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ABSTRACT. For a complexity class C and language L, a constructive separation of L ¢ C
gives an efficient algorithm (also called a refuter) to find counterexamples (bad inputs) for
every C algorithm attempting to decide L. We study the questions: Which lower bounds can
be made constructive? What are the consequences of constructive separations? We build
a case that “constructiveness” serves as a dividing line between many weak lower bounds
we know how to prove, and strong lower bounds against P, ZPP, and BPP. Put another way,
constructiveness is the opposite of a complexity barrier: it is a property we want lower bounds
to have. Our results fall into three broad categories.

— For many separations, making them constructive would imply breakthrough lower
bounds. Our first set of results shows that, for many well-known lower bounds against
streaming algorithms, one-tape Turing machines, and query complexity, as well as lower
bounds for the Minimum Circuit Size Problem, making these lower bounds constructive
would imply breakthrough separations ranging from EXPNP # BPP to even P # NP. For
example, it is well-known that distinguishing binary strings with (1/2 — €)n ones from
strings with (1/2 + €)n ones requires randomized query complexity 0(1/&?). We show that
a sufficiently constructive refuter for this query lower bound would imply P # NP.

— Most conjectured uniform separations can be made constructive. Our second set of
results shows that for most major open problems in lower bounds against P, ZPP, and
BPP, including P # NP, P # PSPACE, P # PP, ZPP # EXP, and BPP # NEXP, any proof of the
separation would further imply a constructive separation. Our results generalize earlier
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results for P # NP [Gutfreund, Shaltiel, and Ta-Shma, CCC 2005] and BPP # NEXP [Dolev,
Fandina and Gutfreund, CIAC 2013]. Thus any proof of these strong lower bounds must
also yield a constructive version, in contrast to many weak lower bounds we currently
know.
— Some separations cannot be made constructive. Our third set of results shows that certain
complexity separations cannot be made constructive. We observe that for t(n) > n®®
there are no constructive separations for Ry: (which is known to be not in P) from any
complexity class, unconditionally. We also show that under plausible conjectures, there are
languages in NP \ P for which there are no constructive separations from any complexity

class.

1. Introduction

A primary goal of complexity theory is to derive strong complexity lower bounds for natural
computational problems. When a lower bound holds for a problem II against a model M
of algorithms, this implies that for each algorithm A from M, there is an infinite sequence
of counterexamples {x;} for which A fails to solve II correctly.? In this paper, we study the
question: can such a family of counterexamples be constructed efficiently, for fixed IT and a
given algorithm A in M? We call a positive answer to this question a constructive separation
of IT from M.

There are several motivations for studying this question in a systematic way for natural
problems IT and models M. Computer science is inherently a constructive discipline, and it
is natural to ask if a given lower bound can be made constructive. Indeed, this can be seen
as an “explicit construction” question of the kind that is studied intensively in the theory of
pseudorandomness, where we may have a proof of existence of certain objects with optimal
parameters, e.g., extractors, and would like to construct such objects efficiently.

Our primary motivation is to understand the general lower bound problem better! Con-
structive lower bounds have led to some recent resolutions of lower bound problems in com-
plexity theory, and we believe they will lead to more. In his Geometric Complexity Theory
approach, Mulmuley [47] suggests that in order to break the “self referential paradox” of P vs
NP and related problems?, one has to shoot for algorithms which can efficiently find counterex-
amples for any algorithms claiming to solve the conjectured hard language. This view has been
dominant in the GCT approach towards the VNP vs. VP problem [48, 49, 33].

1 If the family of counterexamples was finite, we could hard-code them into the algorithm A to give a new algorithm A’
that solves II correctly, for most “reasonable” models M.

2 Namely, since the P vs. NP problem is a universal statement about mathematics that says that discovery is hard, why
could it not preclude its own proof and hence be independent of the axioms of set theory?
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The ability to “construct bad inputs for a hard function” has also been critical to some recent
developments in (Boolean) complexity theory. Chen, Jin, and Williams [15] studied a notion of
constructive proof they called explicit obstructions. They show several “sharp threshold” results
for explicit obstructions, demonstrating (for example) that explicit obstructions unconditionally
exist for n>~t-size DeMorgan formulas, but if they existed for n®*¢-size formulas then one could
prove the breakthrough lower bound EXP ¢ NC!. (We discuss the differences between their
work and ours in Section 2.4, along with other related work.)

Constructive lower bounds have also been directly useful in proving recent lower bounds.
Chen, Lyu, and Williams [16] recently showed how to strengthen several prior lower bounds for
ENP based on the algorithmic method to hold almost everywhere. A key technical ingredient in
this work was the development of a constructive version of a nondeterministic time hierarchy
that was already known to hold almost everywhere [23]. The “refuter” in the constructive
lower bound (the algorithm producing counterexamples) is used directly in the design of the
hard function in ENP. This gives a further motivation to study when lower bounds can be made

constructive.

The Setup. Define typical complexity classes as the classes P, BPP, ZPP, NP, ZxP, PP, &P, PSPACE,
EXP, NEXP, EXPN? and their complement classes.

Intuitively, a refuter for f against an algorithm A is an algorithm R that finds a counterexam-
ple on which A makes a mistake, proving in an algorithmic way that A cannot compute f. (This
notion seems to have first been introduced by Kabanets [37] in the context of derandomization;
see Section 2.4 for more details.)

DEFINITION 1.1 (Refuters and constructive separation). For a function f: {0,1}* — {0,1}

and an algorithm A, a P-refuter for f against A is a deterministic polynomial time algorithm R

that, given input 1", prints a string x € {0, 1}", such that for infinitely many n, A(x) # f(x).
We extend this definition to randomized refuters as follows:

— A BPP-refuter for f against A is a randomized polynomial time algorithm R that, given
input 1", prints a string x € {0,1}", such that for infinitely many n, A(x) # f(x) with
probability at least 2/3.3

— A ZPP-refuter for f against A is a randomized polynomial time algorithm R that, given input
1", prints x € {0,1}" U {L}, such that for infinitely many n, either x =L or A(x) # f(x)
with probability 1, and x #.1 with probability at least 2/3.

For D € {P,BPP,ZPP} and a typical complexity class C, we say there is a D-constructive
separation of f ¢ C, if for every algorithm A computable in C, there is a refuter for f against A
that is computable in D.

3 We remark that here it is not necessarily possible to amplify the success probability, so the choice of the constant 2/3
matters.



4/ 4

TheoretiCS L. Chen, C. Jin, R. Santhanam, and R. Williams

Note that we allow the refuter algorithm to depend on the algorithm A.

In Definition 1.1, we allow the algorithm A being refuted to be randomized, but we only
consider randomized algorithms A with bounded probability gap, that is, on every input x there
is an answer b € {0, 1} such that A outputs b with at least 2/3 probability, and we denote this
answer b by A(x).

In Definition 1.1 we restrict C and 9 to come from a small list of complexity classes in
order to be formal and concrete; the definition can of course be generalized naturally to other
classes of algorithms.

The length requirement that |R(1")| = n in Definition 1.1 is important.# For example, if
x = R(1") has very short length |x| = log(n), then the task of refutation would be much easier,
as one has exponential 2°(*) time to produce an input x.

Our work is certainly not the first to consider the efficiency of producing “bad” inputs for
weak algorithms. Gutfreud, Shaltiel, and Ta Shma [28] showed that if P # NP, then there is a P-
constructive separation of P # NP (in other words, there is a P-constructive separation of SAT ¢ P).
They also proved analogous results for ZPP # NP and NP ¢ BPP; in these results, they considered
the setting where the randomized algorithm being refuted may have unbounded probability gap,
which is more general than what we consider in this paper. Building on the technique of [28],
Dolev, Fandina and Gutfreund [21] established a BPP-constructive separation of BPP # NEXP
(assuming BPP # NEXP is true). They also proved a similar result for ZPP # NEXP.® Atserias [6]
showed that if NP ¢ P/poly, then there is a BPP-constructive separation of NP ¢ P/poly.

At this point it is natural to ask:

Question 1: Which lower bounds imply a corresponding constructive lower bound?

Naively, one might expect that the answer to Question 1 is positive when the lower bound
is relatively easy to prove. We show that this intuition is wildly inaccurate. On the one hand,
we show that for many natural examples of problems IT and weak models M, a lower bound is
easily provable (and well-known), but constructivizing the same lower bound would imply a
breakthrough separation in complexity theory (a much stronger type of lower bound). On the
other hand, we show that for many “hard” problems IT and strong models M, a lower bound
for IT against M automatically constructivizes: the existence of the lower bound alone can be
used to derive an algorithm that produces counterexamples. So, in contrast with verbs such
as “relativize” [7], “algebrize” [1], and “naturalize” [58], we want to prove lower bounds that
constructivize! We are identifying a desirable property of lower bounds.

We now proceed to discuss our results in more detail, and then give our interpretation of
these results.

4 This requirement seems somewhat strong, but it is easy to show that if there is a refuter which on infinitely many
1" always outputs a string of length in {n,n“, ..., n‘} for some constants cy,..., cx > 0, then there is another refuter
which outputs a string of length n on infinitely many 1". See Section 5.

5 We remark that [21] only considered refuting algorithms with one-sided error.
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11 Most Conjectured Poly-Time Separations Can Be Made Constructive

Generalizing prior work [28, 21], we show that for most major open lower bound problems
regarding polynomial time, their resolution implies corresponding constructive lower bounds

for most complete problems.

THEOREM 1.2. Let C € {P,ZPP,BPP} and let D € {NP,%,P,...,EkP,...,PP, PSPACE, EXP, NEXP,
EXPNP}. Then © ¢ C implies that for every paddable D-complete language L, there is a C-
constructive separation of L ¢ C.¢ Furthermore, ®P ¢ C implies that for every paddable &P-
complete language L, there is a BPP-constructive separation of L ¢ C.

In other words, for many major separation problems such as PP # BPP, EXP # ZPP, and
PSPACE # P, proving the separation automatically implies constructive algorithms that can
produce counterexamples to any given weak algorithm. We find Theorem 1.2 to be mildly
surprising: intuitively it seems that proving a constructive lower bound should be strictly
stronger than simply proving a lower bound. (Indeed, we will later see other situations where
making known lower bounds constructive would have major consequences!) Moreover, for
separations beyond P # NP, the polynomial-time refuters guaranteed by Theorem 1.2 are
producing hard instances for problems that presumably do not have short certificates. For
example, we do not believe that PSPACE = NP (we do not believe PSPACE has short certificates),
yet one can refute polynomial-time algorithms attempting to solve QBF with other polynomial-
time algorithms, under the assumption that PSPACE # P. The point is that such polynomial-
time refuters intuitively cannot check their own outputs for correctness. We find this very

counterintuitive.

1.2 Unexpected Consequences of Making Some Separations Constructive

Given Theorem 1.2, we see that most of the major open problems surrounding polynomial-time
lower bounds would yield constructive separations. Can all complexity separations be made
constructive? It turns out that for several “weak” lower bounds proved by well-known methods,
making them constructive requires proving other breakthrough lower bounds!

Thus, there seems to be an algorithmic “dividing line” between many lower bounds we are
able to prove, and many of the longstanding lower bounds that seem perpetually out of reach.
The longstanding separation questions (as seen in Theorem 1.2) require a constructive proof: an
efficient algorithm that can print counterexamples. Here we show that many lower bounds we
are able to prove do not require constructivity, but if they could be made constructive then we
would prove a longstanding separation! In our minds, these results confirm the intuition of

6 Throughout this paper when we say a language L is D-complete, we mean it is D-complete under polynomial-time
many-one reductions. A language L is paddable if there is a deterministic polynomial-time algorithm that receives
(x,1™) as input, where string x has length at most n — 1, and then outputs a string y € {0,1}" such that L(x) = L(y).
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Mulmuley that we should “go for explicit proofs” in order to make serious progress on lower
bounds, especially uniform ones.

Constructive Separations for (Any) Streaming Lower Bounds Imply Breakthroughs.
It is well-known that various problems are unconditionally hard for low-space randomized
streaming algorithms. For example, from the randomized communication lower bound for the
Set-Disjointness (DIS)) problem [39, 57, 8], it follows that no n'~%-space randomized streaming
algorithm can solve DIS] on 2n input bits.”

Clearly, every n°V-space streaming algorithm for DIS| must fail to compute DIS) on some
input (indeed, it must fail on many inputs). We show that efficient refuters against streaming
algorithms attempting to solve any NP problem would imply a breakthrough lower bound on
general randomized algorithms, not just streaming algorithms.

