N
Check for
Updates

Beating Brute Force for Compression Problems®

Shuichi Hirahara™
National Institute of Informatics
Tokyo, Japan
s_hirahara@nii.ac.jp

ABSTRACT

A compression problem is defined with respect to an efficient encod-
ing function f; given a string x, our task is to find the shortest y
such that f(y) = x. The obvious brute-force algorithm for solving
this compression task on n-bit strings runs in time O(2¢ - t(n)),
where ¢ is the length of the shortest description y and t(n) is the
time complexity of f when it prints n-bit output.

We prove that every compression problem has a Boolean circuit
family which finds short descriptions more efficiently than brute
force. In particular, our circuits have size 24/5. poly(¢(n)), which is
significantly more efficient for all ¢ > log(t(n)). Our construction
builds on Fiat-Naor’s data structure for function inversion [SICOMP
1999]: we show how to carefully modify their data structure so that
it can be nontrivially implemented using Boolean circuits, and
we show how to utilize hashing so that the circuit size is only
exponential in the description length.

As a consequence, the Minimum Circuit Size Problem for generic
fan-in two circuits of size s(n) on truth tables of size 2" can be solved
by circuits of size 25 wHo(w) | poly(2"), where w = s(n) log, (s(n) +
n). This improves over the brute-force approach of trying all pos-
sible size-s(n) circuits for all s(n) > n. Similarly, the task of com-
puting a short description of a string x when its K’ -complexity is

4
at most £, has circuits of size 25¢ - poly(t). We also give nontrivial
circuits for computing Kt complexity on average, and for solving
NP relations with “compressible” instance-witness pairs.
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1 INTRODUCTION

Are there NP problems that require brute-force search in order to be
solved? This basic question is one of the prime motivations behind
P versus NP. It is a longstanding open question to determine if (for
example) there are any non-trivial algorithms for the CircuitSAT
problem which run in 2" /n®(!) time where n is the number of
inputs. Such an algorithm, besides being interesting in its own right,
would also settle important open questions in complexity theory:
for example, it would imply that NEXP does not have polynomial-
size circuits [50]. As of now, there has been no progress on beating
brute force for CircuitSAT on circuits of size greater than 5n (but
for small enough circuits, some algorithms are known, e.g. [12, 22]).

In this paper, we show how to generically improve over brute
force using non-uniformity. In recent years, NP problems based on
compression have been extensively studied, and are at the core of a
new topic in TCS called “meta-complexity.” Let us formally define
what we mean by a compression problem.

DEFINITION 1.1 (COMPRESSION PROBLEM). Let Eval : {0,1}* —
{0,1}* be a polynomial-time computable. The Eval compression prob-
lem is:

o Input: a string x € {0, 1}" and a size parameter s
o Output: return a string y with |y| < s such that Eval(y) = x,
or output L if no such y exists.

Two prominent examples of compression problems are the Mini-
mum Circuit Size Problem (MCSP) and time-bounded Kolmogorov
complexity (MINKT). For MCSP, Eval takes the description of a
circuit and outputs its truth table, where the length of the descrip-
tion directly correlates with the number of gates in the circuit. For
MINKT, we are given a string x, a time bound ¢, and an integer k,
and we wish to know if there is a program of length at most k that
outputs x in at most ¢ steps. For any fixed time function ¢, the Eval
function takes a program p as input and runs p for t steps, and we
wish to minimize the length of the program. These two compression
problems have many interesting connections to complexity theory
[44], circuit complexity [9, 41], average-case complexity [24, 26],
cryptography [31, 32, 36, 37, 45], and learning theory [7, 28].

1.1 Our Results

The main result of this paper is the construction of a (non-uniform)
circuit family which can solve all generic compression problems
significantly faster than the obvious brute-force enumeration of all
possible programs up to a given length.
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THEOREM 1.2. Let Eval denote a compression problem. There is a
circuit family {Cp,s} such that for alln,s € N, Cp s solves the com-
pression problem for Eval on all strings of length n with descriptions of
length at most s, and the size of Cps is 25°S. poly(n,s). Furthermore,
Cn,s(x) prints a description of length at most s for the input x of
length n, whenever such a description exists.

Theorem 1.2 has interesting consequences for meta-complexity
problems.

Smaller Circuits for MCSP. The first major consequence of The-
orem 1.2 is a Boolean circuit family for MCSP that decisively beats
exhaustive search. It has been conjectured since the 1950s that any
algorithm solving MCSP must exhaustively search over all possible
circuits (see Trakhtenbrot [46] for a fascinating history of these
“perebor” conjectures). Our results refute this conjecture when we
are allowed non-uniform circuits as our algorithmic model.

In more detail, we consider circuits of fan-in two over any desired
basis. Let Search-MCSP[s(n)] be the search problem:

Given a truth table T of length 2", determine if the
function f : {0,1}" — {0,1} represented by T has
a circuit of at most s(n) gates, and if so, produce an
encoding of such a circuit.

The obvious algorithm for this search problem requires time
20(s(n)log, s(n)) -2".poly(s(n)): enumerate over all 20(s(n) log, s(n))
circuits C of size s(n) with n inputs, and evaluate C on all 2" possi-
ble inputs in 2" - poly(s(n)) time. The MCSP problem and its search
version are believed to be NP-hard, but their complexities remain
(infamously) open (cf. [27, 30] for some recent developments).

Using tight and efficient circuit encodings, we obtain an improve-
ment over the trivial enumeration algorithm for all circuit sizes
s(n) > n.

THEOREM 1.3. For all size functions s(n), Search-MCSP[s(n)] on
truth tables of size 2" can be solved by circuits of size 25-wro(w) .

poly(2™), where w = s(n) log,(s(n) + n).
Thus for example, there is a Boolean circuit C of size only
zgnz log(n)+o(n?log(n)) . pO[y(Zn)

which, given any truth table of length 2" as input, C outputs the
description of a circuit with n? gates for the truth table, whenever
such a circuit exists.

Smaller Circuits for MINKT. Theorem 1.2 is very general, and
applies in a wide range of compression settings. As another example,
we can apply Theorem 1.2 to show that for every fixed time function
t(n), there are nontrivial circuits computing the K*(") -complexity
of n-bit strings.

THEOREM 1.4. For every time functiont : N — N with t(n) > n,
and parameters e,n € N, there is a circuit family that given any n-bit
input x, outputs a program y of length at most e such that y prints
the string x in at most t(n) steps if such a y exists. The circuit family

has size 23© - poly(t(n)).
This answers an open question of Ren and Santhanam [45], who,

based on connections between K and one-way functions, suggested
that there may be a non-trivial circuit for solving K. Independently
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of this work, the same result (for the case e = n) was obtained by
Mazor and Pass [38].

Smaller Circuits for Compressible Instances of NP Relations. Our
main result can also be applied to construct non-trivial circuits for
compressible instances of NP relations. Formally, let R € {0, 1}* x
{0, 1}* be any polynomial-time computable relation. We wish to
solve the following task, where n, p € N are parameters.

Compressible-R: Given a string x of length n, if there

is a program of size p which prints the pair (x,y) in

poly(n) time such that (x,y) € R, find a ¢’ such that

(x,vy") €R.
The obvious brute-force algorithm for Compressible-R runs in
2P - poly(n) time, by enumerating over all programs of length p,
running each program in poly(n) time, and testing their output in
poly(n) time.

