N
Check for
Updates

Self-Improvement for Circuit-Analysis Problems®

R. Ryan Williams™
Massachusetts Institute of Technology
Cambridge, USA
rrw@mit.edu

ABSTRACT

Many results in fine-grained complexity reveal intriguing conse-
quences from solving various SAT problems even slightly faster

than exhaustive search. We prove a self-improving (or “bootstrap-
ping”) theorem for Circuit-SAT, #Circuit-SAT, and its fully-quantified
version: solving one of these problems faster for “large” circuit sizes

implies a significant speed-up for “smaller” circuit sizes. Our gen-
eral arguments work for a variety of models solving circuit-analysis

problems, including non-uniform circuits and randomized models

of computation.

We derive striking consequences for the complexities of these
problems, in both the fine-grained and parameterized setting. For
example, we show that certain fine-grained improvements on the
runtime exponents of polynomial-time versions of Circuit-SAT
would imply subexponential-time algorithms for Circuit-SAT on
20(1) _size circuits, refuting the Exponential Time Hypothesis. We
also show that any algorithm for Circuit-SAT with k inputs and n
gates running in 1000000% + n'*¢ time (for all ¢ > 0) would imply
algorithms running in time (1 + &) + nl*¢ time (for all ¢ > 0),
also refuting the Exponential Time Hypothesis. Applying our ideas
in the #Circuit-SAT setting, we prove new unconditional lower
bounds against uniform circuits with symmetric gates for functions
in deterministic linear time.

CCS CONCEPTS

« Theory of computation — Parameterized complexity and
exact algorithms; Circuit complexity; Complexity classes.

KEYWORDS

bootstrapping, circuit lower bounds, circuit satisfiability, counting
complexity, fine-grained complexity, quantified satisfiability

ACM Reference Format:

R. Ryan Williams. 2024. Self-Improvement for Circuit-Analysis Problems.
In Proceedings of the 56th Annual ACM Symposium on Theory of Computing
(STOC °24), June 24-28, 2024, Vancouver, BC, Canada. ACM, New York, NY,
USA, 12 pages. https://doi.org/10.1145/3618260.3649723

“The full version of this paper is available at https://eccc.weizmann.ac.il/report/2023/
082/.

T Work was supported in part by the Simons Institute at UC Berkeley, NSF CCF-2127597,
and a Frank Quick Faculty Research Innovation Fellowship.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.

STOC °24, June 24-28, 2024, Vancouver, BC, Canada

© 2024 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 979-8-4007-0383-6/24/06

https://doi.org/10.1145/3618260.3649723

1374

1 INTRODUCTION

Fine-grained complexity relates a wide array of computational
problems through intricate reductions that allow us to infer tight
time complexity lower bounds, based on a few hardness hypotheses.
Broadly speaking, two kinds of fine-grained hypotheses have been
studied, which we classify as follows.

Weak exponent lower bounds: These bounds assert that the
optimal algorithm for a problem with a known runtime of T(n)
requires time at least Q(T(n)?), for some ¢ > 0. A canonical weak
exponent lower bound is the Exponential Time Hypothesis:

ETH: There is an a > 0 such that 3-SAT on n variables
needs 2%™ time.

Such hypotheses are often employed to argue for a conditional time
lower bound in which the precise exponent is not considered as
important as the form of the exponent; this is particularly significant
for FPT algorithmics. To give two striking examples, [26] prove that
the EDGE CLIQUE COVER problem, which has a simple 22" poly(n)
time algorithm [34], cannot be in 22°® poly(n) time unless ETH
is false. While it is known that approximate Nash Equilibria can be
found in n®(1°8") time [45], it is also known [14] that an n°(l°8™)-
time approximation algorithm (with “good social welfare”) would
contradict ETH (see also [55]).

Strong exponent lower bounds: These bounds assert that the
optimal algorithm for a problem with a runtime of T(n) requires
time at least Q(T(n)!=°(1)). A canonical example of a strong expo-
nent lower bound is the Strong Exponential Time Hypothesis:

SETH: For all ¢ € (0, 1), there is a k such that k-SAT
on n variables needs 2"(1=¢) time.

Such hypotheses are generally used to argue that the best-known
running time for a problem is optimal up to low-order terms (see
[64] for a large sample of reductions and problems).

It is intuitively obvious that a strong exponent lower bound is
indeed a stronger assumption than a weak exponent lower bound:
for example, SETH implies ETH [18, 36]. Conversely, the question of
whether ETH implies SETH is a major open problem (already raised
explicitly in [35]). It is entirely uncertain how such an implication
might be proved. In this paper, we ask a more general question:

Question: Can weak exponent lower bounds be “am-
plified” into strong exponent lower bounds?

A positive answer to the question amounts to a situation where
improving slightly on the running time exponent of one problem
leads to an arbitrary polynomial improvement in the best-known
time exponent of another problem. We will prove a result of this
form for a “large” variant of the CircurT SAT problem, as well as
its counting and quantified variants.!

!See the end of the Introduction for an alternative viewpoint.

https://orcid.org/0000-0003-2326-2233
https://doi.org/10.1145/3618260.3649723
https://eccc.weizmann.ac.il/report/2023/082/
https://eccc.weizmann.ac.il/report/2023/082/
https://doi.org/10.1145/3618260.3649723
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3618260.3649723&domain=pdf&date_stamp=2024-06-11

STOC ’24, June 24-28, 2024, Vancouver, BC, Canada

We begin with the following version of Circurt SAT, where the
input circuit is set to be so large that the problem is polynomial-time
solvable. Let ¢ € (0, 1] be a (small) constant parameter.

Problem: LARGE CIrcuIT SAT

Given: A circuit C with at most n = ¢log(N) inputs and N
gates (ak.a. N size).?

Decide: Is there an a € {0, 1}" such that C(a) = 1?

For ¢ < 1, the circuit instances of LARGE CIRcuIT SAT are so large
that they cannot possibly be minimal: recall that the maximum cir-
cuit complexity of any ¢log(N)-input function is 0(N¥) [37]. Such
a large circuit must therefore have enormously redundant parts
that could potentially be simplified, in a satisfiability algorithm.
Intuitively, CIrcurT SAT can only get easier to solve as the circuit
size increases (this corresponds to decreasing ¢).

Observe the brute-force algorithm for LARGE CIrculT SAT takes
O(N'¢) steps. Can we improve upon the brute-force algorithm
for LARGE CIRCUIT SAT? Can the obvious N1*¢ time algorithm for
LARGE CIrcuIT SAT be reduced to N'+°(1) for some constant ¢ > 0?

A corollary of our main result is that such an algorithm would
already imply that the Exponential Time Hypothesis is false: in fact,
the existence of such an algorithm implies that Circurt SAT on
20(n) _gize circuits can be solved in 2¢" time for every ¢ > 0. The
most general form of our connection is the following.

THEOREM 1.1 (CIRCUIT-SAT “SELF-IMPROVEMENT”, SECTION 3).
Leta, f > 0, with & < f. Suppose CIRcurT SAT on 207+0(1) _gize
circuits can be solved in 26101 time Then Circurr SAT on 20(") -
size circuits can be solved in 2(B~@)m+o(n) ime

We call such a result self~improving, as it proceeds by an induction
where in each stage of induction, the running time of the SAT algo-
rithm for 2°(")size circuits is improved by combining the assumed
algorithm for LARGE CIrculT SAT with the SAT algorithm derived
in the previous stage. Theorem 1.1 holds for any computational
model such that T-time algorithms can be simulated by circuits of
size T1¥o(1) (for example, multitape Turing machines [54]).> Theo-
rem 1.1 also holds for randomized algorithms (see the full version of
the paper [68]) as well as for non-uniform models of computation:
given 2810(1) gize circuits solving CIRcurT SAT on 27+0(7) _gjze
inputs, we can construct 26=*0(") _gize circuits for Crrcurr SAT
on 2°(") _size inputs. The following is an immediate corollary of
Theorem 1.1.

Cororrary 1.2 (ETH VErsus LARGE Circurt SAT). ETH implies
that, for every ¢ > 0, LARGE CIRcUIT SAT with ¢log(N) inputs is
not solvable in N*+*°(1) time.

In fact, we only have to assume there is an ¢ > 0 such that
CIRCUIT-SAT on 2°(") _size circuits cannot be solved in 2¢7+0(1)
time, which is (presumably) a significantly weaker hypothesis than
ETH itself, which is only concerned with the complexity of k-SAT.
The upshot is that, from a weak-exponent lower bound hypothesis

2The circuits can be over any universal basis of constant fan-in, e.g., AND/OR/NOT.
3We discuss in the full version [68] how to obtain results for more powerful models
of computation, like random access machines. Intuitively, we just have to change
Circurr SAT to a satisfiability problem with a suitable predicate, e.g., RAm SaT for
random access machines.

1375

R. Ryan Williams

like ETH, we obtain a lower bound of a strong-exponential char-
acter for a polynomial-time solvable problem: if the brute-force
O(N'¢)-time algorithm for LARGE CIrcurT SAT can be improved
to N'*°() time, for any ¢ > 0, then we obtain an arbitrary poly-
nomial improvement over exhaustive search for Circurt SAT on
“small” circuits.

It is also instructive to compare Corollary 1.2 with the implica-
tions obtained by assuming a Circult SAT form of SETH, rather
than ETH:

CoroLLARY 1.3 (SETH VERsus LARGE CIrcurT SAT). Assume that
for every e > 0, CircurT SAT on 20(") size circuits cannot be solved
in 2= time. Then for every a > 0 and every & > 0, CIRCUIT SAT
on 22m+0(1) _gize circuits cannot be solved in time 207+ (1=€)n+o(n)

That is, if brute-force search is essentially optimal for solving
CirculT SAT on subexponential-size circuits, then brute-force is
also optimal for solving Circurt SAT on arbitrarily large 20(n)_
size circuits, in spite of the fact that the “large” circuit-size case
can easily be reduced to the “small” case by adding extra (non-
functional) inputs (see Theorem 1.4). Phrasing Corollary 1.3 another
way, we can say that if there isan ¢ > 0 and a 6 € (0,1) such
that Circurt SAT on N-size circuits with elog(N) inputs can be
solved in N1*%¢ time (for example), then CircuIT SAT on 20(n) _gize
circuits can be solved in 29™+°(") time.

An Equivalence. The ideas of theorem 1.1 lead to a surprising
equivalence for solving LARGE Circult SAT efficiently. For simplic-
ity, we state the result in terms of algorithms solving CircurT SAT,
but it also applies to non-uniform and randomized algorithms (see
the full version for details [68]). Let e-LARGE CircuUIT SAT be the
problem of checking satisfiability for circuits of size N with ¢ log(N)
inputs.