Similarly to Definition 1.1, we can consider PNP-refuters against streaming algorithms,
which are deterministic polynomial time algorithms given a SAT oracle that output counterex-
amples for streaming algorithms on infinitely many input lengths. We can also similarly define

PNP_constructive separations.

THEOREM 1.3. Let f(n) > w(1). For every language L. € NP, a PNP-constructive separation
of L from uniform randomized streaming algorithms with O(n - (log n)/ ™) time and O(log n)/™
space® implies EXPNP # BPP.

Essentially every lower bound proved against streaming algorithms in the literature holds

for a problem whose decision version is in NP. Theorem 1.3 effectively shows that if any of

these lower bounds can be made constructive, even in a PNP

PNP

sense, then we would separate
randomized polynomial time from EXP"™", a longstanding open problem in complexity theory.
We are effectively showing that the counterexamples printed by such a refuter algorithm must
encode a function that is hard for general randomized streaming algorithms.

Stronger lower bounds follow from more constructive refuters (with an algorithm in a
lower complexity class than PNP) against randomized streaming algorithms. At the extreme end,
we find that uniform circuits refuting DIS] against randomized streaming algorithms would
even imply P # NP. Similarly to Definition 1.1, we can consider polylogtime-uniform-AcC’-
refuters against streaming algorithms, which are polylogtime-uniform-AC® circuits that output

counterexamples for streaming algorithms on infinitely many input lengths.

7 Recall in the DIS) problem, Alice is given an n-bit string x, Bob is given an n-bit string y, and the goal is to determine

whether their inner product X', x;y; is nonzero.

8 That is, for every such randomized streaming algorithm A, there is a PNP refuter B such that B(1") prints an input x of
length n such that A decides whether x € L incorrectly, for infinitely many n.
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THEOREM 1.4. Let f(n) > w(1). A polylogtime-uniform-AC%-constructive separation of DIS)
from randomized streaming algorithms with O(n- (log n)’ W) time and O(log n)/ ™ space?® implies
P % NP.

To recap, it is well-known that DIS) does not have randomized streaming algorithms with
O(n - (logn)/™) time and O(log n)/ ™ space, even for f(n) < o(log n/loglog n), by communi-
cation complexity arguments. We are saying that, if (given the code of such an algorithm) we
can efficiently construct hard instances of DISJ for that algorithm, then strong lower bounds
follow. That is, making communication complexity arguments constructive would imply strong
unconditional lower bounds.

Constructive Separations for One-Tape Turing Machines Imply Breakthroughs. Next,
we show how making some rather old lower bounds constructive would imply a circuit complex-
ity breakthrough. It has been known at least since Maass [43] that nondeterministic one-tape
Turing machines require Q(n?) time to simulate nondeterministic multitape Turing machines.
However, those lower bounds are proved by non-constructive counting arguments. We show
that if there is a PNP algorithm that can produce bad inputs for a given one-tape Turing machine,
then ENP requires exponential-size circuits. This in turn would imply BPP € PNP, a breakthrough
simulation of randomized polynomial time.

THEOREM 1.5. For every language L computable by a nondeterministic n'+*°V-time RAM, a
PNP_constructive separation of L from nondeterministic O(n'!)-time one-tape Turing machines
implies EN ¢ SIZE[25"] for some constant § > 0.

Constructive Separations for Query Lower Bounds Imply Breakthroughs. Now we turn
to query complexity. Consider the following basic problem PromiseMAJORITY,, . for a parameter
e<1/2.

PromiseMAJORITY,, .: Given aninput x € {0, 1}", letting p = % i, Xi, distinguish between
thecasesp <1/2—¢corp>1/2+e¢

This is essentially the “coin problem” [10]. It is well-known that every randomized query
algorithm needs ©(1/€?) queries to solve PromiseMAJORITY,, . with constant success probability
(uniform random sampling is the best one can do). That is, any randomized query algorithm
making o(1/&%) queries must make mistakes on some inputs, with high probability. We show
that constructing efficient refuters for this simple sampling lower bound would imply P # NP!

THEOREM 1.6. Let ¢ be a function of n satisfying € < 1/(log n)®‘Y, and 1/¢ is a positive integer
computable in poly(1/€) time given n in binary.

9 That is, for every such randomized streaming algorithm A, there is a polylogtime-uniform AC® circuit family {C,} such
that A fails to solve DIS) on 2n-bit inputs correctly on the output C,,(1") for infinitely many n.
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— Ifthere is a polylogtime-uniform-AC®-constructive separation of PromiseMAJORITY,, . from
randomized query algorithms A using o(1/&®) queries and poly(1/¢) time, then NP # P.

— Ifthere is a polylogtime-uniform-NC-constructive separation of PromiseMAJORITY,, . from
randomized query algorithms A using o(1/&*) queries and poly(1/¢) time, then PSPACE # P.

Note that PromiseMAJORITY,, . can be easily computed in NC!. If for every randomized
query algorithm A running in n® time and making n® queries for some o > 0, we can always

find inputs in NC! on which A makes mistakes, then we would separate P from PSPACE.

Constructive Separations for MCSP Against AC® Imply Breakthroughs. Informally, the
Minimum Circuit Size Problem (MCSP) is the problem of determining the circuit complexity of
a given 2"-bit truth table. Recent results on the phenomenon of hardness magnification [53, 44,
14,12, 15] show that, for various restricted complexity classes C:
— Strong lower bounds against C are known for explicit languages.
— Standard complexity-theoretic hypotheses imply that such lower bounds should hold also
for MCSP (and its variants).
— However, actually proving that MCSP ¢ C would imply a breakthrough complexity separa-
tion.
— There is also often a slightly weaker lower bound against C that can be shown for MCSP,
suggesting that we are quantitatively “close” to a breakthrough separation in some sense.

The scenario where all four conditions above hold is called a “hardness magnification
frontier” in [12]. We show that a similar phenomenon holds for constructive separations. It is
well known that versions of MCSP are not in AC® [4], but strongly constructive separations are
not known. We show that strongly constructive separations would separate P from NP, and that
they exist under a standard complexity hypothesis. Moreover, we show that slightly weaker
constructive separations do exist, and the strong constructive separations we seek do hold for
other hard problems such as Parity.

In the following, MCSP[s(n)] is the computational problem that asks whether a Boolean
function on n bits, represented by its truth table, has circuits of size at most s(n). Similarly to
Definition 1.1, a polylogtime-uniform-AC°[ f (n)]-refuter for MCSP[s(n)] against an algorithm A is
defined as a polylogtime-uniform-AC® circuit of size f(n) that outputs a string x € {0, 1}" given
input 1¥ (where N = 2"), such that for infinitely many N = 2", A(x) # MCSP[s(n)](x)."® We
also consider a natural relaxation of refuter (Definition 1.1), called list-refuter, which outputs a
list of n-bit strings x; (instead of a single n-bit string x) given input 1", and we only require that
at least one of the strings x; is a counterexample.

10 Note that here we restrict the input lengths N to be powers of two, since otherwise the MCSP problem is ill-defined.
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THEOREM1.7. Lets(n) > nlos(m“ ™ pe any time-constructive super-quasipolynomial function. In
the following, we consider MCSP[s(n)] and Parity problems of input length N = 2". The following
hold:

1. (Major Separation from Constructive Lower Bound) If there exists a polylogtime-uniform
AC®[quasipoly] refuter for MCSP[s(n)] against every polylogtime-uniform AC® algorithm,
then P # NP.

2. (Constructive Lower Bound Should Exist) If PH ¢ SIZE(s(n)?), then there is a polylogtime-
uniform-AC®[quasipoly] refuter for MCSP[s(n)] against every polylogtime-uniform AC®
algorithm.

3. (Somewhat Constructive Lower Bound) For s(n) < o(2"/n), there is a polylogtime-uniform-
ACO[2Pl(s(M)] refuter for MCSP[s(n)] against every polylogtime-uniform AC® algorithm.

4. (Constructive Lower Bound for a Different Hard Language) There is a polylogtime-uniform-

AC®[quasipoly]-list-refuter for Parity against every polylogtime-uniform AC® algorithm.

Note that in item 3, the input size N to the problem is N = 2", hence 2P°¥(() js only
slightly super-quasipolynomial in N.

Comparison with Theorem 1.2. It is very interesting to contrast Theorem 1.2 with the various
theorems of this subsection. Theorem 1.2 tells us that many longstanding open problems in
lower bounds would automatically imply constructive separations, when resolved. In contrast,
theorems from this subsection say that extending simple and well-known lower bounds to
become constructive would resolve other major lower bounds! Taken together, we view the
problem of understanding which lower bounds can be made constructive as a significant key to
understanding the future landscape of complexity lower bounds.

1.3 Certain Lower Bounds Cannot Be Made Constructive

Finally, we can give some negative answers to our Question 1. We show that for some hard
functions, there are no constructive separations from any complexity classes. Specifically, we
show (unconditionally or under plausible complexity conjectures) that there are no refuters
for these problems against a trivial decision algorithm that always returns the same answer
(zero, or one). Hence, there can be no constructive separations of these hard languages from
any complexity class containing the constant zero or constant one function. (All complexity
classes that we know of contain both the constant zero and one function.)

For a string x € {0, 1}*, the t-time-bounded Kolmogorov complexity of x, denote by K'(x), is
defined as the length of the shortest program prints x in time t(|x|). We use Rk: to denote the set
of strings x such that K'(x) > |x|—1. Hirahara [32] recently proved that for any super-polynomial
t(n) > n®D, R« ¢ P. We observe that this separation cannot be made P-constructive.
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PROPOSITION 1.8. For any t(n) > n“("Y, there is no P-refuter for Rx: against the constant zero
function.

Since Rkt is a function in EXP, it would be interesting to find functions in NP with no
constructive separations.’ We show that under plausible conjectures, such languages in NP

exist.

THEOREM 1.9. The following hold:
— IfNE # E, then there is a language in NP \ P that does not have P refuters against the constant
one function.™
— IfNE # RE, then there is a language in NP \ P that does not have BPP refuters against the
constant one function.’

Thus, under natural conjectures about exponential-time classes, there are some problems
in NP with no constructive separations at all, not even against the trivial algorithm that always
accepts.

1.4 Intuition

Let us briefly discuss the intuition behind some of our results. We will first focus on the
results showing that constructive separations of known lower bounds would imply complexity
breakthroughs, as we believe these are the most interesting of our paper.

Constructive Separations of Known Lower Bounds Imply Breakthroughs. Suppose for

example we want to show that a constructive separation of SAT from quick low-space streaming

PNP

algorithms implies EXPN? # BPP. The proof is by contradiction: assuming EXPNP = BPP, we aim

to construct a streaming algorithm running in n(logn)®V time and (log n)“» space which
solves 3SAT correctly on all instances produced by PN? pNP
EXPNP = BPP implies EXPN® c P/pqy, which further implies that the output of R(1") must have

circuit complexity at most polylog(n) (construed as a truth table).

algorithms. Given a algorithm R,

Extending work of McKay, Murray, and Williams [44], we show that NP c BPP (implied by
EXPNP = BPP) implies there is an n(log n)“" time and (log n)“» space randomized algorithm
with one-sided error for finding a polylog(n)-size circuit encoding the given length-n input,
if such a circuit exists. So given any input R(1") from a potential refuter R, our streaming
algorithm can first compute a polylog(n)-size circuit C encoding R(1"), and it construes this
circuit C as an instance of the Succinct-3SAT problem. Since Succinct-3SAT € NEXP = BPP,

11 Note that Ry« is in coNTIME([t(n)], but it is likely not in coNP.

12 Here, E = TIME[2°(W], the class of languages decidable in (deterministic) 2°™ time, and NE is the corresponding
nondeterministic class.

13 Here, RE = RTIME[2°(M], the class of languages decidable in randomized 2°™ time with one-sided error.
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our streaming algorithm can solve Succinct-3SAT(C) in polylog(n) randomized time, which
completes the proof.

For our results on constructive query lower bounds, we use ideas from learning theory. Set
€ < 1/poly(log n). Assuming PSPACE = P, we want to show that for every n-bit string printed
by an uniform NC! circuit C on the input 1", we can decide the PromiseMAJORITY,, , problem
with 0(1/€%) randomized queries in poly(1/¢) time. (Then, any sufficiently constructive lower
bound that PromiseMAJORITY,, . requires Q(1/&*) queries would imply P # PSPACE.) PSPACE = P
implies that for every uniform NC! circuit C, its output can be encoded by some polylog(n)-size
circuit D. Now, also assuming PSPACE = P, this circuit D can be PAC-learned with error /2
and failure probability 1/10 using only polylog(n)/e queries (and randomness). Let D’ be the
circuit we learnt through this process; it approximates D well enough that we can make O(1/&?)
random queries to the circuit D', without querying D in poly(1/¢g,logn) time, and return the
majority answer as a good answer for the original n-bit answer. Such an algorithm only makes
polylog(n)/e < o(1/€*) queries to the original input and runs in poly(1/¢) time.