THEOREM 1.5. Compressible-R can be solved by circuits of size
25p. poly(n).

Smaller Circuits for MKtP on Average. Levin’s Kt-complexity of
a string x is defined as the minimum, over all ¢ € N and a program
d, of |d| + log ¢t such that d prints x in time . The Minimum Kt
Complexity Problem (MKtP) asks to compute Kt(x) on input x. By
exhaustive search, MKtP can be solved in time 2" poly(n). We show
that there exists a non-trivial circuit that computes Kt(x) on most
instances drawn from any efliciently computable distribution. A
distribution {Dp}, ey is said to be t(n)-time-computable [6, 34]
if there exists a t(n)-time algorithm that, on input n € N and
x € {0,1}", computes the cumulative function of D, on x. (That
is, given a string x, we can compute the probability that a random
string from D, is at most x, under the natural ordering on n-bit
strings, in ¢(n) time.)

THEOREM 1.6. For all functions s(n) and t(n) > n, there exists a
family of circuits {Cp },,cny 0f size 255(n) -poly(t(n)) such that for any
t(n)-time-computable distribution D = {Dy}, e over {0, 1}", for
all large n € N, with probability at least 1 — ﬁ over a random input
x drawn from Dy, on input x, the circuit Cy, outputs a program y and
t € N such that y prints the string x in t steps and |y| +logt < s(n)

ifKt(x) < s(n).

1.2 Intuition

The starting point of our approach comes from cryptography, namely
the problem of inverting a function f : {0,1}" — {0,1}" using
a minimal number of black-box calls to f. In particular, given a
y € {0,1}", we wish to find an x such that f(x) = y. Following the
pioneering work of [23] on data structures for inverting random
functions, Fiat and Naor [17] presented data structures with a rig-
orous time-space tradeoff. In particular, for f : {0,1}" — {0, 1}"
construed as an oracle, Fiat and Naor show that one can construct
a data structure with S bits of memory that can be queried for
function inversion in time T, where T - S3 = 23" . poly(n). Setting
T =5=2%/* for every fixed f we obtain a data structure storing
231/% . poly(n) bits such that, given any y in the range of f, the data
structure will output a pre-image of y in about 23n/4 steps.

Given the power and generality of function inversion, one might
wonder if it can be used to build a non-trivial “data structure” for
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solving an NP-complete problem like CircuitSAT faster than 2"
time. A natural first attempt is to set f to take a circuit C and a
string w as input, outputting C if C(w) = 1 and L otherwise. Given
a worst-case inverter for f, one could attempt to solve CircuitSAT
by attempting to invert f on C.

One major difficulty in carrying out such an approach is that
the input length to the function f is too large. If the circuit C has
n inputs, the witness w and C both need at least n bits to describe.
(Note that, if the circuits or the witnesses could be described in
say 0.9n bits, then we could already trivially improve over 2" time
by simply storing a 2-°"-size lookup table over the circuits, or the
witnesses.) Thus, f takes at least 2n input bits, and so the inversion
circuit obtained from Fiat-Naor has size at least 26%/4 > 2™ which
is worse than brute force.

In contrast, the witness in a compression problem already encodes
the input, so the previous paragraph is not an issue. Indeed, if we
simply apply Fiat-Naor’s function inversion to the Eval function
of a compression problem, we immediately obtain a data structure
that takes 2%7/4 space and can compress n-bit queries in 23114 time
for an arbitrary compression problem.

However, there remain two issues in the generality of this simple
approach, which we overcome.

(1) The first is a technical algorithmic issue. The data structure
of Fiat-Naor requires random access to its storage, and the
most obvious way of converting such a data structure to a
circuit would blow up the size by an intolerable amount (cf.
footnote 2 of [15]). This issue is what prevented Ren and
Santhanam [45] from giving non-trivial circuits for MINKT
via their equivalence between one-way functions (with ex-
ponential security) and the hardness of MINKT. (Note: this
tight connection is not known for other compression prob-
lems, like MCSP.) We show how to implement Fiat-Naor
with standard Boolean circuits, at the cost of a slightly larger
circuit (the exponent in the circuit size becomes 4/5, rather
than the exponent of 3/4). This requires us to be very careful
about certain parts of the inversion procedure; we have to
worry over details that Fiat and Naor did not worry about.
As a result, we have to adapt both the inversion procedure
and the analysis of it, in order to achieve our circuit size
bound. Roughly speaking, by performing the necessary ta-
ble lookups in large enough query batches, and adjusting
the sizes of lookup tables in the analysis, it is possible to
design nontrivial circuits that simulate the data structure by
performing variations on sorting.

The independent work of Mazor and Pass [38] also used
sorting ideas to implement Fiat-Naor with Boolean circuits.

(2) The second problem is that Fiat-Naor only provides a 23n/4

time data structure and algorithm for inversion, where n is

the length of the input we wish to invert. Such a bound is
useless when our desired description length ¢ is less than
3n/4, in which case the 2¢ cost of brute-force enumeration is
faster than Fiat-Naor! (For example, in the case of MCSP, we
would obtain a 2°-75°2" -time data structure for solving MCSP
on truth tables of length 2".) That is, naively applying Fiat-
Naor only yields an improvement over exhaustive search in
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the case where the complexity of the string is already very
close to the maximum possible.

In order to beat the 2¢ exhaustive search over descriptions
of length ¢, for every ¢, we have to take a different approach.
Rather than inverting a function that maps n bits into n bits,
we need to invert an Eval function which maps e bits (the
compressed length) into n bits (the decompressed length).
Furthermore, we want the cost of inverting our function to
be exponential only in e, and polynomial in n (and the circuit
size of Eval).

We achieve this by (pairwise independent) hashing: we con-
sider a new function which applies Eval to an encoding of
length e + O(1), and hashes its n-bit result to a string of
length e + O(1). Starting from this idea, we show that the
problem of inverting a function f from e bits to n bits can be
generically reduced to the problem of inverting a function f”
from e + 1 bits to e + 1 bits; then, we can apply our circuits
for function inversion to the function f”.

Our hashing reduction was inspired by the literature on hardness
magnification [9, 10, 13, 25, 39-41], a phenomenon in which a (seem-
ingly) weak circuit lower bound for a specific problem is shown to
imply a breakthrough result in complexity theory, such as P # NP.
For example, McKay et al. [39] showed that if there is any ¢ > 1
such that Search-MCSP[n¢] does not have O(N)-size circuits for
N = 2" then NP ¢ P/poly. Such a result is proved by the contra-
positive: Assuming NP € P/poly, one builds a O(N)-size circuit for
Search-MCSP[n€], using the property that Search-MCSP[n] is
reducible to instances of a PH problem of size O(n€) < N. The pri-
mary difference between hardness magnification and our results is
that we use the unconditional construction of the non-uniform algo-
rithm for function inversion, instead of hypothetical upper bounds,
such as NP C P/poly. We remark that a similar hashing trick was
used in the context of function inversion by Corrigan-Gibbs and
Kogan [14].

