show that

increasing μ raises hc,SS slightly more than it raises hc,BG. Thus,
the middle left panel of Figure 5 shows a subtle positive trend
in 〈NSS〉 versus μ. In Figure 4 it is clear that òμ affects DPBG the
least of the six parameters because the impact of scatter on
hc,BG is minor. Rather, òμ primarily affects the edge cases of the
loudest/most massive sampled sources, i.e., those extracted as
single sources. Thus, there is dramatic growth in DPSS and
moderate growth in 〈NSS〉 when raising òμ from 0.0 to 0.9.
Hardening. Figure 4 shows DPBG decreases with τf, except

at short τf, where the loss of massive binaries due to failure to
reach the PTA band becomes less significant (until a slight
uptick occurs at 0.1 Gyr, where decreasing distance outweighs
the loss of massive sources). Single sources become nearer but
are less affected by the filtration of binaries, leading 〈NSS〉 in
the bottom left panel of Figure 5 to increase to 1 at long τf. In
the bottom right panel of Figure 5, 〈NSS〉 increases most
dramatically between −0.75 νinner 0. Thus, CW detections
(assuming fixed GWB confidence) become increasingly likely
when phenomenological hardening processes speed up small-
separation (a ac= 102 pc) binary evolution. Any single-
source detection would make it highly unlikely that νinner is
steep.

3.2.2. Likely CW Source Properties: Mass, Distance, and Frequency

The comoving distance dc versus massM of the most detectable
single sources are presented in Figure 6. Contour lines show the
0.5σ, 1.0σ, 1.5σ, and 2.0σ contours of the S/N-weighted number
of sources in each bin of M and dc, with the same panel and color
convention for the six parameters as in Figure 5. The light,
medium, and dark shades represent each model parameter’s
lowest, mean, and highest values, respectively. Solid colored lines
represent the single sources, while the hc,BG-weightedM and dc are
shown in dashed gray contours for comparison.
Across all parameters, the 2σ region spans masses of

2× 108MeMSS 1.5× 1010Me, while the mean parameter
model (with the Table 1 fiducial values) peaks at ∼8× 109Me.
These results are consistent with the chirp masses Rosado et al.
(2015) predict a 20 yr IPTA could most likely detect, all

Figure 5. Expected number of single-source detections 〈NSS〉 for a white-noise-
only PTA calibrated independently to a 50% background detection probability
for each parameter and realization. 〈NSS〉 is given as a function of varying
GSMF parameters (top row) in green, MBH–Mbulge parameters (middle row) in
orange, and phenomenological hardening parameters (bottom row) in blue for
the phenomenological hardening model. The medians are solid lines, and the
68% and 95% CIs are shaded. 〈NSS〉 for the GW-only hardening model has
medians represented by dashed–dotted lines and 68% CIs shaded in gray.
These are replaced in the bottom row by constant values corresponding to the
fiducial GSMF and MBH–Mbulge model because with GW-only hardening there
are no τf and νinner to vary.
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peaking in probability between 109.5 and 1010Me. Long
hardening times significantly decrease the peak masses, down
to ∼109Me, by ruling out nearby massive sources that would
not have time to reach PTA-band separations.

The mean parameter model predicts single-source dc peaking
in S/N-weighted number at ∼800Mpc, with a 1.5σ region
spanning 70Mpc dc,SS 2100Mpc. Only a small region of
this parameter space overlaps with IPTA redshift predictions by
Rosado et al. (2015), which are mostly beyond ∼2100Mpc
(z 0.56). These distances are only impacted by the GSMF
and MBH–Mbulge relation parameters insofar as having more
massive binaries can allow more distant sources to be the most
detectable, as shown by the correlation between increasing
mass and greater distance in Figure 6. Yet the background
distances are not affected, so single sources break the
degeneracy in distances for different GSMF and MBH–Mbulge
parameters. The same is true of masses for varying mψ,0, μ, and
òμ. This shows how properties of single sources can break
degeneracies between our model components in a way that is
not possible using GWB detection alone.

