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Abstract

We continue the program of proving circuit lower bounds via circuit satisfiability
algorithms. So far, this program has yielded several concrete results, proving that
functions in Quasi-NP = NTIME[n(IOg")O(I>] and other complexity classes do not
have small circuits (in the worst case and/or on average) from various circuit classes
C, by showing that C admits non-trivial satisfiability and/or #SAT algorithms which
beat exhaustive search by a minor amount. In this paper, we present a new strong
lower bound consequence of having a non-trivial #SAT algorithm for a circuit class
C. Say that a symmetric Boolean function f(xi, ..., x,) is sparse if it outputs 1 on
O (1) values of ) ; x;. We show that for every sparse f, and for all “typical” C, faster
#SAT algorithms for C circuits imply lower bounds against the circuit class f o C,
which may be stronger than C itself. In particular:

—  #SAT algorithms for n*-size C-circuits running in 2" /n* time (for all k) imply
NEXP does not have (f o C)-circuits of polynomial size.

—  #SAT algorithms for 2" -size C-circuits running in 2"~ time (for some & > 0)
imply Quasi-NP does not have (f o C)-circuits of polynomial size.

Applying #S AT algorithms from the literature, one immediate corollary of our results
is that Quasi-NP does not have EMAJ o ACCY o THR circuits of polynomial size,
where EMAJ is the “exact majority” function, improving previous lower bounds
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against ACC? [Williams JACM’ 14] and ACC? o THR [Williams STOC’ 14], [Murray-
Williams STOC’18]. This is the first nontrivial lower bound against such a circuit
class.

Keywords #SAT - Satisfiability - Circuit complexity - Exact majority - ACC

1 Introduction

Currently, our knowledge of algorithms vastly exceeds our knowledge of lower
bounds. Is it possible to bridge this gap, and use the existence of powerful algorithms
to give lower bounds for hard functions? Over the last decade, the program of prov-
ing lower bounds via algorithms has been positively addressing this question. A line
of work starting with Kabanets and Impagliazzo [16] has shown how deterministic
subexponential-time algorithms for polynomial identity testing would imply lower
bounds against arithmetic circuits. Starting around 2010 [22, 23], it was shown that
even slightly nontrivial algorithms could imply Boolean circuit lower bounds. For
example, a circuit satisfiability algorithm running in O (2"/ nk ) time (for all k) on n*-
size circuits with n inputs would already suffice to yield the (infamously open) lower
bound NEXP ¢ P/poly. A generic connection was found between non-trivial SAT
algorithms and circuit lower bounds:

Theorem 1 ([22, 23], Informal) Let C be a circuit class closed under AND, pro-
jections, and compositions.! Suppose for all k there is an algorithm A such that,
for every C-circuit of n* size, A determines its satisfiability in O(2"/n*) time. Then
NEXP does not have polynomial-size C-circuits.

To illustrate Theorem 1 with two examples, when C is the class of general fan-in
2 circuits, Theorem 1 says that non-trivial Circuit SAT algorithms imply NEXP ¢
P/poly; when C is the class of Boolean formulas, it says non-trivial Formula-SAT
algorithms imply NEXP ¢ NC!. Both are major open questions in circuit complexity.
Theorem 1 and related results have been applied to prove several concrete circuit
lower bounds: super-polynomial lower bounds against ACC? [23], ACC® o THR [25],
quadratic lower bounds against depth-two symmetric and threshold circuits [1, 19],
and average-case lower bounds as well [5, 6].

Recently, the algorithms-to-lower-bounds connection has been extended to show
a trade-off between the running time of the SAT algorithm on large circuits, and the
complexity of the hard function in the lower bound [17]. In particular, it is even pos-
sible to obtain some circuit lower bounds against NP with this algorithmic approach
[7, 24]. Let us state a form of the connection that is suitable for the results of this

paper.

!t is not necessary to know precisely what these conditions mean, as we will use different conditions in
our paper anyway. The important point is that these conditions hold for most interesting circuit classes that
have been studied, such as AC?, TC?, NC!, NC, and general fan-in two circuits.
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Theorem 2 ([17], Informal) Let C be a class of circuits closed under unbounded
AND and negation. Suppose there is an algorithm A and ¢ > 0 such that, for every
C-circuit C of 2"° size, A solves satisfiability for C in O(2"~"") time. Then Quasi-NP
does not have polynomial-size C-circuits.?

In fact, Theorem 2 holds even if A only distinguishes between unsatisfiable cir-
cuits from those with at least 2" ! satisfying assignments; we call this easier problem
GAP-UNSAT.

Intuitively, the aforementioned results show that, as circuit satisfiability algorithms
improve in running time and scope, they imply stronger lower bounds. In all known
results, to prove a lower bound against C, one must design a SAT algorithm for a cir-
cuit class that is at least as powerful as C. Inspecting the proofs of the above theorems
carefully, it is not hard to show that, even if C did not satisfy the desired closure prop-
erties, it would suffice to give a SAT algorithm for a slightly more powerful class than
C. For example, in Theorem 2, a SAT algorithm running in O (2"~"") time for 2 -
size AND of OR; of (possibly negated) C circuits® (on n inputs, of 2" size) would
still imply C-circuit lower bounds for Quasi-NP functions. Our key point is that these
proof methods require a SAT algorithm for a potentially more powerful circuit class
than the class for which we can conclude a lower bound. Is this an artifact of our
proof method, or is it inherent?

Proving lower bounds against more powerful classes from SAT algorithms?
We feel it is natural to conjecture that a SAT algorithm for a circuit class C implies
a lower bound against a class that is more powerful than C, because checking satisfi-
ability is itself a very powerful ability. Intuitively, a SAT algorithm for C on n-input
circuits running in 0(2") time is computing a uniform OR of 2" C-circuits evaluated
on fixed inputs, in 0(2") time. (Recall that a “uniform” circuit informally means that
any gate of the circuit can be efficiently computed by an algorithm.) Given an algo-
rithm to decide the outputs of uniform ORs of C-circuits more efficiently than their
actual circuit size, perhaps this may be used to obtain a lower bound against OR o C
circuits.

Similarly, a #SAT algorithm for C on n-input circuits can be used to compute
the output of any circuit of the form f(C(xy), ..., C(x2)) where f is a uniform
symmetric Boolean function, C is a C-circuit with n inputs, and x1, ..., xon iS an
enumeration of all n-bit strings. Should we therefore expect to prove lower bounds
on symmetric functions of C-circuits, using a #SAT algorithm? This question is par-
ticularly significant because in many of the concrete lower bounds proved via this
program [17, 23, 25], non-trivial #SAT algorithms were actually obtained, not just
SAT algorithms. So our question amounts to asking: how strong of a circuit lower
bound can we prove, given the #SAT algorithms we already have? We use SYM
to denote the class of Boolean symmetric functions. Informally, we conjecture the
following.

2In this paper, we use the notation Quasi-NP := Uk NTIME[r (02 ")k].
3More explicitly, this refers to a circuit with the top gate being an AND gate, ORs of fan-in 3 feeding into
it and circuits from C (or their negations) feeding into these ORs.
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Conjecture 1 (Stronger Lower Bounds from #SAT, Informal) Non-trivial #SAT
algorithms for circuit classes C imply size lower bounds against SYM o C circuits. In
particular, all statements in Theorem 1 and Theorem 2 hold when the SAT algorithm
is replaced by a #SAT algorithm, and the lower bound consequence for C is replaced
by SYM o C.

(We keep the statement of Conjecture 1 informal, because we would be happy with
many formal versions of it.) If Conjecture 1 is true, then existing #SAT algorithms
would already imply super-polynomial lower bounds against SYM o ACC? o THR cir-
cuits, a class that contains depth-two symmetric circuits (for which no lower bounds
greater than n? are presently known) [1, 19].

