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Abstract

Pulsar timing is a powerful tool that, by accounting for every rotation of a pulsar, precisely measures the spin
frequency, spin frequency derivatives, astrometric position, binary parameters when applicable, properties of the
interstellar medium, and potentially general relativistic effects. Typically, this process demands fairly stringent
scheduling requirements for monitoring observations as well as deep domain knowledge to “phase connect” the
timing data. We present an algorithm that automates the pulsar-timing process for binary pulsars, whose timing
solutions have an additional level of complexity, although the algorithm works for isolated pulsars as well. Using
the statistical F-test and the quadratic dependence of the reduced χ2 near a minimum, the global rotation count of a
pulsar can be determined efficiently and systematically. We have used our algorithm to establish timing solutions
for two newly discovered binary pulsars, PSRs J1748−2446aq and J1748−2446at, in the globular cluster Terzan
5, using ∼70 Green Bank Telescope observations from the last 13 yr.

Unified Astronomy Thesaurus concepts: Binary pulsars (153); Pulsars (1306); Millisecond pulsars (1062); Radio
pulsars (1353); Pulsar timing method (1305); Algorithms (1883)

1. Introduction

Pulsar timing is the process of monitoring and tracking
pulses and times of arrival (TOAs). Requiring that each TOA
unambiguously corresponds to an integer rotation of the pulsar
has made the study of pulsars remarkably precise and quite
fruitful since their discovery in 1967 (Hewish et al. 1968).
Binary millisecond pulsars (MSPs) in particular have allowed
pulsar astronomers to validate general relativity (Einstein 1915)
at the 1.3× 10−4 level in the strong field regime (Kramer et al.
2021). Timing these binary pulsars can also constrain the mass
of the neutron star, ruling out several equations of state (e.g.,
Demorest et al. 2010; Antoniadis et al. 2013; Cromartie et al.
2020). The International Pulsar Timing Array (IPTA; Hobbs
et al. 2010) also places heavy importance on timing MSPs. The
IPTA is a consortium of consortia with the intention of
detecting nHz-frequency gravitational waves (GWs) by
correlating the data from around 100 MSPs, most of which
are in binary systems. Recent evidence for the detection of
these GWs (e.g., Agazie et al. 2023; Antoniadis et al. 2023;
Reardon et al. 2023) has solidified the value in timing MSPs for
years to come.

Early on in the pulsar-timing process, the global rotation
count, or pulse count, from the available data must be
determined. When every TOA is assigned the correct pulse
count, this is referred to as the solution. In some cases, the data
are too sparse to obtain a solution manually. With the
increasing demand for telescope time, it becomes imperative
to develop techniques for achieving a phase-connected solution

with a minimal amount of data. Thus, the Algorithmic Pulsar
Timer (APT) was developed by Phillips & Ransom (2022,
hereafter PR22) to solve single-system pulsars. However, APT
is only successful if the best available model incorrectly
predicts the pulse numbers by no more than roughly one or two
rotations between each pair of observations. Additionally, this
timer falls short of a necessary tool for solving binary systems,
that is, JUMPs. A JUMP is a statement applied to a group of
several TOAs that allows the fitting software to fit for an
arbitrary time offset for that group. Another pulsar-timing
algorithm, developed by Freire & Ridolfi (2018, hereafter
FR18) and called DRACULA,7 has seen success. Their
algorithm uses JUMPs and works on binaries, but was not
explicitly designed for binaries. The fact that DRACULA is not
fully automated can indeed present a problem for phase-
connecting binary pulsars more so than for isolated pulsars due
to the need to account for binary parameters. DRACULA also
does not directly incorporate a procedure for when to fit for
additional parameters.
We have developed the Algorithmic Pulsar Timer for

Binaries (APTB)8 to address the shortcomings of APT and
DRACULA. As APTB was explicitly designed for binaries, it can
use any of three different and well-established binary models
automatically, and additional binary models can easily be
implemented. Our algorithm uses the F-test for model
comparison so that a parameter is only fit for when its
omission becomes significant. For example, this avoids fitting
for R.A. before it is no longer covariant with the spin frequency
derivatives. We also implemented a straightforward tree
structure to not only allow APTB to pursue several options
(Section 3), but also to easily identify how exactly APTB phase
connected or failed to phase connect the pulsar. Finally, APTB
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is written in Python, which permits ease of readability and has
the goal of being used by a wider audience. As such, we
created a user guide for those who only need to use APTB for
pulsar timing, rather than an explanation of our methods. It
should be noted that the infrastructure required to time binary
pulsars is more than sufficient to allow APTB to time isolated
pulsars as well. By combining elements of the original APT and
DRACULA, as well as our own additions, APTB explores the
best pulse counts in order to potentially yield a phase-
connected fit. Despite the value of timing binary pulsars, the
difficult process is not sufficiently documented in the literature.
Thus, an important aspect of this paper is to document one such
binary-timing method.

2. Techniques and Methods

Residuals are the difference in phase between the model-
predicted TOAs and the observed TOAs. Residuals are modulo
the pulse period because initially we cannot claim to know the
global rotation count of every TOA. It is usually immediately
clear when an initial timing ephemeris does not correctly assign
the correct global rotation counts, because the (incorrect)
solution is characterized by seemingly random residuals versus
pulse phase (e.g., Figure 1). Moreover, the initial timing
ephemeris holds little predictive power. However, the initial
model should be able to ensure that the relative rotation count
within a day is correct, i.e., the TOAs in an observation are
phase connected. TOAs in a single observation belong to a
cluster. Given the high-dimensional parameter space involved
with timing binaries, and multiple important timescales
(e.g., orbital period for binary parameters, annual modulations
from astrometric position fitting, and longer timescales,
potentially, for spin-down effects), it is necessary to use the
information from every TOA, especially those that are known
to be phase connected to other nearby TOAs, even if TOAs
between observations are not phase connected. By using
JUMPs (Section 2.1), the residuals within an observation can
be minimized with respect to the model parameters.