The hardening parameters, on the other hand, impact both
single-source and background distances by setting the time it
takes binaries to reach the PTA band, as described in
Section 3.1.3. This is most obvious for the hardening time,
where longer τf leaves the loudest sources at peak distances as
close as ∼250Mpc by the time they are emitting nanohertz
GWs. Similarly, when νinner is very flat, the hardening

timescales at separations just before the PTA band are small,
meaning that single sources reach these frequencies more
quickly and thus at larger distances, with the S/N-weighted
number peaking at ∼1500Mpc.
The DP-weighted average CW frequency across all single

sources in all realizations 〈fSS〉 is presented as a function of
each varying parameter in Figure 7. The color and panel
convention follows that of Figure 5, with the GW-only model
again represented by dashed–dotted gray lines. Shaded regions
represent one standard deviation above and below the median
in log space, calculated according to Equation (20). In all
phenomenological cases regardless of parameters, the CW
frequency most likely to be detected by our 16.03 yr PTA is
around 0.07 yr−1= 1.12/16.03 yr, except for an uptick at flat
νinner to ∼0.1 yr−1.
For this 16.03 yr PTA, 〈fSS〉 is generally in the lowest

frequency bin, in agreement with similar PTA duration
predictions in Rosado et al. (2015), because white-noise-only
PTA models give a monotonic decrease in DPSS versus
frequency. If hc,SS continues to increase with decreasing
frequency, the loudest sources will likely remain in the lowest
frequency bin. However, hc,SS may instead plateau at low
frequencies, moving the average detection frequency to a
specific value where the single-source strains are maximized
relative to the combined noise of the PTA and GWB (Kelley
et al. 2018). Including red noise decreases the detection
probability of the lowest-frequency sources, thus moving the
〈fSS〉 to higher frequencies. Given that pulsars typically have
some intrinsic red noise (Agazie et al. 2023e), the white-noise-
only 〈fSS〉 predictions should be treated as lower limits on the
predicted frequency of first CW detection. We explore the
effects of varying red-noise models on these predictions in the
Appendix.

Figure 6. S/N-weighted number density of single sources’ final comoving
distance vs. total mass. The contours represent 0.5σ, 1.0σ, 1.5σ, and 2.0σ
contours for three variations of a single parameter, while all other parameters
are fixed at their mean values. The middle shade in each plot refers to the mean
parameter model (i.e., with the fiducial values in Table 1). The different colors
correspond to the same models as in Figures 1, 2, and 3, where green, orange,
and blue represent the single sources for the GSMF, MBH–Mbulge relation, and
hardening parameters, respectively, and shades of gray represent the hc,BG-
weighted average values. The ten loudest single sources at each frequency are
used for the DPSS-weighted number densities, and all but these ten loudest are
used for the DPBG-weighted number densities.

Figure 7. DP-weighted frequency of the loudest single sources, as a function of
each varying parameter, while the rest of the parameters are fixed. Colored
regions and solid lines represent the 1σ regions and means for the
phenomenological hardening model, while gray regions and gray dashed–
dotted lines represent the same for the GW-only hardening model.
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The GW-only model mostly predicts similar frequencies to
the phenomenological models, but with some increase up to
∼0.1 yr−1 at high ψ0 and low mψ,0, μ, and òμ—everywhere
〈NSS〉 is low. When 〈NSS〉 is low, the background likely
becomes a more significant source of red noise, pushing the
most detectable sources to higher frequencies. This also allows
for more variation in the highest-DP frequency between
realizations, hence the larger weighted standard deviation in
the low 〈NSS〉 regions of parameter space.

3.3. Anisotropy in the Gravitational-wave Background

We calculate Cℓ up to ℓ 8max = for each of the models
presented in Figure 6. The resulting Cℓ values are indis-
tinguishable for each ℓ� 1 of a given model, consistent with
similar holodeck predictions marginalizing over many
semianalytic models in Agazie et al. (2023d), predictions using
cosmological DM simulations to assign SMBHBs (Taylor &
Gair 2013), and the analytic shot-noise approximation for
GWB anisotropy in Sato-Polito & Kamionkowski (2023).
Thus, we present C1/C0 versus frequency as a proxy for any
Cℓ/C0 in Figure 8, including results from the lowest, mean, and
highest variation of each of the six model parameters. These are
calculated using the 1000 loudest sources (solid line medians
and shaded 68% CI) and 10 loudest sources (dotted line
medians) in each frequency bin. Remarkably, using the 10
loudest and the 1000 loudest sources gives C1/C0 medians and
standard deviations both within �0.16 dex of each other at any
frequency, with average differences of just ∼0.03 and