THEOREM 1.4 (SECTION 3). The following are equivalent:

(1) There is some ¢ € (0, 1) such that e-LARGE CIRCUIT SAT is
in N1+ fime,

(2) For every a > 0 (including arbitrarily large), a-LARGE
Crrcurr SAT is in N1 time,

Theorem 1.4 shows an existentially-quantified statement is equiv-
alent to its corresponding universally-quantified statement: if we
can solve Circurt SAT on n-input 2K™-size in 2K™+0(1) time, for
some constant K > 0, then an analogous algorithm exists for ev-
ery K > 0. As a consequence, the hypothesis would imply that
CircurT SAT on 24"-size circuits (for any tiny ¢ > 0) can also be
solved in 2¢m+o(n) refuting the (circuit version of) ETH. Therefore,
Theorem 1.4 can be seen as a strengthening of Corollary 1.2. In fact,
an even stronger equivalence holds, between nearly-linear-time
algorithms for Circult SAT on ¢ log(N) inputs for arbitrarily small
& > 0, and extensions of CIrculT SAT that correspond to levels of
the polynomial hierarchy (see Theorem 3.4).

Self-Improvement for #SAT and QBF.. The proofs of Theorem 1.1
and Theorem 1.4 are quite general. We show that analogous self-
improvement results hold for #CircuiT SAT, where we wish to
count the number of SAT assignments to a given circuit, as well as
Q-Circurt SAT, the quantified version of Circurt SAT, where we

Self-Improvement for Circuit-Analysis Problems

are given a fully-quantified sentence of the form

(Ql xl) e (Qn xfl)[c(x1> . ~sxﬂ)]>

where each Q; € {3,V}, C is a circuit, and we wish to decide if the
sentence is true or false.

THEOREM 1.5. Theorem 1.1 holds for the #CircuiT SAT problem
and Q-Circurt SAT, in place of Circult SAT.

In fact, all consequences stated for Circurt SAT carry over for
#CIrcurT SAT and Q-Circult SAT.

An FFT for Circuits Would Refute Exponential-Time Hypotheses. A
major application of the Fast Fourier Transform (FFT) [24] is that
univariate degree-n polynomials over a field can be evaluated on any
n points in n - poly(log n) operations [13, 30], a great improvement
over the obvious ©(n?) algorithm. Recent work has extended this
fundamental result to the multivariate setting [10, 11, 33, 40].

Should we expect fast multipoint evaluation for more complex
computational models, such as Boolean circuits? On the one hand,
an old result of W. J. Paul ([53], Lemma 2) gives an efficient circuit C
for multipoint evaluation of Boolean functions: given x1, ..., x; €
{0,1}" and the truth table T € {0, 1}2" of a function f : {0,1}" —
{0, 1}, we have C(x1,...,x¢, T) = (f(x1), ..., f(xx)), for a circuit
C of size only poly(n) - (2" + k). Thus, for very hard functions
(that cannot be represented much smaller than their 2" truth table),
there are circuits for multipoint evaluation with size about k + 2",
improving over the obvious k2" bound. On the other hand, standard
results in fine-grained complexity show that if the truth tables of
size-s (unrestricted) circuits could be computed in time poly(n) -
(s + 2™) (for example), then SETH and the 3SUM conjecture are
false.* An immediate corollary of Theorem 1.1 and Theorem 1.5 is
that significantly weaker hypotheses suffice:

COROLLARY 1.6. Ifn-input circuits of size s can be evaluated on all
inputs in 2740 (1) 4 $1+0(1) yime then the circuit versions of #ETH [27]
and the quantified version of ETH [23] are false: #CIrcuIT SAT and
Q-Crrcutt SAT on n-input 2°(") —size circuits are both in 2°" time,
foralle > 0.

That is, the difficulty of finding an FFT-like algorithm for fast
multipoint circuit evaluation can be based on much weaker hy-
potheses than SETH, weaker than even circuit versions of SETH
(used to argue for the hardness of problems like Edit Distance [1]).

A Parameterized Complexity Counterpart. Another version of
Theorem 1.4 can be stated in the framework of parameterized com-
plexity, yielding another type of surprising equivalence. Letting
k be the number of variables as a parameter, and letting n be the
circuit size, brute force yields a 2% - n poly log(n) time algorithm for
Circurt SAT. A standard trick in parameterized complexity [25, 29]
implies that for every ¢ > 0, there is some constant ¢ > 1 such that
Circutt SAT can be solved in O(c¥ + n!*¢) time.?

Could one reverse the order of the quantifiers in this state-
ment? Could there be a universal ¢ > 1 such that for all ¢ > 0,
Circutt SAT can be solved in O(ck + n!*¢) time? (Another way of

4For example, see footnote 7 in [66].

SLet ¢ > 0 be given and let n be sufficiently large. If 25 < n#/2 then 2% - p*o() <
n'*¢. Otherwise, 2 > n?/?, ie., log(n) < 2k/e. Setting ¢ = 2+(%+4)/% e have
2k) n1+o(1) < Zk . n1+s/2 — 2k . 2(1+F/2) logn < 2k+(1+s/2)~2k/g — Ck.

1376

STOC ’24, June 24-28, 2024, Vancouver, BC, Canada

phrasing the question: could we replace 2X - n!* time, with c +n!*¢

time for a large c?) We show that such an algorithm would in fact
disprove the Exponential Time Hypothesis:

THEOREM 1.7 (SECTION 4). There is ac > 1 such that for all e > 0,
Circurt SAT is in O(cX + n*¢) time if and only if for every ¢ > 1
and e > 0, CIRcUrT SAT is in O(ck + n!*€) time.

For example, from an algorithm running in O(10000000% + n*¢)

time for CirculT SAT, for all € > 0, we could derive a CIRcUIT SAT
algorithm running in (1 + €)% + n!*¢ time, for all ¢ > 0. Philo-
sophically, Theorem 1.7 may be viewed as more of a “true self-
improvement” than other results, as we really are improving the
running time of CircurT SAT to an arbitrarily small exponential
bound, starting from a certain type of exponential-time algorithm
for the same Circurt SAT problem.

A Uniform Circuit Lower Bound for Linear Time. Studying the
consequences of faster #CIRcUIT SAT algorithms for large circuits
further, we prove new unconditional lower bounds against uniform
circuit classes, where fast multipoint evaluation algorithms exist
(and thereby small improvements over exhaustive search are also
possible). Let SYM o SYM denote the class of Boolean circuits which
are depth-two circuits comprised of arbitrary Boolean symmetric
functions (with unbounded fan-in). SYM o SYM is one of those
natural “weak-looking” circuit classes for which the known lower
bounds are surprisingly meager. In terms of non-uniform lower
bounds against SYMoSYM, it is only known that there are functions
in ENP which do not have non-uniform SYM o SYM circuits of n>~¢
gates, for all € > 0 [8, 59]. Since SYM o SYM can be simulated in
depth-3 TC? with a polynomial blowup in size, one can deduce
from known results on TC? ([5]) that the Permanent does not have
polynomial-size highly-uniform SYM o SYM circuits. It also follows
from the literature that, for some a > 0, SAT does not have highly-
uniform SYM o SYM circuits with n!** gates [6].°

In the full version of the paper, we prove a super-linear gate
lower bound for computing problems in linear time with uniform
SYM o SYM circuits.

THEOREM 1.8 ([68]). There are linear-time decision problems which
do not have POLYLOGTIME-uniform SYM o SYM circuits of n¢ gates,
forallc < 1.199.

(For an explicit problem exhibiting the lower bound, one could
take the P-complete CircurT EvAL decision problem.) The proof of
Theorem 1.8 has the form of an indirect diagonalization: assuming
the opposite, we derive a simulation of time-bounded computation
contradicting hierarchy theorem. However, for all prior such lower
bounds that we are aware of, across a variety of models (such
as [5,7, 32, 39, 48, 61-63]), the proofs require that the hard function
is much harder than linear-time computable. For example, the time-
space tradeoffs for SAT [16, 32, 61] crucially require that the hard
function is NP-hard under highly local reductions.

Note that, although it is also known [38] that there are functions in P that require
Q(n'5-0) gates to be computed by non-uniform depth-3 TC? circuits, the trans-
lation of SYM o SYM into depth-3 TC can increase the total number of gates by a
factor of n, so the methods of [38] do not directly yield linear gate lower bounds for
SYM o SYM circuits. Certainly the random restriction lemmas of [38] do not directly
apply either, since PARITY is a type of symmetric gate, and is immune to restrictions.

STOC ’24, June 24-28, 2024, Vancouver, BC, Canada

We deduce a contradiction by exploiting circuit-analysis algo-
rithms for SYMoSYM. That is, we establish a version of the “algorith-
mic method” for circuit lower bounds (initiated by Williams [66, 67])
that applies to uniform circuits, and allows the hard function to be
contained in P.” We apply the assumption-to-be-contradicted in two
different ways: once on an initial 2"-time computation (that we wish
to speed up), and again on a circuit that counts the number of SYM
gates that are true on the bottom layer, using the POLYLOGTIME-
uniform algorithm for generating the gates on the bottom layer. In
the end, our contradictory simulation is achieved by applying fast
rectangular matrix multiplication [44] appropriately to “speed-up”
the evaluation of a SYM o SYM circuit. If the matrix multiplication
exponent w happens to be 2, our gate lower bound would improve
to n!-36,

Indeed, matrix multiplication allows us to compute truth tables
of SYM o SYM circuits faster than the obvious algorithm, and our
proof demonstrates how such an algorithm can be used to establish
new lower bounds for linear-time computation. This addresses a
question of Williams [69], who gave a faster truth-table evaluation
algorithm for THR o THR circuits, and asked if such algorithms
suffice for deriving lower bounds. (However, super-linear gate lower
bounds against THR o THR are already known; see [38]. Thus we
instead state our results in terms of SYM o SYM.) One can think of
our approach as trading non-uniformity in the circuit lower bound
for a significant reduction in the complexity of the hard function
(from ENP or QuasiNP, down to linear time).

On the Difficulty of Further Improving Self-Improvement. We have
shown that self-improvement of Circult SAT is possible for de-
terministic, randomized, and non-uniform algorithms; what about
other computational models, such as nondeterministic machines
and those in the polynomial hierarchy? We show that such ques-
tions have an intimate connection to the NP versus NC! problem.
We already mentioned (Theorem 1.5) that self-improvement holds
for the Q-Circurt SAT (Quantified Circuit SAT) problem, for de-
terministic and randomized algorithms. Observe that, if we allow
our algorithms to call an oracle in the polynomial hierarchy, then
Q-Crrcurt SAT can be decided efficiently.

PROPOSITION 1. For all positive real « > 0, Q-CIrcurt SAT on
29" _size circuits can be decided in poly(n) - (24" + 2™) time with a
>2SAT oracle.