This improves the model, especially the binary parameters.
The process of removing the JUMPs successively is known as
mapping a gap, and is described in Section 2.4 of this paper as
well as Section 4.1 of FR18. All fitting and analysis in APTB
is done via the PINT pulsar-timing package (Luo et al.
2019, 2021).9

2.1. JUMPs

Even though the initial timing ephemeris gives residuals that
appear random, there are in fact patterns within each cluster
(i.e., single observation or closely spaced sets of observations).
PINT has the infrastructure to extract valuable information from
these patterns by fitting each cluster for a different arbitrary
time offset. More specifically, PINT will find the parameters,
including time offsets, such that the reduced χ2 ( 2cn , where ν
represents the degrees of freedom) of the model is minimized.
Allowing PINT to fit a cluster for an arbitrary time offset is
called applying a JUMP to that cluster. The arbitrary time offset
itself may be called a JUMP as well. The reason this method
obtains a better solution is that the JUMPs account for
unknown phase counts between clusters, while the main timing
parameters change to account for the phase behavior within
each and every cluster. This is particularly useful for finding
accurate binary parameters, as these can have large effects on
short timescales. When JUMPs are applied to multiple clusters,
information on the pulsar phase between the clusters is lost.
Thus, the JUMPs have to be sequentially removed to obtain a
full solution.
To initialize a model, each cluster except one should receive

a separate JUMP. At this point, fitting the TOAs for several
parameters, like spin frequency ( f or F0) and a few binary
parameters should give a very low 2cn . This

2cn should be very
close to unity, and a  22cn should be cause for alarm—the
initial ephemeris is likely too erroneous (e.g., an inaccurate
estimate of the initial binary parameters) or the TOA errors
have been underestimated. The initial 2cn will be referred to as
the base 2cn , or , base

2cn .

2.2. TOA Scoring

In this section, we will describe why it is important to rank
clusters in terms of importance, and the way that we rank them.
When initializing a model, not every cluster can be JUMPed—
there needs to be an anchor cluster. This first non-JUMPed
cluster will be referred to as the starting cluster. As described in
Section 5, the starting cluster can have a large impact on
whether APTB can discover a solution. It is therefore prudent to
find the best starting cluster before actually attempting any
solution, as running APTB for each and every possible starting
cluster would be computationally expensive and likely
unnecessary.
We thus adopt a scoring system discussed in Section 4 and

Equation (2) of PR22, with only a minor change. This scheme
scores each TOA based on how close it is to all other TOAs. A
dense group of TOAs will generally all have high scores, while
isolated TOAs will ideally be given low scores. Our change to
the method described in PR22 is that we apply an index, α, to
the weighting scheme such that the score of the ith TOA, ni,
reads

n
t t

1
, 1i

j i i j
å=

- a
¹ ∣ ∣

( )

where tj refers to the arrival time of the jth TOA and ti refers to
the arrival time of the TOA being scored. A cluster’s score is
the highest score of its constituent TOAs.

APTB currently uses α= 0.3, although αʼs best value has not
been extensively tested. Moreover, a “best value” is likely
highly dependent on the TOA data. APTB uses α= 0.3, and not

Figure 1. Residuals of the initial timing ephemeris of PSR J1748−2446aq.
Notice should be taken of how the residuals seem to lack any long-term trend
and vary greatly from zero. This is in contrast to Figure 4, where the residuals
are nearly zero with respect to their estimated error.

9 https://github.com/nanograv/PINT
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α= 1 as in APT, because the scoring system of APT often
overweights particularly dense clusters that are not close
enough to other clusters to allow phase connection to proceed.

2.3. Phase Wraps

When observing a pulsar, it is necessary to already have
good estimates of the relevant parameters. Thus, a single
observation should correctly identify the relative pulse numbers
of its TOAs. In other words, a cluster should be phase-
connected internally. In the case that a cluster is not phase-
connected internally, APTB can often correct for the TOAs that
break phase connection by tracking the phase during the
cluster. The arbitrary definition of zero phase can cause the
model to confuse residuals that cross the±0.5 rotation
boundary. This makes these TOAs appear to lack phase
connection when they otherwise would be phase connected.
APTB corrects these instances by applying appropriate phase
wraps on individual TOAs until phase connection within every
cluster holds. Applying a phase wrap changes the assigned
phase of a single or group of TOAs by an integer step. The
correction is done quickly via the NumPy unwrap routine.

The initial timing ephemeris will usually not provide phase
connection within every individual cluster nor between most of
the clusters. Once every cluster has been corrected to be phase
connected within itself, it is necessary to manually change the
assigned pulse numbers for each cluster of TOAs so that at
least the relative rotation count between two clusters can be
compared. The goal of phase connection is to correct the
relative rotation count between each and every cluster. The
process of manually changing the pulse numbers of an entire
cluster from those predicted by the (yet-to-be-correct) model is
known as checking for phase wraps. See Table 1 for an
example. Once phase wraps are used on individual clusters to
phase connect the clusters within themselves, phase wraps are
then only evaluated between JUMPed, or individually phase-
connected, sections of the TOAs in order to map a gap (see
Section 2.4).