∼0.02 dex, respectively. Thus, in our models, anisotropy in
the GWB is determined by �10 loudest sources in any given
frequency bin.
The medians span 6× 10−3 Cℓ/C0 2× 10−1 at low

frequencies and 2× 10−1Cℓ/C0 6× 10−1 at high frequen-
cies. This increase in anisotropy with increasing frequency is
expected because dwindling numbers of massive sources make
the background hc,BG drop off more than individual sources’
hc,SS, until there is hardly even a “background” at high
frequencies. These results overlap with the Cℓ/C0 of the Sato-
Polito & Kamionkowski (2023) models favoring a small
number of binaries with high mass and low redshift. However,
the remaining three of their five models, which reproduce the
same characteristic strain using a larger number of lower-mass,
higher-redshift binaries, predict levels of anisotropy up to five
orders of magnitude below ours, at low frequencies. Mean-
while, most of our CIs overlap with the Taylor & Gair (2013)
calculation of Cℓ>0/C0∼ 0.1 for a DM-simulation-based
SMBHB population, marginalized over many frequencies.
Agazie et al. (2023d) place Bayesian upper limits of

C1/C0 2× 10−1 (circles with dashed lines in Figure 8).
Most 68% CIs overlap or nearly reach these upper limits,
suggesting that if the GWB is produced by SMBHBs,
anisotropy may be detected in the near future, and the lack
thereof could place stringent constraints on our parameter
space. In fact, very long hardening time and flat hardening
index predict median anisotropy levels above the current upper
limits. This disfavors these corners of parameter space and
supports the idea that single sources are particularly useful for
constraining binary evolution.
Figure 9 shows C1/C0 for the lowest five frequency bins, as

a function of each varying parameter, using just 10 loudest
sources per frequency bin. In comparing Figure 9 to Figure 5, it
is evident that the models with the greatest Cℓ/C0 correspond to
those with the highest 〈NSS〉. This is because increasing 〈NSS〉
and increasing anisotropy both stem from cases where the
loudest single sources become more dominant. The greatest
model-dependent changes in anisotropy are for long τf and flat
νinner. Both these scenarios produce very high Cℓ/C0 (0.2) at
the lowest end of the PTA band and then are nearly constant
with frequency. The significant increases in Cℓ/C0 at low
frequencies correspond to the scenarios in Figure 3 where hc,BG
decreases significantly and hc,SS sees less change.

4. Discussion

We present the dependence of single-source detection
statistics and anisotropy on astrophysical model parameters.
These models include several assumptions to keep in mind.
First, we assume circular orbits for all binaries. Allowing for
eccentricity may move some GW energy from lower to higher
frequencies and could have different impacts on the loudest
single sources versus the background—a subject worth further
investigation (M. Siwek et al. 2024, in preparation). Another
caveat is that our hardening model prescribes a fixed hardening
time for all binaries, regardless of mass or redshift. This is a
useful approximation to self-consistently examine how chan-
ging overall binary evolution impacts GW models without
adding too many degrees of freedom, but there is no reason that
these hardening times should not be mass dependent. Thus, we
suggest allowing binary lifetimes to depend on mass as a
potential way to expand on this hardening model. A third
caveat to this model is that the SMBH–host galaxy relations

Figure 8. Anisotropy in terms of Cℓ/C0 for the first spherical harmonic mode
as a function of frequency, for varying astrophysical models. Medians (solid
lines) and 68% CIs (shaded) correspond to the model of the same panel and
color in Figure 6, as labeled. By these methods, any Cℓ>0/C0 is
indistinguishable up to ℓ 8max = , so the C1/C0 data plotted represent any
Cℓ>0/C0 distribution. Bayesian upper limits on C1/C0 from Agazie et al.
(2023d) are plotted for comparison as purple circles.
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use empirical measurements of local galaxies. These relations
can be improved as more electromagnetic data are collected,
particularly about more distant galaxies. The relations are based
entirely on bulge mass and could be expanded by including
velocity dispersion (Matt et al. 2023; Simon 2023).