Constructive Separations for Uniform Complexity Separations. Next, we highlight some
insights behind the proof of Theorem 1.2. The proof is divided into several different cases (Theo-
rem 5.3, Theorem 5.5, and Theorem 5.7), and we will focus on the intuition behind Theorem 5.5,
which applies to all complexity classes with a downward self-reducible complete language (such
as PSPACE or XiP).

We take the PSPACE vs. P problem as an example. Gutfreund, Shaltiel, and Ta-Shma [28]
showed how to construct refuters for P # NP, but their proof utilizes the search-to-decision
reduction for NP-complete problems, and no such reduction exists for PSPACE. We show how a
downward self-reduction can be used to engineer a situation similar to that of [28].

Let M be a downward self-reducible PSPACE-complete language and let A be a P algorithm.
We also let D be a polynomial-time algorithm defining a downward-self reduction for M, so
that for all but finitely many n € N and x € {0,1}",

D(x)M=n-1 = M(x). (1)

That is, D can compute M (x) given access to an M-oracle for all strings of length less than |x]|.
Our key idea is that (1) also defines M. Assuming the polynomial-time algorithm A cannot
compute M, it follows that (1) does not always hold if M is replaced by A. In particular, the
following NP statement is true for infinitely many n:

3x € {0,1}" such that D(x)?<"1 # A(x). (2)

Now we use a similar approach as in [28]: we use A and a standard search-to-decision
reduction to find the shortest string x* so that (2) holds. If A fails to do so, we can construct a
counterexample to the claim that A solves the PSPACE-complete language M similarly to [28].
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If A finds such an x*, then by definition A(y) = M(y) for all y with |y| < |x*| — 1 and we have
A(x*) # M(x*) from (2), also a counterexample.’

1.5 Organization

In Section 2 we introduce the necessary definitions and technical tools for this paper, as well
as review other related work. In Section 3 we show that making known streaming and query
lower bounds constructive implies major complexity separations, and prove Theorem 1.3
and Theorem 1.4. In Section 4 we show that certain constructive separations for MCSP imply
breakthrough lower bounds such as P # NP, and prove Theorem 1.7. In Section 5 we study
constructive separations for uniform classes and prove Theorem 1.2. In Section 6 we show that
several hard languages do not have constructive separations from any complexity class, and
prove Proposition 1.8 and Theorem 1.9. Finally, in Section 7 we conclude with some potential

future work.

2. Preliminaries

2.1 Notation

We use O(f) as shorthand for O(f - polylog( f)) throughout the paper. All logarithms are base-2.
We use n to denote the number of input bits. We say a language L C {0,1}* is f(n)-sparse if
|Ln| < f(n), where L, = L N {0, 1}"". We assume knowledge of basic complexity theory (see [5,
25]).

2.2 Definitions of MCSP and time-bounded Kolmogorov complexity

The Minimum Circuit Size Problem (MCSP) [38] and ¢-time-bounded Kolmogorov complexity
(KY) are studied in this paper. We recall their definitions.

DEFINITION 2.1 (MCSP). Let s: N — N satisfy s(n) > n— 1 for all n.
Problem: MCSP[s(n)].
Input: A function f: {0,1}" — {0, 1}, presented as a truth table of N = 2" bits.
Decide: Does f have a (fan-in two) Boolean circuit C of size at most s(n)?

We will also consider search-MCSP, the search version of MCSP, in which the small circuit C
must be output when it exists.

For a time bound ¢t: N — N, recall that the K' complexity (¢t-time-bounded Kolmogorov
complexity) of string x is the length of the shortest program which outputs x in at most ¢(|x|)

time.

14 Note the argument above only finds a single counterexample; using a paddable PSPACE-complete language, one can
adapt the above argument to find infinitely many counter examples, see the proof of Theorem 5.5 for details.
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DEFINITION 2.2 (Rkt). Lett: N — N.
Problem: R:.
Input: A string x € {0,1}".
Decide: Does x have K'(x) complexity at least n — 1?

2.3 Implications of Circuit Complexity Assumptions on Refuters

The following technical lemma shows that, assuming uniform classes have non-trivially smaller
circuits, the output of a refuter may be assumed to have low circuit complexity. This basic fact
will be useful for several proofs in the paper.

LEMMA 2.3. Lets: N — N be an increasing function. The following hold:

1. Assuming EN? c SIZE[s(n)], then for every PN? algorithm R such that R(1") outputs n bits,
it holds that R(1™) has circuit complexity at most s(O(log n)).

2. Assuming E c SIZE[s(n)], then for every P algorithm R such that R(1") outputs n bits, it
holds that R(1") has circuit complexity at most s(O(logn)).

3. Assuming SPACE[O(n)] c SIZE[s(n)], then for every LOGSPACE algorithm R such that
R(1™) outputs n bits, it holds that R(1") has circuit complexity at most s(O(logn)).

PROOF. In the following we only prove the first item, the generalization to the other two items
are straightforward.

Consider the following function fr(n, i), which takes two binary integers nand i € [n] as
inputs, and output the i-th bit of the output of R(1"). The inputs to fz can be encoded in O(log n)
bits in a way that all inputs (n, i) with the same n has the same length.

Since R is in PNP, we have fz € ENP. By our assumption and fix the first part of the input
to fr as n, it follows that R(1") has circuit complexity at most s(O(log n)). |

The following simple corollary of Lemma 2.3 will also be useful.

COROLLARY 2.4. IfEN C P/po)y (E C Pjpoly 0F SPACE[O(N)] C Ppoly), then for every PN (P or
LOGSPACE) algorithm R such that R(1") outputs n bits, it holds that R(1") has circuit complexity
at most polylog(n).

We also observe that P = NP has strong consequences for polylogtime-uniform AC® circuits.

LEMMA 2.5. The following hold:
1. Assuming P = NP, then for every polylogtime-uniform AC® algorithm R such that R(1")
outputs n bits, it holds that R(1") has circuit size complexity at most polylog(n).
2. Assuming P = PSPACE, then for every polylogtime-uniform NC* algorithm R such that R(1")
outputs n bits, it holds that R(1") has circuit size complexity at most polylog(n).
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PROOF. Let B be a polylogtime-uniform algorithm that, on the integer n (in binary) and
O(log n)-bit additional input, reports gate and wire information for an AC® circuit R,,. Consider
the function f(n,i) which determines the i-th output bit of the circuit R, on the input 1",
given n and i in binary. The function f is a problem in PH: given input of length m = O(log n),
by existentially and universally guessing and checking gate/wire information (and using the
polylog(n)-time algorithm B to verify the information), the R,, of n°") size can be evaluated
in Z4TIME[mX] for a constant d depending on the depth of R,,, and a constant k depending on
the algorithm B. Since P = NP, f is computable in P, i.e., f is in time at most am® for some
constant a depending on k, d, and the polynomial-time SAT algorithm. Therefore f has a circuit
family of size at most m® for some fixed ¢, where m = O(log n). Thus the output of such a family
always has small circuits.

The same argument applies if we replace AC® by NC! and replace PH by PSPACE. u

2.4 Other Related Work

Beyond the prior work on efficient refuters stated in the introduction (such as [28, 6, 21]), other
work on efficient methods for producing hard inputs includes [41, 27, 9, 65, 53]).

As mentioned in the introduction, Kabanets [37] defined and studied refuters in the context
of derandomization. A primary result from that paper is that it is possible to simulate one-sided
error polynomial time (RP) in zero-error subexponential time (ZPSUBEXP) on all inputs produced
by refuters (efficient time algorithms that take 1" and output strings of length n)." In other
words, nontrivial derandomization is indeed possible when we only consider the outputs of
refuters: there is no constructive separation of RP ¢ ZPSUBEXP. This result contrasts nicely with
some of our own, which show that if we could prove (for example) EXP = ZPP holds with respect
to refuters, then EXP = ZPP holds unconditionally. (Of course this is a contrapositive way of
stating our results; we don’t believe that EXP = ZPP holds!) Kabanets’ work effectively shows that
if RP ¢ ZPSUBEXP implied a constructive separation of RP ¢ ZPSUBEXP, then RP C ZPSUBEXP
holds unconditionally (because there is no constructive separation of RP from ZPSUBEXP). Other
works in this direction include [35, 63, 42, 29, 59, 17, 18].

Chen, Jin, and Williams [15] studied a notion of constructive proof they called explicit ob-
structions. Roughly speaking, an explicit obstruction against a circuit class C is a (deterministic)
polynomial-time algorithm A outputting a list L, of input/output pairs {(x;, y;)} with distinct x;,
such that all circuits in C fail to be consistent on at least one input/output pair. Chen, Jin, and
Williams show several “sharp threshold” results for explicit obstructions, demonstrating (for
example) that explicit obstructions unconditionally exist for n?~¢-size DeMorgan formulas, but
if they existed for n**¢-size formulas then one could prove the breakthrough lower bound
EXP ¢ NC!. In this work, we are considering a “uniform” version of this concept: instead of

15 The exact statement involves an “infinitely-often” qualifier, which we omit here for simplicity. A version of the simulation
that removes the restriction to refuters, with the addition of a small amount of advice, was given in [67].
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outputting a list of bad input/output pairs (that do not depend on the algorithm), here we only
have to output one bad instance that depends on the algorithm given.

An additional motivation for studying constructive proofs comes from proof complexity
and bounded arithmetic. A circuit lower bound for a language L € P can naturally be expressed
by a II, statement S, that says: ”"For all circuits C of a certain type, there exists x of length n
such that C(x) # L(x)”. In systems of bounded arithmetic such as Cook’s theory PV; [20]
(formalizing poly-time reasoning) or Jerabek’s theory APC; [36] (formalizing probabilistic
poly-time reasoning), a proof of S, for infinitely many n immediately implies a constructive
separation. The reason is that these theories have efficient witnessing: informally, any proof of
a “Y3-statement” Yx3yR(x, y) (for polynomial-time computable R) in these theories constructs
an efficiently computable function f such that R(x, f(x)) holds. Here the function f plays the
role of the refuter in a constructive separation. Therefore, situations in which constructive
separations are unlikely to exist may provide clues about whether complexity lower bounds
could be independent of feasible theories. Conversely, the constructiveness of a separation is a
precondition for the provability of that separation in these feasible theories.®

Hardness Magnification. Another related line of work is hardness magnification [53, 44,
52, 12]. This line of work shows how very minor-looking lower bounds actually hide the
whole difficulty of P vs NP and related problems. However, one might say that those results
simply illuminate large holes in our intuition: those minor-looking lower bounds are far more
difficult to prove than previously believed. One has to be skeptical in considering hardness
magnification as a viable lower bounds approach, because we really don’t understand how
difficult the “minor-looking” lower bounds actually are.

In this paper, in contrast, we are mainly focused on situations where we already know the
lower bound holds (and can prove that in multiple ways), but we are striving to prove the known
lower bound in a more constructive, algorithmic way. This sort of situation comes up routinely
in applications of the probabilistic method, where an object we want can be constructed with
randomness, but it is a major open problem to construct it deterministically. Our results indicate
that there is a deep technical gap between the major complexity class separation problem:s,
versus many lower bounds we know how to prove. The former type of lower bound problem
automatically has constructive aspects built into it, while the latter type of lower bound requires
a breakthrough in derandomization in order to be made constructive.

16 We note, however, that these connections depend on the complexity classes being separated. A circuit lower bound
for an NP problem does not have an obvious II, formulation, so the efficient witnessing results mentioned above do
not directly apply. More complicated witnessing theorems might still be relevant; we refer to [55], [46], and the recent
book on Proof Complexity by Krajicek [40] for a more detailed discussion of these matters.
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3. Constructive Separations for Streaming and Query Algorithms
imply Breakthrough Lower Bounds

Streaming lower bounds and query complexity lower bounds are often regarded as well-
understood, and certain lower bounds against one-tape Turing machines have been known
for 50 years. In this section we show that surprisingly, making these separations constructive
would imply breakthrough separations such as EXPN? # BPP or even P # NP.