2.4. Mapping a Gap

Checking for phase wraps between clusters can be a
computationally expensive process. It can be unclear how
many possible phase wraps should be checked. Furthermore, if
too many phase wraps are checked, the total number checked
for every neighboring pair of TOAs grows quickly. See
Section 3.3 for a more detailed explanation of what we call the

phase wrap search space, but in short, if an algorithm is not
careful, it may be in the process of checking more than 1024

phase wraps, and even at a fraction of a second per phase wrap,
this would take on the order of 1015 yr.
Table 1 shows an example where a cluster needs a single

phase wrap removed to be correct. Unfortunately, we do not
know this a priori. To attempt to determine if phase wraps are
needed, APTB uses a technique referred to as mapping a gap
(FR18). Below is a description of the gap-mapping technique
used by APTB.
Let n2cn ( ) be the 2cn after applying a phase wrap of n. If a

phase wrap of m minimizes n2cn ( ), then a Taylor series of n2cn ( )
centered around m has no linear n term, and so the n2 term is
the leading nonconstant term. Therefore, the n2cn ( ) has a
quadratic dependence on the phase wrap when n is close to m
(see also Figure 5 of FR18). Finding the vertex in phase
wrap– n2cn ( ) space gives m, which represents the best phase
wrap according to the best, but not necessarily fully correct,
model. The parabola can be defined by sampling the n2cn ( ) for
three different phase wraps (i.e., by sampling three phase wrap-

n2cn ( ) points) and the phase wrap of the vertex is given by the
closest integer (i.e., round[m]) to

m
b b b

b b2 2 0
. 2

2 2

2 2 2

c c

c c c
=

- -

+ - -
n n

n n n

( ) ( )
( ) ( ) ( )

( )

This is the formula for calculating the vertex x-coordinate of
the parabola f (x)= a2x

2+ a1x+ a0 by sampling the values of
f (b), f (−b), and f (0). APTB uses b= 5, as do FR18, though this
can lead to an error if b= 5 gives a nonphysical parameter
value, like a negative value of the projected semimajor axis
(a isin ). If this occurs, b= 4 is attempted, repeating lower b
values until either the vertex is successfully calculated or b= 0.
If the b= 0 iteration is reached, we cannot solve for the vertex
of the parabola and the model is likely too poor to successfully
phase connect, and so APTB will exit. A maximum b= 5 is
chosen because b 3 would let small variations in the 2cn , such
as from TOA noise, greatly affect m in Equation (2).
Additionally, b 7 would likely involve sampling phase wraps
far from the phase wrap minimum—as the minimum is
commonly at a phase wrap of order unity—weakening the
quadratic-dependence assumption.
As for DRACULA, the gap-mapping method can only be

successful if the TOAs are accurate to within their predicted
error. If even a few TOAs are entirely erroneous, APTB will be
fitting the parameters to compensate for fictitious differences in
phase. Even worse, incorrect phase wraps will be treated as
correct, and any model stemming from a model with even a
single incorrect phase wrap can never be entirely phase
connected when additional correct TOAs are included. Before
phase connection is complete, it is nearly impossible to
determine outliers, because the phase-connection process is
sensitive enough to require the assumption of correct data.
Therefore, it is prudent that APTB is given correct TOAs that
are as accurate as possible, with special attention given to
removing TOAs with high predicted error. APTB cannot
currently address the cases where some TOAs are in error. A
potential improvement to the algorithm would be to have
branches (Section 3) investigate the removal of TOAs or entire
clusters.

Table 1
Example of the Global Rotation Numbers for the TOAs in Cluster 6 and

Cluster 7, Respectively

Cluster 6M Cluster 7M Cluster 6C Cluster 7C

2402 3534 2301 3432
2607 3804 2506 3702
2803 L 2702 L

Notes. Columns (1) and (2) are the model, M, predictions, and columns (3) and
(4) are the correct, C, predictions. Cluster 6 has three TOAs while Cluster 7
only has two. While the model predicts the wrong pulse numbers for each
TOA, the differences in pulse numbers (ΔPN) within each cluster are correct
(i.e., 2506 − 2301 = 205 = 2607 − 2402). The ΔPN between Cluster 6M and
Cluster 7M is 731, while the ΔPN between Cluster 6C and Cluster 7C is 730.
Thus, Cluster 6 for this model needs a phase wrap of −1 to be corrected.
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3. Solution Tree

We begin this discussion by comparing pulsar timing to
exploring a tree-like structure. The root or trunk of the tree is
the starting model and different phase wrap decisions form
branches. As different phase wraps are applied to attempt phase
connection, more branches are created. This can lead to an
exponential time complexity ( 2n( ), where n is the number of
clusters) if the algorithm accepts too many possible phase wrap
options (Section 3.3). Our approach assumes that several
incorrect branches give a large 2cn early on in the phase-
connection process, so that these branches can be quickly
discarded.

The best phase wrap in the short term is not necessarily the
best phase wrap in the long term. In many cases, several
possible phase wraps in a gap can give a 2cn that passes the
pruning condition (see Section 3.2). The 2cn for adjacent phase
wraps can also be very similar, so even deciding the “best”
phase wrap can be somewhat arbitrary, or at least weakly
justified. Furthermore, we know our best-guess model is
incorrect on some level, so there is no reason to only choose the
lowest 2cn phase wrap when this 2cn is based on a not-yet-
correct model. It thus becomes necessary to explore all
acceptable branches, where acceptable is defined as having a

2cn below a predetermined value known as the pruning
condition. We used the Python package TREELIB10 to manage
traversal and pruning of the tree and its requisite bookkeeping,
though other Python data tree libraries could serve the same
purpose.

