
Beating Brute Force for Compression Problems∗

Shuichi Hirahara†

National Institute of Informatics
Tokyo, Japan

s_hirahara@nii.ac.jp

Rahul Ilango‡

Massachusetts Institute of Technology
Cambridge, USA

ilangorahul@gmail.com

R. Ryan Williams§

Massachusetts Institute of Technology
Cambridge, USA
rrw@mit.edu

ABSTRACT

A compression problem is de�ned with respect to an e�cient encod-

ing function 5 ; given a string G , our task is to �nd the shortest ~

such that 5 (~) = G . The obvious brute-force algorithm for solving

this compression task on =-bit strings runs in time $ (2ℓ · C (=)),

where ℓ is the length of the shortest description ~ and C (=) is the

time complexity of 5 when it prints =-bit output.

We prove that every compression problem has a Boolean circuit

family which �nds short descriptions more e�ciently than brute

force. In particular, our circuits have size 24ℓ/5 ·poly(C (=)), which is

signi�cantly more e�cient for all ℓ ≫ log(C (=)). Our construction

builds on Fiat-Naor’s data structure for function inversion [SICOMP

1999]: we show how to carefully modify their data structure so that

it can be nontrivially implemented using Boolean circuits, and

we show how to utilize hashing so that the circuit size is only

exponential in the description length.

As a consequence, the Minimum Circuit Size Problem for generic

fan-in two circuits of size B (=) on truth tables of size 2= can be solved

by circuits of size 2
4
5 ·F+> (F ) ·poly(2=), whereF = B (=) log2 (B (=) +

=). This improves over the brute-force approach of trying all pos-

sible size-B (=) circuits for all B (=) ≥ =. Similarly, the task of com-

puting a short description of a string G when its KC -complexity is

at most ℓ , has circuits of size 2
4
5 ℓ · poly(C). We also give nontrivial

circuits for computing Kt complexity on average, and for solving

NP relations with “compressible” instance-witness pairs.
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1 INTRODUCTION

Are thereNP problems that require brute-force search in order to be

solved? This basic question is one of the prime motivations behind

P versus NP. It is a longstanding open question to determine if (for

example) there are any non-trivial algorithms for the CircuitSAT

problem which run in 2=/=l (1) time where = is the number of

inputs. Such an algorithm, besides being interesting in its own right,

would also settle important open questions in complexity theory:

for example, it would imply that NEXP does not have polynomial-

size circuits [50]. As of now, there has been no progress on beating

brute force for CircuitSAT on circuits of size greater than 5= (but

for small enough circuits, some algorithms are known, e.g. [12, 22]).

In this paper, we show how to generically improve over brute

force using non-uniformity. In recent years, NP problems based on

compression have been extensively studied, and are at the core of a

new topic in TCS called “meta-complexity.” Let us formally de�ne

what we mean by a compression problem.

Definition 1.1 (Compression Problem). Let Eval : {0, 1}★ →

{0, 1}★ be a polynomial-time computable. The Eval compression prob-

lem is:

• Input: a string G ∈ {0, 1}= and a size parameter B

• Output: return a string ~ with |~ | ≤ B such that Eval(~) = G ,

or output ⊥ if no such ~ exists.

Two prominent examples of compression problems are the Mini-

mum Circuit Size Problem (MCSP) and time-bounded Kolmogorov

complexity (MINKT). For MCSP, Eval takes the description of a

circuit and outputs its truth table, where the length of the descrip-

tion directly correlates with the number of gates in the circuit. For

MINKT, we are given a string G , a time bound C , and an integer : ,

and we wish to know if there is a program of length at most : that

outputs G in at most C steps. For any �xed time function C , the Eval

function takes a program ? as input and runs ? for C steps, and we

wish to minimize the length of the program. These two compression

problems have many interesting connections to complexity theory

[44], circuit complexity [9, 41], average-case complexity [24, 26],

cryptography [31, 32, 36, 37, 45], and learning theory [7, 28].

1.1 Our Results

The main result of this paper is the construction of a (non-uniform)

circuit family which can solve all generic compression problems

signi�cantly faster than the obvious brute-force enumeration of all

possible programs up to a given length.

This work is licensed under a Creative Commons Attribution 4.0 Interna-

tional License.
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Theorem 1.2. Let Eval denote a compression problem. There is a

circuit family {�=,B } such that for all =, B ∈ N, �=,B solves the com-

pression problem for Eval on all strings of length = with descriptions of

length at most B , and the size of�=,B is 2
4
5 ·B · poly(=, B). Furthermore,

�=,B (G) prints a description of length at most B for the input G of

length =, whenever such a description exists.

Theorem 1.2 has interesting consequences for meta-complexity

problems.

Smaller Circuits for MCSP. The �rst major consequence of The-

orem 1.2 is a Boolean circuit family for MCSP that decisively beats

exhaustive search. It has been conjectured since the 1950s that any

algorithm solvingMCSPmust exhaustively search over all possible

circuits (see Trakhtenbrot [46] for a fascinating history of these

“perebor” conjectures). Our results refute this conjecture when we

are allowed non-uniform circuits as our algorithmic model.

In more detail, we consider circuits of fan-in two over any desired

basis. Let Search-MCSP[B (=)] be the search problem:

Given a truth table ) of length 2= , determine if the

function 5 : {0, 1}= → {0, 1} represented by ) has

a circuit of at most B (=) gates, and if so, produce an

encoding of such a circuit.

The obvious algorithm for this search problem requires time

2$ (B (=) log2 B (=) ) ·2= ·poly(B (=)): enumerate over all 2$ (B (=) log2 B (=) )

circuits � of size B (=) with = inputs, and evaluate � on all 2= possi-

ble inputs in 2= ·poly(B (=)) time. TheMCSP problem and its search

version are believed to be NP-hard, but their complexities remain

(infamously) open (cf. [27, 30] for some recent developments).

Using tight and e�cient circuit encodings, we obtain an improve-

ment over the trivial enumeration algorithm for all circuit sizes

B (=) ≥ =.

Theorem 1.3. For all size functions B (=), Search-MCSP[B (=)] on

truth tables of size 2= can be solved by circuits of size 2
4
5 ·F+> (F ) ·

poly(2=), whereF = B (=) log2 (B (=) + =).

Thus for example, there is a Boolean circuit � of size only

2
4
5=

2 log(=)+> (=2 log(=) ) · poly(2=)

which, given any truth table of length 2= as input, � outputs the

description of a circuit with =2 gates for the truth table, whenever

such a circuit exists.

Smaller Circuits for MINKT. Theorem 1.2 is very general, and

applies in a wide range of compression settings. As another example,

we can apply Theorem 1.2 to show that for every �xed time function

C (=), there are nontrivial circuits computing the KC (=) -complexity

of =-bit strings.

Theorem 1.4. For every time function C : N→ N with C (=) ≥ =,

and parameters 4, = ∈ N, there is a circuit family that given any =-bit

input G , outputs a program ~ of length at most 4 such that ~ prints

the string G in at most C (=) steps if such a ~ exists. The circuit family

has size 2
4
54 · poly(C (=)).

This answers an open question of Ren and Santhanam [45], who,

based on connections betweenKC and one-way functions, suggested

that there may be a non-trivial circuit for solving KC . Independently

of this work, the same result (for the case 4 = =) was obtained by

Mazor and Pass [38].

Smaller Circuits for Compressible Instances of NP Relations. Our

main result can also be applied to construct non-trivial circuits for

compressible instances of NP relations. Formally, let ' ⊆ {0, 1}★ ×

{0, 1}★ be any polynomial-time computable relation. We wish to

solve the following task, where =, ? ∈ N are parameters.

Compressible-':Given a string G of length=, if there

is a program of size ? which prints the pair (G,~) in

poly(=) time such that (G,~) ∈ ', �nd a ~′ such that

(G,~′) ∈ '.

The obvious brute-force algorithm for Compressible-' runs in

2? · poly(=) time, by enumerating over all programs of length ? ,

running each program in poly(=) time, and testing their output in

poly(=) time.

