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Metric perturbations induced by ultralight dark matter (ULDM) fields have long been identified as a
potential target for pulsar timing array (PTA) observations. Previous works have focused on the coherent
oscillation of metric perturbations at the characteristic frequency set by the ULDM mass. In this work, we
show that ULDM fields source low-frequency stochastic metric fluctuations and that these low-frequency
fluctuations can produce distinctive detectable signals in PTA data. Using the NANOGrav 12.5-yr dataset
and synthetic datasets mimicking present and future PTA capabilities, we show that the current and future
PTA observations provide the strongest probe of ULDM density within the Solar System for masses in the
range of 10−18 eV − 10−16 eV.
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I. INTRODUCTION

Millisecond pulsars are one of nature’s most precise
clocks, with a frequency stability that rivals one of human-
made atomic clocks. By monitoring the ticking of a net of
these cosmic clocks, pulsar timing arrays (PTAs) have
achieved unparalleled sensitivity to spacetime perturbations
in the nHz band. By leveraging this remarkable sensitivity,
several PTA Collaborations have recently found evidence
for the presence of a gravitational wave background
permeating our Galaxy [1–4].
While the primary objective of PTAs is the detection of

gravitational waves (GWs), we can also leverage their
sensitivity to search for spacetime fluctuations produced
by different sources. A notable example is the metric
fluctuations induced by ultralight dark matter—a bosonic
dark matter candidate with a mass smaller than a few eV.
Such light bosonic dark matter candidates behave like a
classical wave, coherently oscillating at a frequency set by
theirmass,mϕ. These oscillationswill cause time-dependent
metric fluctuations at a frequencyω ¼ 2mϕ, makingULDM
candidates in the mass window 10−23 eV–10−20 eV poten-
tially detectable by PTAs, as first demonstrated by
Khmelnitsky and Rubakov [5]. In addition, if ultralight
dark matter (ULDM) couples to the Standard Model
particles nongravitationally, it will affect the spin of pulsars
as well as the frequency of atomic clocks used for pulsar
timing measurements, leading to another monochromatic
signal in the timing observation [6–8].

However, ULDM density fluctuations exhibit much
richer temporal and spectral behaviors than a simple
coherent oscillation. In a recent work [9], it was shown
that, in addition to the coherent oscillation at ω ¼ 2mϕ,
ULDM fields exhibit low-frequency stochastic fluctua-
tions at ω≲mϕσ2, where σ ≃ 160 km= sec is the velocity
dispersion of the virialized dark matter halo. These low-
frequency fluctuations are intricately related to the order-
one density fluctuations within the ULDM halo observed
in numerical simulations (e.g., Ref. [10]) over character-
istic time and length scales given by the coherence time,
τ ¼ 1=mϕσ2, and the coherence length, λ ¼ 1=mϕσ.
Implications of these low-frequency stochastic fluctua-
tions in PTA observations have not yet been investigated
and will be the primary focus of this work.
We can intuitively understand these low-frequency

fluctuations in terms of quasiparticles, whose size is set
by the coherence length and whose mass is given by
meff ¼ π3=2ρDMλ3, with ρDM being the ULDM density
[11,12]. In Ref. [9], it was shown that the gravitational
interaction between these quasiparticles and test masses in
GW interferometers inevitably introduces stochastic sig-
nals, potentially detectable by existing and planned future
GW detectors. It was also found that interferometers with
longer baselines are better suited to look for such stochastic
signals—since they are sensitive to larger quasiparticles,
which can impart larger accelerations on the test masses. In
the same study, it was also highlighted that more than two
detectors would be required to distinguish stochastic
ULDM signals from detector noise. For these reasons,
PTAs arise as a natural candidate to look for such stochastic
ULDM fluctuations. Thanks to the OðkpcÞ distance
between pulsars and the Earth, PTAs can be perturbed
by larger quasiparticles compared to test masses in Earth-
based interferometers. Moreover, correlations of the
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ULDM signal across the pulsars in the array provide a
natural means to distinguish ULDM signals from detector-
specific noise.
In the quasiparticle picture, one can easily estimate the

perturbation to the TOAs induced by stochastic ULDM
fluctuations. For PTAs with an observing baseline, Tobs,
larger than the ULDM coherence times, a typical time-of-
arrival (TOA) fluctuation is approximately given by

δt ≃ cðāτ2Þ
!
Tobs

τ

"3
2

∼ 10−10 sec
!
10−17 eV

mϕ

"3
2

!
ρ⊕

0.4 GeV=cm3

"
; ð1Þ

where ā ¼ Gmeff=λ2 is a typical acceleration on Earth
produced by ULDM quasiparticles, c ∼Oð10−2–10−1Þ is a
numerical coefficient, and ρ⊕ is an average ULDM density
around the Solar System. This expression is valid for
Tobs=τ ≫ 1, and we choose Tobs ¼ 30 yr for the estima-
tion. In the expression, the quantity in the first parenthesis
(āτ2) can be understood as a typical displacement of
Earth due to quasiparticles over one coherence timescale,
and the quantity ðTobs=τÞ3=2 can be understood as a result of
random walk motion of the relative velocity of Earth-pulsar
system induced by ULDM quasiparticles.
A naive comparison of this pulsar timing fluctuation with

typical TOA errors σTOA ∼Oð10−7Þ sec already suggests
that the current PTA might probe average Solar-System
ULDM densities of ρ⊕=ρ0 ∼ 103 at mϕ ¼ 10−17 eV, where
ρ0 ≃ 0.4 GeV=cm3 represents typical local dark matter
density. It is important to note that this local density, ρ0,
is measured on volumes of at least ∼ð102 pcÞ3 surrounding
the Solar System (see, for example, Refs. [13,14]), while
there is currently no direct measurement of dark matter
density within and around the Solar System. This naive
estimate suggests that PTAs might provide one of the
strongest probes of ULDM density near the Solar System.
The main objective of this work is to sharpen the above
estimate by carefully characterizing the effects of stochastic
ULDM fluctuations in current and future PTA observations.
We summarize our main results in Fig. 1, where we show

the constraints and projections on the ULDM density near
the Solar System derived by analyzing the NANOGrav
12.5-yr dataset [15], and a collection of simulated datasets
mimicking the capabilities of future observations (see
Sec. III C for details on the generation of the mock data).
A null result from the analysis of NANOGrav 12.5-yr data
sets the strongest upper limit on ULDM density near the
Solar System as ρ⊕=ρ0 ≲ 4 × 103, improving the existing
constraints from solar system ephemerides ρ⊕=ρ0 ≲ 2 ×
104 [16] in the mass range 10−18 eV–10−16 eV. The
analyses with simulated datasets show that current con-
straints could be improved by an order of magnitude or
more with a larger number of pulsars with a longer

observation period, which could be easily achieved in
future PTAs.
The paper is organized as follows. In Sec. II, we discuss

the statistical property of the ULDM field. We compute the
timing residual power spectrum induced by stochastic
ULDM fluctuations and derive their correlation pattern.
In Sec. III, we detail our analysis: we discuss the data
analysis tools used in our analysis and how we generated
the mock datasets. In Sec. IV, we present the result from our
analysis of the mock pulsar timing data in the context of
ultralight dark matter. We conclude in Sec. V.