The theory of function inversion has recently seen a renewed
interest; works on function inversion in theoretical cryptography
improve the known time-space tradeoffs in different computational
models and settings [5, 8, 15, 16, 21], and find other interesting
consequences of function inversion [14, 20]. In particular, [20] show
how to use function inversion to refute a data structure conjecture
on 3SUM in fine-grained complexity.

2 PRELIMINARIES

For a function f : {0,1}" — {0,1}" and a non-negative integer
p, we let fP denote the composition of f with itself p times. Our
convention is that 0 is the identity function.

For our circuits solving Search-MCSP, we will utilize the fact
that there are very efficient encodings of fan-in two circuits over
any basis.

LEMMA 2.1 (EFFICIENT ENCODING OF CIRCUITS [19]). There is a
polynomial time algorithm Enc such that the following holds. For
every circuit C of size s on n-inputs, there is a string x of length
(1+0(1))slog, (s + n) such that Enc(x) outputs a description of a
circuit of size s computing the same function as C.!

! Although we do not need this property for our purposes, such an encoding x can be
computed from any given C in polynomial-time.
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One of the primary bottlenecks in implementing Fiat-Naor’s
function inversion in the Boolean circuit model is that, in order to
beat exhaustive search, their procedure apparently requires unit-
time random access to a lookup table (see footnote 2 of [15] for a
discussion on this point). By adjusting various parameters in their
data structure, we can simulate their lookup tables in an efficient
way by only querying tables on batches of queries. The formal
theorem we need is the following.

THEOREM 2.2 (BATCH QUERIES TO A LOOKUP TABLE). Letm,n > 1.
There is a circuit C with 2mn inputs and m outputs of size O(m - n -
log?(mn)), such that given a list of m strings X1, ..., Xm € {0,1}",
and a list of m queries X7, ..., X;, € {0, 1}", C returns bitsby, ..., bm
whereb; = 1 if and only if X[ € {X1,..., Xm}.

ProorF. Our circuit generalizes a result of W. J. Paul ([42], Lemma
2) on efficiently evaluating hard Boolean functions on multiple
inputs. First we describe a multitape Turing machine for computing
the task which runs in O(m - n - log m) time. Then, it follows from
Pippenger-Fischer [43] that there is a circuit family of size at most
O(m - n - log?(mn)) for the task.

Suppose for simplicity that our Turing machine M is given the
n-bit strings X, .. ., X on one tape, and the queries X/, ..., X}, on
another tape. (This can be achieved with a linear overhead.) Our
machine M removes any duplicates from the list Xj, ..., X, by
sorting the list, sweeping across the sorted order, and comparing
adjacent strings, copying the distinct strings over to another tape.
This takes O(mnlog m) time: O(mlog m) comparisons where each
comparison costs O(n) time.

Our machine M then maps each distinct Xj to the string X; 00: X;
concatenated with a zero. Similarly, each X/ is mapped to X] o 101i.
Next, M sorts the list of 2m items

{Xi00.Xo10i]ic [m]}.

This takes O(mnlog m) time, as in the previous paragraph.

Next, M sweeps across the sorted order of 2m elements, from
left to right, processing the strings. In particular, the sorted order
consists of contiguous blocks of two possible kinds:

(1) X00,Xo1o0iy,...,X0loip, for some ¢ € {0, 1,...,n}, where
each X is unique (as we have removed duplicates).

(2) Xoloiy,...,Xo1loip for some ¢ € {1,...,n} (with no
prefix of the form X o 0).

We can ignore blocks of the form (2); since there is no X o0 prefix to
the block, there is no matching string in Xj, . .., X. For all blocks
of the form (1), we write the O(log m)-bit indices iy, ..
separate tape: note that all i; are indices in the m-bit output vector
that must be 1. This step takes at most O(mnlog m) time in total:
for each block of ¢ items in the sorted order, it takes O(¢ - n) time
to form the block by comparing strings (find where the block ends),
and it takes O(¢n + £ log m) time to sweep through the block and
write down the corresponding O(log m)-bit index for each item in
the block. (The sum of all block lengths is at most 2m.)

Finally, the machine M processes the list of O(log m)-bit indices
to get the m-bit output. In particular, M sorts the O(m)-length list,
removing duplicates. On a separate tape, M sweeps along m cells
to print 0 or 1 for each bit i of the output, based on whether i is in
the sorted list of indices. This final step takes O(mlogm) time. O

.,ipona
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We will also need a slight generalization of batch lookup, in
which secondary information in the list can also be returned:

THEOREM 2.3 (BATCH QUERIES TO LoOOKUP TABLES WITH SIDE
INFORMATION). Let m,n,K > 1. There is a circuit C with O(mn)
inputs and m outputs of size O(m - n - log?(mn) + K - n), such that
given a list of m pairs (X1, Y1) ..., (Xm, Ym) € {0,1}" x {0,1}", a
list of m queries (p1,X7), ..., (pm. Xp,) € [2"] x {0,1}", and an
integer upper bound K € [2"], C returns a set of t < K triples
{(pj,Xl’,j,ij)} such thatXl’,j € {X1,....Xm} for all j and p;j is
minimal, whenever such t triples exist.

ProoF (SKETCH). We modify the Turing machine in the previous
proof to sort the pairs (X1, Y1) ..., (X, Ym) according to the keys
X1,...,Xm, and to sort the list (pl,X{), ..« (pm, X},) according to
the primary keys X], ..., X}, and secondary keys p1, ..., pm. (First
we sort according to the X;’s, then we break ties by sorting accord-
ing to the p;’s.) We merge the two sorted lists, as in the previous
proof. When M sweeps across the merged sorted order, if a query
pair (pj, XJ’.) matches a list pair (XJ’., Y;), then M prints the entire
triple (pj, X]f, Y;) to an extra tape, ignoring later triples of the form
p, X ]’ Y;) in the same block (recall that M is required to only print
triples such that p; is minimal). The machine M halts whenever K
triples have been output, or the entire sorted list has been processed,
whichever comes first. O

Some of the functions in Fiat-Naor’s function inversion (namely,
the k-wise independent hash functions) can be described by uni-
variate polynomials. Fiat-Naor speeds up their evaluation in an
amortized sense, by appealing to FFT. We will use the fact that FFT
can also be efficiently simulated in the arithmetic circuit model:

THEOREM 2.4 (MULTIPOINT EVALUATION OF POLYNOMIALS, [18],
SEE ALSO [49]). LetF be a field of characteristic two, and let P € F[x]
have degree d. There is an Fy-arithmetic circuit Cp with d inputs and
d outputs of size d - poly(logd) that, given x1,...,xq € F, outputs
P(xl), e P(xd).

3 MORE EFFICIENT CIRCUITS FOR
COMPRESSION PROBLEMS

We now turn to our constructions of smaller circuits for compres-
sion problems. To start, we show how circuits of size about ¢” for
inverting functions from {0, 1}"* to {0, 1}" can be used to obtain
circuits of size about ¢® - poly(n) for inverting functions from {0, 1}¢
to {0,1}", where e < n. (The latter case is the more relevant set-
ting for compression problems, where e is the length of a short
description and n is the length of the input.)