Theorem 1.5. Compressible-' can be solved by circuits of size

2
4
5 ·? · poly(=).

Smaller Circuits for MKtP on Average. Levin’s Kt-complexity of

a string G is de�ned as the minimum, over all C ∈ N and a program

3 , of |3 | + log C such that 3 prints G in time C . The Minimum Kt

Complexity Problem (MKtP) asks to compute Kt(G) on input G . By

exhaustive search,MKtP can be solved in time 2=poly(=). We show

that there exists a non-trivial circuit that computes Kt(G) on most

instances drawn from any e�ciently computable distribution. A

distribution {D=}=∈N is said to be C (=)-time-computable [6, 34]

if there exists a C (=)-time algorithm that, on input = ∈ N and

G ∈ {0, 1}= , computes the cumulative function of D= on G . (That

is, given a string G , we can compute the probability that a random

string from D= is at most G , under the natural ordering on =-bit

strings, in C (=) time.)

Theorem 1.6. For all functions B (=) and C (=) ≥ =, there exists a

family of circuits {�=}=∈N of size 2
4
5 B (=) ·poly(C (=)) such that for any

C (=)-time-computable distribution D = {D=}=∈N over {0, 1}= , for

all large = ∈ N, with probability at least 1− 1
C (=)

over a random input

G drawn fromD= , on input G , the circuit�= outputs a program ~ and

C ∈ N such that ~ prints the string G in C steps and |~ | + log C ≤ B (=)

if Kt(G) ≤ B (=).

1.2 Intuition

The starting point of our approach comes from cryptography, namely

the problem of inverting a function 5 : {0, 1}= → {0, 1}= using

a minimal number of black-box calls to 5 . In particular, given a

~ ∈ {0, 1}= , we wish to �nd an G such that 5 (G) = ~. Following the

pioneering work of [23] on data structures for inverting random

functions, Fiat and Naor [17] presented data structures with a rig-

orous time-space tradeo�. In particular, for 5 : {0, 1}= → {0, 1}=

construed as an oracle, Fiat and Naor show that one can construct

a data structure with ( bits of memory that can be queried for

function inversion in time ) , where ) · (3 = 23= · poly(=). Setting

) = ( = 23=/4, for every �xed 5 we obtain a data structure storing

23=/4 ·poly(=) bits such that, given any ~ in the range of 5 , the data

structure will output a pre-image of ~ in about 23=/4 steps.

Given the power and generality of function inversion, one might

wonder if it can be used to build a non-trivial “data structure” for
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solving an NP-complete problem like CircuitSAT faster than 2=

time. A natural �rst attempt is to set 5 to take a circuit � and a

stringF as input, outputting� if� (F) = 1 and ⊥ otherwise. Given

a worst-case inverter for 5 , one could attempt to solve CircuitSAT

by attempting to invert 5 on � .

One major di�culty in carrying out such an approach is that

the input length to the function 5 is too large. If the circuit � has

= inputs, the witnessF and � both need at least = bits to describe.

(Note that, if the circuits or the witnesses could be described in

say 0.9= bits, then we could already trivially improve over 2= time

by simply storing a 20.9=-size lookup table over the circuits, or the

witnesses.) Thus, 5 takes at least 2= input bits, and so the inversion

circuit obtained from Fiat-Naor has size at least 26=/4 ≫ 2= , which

is worse than brute force.

In contrast, the witness in a compression problem already encodes

the input, so the previous paragraph is not an issue. Indeed, if we

simply apply Fiat-Naor’s function inversion to the Eval function

of a compression problem, we immediately obtain a data structure

that takes 23=/4 space and can compress =-bit queries in 23=/4 time

for an arbitrary compression problem.

However, there remain two issues in the generality of this simple

approach, which we overcome.

(1) The �rst is a technical algorithmic issue. The data structure

of Fiat-Naor requires random access to its storage, and the

most obvious way of converting such a data structure to a

circuit would blow up the size by an intolerable amount (cf.

footnote 2 of [15]). This issue is what prevented Ren and

Santhanam [45] from giving non-trivial circuits for MINKT

via their equivalence between one-way functions (with ex-

ponential security) and the hardness ofMINKT. (Note: this

tight connection is not known for other compression prob-

lems, like MCSP.) We show how to implement Fiat-Naor

with standard Boolean circuits, at the cost of a slightly larger

circuit (the exponent in the circuit size becomes 4/5, rather

than the exponent of 3/4). This requires us to be very careful

about certain parts of the inversion procedure; we have to

worry over details that Fiat and Naor did not worry about.

As a result, we have to adapt both the inversion procedure

and the analysis of it, in order to achieve our circuit size

bound. Roughly speaking, by performing the necessary ta-

ble lookups in large enough query batches, and adjusting

the sizes of lookup tables in the analysis, it is possible to

design nontrivial circuits that simulate the data structure by

performing variations on sorting.

The independent work of Mazor and Pass [38] also used

sorting ideas to implement Fiat-Naor with Boolean circuits.

(2) The second problem is that Fiat-Naor only provides a 23=/4

time data structure and algorithm for inversion, where = is

the length of the input we wish to invert. Such a bound is

useless when our desired description length ℓ is less than

3=/4, in which case the 2ℓ cost of brute-force enumeration is

faster than Fiat-Naor! (For example, in the case ofMCSP, we

would obtain a 20.75·2
=

-time data structure for solvingMCSP

on truth tables of length 2= .) That is, naively applying Fiat-

Naor only yields an improvement over exhaustive search in

the case where the complexity of the string is already very

close to the maximum possible.

In order to beat the 2ℓ exhaustive search over descriptions

of length ℓ , for every ℓ , we have to take a di�erent approach.

Rather than inverting a function that maps = bits into = bits,

we need to invert an Eval function which maps 4 bits (the

compressed length) into = bits (the decompressed length).

Furthermore, we want the cost of inverting our function to

be exponential only in 4 , and polynomial in = (and the circuit

size of Eval).

We achieve this by (pairwise independent) hashing: we con-

sider a new function which applies Eval to an encoding of

length 4 + $ (1), and hashes its =-bit result to a string of

length 4 + $ (1). Starting from this idea, we show that the

problem of inverting a function 5 from 4 bits to = bits can be

generically reduced to the problem of inverting a function 5 ′

from 4 + 1 bits to 4 + 1 bits; then, we can apply our circuits

for function inversion to the function 5 ′.

Our hashing reduction was inspired by the literature on hardness

magni�cation [9, 10, 13, 25, 39–41], a phenomenon in which a (seem-

ingly) weak circuit lower bound for a speci�c problem is shown to

imply a breakthrough result in complexity theory, such as P ≠ NP.

For example, McKay et al. [39] showed that if there is any 2 ≥ 1

such that Search-MCSP[=2 ] does not have $̃ (# )-size circuits for

# = 2= , then NP ⊈ P/poly. Such a result is proved by the contra-

positive: AssumingNP ⊆ P/poly, one builds a $̃ (# )-size circuit for

Search-MCSP[=2 ], using the property that Search-MCSP[=2 ] is

reducible to instances of a PH problem of size $̃ (=2 ) ≪ # . The pri-

mary di�erence between hardness magni�cation and our results is

that we use the unconditional construction of the non-uniform algo-

rithm for function inversion, instead of hypothetical upper bounds,

such as NP ⊆ P/poly. We remark that a similar hashing trick was

used in the context of function inversion by Corrigan-Gibbs and

Kogan [14].

The theory of function inversion has recently seen a renewed

interest; works on function inversion in theoretical cryptography

improve the known time-space tradeo�s in di�erent computational

models and settings [5, 8, 15, 16, 21], and �nd other interesting

consequences of function inversion [14, 20]. In particular, [20] show

how to use function inversion to refute a data structure conjecture

on 3SUM in �ne-grained complexity.

2 PRELIMINARIES

For a function 5 : {0, 1}= → {0, 1}= and a non-negative integer

? , we let 5 ? denote the composition of 5 with itself ? times. Our

convention is that 5 0 is the identity function.

For our circuits solving Search-MCSP, we will utilize the fact

that there are very e�cient encodings of fan-in two circuits over

any basis.