II. STOCHASTIC ULDM SIGNAL

Pulsar timing arrays track the TOAs of radio pulses
emitted by a collection of galactic millisecond pulsars.
These TOAs are then compared with the predictions of a
pulsar timing model. The discrepancies between these
predictions and the observed TOAs define the timing
residuals, δt. In this section, we will discuss the imprint
of stochastic ULDM fluctuations on these timing residuals.
We parametrize the metric perturbations induced by

fluctuations of the ULDM field as

ds2 ¼ ½1þ 2Φðt; xÞ&dt2 − ½1 − 2Ψðt; xÞ&dx2: ð2Þ

FIG. 1. The red line shows the 95% constraints on the dark
matter density near the Solar System derived by analyzing the
NANOGrav 12.5-yr dataset. The blue lines show projections
derived by analyzing mock datasets with Npsr ¼ 66 pulsar and a
total observing time of Tobs ¼ 15 yr (dark blue), Npsr ¼ 100

pulsars and Tobs ¼ 20 yr observing time (medium blue), and
Npsr ¼ 166 pulsars and Tobs ¼ 30 yr observing time (light blue).
These constraints are compared with the ones derived from Solar
System ephemerides (black lines) at Earth, Mars, and Saturn
orbit. All the constraints are normalized to ρ0 ¼ 0.4 GeV=cm3.
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These metric perturbations can influence the TOAs and
leave an imprint in the timing residuals in several differ-
ent ways:

(i) Doppler effect: The force exerted by ULDM fluc-
tuations induces an acceleration of both Earth and
pulsars. This results in perturbations of the perceived
pulsar period due to the induced relative motion
between the observer (Earth) and the emitters
(pulsars). We can write these perturbations in terms
of the scalar potential Φ as

δνaðtÞ
νa

¼ n̂a ·
Z

t
dt0∇½Φðt0 − da; xpÞ −Φðt0; xeÞ&;

ð3Þ

where νa is the perceived pulsar rotational frequency
for the ath pulsar in the array, n̂a is a unit vector
pointing from Earth to pulsar, da is Earth-pulsar
distance, and xe and xp represent Earth and pulsar
position, respectively.

(ii) Other effects: ULDM fluctuations source metric
fluctuation between Earth and pulsars, thereby
perturbing the light travel time along the line-of-
sight. This effect is often called as Shapiro delay.
Additionally, metric fluctuations at the position of
the Earth and pulsar change the measurements of
TOAs and pulsar period as both are measured by the
proper time of observer at the Earth and pulsar,
respectively. This effect is called Einstein delay.
Combined, they induce a shift in the perceived
rotational pulsar period as

δνaðtÞ
νa

¼Ψðxe; tÞ−Ψðxp; t−daÞ

− n̂a ·
Z

t

t−da
dt0∇½Φðt0;xðt0ÞÞþΨðt0;xðt0ÞÞ&;

ð4Þ
where xðt0Þ ¼ xe þ n̂aðt − t0Þ; i.e., the integral must
be performed along the photon path.

Timing residuals can be computed from fluctuations in
the arrival frequency as

δtaðtÞ ¼
Z

t δνaðt0Þ
νa

dt0: ð5Þ

In this work, we focus on the Doppler signal given in
Eq. (3) as the Shapiro and Einstein effects are suppressed
by an additional factor of dark matter velocity. See
Appendix B for more details.

A. ULDM signal power spectrum

The goal of this section is to relate the PTA signals
discussed in the previous section with ULDM density
fluctuations, δρ, defined as

δρ≡ ρ − ρ⊕; ð6Þ

where, as already mentioned before, ρ⊕ is the average
ULDM density within the Solar System. Specifically, since
we are interested in stochastic ULDM fluctuations, wewant
to relate the power spectrum of ULDM density fluctuations
to the power spectrum of PTA timing residuals. The first of
these two quantities is defined as

h eδρðkÞ eδρ'ðk0Þi ¼ ð2πÞ4δð4Þðk − k0ÞPδρðkÞ; ð7Þ

where δ̃ρðkÞ denotes the Fourier components of the ULDM
density fluctuations, and the angle brackets denote the
ensemble average over all possible realizations of the
ULDM field.
Following the procedure outlined in Refs. [9,17,18], we

can show that the power spectrum for ULDM density
fluctuations can be expressed in terms of the DM phase
space distribution, fðpÞ, as (see Appendix A for more
details)

Pδρ ≈m2
ϕ

Z
d3p1

ð2πÞ3
d3p2

ð2πÞ3
fðp1Þfðp2Þð2πÞ4δ4ðk − p1 þ p2Þ;

ð8Þ

where we have ignored the modes at ω ¼ (ðω1 þ ω2Þ≃
(2mϕ, which represents the coherently oscillating modes
not of interest for the analysis discussed in this work.
Using Poisson equation, ∇2Φ ¼ 4πGδρ,1 the power spec-
trum of ULDM density fluctuations can be easily related
to the power spectrum of the scalar potential fluctuations,
PΦ, as

PΦðkÞ ¼
ð4πGÞ2

k4
PδρðkÞ; ð9Þ

where G is the gravitational constant, and PΦ, is defined
analogously to the density power spectrum in Eq. (7).
The power spectrum for scalar perturbations can also be

related to the timing residuals covariance matrix, defined as

hδtaiδtbji ⊃ ΓDM
ab

Z
df cos½2πfðtai − tbjÞ&SDMðfÞ; ð10Þ

where ΓDM
ab is the overlap reduction function (ORF)

characterizing the correlations among timing residual of
different pulsars, SDMðfÞ is the timing residual power
spectrum, and the limits of the integration are determined
by the inverse of the observational cadence and the total
observation period. Here, i and j index TOAs, and a and b
index pulsars. By using Eq. (3) together with Eqs. (5)