More intuition for Conjecture 1 can be seen from a recent paper of the second
author, who showed how #SAT algorithms for a circuit class C can imply lower
bounds on (real-valued) linear combinations of C-circuits [24]. For example, known
#SAT algorithms for ACCY circuits imply Quasi-NP problems cannot be computed
via polynomial-size linear combinations of polynomial-size ACC? o THR circuits.
However, the linear combination representation is rather constrained: the linear com-
bination is required to always output O or 1. Applying PCPs of proximity, Chen and
Williams [7] showed that the lower bound of [24] can be extended to “approximate”
linear combinations of C-circuits, where the linear combination does not have to be
exactly O or 1, but must be closer to the correct value than to the incorrect one, within
an additive constant factor. These results show, in principle, how a #SAT algorithm
for a circuit class C can imply lower bounds against a stronger class of representations
than C.

1.1 Conjecture 1 Holds for Sparse Symmetric Functions

In this paper, we take a concrete step towards realizing Conjecture 1, by proving it for
“sparse” symmetric functions. We say a symmetric Boolean function f(x, ..., x,)
is k-sparse if f is 1 on at most k values of ) ; x;. The 1-sparse symmetric func-
tions can realize the exact threshold (ETHR with polynomial weights) or exact
majority (EMAJ) functions, which have been studied for years in both circuit com-
plexity (e.g. [3, 12—-15]) and structural complexity theory, where the corresponding
complexity class (computing an exact majority over all computation paths) is known
as C_P [21].

Theorem 3 Let C be closed under* AND», negation, and suppose the all-ones and
parity function® are in C. Let f = {f,} be a family of k-sparse symmetric functions
for some k = O(1).

—  Ifthere is a #SAT algorithm for n*-size C-circuits running in 2" /n* time (for all
k), then NEXP does not have (f o C)-circuits of polynomial size.

4A circuit class C is closed under AND; if for Cy, Co € C, C; A C3 also belongs in C. C is closed under
negation if for C € C, —C also belongs in C.

SWe need this condition as we need the circuit class to be expressive enough to represent error correcting
codes (Theorem 4)
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—  If there is a #SAT algorithm for 2" -size C-circuits running in 2" time (for
some ¢ > (), then Quasi-NP does not have (f o C)-circuits of polynomial size.

Applying known #SAT algorithms for AC®[m] o THR circuits from [25], we obtain
the first non-trivial lower bound for the class EMAJ o ACCY o THR.

Corollary 1 There exists an e such that NTIME[n'°¢° "] does not have polynomial
size EMAJ o ACC® o THR circuits.

Since the publication of the conference version of this work [20], some further
progress on Conjecture 1 has been made. Notably, Chen-Ren [8] have proved lower
bounds against the larger circuit class MAJ o ACC? o THR. However, Conjecture 1
remains open.

1.2 Intuition

Here we briefly explain the new ideas that lead to our new circuit lower bounds.

As in prior work [7, 24], the high-level idea is to show that if (for example)
Quasi-NP has polynomial-size EMAJ o C circuits, and there is a #SAT algorithm for C
circuits, then we can design a nondeterministic algorithm for verifying GAP Circuit
Unsatisfiability (GAP-UNSAT) on generic (unrestricted) circuits that beats exhaus-
tive search. In GAP-UNSAT, we are given a generic circuit and are promised that it
is either unsatisfiable, or at least half of its possible assignments are satisfying, and
we need to nondeterministically prove the unsatisfiable case. (Note this is a much
weaker problem than SAT.) As shown in [17, 22, 23], combining a nondeterministic
algorithm for GAP-UNSAT with the hypothesis that Quasi-NP has polynomial-size
circuits, we can derive that nondeterministic time n'°€" can be simulated in time
o(n'°2° ™), contradicting the nondeterministic time hierarchy theorem.

Our key idea is to use probabilistically checkable proofs (PCPs) in a new way
to exploit the power of a #SAT algorithm. First, let’s observe a task that a #SAT
algorithm for C can compute on an EMAJ o C circuit. Suppose our EMAJ o C circuit
has the form

t
B(x) = [Z Ci(x) = s} :
i=1

where each C;(x) is a Boolean C-circuit on n inputs, s is a threshold value, and B
outputs 1 if and only if the sum of the C;’s equals 5.° Consider the expression

¢ 2
E(x) := <ZCi(x)—s> . (1)

i=1

OWe are using the standard Iverson bracket notation, where [P] is 1 if predicate P is true, and is O
otherwise.
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Treated as a function, E(x) outputs integers; E(a) = 0 when B(a) = 1, and
otherwise E(a) € [1, (t + 5)?]. Hence the quantity

Z E(a) )

ae{0,1}"

is a (t + s)> multiplicative approximation to the number of unsatisfying assign-
ments to B. We claim that this quantity can be computed faster than exhaustive
search using a faster #SAT algorithm. To see this, using distributivity, we can rewrite
(1) as

'
Ex)= Y (CGACHE) =25 Ci(x)+s>
@i, j)el]? i=1
Assuming C is closed under conjunction, each C; A C jisalsoa C-circuit, and we can
compute

t
Y E@= ) Yo €Cincp@|-2) | D Cita)]|+5>2"

aef{0,1}" @, j)elt]? \a€{0,1}" i=1 \ae{0,1}"

by making O (%) calls to a #SAT algorithm for C-circuits. Thus we can compute (2)
using a #SAT algorithm.

How is computing (2) useful? This is where PCPs enter the story. It seems we
cannot use (2) to directly solve SAT for B. (If we could, we could apply existing
results such as [23] which yield lower bounds from SAT algorithms, and obtain our
desired lower bound for EMAJ o C.) But as we mentioned earlier, we can use (2) to
obtain a multiplicative approximation to the number of assignments that falsify B.
In particular, each satisfying assignment to B is counted zero times in (2), and each
falsifying assignment is counted between 1 and (less than) (¢t + 5)? times. We want
to exploit this, and obtain a faster GAP-UNSAT algorithm. We do this using the
following series of steps:

1. We start with a generic circuit which is a GAP-UNSAT instance.

2. We use an efficient hitting set construction [11] to increase the gap of GAP-
UNSAT, resulting in a new circuit D(x) which is either UNSAT or has at least
2" — 0(2") satisfying assignments where |x| = n (Section 2.1).

3. Next (Lemma 3) we reduce the GAP-UNSAT instance D to a graph Gp. For
every assignment x to D, there is a corresponding partial assignment . to the
vertices of G p. We denote the resulting graph after applying the partial assign-
ment 7, to Gp by Gp(m,). Each Gp(mr,) can be thought of as a implicitly
created instance of Independent Set, one for each x € {0, 1}". Our reduction
guarantees that for all x such that D(x) = 0, Gp(s,) has a large independent
set, and for all x such that D(x) = 1, Gp(m,) only has small independent sets.
We expand on this step at the end of the current subsection.

Returning to the assumption that Quasi-NP has small EMAJ o C circuits, and
applying an easy witness lemma [17], it follows (Lemma 10) that the solution to the
implicitly created Independent Set instances can be encoded by a single EMAJ o C
circuit i.e. there exists a small EMAJ o C circuit whose truth table is the solutions
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to the Independent Set instances. It turns out that the constraints of an Independent
Set problem are easily verifiable if the values of vertices is encoded by a EMAJ o C
circuit. (This is why we chose to reduce to Independent Set.)

We can now obtain a non-deterministic GAP-UNSAT algorithm using the above
reductions as follows (done formally in the proof of Theorem 7). We will start with
the GAP-UNSAT instance circuit D, which is either has “no satisfying assignment”
or “most assignments satisfying”. In the “no satisfying assignment” case, for all x
the reduced Independent Set instance G p () has a large independent set. Counting
the sum of independent sets in G p (ry) over all x gives a high value. In contrast, in
the “most assignments are satisfying” case, for most x the reduced Independent Set
instance G p () has a small independent set and G p () has a large independent
set for only very few x. Hence in this case counting the sum of independent sets in
G p(my) over all x yields a low value. The difference between the high value and low
value is large enough that even an approximate count of these values is enough to
distinguish them. As the solutions to the Independent Set instances are encoded by
a EMAJ o C, we can non-deterministically guess this circuit, and show that we can
“efficiently” calculate an approximation to the sum of independent sets over all x by
using expression (2). This completes our algorithm to solve the given GAP-UNSAT
instance.