3.1 Making Most Streaming Lower Bounds Constructive Implies Breakthrough
Separations

We show that if randomized streaming lower bounds for any language L in NP can be made
constructive, even with a PNP refuter, then EXPN? # BPP.

THEOREM 1.3. (Restated) Let f(n) > w(1). For every language L € NP, a PNP-constructive
separation of L from uniform randomized streaming algorithms with O(n - (log n)’ ™) time and
O(log n) ™ space implies EXPNP # BPP.

REMARK 3.1. Let V(x, y) be a verifier for L, and assume that the witness length |y| is at
most |x|.7”7 Then the randomized streaming algorithms A considered in Theorem 1.3 can be
further assumed to solve the search-version of L with one-sided error in the following sense:
(1) A is also required to output a witness y when it decides x € L (2) whenever A outputs a
witness y, we have V(x, y) = 1.

We need the following lemma for solving search-MCSP, which adapts an oracle algorithm
from [44]. The original algorithm of [44] has two-sided error: that is, when x ¢ MCSP[s(n)],
there is a small probability that the algorithm outputs an incorrect circuit. We modify their
approach with a carefully designed checking approach so that the algorithm has only one-sided

€rror.

LEMMA 3.2 ([44, Theorem 1.2], adapted). Assuming NP C BPP, for a time-constructive s: N —
N, there is a randomized streaming algorithm for search-MCSP[s(n)] on N-bit instances (where
N = 2") with O(N - s(n)¢) time and O(s(n)¢) space for a constant c such that the following holds.
— Iftheinput x € MCSP[s(n)], the algorithm outputs a circuit C of size at most s(n) computing
X with probability at least 1 — 1/N.
— If'the input x ¢ MCSP[s(n)], the algorithm always outputs NO.

Alternatively, if we assume NP = P instead, the above randomized streaming algorithm can
be made deterministic.

17 Thatis, x € L if and only if there exists y € {0,1}* such that |y| < |x| and V(x, y) = 1.
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PROOF. We first recall the X3P problem Circuit-Min-Merge introduced in [44]; here, we will
only consider the version with two given input circuits. In the following we identify the integer i
from [2"] with the i-th string from {0, 1}" (ordered lexicographically).

Circuit-Min-Merge[s(n)]

Input: Given two circuits C1, C; on n = log N input bits and three integersa < <y € [2"].
Output: The lexicographically first circuit C’ of size at most s(n) such thatforalla <z < g -1,
C'(z) =Ci(z),and for all B < z <y, C’(z) = C,(z). If there are no such circuits, it outputs an

all-zero string.

Problem 1. Circuit-Min-Merge

Note that since NP C BPP, it follows that Circuit-Min-Merge is also in BPP. We can without
loss of generality assume we have a BPP algorithm for Circuit-Min-Merge with error at most
1/N3.

We give a brief overview of the proof idea. In the proof of the original two-sided error
version [44, Theorem 1.2], they designed a streaming algorithm which maintains a circuit C
such that C(z) = x; for all the processed input bits x, so far, where C is periodically updated
as more input bits arrive, with the help of the BPP algorithm for Circuit-Min-Merge. In our
one-sided error case, we need to verify that the circuit returned by the BPP algorithm is indeed
correct. In order to perform this verification efficiently, our streaming algorithm proceeds in a
binary-tree-like structure (in contrast to the linear structure in [44, Theorem 1.2]), so that we
can reduce the total time spent on verification by performing expensive checks less frequently.

After processing the first p € [2"] bits of the input X, our streaming algorithm maintains a
list of at most n circuits. Specifically, let p = }.7_, ax - 2K be the binary representation of p. For
each k € [n], we maintain a circuit Cx that is intended to satisfy Ci(z) = x, for all 3 -, a, - 2¢ <
Z< Yo ge 2¢. Note that when ay = 0, there is indeed no requirement on the circuit Cx and
we can simply set it to a trivial circuit.

Now, suppose we get the p + 1 bit of the input x. We update the circuit list via the following
algorithm.

— We initialize D to be the linear-size circuit which outputs x,,1 on the input p + 1, and
outputs 0 on all other inputs.
— For k from 0 to n:

— If ax = 1, we set D = Circuit-Min-Merge(Cx, D, «, 8, y) with suitable «, B, y, and set
ax = 0 and C to be a trivial circuit. We next check whether D is indeed the correct
output of Circuit-Min-Merge(Cy, D, a, 8, y) by going through all inputs in [«, y]. We
output NO and halt the algorithm immediately if we found D is not the correct output
(if Circuit-Min-Merge(Cx, D, «, 3, y) outputs the all-zero string, we also output NO and
halt the algorithm).
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— If ax = 0, we set Cx = D, and set ax < 1, ax—1, Ax—2, - - -, Ap <— 0 (in this way the binary
counter Y;_, a; 2K is incremented by 1), and halt the update procedure.

After we have processed the 2™-bit of x, we simply output C,. If x € MCSP[s(n)], then
by a simple union bound, with probability at least 1 — 1/N, all calls to our BPP algorithm for
Circuit-Min-Merge are answered correctly. In this case C,, is a correct algorithm computing the
input x. If x ¢ MCSP[s(n)], since we have indeed checked the output of all Circuit-Min-Merge
calls, our algorithm will only output the circuit C, if it is indeed of size at most s(n) and
computes x exactly. Since x ¢ MCSP[s(n)] implies there is no such circuit Cy,, our algorithm
always outputs NO in this case.

For the running time, note that the above algorithm calls Circuit-Min-Merge at most N -
log N < O(N - s(n)) times on input of length O(s(n)). Therefore calling Circuit-Min-Merge only
takes N - poly(s(n)) time in total. Note that merging C; and D takes 2¥ - poly(s(n)) time to verify
the resulting circuit, but this only happens at most N/2¥ times. So the entire algorithm runs in
N - poly(s(n)) time and poly(s(n)) space as stated. u

Now we are ready to prove Theorem 1.3.

PROOF OF THEOREM 1.3. The idea is to show that if EXPN? = BPP then we can construct a
randomized streaming algorithm for L € NP that “fools” all possible PNP refuters. Interestingly,
the assumption is used in three different ways: (1) to bound the circuit complexity of the outputs
of PNP algorithms, (2) to obtain a randomized streaming algorithm that finds a small circuit
encoding the input, and (3) to get an efficient algorithm to find a small circuit encoding a correct
witness when it exists.

Let L € NP, and V(x, y) be a polynomial-time verifier for L. Assuming EXPNP = BPP, we
are going to construct a randomized streaming algorithm A, such that it solves L correctly on
all possible instances which can be generated by a PN refuter.

Let B be an arbitrary P"? refuter. First, by Corollary 2.4, EXPN? = BPP c P/, implies that
for all n € N, the length-n string B(1") has a circuit complexity of w(n) = polylog(n).

Second, note that EXPN? = BPP also implies that NP € BPP. Let f(n) > w(1) be time-
constructive and for n = 2™ let s(m) = (logn)/ ™/ for a sufficiently large constant ¢; >
1. By Lemma 3.2, we have a one-sided error randomized streaming algorithm Apycsp for
search-MCSP[s(m)] with running time n - s(m)°® and space s(m)°®. Since w(n) < s(m),
we apply Aucsp to find an s(m)-size circuit C encoding B(1").

Now, we have an s(m)-size circuit encoding the n-bit input B(1"), and we wish to solve
the Succinct-L problem™ on this circuit. Note that Succinct-L is a problem in NEXP.

EXPNP = BPP implies NEXP C P/poy, SO every Succinct-L instance has a succinct witness
with respect to the verifier V: this follows from the easy witness lemma of [34]. Formally, there

18 Here, we define “Succinct-L” to be: given a circuit C with ¢ input bits, decide whether tt(C) € L, where tt(C) is the truth
table of C.
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exists a universal constant k € N such that, for every s(m)-size circuit D such that tt(D) € L,
there exists an s(m)X-size circuit E such that V(tt(D), tt(E)) = 1.
We consider the following problem:

Given an s(m)-size circuit D with truth-table length n = 2™ and an integer i € [log(s(m)¥)],
exhaustively try all circuits of size at most s(m)X, find the first circuit E such that V (tt(D), tt(E)) =
1, and output the i-th bit of the description of E.

Note that the above algorithm runs in 2P°Y(™)_time on poly(s(m))-bit inputs, hence it is
in EXP. Since EXP = BPP, this problem is also in BPP. Therefore there is a BPP algorithm which,
given a Succinct-L instance D of size s(m), outputs a description of a canonical circuit of size
s(m)¥ which encodes a witness for input tt(D) with respect to verifier V.

Thus we obtain a randomized algorithm for L on all instances with s(m)-size circuits.
When the witness for x has length at most |x| = n, the algorithm can take n - poly(s(m)) time to
output the found witness, by outputting the truth-table of the circuit encoding the witness.

Setting c; to be large enough and putting everything together, we get the desired ran-
domized streaming algorithm which solves all instances generated by PNP refuters, which is a
contradiction to our assumption. Therefore, it follows that EXPNP # BPP. u

3.2 Separating P and NP via Uniform-ACO-Constructive Separations

Now we discuss a different setting, in which the existence of particular refuters would even
imply P # NP.

It is well-known (via communication complexity arguments) that DIS] does not have
efficient streaming algorithms; in fact, any streaming algorithm must give incorrect answers on
many inputs. So it is clear that counterexamples to DIS] exist, for every candidate streaming
algorithm. But how efficiently can they be constructed? We show that the ability to construct

counterexamples in uniform AC® would actually imply P # NP.

THEOREM 1.4. (Restated) Let f(n) > w(1). A polylogtime-uniform-AC®-constructive separation
of DIS| from randomized streaming algorithms with O(n - (log n)’ ") time and 0(log n)’™ space
implies P # NP.

PROOF. We prove the contrapositive. Assuming P = NP, we will show that there is an efficient
streaming algorithm that solves all disjointness instances that are generated by polylogtime-
uniform AC? circuit families.

From Lemma 2.5, we know that the output string of any polylogtime-uniform AC° circuit
family has circuit size complexity at most c(log n)¢ for some constant c.

Next, by Lemma 3.2 we know that P = NP implies that search-MCSP on input strings
with circuits of size c(log n)¢ can be solved by a streaming algorithm in n - (log n)X¢ time and
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O(log n)*¢ space for some k. Also assuming P = NP, DIS| on any n-bit input represented by a
c(log n)¢-size circuit can be solved in ck(log n)°* time for some k; indeed, the “Succinct-DIS)”
problem given a circuit C on n + 1 inputs, does its truth table on 2! inputs encode two 2"-bit
strings which are disjoint? is a coNP problem.

For every function f(n) > w(1), we can therefore design a streaming algorithm for DIS|
as follows. First, on an input x, the algorithm solves search-MCSP using n - (log n)/™ time and
(log n)/™ space to get an O((log n)/ ™) size circuit C encoding x (we abort the algorithm if it
ever uses more than this time complexity or space complexity). Then, we run a (log n)°/ ().
time algorithm for Succinct-DIS] on the circuit C (in the theorem statement we omit the big-O on
the exponent because we can use f(n)/c’ instead of f(n) for a sufficiently large constant ¢’). This
will correctly decide disjointness on all inputs x that are generated by a polylogtime-uniform
ACO circuit family. m

3.2.1 Constructive Separations in Query Complexity

Finally we show certain uniform-AC’-constructive separations in query complexity would imply
P # NP.

THEOREM 1.6. (Restated) Let ¢ be a function of n satisfying € < 1/(logn)®Y, and 1/¢ is a
positive integer computable in poly(1/¢g) time given n in binary.
— Ifthere is a polylogtime-uniform-ACP-constructive separation of PromiseMAJORITY,, . from
randomized query algorithms A using o(1/&?) queries and poly(1/¢) time, then NP # P.
— Ifthere is a polylogtime-uniform-NC-constructive separation of PromiseMAJORITY,, . from

randomized query algorithms A using o(1/£?) queries and poly(1/¢) time, then PSPACE # P.