Degeneracies and covariances between model components
serve as key challenges in making GW-based constraints. This
work shows the potential for using single sources to distinguish
between parameters that are degenerate in shaping the GWB.
By considering multiple parameters, one can raise single-
source detection probability while maintaining the GWB
amplitude by increasing the masses of binaries—whether
through the GSMF mψ,0 or MBH–Mbulge μ—and decreasing
the total number of binaries. The previous examples translate
similarly to anisotropy. Figure 6 demonstrates that the mass
and distance of loud single sources can further break
degeneracies, as discussed in Section 3.2.2. While we defer
an exploration of specific degeneracies to future work
incorporating PTA data, the discrepancy in how 〈NSS〉 and
anisotropy versus the GWB amplitude vary implicitly shows
that single sources can carry different information from the
GWB. Thus, we can make the strongest constraints by
combining them.

Another challenge in making any conclusions based on
single-source detection statistics is the 3 dex spread of 〈NSS〉
95% CIs. This is a result of the fact that CW detections depend

on the random chance of a particularly massive binary
happening to be nearby. This randomness limits the precision
of any single-source predictions or parametric constraints by
semianalytic models. Incorporation of galaxy catalogs may
allow for more narrowly constrained predictions as to what
single sources could be realized in our Universe.
EM data may also inform the level of GWB anisotropy in

our Universe. By placing the sources randomly and treating the
background as purely isotropic, we make conservative
estimates for anisotropy. However, one might predict that
more SMBHBs will be emitting PTA-band GWs in regions of
higher cosmic density. A future step would be to study possible
correlations between GWB anisotropy and galaxy clustering or
large-scale structure. On the other hand, if just a few loudest
sources at distances of ∼1000Mpc entirely determine aniso-
tropy (as we have found), then these correlations seem less
likely because the placement of individual sources is random
on scales large enough to treat the Universe as purely isotropic.
Regardless, this would be an interesting hypothesis to test.
By varying PTA noise to make each model produce 50%

DPBG, we comprehensively explore the detection statistics of a
wide parameter space, including models that produce low
GWB amplitudes. The next step to build on this parameter
space exploration is to condition our models on current
measurements of the GWB amplitude. With these GWB-
conditioned models, we can fully explore the multidimensional
parameter space to explicitly include covariances and use
realistic PTAs to calculate our detection statistics, as opposed
to calibrating to a fixed DPBG. The resulting background
detection statistics will serve as a check on the GWB
constraints set by Agazie et al. (2023b). Then, we will test
whether the current lack of CW detections (Agazie et al. 2023c)
and upper limits on anisotropy (Agazie et al. 2023d) can further
constrain these model parameters. We expect that long τf and
flat νinner will be most easily constrained by single-source
detection statistics and anisotropy, given that these are the
regions of parameter space where both 〈NSS〉 and Cℓ/C0 are
highest and 〈NSS〉 has the lowest variance.

5. Conclusions

In this work, we develop an approach for modeling CWs
distinguishable from a background of SMBHBs, their sources’
properties, and their corresponding GWB anisotropy. We
develop a detection statistics pipeline that calibrates a simulated
PTA to a 50% probability of detecting the background and
calculates the expected number of single-source detections
under those settings. Our primary conclusions are the
following:

1. GW anisotropy and CW detections (or lack thereof)
convey specific information about the astrophysics
governing galaxy population, their SMBHBs, and binary
evolution. This anisotropy and CW information can break
model degeneracies and allow for much more stringent
constraints than possible with the GWB alone.

2. CWs are increasingly likely to be observed for low
GSMF normalization ψ0, high GSMF characteristic mass
mψ,0, high MBH–Mbulge mass normalization μ and
intrinsic scatter òμ, long hardening time τf, and flat
small-separation hardening index νinner.