Lemma 2.1 (Efficient Encoding of Circuits [19]). There is a

polynomial time algorithm Enc such that the following holds. For

every circuit � of size B on =-inputs, there is a string G of length

(1 + > (1))B log2 (B + =) such that Enc(G) outputs a description of a

circuit of size B computing the same function as � .1

1Although we do not need this property for our purposes, such an encoding G can be
computed from any given� in polynomial-time.
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One of the primary bottlenecks in implementing Fiat-Naor’s

function inversion in the Boolean circuit model is that, in order to

beat exhaustive search, their procedure apparently requires unit-

time random access to a lookup table (see footnote 2 of [15] for a

discussion on this point). By adjusting various parameters in their

data structure, we can simulate their lookup tables in an e�cient

way by only querying tables on batches of queries. The formal

theorem we need is the following.

Theorem 2.2 (Batch�eries to a Lookup Table). Let<,= ≥ 1.

There is a circuit � with 2<= inputs and< outputs of size $ (< · = ·

log2 (<=)), such that given a list of< strings -1, . . . , -< ∈ {0, 1}= ,

and a list of< queries- ′
1, . . . , -

′
< ∈ {0, 1}= ,� returns bits 11, . . . , 1<

where 18 = 1 if and only if - ′
8 ∈ {-1, . . . , -<}.

Proof. Our circuit generalizes a result ofW. J. Paul ([42], Lemma

2) on e�ciently evaluating hard Boolean functions on multiple

inputs. First we describe a multitape Turing machine for computing

the task which runs in $ (< · = · log<) time. Then, it follows from

Pippenger-Fischer [43] that there is a circuit family of size at most

$ (< · = · log2 (<=)) for the task.

Suppose for simplicity that our Turing machine" is given the

=-bit strings -1, . . . , -< on one tape, and the queries - ′
1, . . . , -

′
< on

another tape. (This can be achieved with a linear overhead.) Our

machine " removes any duplicates from the list -1, . . . , -< , by

sorting the list, sweeping across the sorted order, and comparing

adjacent strings, copying the distinct strings over to another tape.

This takes $ (<= log<) time: $ (< log<) comparisons where each

comparison costs $ (=) time.

Our machine" then maps each distinct-8 to the string-8 ◦0:-8
concatenated with a zero. Similarly, each - ′

8 is mapped to - ′
8 ◦ 1 ◦ 8 .

Next," sorts the list of 2< items

{-8 ◦ 0, -
′
8 ◦ 1 ◦ 8 | 8 ∈ [<]}.

This takes $ (<= log<) time, as in the previous paragraph.

Next, " sweeps across the sorted order of 2< elements, from

left to right, processing the strings. In particular, the sorted order

consists of contiguous blocks of two possible kinds:

(1) - ◦0, - ◦1◦81, . . . , - ◦1◦8ℓ , for some ℓ ∈ {0, 1, . . . , =}, where

each - is unique (as we have removed duplicates).

(2) - ◦ 1 ◦ 81, . . . , - ◦ 1 ◦ 8ℓ , for some ℓ ∈ {1, . . . , =} (with no

pre�x of the form - ◦ 0).

We can ignore blocks of the form (2); since there is no- ◦0 pre�x to

the block, there is no matching string in -1, . . . , -< . For all blocks

of the form (1), we write the $ (log<)-bit indices 81, . . . , 8ℓ on a

separate tape: note that all 8 9 are indices in the<-bit output vector

that must be 1. This step takes at most $ (<= log<) time in total:

for each block of ℓ items in the sorted order, it takes $ (ℓ · =) time

to form the block by comparing strings (�nd where the block ends),

and it takes $ (ℓ= + ℓ log<) time to sweep through the block and

write down the corresponding $ (log<)-bit index for each item in

the block. (The sum of all block lengths is at most 2<.)

Finally, the machine" processes the list of $ (log<)-bit indices

to get the<-bit output. In particular," sorts the $ (<)-length list,

removing duplicates. On a separate tape," sweeps along< cells

to print 0 or 1 for each bit 8 of the output, based on whether 8 is in

the sorted list of indices. This �nal step takes $ (< log<) time. □

We will also need a slight generalization of batch lookup, in

which secondary information in the list can also be returned:

Theorem 2.3 (Batch �eries to Lookup Tables With Side

Information). Let <,=,  ≥ 1. There is a circuit � with $ (<=)

inputs and< outputs of size $ (< · = · log2 (<=) +  · =), such that

given a list of< pairs (-1, .1) . . . , (-<, .<) ∈ {0, 1}= × {0, 1}= , a

list of < queries (?1, -
′
1), . . . , (?<, -

′
<) ∈ [2=] × {0, 1}= , and an

integer upper bound  ∈ [2=], � returns a set of C ≤  triples

{(? 9 , -
′
? 9
, .? 9

)} such that - ′
? 9

∈ {-1, . . . , -<} for all 9 and ? 9 is

minimal, whenever such C triples exist.

Proof (Sketch). Wemodify the Turing machine in the previous

proof to sort the pairs (-1, .1) . . . , (-<, .<) according to the keys

-1, . . . , -< , and to sort the list (?1, -
′
1), . . . , (?<, -

′
<) according to

the primary keys - ′
1, . . . , -

′
< and secondary keys ?1, . . . , ?< . (First

we sort according to the - ′
8 ’s, then we break ties by sorting accord-

ing to the ? 9 ’s.) We merge the two sorted lists, as in the previous

proof. When" sweeps across the merged sorted order, if a query

pair (? 9 , -
′
9 ) matches a list pair (- ′

9 , .9 ), then " prints the entire

triple (? 9 , -
′
9 , .9 ) to an extra tape, ignoring later triples of the form

(?′, - ′
9 , .9 ) in the same block (recall that" is required to only print

triples such that ? 9 is minimal). The machine" halts whenever  

triples have been output, or the entire sorted list has been processed,

whichever comes �rst. □

Some of the functions in Fiat-Naor’s function inversion (namely,

the :-wise independent hash functions) can be described by uni-

variate polynomials. Fiat-Naor speeds up their evaluation in an

amortized sense, by appealing to FFT. We will use the fact that FFT

can also be e�ciently simulated in the arithmetic circuit model:

Theorem 2.4 (Multipoint Evaluation of Polynomials, [18],

see also [49]). Let F be a �eld of characteristic two, and let % ∈ F[G]

have degree 3 . There is an F2-arithmetic circuit�% with 3 inputs and

3 outputs of size 3 · poly(log3) that, given G1, . . . , G3 ∈ F, outputs

% (G1), . . . , % (G3 ).

3 MORE EFFICIENT CIRCUITS FOR
COMPRESSION PROBLEMS

We now turn to our constructions of smaller circuits for compres-

sion problems. To start, we show how circuits of size about 2= for

inverting functions from {0, 1}= to {0, 1}= can be used to obtain

circuits of size about 24 ·poly(=) for inverting functions from {0, 1}4

to {0, 1}= , where 4 ≪ =. (The latter case is the more relevant set-

ting for compression problems, where 4 is the length of a short

description and = is the length of the input.)

3.1 Obtaining Fixed-Parameter Tractable
Circuits for General Compression

Suppose we are given a circuit for a function Eval : {0, 1}4 →

{0, 1}= where = ≫ 4 , so that Eval can be viewed as a “decompres-

sion” procedure mapping 4-bit strings into longer =-bit strings.

Given G of length =, the obvious brute-force strategy for �nding

a description ~ of length 4 such that Eval(~) = G requires about

24 · B time, where B is the evaluation time for Eval. Our goal in

Theorem 1.2 is to construct 244/5 · poly(B)-size circuits, strictly

improving on the obvious bound in the exponent.
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First, we observe that one cannot directly achieve such a bound

by using circuits for Fiat-Naor function inversion. Fiat-Naor is

designed to invert functions from (say) {0, 1}= to {0, 1}= , where the

domain and co-domain must be the same size, and the circuit size

bound we can hope to achieve will have the form 2X= · poly(=) for

some X ∈ (0, 1). When 4 ≪ = (the interesting case of Eval!), this

size bound is already much worse than the obvious brute-force cost

of 24 . We need to choose a di�erent function to invert, one that

maps 4 +$ (1) bits to 4 +$ (1) bits, in order to achieve a size bound

of the form 2X4 · poly(=) for some X ∈ (0, 1).