Indeed, with a ¥y machine, one can simply guess the 2"-bit
truth table of the given circuit, universally verify the truth table
is correct on all inputs, and verify that the QBF defined on the
truth table is true, in O(2%™ + 2™) time. (We can use 23SAT as an
oracle specifically, because of tight reductions from X time T(n) to
3SAT; see for example [32].) This observation naturally begs the
question of whether Q-Circurt SAT self-improvement is possible
on algorithms with an oracle in 3 P. In the full version, we show
that such a result would separate NP from NC!, even if we could
only obtain non-uniform circuits as a consequence.

THEOREM 1.9 ([68]). Suppose a self-improvement result holds for
Q-Circult SAT with X3P-oracle algorithms, i.e., assume:
7See [57] for another proposal, which would apply to uniform lower bounds for NP

and PSPACE if it can be realized. Santhanam’s approach looks significantly more
general than ours, but does not seem to extend down to functions in P.

1377

R. Ryan Williams

There is some k > 0 such that Q-Circuit SAT on
2kn+o(n) _gize circuits in 2801 time (with a $2SAT
oracle) implies that for all ¢ > 0, Q-Circurt SAT on
20(1) _size circuits has 26™+°(") _size non-uniform %, SAT -

oracle circuits.

Then NP £ NC!.

(Here, we use the LOGTIME-uniform definition of NC! [65].)
The choice of “Z3” in the theorem statement is somewhat arbitrary:
using “%.” for any ¢ > 2 would suffice. To prove this theorem,
we show that NP = NC! implies a strong circuit lower bound on
Q-CircurT SAT, even for circuits with an oracle in the polynomial
hierarchy.

In the full version [68], we also prove as a consequence of self-
improvement that, if there is any k > 0 such that Q-Circurt SAT on
2kn_gize circuit predicates has non-uniform circuits of size 2k"+0()
then NP # NC!. We should stress that we do not (yet) consider
these theorems as a viable approach to separating NP from NC!,
but they do elevate the question of why self-improvement only
seems to work for deterministic and randomized algorithms, but
not for stronger models of computation.

On the Meaning of This Work. Does this paper prove a connection
between “weak exponential” lower bounds for one problem IT and
“strong exponential” lower bounds for another problem ¥? It is the
opinion of the author that the answer is yes, and that Theorem 1.4
is the most striking example of the connection: an N 1+o(1) _time
algorithm for Circurt SAT on ¢log(N) inputs (for any £ > 0) is
equivalent to having an N 1+o(1) _time algorithm for Circurt SAT
on K log(N) inputs, for every K, no matter how large. However, oth-
ers may disagree, and argue that what is actually being proved here
is an equivalence between different exponential-time hypotheses: one
is showing that the “exponential-time hypothesis for Circurr SAT
on 2K"_size circuits” for arbitrarily large K > 1 (defined in the
appropriate way) is equivalent to the “exponential-time hypothesis
for CircurT SAT on 2¢"-size circuits” for arbitrarily small ¢ > 0.
The author believes this is also a perfectly valid interpretation of the
results; the difference boils down to what one counts as “weak expo-
nential” versus what is “strong exponential”. (Both interpretations
are interesting, in the opinion of the author.) The parameterized ver-
sion of our self-improvement result (Theorem 1.7) also shows what
may be considered a “truer” self-improvement: one time bound
for Circurt SAT directly implies a strictly stronger time bound for
Circurt SAT.

2 PRELIMINARIES

We assume familiarity with computational complexity, especially
circuit complexity [9, 37, 65]. We are often interested in LOGTIME-
uniform (and POLYLOGTIME-uniform circuits, respectively), where
local information about the gates of poly(n)-size circuits can be
determined in time linear (respectively, polynomial) in the names
of the gates, each of which take O(log n) bits to describe. We will
give technical details on such uniformity conditions as needed in
our proofs; see [65] for full technical definitions.

Notation and Defaults. Unless otherwise specified, our Boolean
circuits are over the basis of all possible gates of fan-in two (the

Self-Improvement for Circuit-Analysis Problems

particular gate basis will not matter for our results, as long as the
basis is universal and each gate has constant fan-in.)

As is standard for bounded fan-in circuits, the size of a circuit is
defined to be the number of gates. For a given circuit C, we let (C)
denote the description of C in binary.

Recall that CircurT EvAL is the P-complete problem of Circuit
Evaluation, in which we are given the description (C) of a circuit C,
and an assignment a to the inputs of C, and wish to output C(a) = 1.
For notational convenience, in this paper we redefine CIRcuIT EvaL
to be the following multi-output problem:

Circult EvAL: Given the description (C) of a circuit C,
and a partial assignment a to the inputs of C, output
the description of the circuit C’(x) := C(a, x), where x
denotes the remaining unassigned inputs of C.

The following basic fact about circuit evaluation will be very
useful.

LEMMA 2.1 (VALIANT [60], PIPPENGER-FISCHER [54]). The problem
Circutt EvAL has circuits of size O(n), constructible in O(n) time
(even on a multitape Turing machine). In particular, for every n,
there is a circuit Dy, of(j(n) size such that, given the description (C)
of a circuit C of size n and a partial assignment a to some of C’s
inputs, D, ({C), a) outputs a description of C restricted to the partial
assignment a.

2.1 Related Work

The most directly relevant prior result is that of Salamon and We-
har [56], who show if Circuit SAT with 2" gates and n inputs is
solvable in 2"+°(") time, then Crrcurt SAT with m gates is solvable
in 2™ time for every ¢ > 0. Our results can be seen as substan-
tial generalizations, weakening the hypotheses and strengthen-
ing the resulting conclusions. More precisely, they require that an
O(N?)-time solvable version of Circurr SAT can be improved to
N time, in order to get a subexponential-time algorithm for
satisfiability of O(n)-size circuits. In contrast, one corollary of our
main result (Corollary 1.2) states that improving an O(N*¢)-time
solvable version of CIrcurT SAT to N1+to(1) time, for any ¢ > 0,
implies a subexponential-time algorithm for satisfiability of subex-
ponential-size circuits. (Indeed, following Theorem 3.4, we obtain a
subexponential-time algorithm for X; Circurt SAT, for every con-
stant k.) At a high level, the approach of Salamon and Wehar looks
similar: they partition the variables of their input circuit, and call an
algorithm on restrictions of the input circuit based on the variable
partition. However, their approach appears to require the use of a
specialized computational model (which they call “DTIWI”) that
hampers the generality of what they can prove.

Other works have demonstrated phenomena which are similar
to our self-improvement results, but differ in various critical ways.
Williams [66] studied the consequences of speeding-up exhaustive
search in limited scenarios. Along with showing that slightly faster
Circurt SAT algorithms imply non-uniform circuit lower bounds,
he also showed that if every problem II solvable with log n bits of
nondeterminism in n¢ time and (log n)d space can be simulated
in O(n°*%-%%) time and poly(log n)? space for all ¢,d > 1, then a
dramatic speed-up is possible: every such II can be solved nondeter-
ministically in O(n®) time, which would imply LOGSPACE # NP

1378

STOC ’24, June 24-28, 2024, Vancouver, BC, Canada

among other consequences. Thus, by imposing a space restriction
on the verifier and the assumed simulation, a more dramatic simu-
lation is possible from assuming a minor speed-up. Williams also
observes that a Circurt SAT algorithm running in 4(1=9)" time
on circuits of size 2" with n inputs, for some ¢ > 0, implies that
the 3SUM conjecture is false.® It is also easy to see that the same
hypothesis implies that SETH and thereby the Orthogonal Vec-
tors Conjecture is false (this also follows from the base case of
Theorem 1.1).

Paturi and Pudlak [52] study OPP algorithms, which are proba-
bilistic polynomial time algorithms with 1/p(n) success probability,
where p(n) can be exponential. They show if Circuit SAT has an
OPP algorithm with success probability 1.9997", then CircurT SAT
on poly(n)-size circuits has deterministic circuits of size 2" for
some ¢ > 0. Their argument involves applying the polynomial-
size circuit for CIRcurT SAT to itself in an interesting way. While
their Circurt SAT conclusion seems stronger than the ones we
derive (we derive 2¢"-time algorithms for 29(n) size circuits), their
CirculT SAT hypothesis looks stronger than the hypotheses that
we consider, especially for our extensions to randomized algorithms
for Circurt SAT (found in the full version of the paper).

The results in this paper show how “minor-looking” algorith-
mic improvements would imply major algorithmic improvements,
in which the minor algorithm is repeatedly applied to achieve
faster algorithms on smaller input lengths. These results can be
seen as converses of hardness magnification phenomena [6, 20—
22,46,47,49, 50, 58], in which “minor-looking” computational lower
bounds would imply major lower bounds. The contrapositives of
hardness magnification results can also be viewed in a similar light.
For example, Allender-Koucky [6] show that if Boolean Formula
Evaluation has constant-depth MAJORITY/NOT (TC?) circuits of
any polynomial size, then the problem also has O(1/¢)-depth MA-
JORITY/NOT circuits of n!*¢ size, for all ¢ > 0. This is proved by ex-
ploiting the nice downward self-reducibility of Formula Evaluation.
Our setting appears to be very different from that of hardness mag-
nification. We study versions of NP-hard problems in a “polynomial-
time solvable” regime, and show that sufficiently strong algorithms
in this setting would imply exponentially-faster algorithms in the
“super-polynomial-time solvable” regime. In our self-improvement
results for CirculT SAT, #CircurT SAT, and Q-Circuit SAT, the
main property required is that the problem is “embarrassingly par-
allel”, in that the space of variable assignments can be partitioned
in a simple way so that the overall answer can be easily obtained
from the answers on the parts.

In general, when one considers CIRcUIT SAT on circuits which
are large relative to the number of input variables, one is studying
a problem with “bounded nondeterminism” or “limited nondeter-
minism”, where the amount of nondeterminism is significantly less
than the input length n (in our case, the amount of nondetermin-
ism is O(logn)). The theory of complexity classes with limited
nondeterminism was initiated in [41]; further related references
include [12, 15, 17, 31, 66].

8Recall the 3SUM problem asks: given a set S of n numbers, are there three which sum
to zero? The 3SUM conjecture is that there is no n>~¢ time algorithm for 3SUM, where
> 0.

STOC ’24, June 24-28, 2024, Vancouver, BC, Canada

Finally, we note that a type of self-improvement was known in
algebraic complexity. In particular, there are bootstrapping results
are known for derandomizing the Polynomial Identity Testing (PIT)
problem [3, 42, 43]. Roughly speaking, these results show that
“minor” improvements over the obvious deterministic black-box
PIT algorithm for circuits with a constant number of variables
would yield a nearly-polynomial-time deterministic algorithm for
the full PIT problem. The proofs of these results also work in stages,
where in each successive stage, the algorithm from the previous
stage is used to build a faster algorithm.