3.1 Obtaining Fixed-Parameter Tractable
Circuits for General Compression

Suppose we are given a circuit for a function Eval : {0,1}¢ —
{0, 1} where n > e, so that Eval can be viewed as a “decompres-
sion” procedure mapping e-bit strings into longer n-bit strings.
Given x of length n, the obvious brute-force strategy for finding
a description y of length e such that Eval(y) = x requires about
2¢ - s time, where s is the evaluation time for Eval. Our goal in
Theorem 1.2 is to construct 2%€¢/% . poly(s)-size circuits, strictly
improving on the obvious bound in the exponent.
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First, we observe that one cannot directly achieve such a bound
by using circuits for Fiat-Naor function inversion. Fiat-Naor is
designed to invert functions from (say) {0, 1}" to {0, 1}", where the
domain and co-domain must be the same size, and the circuit size
bound we can hope to achieve will have the form 25 - poly(n) for
some § € (0,1). When e < n (the interesting case of Eval!), this
size bound is already much worse than the obvious brute-force cost
of 2¢. We need to choose a different function to invert, one that
maps e + O(1) bits to e + O(1) bits, in order to achieve a size bound
of the form 29¢ . poly(n) for some § € (0,1).

Given the function Eval mapping e bits to n bits, we will use
pairwise-independent hashing to show how to reduce the inversion
problem for Eval to the inversion problem for a related function
£ {0,1}¢*1 — {0,1}¢*, so that given circuits of size S(n) for
function inversion, we can produce circuits of size S(e+1) - poly(s)
for inverting Eval.

THEOREM 3.1. Lets(n) > n. Suppose that for functionsg : {0,1}" —
{0, 1}" with size-s circuits, there are circuits for inverting g which
have size S(n) - poly(s). Then for every e < n, there are circuits for in-
verting any function Eval : {0,1}¢ — {0, 1}" of size S(e+1) - poly(s),
where s(n) > n is the circuit size of Eval.

ProoF. Let H = {h; : {0,1}" — {0,1}**!} be a family of
pairwise-independent hash functions. In the following, we will
just require the standard fact that there are hash families H such
that every h; € H has a poly(n)-size circuit (see for example [4],
p.152-153).

Cramv 3.2. Suppose x € {0,1}" has description length e under
Eval. Drawing a uniform random h € H, the probability that x is the
unique string with description length e in the preimage h™1 (h(x)) is
at least 1/2.

PRrROOF. Let S be the set of all n-bit strings x such that Eval(y) = x
for some y which is e bits long. Fix a string x € S, and note that
[S| < 2¢. We want to lower bound the probability that a randomly
chosen h ~ H “isolates” x from all other strings in S. The analysis
is similar to proofs of the Valiant-Vazirani Lemma [4, 48], but with
a different union bound: instead of fixing a target hash value (e.g.,
0¢*1) and union-bounding over all possible x € S, we fix the x € §
and union-bound over possible a € {0, 1}¢*1.

Fix a particular a € {0, 1}¢*1. We have:

h}:;H [A(x) =an (Vy €S~ {x}h(y) # a]

=ze_1+1 -Pr[(Vy € S—{x})h(y) # a| h(x) = a]
=ze—1+1 ~(1-Pr[(3y € S - {x})h(y) = a | h(x) = a])

2¢ -1 1
ge+2’

S L (1 _2-1
ze+1 2€‘+1

Now, for each choice of a € {0,1}¢*!, the 2¢*! events
[A(x) =an (Vy €S—{xHh(y) # a]

are all disjoint. Therefore the probability there is some string a €
{0, 1}¢*! such that h(x) = a and all other strings in S — {x} do not
hash to a is at least 1/2. O
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Using the claim, we can search for strings of description length
e using function inversion. Let Eval’ : {0,1}¢*! — {0, 1}" be the
procedure that ignores its last bit and evaluates Eval : {0,1}¢ —
{0, 1}" on the remainder.

Compression From Function Inversion

Draw a random h € H.
Define the function f : {0,1}¢*!1 — {0,1}**! by f(2) =
h(Eval’(z)).
Given an input x to compress:

Try to invert f on the (e + 1)-bit string h(x).

If inversion finds z = yb € {0,1}¢*! with |y| = e, |b| = 1
such that Eval(y) = x, return y.

Return Fail.

Clearly, if x does not have a description of length e, then the
above procedure always fails. Suppose x has a description of length
e. For any z = yb such that f(z) = h(x), we have

h(x) = f(2) = h(Eval’(2)) = h(Eval(y)).

By the claim, with probability at least 1/2, x is the only string with
a description of length e in the preimage of A~ (h(x)). Therefore
with probability at least 1/2, there is a preimage z = yb of f(x) and
y is a length-e description of x.

We now analyze the efficiency of the procedure. Assume that
for functions g : {0, 1}" — {0, 1}" with size-s circuits, there are
circuits for inverting g which have size S(n)-poly(s). Then the above
procedure can be implemented with circuits of size S(e+1) - poly(s),
where s > n upper bounds the circuit size of Eval. (Recall every
h € H has a polynomial-size circuit.)

The above describes a distribution of circuits for inverting Eval
(based on the choice of the hash function h). A deterministic circuit
can be constructed in a standard way, by simply taking O(e) <
O(n) random circuits from the distribution, and applying the union
bound over all O(2¢) strings of description length at most e. This
introduces another multiplicative factor of at most O(n) to the
size. O

3.2 Warm-Up: Efficient Circuits for Inverting
Cyclic Permutations

Next, we turn to constructing more efficient circuits for invert-
ing functions from {0, 1}" to {0, 1}". As a warm-up, we start with
circuits for inverting cyclic permutations, following the major in-
sight of Hellman [23]. (Such circuits can be easily generalized to
all permutations, using the fact that every permutation is a union
of disjoint cycles.) Let 7 : {0,1}"* — {0, 1}" be a permutation. For
i€{0,...,2" =1}, let y; = 7' (0"™). 7 being cyclic means the list
Yo, - . . Yan—1 contains no duplicates.

Then Figure 1 is a simple procedure for inverting 7. Let k be a
parameter we set later.

The correctness of this algorithm follows from the fact that
Py ) = 7P (yy) = 7 (y).

The algorithm uses space about % and takes time about k (assum-

ing, for simplicity, we can compute 7 for free), so setting k = 2n/2
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Inverting Cyclic Permutations

Preprocessing: In a lookup table, store (j,y;) for all multiples
jofk.

Procedure: Given y € {0, 1}" to invert,
e Forpe{0,....,k—1}:
(1) Using the lookup table, check if # (y) = y; for some
Jj that is a multiple of k
(2) If so, output Jzk_P_l(yj,k)

Figure 1: Hellman’s algorithm

yields an inversion procedure running in time and space 2"2 on a
(non-uniform) random access Turing Machine.

Can we implement this as a circuit? The main difference between
the circuit model and the random access model is that accessing
a bit from S-bits of storage in a circuit requires size roughly S
(compared to cost O(log S) in the Turing Machine setting). Thus,
the naive bound on the size of a circuit inverting cyclic permutations
is roughly k - % ~ 2" which gives no savings.

Luckily, this issue can be fixed by “batching” queries to mem-
ory. In particular, using Theorem 2.2, one can answer 212 (non-
adaptive) queries to a lookup table of size 2"/2 with a circuit of size
roughly 2"/2,

Now observe the lookup queries in the inversion algorithm for
cyclic permutations can be made non-adaptive: first calculate 7 (y)
forall p € {0,...k — 1} and then query the lookup table on all of
them at once. Using these ideas, one can indeed invert 7 with a
circuit of size about 2"/2.