3.1. Branching

Going down all acceptable branches is like trying to produce
a tree-like structure that is actively forming with every decision
made. The tree’s structure is only revealed by exploring it.
APTB creates the tree structure by mapping each gap and testing
phase wraps. Phase wraps that fail the pruning condition result
in that branch being cut. Phase wraps that pass are ranked
based on lowest to highest 2cn . The best phase wrap (lowest 2cn)
in the short term is explored first, with its own branches being
explored next. Thus, this is a depth-first search (see Figure 2).

3.2. Pruning

While exploring several branches is often needed to phase
connect pulsars with limited data, it is important to know when
a dead end is reached. In pulsar timing, an infinite number of
options are available, so we have to be clever in deciding which
branches, or phase wraps, are in fact dead ends. Thus, a branch
must be pruned when it becomes clear that it cannot lead to the
correct solution.

When it is time for a cluster to be unJUMPed, the gap-
mapping technique is applied. Again, gap mapping allows
APTB to know a reasonably good phase wrap to start with. The

2cn is calculated for the vertex point as well as for the phase
wraps of±1 from the vertex. The minimum 2cn of these three
phase wraps, now referred to as PWcalc, must be lower than the
pruning condition. The pruning condition, PC, used by APTB is
PC 1, base

2c= +n . If PWcalc� PC, then the F-test for model
comparison is done on the current model versus the current
model plus a new parameter. The F-test provides a way to

compare two models that have different degrees of freedom.
We refer to Section 3 of PR22 for a brief discussion on the
F-test for model comparison. This model is given one more
chance and the gap-mapping technique is applied one more
time, with PWcalc calculated again. If PWcalc� PC still, this
branch is pruned. This model is given a second chance because
in some instances evaluating the F-test with different
parameters should be done before mapping the gap.
When a branch is created, certain parameters are checked to

see if they are physically relevant. For instance, if a isin (the
projected semimajor axis of the orbit) is negative, then the
branch is pruned. Optionally, a branch may be pruned if f (F1)
becomes positive, though this is not recommended, as F1 could
become negative in a later model stemming from this branch.
However, a pulsar can be observed to have a non-intrinsic
positive F1 if it has a negative radial acceleration. This is
common for pulsars in globular clusters, due to the gravita-
tional potential of the clusters. In fact, two of the pulsars
discussed in Section 6, PSRs J1748−2446aq and J1748
−2446at, have a positive F1. Also optionally, if the R.A. or
decl. leaves a set boundary, the branch is pruned. No other
pruning mechanisms are implemented currently.

3.3. Phase Wrap Search Space

We pause the explanation of the algorithm to elaborate on
why and when APTB may succeed or fail. The models that
APTB explores based on its different phase wrap decisions all
comprise the phase wrap search space (PWSS). The size of this
space can be the dominant factor in determining whether APTB
will succeed or not. In the case of Figure 2, the size of the

Figure 2. Flowchart of APTBʼs branch-searching priority. Even though the
bottom left model has the lowest 2cn , its parent prevented it from being
immediately explored. Branching is based on phase wrap decisions, so the
second, third, and fourth models represent different phase wrap decisions that
phase connect one more cluster than the first model. For example, the second
model could result from a phase wrap of 1, the third model from a phase wrap
of 1, and the fourth model from a phase wrap of −1. It should be kept in mind
that no model is visible until it is attempted, so the third and fourth models had
to be attempted in order to know the second model was the best. The red model
was pruned, so none of its children are explored.

10 https://pypi.org/project/treelib/
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PWSS is seven models. Generally speaking, the size of the
PWSS, S, is

S W d , 3
d

N

0

clusters

å=
=

( ) ( )

where Nclusters is the number of clusters and W(d) is the number
of models, or width, of the solution tree at a depth d. The
depth refers to the number of clusters already phase connected
for a given model, minus one. In Figure 2, W(0)= 1 and
W(1)=W(2)= 3. If APTB takes τ seconds on average per
model, then the total runtime will be τS.

The nature of W(d) marks the boundary between a solvable
and unsolvable pulsar using our algorithm. We will start with
just one example where APTB would fail. If every gap has two
plausible phase wraps (two branches), then W(d)= 2d,
implying S� 2d. For the case of PSR J1748−2446aq
(Section 6), τ∼ 10 s and Nclusters∼ 80. Therefore, the total
runtime would be on the order of 10 · 280 s∼ 1017 yr. Clearly,
APTB would be unsuccessful for PSR J1748−2446aq if it
needed to check two branches for every gap.

APTB can be successful due to most pulsars following a
different W(d). The initial model is precise enough to phase
connect TOAs within an observation but not between
observations (i.e., clusters). Therefore, W(1) can be quite high,
and W(2) through roughly W(5) can become exponentially
higher. Eventually, a model has phase connected enough
clusters to be much more precise in its predictive power, and so
it admits exponentially fewer possible branches, significantly
lowering the width at higher depths. This all suggests we adopt


W d

r d d

r r d d

, if

, if
, 4

d

d d d
1 0

1 2 0
0 0

⎧⎨⎩ ⎫⎬⎭~
>-

( ) ( )( )

where r1 and r2 are the growth and decay rates, respectively,
and dictateW(d) based on the cutoff depth, d0. The values of r1,
r2, and d0 will determine if APTB can solve a pulsar. Non-
integer values of W(d) can be interpreted as a characteristic
value. Assuming W(d d0)?W(d? d0), we can simplify
further to S W d rd

d d
0 1

0 0~ å ~= ( ) . Therefore, if either r1 or d0 is
too large, S will also be too large. Here, r1 represents how
quickly the model will branch until a depth of d0 is reached.
Pulsars with bad data (e.g., due to erroneous TOAs or low
cluster density) will initially accept many phase wraps
(increasing r1) and could continue to accept them for longer
(increasing d0).