3 SELF-IMPROVEMENT FOR CIRCUIT
ANALYSIS PROBLEMS

Here, we prove the main self-improvement result, showing how
non-trivial algorithms for LARGE Circuit SAT would imply faster
algorithms for CirculT SAT on subexponential-size circuits.

Reminder of Theorem 1.1. Let a, f§ be positive reals, with a <
B. Suppose Circurt SAT on 2%7+0(1) _gize circuits can be solved in
2Pn+o(n) time Then Crrcurr SAT on 2°(") -size circuits can be solved
in 2(f=am+o(n) yime,

Before we begin the proof, the following intuition may be helpful.
Suppose we have a circuit C of size 20(m) andn inputs, and we want
to solve Circuit-SAT on C, as fast as possible. Furthermore, assume
we have in our hands an algorithm for Circuit-SAT that runs on
circuits of size 2" *°(") with n’ inputs, and this algorithm runs in
2m'+o(n) time,

To get a faster SAT algorithm for C using the assumed algorithm,
we may start by offloading some of the work of satisfiability onto
the circuit itself, with the following “OR trick” used in several fine-
grained algorithms [2, 19, 67]. WLOG suppose n is even. Take the
first n/2 inputs of C, and consider the circuit C’ on n/2 inputs,
defined as follows:

C’(xl,...,xn/z) = C(at, ..., ap/2, X1, -+ - Xpj2)-

That is, C’ takes an OR over all possible assignments to the first
n’ := n/2 variables of C, plugging each assignment into a separate
copy of C. Observe that C’ has 2" +°("") size, and C’ is satisfiable
if and only if C is satisfiable. Now, if we apply our assumed SAT
algorithm to C’, we get a new SAT algorithm for 20(1)_sjze C that
runs in only 27 *0("") = on/2+o(n) {ime beating the brute-force
algorithm which runs in 2°(") time.

Our key observation is that the new SAT algorithm just derived
can be combined with the assumed SAT algorithm, to “improve
upon itself”. After we split the variables into two parts, instead of
taking an OR over all possible assignments, we can run the new
2n/2+0(n) _time SAT algorithm for 2°(")-size circuits. For example,
suppose we split the n variables into an “outer” set of n/3 and an
“inner” set of 2n/3. After any assignment to the outer variables
is made, the remaining SAT instance on n’ = 2n/3 variables can
be solved in 2% /2+0(n) = gn/3+0(n) time using our new SAT al-
gorithm. Therefore, by calling our assumed SAT algorithm on a
on/3+0(n) gize circuit that encodes the new SAT algorithm, with the
n/3 outer variables as input, we can derive an even faster SAT algo-
rithm, running in 2"/3*°(") time on 2°(") _size circuits. Repeating

1379

R. Ryan Williams

the argument, we can achieve 2""/k*°(") time for any constant k > 1.
The following proof is a very general form of this intuition.

Proor. We will inductively show that for every ¢ > 0, there is
an algorithm which can decide satisfiability for 2°(")-size circuits
in 24" time.

Start with a Circurr SAT instance C of 2°(™) size and n inputs.
Let S be an algorithm running in 287+(") time that takes as input
the description (C’) of a 2an+0(n) _gjze circuit C’, and determines
satisfiability for C’.

Our first improved algorithm 7 can be described as follows.
Given (C), the algorithm constructs a circuit D on m = n/(1 + a)
inputs with the following behavior. First, given an assignment x of
m = n/(1+a) bits, D feeds the bits of x into the first n/(1+a) inputs
of C. Formally, this is implemented by calling Circurt EvaL({C), x).
(The circuit D has the description of C hard-coded.) By Lemma 2.1,
Circult EvaL({C), x) outputs the description (C”) of a circuit C’
with m" = an/(1 + @) inputs and 20(n) < 20(m) gize Next, D
enumerates all possible 2™ assignments to the m’ inputs of C’, and
takes the OR over all such assignments. Thus, D has size

2m’+o(m) < 20m/(1+0()+a(n) < 2am+0(m)

and has m inputs. Note that a description (D) of D can be con-
structed in 2¢*+0(M) time: we only have to write down a descrip-
tion of the OR of 2™ circuits of the form Crrcurt EvaL({C’), a),
over all possible a € {0, l}ml. Furthermore, observe that D has
m = n/(1+ a) inputs.

Finally, the algorithm feeds the description (D) of size gam+o(m)
to the assumed algorithm S, which runs in time

2ﬁm+o(m) < 2ﬁn/(1+a)+o(n),

and outputs a yes/no answer. Observe that C is satisfiable if and
only if S({D)) outputs yes: there is a satisfying assignment to C
if and only if there is a partial assignment a € {0,1}"" such that
Circurt EvaL({C’), a) is satisfiable, which is true if and only if
S({D)) outputs yes.

From the above, we conclude that satisfiability of circuits of
2°(") size can be determined in 287/ (1+@)+0(n) time Denote this
algorithm by 7.

We can repeat the above argument, but instead of enumerating
all possible assignments (simulating brute-force search), we call
the algorithm 77 instead. Suppose inductively that satisfiability of
circuits of n inputs and 2°(") size can be determined by an algorithm
i running in 2fen+o(n) time, (For instance, in the base case, we
know we can set fy := 5, by our hypothesis.)

In particular, let § € (0, 1) be a parameter, and let C be a 20(n)_
size circuit on n inputs as before. We make a circuit D on m =
(1 — &)n inputs with the following behavior: Given an assignment
x of m bits, D plugs x into the first (1 — §)n inputs of C, yielding a
circuit C’ with n inputs and 2°(") size, by calling Crrcurr EvaL
appropriately as before. Next, D calls the algorithm ¥} to determine
the satisfiability of C’ (instead of computing a large OR), which
takes 20fkn+o(n) time. converting this call into a circuit, the size is
20fin+o(n) Now we have a circuit D on m = (1 - &)n inputs of size
28fkn+o(n) \which is equi-satisfiable to our original circuit C.

Self-Improvement for Circuit-Analysis Problems

Setting & such that dfyn = am, our circuit D will have m in-
puts and 2¢+°(M) gize so its satisfiability can be determined in
2Pm+o(m) time, by our original assumption. Note that

Sfin=am & §fr =a(1-9),

so setting § = a/(fx + a) accomplishes this. We can therefore
determine satisfiability of C in time

2ﬁm+o(m) < zﬁ(l—a/ (fi+a))n+o(n)]

Let this new SAT algorithm be 7.
Define the sequence

Jo =B, fiwr = P(1 = a/ (fic +).

The above argument shows that we can construct a sequence of
algorithms F. for computing satisfiability of 20(") _size circuits,
where the kth algorithm runs in time 2fkn+o(n) For all ¢ > 0, we
claim that the sequence {f;} is monotone decreasing, and {f;}
converges to
Jo=p-a

First, we note that the sequence {f;} is monotone increasing, by
an easy induction proof.

Base Case: Showing fy > fi is equivalent to showing 1 >
1-a/(1+a),ie,a/(1+a) > 0, which is true since a > 0.

Inductive Step: Suppose fr._; > fi. Recall f > a > 0. We derive

Jirnn =B = a/(fk + @) < (1 = a/(fi-1 + @) = fi
el-a/(fi+ta) <l-a/(fro1+@)

e a/(fi +a) > a/(fi-1 +)

S fita< frita

& fi < frx—1, which we assumed true.

This completes the induction.
Since every fi. > 0 and {f;} is monotone decreasing, the se-
quence has a limit point satisfying the equation

Joo = (1 = a/(foo +a)),

which has the two solutions fo € {0, — a}.

The entire construction above is highly uniform, in that a de-
scription of the k-th algorithm can be constructed in O(g(k)) time
for a computable function g, given that the description length of S
is O(1). To ensure that the final running time of our algorithm is
indeed 2(f—@)n+o(n) o can repeat the above construction for a
slightly unbounded value k = k(n), and note that the sequence {f; }
converges rapidly. We consider two cases. First, for the case where
a = f, one can prove by induction that f; = a/(k +). Therefore
in this case, for any function k(n) > w(1), we have fi(,) < o(1).
For the case where a < 8, we have fy — fi = fa/(1+), and

(04 (04
Ji = Jent Zﬁ(l_fk—l +a) _ﬁ(l_fkﬂx)
~ 1 1
_ﬂa(fk"'a fk—1+0‘)
=,Ba(fi-1— fi)
(fi +) (fi-1+ @)
s%-(fk_l—fk),

1380

STOC ’24, June 24-28, 2024, Vancouver, BC, Canada

where the last inequality follows since f+a and fi._;+a are both at
least f (the sequence {f}} is monotone non-decreasing). Therefore
for § > a and any function k(n) > w(1), fi(n) is within o(1) of
B — a. This completes the proof. O

By tracking the dependence of the circuit size throughout the
proof, one can prove a slightly stronger result than Theorem 1.1, in
which the resulting algorithm can solve CircurT SAT rapidly on
circuits that are mildly exponential in size.

THEOREM 3.1 ([68]). Suppose there are f > a > 0 such that
CIRCUIT SAT on 2¢"0(1) _size circuits can be solved in 2P"+e" time,
for all ¢ > 0. Then for every ¢ > 0, there is a y > 0 such that
CIrcUIT SAT on 2Y"-size circuits can be solved in 2(F~@)n¥en yime

3.1 Discussion on the Proof

To illustrate the generality of Theorem 1.1, let us discuss various
modifications and extensions that can be made. First, note the
construction in the proof of Theorem 1.1 works equally well for
relating the circuit complexity of Circurt SAT and LARGE CIRCUIT
SAT. Replacing every occurrence of “algorithm in time T” with
“circuit of size T” in the proof, every step goes through. We have:

THEOREM 3.2. Let a, f > 0 with a < f. Suppose CIRcUIT SAT on
20m+0(n) _ize circuits can be decided with a circuit family of 261+0(n)

size. Then CIrcurT SAT on 2°") =size circuits can be decided with a
family of 2f=@)n+o(n) gizp

Note that the construction in the proof of Theorem 1.1 is highly
non-black-box: to solve CIrculT SAT on smaller circuits, we use the
descriptions of circuits solving CIRCUIT SAT in order to form the in-
puts to other Circurt SAT circuits, and achieve a faster algorithm in
each inductive stage. At the same time, there is a sense in which the
above proof relativizes. Let A : {0,1}* — {0, 1} be an arbitrary ora-
cle, and recall that an A-oracle circuit is a Boolean circuit equipped
with the usual gates, along with copies of Ay : {0, 1% = {0,1},
where Ay is the restriction of A to k-bit inputs. (Note that because
of the unbounded fan-in of the Ay gates, the size of an A-oracle
circuit is defined to be the number of wires, instead of gates.) Given
a nontrivially-sized A-oracle circuit family for solving LARGE CIr-
cuIT SAT on A-oracle circuits, the same argument above can be
used to derive a smaller A-oracle circuit family for Circurt SAT on
A-oracle circuits of subexponential size.