3.3 Implementing Fiat-Naor with Efficient
Circuits

We now consider the general case of arbitrary function inversion for
functions with small circuits, with the goal of proving Theorem 1.2.
We begin by recalling the inversion algorithm of Fiat-Naor. The
algorithm is parameterized by the following values.

Parameters.

e ¢ (the number of functions g; we use)

e m (the number of checkpoints, i.e., the cardinality of the

lookup table T; for all i)

t (the length of our walks)

|A| (the length of our lookup table of high degree points)

k (the k-wise independence of our hash functions)

Notation: (shorthand for values induced by a choice of pa-

rameters)

- N’ =2" —maxgco,1}7:|5|=|4| [£~1(S)| (the “effective” do-
main after choosing A)

- J=(n+logt) Iz\]_"/ (the number of times we can “resample”
from a g; function)

The algorithm has a randomized preprocessing step, where one
builds several lookup tables. This is the only part of the algorithm
that is randomized (in particular, the randomness is used to select
k-wise independent functions).
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(Randomized) Preprocessing for Inverting f : {0,1}" —
{o, 13"
(1) Create the lookup table
A ={(x, f(x)) : x is the lex. first preimage of f(x) € S}
where S is the set of size® |A| that maximizes” IF=L(9)I.
We say y is in A if (x,y) € A for some x.
(2) Sample £ many k-wise independent functions gy, . .
{0, 13" x [J] — {0, 1}".
(3) Notation: For each i € [¢],

gi(x, j), forleast j with f(gi(x,j)) ¢ A

1, if no such j exists.

o hi(x) = g*(f(x)) (define (1) = L and g (1) =
1).

(4) For each i € [¢] and j € [m], pick x;; € {0,1}"
uniformly at random. Compute the value hf (xi,5). If
hl? (xi,j) # L, then store the value (x; j, hl? (xi;)) ina
table T;.

S ge

* g(x) =

“Recall that |A] is an integer parameter we will set, so this definition is not
circular.
bIf there is a tie, pick the lexicographically first S.

Finally, we state the inversion algorithm.

Inversion Algorithm for f : {0,1}" — {0,1}"

Procedure Invert: Given y € {0, 1}",
(1) If y € A, then output a memorized preimage of y.
(2) Foralli € [£], setu; = g} (y).
(3) Foralli € [¢] and p € {0,...,t — 1}, compute hli’(ui).
(4) Foralli € [¢] and p € {0,...,t — 1}, check if b (u;)
isin T; (ie., hf(u,') = hf(x,',j) for some j). Let F be the
set given by
F ={(i, j,p) : p is the least value satisfying hf(ui) = hf(xi,j)}.
If |F| = 10¢, then output fail and stop.
(5) Forall (i, j, p) € F,if f(hl """ (x1;)) = y, then output

B P ().

We note that there are several differences between the inversion
procedure presented here, and the one presented in Fiat-Naor [17]:

(1) Fiat-Naor construct A by sampling |A| uniform random x €
{0, 1} and putting (x, f(x)) in A. This has the advantage of
giving an efficient method for constructing A. We instead
pick the “best possible” A and work with its corresponding
N’, as it simplifies the analysis.

Fiat-Naor use a different upper bound on j in the definition
of g7. We use the upper bound J = (n +logt) IZT"/ to simplify
the analysis and the circuit description.

Fiat-Naor add all the (i, j, p) for which the check passes to F
(not just the triple with the least p). By only adding p with
the “least value” property to F, as well as putting an upper
bound on |F|, we simplify the running time analysis (and
circuit description).
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We show that the Invert procedure described above can be
implemented by a circuit family that has a decent size bound in
terms of the various parameters.

THEOREM 3.3 (C1rcuIT UPPER BOUND FOR FIAT-NAOR). Letk <
¢ < 2", and suppose f has a circuit family of size s(n). The procedure
Invert on f can be implemented by a (randomized) circuit of size

t-|A|-poly(n)+t-¢-J-poly(s)+¢-(t+m)- poly(n).

We prove Theorem 3.3 in Section 3.4.

Fiat-Naor [17] show that this procedure succeeds at inverting
any given value with constant probability. Because our procedure
is slightly different from the one in Fiat-Naor and for the sake of
completeness, we sketch the proof of this in Section 3.5.

THEOREM 3.4 (FIAT-NAOR [17]). Let f : {0,1}" — {0,1}" be a
function. Assume

e min{t, m} > 87
o k> 2t(n+logt)12\7
e ttm > N’
n
o Al > 4t2ﬁm
e m<2"

Then for everyy in the range of f, the probability (over the randomness
in the preprocessing step) that Invert inverts f aty is Q(1).

Combining Theorem 3.3 and 3.4, we obtain a circuit construction
that worst-case inverts f and beats exhaustive search.

TaEOREM 3.5. Let f : {0,1}" — {0,1}" be a function with a
circuit of size s(n) > n. There is a circuit of size at most 24"/ .
poly(s(n)) that worst-case inverts f.

PRroOF. (We assume all parameters are integers, and omit floors
and ceilings for readability.) Set the parameter |[A| = 4 - 231/5 This
induces a set A and a value N’ := 2" — |f~1(A)|. We divide into
two cases depending on the size of N”.

Case 1: N’ < 24%/5 In this case, there is a circuit of size 24%/5 .
poly(n) that implements table lookup on A in size 23/% . poly(n),
and directly stores inverses for all of the the remaining domain of
size at most N’ < 24"/5_In this case, these two table lookups cover
all possible inputs to f.

Case 2: N’ > 247/5 Set ¢ := 2305 .= 275 ¢ .= Zﬁ;S
(since 24"/5 < N’ < 2", t can be rounded to a positive integer), and

k :=8tn- ]zv_"/ Then

< 2n/5

N’ N’ 2 on on
—4.93n/5 I L R, VP
Al =427 > 4 =4 (24n/5) R
and
7 2n /5
. = — — n
t ]—24n/5 (n+10gt)N, < 2n2"7.

Observe that this setting of the parameters satisfies all the con-
straints in the hypotheses of Theorem 3.3 and Theorem 3.4 when n
is sufficiently large. Applying the bound of Theorem 3.3, there is a
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circuit for Invert of size at most
t-]A| - poly(n) +¢-t] - poly(s(n)) + £ (t + m) - poly(n)
< 2"5(4.- 2315) - poly(n) +23"/5 . (2n2™/5) - poly(s(n))
+2°75 . (25 +.211%) - poly (n)
< 24n/5. poly(s(n))

For any fixed y, this circuit will invert f on y with constant proba-
bility (over the randomness in the preprocessing step). Repeating
this construction independently for poly(n) times and combining
the resulting circuits yields a worst-case circuit for inverting f of
size at most 247/5 . poly(s(n)). O

3.4 Circuit Upper Bound: Proving Theorem 3.3

We now prove Theorem 3.3.

ProoOF oF THEOREM 3.3. The high-level idea is to carefully amor-
tize the lookup table calls and function evaluations, so that they can
all be done in batches. In this way, we can avoid the requirement
of a random-access model, and can use circuits instead.