While both human and computer-based timing rely on the
search space not becoming too large, a computer is able to
probe a much larger search space. This is helpful in the cases
where the cutoff depth allows for S no larger than on the order
of hundreds of models to a few thousand models, but not when
the search space balloons to tens of thousands of models or
more. A human could take days to search S∼ 100 models, but
our algorithm can take minutes or hours and is fully automated.
Furthermore, APTB would be more systematic than a human,
searching for phase wraps in the same way every time. When
the search space is in the tens of models, then both humans and
APTB would find no issue, but APTB would still likely phase
connect faster.

This is all to say that, while APTB can solve trickier pulsars
than a human could solve, APTB can still fail even when

functioning as intended. Thinking of our algorithm with the
PWSS in mind can give a first-level analysis of the limits of our
algorithm.

4. Binary Models

It is important to choose the appropriate binary model, as
each model has its own unique benefits in terms of not only
enabling the possibility of phase connection but also the overall
computational efficiency of phase connection. Thus, the binary
model should already be selected by the user, with proper
estimates of the binary parameters established. Currently, APTB
can handle the ELL1 (Lange et al. 2001), BT (Blandford &
Teukolsky 1976), and DD (Damour & Deruelle 1985, 1986)
models. Implementing additional binary models would be
straightforward.

4.1. Nearly Circular Orbits

Most binary MSPs have nearly circular orbits, where is it
difficult to measure the longitude of periastron (ω) and epoch of
periastron passage (T0). This is because the TOAs do not
clearly indicate the location of periastron, and thus the epoch of
periastron is not clearly indicated either (Lange et al. 2001).
The ELL1 model was designed to address this difficulty by
measuring the orbital phase with respect to the epoch of
ascending node (Tasc) rather than T0. Only intended for nearly
circular orbits, the ELL1 model is a Newtonian binary model
that neglects eccentricity (e) terms of order e2 or higher,
although most timing software have improved the accuracy of
the ELL1 model by adding e2 or even e3 terms. Therefore, this
model describes residuals that follow a slightly perturbed
sinusoid as a function of the orbital phase. Part of APTBʼs
initialization is to not start fitting for e sin1 w= and

e cos2 w= immediately. ò1 and ò2 can only be fit after the
unJUMPed clusters span 5 times the binary orbital period (Pb),
though this can be changed by the user. In contrast, the model
should immediately begin fitting for Pb, Tasc, and a isin , in
order to correct for orbital effects within every cluster. Also, for
this reason, these parameters should be known to a satisfactory
precision beforehand. Notably, when the F-test processes are
conducted (Section 3.2), both ò1 and ò2 are tested together. If
they significantly help the model, they are added to the model
together. In many cases, the eccentricity is negligible, so
assuming ò1= ò2= 0 is often sufficient for phase connection.
It should be noted that, while using the ELL1 model, APTB

does admit post-Keplerian parameters such as the time
derivative of the binary period (Pb ). These are very rarely
required for phase connection on short timescales, though, and
they are usually included after phase connection has already
been achieved. We briefly discuss the use of Pb in the timing of
PSR J1748−2446ar in Section 6. Post-Keplerian parameters
are only handled if the user explicitly includes them in the
initial parameter file.

4.2. Noncircular Orbits

Though less common, some binary pulsars are elliptical
enough to require binary models that make no assumptions
about the eccentricity. One such model is the BT model, a
Newtonian model. If the eccentricity is important for phase-
connection purposes, this binary model should be used. APTB
will begin fitting for all major binary parameters immediately,
and therefore no testing via the F-test is done on these
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parameters. The base parameters of the BT model are Pb,
a isin , T0, e, and ω. Like in the ELL1 model, APTB can also
handle post-Keplerian parameters, provided the user includes
them in the initial parameter file.

Another noncircular orbit model is the DD model, a post-
Newtonian approximation relativistic model that is theory-
independent. This model is intended for pulsars with large
eccentricities and measurable secular and periodic post-New-
tonian effects. Similarly to the BT model, all major parameters
will be fit for immediately. These parameters are Pb, a isin , T0,
e, ω, and the time derivative of the longitude of periastron (w ).

5. Algorithm

APTB is an algorithm that uses JUMPs, the F-test, gap
mapping, and a data tree structure in order to phase connect
isolated—and more specifically, binary—pulsars. We strongly
recommend using the flowchart given in Figure 3 to help guide
the rest of this section. Before diving into the specifics of the
algorithm, it is helpful to describe it on a higher level. The best
starting cluster is selected, and APTB will attempt to remove
JUMPs from more and more clusters in order to eventually
phase connect every TOA. To do this, adjacent clusters to the
starting cluster are unJUMPed. We know the model is incorrect
on some level, yet it should give almost the correct relative
pulse number difference between clusters. To verify this, we
determine the 2cn of various phase wraps. This should have a
parabolic dependence, assuming the model is not too incorrect.
Then the most plausible phase wraps can be investigated. Using
a depth-first search technique, APTB will investigate all
branches. If the initial starting cluster yields no acceptable
solutions, APTB will try other starting clusters.