1For the low-frequency stochastic fluctuations, one can
approximate Ψ ≈Φ [9].
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and (10), we can relate SDMab ≡ ΓDM
ab SDMðfÞ with fluctua-

tions of the gravitational potential,

SDMab ðfÞ ¼ 2

ð2πfÞ4

Z
d3k
ð2πÞ3

ðn̂a · kÞðn̂b · kÞUaU'
bPΦðf; kÞ;

ð11Þ

where Ua ¼ 1 − expð2πifda½1þ ðk=ωÞk̂ · n̂a&Þ. Given that
2πfda ≫ 1 for the frequency range of PTA observations
and typical Earth-pulsar distances, we can approxi-
mate UaU'

b ≈ 1þ δab.
Finally, using the relation in Eq. (9), we can rewrite

Eq. (11) as

SDMab ðfÞ ¼ 2G2

π2f4

Z
d3k
ð2πÞ3

ðn̂a · kÞðn̂b · kÞUaU'
b
Pδρðf; kÞ

k4
:

ð12Þ

In the two following sections, we will use this expression to
derive the timing residual signal for two specific forms of
the DM phase space distribution.

B. Isotropic distribution

If we ignore the motion of the Solar System with respect
to the Galactic Center, the DM has an isotropic velocity
distribution that can be written as

fðvÞ ¼
ρ⊕=mϕ

ð2πσ2Þ3=2
exp

#
−

v2

2σ2

$
: ð13Þ

In this case, we can derive simple analytic expressions for
the timing-residual power spectrum and its ORF (see
Appendix B for a derivation),

ΓDM
ab ¼ 1

2
ðδab þ n̂a · n̂bÞ; ð14Þ

SDMðfÞ ¼ ā2τ
ð2πfÞ4

#
64

3π
K0ðωτÞ

$
: ð15Þ

Here, τ ¼ 1=mϕσ2 is the coherence time, ā ¼ Gmeff=λ2 is
the typical acceleration due to ULDM quasiparticles,
meff ¼ π3=2ρ⊕λ3 is the quasiparticle mass, λ ¼ 1=mϕσ2

is the wavelength, and KnðxÞ are the modified Bessel
functions of the second kind.
The spectral shape for the ULDM signal in the isotropic

limit is shown in blue in the left panel of Fig. 2. At
frequencies smaller thanf ≲ 1=τ, the power spectrumgrows
like SDM ∝ 1=f4; while for f ≳ 1=τ the power spectrum
decays exponentially. In the right panel of the same figure,
we compare the dipole structure of the isotropic ULDM
signal with the Hellings-Downs correlations expected for a
gravitational wave signal.

C. Anisotropic distribution

The Solar System revolution around the Galactic Center
induces a dark matter wind oriented in the opposite
direction of the Solar System velocity. Because of this
effect, the DM velocity distribution in the Solar System
reference frame is not isotropic and is characterized by a
nonzero mean velocity, v0,

fðvÞ ¼
ρ⊕=mϕ

ð2πσ2Þ3=2
exp

#
−
ðv − v0Þ2

2σ2

$
; ð16Þ

FIG. 2. Left: comparison between the sensitivity curve for the NANOGrav 11-yr dataset [19] (red), the characteristic strain for the
ULDM signal in the isotropic limit (blue), and the two components of the ULDM strain in the anisotropic limit (light and dark green).
The shaded bands are derived by varying the value of the velocity dispersion between σ ¼ 150 km=s and σ ¼ 250 km=s. In this plot, we
have chosen ρ⊕=ρ0 ¼ 104, and mϕ ¼ 10−17 eV. Right: the blue line shows the overlap reduction function for the ULDM signal in the
isotropic limit. Light and dark green dots represent the correlations amongst the pulsars in our 15-yr mock dataset for the ULDM signal
in the anisotropic limit. The dashed black line represents the Hellings-Downs correlation pattern.
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where v0 ¼ v0v̂0 is the mean DM velocity in the Solar
System reference frame. In this analysis, we will use v0 ¼
232 km=s and v̂0 ¼ ½−0.47; 0.41;−0.78& [20,21].2
Similarly, the orbital motion of pulsars will induce a DM

wind in the pulsars’ reference frame. Due to differences in
the peculiar velocity, each pulsar will experience its own
DM wind velocity. However, given that pulsars used in
PTA observation are within a few kpc from the Solar
System over which rotational velocities are not expected to
change substantially, we may assume that they all share the
same wind velocity as long as the peculiar velocity of each
pulsar is smaller than the DM wind velocity. This approxi-
mation will be used to derive the full PTA signal in the
anisotropic limit, although it will not affect our final results
as those will be derived only using the Earth term and
neglecting the contribution from the pulsar term.
Assuming that the DM velocity distribution is given by

Eq. (16) both in the Earth and pulsars’ reference frame, the
spectrum and the overlap reduction function are most
conveniently written as

ΓDM
ab SDMðfÞ ¼ Γ⊥

abS
⊥ðfÞ þ Γ⫽

abS
⫽ðfÞ: ð17Þ

The correlation functions are given by

Γ⊥
ab ¼

1

2
ð1þ δabÞ½n̂a · n̂b − ðn̂a · v̂0Þðn̂b · v̂0Þ&; ð18Þ

Γ⫽
ab ¼

1

2
ð1þ δabÞðn̂a · v̂0Þðn̂b · v̂0Þ; ð19Þ

where the term proportional to δab is the pulsar term,
while the remaining one gives the Earth term. In the
anisotropic limit, inter-pulsar correlations for the ULDM
signal are no longer a simple function of the pulsars’
angular separation but depend on the positions of the
pulsars in the sky. In the right panel of Fig. 2, we report the
value of ΓA

ab for all the pulsar pairs in our 15-yr mock
dataset. It is clear from this figure that, for a fixed angular
separation, there is a spread in the level of correlations due
to different locations of the pulsars with respect to the
orientation of the DM wind. The spectral functions appear-
ing in Eq. (17) can be written as

SAðfÞ ¼ ā2τ
ð2πfÞ4

HAðf; v0Þ; ð20Þ

for A ¼ ⊥;⫽. In the left panel of Fig. 2, we compare
the functions SAðfÞ (light and dark green lines) with the
power spectrum in the isotropic limit. Detailed expressions

and derivations for the HA functions are provided in
Appendix B.3

III. ANALYSIS

In this section, we discuss noise and signal modeling, the
datasets used in this analysis, and the statistical tools used
to analyze them.