THEOREM 3.3. Let a, f > 0 with a < . Suppose CIRCUIT SAT
on 20m+0(n) _size A-oracle circuits can be decided by an A-oracle
circuit family of 26m0(1) size (respectively, an A-oracle multitape
TM running in 2P"°(") time). Then Circurt SAT on 2°(") —size A-
oracle circuits can be decided by an A-oracle family of 2(F=@)n+o(n)
size (respectively, an A-oracle multitape TM running in 2(F~@)n+o(n)
time).

It is crucial in our proof that the same oracle A appears in both
the instances of CircurT SAT and the algorithmic model solving
CirculT SAT: Theorem 1.9 shows that lower bounds such as NP #
NC! would follow if we could strengthen self-improvement so
that the algorithm can use a stronger oracle than the Circurt SAT
instance.

Furthermore, the proof of Theorem 1.1 works with minor mod-
ifications for #Circuit SAT, where we wish to count the number

STOC ’24, June 24-28, 2024, Vancouver, BC, Canada

of SAT assignments to a given circuit, as well as Q-Circurt SAT,
the quantified version of CircurT SAT, where we are given a fully-
quantified sentence of the form

(Q1x1) - (Qn xn) [C(x1, ..., Xn)],

where each Q; € {3,V}, C is a circuit, and we wish to decide if the
sentence is true or false.

Reminder of Theorem 1.5. Theorem 1.1 holds for #Circuit SAT
and Q-C1rcult SAT in place of CIrcuUIT SAT.

Proor. (Sketch) We describe how to modify the proof of Theo-
rem 1.1 to accommodate #CIrcurT SAT and Q-Circuit SAT.

For Q-Circurt SAT, instead of computing an OR of 2m’ copies
in the base case over all m’-bit partial assignments, we compute
an appropriate Boolean formula of 2m’ copies, according to the
quantifier types of the m’ variables (existential variables get an
OR, universal variables get an AND). The remainder of the proof is
essentially unchanged: as long as our variable splitting and subse-
quent calls respect the quantifier order of the variables, the rest of
the argument goes through.

For #CIrcurT SAT, instead of computing an OR of 2™ copies in
the base case, we instead use a circuit COUNT which takes N = 2™’
bits of input (one for each of the m’-bit partial assignments), and
outputs the O(log N)-bit count of the number of ones in the input.
It is well-known that such a circuit COUNT can be implemented in
O(N) size, and the construction is uniform (see for example [28]).
This yields a circuit D which has m inputs, gm'+o(m’) size, and
t = O(m’) outputs. Let the ¢ output bits be numbered O;_1, .. ., Op,
so that O;_1 is the high-order bit of CounT, Oy is the low-order
bit, and so on. Define D; to be the subcircuit of D with only one
output gate O;. Then the overall #SAT count of C can be recovered
by computing the sum

~
—_

2" - #Crrcurt SAT(D;), (1)

Il
=

1
which can be done in poly(m’) < poly(n) time, given the vari-
ous #CIrculT SAT(D;). This extra calculation only multiplies the
overall running time by poly(n) < 20(%).

To see why (1) is correct, think of the ¢-bit output of the circuit
D as an integer in {0, 1,..., 2% — 1}, where D; outputs the i-th bit
of this integer. We observe:

#CIRCUIT SAT(C) = Z D(a) (by definition of D)
ae{0,1}™

ac{o1}m
(by definition of the circuits D;)

t—

1
2. Di(a)
0

i=

t-1
= Z 2l Z Di(a)
i=0 ac{0,1}m
t-1
= Z 2% . #Crrcurt SAT(D;).
i=0

In the inductive step, the circuit D takes in a partial assignment
x of m bits, plugs x into the circuit C, then calls an algorithm for

1381

R. Ryan Williams

#CIrcuIT SAT on the reduced circuit, which then outputs a binary
count of the number of satisfying assignments. As in the previous
paragraph, we can break D into t = O(n) subcircuits D;—_1,...,Dp
where D; outputs the i-th bit of the binary count. Calling the origi-
nal assumed #CIrcurT SAT algorithm on each D;(x) which has m
inputs, we can determine the overall #SAT count using the formula
(1). Again, this only multiplies the overall running time by poly(n)
overhead, and computes the exact number of SAT assignments. O

An Equivalence. We now turn to proving an equivalence between
solving e-LARGE CIrcUIT SAT for some ¢ > 0 and solving c-LARGE
Circurt SAT for every ¢ > 0, as mentioned in the Introduction.

Reminder of Theorem 1.4. The following are equivalent:

(1) There is an ¢ € (0,1) such that e-LARGE CIrcuUIT SAT is in
N 4ime.

(2) For every a > 0 (including arbitrarily large), a-LARGE
Crrcurt SAT is in N1 time,

Proor. Clearly (2) implies (1). We prove that (1) implies (2).
Assume CIRcUIT SAT on N size and ¢log(N) inputs is in Ni+o(1)
time for some ¢ > 0. For every parameter a > 0, we want to solve
Circult SAT on N size with alog(N) inputs. There are two cases:

Suppose a < ¢. Then given a circuit C of N size and alog(N)
inputs, simply add (¢ — @) log(N) extra “dummy” inputs that do not
connect to the rest of C. We obtain a circuit C’ of size O(N) with
¢log(N) inputs, and Circurt SAT for C’ can be solved in N*+(1)
time.

If @ > ¢, then let t be the smallest integer such that ¢ < te. Add
“dummy” inputs to the circuit C so that C has exactly telog(N)
inputs, and split the inputs of C into ¢ parts of ¢log(N) variables
each.

Set Cy := C. We will show that foralli = 0,...,t — 1, we can
replace our given circuit C; of size N*o(1) and (¢ - i)elog(N)
inputs with an equi-satisfiable circuit Ci;; that has size N1+0(1)
and (t — (i + 1))elog(N) inputs. Given the circuit C; with (¢ —
i)elog(N) inputs, the circuit Cj4q will first evaluate C; on its first
(¢t — (i + 1))elog(N) inputs, leaving the last elog(N) inputs free.
The resulting circuit description of size N'*°(1) is then fed to the
Circult SAT algorithm for size N and ¢ log(N) inputs, which runs
in N1*0(1) time. Converting all the above to circuitry yields a circuit
Cis1 of (t — (i +1))elog(N) inputs and (N1o(1))1+o(1) = Nl+o(1)
size which is equi-satisfiable with C;.

As the final circuit C; has no inputs and is equi-satisfiable to
Co = C, we obtain an N'*°(1) time algorithm for determining
satisfiability of C. O

In fact, the equivalence can be strengthened even further, to
extensions of satisifability that correspond to constant levels of
the polynomial hierarchy. We naturally define X ¢-LARGE CIRCUIT
SAT to be the restriction of Q-CircurT SAT to circuits with N size,
elog(N) variables (all quantified), such that it is a “3;-SAT” in-
stance: namely, the variables can be partitioned into k contiguous
blocks, where the first block contains only existentially quantified
variables, and for i = 2,...,k, block i contains only universally
quantified variables if i is even, and existentially quantified vari-
ables if i is odd. Observe that 31 e-LARGE CIRcUIT SAT is equivalent
to e-LARGE CIRcUIT SAT, and X a-LARGE CIRcUIT SAT corresponds

Self-Improvement for Circuit-Analysis Problems

to a polynomial-time solvable version of the X P-complete problem
> ,-SAT [9].

THEOREM 3.4 (EXTENSION OF THEOREM 1.4). The following are
equivalent:

(1) There is an ¢ € (0,1) such that e-LARGE CIrcUIT SAT is in
N1+ time,

(2) For every a > 0 (including arbitrarily large a), a-LARGE
Crreurr SAT is in N'*0(1) time,

(3) For everyk > 1 and every a > 0, 3} a-LARGE CIrcuIlT SAT
is in N1 time.

Proor. (1) & (2) follows from Theorem 1.4. (3) implies (2)
by setting k = 1.

We prove that (2) implies (3). Given an instance C of the problem
31 Circurt SAT with a log(N) variables and a circuit predicate of
size N, first split the variables into [¢/a] parts of at most « log(N)
variables each. Next, split every a log(N)-variable part that con-
tains both existential and universal variables (“straddling” multiple
quantifier blocks) into smaller parts which only contain variables of
the same quantifier type (either all-existential, or all-universal). As
there are only k total quantifier blocks, this extra splitting creates
at most k — 1 more parts. Thus the total number of parts ¢ is at most
k + [c/a], each part has variables of exactly one quantifier type,
and each part has at most a log(N) variables.

Let Cp := C. Applying an analogous argument as in the proof of
Theorem 1.4, given a circuit C; of size N 1+0(1) with ¢ — i variable
parts, in N 1+0(1) time we can obtain an equivalent circuit Cj41 of
size N'*°(1) with £ — (i + 1) variable parts, starting by removing
the part that is last in quantification order, and ending with the part
that is first in quantification order. Repeating for ¢ — 1 times, we
reduce the X CircurT SAT problem to satisfiability on a circuit of
size N*o(1) with o log(N) variables, which can be determined in
N0 time by assumption. The only remaining issue is how to
handle those parts with universally quantified variables. Recalling
that

(Vx1, .., x0)[C(x1s .. ., x1)] &= —=(Fx1,...,x:)[C(x1,...,%1)],
we can decide (Vxi,...,x¢)[C(x1,...,x;)] by calling
Circurt SAT(-C)

and flipping the bit of the answer. This amounts to feeding the
description of =C; (rather than C;) into our circuit Ci41, and flipping
the output of the CircurT SAT algorithm implemented in Cj41. This
completes the proof. O

To conclude the discussion, we establish some simple conse-
quences of Theorem 1.1.

Reminder of Corollary 1.2. ETH implies that, for every ¢ > 0,
¢-LARGE CIrcuIT SAT is not solvable in N'*°() time.