Given the function Eval mapping 4 bits to = bits, we will use

pairwise-independent hashing to show how to reduce the inversion

problem for Eval to the inversion problem for a related function

5 : {0, 1}4+1 → {0, 1}4+1, so that given circuits of size ( (=) for

function inversion, we can produce circuits of size ( (4 + 1) · poly(B)

for inverting Eval.

Theorem 3.1. Let B (=) ≥ =. Suppose that for functions6 : {0, 1}= →

{0, 1}= with size-B circuits, there are circuits for inverting 6 which

have size ( (=) ·poly(B). Then for every 4 ≤ =, there are circuits for in-

verting any function Eval : {0, 1}4 → {0, 1}= of size ( (4+1) ·poly(B),

where B (=) ≥ = is the circuit size of Eval.

Proof. Let H = {ℎ8 : {0, 1}= → {0, 1}4+1} be a family of

pairwise-independent hash functions. In the following, we will

just require the standard fact that there are hash familiesH such

that every ℎ8 ∈ H has a poly(=)-size circuit (see for example [4],

p.152–153).

Claim 3.2. Suppose G ∈ {0, 1}= has description length 4 under

Eval. Drawing a uniform random ℎ ∈ H , the probability that G is the

unique string with description length 4 in the preimage ℎ−1 (ℎ(G)) is

at least 1/2.

Proof. Let ( be the set of all=-bit strings G such that Eval(~) = G

for some ~ which is 4 bits long. Fix a string G ∈ ( , and note that

|( | ≤ 24 . We want to lower bound the probability that a randomly

chosen ℎ ∼ H “isolates” G from all other strings in ( . The analysis

is similar to proofs of the Valiant-Vazirani Lemma [4, 48], but with

a di�erent union bound: instead of �xing a target hash value (e.g.,

04+1) and union-bounding over all possible G ∈ ( , we �x the G ∈ (

and union-bound over possible 0 ∈ {0, 1}4+1.

Fix a particular 0 ∈ {0, 1}4+1. We have:

Pr
ℎ∼H

[ℎ(G) = 0 ∧ (∀~ ∈ ( − {G})ℎ(~) ≠ 0]

=
1

24+1
· Pr[(∀~ ∈ ( − {G})ℎ(~) ≠ 0 | ℎ(G) = 0]

=
1

24+1
· (1 − Pr[(∃~ ∈ ( − {G})ℎ(~) = 0 | ℎ(G) = 0])

≥
1

24+1
·

(
1 −

24 − 1

24+1

)
>

1

24+2
.

Now, for each choice of 0 ∈ {0, 1}4+1, the 24+1 events

[ℎ(G) = 0 ∧ (∀~ ∈ ( − {G})ℎ(~) ≠ 0]

are all disjoint. Therefore the probability there is some string 0 ∈

{0, 1}4+1 such that ℎ(G) = 0 and all other strings in ( − {G} do not

hash to 0 is at least 1/2. □

Using the claim, we can search for strings of description length

4 using function inversion. Let Eval′ : {0, 1}4+1 → {0, 1}= be the

procedure that ignores its last bit and evaluates Eval : {0, 1}4 →

{0, 1}= on the remainder.

Compression From Function Inversion

Draw a random ℎ ∈ H .

De�ne the function 5 : {0, 1}4+1 → {0, 1}4+1 by 5 (I) :=

ℎ(Eval′ (I)).

Given an input G to compress:

Try to invert 5 on the (4 + 1)-bit string ℎ(G).

If inversion �nds I = ~1 ∈ {0, 1}4+1 with |~ | = 4 , |1 | = 1

such that Eval(~) = G , return ~.

Return Fail.

Clearly, if G does not have a description of length 4 , then the

above procedure always fails. Suppose G has a description of length

4 . For any I = ~1 such that 5 (I) = ℎ(G), we have

ℎ(G) = 5 (I) = ℎ(Eval′ (I)) = ℎ(Eval(~)).

By the claim, with probability at least 1/2, G is the only string with

a description of length 4 in the preimage of ℎ−1 (ℎ(G)). Therefore

with probability at least 1/2, there is a preimage I = ~1 of 5 (G) and

~ is a length-4 description of G .

We now analyze the e�ciency of the procedure. Assume that

for functions 6 : {0, 1}= → {0, 1}= with size-B circuits, there are

circuits for inverting6which have size ( (=)·poly(B). Then the above

procedure can be implemented with circuits of size ( (4+1) ·poly(B),

where B ≥ = upper bounds the circuit size of Eval. (Recall every

ℎ ∈ H has a polynomial-size circuit.)

The above describes a distribution of circuits for inverting Eval

(based on the choice of the hash function ℎ). A deterministic circuit

can be constructed in a standard way, by simply taking $ (4) ≤

$ (=) random circuits from the distribution, and applying the union

bound over all $ (24 ) strings of description length at most 4 . This

introduces another multiplicative factor of at most $ (=) to the

size. □

3.2 Warm-Up: E�cient Circuits for Inverting
Cyclic Permutations

Next, we turn to constructing more e�cient circuits for invert-

ing functions from {0, 1}= to {0, 1}= . As a warm-up, we start with

circuits for inverting cyclic permutations, following the major in-

sight of Hellman [23]. (Such circuits can be easily generalized to

all permutations, using the fact that every permutation is a union

of disjoint cycles.) Let c : {0, 1}= → {0, 1}= be a permutation. For

8 ∈ {0, . . . , 2= − 1}, let ~8 = c8 (0=). c being cyclic means the list

~0, . . . ~2=−1 contains no duplicates.

Then Figure 1 is a simple procedure for inverting c . Let : be a

parameter we set later.

The correctness of this algorithm follows from the fact that

c:−?−1 (~ 9−: ) = c
−?−1 (~ 9 ) = c

−1 (~).

The algorithmuses space about 2
=

:
and takes time about: (assum-

ing, for simplicity, we can compute c for free), so setting : = 2=/2
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Inverting Cyclic Permutations

Preprocessing: In a lookup table, store ( 9, ~ 9 ) for all multiples

9 of : .

Procedure: Given ~ ∈ {0, 1}= to invert,

• For ? ∈ {0, . . . , : − 1}:

(1) Using the lookup table, check if c? (~) = ~ 9 for some

9 that is a multiple of :

(2) If so, output c:−?−1 (~ 9−: )

Figure 1: Hellman’s algorithm

yields an inversion procedure running in time and space 2=/2 on a

(non-uniform) random access Turing Machine.

Can we implement this as a circuit? The main di�erence between

the circuit model and the random access model is that accessing

a bit from (-bits of storage in a circuit requires size roughly (

(compared to cost $ (log () in the Turing Machine setting). Thus,

the naive bound on the size of a circuit inverting cyclic permutations

is roughly : · 2
=

:
≈ 2= which gives no savings.

Luckily, this issue can be �xed by “batching” queries to mem-

ory. In particular, using Theorem 2.2, one can answer 2=/2 (non-

adaptive) queries to a lookup table of size 2=/2 with a circuit of size

roughly 2=/2.

Now observe the lookup queries in the inversion algorithm for

cyclic permutations can be made non-adaptive: �rst calculate c? (~)

for all ? ∈ {0, . . . : − 1} and then query the lookup table on all of

them at once. Using these ideas, one can indeed invert c with a

circuit of size about 2=/2.

3.3 Implementing Fiat-Naor with E�cient
Circuits

We now consider the general case of arbitrary function inversion for

functions with small circuits, with the goal of proving Theorem 1.2.

We begin by recalling the inversion algorithm of Fiat-Naor. The

algorithm is parameterized by the following values.

Parameters.