PROOF. Assuming P = NP, we will show that there is an efficient query algorithm that solves all
PromiseMAJORITY,, . instances that are generated by polylogtime-uniform ACO circuit families.
At the beginning, our query algorithm first computes the value of € in poly(1/¢) time.
From Lemma 2.5, if P = NP, then for every polylogtime-uniform AC? circuit family {C,},
the n-bit output of C,(1") has circuit size (clogn)¢ for some constant c. (The same size bound
also holds for polylogtime-uniform NC?! circuits, under the stronger assumption P = PSPACE.)
By the assumption that € = e(n) < 1/(logn)“™, this circuit size is at most (clogn)¢ < 1/%°
for sufficiently large n, and the number of circuits of size at most 1/£%9 is 20(¢™""108¢™) Hence,
such a circuit can be PAC-learned with error £/2 and failure probability § = 1/10 using O(e~! -
(e7%91og e +log 5)) < O(e7191) samples (random queries) (see e.g. [45, Theorem 2.5] onlearning
a finite class of functions). The learning algorithm achieving this sample complexity simply

computes a minimum-size circuit that is consistent with all the observed samples.
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Under the assumption of P = NP, this learning algorithm can be executed in poly(1/¢)
time. Indeed, the following problem is in the polynomial-time hierarchy:

Given a set L = {(x;, yi)} € {0,1}" x {0, 1}, a positive integer s, and an index j, output the j-th bit
of the lexicographically first circuit C of size at most s such that C(x;) = y; for all i.

Assuming P = NP (or P = PSPACE) the above problem is in P and hence can be solved in
poly(|L|, s,log n) time. Here s = 1/£%9, |L| < 0(¢71!), so we can find a minimum-size circuit
consistent with any given input/output sample in poly(1/¢,1log n) = poly(1/¢) time. Let D be the
circuit we have learned.

Next, we decide PromiseMAJORITY,, ./, on the truth table of D, by computing its average
output value on ©(1/£?) uniform random inputs. This process takes poly(1/¢) time, and makes
no queries to the original input string. Since the learned circuit D only has error £/2 compared
with the original input string, we can simply return the result as our answer to the original
PromiseMA]JORITY,, . problem. The overall algorithm has success probability 2/3, time com-
plexity at most poly(1/¢), and sample complexity O(¢~1°1) = 0(1/&?), because we do not need
further samples from the original input string after we already learned the circuit D. [

3.3 Constructive Separations for One-Tape Turing Machines imply Breakthrough
Lower Bounds

Maass [43] showed that a one-tape nondeterministic Turing machine takes at least Q(n?) time
to decide the language of palindromes PAL = {x,---X1X1 - Xn | X1,...,Xn € {0,1}, n € N}.
This is a very basic lower bound that is often cited as a canonical application of communication
complexity. In this subsection, we show that a constructive proof of this lower bound would
imply a breakthrough circuit lower bound.

In fact, we will prove a much more general statement. We will also generalize the proof to
show that for every language L computable by nondeterministic n'+*°()-time RAMs, a construc-
tive proof that “L cannot be decided by n''!-size nondeterministic one-tape Turing machines”
would yield uniformly-computable functions with exponential circuit complexity. That is, we
would obtain major circuit lower bounds even from the task of distinguishing RAMs from
one-tape Turing machines in a constructive way.

We begin by a simple lemma showing that nondeterministic one-tape Turing machines
can solve PAL on inputs that have small circuits.

LEMMA 3.3. For every constant § € (0, 1], there is a nondeterministic n'*°(%)-time one-tape
Turing machines solving PAL on every x with circuit complexity at most |x|°.

PROOF. Let§ € (0,1]. Our nondeterministic (one-tape) Turing Machine M runs as follows:

M guesses a circuit C of size n®, and checks that C(i) equals the i-th input bit forall1 < i < n,
which can be done in n - n°® time by moving the head on the tape from the first input bit to
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the last, while storing the n°-size circuit C in the cells close to the current position of the head.
Finally M checks that the string C(1)C(2) - - - C(n) is a palindrome by evaluating C on every i
and n — i,in n - n°9 total time. M accepts the input on a guess C if and only if all checks are
passed.

Observe that M recognizes PAL correctly on every string x with circuit complexity at most n’,

1+O(6)'

and its running time is bounded by n ]

Now we show that breakthrough separations follow from constructive proofs of lower
bounds for PAL.

THEOREM 3.4. The following hold:
— A PNP_constructive separation of PAL from nondeterministic O(n''!) time one-tape Turing
machines implies ENP ¢ SIZE[2%"] for some constant § > 0.
— A P-constructive separation of PAL from nondeterministic O(n'!) time one-tape Turing
machines implies E ¢ SIZE[2%"] for some constant § > 0.
— A LOGSPACE-constructive separation of PAL from nondeterministic O(n'!) time one-tape
Turing machines implies PSPACE ¢ SIZE[2%"] for some constant § > 0.

PROOF. We will only prove the first item; it is straightforward to generalize to the other two
items. Let § > 0 be a small enough constant such that, by Lemma 3.3, there is a nondeterministic
O(n'!)-time one-tape Turing machine solving PAL correctly on inputs x with circuit complexity
at most n’.

Now suppose there is a PNP refuter for M: a polynomial-time algorithm A with an NP
oracle, which on input 1" outputs an n-bit string. Assuming that EN? ¢ SIZE[2%1"] for a constant
61 > 0 that is small enough compared to 8§, by Lemma 2.3 there is a circuit C of size at most
n%®1 < nd that on input (n, i) computes the i-th bit of A(1"). That is, the output of any such A
on 1" has circuit complexity at most n%. By construction, M will always decide A(1") correctly,
contradicting the assumption that A is a refuter. Hence, there must exist a constant § > 0 such
that ENP ¢ SIZE[29]. m

We say a family of 3-SAT formulas {Cp, } nenv such that C, has S(n) clauses is strongly explicit,
if there is an algorithm A such that A(n, i) outputs the i-th clause of C,, in polylog(S(n)) time.
We need the following efficient reduction from nondeterministic 7(n)-time RAMs to T(n) -
polylog(T (n))-size 3-SAT instances.

LEMMA 3.5 ([62, 22]). Let M be a T (n)-time nondeterministic RAM. There exists a strongly
explicit family of 3-SAT formulas {Cn}nen Of T - polylog(T) size, such that for every x € {0,1}",
M (x) = 1 if and only if there exists y such that Cn(x, y) = 1.

Now we are ready to generalize Theorem 3.4 to other problems.
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THEOREM 1.5. (Restated) For every language L computable by a nondeterministic n'*°M-time
RAM, a PNP-constructive separation of L from nondeterministic O(n'!)-time one-tape Turing
machines implies ENP ¢ SIZE[2%"] for some constant § > 0.

PROOF. Let Mgay be a nondeterministic n™+°-time RAM for L. We apply Lemma 3.5 to obtain
a strongly explicit family of 3-SAT formulas {Cp} nexr With n*°® size and s = n'*°( variables.

Let §¢ > 0 be a small enough constant, and consider the following nondeterministic
(one-tape) Turing machine M:

M guesses a circuit D of size n®1, and checks that D(i) equals the i-th input bit forall1 <i < n,
which can be done in n - n°(®9) time by moving the head on the tape from the first input bit to
the last, while storing the n’1-size circuit D in the cells close to the current position of the head.

Next, M guesses a circuit E of size n%, and accepts if and only if
D(1),...,D(n),E(1),...,E(s—n)

satisfies C,. Note that this can be checked in n'*°(%)) time by enumerating all n'*°") clauses
in C, and evaluating D and E to obtain the assignments to the corresponding variables.

We take &; to be small enough so that the above machine M runs in O(n'!) time. Suppose
there is a PNP refuter B for L against M, and we further assume towards a contradiction that
ENP < SIZE(2%") for all § > 0.

By Lemma 2.3, it follows that B(1") has an n®-size circuit. It also follows that if B(1") € L,

61_gjze

then the lexicographically first string y, € {0,1}*"" such that C,(B(1"), y,) has an n
circuit. By Lemma 3.5, this means that M solves B(1") correctly, a contradiction. Hence, we

have that EN? ¢ SIZE(2%") for some & > 0.1° n

We conclude this section with a remark on the proofs. In the proofs of Lemma 3.3 and
Theorem 1.5, we can naturally view our constructions as nondeterministic streaming algorithms
with total time n'*9(®) and space n°®). Hence, both results apply to low-space nondeterministic
algorithms equally well. We only state the generalization of Theorem 1.5 below.

REMARK 3.6. For every language L computable by a nondeterministic n™*°)-time RAM,
a PNP-constructive separation of L from nondeterministic O(n'!)-time n%!-space streaming

algorithms implies EN? ¢ SIZE[2%"] for some constant § > 0.

This remark is stronger than Theorem 1.5, as any (n - t)-time t-space nondeterministic
streaming algorithm can be simulated by an n - poly(t) time nondeterministic one-tape Turing
machine (see, e.g., [19, Lemma 9]). However, we have chosen not to emphasize it because the

model of “nondeterministic streaming” is less common.

19 As noted by an anonymous reviewer, if in the statement of Theorem 1.5 we instead have a P-constructive separation,
then we would get NEXP ¢ P/poly. The idea is that one can use both NEXP c P/poly and the easy witness lemma [34]
to argue that there exists a string y, of small circuit complexity such that C,(B(1"), y,) holds.
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4. Constructive Separations for MCSP Imply Breakthrough Lower
Bounds

In this section we show that constructive separations for MCSP against uniform AC° imply break-
through lower bounds. In particular, we prove Theorem 1.7 (restated below for convenience).
Recall that a circuit of size S is said to be polylogtime-uniform, if there is a polylog(S)-time
algorithm that decides the type of a gate g given its O(log S)-bit index, and decides whether
there is a wire from gate g to gate g, given their indices.

THEOREM 1.7. (Restated) Let s(n) > nlosm“® pe any time-constructive super-quasipolynomial
function. In the following, we consider MCSP[s(n)] and Parity problems of input length N = 2".
The following hold:

1. (Major Separation from Constructive Lower Bound) If there exists a polylogtime-uniform
AC®[quasipoly] refuter for MCSP[s(n)] against every polylogtime-uniform AC® algorithm,
then P # NP.

2. (Constructive Lower Bound Should Exist) If PH ¢ SIZE(s(n)?), then there is a polylogtime-
uniform-AC®[quasipoly] refuter for MCSP[s(n)] against every polylogtime-uniform AC®
algorithm.

3. (Somewhat Constructive Lower Bound) For s(n) < o(2"/n), there is a polylogtime-uniform-
ACO[2P°l(s(M)] refuter for MCSP[s(n)] against every polylogtime-uniform AC® algorithm.

4. (Constructive Lower Bound for a Different Hard Language) There is a polylogtime-uniform-

AC®[quasipoly]-list-refuter for Parity against every polylogtime-uniform AC® algorithm.

Throughout this section, we use N to refer to the size of a truth table of a Boolean function
on n = log(N) bits.

To prove Theorem 1.7, we will heavily use known results about pseudo-random generators
against AC°.

THEOREM 4.1 ([51, 66]). Let d, ¢ be any positive integers. There is a pseudo-random generator
G = {Gy}, Gy : {0, 1118”10 13N such that for each N, the PRG G 1/N-fools depth-d AC°
circuits of size N¢. Moreover, G is computable by polylogtime-uniform-AC® circuits of size poly(N),
and Gy (z) has circuit complexity polylog(N) for each seed z of length log(N)°D.

COROLLARY 4.2 ([3]). For N = 27, let s(n) > n“) be any time-constructive function such that
s(n) < o(2"/n). Then MCSP[s(n)] is not in AC°.

Corollary 4.2 follows from Theorem 4.1 by observing that MCSP[s(n)] distinguishes the
uniform distribution on N = 2" bits from the output of Gy, since every output of Gy is a YES
instance of MCSP[s(n)], while a random string of length N is a NO instance with high probability.
In fact, it follows that for s(n) quite close to maximum, the AC® lower bounds are exponential
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(but with an inverse dependence in the exponent on the circuit depth), similar to known lower
bounds for Parity.

First, we show that uniform AC° refuters for separations of MCSP from uniform AC? would
solve the main open problem in complexity theory. This establishes the first item of Theorem 1.7.
We find it more convenient here to state the size bound s(n) for MCSP in terms of the input size
N = 2" than in terms of n, so we usually write MCSP[ f(N)] (where f(N) = s(n)). Since s(n) is
required to be a time-constructive function in the statement of Theorem 1.7, f(N) should be
computable in poly(f(N)) time given N represented in binary.

The following theorem implies Item (1) of Theorem 1.7, since the constant 1 function can
be trivially implemented by a polylogtime-uniform AC® algorithm.

PROPOSITION 4.3 (Item (1) of Theorem 1.7). Let f(N) > 21816 o g function com-
putable in poly(f(N)) time. If there exists a polylogtime-uniform-AC®[quasipoly] refuter for
MCSP[ f(N)] against the constant 1 function, then P # NP.