Proor. We prove the contrapositive. Given an instance of LARGE
Circult SAT with ¢log(N) inputs and N size, let n = ¢log(N), so
that the circuit size is N = 2. Assuming there is an algorithm
running in N1+0(1) = 2en+0(n) time setting & = f§ = ¢, Theorem 1.1
implies that for every ¢ > 0, Circurt SAT on 2°(") _size circuits
can be solved in 2¢™ time. This contradicts (a very weak form of)
ETH. O

1382

STOC ’24, June 24-28, 2024, Vancouver, BC, Canada

Reminder of Corollary 1.3. Assume for all ¢ > 0, CIRculT SAT
on 2°(") _size circuits cannot be solved in 211=4)" time. Then for every
a > 0 and every e > 0, CIRcurT SAT on 2¢7+0(1)
be solved in time 20n+(1=¢)n+o(n)

-size circuits cannot

ProOF. Again we prove the contrapositive. Suppose there is an
a,& > 0 such that Circurt SAT on 2¢"+°(") size circuits has an
gam+(1=&)n+o(n)_time algorithm. Setting f := a+1— ¢, Theorem 1.1
implies that for every ¢’ > 0, Circurt SAT on 2°(")-size circuits
has an 2(1-€)n+e'n+o(n) ime algorithm. m]

4 A PARAMETERIZED COMPLEXITY
COUNTERPART

Here, we prove Theorem 1.7 from the Introduction. Although the
high-level idea of the circuit constructions in this section is similar
to that for other self-improvement results in the paper, the analysis
and parameter settings turn out to be quite different. For simplicity,
we will phrase the results in terms of circuits for CircurT SAT, but
(as in other sections) the results hold for any algorithmic model for
which time T algorithms can be simulated by size T1+o() circuits.
Following the notation of parameterized complexity, in the follow-
ing we let k be the number of input variables to a circuit, and let n
be the circuit size.

We start with a lemma showing how to compose two param-
eterized circuit families for CIrcurT SAT to obtain a new circuit
family:

LEMMA 4.1. Suppose there area, c > 0 andb,d > 1 such that for all
n k € N, there is a O(29 +n?)-size circuit A, i and a 0(2¢* +n9)-size
circuit By, ., both solving CIRcurT SAT on instances with n size and
k variables. Then there is a circuit family A;l,k solving Circurt SAT

adc

. a -k 1’4 ’_
(with n size and k variables) having size O(2% "~ +n”") fora’ = r v

and b’ = bd.

ProoOF. Our overall approach is similar to the proof of Theo-
rem 1.1: split the set of k inputs into two parts, call the CircuiT SAT
circuit A, ;. on one part forming a new circuit, and call the circuit
B, i for CircurT SAT on the new circuit obtained.

Let p € (0,1) be a parameter to be set later. Given a circuit
C(x,y) of size n (represented in O(nlog n) bits) with pk inputs x
and (1 — p)k inputs y, we construct a new circuit C’ defined as
follows:

C/(y) = An,pk(c(x> y))
That is, C’ has (1 — p)k free inputs of C; for any such assignment to

those inputs, C’ calls A,, pk on the resulting circuit of size at most
n with pk inputs. By assumption, the size of the new circuit C’ is

IC'| < O(nlogn+2a”k +nb).

Note that C” is satisfiable if and only if C is satisfiable. To solve
satisfiability for C’, we can call B, (1_p) on C’, where n’ is the
size of C". The resulting composition of Ay, , and By (1) yields
a circuit for satisfiability of n-size k-input circuits, which has size
O(ZC(I_p)k + (n - poly(logn) + 20Pk 4 nb)d)

< 0(2¢(17P)k 4 gadpk 4 ybd)

STOC ’24, June 24-28, 2024, Vancouver, BC, Canada

To minimize the dependence on k, we set p = # The size is then

+c’
0(27% + %), where a’ = a”d‘icc and b’ = bd. m|

A key observation is that, when a = c in the above, the new
exponent @’ = a- 7&5 < a. Indeed, this (strict) inequality is true for
any a > c. Therefore, applying a CIrculT SAT circuit family of size
29k 1 nb to itself in lemma 4.1 yields a decrease in the exponent
with respect to k. We will exploit this fact.

Let us begin with a simpler statement which is easier to prove,

but still conveys the main idea:

THEOREM 4.2 (THEOREM 1.7, SIMPLIFIED). Thereisac > 1 such
that CircurT SAT has circuits of size O(cK) + n1*°() ' if and only if
for every ¢ > 1, Circurr SAT has circuits of size O(ck) + n'*0(1).

PROOF. One direction is immediate: the statement with a univer-
sal quantifier on c clearly implies the statement with an existential
quantifier on c. For the other direction, assume we start with cir-
cuits of 0(2%) + n'*°(1) size for Crrcurt SAT for some constant
a > 1. For a large constant ¢, we will apply Lemma 4.1 for ¢ times to
these circuits. In particular, we start by using the assumed circuits
in place of A, k., and in place of By (1)k in Lemma 4.1. In each
subsequent application of Lemma 4.1, we take the Circurt SAT
circuits obtained from the previous application, and again apply
those circuits twice in Lemma 4.1 to form new circuits (we use
the ciircuits from the previous application as circuit A, ,x, and as
circuit By (1-p)x)- Since in our case we always have b = 1+ 0(1)
and d = 1+ 0(1), when we apply circuits of size 0(2¢k) 4 plto(1)
to circuits of size 0(2%) + n1*°()) in Lemma 4.1, we obtain circuits
of size

za/k+o(k) +n1+0(1)’
where @’ = ac/(a+c). (Here we are using the fact that n(t+o()? <
n1*()) Since we are always applying the same Circurt SAT cir-
cuit twice to obtain the next circuit, we also have a = c. Therefore
after one application of Lemma 4.1, we have

d =a*/(2q) = a/2,

square-rooting the exponential dependence on the number of vari-
ables k. After t applications, it follows by induction that the circuit
size is at most 29k/2"+0(k) 1 p1+0(1) Therefore we can set ¢ to be
an arbitrarily large constant, and obtain circuits of 2% + nito(1)
size for CircurT SAT, for any desired a > 0. m]

Now we move to the version of Theorem 1.7 presented in the
introduction, in which a slightly super-linear dependence on n is
allowed; the proof turns out to be more delicate.

THEOREM 4.3 (THEOREM 1.7, REPHRASED IN TERMS OF CIRCUITS).
Thereisac > 1 such that foralle > 0, CIrcurT SAT has O(ck+nl*e)-
size circuits, if and only if for every ¢ > 1 and ¢ > 0, CIrcuIT SAT
has O(ck + n'*€)=size circuits.

Proor. One direction is immediate: the statement with a univer-
sal quantifier on c clearly implies the statement with an existential
quantifier on c. For the other direction, we show:

If there is an a > 1 so that for all k, n there are circuits
Ay, i solving Circurt SAT (on instances with k inputs
and n size) of size O(29 + n1*¢) for all ¢ > 0, then for

1383

R. Ryan Williams

all @, B > 0 there are 0(29% + n1*h)-size circuits A;l k
solving CirculT SAT (on k inputs and n size).

Let @, f > 0 be arbitrarily small, and let a > 1 be given. Let b = 1+¢
for an arbitrarily small ¢ > 0 that we will set later, so that our
assumed CIrcurt SAT circuits have size O(2%F + n?).

Let t > 1 be an integer parameter. Following the proof of
Theorem 4.2, we apply Lemma 4.1 for ¢ times to our assumed
Circuilt SAT circuit, where each time we use the Circuit SAT
circuits previously obtained twice: as the circuit A, ;. and as the
circuit By, .

Let us analyze the effect of these Lemma 4.1 applications on the
exponent pairs a, b. At the start, we have a; = a and by = b. After
the (i + 1)-th application of Lemma 4.1, we obtain circuits of size
0(24+1°k 4 pbist) where

Ai+1 = (ai)” - b =a;- bi ,
aj-bi+a; 1+b;
and
bisi = (bi)%.
Inductively, we obtain bjy; = b? and
=1 (2
it _a'g(nbzf)'

Recall that b = 1 + ¢. We want to show that ¢ > 0 and ¢ > 1 can be
set in such a way that two inequalities hold simultaneously:

b =1+ <144, ()
and
t-1 J
bZ
aHl:a.g(m)Sa (3)

For now, let us suppose that after the parameter ¢ is determined,
& > 0 is always set small enough that (1 + 5)22 =1+ f, satistying
inequality (2). That is, we think of ¢ as a function of ¢: whatever ¢
is set to, ¢ will be set accordingly. Now we can focus on satisfying
inequality (3). First, we rewrite (3) so that it reads:

)

Consider applying the inequality 1 —x < e™* (for x > 0) to each
term of the above product. Inequality (3) would then be satisfied, if
the following inequality is true:

-2
e

t—1

at+1=a~l_|

j=0

1+ 0%

11
I 1w < g,

©)

a-
Focusing on the exponent in inequality (4), we see that
1 t

- > -
1+b¥ 142

t
1+ (1462

21

Jj=0

since each of the ¢ terms is lower bounded by 1/(1 + (1 + s)zt).
Recall that we have resolved to set ¢ > 0 so that (1 + g)zt =1+p.
Therefore, if t is set so that

__t
a-e * <aq,

©)

Self-Improvement for Circuit-Analysis Problems

we would satisfy inequality (4), and thereby inequality (3). But
inequality (5) is true as long as

t > (2+ p)In(a/a).

Recall that a, a, § were all fixed constants. Therefore, by setting ¢
large enough, and then setting ¢ > 0 small enough that (1 + e)zt =
1+ B, we have obtained a circuit family of size 0(2%% + n'*F). o

One can also derive analogous “parameterized self-improvement”
theorems for #CIircuiT SAT and Q-CircuiT SAT; we omit the de-
tails, but they can be interpolated from the other proofs in this

paper.

5 OPEN PROBLEMS

We conclude with a few intriguing open problems.

Could self-improvement go all the way down to P = NP? Is
it possible that (say) linear-time SAT algorithms for exponential-size
circuits might imply polynomial-time algorithms for polynomial-
size circuits, concluding P = NP? There seem to be bottlenecks in
the current argument that prevent us from going significantly below
subexponential time, but they could possibly be circumvented with
a little cleverness. Could self-improvement be strengthened in the
non-uniform case to conclude NP c P/poly?

Could self-improvement-style results hold for other com-
binatorial problems, besides just circuit-based ones? On the
face of it, it seems crucial in our self-improvement results that the
algorithm solving the problem can be modeled extremely efficiently,
within an instance of the problem. But given the ubiquity of com-
plete problems for NP, PSPACE, and so on, it seems possible that
self-improvement phenomena could arise in many domains. To give
one example of where something like self-improvement may arise
in graph algorithms, an insightful paper of Or Zamir [70] uses the
container method to show (among other results) that if maximum
independent set (MIS) can be solved in c” time on n-node graphs for
some ¢ > 1, then it can be solved even faster on d-regular graphs, in
¢/2+0a(n) time Tt follows from this reduction that, if there were a
fine-grained reduction (running in subexponential time, preserving
the parameter n) from the general case of MIS to the d-regular case
for large enough constant d, then ETH would be false: we could
repeatedly alternate between the hypothetical fine-grained reduc-
tion and Zamir’s reduction, reducing the running time exponent
for MIS to be as small as we liked.