• ℓ (the number of functions 68 we use)

• < (the number of checkpoints, i.e., the cardinality of the

lookup table )8 for all 8)

• C (the length of our walks)

• |�| (the length of our lookup table of high degree points)

• : (the :-wise independence of our hash functions)

• Notation: (shorthand for values induced by a choice of pa-

rameters)

– # ′
= 2= −max(⊆{0,1}= : |( |= |� | |5

−1 (() | (the “e�ective” do-

main after choosing �)

– � = (= + log C) 2
=

# ′ (the number of times we can “resample”

from a 68 function)

The algorithm has a randomized preprocessing step, where one

builds several lookup tables. This is the only part of the algorithm

that is randomized (in particular, the randomness is used to select

:-wise independent functions).

(Randomized) Preprocessing for Inverting 5 : {0, 1}= →

{0, 1}=

(1) Create the lookup table

� = {(G, 5 (G)) : G is the lex. �rst preimage of 5 (G) ∈ (}

where ( is the set of sizea |�| that maximizesb |5 −1 (() |.

We say ~ is in � if (G,~) ∈ � for some G .

(2) Sample ℓ many:-wise independent functions61, . . . , 6ℓ :

{0, 1}= × [� ] → {0, 1}= .

(3) Notation: For each 8 ∈ [ℓ],

• 6★8 (G) =

{
68 (G, 9), for least 9 with 5 (68 (G, 9)) ∉ �

⊥, if no such 9 exists.

• ℎ8 (G) = 6★8 (5 (G)) (de�ne 5 (⊥) = ⊥ and 6★8 (⊥) =

⊥).

(4) For each 8 ∈ [ℓ] and 9 ∈ [<], pick G8, 9 ∈ {0, 1}=

uniformly at random. Compute the value ℎC8 (G8, 9 ). If

ℎC8 (G8, 9 ) ≠ ⊥, then store the value (G8, 9 , ℎ
C
8 (G8, 9 )) in a

table )8 .

aRecall that |� | is an integer parameter we will set, so this de�nition is not
circular.

bIf there is a tie, pick the lexicographically �rst ( .

Finally, we state the inversion algorithm.

Inversion Algorithm for 5 : {0, 1}= → {0, 1}=

Procedure Invert: Given ~ ∈ {0, 1}= ,

(1) If ~ ∈ �, then output a memorized preimage of ~.

(2) For all 8 ∈ [ℓ], set D8 = 6
★

8 (~).

(3) For all 8 ∈ [ℓ] and ? ∈ {0, . . . , C − 1}, compute ℎ
?
8 (D8 ).

(4) For all 8 ∈ [ℓ] and ? ∈ {0, . . . , C − 1}, check if ℎ
?
8 (D8 )

is in )8 (i.e., ℎ
?
8 (D8 ) = ℎ

C
8 (G8, 9 ) for some 9 ). Let � be the

set given by

� = {(8, 9, ?) : ? is the least value satisfying ℎ
?
8 (D8 ) = ℎ

C
8 (G8, 9 )}.

If |� | ≥ 10ℓ , then output fail and stop.

(5) For all (8, 9, ?) ∈ � , if 5 (ℎ
C−?−1
8 (G8, 9 )) = ~, then output

ℎ
C−?−1
8 (G8, 9 ).

We note that there are several di�erences between the inversion

procedure presented here, and the one presented in Fiat-Naor [17]:

(1) Fiat-Naor construct � by sampling |�| uniform random G ∈

{0, 1}= and putting (G, 5 (G)) in �. This has the advantage of

giving an e�cient method for constructing �. We instead

pick the “best possible” � and work with its corresponding

# ′, as it simpli�es the analysis.

(2) Fiat-Naor use a di�erent upper bound on 9 in the de�nition

of 6★8 . We use the upper bound � = (= + log C) 2
=

# ′ to simplify

the analysis and the circuit description.

(3) Fiat-Naor add all the (8, 9, ?) for which the check passes to �

(not just the triple with the least ?). By only adding ? with

the “least value” property to � , as well as putting an upper

bound on |� |, we simplify the running time analysis (and

circuit description).
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We show that the Invert procedure described above can be

implemented by a circuit family that has a decent size bound in

terms of the various parameters.

Theorem 3.3 (Circuit Upper Bound for Fiat-Naor). Let : ≤

ℓ ≤ 2= , and suppose 5 has a circuit family of size B (=). The procedure

Invert on 5 can be implemented by a (randomized) circuit of size

C · |�| · poly(=) + C · ℓ · � · poly(B) + ℓ · (C +<) · poly(=).

We prove Theorem 3.3 in Section 3.4.

Fiat-Naor [17] show that this procedure succeeds at inverting

any given value with constant probability. Because our procedure

is slightly di�erent from the one in Fiat-Naor and for the sake of

completeness, we sketch the proof of this in Section 3.5.

Theorem 3.4 (Fiat-Naor [17]). Let 5 : {0, 1}= → {0, 1}= be a

function. Assume

• min{C,<} ≥ 87

• : ≥ 2C (= + log C) 2
=

# ′

• Cℓ< ≥ # ′

• |�| ≥ 4C 2
=

# <

• < ≤ 2=

Then for every~ in the range of 5 , the probability (over the randomness

in the preprocessing step) that Invert inverts 5 at ~ is Ω(1).

Combining Theorem 3.3 and 3.4, we obtain a circuit construction

that worst-case inverts 5 and beats exhaustive search.

Theorem 3.5. Let 5 : {0, 1}= → {0, 1}= be a function with a

circuit of size B (=) ≥ =. There is a circuit of size at most 24=/5 ·

poly(B (=)) that worst-case inverts 5 .

Proof. (We assume all parameters are integers, and omit �oors

and ceilings for readability.) Set the parameter |�| = 4 · 23=/5. This

induces a set � and a value # ′ := 2= − |5 −1 (�) |. We divide into

two cases depending on the size of # ′.

Case 1: # ′ ≤ 24=/5. In this case, there is a circuit of size 24=/5 ·

poly(=) that implements table lookup on � in size 23=/5 · poly(=),

and directly stores inverses for all of the the remaining domain of

size at most # ′ ≤ 24=/5. In this case, these two table lookups cover

all possible inputs to 5 .

Case 2: # ′
> 24=/5. Set ℓ := 23=/5,< := 2=/5, C := # ′

24=/5
≤ 2=/5

(since 24=/5 < # ′ ≤ 2= , C can be rounded to a positive integer), and

: := 8C= · 2=

# ′ . Then

|�| = 4 · 23=/5 ≥ 4
# ′

22=/5
= 4 ·

(
# ′

24=/5

)2
·
2=

# ′
· 2=/5 = 4C2

2=

# ′
<,

and

C · � =
# ′

24=/5
· (= + log C)

2=

# ′
≤ 2=2=/5 .

Observe that this setting of the parameters satis�es all the con-

straints in the hypotheses of Theorem 3.3 and Theorem 3.4 when =

is su�ciently large. Applying the bound of Theorem 3.3, there is a

circuit for Invert of size at most

C · |�| · poly(=) + ℓ · C � · poly(B (=)) + ℓ · (C +<) · poly(=)

≤ 2=/5 (4 · 23=/5) · poly(=) + 23=/5 · (2=2=/5) · poly(B (=))

+ 23=/5 · (2=/5 + 2=/5) · poly(=)

≤ 24=/5 · poly(B (=))

For any �xed ~, this circuit will invert 5 on ~ with constant proba-

bility (over the randomness in the preprocessing step). Repeating

this construction independently for poly(=) times and combining

the resulting circuits yields a worst-case circuit for inverting 5 of

size at most 24=/5 · poly(B (=)). □

3.4 Circuit Upper Bound: Proving Theorem 3.3

We now prove Theorem 3.3.

Proof of Theorem 3.3. The high-level idea is to carefully amor-

tize the lookup table calls and function evaluations, so that they can

all be done in batches. In this way, we can avoid the requirement

of a random-access model, and can use circuits instead.