5.1. Algorithm in Depth

The model is initialized by applying JUMPs to every cluster
except one. APTB then ensures that each cluster is phase-
connected internally. The highest-scoring cluster, as defined by
Equation (1), is chosen as the starting cluster and is the only
cluster not JUMPed. If the 2cn is above three at this point, there
may be a problem that APTB cannot fix. APTB will attempt to
fix this by phase connecting and fitting two more times, but this
is likely to fail. Either the starting timing model is too poor, the
TOAs are inaccurate, or the TOA uncertainties are under-
estimated. In any case, the user must do something on their end
before proceeding. This can include fixing one of the above
problems or overriding this warning (see Section 5.2).

Provided the model has been properly initialized, the main
algorithm can begin. The starting cluster is the first member of
the unJUMPed clusters. The cluster closest in time to the
unJUMPed clusters is unJUMPed and therefore added to this
group. The number of pulsar rotations between the closest
cluster and the other members is not known, so the phase wraps
between the closest cluster and the previously phase-connected
data are checked according to the gap-mapping methodology
(Section 2.4). Gap mapping (ideally) finds the minimum 2cn for
any particular phase wrap, but another phase wrap may indeed
prove to be the correct one. For this reason, APTB incrementally
checks the phase wraps 1, 2, 3,...,Nbelow below the best phase
wrap until the model fails the pruning condition at a phase wrap
of Nbelow+ 1 below the best phase wrap. The same is repeated
for 1, 2, 3,...,Nabove above the best phase wrap, with the model
failing the pruning condition at the Nabove+ 1 phase wrap

above the best phase wrap. The phase wraps between Nbelow
and Nabove, inclusive, are acceptable models that represent
branches on the solution tree.
All acceptable solutions are stored at this point, and attached

to the parent model that created them. The next used model is
determined by the branch search hierarchy (see Section 3.1 and
Figure 2). This next model is then fit for new parameters, if
they significantly improve the model. As in PR22, an F-test
value of 0.005 or lower is deemed a significant improvement
(i.e., the probability that the model fit improvement could be
due to noise is <0.005). Not every nonfit parameter is tested.
The R.A. and decl. can be tested after the unJUMPed clusters
span at least TR.A. and 1.3 · TR.A., respectively, where

T
f30

700 Hz
40 days. 5R.A. ⎛⎝ ⎞⎠= - +· ( )

The functional form of TR.A. is such that TR.A. depends linearly
on the pulsar’s spin frequency, TR.A.( f = 700 Hz)= 10 days,
and the maximum cluster span until the R.A. is tested is
40 days (i.e., TR.A.[ ]max = 40 days). The linear dependence
condition is motivated by the fact that the sky position
becomes important quickly for pulsars with higher TOA
precision, which is usually directly proportional to the spin
frequency. The three requirements for Equation (5) have not
been derived from first principles, but rather from experience
phase connecting many pulsars manually. F1 can be tested after
the unJUMPed clusters span is long enough that a typical F1
would cause the residuals to exceed± 0.35 in phase. A typical
F1 is estimated based on the pulsar’s spin frequency and rough
placement in the P–P diagram (see, e.g., Figure 6.3 of Condon
& Ransom 2016).
Currently, APTB has the capability to conduct an F-test and

fit for f ̈ (F2), but the user has to specify a minimum
unJUMPed cluster time span, because the default is not to test
for F2. We choose to omit F2 by default because F2 usually
only becomes significant in time spans longer than are
necessary for phase connection. Furthermore, typical F2 values
vary widely, and estimating when F2 should be fit is difficult; a
wrong guess may prevent the correct solution from being
found, due to possible covariances with the other parameters. In
most cases, F2 can be ignored until after a successful phase
connection, and then manually fit, as we did for PSR J1748
−2446aq (Section 6).
After the appropriate F-tests and new parameter additions,

the model is then brought back to the beginning of the
algorithm, as all model selection from the solution tree is done
after checking for phase wraps. The first step is, again, to
unJUMP the closest unJUMPed cluster, and so on.
Once every TOA has been unJUMPed, if 102c <n , then the

model is deemed a possible solution and saved. APTB then
moves to the next starting cluster to see if another (or the same)
solution arises.
In some cases, every branch is pruned before finding a solution.

This means APTB has failed to find the solution with this particular
starting cluster. The algorithm will attempt to run again with the
second-best starting cluster and will keep selecting starting clusters
until the top five (default) clusters by score have been attempted.
While we hope to make APTB robust enough to find the solution
regardless of a starting point, some assumptions break down when
the model is too poor or the data are too sparse. When searching
for correct phase wraps, APTB uses the quadratic dependence of
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the 2cn to efficiently find the minimum. If the minimum phase wrap
is too large or the model is too poor, this quadratic dependence
falls apart quickly. This could pin every early-on model into a local
minimum rather than the global minimum. If this local minimum is
too wide, as in the parabola covers a large number of phase wraps,
or if there are too many local minima, then APTB may not find any
solutions—or it may find a very large number of wrong solutions.

APTB will store all explored models on the user’s local disk.
These files are crucial in the case APTB is very close to finding
a solution but failed due to unforeseen circumstances. For

example, if the model requires F2 or the derivative of the
binary orbital period, it may have pruned the correct branch. By
finding this almost-complete model, the remaining few steps
can be manually completed quickly. For more details on the
files saved and how to use them, see the APTB User Guide.