Each numbered step of Invert will correspond to some number
of layers of our circuit. We will store the look-up tables A and
Ty, ..., Tp directly in the circuit, which takes poly(n) - (|A| + ¢ - m)
bits. These bits will be propagated to later layers of the circuit as
they are needed (skipping layers when they are not needed). That
way, we can always refer to the tables as needed throughout the
computation of Invert.

Let us go through the steps of Invert one by one, and verify that
they can be implemented with circuits of the desired size.

(1) Here, we only have to check whether y is in the lookup table
A, for some |A| < 2". Applying Theorem 2.2, this can be
done with a circuit of size O(JA| - log?(|A])) < |A] - poly(n).
Here, we have to evaluate g;‘ ony, forall i € [¢]. To imple-
ment g;‘, we will evaluate g;(y, j) on all relevant j € [J],
and find the smallest j among these such that f(g;(y, j)) is
not in A. Each g; is from a k-wise independent family, which
Fiat-Naor implement as a degree-(k — 1) polynomial (in the
variable z, say) over the finite field Fp2 where N is a power
of two, and where the z/ coefficient of the polynomial is
equal to a;j - i +b;. In this way, all g; can be defined using the

—~
N
~

same polynomials. In particular, defining P(z) = X a; - 2/
and Q(2) = 3; b; -z, we have g;(z) = i - P(2) + Q(z).

We have therefore reduced our evaluation problem to the
following tasks:

(2a) Given two degree-(k — 1) polynomials P(z) and Q(z), we
evaluate them on (y, j) forall j € [J].

(2b) For all i € [¢], we evaluate g;(q) = i - P(q) + Q(q) for
all the J points g obtained in (a), and evaluate f on each
9i(q).

(2¢) Perform a batch lookup in table A on all #-J points f(gi(q))
obtained in (b).

(2d) Determine for each i € [£] the minimum j € J such that
f(gi(q) ¢ A.

Applying Theorem 2.4, step (2a) can be done with arithmetic
circuits of size

(k+1J) - poly(log(k +J)) < (k +]) - poly(n)
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over the field; converting these circuits to Boolean circuits
makes the size poly(n) - (k +J) - poly(log(k + J)). Step (2b)
takes O(¢ - J) arithmetic operations over the field followed
by O(¢ - J) evaluations of a size-s circuit for f, translating
to a circuit of size £ - J - poly(s).

In Step (2c), we have a lookup table of |A| points, and our
batch is of size ¢ - J; applying Theorem 2.2, the lookups can
be done in size

O(n-(JAl+¢-]) -log?(n- (JAI +£-])))
<(lA[+¢-]) - poly(n).

This produces ¢] bits indicating which point is in the table
or not. Finally, step (2d) just requires computing the first bit
which is 1 among ¢ bit-vectors of length J, which can be done
in size O(£]). At the end of Step 2, the values u; = gf(y) for
all i € [£] are stored in the circuit.

Under our hypothesis that k < ¢, the total size of Step 2 is at
most

¢-J-poly(s) + (Al + ¢ - J) - poly(n).

In Step 3, we have to evaluate the function h; on each u;,
for all i € [£]. Then we have to compose h;(u;) with itself

®)

for t times, storing the answer hf(ui) for all i € [¢] and
p €{0,...,t — 1} for the next step.

Recall that h;(u;) = g;‘ (f(u;)). As in Step 2, we can perform
this evaluation in a batch way: we evaluate z; = f(u1),...,2z¢ =
f(ug) using a ¢ - s(n) size circuit, then evaluate g;‘ on each
u;. This translates to evaluating

gi(u1,j) - ..., gi(ue, j)

forall j € [J] and i € [£]. As in Step 2, this amounts to J
calls to multipoint evaluation of a degree-(k — 1) polynomial
g on £ points, which can be done in size (k + J) - poly(n),
followed by ¢] evaluations of f in size £] - poly(s), followed
by lookups into the table A in size (|A|+¢-])-poly(n). Indeed,
the same argument shows that for any ¢ points z1,...,z¢
of our choice, we can evaluate h;(z;) for all i € [f] using
circuits of size

|A] - poly(n) + ¢ - J - poly(s).

Therefore we can compute the entire set of £ - ¢ points P =
{hf(ui) |ie[£],pedfo,...,t —1}}, using circuits of size

t-]A|-poly(n) +t-¢-]-poly(s).

(4) In Step 4, we first check for all h? (u;) computed in the
previous step whether or not hf (ui) € T;. Then we build
the table F of triples (i, j, p), rejecting if F gets too large.
That is, for all i € [¢], we have to check whether the ¢
strings {hf(u,-) |p e{0,...,t— 1}} appear in T;. Further-
more, when such strings appear in T;, we need to return
a string x; ; associated with the string in table T;, as well as
the least value p such that hf (ui) = hf (xi,j). Abstractly, we
need to solve the following task for £ query sets

{(phf @) [pe o t- )

Qi
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for all i € [¢], paired with ¢ lists
Li = {(h} (xij), xij) | (xij, hi(xij)) € Ti},

and N = n:

Given queries Q; = {(pl,X{),...,(pt,le)} c [2MN] x

{0, 13N alistL; = {(X1, Y1), ..., Xm, Yim)} € {0, 1}V x

{0, 1}N, and integer K, return up to K triples (p;, Xl,Jj’ Yj)

such that XI',J, € {X1,...,Xm} and p; is minimal, if such

triples exist.
In particular, we want to return up to 10¢ triples over all
¢ batch queries (Q;, L;). This can be done by applying our
circuits for batch queries with side information (Theorem 2.3)
for ¢ times, maintaining a counter of the number of triples
returned so far; this counter is passed from one batch query
to the next, and the procedure is stopped early if the counter
reaches 10¢. Implementing the batch lookups on all pairs
Qi, L; requires size at most £ - (t + m) - poly(n). In the end,
our batch-lookup circuit returns O(K - n) bits encoding the
relevant strings x; ; € {0,1}" along with their value p €
{0, ...,t — 1}. If the batch-lookup circuit returns 10¢ triples,
the entire circuit rejects (as per step 4). Otherwise, the output
of the circuit is treated as a representation of the set F.
Finally, in step 5, |F| < 10¢, and we have to iterate through
each (i, j,p) € F in the lookup table results, and compute
f (hf_p 1 (xi,j)). We already have each of the relevant strings
x;,j available from the output of our circuit in step 4, as well
as the corresponding values p € {0,...,¢ — 1}. In Step 3, we
showed that for any ¢ points z1, . . ., z¢ of our choice, we can
evaluate h;(z;) for all i € [¢] using a circuit of size

|Al - poly(n) +¢ - J - poly(s).
Analogously, for any ¢ < 10¢ points, we can evaluate h;
on all of them using a circuit of asymptotically the same
size. We can then compute hf on the inputs x; ; for all p €
{0,...,t — 1}, in size
t-|A| - poly(n)+t-¢-]J-poly(s).
Overall, the circuit size is dominated by Steps 3, 4, and 5; that is,

the total size is at most

t-|A|-poly(n)+t-¢-J-poly(s)+¢- (t+m) - poly(n).