Each numbered step of Invert will correspond to some number

of layers of our circuit. We will store the look-up tables � and

)1, . . . ,)ℓ directly in the circuit, which takes poly(=) · ( |�| + ℓ ·<)

bits. These bits will be propagated to later layers of the circuit as

they are needed (skipping layers when they are not needed). That

way, we can always refer to the tables as needed throughout the

computation of Invert.

Let us go through the steps of Invert one by one, and verify that

they can be implemented with circuits of the desired size.

(1) Here, we only have to check whether ~ is in the lookup table

�, for some |�| ≤ 2= . Applying Theorem 2.2, this can be

done with a circuit of size $ ( |�| · log2 ( |�|)) ≤ |�| · poly(=).

(2) Here, we have to evaluate 6★8 on ~, for all 8 ∈ [ℓ]. To imple-

ment 6★8 , we will evaluate 68 (~, 9) on all relevant 9 ∈ [� ],

and �nd the smallest 9 among these such that 5 (68 (~, 9)) is

not in�. Each 68 is from a :-wise independent family, which

Fiat-Naor implement as a degree-(: − 1) polynomial (in the

variable I, say) over the �nite �eld F# 2 where # is a power

of two, and where the I 9 coe�cient of the polynomial is

equal to 0 9 · 8 +1 9 . In this way, all 68 can be de�ned using the

same polynomials. In particular, de�ning % (I) =
∑

9 0 9 · I
9

and & (I) =
∑

9 1 9 · I
9 , we have 68 (I) = 8 · % (I) +& (I).

We have therefore reduced our evaluation problem to the

following tasks:

(2a) Given two degree-(: − 1) polynomials % (I) and & (I), we

evaluate them on (~, 9) for all 9 ∈ [� ].

(2b) For all 8 ∈ [ℓ], we evaluate 68 (@) = 8 · % (@) + & (@) for

all the � points @ obtained in (a), and evaluate 5 on each

68 (@).

(2c) Perform a batch lookup in table� on all ℓ ·� points 5 (68 (@))

obtained in (b).

(2d) Determine for each 8 ∈ [ℓ] the minimum 9 ∈ � such that

5 (68 (@)) ∉ �.

Applying Theorem 2.4, step (2a) can be done with arithmetic

circuits of size

(: + � ) · poly(log(: + � )) ≤ (: + � ) · poly(=)
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over the �eld; converting these circuits to Boolean circuits

makes the size poly(=) · (: + � ) · poly(log(: + � )). Step (2b)

takes $ (ℓ · � ) arithmetic operations over the �eld followed

by $ (ℓ · � ) evaluations of a size-B circuit for 5 , translating

to a circuit of size ℓ · � · poly(B).

In Step (2c), we have a lookup table of |�| points, and our

batch is of size ℓ · � ; applying Theorem 2.2, the lookups can

be done in size

$ (= · ( |�| + ℓ · � ) · log2 (= · ( |�| + ℓ · � )))

≤(|�| + ℓ · � ) · poly(=) .

This produces ℓ � bits indicating which point is in the table

or not. Finally, step (2d) just requires computing the �rst bit

which is 1 among ℓ bit-vectors of length � , which can be done

in size$ (ℓ � ). At the end of Step 2, the values D8 = 6
★

8 (~) for

all 8 ∈ [ℓ] are stored in the circuit.

Under our hypothesis that : ≤ ℓ , the total size of Step 2 is at

most

ℓ · � · poly(B) + (|�| + ℓ · � ) · poly(=) .

(3) In Step 3, we have to evaluate the function ℎ8 on each D8 ,

for all 8 ∈ [ℓ]. Then we have to compose ℎ8 (D8 ) with itself

for C times, storing the answer ℎ
?
8 (D8 ) for all 8 ∈ [ℓ] and

? ∈ {0, . . . , C − 1} for the next step.

Recall that ℎ8 (D8 ) = 6
★

8 (5 (D8 )). As in Step 2, we can perform

this evaluation in a batchway: we evaluate I1 = 5 (D1), . . . , Iℓ =

5 (Dℓ ) using a ℓ · B (=) size circuit, then evaluate 6★8 on each

D8 . This translates to evaluating

68 (D1, 9) . . . , 68 (Dℓ , 9)

for all 9 ∈ [� ] and 8 ∈ [ℓ]. As in Step 2, this amounts to �

calls to multipoint evaluation of a degree-(: − 1) polynomial

6 on ℓ points, which can be done in size (: + � ) · poly(=),

followed by ℓ � evaluations of 5 in size ℓ � · poly(B), followed

by lookups into the table� in size ( |�|+ℓ · � ) ·poly(=). Indeed,

the same argument shows that for any ℓ points I1, . . . , Iℓ
of our choice, we can evaluate ℎ8 (I8 ) for all 8 ∈ [ℓ] using

circuits of size

|�| · poly(=) + ℓ · � · poly(B) .

Therefore we can compute the entire set of ℓ · C points % =

{ℎ
?
8 (D8 ) | 8 ∈ [ℓ], ? ∈ {0, . . . , C − 1}}, using circuits of size

C · |�| · poly(=) + C · ℓ · � · poly(B) .

(4) In Step 4, we �rst check for all ℎ
?
8 (D8 ) computed in the

previous step whether or not ℎ
?
8 (D8 ) ∈ )8 . Then we build

the table � of triples (8, 9, ?), rejecting if � gets too large.

That is, for all 8 ∈ [ℓ], we have to check whether the C

strings
{
ℎ
?
8 (D8 )

��� ? ∈ {0, . . . , C − 1}
}
appear in )8 . Further-

more, when such strings appear in )8 , we need to return

a string G8, 9 associated with the string in table )8 , as well as

the least value ? such that ℎ
?
8 (D8 ) = ℎ

C
8 (G8, 9 ). Abstractly, we

need to solve the following task for ℓ query sets

&8 =

{
(?,ℎ

?
8 (D8 ))

��� ? ∈ {0, . . . , C − 1}
}
,

for all 8 ∈ [ℓ], paired with ℓ lists

!8 =
{
(ℎC8 (G8, 9 ), G8, 9 )

�� (G8, 9 , ℎC8 (G8, 9 )) ∈ )8
}
,

and # = =:

Given queries &8 =
{
(?1, -

′
1), . . . , (?C , -

′
C )
}
⊆ [2# ] ×

{0, 1}# , a list !8 = {(-1, .1), . . . , (-<, .<)} ⊆ {0, 1}# ×

{0, 1}# , and integer , return up to triples (? 9 , -
′
? 9
, .9 )

such that- ′
? 9

∈ {-1, . . . , -<} and ? 9 is minimal, if such

triples exist.

In particular, we want to return up to 10ℓ triples over all

ℓ batch queries (&8 , !8 ). This can be done by applying our

circuits for batch queries with side information (Theorem 2.3)

for ℓ times, maintaining a counter of the number of triples

returned so far; this counter is passed from one batch query

to the next, and the procedure is stopped early if the counter

reaches 10ℓ . Implementing the batch lookups on all pairs

&8 , !8 requires size at most ℓ · (C +<) · poly(=). In the end,

our batch-lookup circuit returns $ ( · =) bits encoding the

relevant strings G8, 9 ∈ {0, 1}= along with their value ? ∈

{0, . . . , C − 1}. If the batch-lookup circuit returns 10ℓ triples,

the entire circuit rejects (as per step 4). Otherwise, the output

of the circuit is treated as a representation of the set � .

(5) Finally, in step 5, |� | < 10ℓ , and we have to iterate through

each (8, 9, ?) ∈ � in the lookup table results, and compute

5 (ℎ
C−?−1
8 (G8, 9 )).We already have each of the relevant strings

G8, 9 available from the output of our circuit in step 4, as well

as the corresponding values ? ∈ {0, . . . , C − 1}. In Step 3, we

showed that for any ℓ points I1, . . . , Iℓ of our choice, we can

evaluate ℎ8 (I8 ) for all 8 ∈ [ℓ] using a circuit of size

|�| · poly(=) + ℓ · � · poly(B) .