Can the uniform SYMoSYM circuit lower bounds be further
improved? In principle, some fast matrix multiplication algorithms
can be implemented in TC? [51] so one might hope to reduce the
complexity of the hard function further in our lower bound. There
may also be a way to improve the degree of the polynomial in
the lower bound, by applying self-improvement. Finally, it seems
plausible that our lower bound might be extended to prove that,
for every d, there is a ¢y > 1 such that CircurT EvaL does not have
depth-d SYM circuits of O(n‘?) gates.

Acknowledgements. I am grateful to Lijie Chen, Russell Impagli-
azzo, Valentine Kabanets, Mohan Paturi, Rahul Santhanam, and
Michael Wehar for interesting and useful discussions. I also thank
Shyan Akmal and the STOC’24 reviewers for comments and correc-
tions on an earlier version of the manuscript. Some results in the

1384

STOC ’24, June 24-28, 2024, Vancouver, BC, Canada

parameterized complexity setting were originally obtained in col-
laboration with Nikhil Vyas, but he (sadly) declined co-authorship
on this paper. Many thanks to the Simons Institute for providing a
stimulating environment during the Meta-Complexity and Satisfia-
bility Extended Reunion programs in Spring 2023.

This paper is dedicated to the memory of my undergraduate
mentor Juris Hartmanis, who posed research questions of the form
that are addressed in this paper (see also [4]). Namely, Prof. Hartma-
nis often asked me: “If P = NP, then can SAT be solved in n0 time?”
(One may substitute “10” with any specific constant.) The present
paper is my current best attempt to prove that some “fine-grained”
version of his question can be answered positively.

REFERENCES

[1] Amir Abboud, Thomas Dueholm Hansen, Virginia Vassilevska Williams, and
Ryan Williams. 2016. Simulating branching programs with edit distance and
friends: or: a polylog shaved is a lower bound made. In STOC. ACM, 375-388.
https://doi.org/10.1145/2897518.2897653

Amir Abboud, Ryan Williams, and Huacheng Yu. 2015. More applications of the
polynomial method to algorithm design. In SODA. 218-230.

Manindra Agrawal, Sumanta Ghosh, and Nitin Saxena. 2018. Bootstrapping
variables in algebraic circuits. In STOC. ACM, 1166-1179. https://doi.org/10.
1145/3188745.3188762

Eric Allender, Jin-Yi Cai, Lance Fortnow, William Gasarch, Neil Immerman, Stuart
Kurtz, James Royer, and Ryan Williams. 2022. Open Problems Column: Open
Problems by or Inspired by Juris Hartmanis. SIGACT News 53, 4 (2022), 26.

Eric Allender and Vivek Gore. 1994. A Uniform Circuit Lower Bound for the
Permanent. SIAM J. Comput. 23, 5 (1994), 1026-1049. https://doi.org/10.1137/
50097539792233907

Eric Allender and Michal Koucky. 2010. Amplifying lower bounds by means of
self-reducibility. 7. ACM 57, 3 (2010), 14:1-14:36.

Eric Allender, Michal Koucky, Detlef Ronneburger, Sambuddha Roy, and V. Vinay.
2001. Time-Space Tradeoffs in the Counting Hierarchy. In CCC. 295-302. https:
//doi.org/10.1109/CCC.2001.933896

Josh Alman, Timothy M. Chan, and R. Ryan Williams. 2016. Polynomial Rep-
resentations of Threshold Functions and Algorithmic Applications. In FOCS.
467-476.

Sanjeev Arora and Boaz Barak. 2009. Computational Complexity - A Modern
Approach. Cambridge University Press.

Vishwas Bhargava, Sumanta Ghosh, Zeyu Guo, Mrinal Kumar, and Chris Umans.
2022. Fast Multivariate Multipoint Evaluation Over All Finite Fields. In FOCS.
IEEE, 221-232.

Vishwas Bhargava, Sumanta Ghosh, Mrinal Kumar, and Chandra Kanta Mohapa-
tra. 2022. Fast, algebraic multivariate multipoint evaluation in small characteristic
and applications. In STOC. ACM, 403-415.

Stephen A. Bloch, Jonathan F. Buss, and Judy Goldsmith. 1998. Sharply Bounded
Alternation and Quasilinear Time. Theory Comput. Syst. 31, 2 (1998), 187-214.
https://doi.org/10.1007/s002240000085

Allan Borodin and R. Moenck. 1974. Fast Modular Transforms. J. Comput. Syst.
Sci. 8, 3 (1974), 366-386. https://doi.org/10.1016/S0022-0000(74)80029-2

Mark Braverman, Young Kun-Ko, and Omri Weinstein. 2015. Approximating the

=
S

—
_

=
&

=
&

best Nash Equilibrium in n°U08 M) _time breaks the Exponential Time Hypothesis.
In SODA. 970-982. https://doi.org/10.1137/1.9781611973730.66

Jonathan F. Buss and Judy Goldsmith. 1993. Nondeterminism Within P. SIAM .
Comput. 22, 3 (1993), 560-572. https://doi.org/10.1137/0222038

Samuel R. Buss and Ryan Williams. 2015. Limits on Alternation Trading Proofs
for Time-Space Lower Bounds. Comput. Complex. 24, 3 (2015), 533-600. https:
//doi.org/10.1007/s00037-015-0104-9

Liming Cai and Jianer Chen. 1997. On the Amount of Nondeterminism and the
Power of Verifying. SIAM J. Comput. 26, 3 (1997), 733-750. https://doi.org/10.
1137/50097539793258295

Chris Calabro, Russell Impagliazzo, and Ramamohan Paturi. 2006. A Duality
between Clause Width and Clause Density for SAT. In CCC. 252-260.

Timothy M. Chan and R. Ryan Williams. 2021. Deterministic APSP, Orthogonal
Vectors, and More: Quickly Derandomizing Razborov-Smolensky. ACM Trans.
Algorithms 17,1 (2021), 2:1-2:14. https://doi.org/10.1145/3402926

Lijie Chen, Shuichi Hirahara, Igor Carboni Oliveira, Jan Pich, Ninad Rajgopal,
and Rahul Santhanam. 2020. Beyond Natural Proofs: Hardness Magnification
and Locality. In ITCS. 70:1-70:48. https://doi.org/10.4230/LIPIcs ITCS.2020.70
Lijie Chen, Ce Jin, and R. Ryan Williams. 2019. Hardness Magnification for all
Sparse NP Languages. In FOCS. 1240-1255.

ey
o)

oy
&

https://doi.org/10.1145/2897518.2897653
https://doi.org/10.1145/3188745.3188762
https://doi.org/10.1145/3188745.3188762
https://doi.org/10.1137/S0097539792233907
https://doi.org/10.1137/S0097539792233907
https://doi.org/10.1109/CCC.2001.933896
https://doi.org/10.1109/CCC.2001.933896
https://doi.org/10.1007/s002240000085
https://doi.org/10.1016/S0022-0000(74)80029-2
https://doi.org/10.1137/1.9781611973730.66
https://doi.org/10.1137/0222038
https://doi.org/10.1007/s00037-015-0104-9
https://doi.org/10.1007/s00037-015-0104-9
https://doi.org/10.1137/S0097539793258295
https://doi.org/10.1137/S0097539793258295
https://doi.org/10.1145/3402926
https://doi.org/10.4230/LIPIcs.ITCS.2020.70

STOC ’24, June 24-28, 2024, Vancouver, BC, Canada R. Ryan Williams

[22] Lijie Chen, Dylan M. McKay, Cody D. Murray, and R. Ryan Williams. 2019. (2013), 311-343. https://doi.org/10.1007/s00037-013-0069-5
Relations and Equivalences Between Circuit Lower Bounds and Karp-Lipton [47] Dylan M. McKay, Cody D. Murray, and R. Ryan Williams. 2019. Weak lower
Theorems. In CCC. 30:1-30:21. https://doi.org/10.4230/LIPIcs.CCC.2019.30 bounds on resource-bounded compression imply strong separations of complexity

[23] Lijie Chen, Ron D. Rothblum, Roei Tell, and Eylon Yogev. 2020. On Exponential- classes. In STOC. ACM, 1215-1225.

Time Hypotheses, Derandomization, and Circuit Lower Bounds: Extended Ab- [48] Abhijit Mudigonda and R. Ryan Williams. 2021. Time-Space Lower Bounds for
stract. In FOCS. IEEE, 13-23. Simulating Proof Systems with Quantum and Randomized Verifiers. In ITCS

[24] James W Cooley and John W Tukey. 1965. An algorithm for the machine cal- (LIPIcs, Vol. 185). Schloss Dagstuhl - Leibniz-Zentrum fiir Informatik, 50:1-50:20.
culation of complex Fourier series. Mathematics of computation 19, 90 (1965), [49] Igor Carboni Oliveira, Jan Pich, and Rahul Santhanam. 2019. Hardness Magnifi-
297-301. cation near State-Of-The-Art Lower Bounds. In 34th Computational Complexity

[25] Marek Cygan, Fedor V. Fomin, Lukasz Kowalik, Daniel Lokshtanov, Daniel Marx, Conference, CCC 2019. 27:1-27:29. https://doi.org/10.4230/LIPIcs.CCC.2019.27
Marcin Pilipczuk, Michal Pilipczuk, and Saket Saurabh. 2015. Parameterized [50] Igor Carboni Oliveira and Rahul Santhanam. 2018. Hardness Magnification for
Algorithms. Springer. hitps://doi.org/10.1007/978-3-319-21275-3 Natural Problems. In FOCS. 65-76.

[26] Marek Cygan, Marcin Pilipczuk, and Michal Pilipczuk. 2016. Known Algorithms [51] Ojas Parekh, Cynthia A. Phillips, Conrad D. James, and James B. Aimone. 2018.
for Edge Clique Cover are Probably Optimal. SIAM §. Comput. 45, 1 (2016), 67-83. Constant-Depth and Subcubic-Size Threshold Circuits for Matrix Multiplication.
https://doi.org/10.1137/130947076 In SPAA. ACM, 67-76. https://doi.org/10.1145/3210377.3210410

[27] Holger Dell, Thore Husfeldt, Déniel Marx, Nina Taslaman, and Martin Wahlen. [52] Ramamohan Paturi and Pavel Pudlak. 2010. On the complexity of circuit satisfia-
2014. Exponential Time Complexity of the Permanent and the Tutte Polynomial. bility. In STOC. ACM, 241-250.

ACM Trans. Algorithms 10, 4 (2014), 21:1-21:32. https://doi.org/10.1145/2635812 [53] Wolfgang J. Paul. 1976. Realizing Boolean Functions on Disjoint sets of Variables.