We now expand further on Step 3 of our reduction, mentioned above. This step
has three sub-steps.

a. We start by applying a PCP of Proximity and an error correcting code to D
(Lemma 4), yielding a 3-SAT instance.

b. We amplify the gap of the 3-SAT instance (Lemma 7) using derandomized serial
repetition [9]. This results in a k-SAT instance with a large gap.

c. Finally, we apply the FGLSS (short for Feige, Goldwasser, Lovasz, Safra and
Szegedy [10]) reduction (Lemma 9) to the k-SAT instance, obtaining the graph
Gp.

In each of these sub-steps, we are implicitly creating 2" instances, one for each
assignment x to the n variables of the circuit D. These instances are implicitly created
via partial assignments as in Step 3. Hence we need the guarantees of serial repetition
and FGLSS to hold for all of these implicitly created instances. As such a guarantee
is not provided by the original statements of serial repetition and FGLSS, we cannot
directly apply them in our argument. Therefore we have to study the behavior of these
reductions with respect to partial assignments. While for these two reductions, we
are able to prove that they behave “nicely” with respect to partial assignments, it is
entirely unclear that this is true for other PCP reductions such as alphabet reduction,
parallel repetition, and so on.

Our approach is very general; to handle k-sparse symmetric functions, we can
simply modify the function E accordingly.

1.3 Organization

In Section 2, we set up our notation and introduce some useful lemmas from prior
work. We also show how to amplify the gap of the GAP-UNSAT problem using

@ Springer



156 Theory of Computing Systems (2023) 67:149-177

hitting set constructions (Theorem 6). In Section 3 we give a reduction from Cir-
cuit SAT to “Generalized” Independent Set. Section 4 applies this reduction to prove
lower bounds against EMAJ o C assuming #SAT algorithms for C with running time
2"="" Section 4.1 uses this result to prove lower bounds against EMAJo ACC? o THR.
Section 5 generalizes these results to f o C lower bounds, where f is a sparse sym-
metric function. In Section 6 we give lower bounds against EMAJoC, assuming #SAT
algorithms for C with running time 2" /n®(".

2 Preliminaries

We assume general familiarity with basic concepts in circuit complexity and com-
putational complexity [2]. In particular we assume familiarity with AC?, ACC?,
P/poly> NEXP, and so on. k-CSP refers to a constraint satisfaction problem (CSP)
which is a conjunction of constraints where each constraint only depends on k
variables. k-SAT refers to the subset of k-CSPs where every constraint is a dis-
junction over variables (or their negations). We will refer to the constraints of
k-CSP and k-SAT as “clauses”. We will restrict our attention to Boolean k-CSP and
k-SAT.

Circuit Notation Here we define notation for the relevant circuit classes. By
SIZE(h(n)) we denote arbitrary circuits with size at most O (h(n)). By SIZE¢ (h(n))
we denote circuits from circuit class C with size at most O (h(n)). By size(D) we
refer to the size of the circuit D. We will consider Boolean circuits as well as circuits
with integer outputs. By (-)C-circuit we refer to a circuit which is either a C-circuit or
—1 times a C-circuit. By a poly(n)-uniform circuit we mean a circuit which can be
constructed in poly(n) time given n as input in unary.

Definition 1 An EMAJ o C circuit (a.k.a. “exact majority of C circuit”) has the gen-
eral form EMAJ(C1(x), C2(x), ..., C:(x), u), where u is a positive integer, x are the
input variables, C; € C, and the gate EMAJ(y1, ..., y, u) outputs 1 if and only if
exactly u of the y;’s output 1.

Definition 2 A SUM=Y o C circuit (“positive sum of C circuits”) has the form

SUM=(C1(x), C2(x), ..., Ci(x)) = ) Ci(x)

ielt]

where C; is a (-)C-circuit, i.e., either a C-circuit or —1 times a C-circuit. Furthermore,
we are promised that Ziem Ci(x) > Ooverall x € {0, 1}".

For circuits Cy, ..., Cs, we say f : {0,1}" — {0, 1} is represented by the
positive-sum circuit SUMZO(Cl(x), Cr(x),...,Ci(x)) if for all x, f(x) = 1 when
Y icin Ci(x) > 0,and f(x) = 0 when }_;,, Ci(x) = 0.

Definition 3 A circuit class C is typical if there is a k > 1 such that the following
hold:
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—  Closure under negation. For every C circuit C, there is a C-circuit C' computing
the negation of C where size(C’) < size(C )k . Moreover, given C of size s, C’
can be constructed in poly(s) time.

—  Closure under AND;. For all C circuits C; and C», there is a C-circuit C’ com-
puting the AND of C; and C, where size(C’) < poly(size(Cy) + size(C»)).
Moreover, given Cj, C, each of size < s, C’ can be constructed in poly(s)
time.

— Contains all-ones. The function 1,, : {0, 1} — {0, 1} which maps all n bit
strings to 1 has a C-circuit of size O (n*).

The vast majority of circuit classes that are studied (AC?, Acc?, TCO, NC!, Pipoly)
are typical.” Our next lemma shows that the negation of an exact-majority of C can
be represented as a “positive-sum” of C, if C is typical.

Lemma 1 LetC be typical. If a function f has a EMAJ o C circuit D of size s, then — f
can be represented by a SUM=" o C circuit D' of size poly(s). Moreover, a description
of the circuit D' can be obtained from a description of D in polynomial time.

Proof Suppose f is computable by the EMAJ o C circuit
D =EMAJ(Dy, Dy, ..., D, u),
where u € {0, 1, ..., t}. Consider the expression
E(x) := (SUM(Dy, Da, ..., D;) — u)>.

Note that E(x) = 0 when D(x) = 1, and E(x) > 0 when D(x) = 0. So to prove the
lemma, it suffices to show that E can be written as a SUM=? o C circuit. Expanding
the expression E,

E(x) = SUM(Dy, Da, ..., D;)> —2u - SUM(Dy, Dy, ..., D;) + u?
2u t
S ORCIVIE 3 ST
(i, )€l j=li=l1
By Definition 3 AND; o C = C hence each D; A Dj is a circuit from C of size poly(s).
Since the all-ones function is in C, the function x > u? also has a SUM o C circuit of
size O (t%). Therefore there are circuits D/ eCand? < O (t?) such that by defining
D :=Sum=%(Dp/, ..., D},) we have D'(x) = E(x) for all x. O

Error-Correcting Codes We will need an efficient construction of binary error cor-
recting codes with constant rate and constant relative distance.

7A notable exception (as far as we know) is the class of depth-d exact threshold circuits for a fixed d > 2,
because we do not know if such classes are closed under negation. Similarly, we do not know if the class
of depth-d threshold circuits is typical. (In that case, the only non-trivial property to check is closure under
AND>; Note we can compute the AND of two threshold circuits with a quasi-polynomial blowup using
Beigel-Reingold-Spielman [4], but it is open if only a polynomial blowup is possible.)
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Theorem 4 (Theorem 19 in [18], Linear Codes) There exists a universal constant
y € (0, 1) such that for all sufficiently large n, there are linear functions ENC" :
()" — )P such that for all x # y with |x| = |y| = n, the Hamming
distance between ENC"(x) and ENC"(y) is at least yn. Furthermore, ENC" can
be computed in O (n) time.