Analogously, for any 2 ≤ 10ℓ points, we can evaluate ℎ8
on all of them using a circuit of asymptotically the same

size. We can then compute ℎ
?
8 on the inputs G8, 9 for all ? ∈

{0, . . . , C − 1}, in size

C · |�| · poly(=) + C · ℓ · � · poly(B) .

Overall, the circuit size is dominated by Steps 3, 4, and 5; that is,

the total size is at most

C · |�| · poly(=) + C · ℓ · � · poly(B) + ℓ · (C +<) · poly(=).

□

3.5 Analysis: Proving Theorem 3.4

Due to page requirements, we omit our review of the analysis of of

Fiat-Naor [17]. A detailed review is included in the full version of

our paper.

3.6 Proving Theorem 1.2

We conclude this section with the proof of Theorem 1.2.

Reminder of Theorem 1.2. Let Eval denote a compression problem.

There is a circuit family {�=,B } such that for all =, B ∈ N, �=,B solves

the compression problem for Eval on all strings of length = with

descriptions of length at most B , and the size of�=,B is 2
4
5 ·B ·poly(=, B).

Furthermore, �=,B (G) prints a description of length at most B for the

input G of length =, whenever such a description exists.
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Proof of Theorem 1.2. Let B, = ∈ N and let Eval be polynomial-

time computable, so that when restricted to inputs of length B and

outputs of length =, Eval has a circuit �=,B of poly(=, B). Observe

that for an =-bit input~, the problem of �nding an G of length B such

that Eval(G) = ~ is equivalent to solving the compression problem.

By Theorem 3.1, we can reduce the problem of inverting �=,B :

{0, 1}B → {0, 1}= to the problem of inverting another function

6 : {0, 1}= → {0, 1}= with poly(=)-size circuits, in such a way

that circuits of ( (=) · poly(=) size for inverting 6 imply circuits

of ( (B + 1) · poly(=) size for inverting �=,B . Theorem 3.5 proves

that there is a circuit that inverts 6 on all inputs, having size at

most 24=/5 · poly(=). Setting ( (=) = 24=/5, we obtain circuits of size

24B/5 · poly(=) for inverting �=,B . □

4 CONSEQUENCES

We now turn to proving non-trivial circuit size bounds for MCSP,

MINKT, and “compressible” NP relations, as mentioned in the In-

troduction.

4.1 Smaller Circuits for Finding Circuits (MCSP)

Reminder of Theorem 1.3. Search-MCSP[B (=)] on truth tables

of length 2= has circuits of size 2
4
5 ·F+> (F ) · poly(2=) for all size

functions B (=), whereF = B (=) log2 (B (=) + =).

Proof. The idea is to de�ne an appropriate evaluation function,

and appeal to Theorem 1.2. In the case of MCSP, we want an Eval

function that takes the encoding of a circuit as input, and outputs

the circuit’s truth table. However, in order to decisively beat the

exhaustive search over 2$ (B (=) log(B (=) ) possible circuits, we need

an essentially optimal encoding of circuits.

Let B (=) ∈ [2=] be our circuit size parameter (which we ab-

breviate as just B). Lemma 2.1 tells us there is a polynomial-time

algorithm Enc such that, for every circuit � of size B and = inputs,

there is someG of length ℓB := (1+> (1))B log2 (B+=) such that Enc(G)

outputs the description of a circuit�′ of size B computing the same

function as � . (Moreover, ℓB can be computed e�ciently given B ,

although we do not need this property to construct a non-uniform

circuit.) Let TT(�) be the function that takes the description of a

circuit � with = inputs, and outputs its 2=-bit truth table.

De�ne the evaluation function Eval to simply be Eval(G) :=

TT(Enc(G)). Applying Theorem 1.2, there are circuits inverting the

slice function EvalℓB ,2= : {0, 1}ℓB → {0, 1}2
=

(Eval restricted to ℓB
inputs and 2= outputs) that have size

24ℓB/5 · poly(ℓB , 2
=)

≤ 2
4
5 ·B (=) log2 (B (=)+=)+> (B (=) log2 (B (=)+=) ) · poly(2=).

Given a truth table) of length 2= , our �nal circuit inverts EvalℓB ,2=

on ) . If inversion results in an G such that EvalℓB ,2= (G) = ) , then

our circuit outputs Enc(G) (an encoding of a circuit with truth table

) ), otherwise it outputs ⊥ (failure). This completes the proof. □

4.2 Circuits for MINKT

Similarly, we can give nontrivial circuits for computing the KC

complexity of strings.

Reminder of Theorem 1.4. For every time function C : N → N

with C (=) ≥ =, and parameters 4, = ∈ N, there is a circuit family that

given any =-bit input G , outputs a program ~ of length at most 4 such

that ~ prints the string G in at most C (=) steps if such a ~ exists. The

circuit family has size 2
4
54 · poly(C (=)).

Proof. Fix 4, = ∈ N, and set C := C (=). Our Eval function sim-

ply takes an input 3 , treats 3 as a program, and runs 3 for C steps,

outputting whatever string that 3 printed along the way. This Eval

function, restricted to 4-bit inputs and =-bit outputs, can be imple-

mented by a circuit of size poly(C). Let �4,= be such a circuit.

Using the argument of Theorem 3.1, the problem of inverting

�4,= : {0, 1}4 → {0, 1}= can be reduced to the problem of inverting

another function 6 : {0, 1}= → {0, 1}= with poly(C, =)-size circuits,

such that circuits of ( (=) · poly(C, =) size for inverting 6 imply

circuits of ( (4 + 1) · poly(C, =) size for inverting �4,= . Theorem 3.5

proves that there is a circuit that inverts 6 on all inputs, having size

at most 24=/5 · poly(C, =). For ( (=) = 24=/5, we obtain circuits of

size 244/5 · poly(C (=)) for inverting �=,B . □

4.3 Circuits For Solving NP Relations on
Compressible Instances

Here, we show how to solve the search problem for general NP

relations faster when the entire instance-witness pair can be rep-

resented by a short program. In particular, our circuits are more

e�cient than enumerating over all short programs.

Let us recall the setup from the Introduction. Let ' ⊆ {0, 1}★ ×

{0, 1}★ be any polynomial-time computable relation. For =, ? ∈ N,

we de�ne the task:

Compressible-':Given a string G of length=, if there

is a program of size ? which prints the pair (G,~) in

poly(=) time such that (G,~) ∈ ', �nd a ~′ such that

(G,~′) ∈ '.

Enumerating all programs and checking them requires 2? · poly(=)

time; we show this “program-enumeration bottleneck” (as coined

by [47]) can be circumvented using function inversion.

Reminder of Theorem 1.5. Compressible-' can be solved by

circuits of size 2
4
5 ·? · poly(=).

Proof. Let " be a machine deciding the polynomial-time re-

lation '. Without loss of generality, let : ∈ N be some universal

constant : such that ℓ (=) = :=: is the length of witnesses for inputs

of length =, i.e., (G,~) ∈ ' implies that |~ | = : |G |: .

Fix ?, = ∈ N. De�ne the function Eval?,= : {0, 1}? → {0, 1}=+1

which takes in a string I of length ? as input and treats I as a pro-

gram, running I for poly(=) steps to obtain a string I′, interpreted

as a pair. If " (I′) accepts, and the �rst string G in the pair is =

bits long, then the (= + 1)-bit string 0G is output, otherwise Eval?,=
outputs 1=+1.

It is easy to see that Eval?,= can be implemented with poly(=)-

size circuits. Our circuit for Compressible-' on =-bit strings takes

in an G ∈ {0, 1}= , and tries to invert Eval?,= on the (= + 1)-bit

input 0G . This inversion task can be accomplished with 24?/5-size

circuits, by Theorem 1.2, and the task exactly corresponds to �nding
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a program I of length ? which outputs (G,~) ∈ ' in poly(=) steps.

This completes the proof. □

4.4 Computing Levin’s Kt-Complexity on
Average

Finally, in this section we construct a nontrivial circuit that com-

putes MKtP on average. The idea is that a string G drawn from an

e�ciently computable distribution has small computational depth

cdC (G) with high probability, in which case we may assume that the

time bound in Kt(G) is small. A similar idea was implicitly used in

[37, 45] to characterize the existence of a one-way function by the

average-case hardness of MKtP with respect to the uniform distri-

bution. Here, we generalize the idea to any e�ciently computable

distribution.