3.5 Analysis: Proving Theorem 3.4

Due to page requirements, we omit our review of the analysis of of
Fiat-Naor [17]. A detailed review is included in the full version of
our paper.

3.6 Proving Theorem 1.2

We conclude this section with the proof of Theorem 1.2.

Reminder of Theorem 1.2. Let Eval denote a compression problem.
There is a circuit family {Cn s} such that for alln,s € N, Cy, 5 solves
the compression problem for Eval on all strings of length n with
descriptions of length at most s, and the size of Cps is 25°. poly(n,s).
Furthermore, Cp s(x) prints a description of length at most s for the
input x of length n, whenever such a description exists.
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ProOF oF THEOREM 1.2. Lets,n € N and let Eval be polynomial-
time computable, so that when restricted to inputs of length s and
outputs of length n, Eval has a circuit E, s of poly(n,s). Observe
that for an n-bit input y, the problem of finding an x of length s such
that Eval(x) = y is equivalent to solving the compression problem.

By Theorem 3.1, we can reduce the problem of inverting Ep, s :
{0,1}* — {0,1}" to the problem of inverting another function
g : {0,1}" — {0,1}" with poly(n)-size circuits, in such a way
that circuits of S(n) - poly(n) size for inverting g imply circuits
of S(s + 1) - poly(n) size for inverting E, 5. Theorem 3.5 proves
that there is a circuit that inverts g on all inputs, having size at
most 247/5 . poly(n). Setting S(n) = 247/5 e obtain circuits of size
2%/5 . poly(n) for inverting Ey,. ]

4 CONSEQUENCES

We now turn to proving non-trivial circuit size bounds for MCSP,
MINKT, and “compressible” NP relations, as mentioned in the In-
troduction.

4.1 Smaller Circuits for Finding Circuits (MCSP)

Reminder of Theorem 1.3. Search-MCSP[s(n)] on truth tables
of length 2™ has circuits of size 25 wro(w) poly(2™) for all size
functions s(n), where w = s(n) log, (s(n) + n).

ProOF. The idea is to define an appropriate evaluation function,
and appeal to Theorem 1.2. In the case of MCSP, we want an Eval
function that takes the encoding of a circuit as input, and outputs
the circuit’s truth table. However, in order to decisively beat the
exhaustive search over 20(s()10g(s(n)) pogsible circuits, we need
an essentially optimal encoding of circuits.

Let s(n) € [2"] be our circuit size parameter (which we ab-
breviate as just s). Lemma 2.1 tells us there is a polynomial-time
algorithm Enc such that, for every circuit C of size s and n inputs,
there is some x of length £ := (1+0(1))s log, (s+n) such that Enc(x)
outputs the description of a circuit C’ of size s computing the same
function as C. (Moreover, #s can be computed efficiently given s,
although we do not need this property to construct a non-uniform
circuit.) Let TT(C) be the function that takes the description of a
circuit C with n inputs, and outputs its 2”-bit truth table.

Define the evaluation function Eval to simply be Eval(x) :=
TT(Enc(x)). Applying Theorem 1.2, there are circuits inverting the
slice function Evaly_ o : {0,1}% — {0, 1}%" (Eval restricted to £
inputs and 2" outputs) that have size

24/ - poly (£, 2")
< 2% -s(n) log,(s(n)+n)+o(s(n)log,(s(n)+n)) . pOly(Zn),
Given a truth table T of length 2", our final circuit inverts Evaly on
on T. If inversion results in an x such that Evaly »n (x) = T, then

our circuit outputs Enc(x) (an encoding of a circuit with truth table
T), otherwise it outputs L (failure). This completes the proof. O

4.2 Circuits for MINKT

Similarly, we can give nontrivial circuits for computing the K’
complexity of strings.
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Reminder of Theorem 1.4. For every time functiont : N — N
with t(n) > n, and parameters e,n € N, there is a circuit family that
given any n-bit input x, outputs a program y of length at most e such
that y prints the string x in at most t(n) steps if such a y exists. The

circuit family has size 25¢. poly(t(n)).

Proor. Fix e,n € N, and set ¢t := t(n). Our Eval function sim-
ply takes an input d, treats d as a program, and runs d for ¢ steps,
outputting whatever string that d printed along the way. This Eval
function, restricted to e-bit inputs and n-bit outputs, can be imple-
mented by a circuit of size poly(t). Let E ,, be such a circuit.

Using the argument of Theorem 3.1, the problem of inverting
Een : {0,1}¢ — {0, 1}" can be reduced to the problem of inverting
another function g : {0, 1} — {0, 1}" with poly(t, n)-size circuits,
such that circuits of S(n) - poly(t,n) size for inverting g imply
circuits of S(e + 1) - poly(¢, n) size for inverting E, ,,. Theorem 3.5
proves that there is a circuit that inverts g on all inputs, having size
at most 247/ . poly(t, n). For S(n) = 24n/5 e obtain circuits of
size 2%¢/5 . poly(t(n)) for inverting Eys. O

4.3 Circuits For Solving NP Relations on
Compressible Instances

Here, we show how to solve the search problem for general NP
relations faster when the entire instance-witness pair can be rep-
resented by a short program. In particular, our circuits are more
efficient than enumerating over all short programs.

Let us recall the setup from the Introduction. Let R C {0, 1}* x
{0, 1}* be any polynomial-time computable relation. For n, p € N,
we define the task:

Compressible-R: Given a string x of length n, if there

is a program of size p which prints the pair (x, y) in

poly(n) time such that (x,y) € R, find a y’ such that

(x,y’) €R.
Enumerating all programs and checking them requires 2 - poly(n)
time; we show this “program-enumeration bottleneck” (as coined
by [47]) can be circumvented using function inversion.

Reminder of Theorem 1.5. Compressible-R can be solved by

4
circuits of size 25°P - poly(n).

ProoF. Let M be a machine deciding the polynomial-time re-
lation R. Without loss of generality, let k € N be some universal
constant k such that £(n) = kn is the length of witnesses for inputs
of length n, i.e,, (x,y) € R implies that |y| = kx|*.

Fix p,n € N. Define the function Evaly , : {0,1}? — {0, 1)+
which takes in a string z of length p as input and treats z as a pro-
gram, running z for poly(n) steps to obtain a string z’, interpreted
as a pair. If M(z") accepts, and the first string x in the pair is n
bits long, then the (n + 1)-bit string 0x is output, otherwise Evaly, ,
outputs 1™+1,

It is easy to see that Evaly, , can be implemented with poly(n)-
size circuits. Our circuit for Compressible-R on n-bit strings takes
in an x € {0,1}", and tries to invert Evalp, on the (n + 1)-bit
input 0x. This inversion task can be accomplished with 247 15 size
circuits, by Theorem 1.2, and the task exactly corresponds to finding
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a program z of length p which outputs (x, y) € R in poly(n) steps.
This completes the proof. O

4.4 Computing Levin’s Kt-Complexity on
Average

Finally, in this section we construct a nontrivial circuit that com-
putes MKtP on average. The idea is that a string x drawn from an
efficiently computable distribution has small computational depth
cd’ (x) with high probability, in which case we may assume that the
time bound in Kt(x) is small. A similar idea was implicitly used in
[37, 45] to characterize the existence of a one-way function by the
average-case hardness of MKtP with respect to the uniform distri-
bution. Here, we generalize the idea to any efficiently computable
distribution.