A. Noise modeling and the PTA likelihood
The statistical tools needed to model PTA timing

residuals have been extensively discussed in the literature
(see, e.g., Refs. [24,25]). In this section, we provide a short
overview of these tools paying particular attention to how
we can use them to model the ULDM signals derived in the
previous section.
The pulsar timing residuals receive contributions from

several noise and astrophysical sources. All these sources
are usually described by using a phenomenological model
containing three main components: white noise, time-
correlated stochastic processes (also known as red noise),
and the impact of small errors in the fit to the timing-
ephemeris parameters. Specifically, this phenomenological
model parametrizes the timing residuals as

δt ¼ nþ FaþMϵ; ð21Þ

where δt is a vector containing all the NTOA measured
timing residuals.
The first term on the right-hand side of Eq. (21), n,

describes the white noise that is assumed to be left in each
of the timing residuals after subtracting all known systematics.
White noise is assumed to be a zero mean normal random
variable, fully characterized by its covariance. Assuming that
a single instrument measures all the TOAs using a wideband
approach, the white-noise covariance matrix reads

hna;inb;ji ¼ F 2
a½σ2a;i þQ2

a&δijδab; ð22Þ

where i and j index the TOAs, a and b index pulsars,
σa;i is the TOA uncertainty for the ith observation, F is
the Extra FACtor (EFAC) parameter, and Q is the Extra
QUADrature (EQUAD) parameter.4

2Here, we ignore the subleading effect induced by Earth’s
revolution around the Sun. The vector v̂0 is given in the equatorial
coordinate system.

3The model files needed to implement the ULDM signals
discussed in this section into the PTA analysis code PTArcade
[22,23] can be found at this link: https://zenodo.org/records/
10534322.

4For the analysis of the NANOGrav 12.5-year data, which was
derived with narrow band observations, we also include corre-
lated noise across radio frequencies as

hna;inb;ji ⊃ J 2Uij; ð23Þ

where J 2 is the ECORR parameter, and U ij is a block diagonal
matrix with unit entries for TOAs in the same observing epoch
and zeros for all others entries.
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The second term on the right-hand side of Eq. (21)
describes time-correlated stochastic processes, which
include pulsar-intrinsic red noise, and any stationary
stochastic signal. These processes are modeled using a
Fourier basis of frequencies fi ≡ i=Tobs, where i indexes
the harmonics of the basis, and Tobs is the timing baseline,
extending from the first to the last recorded TOA in the
complete PTA dataset. Since we are generally interested in
processes that exhibit long timescale correlations, this
expansion is truncated after, Nf, frequency bins. In this
work, we will set Nf ¼ 30 for intrinsic red noise processes,
and Nf ¼ 14 for GWB and ULDM signals in the mock and
NANOGrav 12.5-yr datasets. This set of Nf sine-cosine
pairs evaluated at the different observation times are
contained in the Fourier design matrix, F. The Fourier
coefficients of this expansion, a, are assumed to be
normally distributed random variables with zero mean
and a covariance matrix, haaTi ¼ ϕ, given by

½ϕ&ðaiÞðbjÞ ¼ δijðδabφa;i þ ΓGW
ab ΦGW

i þ ΓDM
ab ΦDM

i Þ; ð24Þ

where a and b index the pulsars, and i and j index the
frequency harmonics. The first term in Eq. (24) describes
intrinsic pulsar noise and is parametrized as

φa;i ¼
A2
a

12π2
1

Tobs

!
fi
yr−1

"
γa

yr3: ð25Þ

The second term in Eq. (24) describes the contribution to
the timing residuals induced by a GWB. The ORF for this
contribution is given by the well-known Hellings-Downs
(HD) function [26],

ΓGW
ab ¼ 1

2
δab þ

1

2
−
1

4
xab þ

3

2
xab ln xab; ð26Þ

where xab ¼ ð1 − n̂a · n̂bÞ=2. In this analysis, we will
parametrize the GWB common spectrum as

ΦGW
i ¼ A2

GW

12π2
1

Tobs

!
fi
yr−1

"
γGW

yr3: ð27Þ

Finally, the last term in Eq. (24) describes the stochastic
ULDM contribution to the timing residual and is related to
the timing residuals’ PSD by

ΓDM
ab ΦDM

i ¼ ΓDM
ab SDMðfiÞΔf; ð28Þ

where Δf ¼ 1=Tobs. In our analysis, we will always
consider nonisotropic DM velocity distribution, such
that SDMab ðfÞ is given by Eq. (17). However, since we are
interested in probing the ULDM abundance within the
Solar System, we will neglect the pulsar term for the
ULDM signal, which corresponds to neglecting the δab
terms in the ORFs given in Eqs. (18) and (19).

The third and last term in Eq. (21) describes the impact
that linear deviations from the initial best-fit values for the
m timing-model parameters have on the timing residuals.
The design matrixM is a NTOA ×mmatrix, which contains
the partial derivatives of the TOAs with respect to the
timing-model parameters (evaluated at the best-fit values),
and ϵ is a vector containing the linear offset from the best-
fit values of the timing model parameters.
Given this parametrization for the timing residuals, we

can use the two-step marginalization of the timing and
noise parameters described in Ref. [27] to obtain the PTA
likelihood function,

pðδtjηÞ ¼
exp ð− 1

2 δt
TK−1δtÞ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
detð2πKÞ

p ; ð29Þ

where η contains all the model parameters (i.e. F a and Qa
plus all the red noise parameters), and K ¼ Dþ FϕFT .
Here, D ¼ N þMEMT , where N is a diagonal matrix
whose non-zero elements are given by Eq. (22), and E ¼
hϵϵTi is set to be a diagonal matrix of very large values
(1040), which effectively means that we assume flat priors
for the parameters in ϵ.