In what follows, we generally drop the superscript n for notational brevity. Letting
ENC (x) denote the ith bit of ENC"(x) (fori =1, ..., cn), note that ENC} (x) is a
parity function on a subset of the bits of x.

2.1 Weak GAP-UNSAT Algorithms are Sufficient for Lower Bounds

Murray and Williams [17] showed that GAP-UNSAT algorithms, i.e., algorithms
which distinguish between unsatisfiable circuits and circuits with > 2"~! satisfying
assignments, suffice for proving circuit lower bounds. For our results, it is necessary
to strengthen the “gap”, which can be done using known hitting set constructions.
Intuitively, these constructions say that if a Boolean function f is 1 with > 1/2
probability then it is easy to find arguments which satisfy f.

Lemma 2 (Corollary C.5 in [11], Hitting Set Construction) There is a constant
¥ > 0and a poly(n, log g) time algorithm S which, given a (uniform random) string
r of n + i - log g bits where n and g are integers, S outputs t = O(log g) strings
X1, %2, ..., % € {0, 1}" such that for every f : {0, 1}" — {0, 1} with ZX fx) >
2"~ P [ORL_, f(x) = 1] = 1 — 1/g.

We will use the following “algorithms to lower bounds” connections as black box:

Theorem 5 (Theorem 1.5 in [17], GAP-UNSAT Algorithms Imply Lower
Bounds) Suppose for some constant ¢ € (0, 1) there is a non-deterministic algo-
rithm A that for all 2" -size circuits C on n inputs, A(C) runs in 2"~"" time, outputs

YES on all unsatisfiable C, and outputs NO on all C that have at least 2"~ satis-
ck*/e

fying assignments. Then for all k, there is a ¢ > 1 such that NTIME[2!°¢" " "] ¢
SIZE(2'0¢" ),

Applying Lemma 2 to Theorem 5, we observe that the circuit lower bound conse-
quence can be obtained from a significantly weaker-looking hypothesis. This weaker
hypothesis will be useful for our lower bound results.

Theorem 6 Suppose for some constant ¢ € (0, 1/2) there is an algorithm A that
for all 2" -size circuits C on n inputs, A(C) runs in 2"/g(n)®V time, outputs YES
on all unsatisfiable C, and outputs NO on all C that have at least 2" (1 — 1/g(n))
satisfying assignments, for g(n) = 2" Then for all k, there is a ¢ > 1 such that

Ci 4 &
NTIME[2'2™ "* 1] ¢ SIZE(210g" ).
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Proof We show that we can construct a strong GAP-UNSAT algorithm A’ (as in
assumption of Theorem 5) from a weak GAP-UNSAT algorithm (as in the assump-
tion of this Theorem). To this end, an input circuit D’ of A’ is converted into an
input circuit D of A by amplifying the satisfying assignments. Our starting point
is Theorem 5 ([17]): we are given an m-input, 2"’ size circuit D’ that is either
UNSAT or has at least 2"~ satisfying assignments, and we wish to distinguish
between the two cases with a 2"’ time algorithm. We set § = ¢/2. First, we
amplify the gap between the cases. We create a new circuit D with n inputs, where n
satisfies
n=m+ 1y -logg(n),

and i > 0 is the constant from Lemma 2. (Note that, since g(n) < 2000 guch an n
can be found in subexponential time.) The circuit D has the following form:

— D treats its n bits of input as a string of randomness r and computes ¢ =
O(log g(n)) strings x1, x2,...,x; € {0, 1}" by simulating algorithm “S” in
Lemma 2 with a poly(m, log g(n))-size circuit.

— It computes {D'(x;)};.

—  The output is the OR(D'(x1), D' (x2), ..., D'(x;)).

Note the total size of circuit D is poly(m, log g(n)) + O(log g(n)) - size(D’) =
poly(n) + O(n%) - 2" < 27 = 2"° a5 & = 28. Clearly, if D’ is unsatisfiable,
then D is also unsatisfiable. By Lemma 2, if D’ has 2"~! satisfying assignments,
then D has at least 2" (1 — 1/g(n)) satisfying assignments. As size(D) < 2"°, by our
assumption we can distinguish the case that D is unsatisfiable from the case that D
has at least 2" (1 — 1/g(n)) satisfying assignments, with an algorithm running in time
2" /g(n)®). This yields an algorithm for distinguishing the original circuit D’ on m
inputs and om’ size, running in time

2n/g(n)w(l) zzmg(n)O(l)/g(n)w(l) =2m/g(n)a)(l) Szmz—nz"? < 2m2_n§ < zm_ma’
since g(n) = 2”28 and ¢ = 2§. By Theorem 5, this implies that for all &, there
¢ 4
is a ¢ > 1 such that NTIME[2!°8 ¢ /5”] a SIZE(Zlogk”). As, ¢ = 25 we get that
L"4 &
NTIME[21°gz e "¢ SIZE(ZIng ). But as the constant 2 can be absorbed in the

C 4 &
constant ¢, we get that for all k, there is a ¢ > 1 such that NTIME[2!°¢ e A
SIZE(2'0g" ), O

3 From Circuit SAT to Independent Set

The goal of this section is to give the main PCP reduction (Lemma 3) we will use in
our new algorithm-to-lower-bound theorem. First we need a definition of “general-
ized” independent set instances, where some vertices have already been “assigned”

in or out of the independent set.

Definition 4 Let G = (V, E) be a graph. Let 7 : V — {0, 1, »} be a partial Boolean
assignment to V. We define G () to be a graph with the label function 7 on its
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vertices (where each vertex gets the label 0, or 1, or no label). We construe G () as
an generalized independent set instance, in which any valid independent set (vertex
assignment) must be consistent with : any independent set must contain all vertices
labeled 1, and no vertices labeled 0.

Our main technical lemma is the following.

Lemma 3 Let k be a function of n. There is a poly(m, 2%)-time reduction such that,
given a circuit D on X with |X| = n bits and of size m > n, the reduction outputs a
generalized independent set instance on a graph Gp = (Vp, Ep) such that:

— Each vertex v € Vp is associated with a set of pairs S, of the form {(i, b)} C
[O(n)] x {0, 1}. The sets {S,} are produced as part of the reduction.
— Each assignment x to X defines a partial assignment 1w, to Vp such that

2 (v) = 0 if 3G, b) €S, suchthat ENC;(x) #b
* I otherwise,

where ENC is the error-correcting code from Theorem 4.
Further, G p satisfies that:

—  If D(x) = 0, the maximum independent set in G p (1) has size «, and given x,
it can be found in time poly(m, 2X).

— If D(x) = 1, then the maximum independent set in G p(my) has size at most
a2k,

where « is an integer produced as part of the reduction.

The remainder of this section is devoted to the proof of Lemma 3. We will prove
Lemma 4, 7, and 9 each of which describes a reduction, combining them sequentially
will give us Lemma 3.

Let us set up some notation for variable assignments to a formula. Let F be a SAT
instance on a variable set Z, and let T : Z — {0, 1, x} be a partial assignment to Z.
Define F(t) to be the formula obtained by setting the variables in F according to t.
Note that we do not perform further reduction rules on the clauses in F(t): for each
clause in F that becomes false (or true) under 7, there is a clause in F(t) which is
always false (true).

For every subsequence Y of variables from Z, and every vector y € {0, 1}|Y I we
define F(Y = y) to be the formula F in which the i’ variable in Y is assigned y;,
and variables in Z \ Y left unassigned.

Next, we state a probabilistically checkable proof (PCP) transformation of Chen
and Williams [7] which will be the first step in the reduction in Lemma 3. In the
following, we say that a CNF formula F”’ is at most §-satisfiable if no assignment to
its free variables satisfies more than a §-fraction of the clauses in F’.
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Lemma 4 (PCPs of Proximity+Error Correcting Codes(PCPP+ECC), [7]) Let
ENC : {0, 1} — {0, 1}°™ pe the linear encoding function from Theorem 4, where
(for all i) the i™" bit of output ENC; (x) satisfies ENC;(x) = @ jey,; X for some set Uj.