We recall the notion of computational depth [3] and its properties.

Recall that KC (G) is de�ned to be the minimum length of a program

3 such that 3 prints G in C steps. The computational depth of a

string measures the di�erence between time-bounded Kolmogorov

complexity and plain Kolmogorov complexity. For a time bound

C ∈ N, the computational depth cdC (G) of a string G is de�ned as

cdC (G) := KC (G) − K(G) .

Observe that cdC (G) is never negative. First we show that, with high

probability, cdC (G) is small on random G drawn from an e�ciently

computable distribution.

Lemma 4.1. For every function C (=) ≥ = and for every C (=)-time-

computable distribution D = {D=}=∈N over {0, 1}= , it holds that

Pr
G∼D=

[
cdC

′ (=) (G) ≤ ℓ
]
≥ 1 − =$ (1) · 2−ℓ

for all =, ℓ ∈ N and for C ′ (=) = poly(C (=)).

Proof. Let D= (G) denote the probability that G is sampled ac-

cording to the distribution D= . By the coding theorem for com-

putable distributions, for some C ′ (=) = poly(C (=)), we have

KC
′ (=) (G) ≤ − logD= (G) +$ (log=)

for every G ∈ {0, 1}= in the support of D= and = ∈ N (see, e.g., [3,

Theorem 3.5]). Thus,

E
G∼D=

[
2cd

C ′ (=) (G )
]
≤ E

G∼D=

[
2−K(G )

D= (G)
· =$ (1)

]

=

∑

G∈{0,1}=

2−K(G ) · =$ (1)

≤ =$ (1) ,

where the last inequality holds due to Kraft’s inequality and its

relation with plain Kolmogorov complexity [35]. Therefore we have

Pr
G∼D=

[
cdC

′ (=) (G) ≥ ℓ
]
= Pr

G∼D=

[
2cd

C ′ (=) (G ) ≥ 2ℓ
]
≤ =$ (1) · 2−ℓ ,

by Markov’s inequality. The lemma follows. □

Next, we introduce a variant of Kt-complexity in which we im-

pose a time upper bound.

Definition 4.2. For a string G ∈ {0, 1}∗ and a time bound) ∈ N,

de�ne

Kt≤) (G) := min{|3 | + log C | * (3) outputs G in time at most ) },

where* is an e�cient universal Turing machine.

Lemma 4.3. If cd) (G) ≤ ℓ , then Kt(G) = Kt≤2
ℓ) (G) .

Proof. It su�ces to prove that Kt(G) ≥ Kt≤2
ℓ) (G). Let 3 and

C ∈ N be a program and a time bound, respectively, such that

Kt(G) = |3 | + log C and * outputs G on input 3 in time C . Our goal

is to prove C ≤ 2ℓ) .

Since * (3) = G , we have |3 | ≥ K(G) ≥ K) (G) − ℓ , and thus

Kt(G) ≥ K) (G) − ℓ + log C . By the de�nition of Kt(G), we also

have Kt(G) ≤ K) (G) + log) . Combining these two inequalities, we

obtain K) (G) − ℓ + log C ≤ Kt(G) ≤ K) (G) + log), which implies

that C ≤ 2ℓ) . □

We are ready to prove Theorem 1.6.

Reminder of Theorem 1.6. For all functions B (=) and C (=) ≥ =,

there exists a family of circuits {�=}=∈N of size 2
4
5 B (=) · poly(C (=))

such that for any C (=)-time-computable distribution D = {D=}=∈N
over {0, 1}= , for all large = ∈ N, with probability at least 1 − 1

C (=)

over a random input G drawn from D= , on input G , the circuit �=
outputs a program ~ and C ∈ N such that ~ prints the string G in C

steps and |~ | + log C ≤ B (=) if Kt(G) ≤ B (=).

Proof of Theorem 1.6. We construct a family of circuits

{�=}=∈N that computes a pair (~, C) that witnesses Kt≤C
′ (=) (G) ≤

B (=) for some C ′ (=) = poly(C (=)) to be chosen.

The circuit �= can be constructed by using the circuit of Theo-

rem 1.4 because

Kt≤C
′ (=) (G) = min

{
KC (G) + log C

�� C ≤ C ′ (=)
}
.

Thus, the size of �= is at most 2
4
5 B (=) · poly(C (=)).

It remains to claim that �= solves the search version of MKtP

on average with probability 1 − 1/C (=). Let D= be a C (=)-time-

computable distribution. Then, by Lemma 4.1, for large enough

C1 (=) = poly(C (=)) we have cdC1 (=) (G) ≤ log C1 (=) with proba-

bility at least 1 − 1/C (=) over G ∼ D= . By Lemma 4.3, for any G

with cdC1 (=) (G) ≤ log C1 (=), we have Kt
≤C1 (=)

2
(G) = Kt(G). Letting

C ′ (=) := C1 (=)
2
= poly(C (=)), we obtain that�= computes a witness

for Kt(G) ≤ B (=) with probability 1 − 1/C (=) over G ∼ D= . □

5 CONCLUSION

In this paper, we have shown how function inversion can be applied

to make a dent in longstanding open problems in computational

complexity, such as the circuit complexity ofMCSP. In particular,

the old “perebor conjecture” (see [46]) that brute-force is required

for compression problems, is refuted when we are allowed non-

uniform circuits as our algorithmic model. Our work raises a variety

of new questions.

• The �rst obvious open question is whether there are smaller

circuits than 244/5 · poly(=) for �nding compressed descrip-

tions of length 4 . There seems to be a barrier to �nding

circuits signi�cantly smaller than 24/2 · poly(=): if they ex-

isted, we could solve NP problems such that the witness is
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of length equal to the input, with circuits that are smaller

than 2= · poly(=) (see Section 1.2). In the black-box setting,

there are Ω(2=/2) lower bounds on function inversion via

data structures: for example, De et al. [15] show a time-space

tradeo� lower bound of ) · ( ≥ Ω(Y2=) for inverting a func-

tion on at least an Y-fraction of inputs with a space-( data

structure that makes ) function queries, generalizing earlier

work of Yao [51].

• Is there a randomized algorithm for �nding descriptions of

length ℓ for strings of length =, that runs in time 2Uℓ ·poly(=)

for some U < 1? We do not achieve this, because our lookup

tables can take a long time to construct. If we could �nd a

randomized algorithm, then by results of Chen and Tell [11],

there would also be a deterministic algorithm running in

time 2Vℓ · poly(=) for some V < 1, assuming reasonable

complexity hypotheses. In such a case, we would have a

more “decisive” refutation of the old conjecture thatMCSP

and other compression problems require exhaustive search.

• We have shown how time-bounded Kolmogorov complex-

ity can be determined faster than trying all programs up

to a given size. There are other time-bounded versions of

Kolmogorov complexity which appear even harder to com-

pute, such as MKtP. We showed that MKtP can be solved

on average with nontrivial circuits (Theorem 1.6); roughly

speaking, this is because in the average case, the complexity

ofMKtP behaves similarly to NP [37, 45].MKtP is known to

be complete for EXP (exponential time) under various reduc-

tion types [1]. Could there be non-trivial circuits forMKtP

in the worst case, as well? This question seems to be gently

poking at the well-known hypothesis in derandomization

that TIME[2=] requires exponential-size circuits [33].

• We know thatUP∩coUP ≠ P i� there exists a bijective worst-

case one-way function [29]. Given the results of this paper,

are there nontrivial circuits for problems in UP ∩ coUP?

• Pairwise-independent hashingwas crucial in order to achieve

a circuit size bound for compression that is exponential only

in the encoding length, which is a “small” parameter rela-

tive to the input. Could a similar hashing method be more

broadly useful in developing new parameterized algorithms

(or circuits)? Certainly hashing methods are already widely

applied in parameterized algorithms (probably the most fa-

mous one is color coding [2]) but our trick seems somewhat

di�erent.
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