PROOF. Assume that P = NP and that there is a polylogtime-uniform-AC® refuter R for
MCSP[ f(N)] against the constant 1 function. We derive a contradiction. Using the same argu-
ment as in the proof of Theorem 1.4, the refuter R always outputs a string x of circuit complexity
2loglog()°™ Byt such a string is a YES instance of MCSP[f(N)] since f(N) > 2l0810s)*" Thjg
contradicts the assumption that R refutes the algorithm that always outputs YES. ]

By inspecting the proof carefully, it can be seen that the conclusion above holds even
if the hypothesis is that there is a quasipolynomial-size uniform AC° list-refuter running in
quasi-polynomial time.

Next, we show that if a certain natural circuit lower bound assumption holds for the
Polynomial Hierarchy, we do get the strongly constructive separations we seek. We obtain these
separations by using a win-win argument: for any uniform AC® algorithm, either the algorithm
outputs NO with noticeable probability, in which case the refuter exploits a PRG whose range is
supported on strings of low circuit complexity, or it outputs YES with noticeable probability, in
which case the refuter exploits a PRG (obtained using our assumption) whose range is supported
on strings of high circuit complexity. This establishes the second item of Theorem 1.7.

PROPOSITION 4.4 (Item (2) of Theorem 1.7). Let f(N) > 21°8106(M“Y po g function com-
putable in poly(f(N)) time. If PH ¢ SIZE(f(N)?), then there exists a polylogtime-uniform-
AC®[quasipoly] refuter for MCSP[f(N)] against every polylogtime-uniform AC® algorithm.

PROOF. Let f be as in the statement of the theorem, F € PH be such that F ¢ SIZE(f(N)?), and
A be a polylogtime-uniform-AC® algorithm. We construct a polylogtime-uniform-AC°[quasipoly]
refuter R against A.

Let G be the PRG from Theorem 4.1 where d is the depth of the uniform AC® algorithm A,
and let G’ = {G), } be the generator from log(N)°@ bits to N bits defined by Gy(z) =Gn(z)® yN
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for each seed z, where yy is the truth table of F on log(N) input bits (recall N is a power of
two). The refuter R outputs the lexicographically first string x in the range of G such that
A(x) = 0, or in case such a string does not exist, the lexicographically first string x’ in the
range of G’ such that A(x’) = 1. We will show that either x or x” exists. Note that R can be
implemented by polylogtime-uniform quasipolynomial-size AC? circuits, since both G and G’
have quasi-polynomial sized range and can be computed in uniform AC° - this is true for G by
Theorem 4.1 and it is true for G’ because the truth table of any PH function on log(N) bits can
be computed by uniform ACP circuits of size poly(N).

Since G 1/N-fools depth-d AC® circuits and G’ is a linear translate of the range of G, G’ also
1/N-fools depth-d AC® circuits. We show that there is either a string x in the range of G such
that A(x) = 0 or a string x’ in the range of G’ such that A(x’) = 1. A either outputs NO with
probability at least 1/2 on randomly chosen input of length N, or it outputs YES with probability
at least 1/2. In the first case, since G 1/N-fools A, there is a string x in the range of G such that
A(x) = 0. Moreover, since every string in the range of G is a YES instance of MCSP[f(N)] by
Theorem 4.1, we have that x refutes that A solves MCSP[f(N)] correctly. In the second case,
since G’ 1/N-fools A, there is a string x’ in the range of G’ such that A(x") = 1. Moreover, since
F ¢ SIZE(f(N)?) and every string in the range of G has polylog(N) size circuits, it follows that
every string in the range of G’ is a NO instance of MCSP[ f(N)]. Thus A makes a mistake on x’,
implying that R is a correct refuter. u

We also show that slightly weaker constructive separations than desired do hold uncondi-
tionally. The argument is similar to the argument in the proof of Theorem 4.4, but since we do
not use an assumption, we need to argue differently in the case where the algorithm we are
refuting outputs YES with high probability. We do so by exploiting the sparsity of the language
against which we are showing a lower bound. This establishes the third item of Theorem 1.7.

PROPOSITION 4.5 (Item (3) of Theorem 1.7). Let f(N) > log(N)“ be a function com-
putable in poly(f(N)) time, such that f(N) < o(N/log(N)). There is a polylogtime-uniform-

ACO[2PoY(F(N))] refuter for MCSP[ f(N)] against every polylogtime-uniform AC® algorithm.

PROOF. Given a polylogtime-uniform AC® algorithm A, we define a uniform AC® refuter R of
size 2P/ (V) For any d, let G< be the PRG from Theorem 4.1 corresponding to depth d, and
let G = GY where d is the depth of the uniform AC algorithm A, so that G 1/N-fools A on input
length N. Let G’ be the generator with seed length poly(f(N)) obtained by truncating the output
of GZ}W to N bits (where d’ and c are to be specified later), so that G’ 1/N-fools depth-d’ ACO
circuits of 2P°YF (M) size. R works as follows. It outputs the lexicographically first string x in the
range of G for which A(x) = 0, and if such an x does not exist, it outputs the lexicographically
first string x” in the range of G’ that is not a YES instance of MCSP[ f(N)] for which A(x") = 1.
We show that such an x’ always exists in the case that x does not, and that moroeover A is a

correct refuter. Since G and G’ can be computed by uniform AC° circuits of size exponential
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in poly(f(N)) and moreover the YES instances of MCSP[ f(N)] can be enumerated by uniform
ACP circuits of size exponential in poly(f(N)), we have that the refuter can be implemented by
uniform AC? circuits of size exponential in poly(f(N)).

Either A outputs NO with probability greater than 1/2 on a uniformly chosen input of
length N, or it does not. In the first case, since G 1/N-fools A, there must be a string x in the range
of G for which A(x) = 0. Moreover, since every string in the range of G has circuit complexity
polylog(N) <« f(N), we have that x is a YES instance of MCSP[f(N)], and hence the refuter
correctly outputs an input on which A makes a mistake in this case.

Suppose A outputs YES with probability at least 1/2. We define a uniform AC? algorithm
A’ of size 2POF(N)) a5 follows. A’ first enumerates all YES instances of MCSP[f(N)]. Note that
there are at most 200/ (M) 108N) YES instances, and they can be enumerated by an AC® algorithm
of size 2P°Y/(N)) by running over all circuits of size at most f(N) and guessing and checking
their computations. A’ checks if its input x’ is in the list of YES instances of MCSP[ f(N)] or not.
If it is, it outputs NO, otherwise it runs A on x’ and outputs the answer. A’ can be implemented
by polylogtime-uniform AC? circuits of size 2P°Y/(N)) and constant depth. Note that A’ outputs
YES with probability at least 1/2 — w > 0.49 (where we used f(N) < o(N/log N)). Now,
by choosing the parameters ¢ and d’ in the first paragraph large enough so that G’ 1/N-fools A/,
we have that at least a 0.49 — 1/N fraction of outputs x” of G’ have A’(x’) = 1, and hence there
is a lexicographically first such output. Moreover, since A’ outputs NO on all YES instances of
MCSP[ f(N)], it must be the case that x’ is a NO instance of MCSP[ f(N)]. By definition of A" we
know A(x’) = A’(x’) =1, so A makes a mistake on x’ when trying to solve MCSP[f(N)]. ]

Finally, we observe that the strongly constructive separations we seek do hold in the case
of the well-known lower bound for Parity against AC’. Indeed, in this case we actually get an
oblivious list-refuter (a.k.a. an explicit obstruction), meaning that the list-refuter does not need
to depend on the algorithm being refuted. This establishes the fourth item of Theorem 1.7.

THEOREM 4.6 ([2, 24, 68, 30]). For each integer d, Parity does not have depth-(d + 1) AC°
circuits of size 200N,

PROPOSITION 4.7 (Item (4) of Theorem 1.7). There is a polylogtime-uniform-AC°[quasipoly]-
list-refuter for Parity against every polylogtime-uniform AC® algorithm.

PROOF. In fact, we show that for all d there is an oblivious list-refuter R that refutes depth-
(d+1) AC? algorithms by outputting a quasipoly-size set of strings of length N. The list-refuter R
simply outputs the set of all strings of the form yo¥N 18" where y € {0, 1}'%6™)*. Suppose, for
the sake of contradiction, that there is a uniform depth-(d + 1) AC® algorithm A that correctly
solves Parity on all strings output by R. Then we can compute Parity by circuits of size 20(m'/%)
on input y of length m as follows: pad y to length gm!/? by suffixing it with zeroes, then run A

on the padded string. This contradicts the lower bound of Theorem 4.6. u
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5. Most Conjectured Uniform Separations Can Be Made Construc-
tive

In this section we show many uniform separations imply corresponding refuters. We will prove
Theorem 1.2 (restated below).

THEOREM 1.2. (Restated) Let C € {P,ZPP,BPP} and let D € {NP,XZ,P,...,ZkP,...,PP, PSPACE,
EXP, NEXP, EXPNP}. Then D ¢ C implies that for every paddable D-complete language L, there
is a C-constructive separation of L ¢ C. Furthermore, ®P ¢ C implies that for every paddable
®P-complete language L, there is a BPP-constructive separation of L ¢ C.

We will prove the case of D € {PSPACE, EXP, NEXP, EXPNP} in Section 5.1, D € {ZxP}k>1 in
Section 5.2, and D € {PP, ®P} in Section 5.3.

In the proofs of this section we frequently use the following notion of list-refuters, which
is a relaxation of refuters (Definition 1.1) that allows outputting a constant number of strings
with possibly different lengths (instead of a single string), and only requires at least one of the

strings is a counterexample:

DEFINITION 5.1 (Constant-size list-refuters). For a function f: {0,1}* — {0,1} and an
algorithm A, a constant-size P-list-refuter for f against A is a deterministic polynomial time
algorithm R that, given input 1", prints a list of ¢ strings x,(ll),x,(lz), e ,x,(f) € {0,1}" (for a
constant ¢ independent of n), such that for infinitely many n, there exists i € [c] for which
A(x,gi)) #f (x,(li)). Moreover, for every i € [c], there is a strictly increasing polynomial £): N —
N such that x| = £ (n) > n for all integers n.

This definition can be generalized to constant-size BPP-list-refuters and constant-size
ZPP-list-refuters similarly to Definition 1.1.

The following simple lemma says that a constant-size list-refuter as defined in Definition 5.1

can be converted to a refuter as defined in Definition 1.1.

LEMMA 5.2. For function f: {0,1}* — {0,1} and algorithm A,
— A constant-size P-list-refuter for f against A implies that there exists a P-refuter for f
against A.
— For D € {BPP, ZPP}, a pseudo-deterministic constant-size D-list-refuter (i.e., for each input
length n there is a canonical list such that the refuter outputs the canonical list with 1 — o(1)
probability given input 1™) for f against A implies that there exists a D-refuter for f against A.

PROOF. Suppose we have a constant-size P-list-refuter (Definition 5.1) which outputs the

W @)

list x .., Xp € {0,1}" given input 1", where |x,(1i)| = ¢ (n). Then, for every i € [c],
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define B® to be the algorithm that prints x| on input 1¢’ ™. Note that algorithm B is well-
defined because ¢! (n) is strictly increasing (and hence injective), and it runs in poly(n) <
poly(£?(n)) time. By Definition 5.1, observe that at least one of BV, B?) ... B( prints valid
counterexamples for infinitely many n. Hence, there exists at least one i € [c] such that B¥ is a
P-refuter (Definition 1.1).

Similarly, if a constant-size BPP (or ZPP) list-refuter is pseudo-deterministic, then the same

argument also applies, and we can obtain a BPP (or ZPP) refuter. u

5.1 Refuters for PSPACE, EXP, and NEXP

We first consider the case when 9D is a complexity class from {PSPACE, EXP, NEXP}. Our proof
below generalizes the refuter construction of [21] which only discussed the case of ) = NEXP.

Let (3 poly(n))D denote the complexity class that contains languages L satisfying the
following property: there exists a polynomial p(n) and a language L’ € D such that for all
strings x, L(x) = 1 if and only if there exists y € {0, 1}?"D such that L’(x, y) = 1. Similarly, we
define the complexity class (V poly(n)) D.

THEOREM 5.3. LetC € {P,BPP,ZPP}, and D be a complexity class such that C C D. Suppose D
satisfies (I poly(n))D C D and (V poly(n))D C D.

If D € C, then for every paddable D-complete language L, there is a C-constructive separa-
tionof L ¢ C.