There is a polynomial-time transformation and constant § < 1 which, given a

circuit D on n inputs of size m > n, outputs a 3-SAT instance F on a variable set
YUZ, where |Y| = O(n), |Z| < poly(m), and the following hold for all x € {0, 1}"*:

— If D(x) = 0then F(Y = ENC(x)) on variable set Z has a satisfying assignment
zx. Furthermore, there is a poly(m)-time algorithm that given x outputs 7.

— IfD(x) = 1 then F(Y = ENC(x)) is at most §-satisfiable, i.e., no assignment
to the Z variables in F(Y = ENC(x)) satisfies more than a §-fraction of the
clauses.

Serial repetition [9] is a basic operation on Boolean constraint satisfaction prob-
lems (CSPs) and PCPs. Recall that a CSP is a collection of logical constraints over
variables that take values from a finite domain (here, we will only consider Boolean
domain). A k-CSP is a CSP in which every constraint is k-ary, in that each con-
straint is a function of at most k variables. In serial repetition, a new CSP is created
from an old one, where the new CSP constraints are ANDs (conjunctions) of a fixed
number of randomly sampled clauses from the old CSP. In derandomized serial rep-
etition, the choices of which old constraints are used to create the new constraints are
purely deterministic. Serial repetition is usually done for the purpose of reducing the
soundness parameter, i.e., reducing the fraction of satisfiable clauses in the NO case.
We will prove that the guarantees of derandomized serial repetition hold for partial
assignments where some but not all variables are assigned (Lemma 7). This will be
the second step in the reduction in Lemma 3.

We begin by stating the standard formulation of derandomized serial repetition.

Lemma 5 (Corollary 2.5 in [9], Derandomized Serial Repetition) Let
U, W, ..., W, be a sequence of m circuits over a set of variables Y. Let 8 and
be two positive real values. Then there exists a sequence of t = m - poly(1/8) new
circuits W, ¥, ..., W/ such that

1. Each new circuit W/ is the AND of s old circuits ¥; with s = O(log(1/8)/). In
particular, every assignment to the variables Y that satisfies all of the old circuits
also satisfies all of the new circuits.

2. Every assignment to the variables Y that causes um of the old circuits to reject
also causes (1 — B)t of the new circuits to reject.

3. Oninput W1, ¥, ..., ¥y, B, u, the new sequence W[, W, ..., W/ can be con-
structed uniformly in polynomial time (in the input and output lengths).

We will use the following slightly modified form of the above reduction. The
below reduction works for all alphabet sizes, though we will only be looking at
Boolean CSPs, in which case the k-CSP is analogous to the k-SAT problem. For
simplicity, we use “clauses” to refer to the constraints of a k-CSP.
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Lemma 6 There is a polynomial-time algorithm which, given a constant § € (0, 1)
and an m-clause 3-SAT instance F on a variable set Y with |Y| = n, outputs an
O (k)-CSP formula F' on the same n variables witht = m - 200 clauses such that:

1. Ify € {0, 1}" satisfies F, then y satisfies F'.
. If F is < 8-satisfiable then F' is < (1/2%)-satisfiable.
3. Each clause of F’' is an AND of O (k) clauses of F, moreover, there is a fixed
polynomial time computable mapping p : [t] — ( OY?k)) such that the i'" clause

of F' is the AND of the clauses of F whose indices in the set p(i) € ( On(1k))'

Proof This lemma follows from Lemma 5. In particular it follows by setting ¥; to
be the clauses in the 3-SAT instance, § = 1/2]‘ and © = 1 — 4. As § is some fixed
constant, the resulting lIIi’ are ANDsof s = O(log(1/B8)/u) = O(k/(1—=6)) = O (k)
clauses of the 3-SAT. Hence each lI/l.’ can be thought of as a constraint of 3 - O (k) =
O (k) variables and {¥/ }§=1 can be together thought of as a O(k)-CSP with ¢+ =
m -poly(1/8) = m - 2°® clauses. All the stated properties of the reduction directly
follow from the properties of Lemma 5. O

We now prove a stronger version of derandomized serial repetition, in which there
are soundness guarantees for partial Boolean assignments. The proof directly follows
from the guarantees of Lemma 6 above.

Lemma 7 (Serial Repetition with Partial Assignments) Let k be a function of n.
There is a polynomial-time algorithm that, for all constants 5 < 1, given an m-clause
3-SAT instance F on a variable set Y U Z with |Y U Z| = n, outputs an O (k)-CSP
formula F' on the same n variables with m - 2°% clauses such that:

1. Ifthe assignment Y =y, Z = z satisfies F then y, 7 satisfies F'.
2. IfF(Y =y) is at most 8-satisfiable, then F'(Y = y) is at most 1/2*-satisfiable.
3. Each clause of F' is an AND of O (k) clauses of F, moreover, there is a fixed

polynomial time computable mapping p : [t] — ( OI?k)) such that the i'" clause

of F' is the AND of the clauses of F whose indices in the set p(i) € ( O’?k))'

Proof We prove that the standard serial repetition from Lemma 6 suffices.

Property 1 and 3 directly follow from Property 1 and 3 in Lemma 6. We turn to
verifying Property 2. Let F(Y = y) be < §-satisfiable. Given y € {0, 1}/¥!, define
Fy = F(Y = y), where all clauses that become FALSE or TRUE under ¥ = y
remain in Fy as clauses with no variables. Let F}/, be the O (k)-CSP formula obtained
by applying serial repetition to F) from Lemma 7. By Property 3, of Lemma 6,
the formula F/(Y = y) obtained by first applying serial repetition and then setting
Y =y, is the same as the formula F)/, obtained by setting ¥ = y, and then applying
serial repetition (Lemma 6).

By assumption, F) is at most §-satisfiable, by Property 2 of Lemma 6, F; is at
most (1/2F)-satisfiable. Since F'(Y = y) = F, it follows that F'(Y = y) is at most
(1/2%)-satisfiable. O
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The well-known FGLSS reduction [10] maps a CSP @ to a graph G ¢ such that the
MAX-SAT value of @ equals to the size of the maximum independent setin G¢. We
will prove that the guarantees of the FGLSS reduction hold for partial assignments
(Lemma 9), this reduction will be the third step in the reduction in Lemma 3. We start
by stating the standard FGLSS reduction.

Lemma 8 (Theorem 3 in [10], FGLSS) There is a poly(n,m,2%) time reduc-
tion that given an m-clause n-variable k-CSP instance F, outputs a graph Grp =
(Vr, EF) such that the size of the maximum independent set in G equals the
maximum number of clauses satisfiable in F.

We note that a stronger version of the FGLSS reduction [10] holds with guarantees
for partial assignments.

Lemma 9 (FGLSS with partial assignments) Given a Boolean k-CSP instance F
on variable set Y, Z with |Y| + |Z| = n and m clauses, there is a poly(n, m, 2¥)
time reduction that given F, outputs a graph Gr = (Vp, Er). Each vertex v € Vg
is associated with a set S, C [|Y|] x {0, 1}. For each assignment to the Y variables
T : Y — {0, 1}, define the partial assignment 7w, to Vp:

7o () = 0 if 3G, b) €S, suchthatt(Y;) b
’ I otherwise.,

Then the maximum independent set in the generalized independent set instance
G (my) equals the maximum number of clauses satisfiable in F(t). Furthermore,
there is a poly(n, m, 2¥)-time algorithm that given T and an assignment to F ()
satisfying a clauses, outputs an independent set of size a in the graph G (7).