[28] Evgeny Demenkov, Arist Kojevnikov, Alexander S. Kulikov, and Grigory Theor. Comput. Sci. 2, 3 (1976), 383-396. https://doi.org/10.1016/0304-3975(76)
Yaroslavtsev. 2010. New upper bounds on the Boolean circuit complexity 90089-X
of symmetric functions. Inf. Process. Lett. 110, 7 (2010), 264-267. https: [54] Nicholas Pippenger and Michael J. Fischer. 1979. Relations among complexity
//doi.org/10.1016/j.ipl.2010.01.007 measures. J. ACM 26, 2 (1979), 361-381.

[29] Rodney G. Downey and Michael R. Fellows. 1999. Parameterized Complexity. [55] Aviad Rubinstein. 2016. Settling the Complexity of Computing Approximate
Springer. https://doi.org/10.1007/978-1-4612-0515-9 Two-Player Nash Equilibria. In FOCS. 258-265.

[30] Charles M. Fiduccia. 1972. Polynomial Evaluation via the Division Algorithm: [56] Andras Z. Salamon and Michael Wehar. 2022. Superlinear Lower Bounds Based
The Fast Fourier Transform Revisited. In STOC. 88-93. on ETH. In STACS (LIPIcs, Vol. 219). Schloss Dagstuhl - Leibniz-Zentrum far

[31] Jorg Flum, Martin Grohe, and Mark Weyer. 2006. Bounded fixed-parameter Informatik, 55:1-55:16. https://doi.org/10.4230/LIPIcs.STACS.2022.55
tractability and logzn nondeterministic bits. J. Comput. Syst. Sci. 72, 1 (2006), (57] Rahul Sa‘nthanam.'2023. An Algorithmic Appmach to Uniform Lower Bounds.
34-71. https://doi.org/10.1016/j.jcss.2005.06.003 Electronic Colloquium on Computational Complexity (ECCC) TR23-028 (2023),

[32] Lance Fortnow, Richard J. Lipton, Dieter van Melkebeek, and Anastasios Viglas. 100.

o
&,

Aravind Srinivasan. 2003. On the approximability of clique and related maxi-
mization problems. J. Comput. Syst. Sci. 67, 3 (2003), 633-651. https://doi.org/10.
1016/S0022-0000(03)00110-7

Suguru Tamaki. 2016. A Satisfiability Algorithm for Depth Two Circuits with a
Sub-Quadratic Number of Symmetric and Threshold Gates. Electronic Colloquium

2005. Time-space lower bounds for satisfiability. 7. ACM 52, 6 (2005), 835-865.
[33] Sumanta Ghosh, Prahladh Harsha, Simao Herdade, Mrinal Kumar, and Ramprasad
Saptharishi. 2023. Fast Numerical Multivariate Multipoint Evaluation. Electronic

Colloquium on Computational Complexity TR23-033 (2023). (59

[34] Jens Gramm, Jiong Guo, Falk Hiiffner, and Rolf Niedermeier. 2008. Data reduction c ional Complexi cce htto: hoi-web.d
and exact algorithms for clique cover. ACM J. Exp. Algorithmics 13 (2008). https: on Computational Complexity (ECCC) TR16-100 (2016). http://ecce.hpi-web.de/
//doi.org/10.1145/1412228.1412236 report/2016/100) - .

[35] Russell Impagliazzo and Ramamohan Paturi. 1999. Complexity of k-SAT. In CCC. [60] Leslie G. Valiant. 1976. Universal Circuits (Preliminary Report). In STOC. ACM,
237-240. https://doi.org/10.1109/CCC.1999.766282 19_67203' Ikebeek. s ¢ ds for Satisfabili d

[36] Russell Impagliazzo, Ramamohan Paturi, and Francis Zane. 2001. Which Problems [61] leterdvan {\)/l[e ebeck. 2006' 12 u}llrveyé) Loweg Bpun s for Satistiabi 1t}}/1 an)
Have Strongly Exponential Complexity? J. Comput. Syst. Sci. 63, 4 (2001), 512-530. RZ gte Problems. Found. Tr‘en s Theor. Comput. Sci. 2, 3 (2006), 197-303. https:
https://doi.org/10.1006/jcss.2001.1774 o g of.org/ 101;/1[5161(1/ 84012000311; Raz. 2005, A time lower bound for satisfiabil

[37] Stasys Jukna. 2012. Boolean function complexity: advances and frontiers. Vol. 27. [62] Dieter van Me cbeek and man Haz. - A time lower bound for satistiability.
Springer Science & Business Media. Theor. Comput. Sci. 348, 2-3 (2005), 311-320. https://doi.org/10.1016/j.tcs.2005.09.

[38] Daniel M. Kane and Ryan Williams. 2016. Super-linear gate and super-quadratic OZ,O . . .
wire lower bounds for depth-two and depth-three threshold circuits. In STOC. [63] Dieter van Melkebeek and Thomas Watson. 2012. Time-Space Efficient Simu-
633-643 lations of Quantum Computations. Theory Comput. 8, 1 (2012), 1-51. https:

[39] Ravi Kannan. 1983. Alternation and the Power of Nondeterminism. In STOC. //(A101:01Arg/10,4(A)86/t0020%Z.AVOOSaOOl . . .

ACM., 344-346, [64] Virginia Vassilevska Williams. 2018. On some fine-grained questions in algo-

[40] Kiran S. Kedlaya and Christopher Umans. 2011. Fast Polynomial Factorization rithms and complexity. In Proceedings of the International Congress of Mathemati-

cians (ICM). World Scientific, 3447-3487.

Heribert Vollmer. 1999. Introduction to Circuit Complexity - A Uniform Approach.

Springer. https://doi.org/10.1007/978-3-662-03927-4

[66] Ryan Williams. 2013. Improving Exhaustive Search Implies Superpolynomial
Lower Bounds. SIAM J. Comput. 42, 3 (2013), 1218-1244. https://doi.org/10.1137/

and Modular Composition. SIAM J. Comput. 40, 6 (2011), 1767-1802.

[41] Chandra M. R. Kintala and Patrick C. Fischer. 1977. Computations with a Re-
stricted Number of Nondeterministic Steps (Extended Abstract). In STOC. ACM,
178-185. https://doi.org/10.1145/800105.803407

[65

[42] Mrinal Kumar, Ramprasad Saptharishi, and Anamay Tengse. 2019. Near-optimal 10080703X

Bootst: ing of Hitting Sets for Algebraic Circuits. In SODA. SIAM, 639-646.

h;)t‘;ss'//r ;Eip (l)]:g/ ?0 111371;11%7; 156 101r975§§2 l::)lc prentts. o [67] Ryan Williams. 2014. Nonuniform ACC circuit lower bounds. 7. ACM 61, 1 (2014),
43] Mrinal K , R d Saptharishi, and A Te . 2023. Near-Optimal - L. .
(43] Mrinal Kumar, Ramprasad Saptharishi, and Anamay Tengse ear-opuma [68] Ryan Williams. 2023. Self-Improvement for Circuit-Analysis Problems. Electron.

Bootstrapping of Hitting Sets for Algebraic Models. Theory of Computing 19, 12
(2023), 1-30. https://doi.org/10.4086/toc.2023.v019a012

[44] Francois Le Gall and Florent Urrutia. 2018. Improved Rectangular Matrix Multi-
plication using Powers of the Coppersmith-Winograd Tensor. In SODA. SIAM,
1029-1046.

Colloquium Comput. Complex. TR23-082 (2023). ECCC:TR23-082 https://eccc.
weizmann.ac.il/report/2023/082

R. Ryan Williams. 2018. New Algorithms and Lower Bounds for Circuits With
Linear Threshold Gates. Theory of Computing 14, 1 (2018), 1-25.

[70] Or Zamir. 2023. Algorithmic Applications of Hypergraph and Partition Contain-

[69

[45] Richard J. Lipton, Evangelos Markakis, and Aranyak Mehta. 2003. Playing large ;
games using simple strategies. In Proceedings 4th ACM Conference on Electronic ers. In STOC. ACM, 985-998. https://doi.org/10.1145/3564246.3585163
Commerce (EC). ACM, 36-41. https://doi.org/10.1145/779928.779933 .

[46] Richard J. Lipton and Ryan Williams. 2013. Amplifying circuit lower bounds Received 12-NOV-2023; accepted 2024-02-11

against polynomial time, with applications. Computational Complexity 22, 2

1385

https://doi.org/10.4230/LIPIcs.CCC.2019.30
https://doi.org/10.1007/978-3-319-21275-3
https://doi.org/10.1137/130947076
https://doi.org/10.1145/2635812
https://doi.org/10.1016/j.ipl.2010.01.007
https://doi.org/10.1016/j.ipl.2010.01.007
https://doi.org/10.1007/978-1-4612-0515-9
https://doi.org/10.1016/j.jcss.2005.06.003
https://doi.org/10.1145/1412228.1412236
https://doi.org/10.1145/1412228.1412236
https://doi.org/10.1109/CCC.1999.766282
https://doi.org/10.1006/jcss.2001.1774
https://doi.org/10.1145/800105.803407
https://doi.org/10.1137/1.9781611975482.40
https://doi.org/10.4086/toc.2023.v019a012
https://doi.org/10.1145/779928.779933
https://doi.org/10.1007/s00037-013-0069-5
https://doi.org/10.4230/LIPIcs.CCC.2019.27
https://doi.org/10.1145/3210377.3210410
https://doi.org/10.1016/0304-3975(76)90089-X
https://doi.org/10.1016/0304-3975(76)90089-X
https://doi.org/10.4230/LIPIcs.STACS.2022.55
https://doi.org/10.1016/S0022-0000(03)00110-7
https://doi.org/10.1016/S0022-0000(03)00110-7
http://eccc.hpi-web.de/report/2016/100
http://eccc.hpi-web.de/report/2016/100
https://doi.org/10.1561/0400000012
https://doi.org/10.1561/0400000012
https://doi.org/10.1016/j.tcs.2005.09.020
https://doi.org/10.1016/j.tcs.2005.09.020
https://doi.org/10.4086/toc.2012.v008a001
https://doi.org/10.4086/toc.2012.v008a001
https://doi.org/10.1007/978-3-662-03927-4
https://doi.org/10.1137/10080703X
https://doi.org/10.1137/10080703X
https://eccc.weizmann.ac.il/report/2023/082
https://eccc.weizmann.ac.il/report/2023/082
https://doi.org/10.1145/3564246.3585163

	Abstract
	1 Introduction
	2 Preliminaries
	2.1 Related Work

	3 Self-Improvement for Circuit Analysis Problems
	3.1 Discussion on the Proof

	4 A Parameterized Complexity Counterpart
	5 Open Problems
	References