B. Setting constraints and projections

The goal of our analysis is to set constraints and
projections on the local ULDM density as a function of
the ULDM mass. To do this, we make use of Bayes
inference, a technique that uses Bayes’ rule of conditional
probabilities to derive probability distribution for the
parameters of the statistical model used to describe the
data. In our case, these parameters are white noise param-
eters (F a andQa) and the ones contained in the covariance
matrix defined in Eq. (24), which include intrinsic red noise
parameters (Aa and γA), GWB parameters (AGWB and
γGWB), and ULDM parameters (ρ⊕, mϕ, and σ). Given
the PTA likelihood of Eq. (29), we can use Bayes’ theorem
to get

pðηjδtÞ ∝ pðδtjηÞpðηÞ: ð30Þ

pðηjδtÞ is the posterior probability distribution, pðδtjηÞ is
the PTA likelihood function given in Eq. (29) and imple-
mented using the ENTERPRISE [28] and enterprise_
extensions [29] packages, and pðηÞ are the prior
probability distributions for the noise and ULDM param-
eters reported in Table I.
Following the standard practice [30–33], we first per-

form a single-pulsar noise analysis to derive the maximum
likelihood values for each pulsars’ white noise parameters.
In this single-pulsar analysis, we model the timing residuals
only using white and intrinsic red noise, such that the PTA
likelihood will only depend on the parameters F a, Qa, Aa,
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and γa. GWB and ULDM parameters are not included, such
that the covariance matrix in Eq. (24) reads ϕ ¼ φ.
After this single-pulsar analysis, we performed a full

PTA analysis in which the white noise parameters are
fixed to their maximum likelihood value extracted from
the single-pulsar analysis, while all the other parameters
are varied within the prior ranges summarized in Table I.
Given the posterior distribution, we marginalize over all

parameters except the local ULDM density, ρ⊕, and the
ULDM mass mϕ. The constraints on the local ULDM in
each mass bin are then set to the 95th percentile of the
ULDM density in that bin.
Practically, we derive marginalized posterior distribu-

tions by using Markov chain Monte Carlo (MCMC)
techniques to sample randomly from the posterior distri-
butions. To assess convergence of our MCMC runs we use
the Gelman-Rubin statistic, R, and require R < 1.02 for all
parameters including pulsar intrinsic red noise parameters.
All the MCMC runs performed in this analysis used the
PTMCMC sampler [34].

C. Datasets

1. NANOGrav 12.5-yr dataset

The NANOGrav 12.5-yr dataset [15] consists of obser-
vations of 47 millisecond pulsars made between July 2004
and June 2017 by the Arecibo Observatory and the Green
Bank Telescope. Most pulsars in this dataset were observed
approximately once per month, except six pulsars that were
observed once per week as part of a high-cadence campaign
carried out at the Green Bank Telescope since 2013 and at
the Arecibo Observatory since 2015. In our analysis, we
will use the data from the 45 pulsars of this dataset that have
an observation baseline longer than 3 years.

2. Mock datasets

We create our mock data using libstempo [35], a
Python wrapper of TEMPO2 [36,37]. We build the dataset

starting from a core catalog consisting of the 67 pulsars
contained in the NANOGrav 15-yr dataset [38], for
which we assume an observation baseline of 15 years.5

This core catalog is expanded by adding 33 pulsars every
5 years until a total observing time of 30 years is reached.
Shorter observing baselines are derived by slicing this
dataset into smaller catalogs.
The final dataset consists of 166 pulsars placed in

random sky locations. Of these pulsars, 67 have an
observing baseline of 30 years, while the remaining
99 are divided into three blocks which have a total
observing baseline of 15, 10, and 5 years. For all pulsars,
we assume an observing cadence of 3 weeks, with small
random fluctuations added on top. Each TOA in the mock
dataset is associated with a TOA error, σa;i, which we
derive by sampling from a normal distribution whose
mean and standard deviation are reported in Table II. The
synthetic TOAs are injected with withe and red noise,
plus a GWB signal. All these processes are described
using the statistical models discussed in Sec. III A.
For each pulsar, the noise parameters are randomly
sampled from the distributions given in Table II, while
the GWB parameters are set to log10 AGWB ¼ −14.2
and γGWB ¼ 3.2.

IV. RESULTS

A. Solar System dark matter density

The results of our analysis are summarized in Fig. 1,
where we show the constraints and projections on the
average ULDM density obtained by analyzing the
NANOGrav 12.5-yr dataset and a simulated dataset with
increasing observing baseline and number of pulsars. Full
posterior distributions for the ULDM and GWB parameters
are reported in Appendix C.
The maximum sensitivity is achieved at the ULDM

masse, mϕ ∼ 1=ðTobsσ2Þ, for which the ULDM coherence
time approximately match the total observing baseline. At
lower masses, the sensitivity weakens exponentially, while

TABLE I. Prior distributions for the parameters used in this
work.

Parameter Description Prior

F a EFACa [0.01, 10]
log10ðQa=sÞ EQUADa ½−8.5;−5&
log10 Aa Intrinsic red-noise amplitude ½−20;−11&
γa Intrinsic red-noise spectral index [0, 7]

log10AGW GWB signal amplitude ½−20;−11&
γGW GWB signal spectral index [0, 7]

log10ðρ⊕=ρ0Þ Normalized local DM density [0, 12]
log10ðmϕ=eVÞ DM mass ½−19;−12&
σ½km=s& DM velocity dispersion [150, 250]

aParameters were used only in single pulsar analyses.

TABLE II. Probability distributions used to generate values of
noise parameters.

Parameter Description Distribution

σa;i TOA uncertainty N ð400 ns; 200 nsÞ
F a EFAC N ð1; 0.05Þ
log10 Qa EQUAD N ð−8.5; 1Þ
log10 Aa Intrinsic red-noise amplitude N ð−16; 1Þ
γa Intrinsic red-noise spectral index Uð1; 5Þ

5The NANOGrav 15-yr dataset contains in total of 68 pulsars.
Our core catalog is based on the 67 that were used in the
NANOGrav most recent GWB search [1].
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at higher masses they decrease like ρ⊕ ∝ m3=2
ϕ . This is

expected as for mϕ < 1=ðTobsσ2Þ the ULDM signal within
the PTA band is exponentially suppressed, while for mϕ >
1=ðTobsσ2Þ the amplitude of the ULDM signal scales like
SDM ∝ ρ2⊕=m3

ϕ, while the ULDM signals are entirely within
the PTA frequency band.
It is important to stress that PTAs are sensitive to the

DM abundance near the Solar System, a quantity for
which we have no direct experimental measure. Indeed,
typical measurements of the DM abundance are derived
using large-scale properties of the Milky Way, and probe
volumes of order Oð106 pc3Þ or larger (for a review on
measurements of the local DM abundance, see, for
example, Refs. [13,14]). In other words, the result of
these measurements, i.e., ρ0 ∼ 0.4 GeV=cm3, do not
exclude the possibility of DM overdensities at much
smaller scales.
To the best of our knowledge, the strongest constraints

on the dark matter density within the Solar System come
from Solar System ephemerides, which constraint the DM
density to be smaller than ρ⊕=ρ0 ≲ 2 × 105 at the Earth
orbit, and ρ⊕=ρ0 ≲ 2 × 104 at the Mars/Saturn orbit [16].
Additional constraints arise from lunar laser ranging and
LAGEOS geodetic satellite, ρ⊕=ρ0 ≲ 1011 [39], and the
motion of asteroids in the Solar System, ρ⊕=ρ0 ≲ 6 × 106

[40]. Our result shows that PTAs provide the strongest
probe on ULDM densities around the Solar System in the
mass range of mϕ ∼ 10−18 eV–10−16 eV.