PROOF. We first consider the case of C = P. Let A be a polynomial-time algorithm. Let n be an
input length such that A does not correctly solve L on all n-bit inputs; since D ¢ P, we know
there are infinitely many such input lengths. For b € {0, 1}, define the language

fo) := {(1", x) : there exists y € {0, 1}" with prefix x, such that L(y) = b, A(y) =1 — b}.
Observe that qul) € (Apoly(n))D C D, GI(AO) € (dpoly(n))coD C coPD. Define
Gy = fo) U qul) = {(1", x) : there exists y € {0,1}" with prefix x, such that L(y) # A(y)}.

Since L is D-complete, there is a polynomial-time procedure R’ that can decide G4 by
making two queries to an oracle for L. Since L is paddable, we may assume the queries to the
L-oracle always have length exactly £(n), for some strictly increasing polynomial £: N — N.
If we let R query the algorithm A instead of the L-oracle, then on any (1%, x), either R* solves
Ga(1", x) correctly, or A gives the incorrect answer on at least one of the queries.

Our list-refuter performs a search-to-decision reduction which repeatedly calls R4(1", x)
and extends the prefix x one bit at a time. It either eventually finds a string y € {0, 1}" such that
L(y) # A(y), or detects the inconsistency of A’s answers. The pseudocode of this list-refuter is
presented in Algorithm 2.
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— Initialize x as an empty string

— Fori«1,2,...,n:
— IfR4(1%,x01) =1:
— X« Xxol1l
— Elseif R4(1™,x 0 0) = 1:
— X<<Xx00
— Else:

— Return all the queries sent to A by R4(1", x), R4(1", x 0 0), and R4 (1", x 0 1)
— Return x and all the queries sent to A by R4(1", x)

Algorithm 2. The list-refuter against A

To prove the correctness of this list-refuter, we suppose for contradiction that A could
correctly solve every string in the list. Consider three cases according to the final length of x
when the refuter terminates:

(1) |x| =0. Then (1™, 1) and (1" 0) are not in G4, which is impossible, since A cannot solve L
correctly on every n-bit input.

(2) 1 < |x|] < n. Then (1", x) € G4, but (1", x o 1) and (1", x o 0) are not in G4. This is also
impossible.

(3) |x| = n. Then (1™, x) € G4, meaning that L(x) # A(x). But x is also in the list and A should
solve x correctly, a contradiction.

Hence, A answers incorrectly on at least one string in the list returned by Algorithm 2.

The list contains at most six strings, each of which has length n or £(n). By Lemma 5.2, this
constant-size list-refuter can be converted into a refuter.

Now we consider the case of C = BPP. Since A € BPP, by standard amplification2°, there
is another BPP algorithm A’ which decides the same language as A and has success probability
1—272", Then, for a uniformly chosen random seed r, with 1— 27" probability, A’(-, r) decides the
same language as A on input length n. From this point, we may apply the same proof of the C = P
case to A’(-,r). Hence we have a BPP-refuter against A. If we further assume A € ZPP, then the

refuter also has zero error. Note that our randomized refuters are pseudo-deterministic. =~ =

COROLLARY 5.4. Let (C, D) be a pair of complexity classes from
{P, ZPP, BPP} x {PSPACE, EXP, NEXP, EXPNF}.

Assuming D ¢ C, for every paddable D-complete language L, there is a C-constructive separation
of L ¢ C.

20 We remark that [28] also studied the case where A does not have bounded probability gap, which we do not consider
here.
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PROOF. Note that all pairs (C, D) satisfy the requirements in Theorem 5.3 (where the inclusion
(Vpoly(n))NEXP € NEXP follows from concatenating the witnesses for every possibility in the
universal quantifier). u

5.2 Refuters for NP and the Polynomial Hierarchy
Now we move to the case that 9 = XxP for an integer k.

THEOREM 5.5 (Adaptation of [28]). Let C € {P,BPP,ZPP}. Suppose NP C D, and there is a
D-complete language M which is downward self-reducible.

If D ¢ C, then for every paddable D-complete language L, there is a C-constructive separa-
tionof L ¢ C.

PROOF SKETCH. Let A be any algorithm in C. We will construct a refuter for L against A.
Here we only prove the case of C = P. (For C € {BPP, ZPP}, we use the same proof as the C =P
case, and apply the amplification argument described at the end of the proof of Theorem 5.3.)

Since M is downward self-reducible, there is a polynomial-time procedure D such that for
every x € {0,1}™, M(x) = DMsm-1(x),

Since L is D-complete and M € D, there is a poly(n)-time reduction p,: {0,1}* — {0,1}™
such that M (x) = L(pn(x)), where q(n): N — N is some strictly increasing polynomial. For
convenience of later proof, we extend the domain of p, to pn: {0,1}=" — {0,1}9™ so that
M(x) = L(pn(x)) holds for |x| < n as well. This can be done by first mapping x to p|y(x), and
then use the paddability of L to pad p|x|(x) to a string of length g(n).

For large enough n, there must exist an x € {0,1}=" such that A(p,(x)) # M(x), since
otherwise we would have a C algorithm that decides M, contradicting © ¢ C. Then we argue
that there must be a string x of length m < n, such that

A(pn(x)) # D°7-1(x), where Op_1 = {x € {0,1}™ 1 : A(pp(x)) = 1}, (3)

since otherwise the definition of D (by downward self-reducibility of M) together with an
induction on m would imply A(pn(x)) = M(x) for all x € {0,1}=", contradicting A(p,(x)) #
M (x). Let x* be the shortest string x satisfying condition (3). Then the minimality of |x*| implies
DOi-1(x*) = M(x*), and hence A(pn(x*)) # M(x*) by (3). Then from M (x*) = L(pn(x*)) we
know A(pn(x*)) # L(pn(x¥)), so pn(x*¥) is a counterexample showing A does not solve L.
Observe that condition (3) can be checked in polynomial time, so such x* can be found if
we had an NP machine. Since A claims to decide an NP-hard language, we can try to find x* by
a search-to-decision reduction using A, similarly to what we did in the proof of Theorem 5.3.
More specifically, our list-refuter does the following:
— First consider the oracle algorithm Rg‘(lm', 1) which claims to solve the following NP
question by making one query to A: “does there exist a string x of length |x| = m < m’ such
that condition (3) is satisfied by n, x, and m?” The answer to Rg‘(ln, 1) is supposed to be
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YES; if it returns NO, then we know the query made to A by R§(1”, 1) is a counterexample,
and we are done. Otherwise, we find the smallest length m < n such that R‘S‘(lm, 1) returns
YES but R{ (1™, 1) returns NO. Then m is supposed to be the length of the shortest x*.
— Then, consider the oracle algorithm R4(y, 1™, 1") which claims to solve the following NP
question: “does there exist x € {0, 1} whose prefix is y such that condition (3) is satisfied
by n, x, and m?” We gradually extend the prefix y in the same way as in Theorem 5.3, until
either we find inconsistency between the answers for y, yo0, yo1, or we eventually extend
it to full length |y| = m and obtain x* = y. In the former case, we add the queries made
to A by R4(y, 1™, 1), R4(y 0 0,1™,1"), R4(y o 1,1™, 1") into our list of counterexamples.
In the latter case, if R4(x*, 1™, 1) returns YES but condition (3) is not satisfied, then we
know R4 (x*,1™, 1) made a mistake and we also get a counterexample.
The remaining case is where we obtained an x* of length m that indeed satisfies condition
(3). In this case, we add p,(x*) to the list of counter examples. We also need to add the
query made to A by Rg‘(l’"‘l, 1™) to the list of counterexamples. By our discussion earlier;
if x* is the shortest string satisfying condition (3), then p,(x*) is a counterexample. If x* is
not the shortest, then the answer NO returned by Rg‘(lm‘l, 1) is a mistake, and we also
get a counterexample.

Hence we have designed a constant size list-refuter for L against A, and the rest of the proof
follows in the same way as Theorem 5.3. u

We can compare this proof with the earlier proof of Theorem 5.3. In Theorem 5.3, we used an
(Fpoly(n))D machine to find counterexamples for a O problem, so we needed the assumption
that D is closed under 3 (and V). Here in Theorem 5.5, we side-step this 3-closure assumption
by using the downward self-reducibility of O instead. In this way, we get a polynomial-time
checkable condition (3), which allows us to find a counterexample using only an NP machine.

The following corollary follows immediately from Theorem 5.5 and the fact that £xP has a
downward self-reducible complete language X;SAT.

COROLLARY 5.6. Let (C, D) be a pair of complexity classes from the following list
{P,ZPP,BPP} X {ZxP}xk>1-

If O & C, then for every paddable D-complete language L, there is a C-constructive separation of
L¢cC.

5.3 Refuters for PP and Parity-P
Finally we prove Theorem 1.2 for the case D € {PP, ®P}.

THEOREM 5.7. Let C € {P,BPP,ZPP}. If PP & C, then for every paddable PP-complete lan-
guage L, there is a C-constructive separation of L ¢ C.
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PROOF. Let A be any C-algorithm. We will construct a refuter for L against A. Here we only
prove the case of C = P. (For C € {BPP,ZPP}, we use the same proof as the C = P case, and
apply the amplification argument described at the end of the proof of Theorem 5.3.)

We first review the well-known polynomial-time algorithm DPP that solves #3SAT with
the help of a PP oracle. Given a 3-CNF formula ¢ with n variables, let ¢,c,-1 - - - ¢o denote the
number of satisfiable assignments of ¢ in binary, i.e.,

#3SAT(¢) = Z ¢i - 2,

0<i<n
where ¢; € {0,1} fori =0,...,n. The algorithm computes the values of ¢; in decreasing order
of i: after c,, cp—1, ..., Ciy1 are determined, c; is the truth value of the statement

#3SAT(¢) > 2 + Z cj- 2,
i+1<j<n
which can be determined by the PP oracle. Hence DPP can compute #3SAT(¢) using n+ 1 queries
to a PP oracle. Observe that this query algorithm DPP must have asked the queries

#3SAT() 2 » -2/
i<j<n
for all 0 < i < n, and the oracle answers 1 to these queries. (For example, if n = 4 and
€4C3C2¢1Co = 01011, then DPP asked queries “#3SAT(¢) > x” for x € {10000, 01000, 01100,

01010, 01011}.) Similarly, observe that DPP must have asked the query

#3SAT(¢) > 1+ Z cj- 2,

0<j<n

to which the oracle answered 0.

Since A claims to decide a PP-complete language, we replace the PP oracle by A and try to
use D* to solve #3SAT on n variables. By padding, we assume the input strings received by A have
length exactly €(n), for some strictly increasing polynomial £: N — N. The polynomial-time
algorithm D# cannot correctly solve #3SAT on all possible ¢, since otherwise it would contradict
the assumption that PP ¢ P. Hence there exists a formula ¢ such that D4(¢) # D%(¢) + D (¢1),
where ¢, denotes the formula obtained by setting the first variable in ¢ to b. Since NP C PP,
we can try to find such a ¢ by a search-to-decision reduction using A, analogously to the proof
of Theorem 5.5 and Theorem 5.3. We either find such a ¢, or detect inconsistency during the
search and find a constant-size list that contains a counterexample.

Now suppose we have found such a ¢ with m variables satisfying D (¢) # D?(¢o)+D?(¢1).
Then we know that A answered incorrectly on one of the (m+ 1) + m+ m = 3m + 1 queries
asked by D. In the following we show how to reduce the size of this list to O(1).
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Let dp - - - Ag, b - - - bo, Cm - - - Co be the binary representation of D4 (¢g), D (¢1), and D% (¢),
respectively (where a, = by, = 0). Since DA(¢@) # D*(¢o) + D*(¢1), we know
Z (cj—aj—bj) -2/ #0.
0<j<m
We assume D?(¢) < 2™ (and similarly, D (¢o), DA(¢1) < 2™ 1); otherwise A must have an-
swered 1 to the query “#3SAT(¢) > S” for some S > 2™ + 1, which is an obvious counterexample.
Now consider two cases:
D Xo<j<m(cj —aj —bj) - 2J < —1. We know that A answered 0 to the query “#3SAT(¢) >
1+ 2o<j<mCj - 2/7, and answered 1 to the queries “#3SAT(¢o) > 2o<j<sm & - 277 and
“#3SAT(91) = 2o<j<mbj - 277, Assuming that all three answers are correct, we have

0 = #3SAT(¢) — #3SAT(¢o) — #3SAT(¢p1)

<(1+ Z cj-2))—( Z aj-2/) - ( Z bj-2))

0<j<m 0<j<m 0<j<m
_ : . —_h.).9J
=1+ Z (cj—aj—Dbj)-2

0<j<m

a contradiction.