Proof The proof is analogous to the proof of the standard FGLSS reduction
(Lemma 8). We include a proof for completeness. Let w be a clause of F and let
w; denote the i’ variable in w. Let £ denote a satisfying assignment to w in which
£; denotes the assignment to w;. For every w, £ pair, we create a vertex vy, ¢ in Vp,
and set Svpe = {(w;, €;) | 1 <i < k}. As F is a k-CSP instance, there are at most
poly(m, 2y vertices. For u, v € V add (u, v) to Ef iff assignments S, and S, con-
tradict each otheri.e. 3x, b € {0, 1} s.t. (x, b) € S, and (x, 1 —b) € §,. Note that this
means that there is always an edge between two vertices associated with a particular
clause, but different satisfying assignments. That is, the set of all vertices associated
a particular clause form a clique in G .

Lett : Y — {0, 1} be such that F'(t) has an assignment satisfying o« clauses,
and let x : Y UZ — {0, 1} be a assignment to all variables (consistent with )
satisfying o clauses. We will give an independent set in G r(;r;) of size «. For each
clause w of F satisfied by x and satisfying assignment £ to w (derived from x) we
put vy ¢ in a set I, € Vr. Note that |I,| = o since there are o satisfied clauses,
and I, is an independent set because each pair of vertices u, v € I, are derived from
the same assignment x, so S, and S, cannot contradict each other. Furthermore, our
choice of I, does not contradict 7, (as defined in the statement of Lemma) as all
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partial assignments corresponding to vertices set to 0 by m; contradict T and hence
contradict x, while we only chose vertices consistent with x. Hence the maximum
number of clauses satisfied in F'(7) is at most the maximum independent set size in
G r (7). From the above it is clear that this independent set is also constructible in
time poly(n, m, 2¥), given the assignment x.

Now taking an independent set I in G g (7r;) of size o, we give an assignment to
F (1) satisfying « clauses. Recall that, the set of vertices corresponding to a particular
clause form a clique, so only one vertex from the set can be in a independent set.
Hence the independent set I with « vertices must have vertices associated with «
different clauses of F'. For a vertex u associated with (w, £), the partial assignment
Sy, satisfies w. The partial assignment S, is also consistent with t, as otherwise vertex
u would have already been set to O by m;. For two vertices u, v in [ the partial
assignments from S, and S, do not contradict, as otherwise (u, v) would be an edge
in G r. Hence we can join all partial assignments S, for the vertices v in / to obtain a
partial assignment satisfying « clauses in F (7). Thus the maximum independent set
size in G () is at most the maximum number of clauses satisfied in F(t). This
completes the proof. O

We next present the proof of Lemma 3 which just follows by combining
Lemma 4, 7, and 9 sequentially.

Proof of Lemma 3 The proof follows by applying Lemma 4, 7 and 9 sequentially.

Step 1: Convert D to 3-SAT Start with a circuit D with input variables X (| X| =
n) and size m > n. Applying Lemma 4, (PCPP+ECC), we transform D into a 3-SAT
instance F' with poly(m) clauses on the variable set Y U Z, where |Y| < poly(n),
|Z| < poly(m), and the following hold for all x € {0, 1}"*:

(a) If D(x) = 0, then the formula F (Y = ENC(x)) on variable set Z has a satis-
fying assignment z,. Furthermore, there is a poly(m)-time algorithm that given
X, outputs zy.

(b) if D(x) = 1, then there is no assignment to the Z variables in F'(Y = ENC(x))
satisfying more than a §-fraction of the clauses, for a universal constant § €
O, 1).

(Recall ENC : {0,1}* — {0,1}9®™ is the linear error-correcting encoding
function from Theorem 4.)

Step 2: Reduce 3-SAT to O (k)-CSP Now apply Lemma 7 to F. This yields a
O (k)-CSP F’ on the variable set Y U Z variables with « = poly(m) - 200 clauses,
such that:

1. IfY,Z =y, z satisfies F then y, z satisfies F’.
2. If F(Y = y) is at most §-satisfiable then F’(Y = y) is at most (1/2k)-satisfiable.

Step 3: Reduce O (k)-CSP to a graph Finally, apply Lemma 9 to F’, to get graph

G p. The size of the graph G g+ is poly(n 4+ m, poly(m) - 20®) 20®)) < poly(m, 2¥)
since m > n. Lemma 9 gives us the following condition on the graph G f-:
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(i) IfY,Z =y, z satisfies F’ then G g (wy=y) has an independent set of size .
Furthermore, there is a poly(m, 2¢)-time algorithm that given y, z outputs an
independent set of size « in the graph G g (7ry—y).

() If F/(Y = y) is at most (1/2%)-satisfiable then all independent sets in
G/ (my=y) have size < )2k,

We consider partial assignments T which assign Y to ENC(x) for some x. As 7
is fixed by fixing x, we rename 7, to . Combining (a)+1+(i) and (b)+2+(ii) we
have:

— If D(x) = 0 then Ggr(m,) has an independent set I, of size «. Furthermore,
there is a poly(m, 2¥)-time algorithm that given x outputs /.
— if D(x) = 1 then all independent sets in G g/ () have size < « /2]‘.

where o is the number of clauses in F’. This completes the proof. O

4 Main Result

We now turn to the proof of the main lower bound result, Theorem 3. We first prove
the result for EMAJ o C; in Section 5, we sketch how to extend to f o C for sparse
symmetric f. Below, we prove EMAJoC lower bounds for Quasi-NP functions, when
there are 2"~"" time algorithms for #SAT on C circuits of size 2" . For the other parts
of Theorem 3 (on #SAT algorithms with running time 2" /n®(), see Section 6.

We note here that in Theorem 3 we claimed polynomial size lower bounds against
EMAJ o C, but in fact we obtain quasi-polynomial size lower bounds below.

Theorem 7 Suppose C is typical and the parity function has poly(n)-uniform,
poly(n)-sized C circuits. Further suppose that for some ¢ € (0, 1) there is a #SAT
algorithm running in time 2"~"" for all circuits from class C of size at most 2" . Then

for every k, Quasi-NP does not have EMAJ o C circuits of size O(nlogk ™).

Proof Define H to be EMAJ o C. Let us assume that for a fixed k > 0, Quasi-NP has
‘H circuits of size O(nl"gk”) which implies Quasi-NP C SIZE(nlogk”) for general
circuits. By Theorem 6, we obtain a contradiction if, for some constant é € (0, 1) and
gn) = 2"26, we can construct a 2" /g(n)®() time nondeterministic algorithm that
given a circuit D with n inputs and size m < h(n) := 2" can distinguish between:

1. YES case: D has no satisfying assignments.
2. NOcase: D has at least 2" (1 — 1/g(n)) satisfying assignments.

Under the hypothesis, we will give such an algorithm for § = ¢/4. Using Lemma 3,
we reduce the circuit D to an independent set instance Gp (with k = logh(n)) on
ny < poly(m, 290y < poly(m, h(n)°M) < poly(h(n)) vertices. As described in
Lemma 3, we also find sets of pairs S; for every vertex i € [n2]. Let m, be the
partial assignment which assigns a vertex i to 0 if there exist (j',b) € S; such
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that ENCj/(x) # b and leaves i unassigned otherwise. By Lemma 3, Gp has the
following properties:

1. If D(x) = 0, then there is an independent set of size « in G p (77, ). Furthermore,
given x we can find this independent set in poly (A (n)) time.
2. If D(x) = 1, then all independent sets have size at most o/ i (n) in G p (7).

This means it suffices for us to distinguish between the following two cases:

1. YES case: For all x, Gp(wy) has an independent set of size o.
2. NO case: For at most 2" /g(n) values of x, Gp(m,) has an independent set of
size > o/ h(n).

Guessing a Succinct Witness Circuit As guaranteed by Lemma 3, given an x such that
D(x) = 0, we can find the assignment A(x) to G p which is consistent with m,, and
represents an independent set of size «, in poly(h(n)) time. Let A(x, i) denote the
assignment to the i’ h vertex in A(x). Given x and vertex i € [ny], we can produce
—A(x, i) in time poly(h(n)).