5.2. Optional Features

APTB comes equipped with several ways to modify its
behavior from the command line. We will describe the most
useful modifications, with the rest being listed and briefly

Figure 3. Flowchart of APTBʼs logic.
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described in the APTB User Guide and the Python file on
GitHub. By default, APTB will check for phase wraps and also
use the solution tree structure. These can separately be turned
off by including --no-check_phase_wraps and --no-
branches, respectively, in the command line. However, it
should be noted that branching only works if phase-wrap
checking is on. If phase-wrap checking is turned off, then APTB
will assume that the cluster that just had its JUMP removed has
a phase wrap of zero with the unJUMPed clusters. In other
words, at each step, APTB assumes the model correctly predicts
the relative pulse numbers after removing a JUMP.

If phase-wrap checking is on but branching is not, then APTB
will map the gap and find the phase wrap with the lowest 2cn ,
but will not pursue nearby phase wraps that are also acceptable.
For some pulsars, this is sufficient to time them successfully.
While APTB is really meant to excel in the case where both
phase-wrap checking and branching are required to time the
pulsar, the algorithm can also easily and quickly time the less-
challenging case.

When APTB finds a potential solution, there may be other
unexplored branches in the solution tree that may yield other
potential solutions. By default, APTB will explore these
branches to rule out, or discover, any degenerate solutions.
This can be turned off, but doing so can have similar effects to
turning off branching, in that the correct solution may not be
initially the best one. The advantage to stopping APTB from
pursuing branches after finding a potential solution is that there
may be a large number of potential solutions (tens or
hundreds), which can consume much more computing time
and storage than anticipated.

Some command line options affect the pruning condition. By
default, if 3, base

2c >n , then the algorithm will not proceed.
This can be overridden if the user thinks APTB should try to
time this pulsar anyway. The pruning condition by default is set
to 1, base

2c +n , but users may specify their own values. When
APTB can fit for R.A., decl., F1, and certain binary parameters
like ò1 and ò2 can be adjusted manually. Finally, a rectangle in
R.A.–decl. space can be specified. A model will be pruned if its
astrometric position leaves this rectangle.

6. Results

One important test of APTB is whether it can time and solve a
pulsar that has never been phase-connected before. Indeed, we
demonstrate the capability of APTB by showing how it was first
in determining the phase-connected timing solutions for the
newly discovered PSRs J1748−2446aq and J1748−2446at.
We also show that it was able to verify phase-connected timing
solutions for the PSRs J1824−2452N and J1748−2446ar.

PSR J1748−2446aq, Ter5aq hereafter, was discovered in
February of 2023 (P. V. Padmanabh et al. 2024, in preparation)
and is the 42nd pulsar discovered in Terzan 5.11 Terzan 5, a
globular cluster near the galactic bulge, is home to the largest
globular cluster pulsar population (Martsen et al. 2022), with
several recent new discoveries. Ter5aq has 86 clusters available
spanning 13 yr, which gives an average cluster density of
roughly 0.018 clusters day−1 or one observation every 55 days.
Most pulsars have a much higher observation cadence.
Moreover, no observations in the TOA data provided to APTB
were dedicated specifically for phase-connection purposes.
That is, APTB did not require a grouping of clusters with a

significantly higher cluster density than the average. With APTB
phase connecting Ter5aq first, this verifies that APTB can time
low-cluster-density pulsars. We show the final residual plot in
Figure 4. Ter5aq is a millisecond pulsar with a 13 ms spin
period and is in a binary system with an orbital period of
0.12 days and a 0.026 lt-s projected semimajor axis. The full
solution from APTB, including additional data, will be
published in P. V. Padmanabh et al. (2024, in preparation).
To illustrate the difficulty a human would have in timing

Ter5aq with the available data, we include Figure 5, which
schematizes the phase-wrap decisions APTB made. APTB took
416 iterations to complete its search, and 106 iterations of the
first 109 iterations were all on branches leading to a dead end. It
was not until the 110th iteration that APTB was on the correct
branch and stayed on it. The large phase wrap search space
means APTB took 5.0 hr, or 1.0 hr on average per starting
cluster. The first starting cluster that was successful took 1.5 hr.
This may seem like a long runtime, but a human would likely
take much longer and give up from frustration after many
incorrect attempts. Because F2 was excluded from being fit for,
APTB only reached a depth of 30, instead of the full depth of 86
clusters. Therefore, APTB was not confident it found the correct
solution, but upon inspection of the solution tree, where post-fit
timing residuals are plotted and saved, it became obvious that
the phase connection was nearly complete. Even after reaching
a depth of 30, APTB continued to look for more solutions to
ensure the solution was unambiguous. While Ter5aq was
eventually timed independently by a human, it is easy to
imagine a pulsar with even less dense observations or a smaller
number of them. In this case, using the automatic capabilities of
APTB might be the only option to phase connect that pulsar.
PSR J1748−2446at, Ter5at hereafter, was discovered in

2023 April (P. V. Padmanabh et al. 2024, in preparation),
making it the 45th Terzan 5 pulsar (PSR J1748−2446ar, as
detailed below, was discovered before Ter5at). Ter5at is a
black-widow system, a type of binary pulsar with a companion
of only a few hundredths of a solar mass (Shahbaz et al. 2017).
While it was also eventually phase connected by a human,
APTB determined the proper phase connection first. The 2.2 ms
spin period is significantly faster than that of Ter5aq, and its
orbital period and projected semimajor axis are 0.22 days and
0.10 lt-s, respectively. Again, the full solution will be published
in P. V. Padmanabh et al. (2024, in preparation). The cluster
density is 0.016 clusters day−1 (an observation every 62 days),
and APTBʼs runtime was 5.3 hr. The first starting cluster did not
lead to a solution, but the other four did. The second starting
cluster found the solution the quickest and was on the correct

Figure 4. TOA residuals for PSR J1748−2446aq after APTBʼs successful phase
connection.