B. Dark matter substructures

We perform a similar setup analysis while, this time,
fixing the velocity dispersion to σ ¼ 10; 50; 164 km= sec
and assuming vanishing mean velocity v0 ¼ 0. This
analysis is motivated by the potential existence of dark
matter substructures near the Solar System with distinct
kinematic properties. This may include a hypothetical
dark disc [41], streamlike structures accompanying stellar
streams [42–44], or dense ULDM structures bound to the
Solar System via capture processes [45–47]. This par-
ticular analysis examines the capacity of PTA observa-
tions to probe cold dark matter substructures with small
velocity dispersion.
The result is shown in Fig. 3. We observe two interesting

features: (i) as the velocity dispersion decreases, the mass at
which the strongest constraint appears shifts as mϕ ∝ 1=σ2,
and (ii) the constraint at that mass scales as ρ⊕ ∝ 1=σ. The
first feature can be easily explained. From the analytic
expression for the power spectrum (15), one finds that the
ULDM signal drops exponentially for 2πf ≳mϕσ2. This
suggests that the lowest mass that can be probed by PTA is
m̂ϕ ¼ 2π=ðTobsσ2Þ, which explains the first feature shown
in the figure. The second feature can be explained similarly.
The timing residual power spectrum induced by ULDM

fluctuations is proportional to SDM ∝ ρ2⊕=m
3
ϕσ

4. For
mϕ ¼ m̂ϕ, we then have SDM ∝ ρ2⊕σ

2, which explains
the ρ⊕ ∝ 1=σ scaling for the peak sensitivity.

V. CONCLUSION

We have considered the impacts of ULDM low-fre-
quency stochastic fluctuations on pulsar timing observa-
tions and derived the overlap reduction function and the
timing residual power spectrum induced by these fluctua-
tions. We have found that these stochastic fluctuations
allow us to probe ULDM in a mass range approximately 6
orders of magnitude higher than usual searches based on
coherent ULDM oscillations.
To fully assess the prospect of PTA searches for this

kind of fluctuations, we have analyzed (i) the NANOGrav
12.5-yr dataset and (ii) synthetic data with injected sto-
chastic GWB and noise characteristics resembling actual
PTA datasets. From the NANOGrav 12.5-yr analysis, we
have not found any signals of stochastic ULDM fluctua-
tions, from which we place an upper bound on ULDM
density near the Solar System as ρ⊕=ρ0 ≲ 4 × 103 at
mϕ ≃ 10−17 eV. From the analyses of the simulated dataset,
we show that the sensitivity of future PTA observations
could be improved up to an order of magnitude with the
analysis of upcoming datasets. We have extended this
analysis to probe cold dark matter substructures near the

FIG. 3. Constraints and projections on the local ULDM
abundance for cold DM substructures with σ ¼ 10 km= sec (blue
shaded regions), 50 km= sec (red shaded regions), and
164 km= sec (green shaded regions). The solid lines show the
constraints derived by analyzing the NANOGrav 12.5-yr dataset.
The other shaded regions show the constraints derived by
analyzing the 15-yr (dark-shaded), 20-yr (medium-shaded),
and 30-yr (light-shaded) synthetic datasets.
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Solar System and found that PTA will provide a strong
probe of such objects for a wide range of mass.
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APPENDIX A: ULDM FLUCTUATIONS

In this appendix, following Ref. [9], we provide a more
detailed derivation of the power spectrum for density and
pressure fluctuations of a ULDM scalar field, ϕ, minimally
coupled to gravity and whose action reads

S ¼
Z

d4x
ffiffiffiffiffiffi−gp

#
1

2
ð∂ϕÞ2 − 1

2
m2

ϕϕ
2

$
; ðA1Þ

where g ¼ det gμν is the determinant of the metric gμν.
The ULDM field can be modeled as the sum of many

freely propagating plane waves [17],6

ϕðt; xÞ ¼
X

k

1ffiffiffiffiffiffiffiffiffiffiffiffi
2mϕV

p ½αke−ik·x þ α'ke
þik·x&; ðA2Þ

where the sum runs over the momenta of a particle
quantized in a cubic box of volume V, and ðαk; α'kÞ is a
set of complex random number, whose underlying distri-
bution is given by

pðαkÞ ¼
1

πfk
exp

#
−
jαkj2

fk

$
: ðA3Þ

Here, fk is the mean occupation number, which will be later
interpreted as a phase space distribution of dark matter
particles. The above distribution does not depend on the
phase of αk; the phase follows the uniform distribution.
Heuristic arguments for the distribution can be found in
Refs. [48,49]. A field theoretical derivation is provided
in Ref. [17].
Given this probability distribution, the ensemble average

of any operator built from the ϕ field can be written as

hOi ¼
Z #Y

k

d2αkpðαkÞ
$
O: ðA4Þ

We will now apply these results to study the density and
pressure fluctuations of a ULDM field.
The stress-energy tensor for the ULDM field reads

Tμν ¼ ∂μϕ∂νϕ −
1

2
gμν½ð∂ϕÞ2 −m2

ϕϕ
2&; ðA5Þ

from which we can easily derive the ULDM energy density,

ρ≡ T00 ¼
1

2
½ðϕ̇Þ2 þ ð∇ϕÞ2 þm2

ϕϕ
2&: ðA6Þ

ULDM density fluctuations are defined as

δρ ¼ ρ − hρi; ðA7Þ

with the mean energy density given by

hρi ≃
mϕ

V

X

k

fk ≃mϕ

Z
d3vfðvÞ; ðA8Þ

where in the last step we have taken the continuum limit,
changed the integration variable to the DM velocity, and
adjusted accordingly the normalization of the phase space
distribution.
Given the above results, we are now ready to derive the

power spectrum of ULDM density fluctuations, Pδρ,
defined as

hδρðkÞδρ'ðk0Þi≡ ð2πÞ4δð4Þðk − k0ÞPδρðkÞ; ðA9Þ

where we have defined

δρðkÞ≡
Z

d4xe−ik·xδρðxÞ: ðA10Þ

Using Eqs. (A2)–(A4) together with the relations,

hαkα'k0 i ¼ fkδkk0

hαkαqα'k0α'q0 i ¼ fkfqðδkk0δqq0 þ δkq0δqk0Þ; ðA11Þ

we find that

PδρðkÞ ≈m2
ϕ

Z
d3v1d3v2fðv1Þfðv1Þð2πÞ4δðk − p1 þ p2Þ:

ðA12Þ

Given the DM velocity distribution in the Solar System,

fðvÞ ¼
ρ⊕=mϕ

ð2πσ2Þ3=2
exp

#
−
ðv − v0Þ2

2σ2

$
; ðA13Þ6Here, we are neglecting the Oð1%Þ perturbations that the

potential of the Sun can have on the ULDM wave functions.
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with v0 the mean dark matter velocity, ρ⊕ the mean DM
density near the Solar System, and σ the velocity dispersion;
the power spectrum for density perturbations takes the form,

PδρðkÞ ¼
2π2ρ2⊕
m4

ϕσ
5

σ
vk

exp
#
−

v2k
4σ2

−
σ2

v2k

!
v0 · vk
σ2

− ωτ

"
2
$
;

ðA14Þ

where vk ¼ k=mϕ and τ ¼ 1=mϕσ2.

APPENDIX B: TIMING RESIDUAL

In this appendix, we provide a detailed derivation of the
ULDM signals discussed in Sec. II.

1. Time delay

We start by parametrizing the metric perturbations
produced by ULDM fluctuations in terms of the scalar
potentials Ψ and Φ,

ds2 ¼ ð1þ 2ΦÞdt2 − ð1 − 2ΨÞdx2: ðB1Þ

Now, consider a bunch of photons emitted by a pulsar at
space-time coordinates xem ¼ ðtem; xpÞ and propagating to
an observer on Earth that receives them at xobs ¼ ðtobs; xeÞ.
The geodesic condition, ds2 ¼ 0, then requires that

tobs ¼ Δþ tem −
Z

tobs

tem
dt½Φðt; xðtÞÞ þΨðt; xðtÞÞ&; ðB2Þ

where Δ ¼ jxp − xej. Now consider a second bunch of
photons emitted after a full rotation of the pulsar at x0em ¼
ðt0em; x0pÞ and received at x0obs ¼ ðt0obs; x0eÞ. As before, we
can use the geodesic condition to get

t0obs ¼ Δ0 þ t0em −
Z

t0obs

t0em
dt½Φðt; x0ðtÞÞ þ Ψðt; x0ðtÞÞ&; ðB3Þ

where Δ0 ¼ jx0p − x0ej. Assuming that the metric perturba-
tions are small (i.e., Φ;Ψ ≪ 1), we can approximate the
integral on the right-hand side of this equation as
Z

t0obs

t0em
dt½Φðt; x0ðtÞÞ þ Ψðt; x0ðtÞÞ&

≃
Z

tobsþTa

temþTa

dt½Φðt; x0ðtÞÞ þΨðt; x0ðtÞÞ&

≃
Z

tobs

tem
dt½Φðtþ Ta; xðtÞÞ þ Ψðtþ Ta; xðtÞÞ&; ðB4Þ

where, in going from the first to the second line, we have
used the approximation t0em;obs ≃ tem;obs þ Ta, where Ta is
the rotational period of the ath pulsar; while, in going from
the second to the last line, we have redefined the integration
variable as t → tþ Ta, and used that for the unperturbed
photon trajectory, xðtÞ ¼ xe þ ðtobs − tÞn̂a, we have that
x0ðtþ TaÞ ≃ xðtÞ. Therefore, using Eqs. (B2)–(B4), we
can write

t0obs − tobs ≃ t0em − tem þ Δ0 − Δþ
Z

tobs

tobs−da
dt½Φðt; xðtÞÞ −Φðtþ Ta; xðtÞÞ þΨðt; xðtÞÞ −Ψðtþ Ta; xðtÞÞ&; ðB5Þ

where in rewriting the integration limits we have used that
tem ≃ tobs − da, where da is the nominal distance between
the observer and the ath pulsar. The left-hand side of this
equation is related to the proper time interval between the
detection of the two photon bunches for an observer onEarth
as, where to evaluate the integral we have used that the scalar
potential is approximately constant on the timescale of the
pulsar period. In the rest of this section, wewill discuss each
contribution on the right-hand side of Eq. (B5).
The difference between the two emission times, t0em − tem,

can be rewritten in terms of the pulsar period by requiring
that the proper time interval between two emissions in the
pulsar reference frame must equal the pulsar period,

Ta ≃
Z

t0em

tem
dt½1þΦðt; xpÞ& ≃ t0em − tem þ TaΦðtem; xpÞ;

ðB6Þ

where to evaluate the integral we have used that the scalar
potential is approximately constant on the timescale of the
pulsar period.

The difference Δ0 − Δ represents the change in path
lengths the two consecutive photon bunches have to
traverse. Indeed, fluctuations in the scalar field potential
can accelerate the pulsar or the Earth and change their
relative position,

Δ0 − Δ
Ta

≃ n̂a ·
Z

tobs
dt0∇½Φðt0; xeÞ −Φðt0 − da; xpÞ&; ðB7Þ

where we have once again used that the scalar potential is
approximately constant over a pulsar rotation and that
tem ≃ tobs − da.
The integral in Eq. (B5) can be rewritten by expanding at

first order the time dependence of the scalar potential,

Ψðtþ Ta; xÞ ≃Ψðt; xÞ þ Ta∂tΨðt; xÞ
Φðtþ Ta; xÞ ≃Φðt; xÞ þ Ta∂tΦðt; xÞ: ðB8Þ

By substituting these expansion into Eq. (B5), we can
rewrite the integral as
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−Ta