Lemma 10 Under the hypothesis, there is a H = EMAJ o C circuit U of size h(n)°)
with (x, i) as input representing —A(x, i).

Proof Under the hypothesis, for some constant k, we have Quasi-NP C
SIZE3 (n'°¢° ™). Specifically, for p(n) = n'°"'" we have NTIME[p(n)] <
SIZEy (p(n)/102m)y  C SIZEy (p(n)°M). As h(n) = 2% > p(n), a stan-
dard padding argument implies NTIME[poly(k(n))] < SIZEH((poly(h(n)))"(l)) =
SIZE4; (h(n)°M). Since —A(x, i) is computable in poly(k(n)) time, we have that
—A(x, i) can be represented by a h(n)°WD-sized H = EMAJ o C circuit.

O

Our nondeterministic algorithm for GAP-UNSAT begins by guessing U guar-
anteed by Lemma 10 which is supposed to represent —A. Then by the reduction
in Lemma 1, we can convert U to a SUMZ0 o C circuit R for A(x, i) of size
poly(h(n)°V) = h(n)°V. Note that if our guess for U is correct, i.e., U = —A, then
R represents A.

Let the subcircuits of R be Ry, Ry, ..., R, fort < h(n)"(l), so that R(x) =
>_jei Rj» where R; is a (-)C-circuit, i.e., either a C-circuit or —1 times a C-circuit.
The number of inputs to R; is n’ = |x| +logny, = n + O(logh(n)), and the size of
Rj is h(n)°WD.

Note that R(x, i) = O represents that the i’ vertex is not in the independent set
of Gp in a solution corresponding to x, while R(x,i) > O represents that it is in
the independent set of G p in a solution corresponding to x. For all x and i, we have
0 < R(x,i) <t < h(n)°V.

Verifying that R Encodes Valid Independent Sets We can verify that the circuit R

produces an independent set on all x by checking each edge over all x. To check the
edge between vertices i1 and iy we need to verify that at most one of them is in the
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independent set, that is, for all x, we check that R(x, i) - R(x,i2) = 0. As R(x, i) is
at least 0 we can just verify

> RGx.i1) - R(x.ip) =0.

xef0,1}"

Since R(x,i) = Zje[t] R;(x,1), it suffices to verify that

> ) Rj(xin) - Rjy(x,in) =0.
xe{0,1}" ji, j2€lt]
Let Rj, j,(x,i1,i2) = Rj (x,i1) - R,z(x i2). Since C is closed under AND, R}, ;,
also has a poly(h(n)°V) = h(n)"( ) sized (-)C circuit. Exchanging the order of
summations, it suffices for us to verify

Z Z Rj, j,(x,i1,i2) | =0.

Jj1.j2€lt] \x€{0,1}"

For fixed i1, 12, j1, j» the number of inputs to R}, j, is |x| = n, and its size is at most
h(n)"(l) < 2" Hence, for fixed i1, 12, j1, jo, We can compute Zx Rj, jp(x,i1,12)
using the #SAT algorithm from our assumption, in time p Xl Summing over all
j1, jo pairs only adds another multiplicative factor of 12 = h(n)°". This allows us
to verify that the edge (i1, i2) is satisfied by R. Checking all edges of G p only adds
another multiplicative factor of poly(%(n)). Hence the total running time for verifying
that R encodes valid independent sets on all x is still 2"~ poly(k(n)).

Verifying Consistency of the Independent Set Produced by R with z, (for all x) As
we care about the sizes of independent sets in G p (7, ) over all x we need to check
if the assignment derived by R is consistent with 7. As m, only assigns vertices
to 0, we need to verify that all vertices assigned to O in 7, are in fact assigned to
0 by the assignment given by R(x, -). From Lemma 3, we know that m, assigns a
vertex i to 0 if for some (j/, b) € S;, ENC j7(x) # b. To check this condition we
need to verify that R(x, i) = 0 when there is a (j/, b) € S, ENC;/(x) # b. This is
equivalent to checking (ENC;/(x) @ b) - R(x, i) = 0 for all x, i, (', b) € S;. Since
(ENC/(x) @ b) - R(x,i) > 0 we can just check that

> (ENCji(x) ®b) - R(x,i) =0
xe{0,1}"

foralli, (j/,b) € S;. Since R(x,i) =) R;(x,1) we can equivalently verify that

Jjelr]

Z Z(ENC‘//(x) ®b)-Rj(x,i) =0
x€{0,1)7 jelr]
for all i, (j/,b) € S;. Note that Rj/(x,i) has a h(n)°D sized C circuit. By our
assumption, (ENC;(x) @ b) has a poly(n)-uniform, poly(n)-sized C-circuit. Hence
(ENC;(x) ® b) - Rj/(x, i) has a poly(n, h(n)°V) < h(n)*D-sized C circuit as we
are given that C is typical. Moreover, we can construct the C-circuit for (ENC;(x) &
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b) - Rji(x,i) in < h(n)°D time as we have already guessed R ;j+ and the circuit for
ENC; is poly(n)-uniform.

For fixed (i, j, j), (ENCj/(x) & b) - Rj(x,i) € C has |[x| = n inputs and
size h(n)°") < 2", Hence we can use the #SAT algorithm from the assumption
to calculate er{(),l}” (ENC/(x) & b) - Rj(x,i) in time 271" Summing over all
j € [t] introduces another multiplicative factor of h(n)°V . This allows us to ver-
ify the desired condition for a fixed i, (j', b) € S;. To check it for all i, (j', b) € S;
(recall |S;| < O(n) by Theorem 4) only introduces another multiplicative factor of
poly(h(n))-O(n) < poly(h(n)) in time. Therefore the total running time for verifying
consistency with respect to 7, (for all x) is 2”_”8p01y(h (n)).

Distinguishing Between the YES and NO Cases As we now know that R represents an
independent set, and that R is consistent with 7, We need to distinguish between:

1. YES case: For all x, R(x, -) represents an independent set of size c.
2. NO case: For at most 2" /g(n) values of x, R(x, -) represents an independent set
of size > o/ h(n).

Lemma 11 For all x such that R(x, -) represents an independent set of size a, we

have a < Zie[nz] R(x,i) < at.

Proof For every vertex i in the independent set, | < R(x,i) < ¢. For all vertices i
not in the independent set, R(x, i) = 0. Hence a < } ;,,,; R(x, 1) < at. O

To distinguish between the YES and NO cases, we now compute

Yo Y R&.D 3)

x€{0,1}" i€[ny]

This allows us to distinguish between the YES case and NO cases as follows.

1. YES case: For all x € {0, 1}", the independent set is at least of size «. Hence by
Lemma 11, the sumis D (o 11 D_ieqny) R(x, 1) = 2"ar.

2. NO case: For at least 2" (1 — 1/g(n)) values of x, we have an independent set
of size at most o/ h(n). By Lemma 11, for such x, Zie[nz] R(x,i) < ta/h(n).
For the rest of the 2" /g(n) values of x the independent set is at most all vertices
in the graph G p. By Lemma 11, for such values of x, Z JR(x, i) <tny =
poly(h(n)). Hence

Yo D R(x,i) < (2"/g(n) - poly(h(n)) +2"ter/ h(n)

x€{0,1}" ig[no]

i€[ny

A

0(2™) + 2"ta/ h(n) [Since h(n) = g(n)°V]
0(2") + 0(2"a) [Since 1 = h(n)°V]

2"« [Since o > 1]

IATA

A
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All that remains is how to compute (3). As R(x,i) = Y_
compute

jer Rj(x, i), we can

Yoo D Riai=) > [ X R

xe{0,1}" ig[ny] jelt] jeltlielna] \x€{0,1}"

For a fixed i, j, Rj(x,i) € C has |x| = n inputs and size < poly(h(n)°M) =
h(n)°D < 2"° Hence we can use the assumed #SAT algorithm to calculate
> veo.1yn Rj(x, 1) in time 2"="". Summing over all j € [t],i € [n2] only introduces
another 4 (n)°Vpoly(h(n)) = poly(h(n)) multiplicative factor. Thus the running
time for distinguishing the two cases is at most 2"~ poly(h(n)).