(2) Xo<j<m(cj —aj —bj) - 2/ > 0. We know that A answered 1 to the query “#3SAT(¢) >
Yo<j<m Cj - 217, and answered 0 to the queries “#3SAT(¢o) > 1+ Yo<j<m @; - 2/” and
“U3SAT(¢1) > 1+ Xo<j<m bj - 2/, Assuming that all three answers are correct, we have

0 = #3SAT(¢) — #3SAT(¢g) — #3SAT(¢1)

> ( Z cj-20) —( Z aj-2) - ( Z bj - 2/)

0<j<m 0<j<m 0<j<m
— . —h:) .2
= Z (cj—aj—bj)-2

k<j<m
> 0,

a contradiction.

In either of the two cases, we obtain a list of three strings that contains at least one counterex-
ample. This finishes our construction of the constant-size list-refuter, which can be converted

into a refuter by applying Lemma 5.2. u

THEOREM 5.8. Let C € {P,BPP,ZPP}. If ®P ¢ C, then for every paddable &P-complete lan-
guage L, there is a BPP-constructive separation of L ¢ C.

PROOF SKETCH. Let A be any algorithm in C. We will construct a refuter for L against A.
Here we only prove the case of C = P. (For C € {BPP,ZPP}, we use the same proof as the C =P
case, and apply the amplification argument described at the end of the proof of Theorem 5.3.)
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The proof is similar to that of Theorem 5.7. Let R be a reduction from @3SAT to L. Then
there must exist a 3-CNF formula ¢ such that A(R(¢)) # A(R(¢g)) ®A(R(¢1)), where ¢, denotes
the formula obtained by setting the first variable in ¢ to b. If we can find such ¢, then we
immediately obtain three strings which contain a counterexample for A.

Our requirement for ¢ can be encoded as a SAT instance 7. By the Valiant-Vazirani theorem
[64] and the fact that P®" = @P [54], there is a polynomial-time reduction f with random seed r
such that if x ¢ SAT, then Pr.[f(x,r) ¢ ®3SAT| = 1, and if x € SAT, then Pr,[ f(x,r) € ®3SAT] >
2/3.21 We pick a random seed r, and consider two cases:

— If A(R(f(m,1r))) =1, then we can use the downward self-reducibility of @3SAT to perform
a search-to-decision reduction using A (similar to the proof of Theorem 5.3). Either we
find a satisfying assignment for f (7, r), or we detect that A’s answers are inconsistent. In
the first case, note that the reduction f of [64] is simple enough so that we can efficiently
convert any satisfying assignment for f (s, r) to a satisfying assignment for 7, which can
then be converted to a formula ¢ that satisfies the desired property A(R(¢)) # A(R(¢o)) &
A(R(91)).

— If A(R(f(m,1))) = 0, then our refuter simply outputs R(f (7, r)). Observe that this string
is indeed a counterexample for A if f (51, r) € @3SAT, which happens with probability at
least 2/3. u

Remark: These refuters are non-black-box. Observe that all refuter constructions in this
section do require access to the code of the algorithm A being refuted. (That is, our refuter
constructions are not “black-box” in terms of the algorithm A.) Atserias [6] constructed a
black-box refuter for the separation NP ¢ BPP (more strictly speaking, Atserias’ refuter is only
“grey-box” in that it needs to know the running time of the BPP algorithm it fools). It may be
possible to improve our refuter constructions to be black-box (or “grey-box”) as well. However,
it seems challenging to use the techniques of [6] for this, because he crucially relies on the
ZPPNP learning algorithm for polynomial-size circuits [11]. It is unclear how one might prove
P-constructive separations using such an algorithm.

6. Hard Languages With No Constructive Separations

In this section we show there are hard languages without constructive separation from any
complexity class. We first observe there are no constructive separations for Rx: unconditionally.

21 In more detail, Valiant-Vazirani says that there is a randomized Turing reduction from SAT to @SAT such that a given
formula x is reduced to a sequence of formulas xy,..., Xo(ny Which are called on ®SAT. We take the entire Turing
reduction from SAT to ®SAT, with success probability increased to at least 2/3, and apply the fact that P®F = @P, to
obtain a single ®SAT instance.
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PROPOSITION 1.8. (Restated) For any t(n) > n®"Y, there is no P-refuter for Rx: against the
constant zero function.

PROOF. A P refuter for Rk against the constant zero function needs to output in poly(n) time
an n-bit string y, with K' complexity at least n — 1, for infinitely many integers n. But by the
definition of K' complexity, all these y, can be computed in poly(n) time by a uniform algorithm
given the input n of log n bits, hence K'(y,) = O(log n) for all n, a contradiction. u

Next we show that, under plausible conjectures, there are languages in NP \ P with no

constructive separations from any complexity class.

THEOREM 1.9. (Restated) The following hold:
— IfNE # E, then there is a language in NP\ P that does not have P refuters against the constant
one function.
— IfNE # RE, then there is a language in NP \ P that does not have BPP refuters against the
constant one function.??

PROOF. Assume NE # E, and let L’ € NE\E. Suppose for some constant ¢ > 1 there is a 20
time reduction R: {0,1}" — {0,1}%" such that x € L’ & R(x) € SAT.
We define a language L as follows:

— Form € N, L is given the concatenated string
(t, Wo, W1, ..., Wam_1,5) € {0,1}%" x ({0,1}2™)%" x {0,1}*"""
as input.
Here, m is intended as the input length to the language L', t is interpreted as a potential
truth table of L’ on all m-bit inputs which needs to be verified, wy, ..., wyn_; are interpreted
as potential witnesses for every m-bit inputs to L’ to help the verification, and s is intended
as an input to SAT.
— L(t,wg,Wy,...,wom_1,5) = 1if and only if all of the following conditions hold:
(1) For everyi € {0,1}™ with t; = 1, we have that w; € {0,1}2"" is a correct witness of
R(i) € SAT (in particular, i € L).
(2) Foreveryi e {0,1}™ witht; =0, we havei ¢ L'.
(3) s ¢ SAT.

That is, L accepts the input L(t, wg, Wy, ..., Wom_1, ) if t is the correct truth table of L’ on all
m-bit inputs and all the w; are correct witnesses for the corresponding inputs to L’, and s ¢ SAT.

The conditions (1) and (2) above mean that every input accepted by L must reveal the truth
table of the language L', which helps us to design an E (or RE) algorithm for L’ given a P (or BPP)
refuter for L. Condition (3) allows us to argue that if P # NP, then L’ ¢ P.

22 Recall we have defined RE to be one-sided randomized time 20,
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The concatenated string has length 2(™_ We can verify condition (1) in 2°(™ time, and
verify conditions (2) and (3) in coNTIME[29(™)], so L € coNP.

CLAIM 6.1. IfL € P, then SAT € P.

From Claim 6.1 we conclude L ¢ P, since otherwise it would imply P = NP and consequently
E = NE, contradicting our assumption. Hence, L = {0, 1}*\L is a language in NP\P.

We will show that L does not have P refuters against the constant one function. If there
is such a refuter, then it must output in 20(M) time a string (t, wo, Wy, ..., Wym_q1,S) € L. By the
conditions (1) and (2) in the definition of L, we have t; = L’ (i) for alli € {0, 1}™. Hence, we can
use this refuter to decide L’ on m-bit inputs in 2°(™ time, contradicting L’ ¢ E.

To prove the second statement of the theorem, we further assume NE # RE and L’ €
NE\RE. Suppose L has a BPP refuter against the constant one function, which prints a string
(t,wp, W1, ..., wom_1,S). With at least 2/3 probability, the string is in L. On a given input i €
{0,1}™,if t; = 1 and wj; is a correct witness of i € L’, then we return L’(i) = 1; otherwise, we
return L’(i) = 0. This yields a one-sided error randomized algorithm that decides L’ on m-bit
inputs in 2°(™ time, contradicting L’ ¢ RE.

It remains to prove Claim 6.1.

Proof of Claim 6.1. Recall that L’ € NE and R: {0,1}" — {0,1}2" is a 29" time reduction
such that y € L’ & R(y) € SAT. Assume L € TIME[n4]. The recursive algorithm Solve-SAT
(described in Algorithm 3) receives m € N and x € {0,1}*" as input, and outputs a pair
(SAT(x), w), where w € {0,1}%"" is a correct witness if SAT(x) = 1.

Solve-SAT(m, x) :
— If m < O(1), then return the correct (SAT(x), w) in constant time
— For y € {0,1} 1
— Let (ty,wy) :=Solve-SAT(m —1,R(y))
— Letanswer := L(t, wg, W1, ..., Wym-1_1, X)
— Ifanswer =1, then find a correct witness w of x € SAT by a search-to-decision reduction
which repeatedly calls L(t, wy, . .., Wom-1_1, -)

— Return (answer, w)

Algorithm 3. Solve-SAT

The correctness of Solve-SAT easily follows from the definition of L and an induction

on m. The overall idea of this algorithm is to use f(t, Wo, ..., Wam-1_1, +) @s a SAT solver after
we obtain the correct ¢, wy, . .., Wom-1_1, which themselves can be found by solving smaller SAT
questions.

To improve the running time of the algorithm, we implement Solve - SAT with memoization.
That is, if (ty, wy) at the m-th level of the recursion is already computed, then later it can be
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directly accessed without recursively calling Solve-SAT again. Then, the total time of Solve-
SAT is at most 3,y 2™ 1 - 26M . (20(M))d < 20(M) Hence, we can solve SAT(x) in poly(|x|)

time. L
This completes the proof of the overall theorem. ]

It is interesting to contrast Theorem 1.9 with Theorem 5.5, which says P # NP implies that
every paddable NP-complete language has a P-constructive separation of L ¢ P. This means the
language L € NP \ P in Theorem 1.9 is not NP-complete.

7. Conclusion

Many interesting questions remain for future work. While we have given many examples of
complexity separations that can automatically be made constructive, it is unclear how to extend
our results to separations with complexity classes within P. For example, let L be a P-complete
language. If L is not in uniform NC!, does a P-constructive separation of L from uniform
NC! follow? How about separations of P from LOGSPACE? Would establishing constructive
separations in these lower complexity classes have any interesting consequences?

Note that there is no P-constructive separation of MCSP[s] ¢ P for super-polynomially
large s, unless EXP requires super-polynomial size Boolean circuits. (A polynomial-time refuter
for the trivial algorithm that always accepts, must print a hard function!) But do any interesting
consequences follow from a constructive separation of search versions of MCSP from P? The
same proof strategy (of applying the conjectured refuter for the trivial algorithm that always
accepts) does not make sense in this case, as the only hard instances for search problems are
YES instances.

It would also be interesting to consider constructive separations against non-uniform
algorithms. We say a P list-refuter R for a language L against circuit class C is a deterministic
polynomial time algorithm that, given the description of a circuit C, on input length n where
{Cn}nen € C, finds a list of x; € {0,1}" such that L(x;) # C(x;) for some i, for infinitely many
input lengths n. We also say that R gives a P-constructive separation L ¢ C. Furthermore, we
say it is an oblivious list-refuter, if it does not need access to the description of the circuit C,
(this was called explicit obstructions in [15]). It would be interesting to examine which proof
methods for circuit lower bounds can be made constructive. We list a few examples which
should be particularly interesting:

(1) the ﬁ(n?’) size lower bound against DeMorgan formulas for Andreev’s function [31, 61],
(2) the Q(n?) size lower bound against formulas for Element-Distinctness [50],
(3) AC°[p] size-depth lower bounds via the approximation method [56, 60].
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Chen, Jin, and Williams [15] showed that constructing corresponding explicit obstructions for
(1) and (2) above would imply EXP ¢ NC?, but it is unclear whether one can get a P-constructive
separation without implying a major breakthrough lower bound.

We remark that as shown in [15], most lower bounds proved by random restrictions can
be made constructive, by constructing an appropriate pseudorandom restriction generator. [15]
explicitly constructed an oblivious list-refuter for parity against subquadratic-size formulas, and
we remark that a similar oblivious list-refuter for parity against polynomial-size AC? circuits
follows from the pseudorandom restriction generator for ACY of [26].

Atserias [6, Theorem 3] showed that NP ¢ P/poly implies a BPP-constructive separation
NP ¢ P/poly (note that Atserias’ refuters only need to know the size of the circuits being refuted).
An interesting open problem following the work of Atserias is whether separations of the form
C ¢ P/poly can be made constructive for classes C higher than NP (for example, NEXP).
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