We recall the notion of computational depth [3] and its properties.
Recall that K? (x) is defined to be the minimum length of a program
d such that d prints x in t steps. The computational depth of a
string measures the difference between time-bounded Kolmogorov
complexity and plain Kolmogorov complexity. For a time bound
t € N, the computational depth cd’ (x) of a string x is defined as

ed? (x) = Kf(x) — K(x).

Observe that cd’ (x) is never negative. First we show that, with high
probability, cd? (x) is small on random x drawn from an efficiently
computable distribution.

LEMMA 4.1. For every function t(n) > n and for every t(n)-time-
computable distribution D = {Dp},cny over {0, 1}", it holds that

Pr [cd” ™ (x) <] >1-n0W .27t

x~Dp
foralln, ¢ € N and fort’ (n) = poly(t(n)).
ProOF. Let Dy (x) denote the probability that x is sampled ac-

cording to the distribution 9y,. By the coding theorem for com-
putable distributions, for some t’(n) = poly(t(n)), we have

Kt () (x) < —log Dy (x) + O(logn)

for every x € {0,1}" in the support of D, and n € N (see, e.g., [3,
Theorem 3.5]). Thus,

B [ ") < 2750 o0
x~Dp x~Dy, | Dn(x)
_ ,-K(x) . 0(1)
xe{0,1}"
< 200,

where the last inequality holds due to Kraft’s inequality and its
relation with plain Kolmogorov complexity [35]. Therefore we have

Pr |cd’ ™ (x) > {’] = [2Cd’/(") ) > 2"] <nPM . =t

x~Dy,

Pr

xX~Dn

by Markov’s inequality. The lemma follows. O

Next, we introduce a variant of Kt-complexity in which we im-
pose a time upper bound.
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DEFINITION 4.2. For a string x € {0,1}* and a time bound T € N,
define

KtST(x) = min{|d| + logt | U(d) outputs x in time at most T},

where U is an efficient universal Turing machine.
LemMa 4.3. Ifcd” (x) < ¢, then Kt(x) = Kt=2'T (x).

Proor. It suffices to prove that Kt(x) > KtSZIT(x). Let d and
t € N be a program and a time bound, respectively, such that
Kt(x) = |d| + logt and U outputs x on input d in time ¢. Our goal
is to prove t < 2T.

Since U(d) = x, we have |d| = K(x) = KT (x) — ¢, and thus
Kt(x) > KT(x) — ¢ + logt. By the definition of Kt(x), we also
have Kt(x) < K (x) + log T. Combining these two inequalities, we
obtain KT (x) — £ +logt < Kt(x) < KT (x) + log T, which implies
that t < 2T. o

We are ready to prove Theorem 1.6.

Reminder of Theorem 1.6. For all functions s(n) and t(n) > n,
there exists a family of circuits {Cp},en of size 235(n) . poly(t(n))
such that for any t(n)-time-computable distribution D = {Dp},en
over {0, 1}", for all large n € N, with probability at least 1 — ﬁ
over a random input x drawn from Dy, on input x, the circuit C,
outputs a program y and t € N such that y prints the string x in t
steps and |y| +logt < s(n) ifKt(x) < s(n).

ProOF oF THEOREM 1.6. We construct a family of circuits
{Cn}pen that computes a pair (y, t) that witnesses Kt (x) <
s(n) for some t’'(n) = poly(#(n)) to be chosen.

The circuit C,, can be constructed by using the circuit of Theo-
rem 1.4 because

K=t (n) (x) = min{Kt(x) +logt | t < t'(n)}.

Thus, the size of Cy, is at most 238(n) . poly(t(n)).

It remains to claim that C,, solves the search version of MKtP
on average with probability 1 — 1/¢(n). Let D, be a t(n)-time-
computable distribution. Then, by Lemma 4.1, for large enough
t1(n) = poly(t(n)) we have cdf1(m) (x) < logti(n) with proba-
bility at least 1 — 1/t(n) over x ~ Dj. By Lemma 4.3, for any x
with cd’1 () (x) < log t1(n), we have Kt=h (n)? (x) = Kt(x). Letting
t'(n) := t1(n)? = poly(t(n)), we obtain that C,, computes a witness
for Kt(x) < s(n) with probability 1 — 1/¢(n) over x ~ Dy,. O

5 CONCLUSION

In this paper, we have shown how function inversion can be applied
to make a dent in longstanding open problems in computational
complexity, such as the circuit complexity of MCSP. In particular,
the old “perebor conjecture” (see [46]) that brute-force is required
for compression problems, is refuted when we are allowed non-
uniform circuits as our algorithmic model. Our work raises a variety
of new questions.

o The first obvious open question is whether there are smaller
circuits than 2%€/5 . poly(n) for finding compressed descrip-
tions of length e. There seems to be a barrier to finding
circuits significantly smaller than 2¢/2 . poly(n): if they ex-
isted, we could solve NP problems such that the witness is
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of length equal to the input, with circuits that are smaller
than 2" - poly(n) (see Section 1.2). In the black-box setting,
there are Q(2"/2) lower bounds on function inversion via
data structures: for example, De et al. [15] show a time-space
tradeoff lower bound of T - S > Q(&2") for inverting a func-
tion on at least an e-fraction of inputs with a space-S data
structure that makes T function queries, generalizing earlier
work of Yao [51].

o Is there a randomized algorithm for finding descriptions of
length ¢ for strings of length n, that runs in time 2%¢ - poly(n)
for some a < 1? We do not achieve this, because our lookup
tables can take a long time to construct. If we could find a
randomized algorithm, then by results of Chen and Tell [11],
there would also be a deterministic algorithm running in
time 2P . poly(n) for some f < 1, assuming reasonable
complexity hypotheses. In such a case, we would have a
more “decisive” refutation of the old conjecture that MCSP
and other compression problems require exhaustive search.

e We have shown how time-bounded Kolmogorov complex-
ity can be determined faster than trying all programs up
to a given size. There are other time-bounded versions of
Kolmogorov complexity which appear even harder to com-
pute, such as MKtP. We showed that MKtP can be solved
on average with nontrivial circuits (Theorem 1.6); roughly
speaking, this is because in the average case, the complexity
of MKtP behaves similarly to NP [37, 45]. MKtP is known to
be complete for EXP (exponential time) under various reduc-
tion types [1]. Could there be non-trivial circuits for MKtP
in the worst case, as well? This question seems to be gently
poking at the well-known hypothesis in derandomization
that TIME[2"] requires exponential-size circuits [33].

e We know that UPNcoUP # P iff there exists a bijective worst-
case one-way function [29]. Given the results of this paper,
are there nontrivial circuits for problems in UP N coUP?

o Pairwise-independent hashing was crucial in order to achieve
a circuit size bound for compression that is exponential only
in the encoding length, which is a “small” parameter rela-
tive to the input. Could a similar hashing method be more
broadly useful in developing new parameterized algorithms
(or circuits)? Certainly hashing methods are already widely
applied in parameterized algorithms (probably the most fa-
mous one is color coding [2]) but our trick seems somewhat
different.
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