3. Anisotropy in the GWB, represented by the angular
power spectrum Cℓ over multipole modes ℓ, is determined

Figure 9. Cℓ>0/C0 medians and 68% CIs for the first five frequency bins (1.98,
3.95, 5.93, 7.91, and 9.88 nHz) as a function of each varying model parameter.
The data plotted use ℓ = 1 but are indistinguishable from any other

ℓ ℓ1 max  . The panels correspond to the same parameters as in Figures 4,
5, and 7. These Cℓ/C0 values are calculated using just the 10 loudest sources in
each frequency bin, which Figure 8 shows sufficiently reproduces the
anisotropy in our model calculated using the 1000 loudest sources. The
Agazie et al. (2023d) upper limit on C1/C0 in the lowest frequency bin is
denoted by a horizontal dashed blue line.
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in our models by �10 loudest sources at each frequency
and is the same for any ℓ ℓ1 max  . Models vary in
their low-frequency predictions for Cℓ>0/C0 from
∼5× 10−3 to ∼2× 10−1 and converge to ∼3× 10−1 at
high frequencies.

4. Models with greater single-source detection probability
tend to have higher anisotropy, often exceeding current
upper limits of C1/C0 0.2 at low frequencies. Thus, not
detecting anisotropy could strongly constrain our para-
meter space.

5. Of all our model components, binary evolution shows the
greatest promise for constraints using single sources and
anisotropy. Long hardening time and flat νinner give the
greatest probability of CW detection for a fixed GWB
confidence and high anisotropy even at low frequencies.

6. The most detectable single sources are found in the
lowest frequency bin for a 16.03 yr PTA with masses
ranging from ∼109Me to ∼3× 1010Me and final
comoving distances ranging from ∼250 to ∼2500Mpc.
The most detectable frequency has little dependence on
the model but increases with greater pulsar red noise.

7. Single-source masses generally increase with increasing
ψ0, mψ,0, μ, and òμ and decreasing hardening time. Only
the hardening parameters have a demonstrable impact on
these sources’ final comoving distances, with longer τf
and steep νinner resulting in the closest sources.
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Appendix
PTA Noise Models

The primary work in this paper uses a white-noise-only
simulated PTA. We also consider the impact of red-noise
models, parameterized by an amplitude ARN at reference
frequency fref= 1 yr−1 and power-law index γRN,
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while allowing the total noise amplitude to vary.
Figure 10 shows the resulting 〈NSS〉 as a function of the six

varying model parameters for the fiducial white-noise-only
model (black), red noise with spectral index γRN=−1.5
(purple), and red noise with spectral index γRN=−3.0 (red).
For the red-noise models we include ratios of Q= 0.01
(dashed–dotted), Q= 1.0 (solid), and Q= 100 (dashed). The
addition of red noise generally raises the relative single-source
detection probability because it makes the GWB less
distinguishable from the noise, such that the total noise
calibration must be lower for a 50% DPBG. In fact, when steep
(γRN=−3.0) red noise dominates (Q= 100), the median 〈NSS〉
is 0.1 for all model variations except the highest ψ0 values.
The increase in 〈NSS〉 from previously low regions results in an
overall flattening in parametric dependence but maintains the
sign of the derivative, i.e., whether 〈NSS〉 is increasing or
decreasing with each parameter.
Figure 11 shows that adding red noise also raises the most

detectable CW frequency because lower-frequency sources are
drowned out. Moderate red noise (γRN=−1.5; purple)
maintains the lack of dependence on model parameters seen
in the white-noise cases. However, adding steep red noise
(γRN=−3.0; red) with a ratio of Q 1 creates a dependence of
〈fSS〉 on each varying parameter. For all but νinner, this 〈fSS〉
dependence tends to follow the opposite trend of 〈NSS〉. When
〈NSS〉 is low, there is greater noise from the PTA calibration,
especially at low frequencies, pushing 〈fSS〉 higher.

Figure 10. Expected number of single-source detections when the background
detection probability is calibrated to 50% by varying the pulsar noise levels.
The noise is set by a fixed ratio Q = SRN( fref)/SWN( fref) between white noise
and red noise at reference frequency fref = 1 yr−1 and fixed red-noise index of
γRN = −1.5 (purple), or −3.0 (red). Noise ratios of 0.01, 1.0, and 100.0 are
represented by dashed–dotted, solid, and dashed lines, respectively, and the
68% CIs of the white-noise-only results are shaded.
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