Z
tobs

tobs−da
dt∂t½Φðt; xðtÞÞ þ Ψðt; xðtÞÞ&; ðB9Þ

then using that ∂t ¼ d=dt − n̂a · ∇, we get

− Ta½Φðtobs; xeÞ −Φðtobs − da; xpÞ þ Ψðtobs; xeÞ
−Ψðtobs − da; xpÞ&

þ Tan̂a ·
Z

tobs

tobs−da
dt∇½Φðt; xðtÞÞ þ Ψðt; xðtÞÞ&: ðB10Þ

Substituting Eqs. (B6)–(B11) into Eq. (B5), we find that
for an observer on Earth, the interval between the arrival
time of the two radiation pulses is given by

Δτ
Ta

≃ 1þ
!
ΔTa

Ta

"

1

þ
!
ΔTa

Ta

"

2

þ
!
ΔTa

Ta

"

3

; ðB11Þ

where the three terms contributing to deviations in the
observed pulsar’s rotation period are given by

!
ΔTa

Ta

"

1

¼ Ψðt − da; xpÞ −Ψðt; xeÞ ðB12Þ

!
ΔTa

Ta

"

2

¼ n̂a ·
Z

t

t−da
dt0∇½Φðt0;xðt0ÞÞþΨðt0;xðt0ÞÞ& ðB13Þ

!
ΔTa

Ta

"

3

¼ n̂a ·
Z

t
dt0∇½Φðt0;xeÞ−Φðt0−da;xpÞ&; ðB14Þ

where in all these expressions we have replaced tobs with t.
The first two contributions come from the combination of
Shapiro delay and proper time correction, while the last
term is due to the Doppler shift of the arrival times caused
by the Earth-pulsar relative motion.
It is useful to rewrite these quantities in Fourier space,

!
ΔTa

Ta

"

1

¼ −
Z

d4k
ð2πÞ4

Uðk; da; n̂aÞe−ik·xobsΨ̃ðkÞ ðB15Þ

!
ΔTa

Ta

"

2

¼ −
Z

d4k
ð2πÞ4

n̂a · k
ωþ k̂ · n̂a

Uðk; da; n̂aÞe−ik·xobs

× ½Φ̃ðkÞ þ Ψ̃ðkÞ& ðB16Þ
!
ΔTa

Ta

"

3

¼ −
Z

d4k
ð2πÞ4

n̂a · k
ω

Uðk; da; n̂aÞe−ik·xobsΦ̃ðkÞ;

ðB17Þ

where Uðk; da; n̂aÞ ¼ ð1 − eiωdaeik·n̂adaÞ. Given that, as we
have shown in Appendix A, for the dominant Fourier modes
we have ω≲mϕσ2 and jkj ≲mϕσ, the Doppler effect,

ðΔTa=TaÞ3, provides the dominant contribution. Note also
that Φ̃ ≈ Ψ̃ for low-frequency stochastic fluctuations.
It is worthwhile to compare our result with Khmelnitsky

and Rubakov [5]. In their work, they have considered a
coherently oscillating mode at ω ¼ 2mϕ. From (B16) and
(B17), it is clear that the coherently oscillating signal is
strongest in ðΔTa=TÞ1, while the other term is suppressed
by the additional power of DM velocity. Using (B16), it is
straightforward to reproduce the results of Khmelnitsky and
Rubakov as shown in the Appendix of Ref. [9].

2. Spectrum

As discussed in the main text, the timing residual power
spectrum induced by stochastic ULDM fluctuations can be
written as

SDMab ðfÞ ≈ 2G2

π2f4

Z
d3k
ð2πÞ3

ðk · n̂aÞðk · n̂bÞUaU'
b
Pδρðf; kÞ

k4
;

where the density fluctuation power spectrum, Pδρ, is
given in (A14). For an explicit computation, we set the
coordinate as

v̂0 ¼ ð0; 0; 1Þ; ðB18Þ

k̂ ¼ ðsin θ cosϕ; sin θ sinϕ; cos θÞ; ðB19Þ

n̂a ¼ ðsin θa cosϕa; sin θa sinϕa; cos θaÞ; ðB20Þ

n̂b ¼ ðsin θb cosϕb; sin θb sinϕb; cos θbÞ: ðB21Þ

After performing an explicit computation, one finds that the
timing residual power spectrum can be written as a sum of
two terms,

SDMðfÞΓDM
ab ðfÞ ¼ Γ⊥

abS
⊥ðfÞ þ Γ⫽

abS
⫽ðfÞ; ðB22Þ

where the overlap functions are given in (18) and (19). Each
spectrum is given as

SAðfÞ ¼ ā2τ
ð2πfÞ4

#
64

π

Z
dx
x
e−x

2=4CAðV0; ω̄; xÞ
$

ðB23Þ

≡ ā2τ
ð2πfÞ4

HAðf; V0Þ; ðB24Þ

where we have introduced V0 ¼ v0=σ and ω̄ ¼ ωτ and
changed the integration variable to x ¼ vk=σ. Here, the
function C⊥ and C⫽ are given as

C⊥ðV0; ω̄; xÞ ¼ þ 1

8V3
0

#!
V0 −

ω̄
x

"
e−ðV0þω̄

xÞ
2 −

ffiffiffi
π

p

2

!
1þ 2

!
ω̄
x

"
2

− 2V2
0

"
erf

!
V0 −

ω̄
x

"$
þ ðω̄ → −ω̄Þ; ðB25Þ

C⫽ðV0; ω̄; xÞ ¼ −
1

4V3
0

#!
V0 −

ω̄
x

"
e−ðV0þω̄

xÞ
2 −

ffiffiffi
π

p

2

!
1þ 2

!
ω̄
x

"
2
"
erf

!
V0 −

ω̄
x

"$
þ ðω̄ → −ω̄Þ: ðB26Þ
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In the limit V0 → 0, one finds H⊥ðfÞ ¼ H⫽ðfÞ ¼ ð64=3πÞK0ðωτÞ, reproducing the results obtained in the isotropic
limit. For the Bayesian analysis in the main text, we tabulate each function HA and use them for the numerical evaluations.

APPENDIX C: POSTERIOR DISTRIBUTION

In Fig. 4, we present the 2D posterior distribution for five parameters,

ðlog10mϕ; log10ðρ⊕=ρ0Þ; σ; γGW; log10 AGWÞ;

obtained from the analysis of NANOGrav 12.5-yr data. For detailed descriptions of the analysis, see Sec. III.

FIG. 4. The 2D posterior distribution for the analysis of NANOGrav 12.5-yr data is shown. For a detailed description of the analysis;
see Sec. III. The quoted numbers above each panel correspond to the median and 90% credible interval of each parameter, while each
contour in the 2D histogram contains 68.3,95.4, and 99.7% of samples.
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