11 https://www3.mpifr-bonn.mpg.de/staff/pfreire/GCpsr.html

8

The Astrophysical Journal, 964:128 (10pp), 2024 April 1 Taylor, Ransom, & Padmanabh

https://www3.mpifr-bonn.mpg.de/staff/pfreire/GCpsr.html


phase-wrap branch immediately. As in the case of solving
Ter5aq, APTB reached a tree depth where the residual effects of
F2 became important, in which case APTB thought it reached a
dead end. This was easily spotted in the solution tree, and the
process of finishing the phase connection was straightforward.

APTB can also time pulsars with data spans shorter than
14 yr, provided the cluster density is higher. This is exemplified
by the successful timing of PSR J1824−2452N, M28N here-
after. M28N was discovered by Douglas et al. (2022) and is the
fourteenth pulsar discovered in the globular cluster M28.
Douglas et al. (2022) describe M28N as a black-widow MSP
with a binary period of 4.76 hr. APTB was given only about 3 yr
of TOAs, with a cluster density of roughly 0.035 clusters day−1

(an observation every 29 days), roughly twice that of Ter5aq.
As is the case for pulsars with high TOA densities, APTB
struggled less to time M28N but was still on a dead-end branch
for its first five iterations. This pulsar was fit for only the first
900 days, because a longer timescale makes F2 nonnegligible.

APTB has been able to time several more real pulsars with
known phase connection, but we will only mention one more
instructive example. PSR J1748−2446ar (Ter5ar hereafter) is
the 43rd pulsar discovered in Terzan 5 (P. V. Padmanabh et al.
2024, in preparation). This is a redback pulsar, a type of pulsar
characterized by having a stellar companion with a few tenths

of a solar mass (Shahbaz et al. 2017). A redback pulsar’s wind
often ablates its companion, creating intrabinary material that
eclipses the pulsar’s radio pulses every orbit. The material, as
well as the nondegenerate nature of the companion star, can
cause years-long timescale perturbations in the residuals. The
specific patterns of these effects appear to be largely random,
making modeling and predicting pulses far into the future very
tedious or impossible. As such, the 8,base

2c ~n is rather high,
and this was after removing TOAs that were clearly erroneous.
The high ,base

2cn can be explained by the fact that a redback
system’s orbital variability can be significant over even a
couple of years. For this reason, APTB was only given roughly
the first year of data on Ter5ar. The derivative of the orbital
period (Pb ) can be important on this timescale, with Pb and Pb̈
both becoming crucial on any timescale exceeding a year, due
to the short binary period and small a isin . In spite of these
difficulties, APTB found the solution, and the correct branch
was the first branch it investigated. APTBʼs success is likely
thanks to the relatively high cluster density of 0.071 clusters
day−1 (an observation every 14 days). Owing to the nature of
the binary system, the final 10.12c =n , which is high but
comparable to the ,base

2cn . No other plausible solution was
found, and in spite of the abnormally high 2cn , the found
solution properly phase connects the next year of data.

Figure 5. A schematic of the solution tree APTB investigated in order to time Ter5aq. The branching order that APTB took is qualitatively described by the color bar.
The dark purple lines show branches that APTB investigated first, while the light green and yellow lines show branches APTB investigated last. The depth of the
solution tree is equivalent to the number of clusters that had been unJUMPed at that stage minus one. The green and yellow branches were investigated heavily, but no
meaningful solution was found. The dark blue-turquoise branch that goes past a depth of 14 actually ends at a (not shown) depth of 30. This emphasizes that the depth-
30 branch in fact leads to the unique solution. The lower panel shows only the first ∼150 branches investigated.
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7. Conclusion

We have created an algorithm, APTB, that can phase connect
isolated and binary pulsars. Due to APTBʼs robust branch-
searching structure, it was able to time and solve PSRs J1748
−2446aq and J1748−2446at before any human could. APTB
also timed several other known pulsars, including PSRs J1748
−2446ar and J1824−2452N. A standard successful run takes
on the order of tens of minutes to several hours. In cases where
APTB is unsuccessful in phase connection, the process can take
much longer, as the phase wrap search space expands
exponentially.

Like other pulsar-timing algorithms, APTB allows a comp-
uter to make the same decisions that a human would. Even in
the case of hour-long run times, this is of no concern to the
pulsar astronomer as APTB is fully automated. Therefore, our
algorithm stands as an example of how current and future
astronomers can grapple with ever-enlarging data sets. Pulsars
discovered in globular clusters benefit from abundant archival
data that an automated algorithm like APTB can easily handle,
saving manual work-hours. Moreoever, a pulsar-timing algo-
rithm can become a necessity to successfully phase connect a
binary pulsar when its data are too sparse. The increase in
pulsar discoveries without a corresponding increase in avail-
able telescope time will only make sparse-data binaries more
prevalent. While there already exist pulsar-timing algorithms
that can time binary pulsars, like DRACULA, APTB has the
important advantage of being fully automated, and therefore it
is much more suitable for binaries with sparser data. Finally,
APTB is currently maintained, open to improvements, and is
written exclusively in the modern and popular Python coding
language. Several improvements, including support for new
binary models and more options for weighting clusters, among
others, are planned.

Binary pulsars are some of the most scientifically interesting
pulsar systems, and phase connecting them is crucial for
determining their scientific potential. Tools like APTB allow us
to accomplish that with less telescope time and less human
effort.
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