In total our running time is bounded by 2"~ poly(h(n)) = on=n®+0@m?) <
on—n® 2" /g(n)*M as g(n) = 2 and & = 45. By Theorem 6, this gives us a
contradiction which completes our proof.

O

The above theorem when combined with known #SAT algorithms for ACC? o THR
gives the following Quasi-NP lower bound for EMAJ o ACC? o THR.

4.1 EMAJ o ACC® o THR Lower Bound
We will apply a known #SAT algorithm for ACC o THR circuits.

Theorem 8 [25] For every pair of constants d, m, there exists a constant ¢ € (0, 1)
such that #SAT can be solved in time 2" time for AC°[m] o THR circuits of depth
d and size 2"".

Theorem 9 For all constants k, d and m, Quasi-NP does not have plog" n -size EMAJo
AC®[m] o THR circuits of depth d.

Proof We prove a lower bound for circuits of the type EMAJ o AC°[2m] o THR and
note that EMAJ o AC%[m] o THR € EMAJ o AC?[2m] o THR as MOD,, gates can
be simulated by MOD»,, gates by repeating every input gate twice. We first observe
that AC°[2m] o THR is indeed typical, and ENC(x) can be computed by poly(n)-
uniform, poly(n)-size AC°[2m]. To see this, note that the parity function can be easily
represented in AC°[2m] for all m by repeating each input gate m times and then
applying the MOD,,,, gate.

By Theorem 8, we know that for all constants d, m there is an ¢ € (0, 1) and a
#SAT algorithm running in time 21=1° for all circuits from class AC°[2m] o THR of
size < 2" and depth d.

The above properties imply that AC°[2m] o THR satisfies the preconditions of
Theorem 7 and hence Quasi-NP does not have 7'°2" "-size EMAJ o AC°[2m] o THR
circuits of depth d. O
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The above theorem can be rewritten as: For constants k, d and m, thereisane > 1
such that NTIME['°¢° "] does not have 12" n_size EMAJ o AC[m] o THR circuits of
depth d, where e depends on k, d and m. Using a trick (as in [17]) this dependence
can be removed, which proves Corollary 1.

Proof of Corollary 1 Assume for contradiction that for all e, every language in
NTIME([#'°¢° "] has poly-sized EMAJ o ACC? o THR circuits. This implies that CIR-
CUIT EVALUATION problem (which is in P) has poly-sized EMAJ o AC°[m] o THR
circuits of a fixed constant depth dy and fixed constant mq. By plugging in a descrip-
tion of any circuit of size s in CIRCUIT EVALUATION, it follows that every circuit
of size s has an equivalent poly(s)-sized EMAJ o ACO[mO] o THR circuit of depth
do. Therefore our assumption implies that for all ¢, NTIME[1n'°¢" "] has poly-sized
EMAJ o AC%[2mg] o THR circuit of depth dy. This contradicts Theorem 9, which
completes the proof. O

5 Extension to All Sparse Symmetric Functions

Our lower bounds extend to circuit classes of the form f o C where f denotes
a family of symmetric functions that only take the value 1 on a small number of
slices of the hypercube. Formally, let f : {0, 1} — {0, 1} be a symmetric func-
tion, and let g : {0, 1,...,n} — {0, 1} be its “spectrum” function, where for all
x, f(x) = g(3_; xi) (here, x; denotes the i-th bit of x). For k € {0, 1, ..., n}, we
say that a symmetric function f is k-sparse if |g~!(1)| = k. For example, the all-
zeroes function is O-sparse, the all-ones function is n-sparse, and the EMAJ function is
1-sparse.

Theorem 10 Let k < n/2. Every k-sparse symmetric function f : {0, 1} — {0, 1}
can be represented as an exact majority of n°® ANDs/ORs on k inputs.

Proof Given a k-sparse f and its spectrum function g, consider the polynomial

expression
Ex) = 1_[ (Zx,- — v) .
veg~l() \ i

Then E(x) = 0 whenever f(x) = 1, and E(x) # 0 otherwise. Expanding E into
a sum of products, we can write E as a multilinear n-variate polynomial of degree
at most k, with integer coefficients of magnitude at most n?® (since each v < n).
Each monomial with a positive weight s can be viewed as the sum of s ANDs. Each
monomial with negative weight —s can be viewed as a sum of a constant plus s ORs
(using De Morgan’s laws), where the ORs take in negated x;’s as inputs. We can
therefore write f as the EMAJ of n?® distinct ANDs/ORs on up to k inputs (or their
negations). O

The above theorem immediately implies that for every k-sparse symmetric func-
tion f,, every circuit with f;, at the output gate can be rewritten as a circuit with an
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EMADJ of fan-in at most m?® at the output gate (and ANDs/ORs of fan-in up to k
below that).

Corollary 2 For every fixed k, and every k-sparse symmetric function family f =
{ £}, Quasi-NP does not have polynomial-size f o ACC? o THR circuits.

6 NEXP Lower Bounds

In this section, we show how circuit lower bounds for NEXP would follow from
weaker algorithmic assumptions. The proof follows the same basic pattern as the
proof of lower bound for Quasi-NP in Theorem 7.

6.1 NEXP Lower Bounds
We start with stating the analogue of Theorem 5.

Theorem 11 [23] Suppose for some constant ¢ € (0, 1) there is an algorithm A that
for all poly(n)-size circuits C on n inputs, A(C) runs in 2" /n®D time, outputs YES
on all unsatisfiable C, and outputs NO on all C that have at least 2"~ satisfying
assignments. Then NTIME[2"] Z P 0y

Next we prove the analogue of Theorem 6 by the same proof technique.

Theorem 12 Suppose there is an algorithm A that for all poly(n)-sized circuits C
on n inputs, A(C) runs in 2" /g(n)®Y time, outputs YES on all unsatisfiable C, and
outputs NO on all C that have at least 2" (1—1/g(n)) satisfying assignments, for some
time-constructible g(n) satisfying n®V < g(n) < 2°™. Then NTIME[2"] ¢ P poiy-

Proof Our starting point is Theorem 11 [23]: we are given an m-input, poly(m)-size
circuit D’ that is either UNSAT or has at least 2! satisfying assignments, and we
wish to distinguish between the two cases with a 2 /m® 1 -time algorithm. First, we
amplify the gap between the cases. We create a new circuit D with n inputs, where n
satisfies
n=m+y -loggn),

and ¢ > 0 is the constant from Lemma 2. (Note that, since g(n) is time constructible
and g(n) < 2°™ such an n can be found in subexponential time.) The circuit D has
the following form:

— D treats its n bits of input as a string of randomness r and computes ¢ =
O(log g(n)) strings x1, x2,...,x; € {0, 1} by simulating algorithm “S” in
Lemma 2 with a poly(m, log g(n))-size circuit.

— Tt computes {D’(x;)};.

—  The output is the OR(D'(x1), D' (x2), ..., D'(x;)).

Note the total size of our circuit D is poly(m, log g(n)) + O (log g(n)) - size(D') =
poly(m) = poly(n). Clearly, if D’ is unsatisfiable, then D is also unsatisfiable. By
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Lemma 2, if D" has 2! satisfying assignments, then D has at least 2" (1 — 1/g(n))
satisfying assignments. As size(D) < poly(n), by our assumption we can distinguish
the case that D is unsatisfiable from the case that D has at least 2"(1 — 1/g(n))
satisfying assignments, with an algorithm running in time 2" /g (n)®(". This yields
an algorithm for distinguishing the original circuit D’ on m inputs and poly(m) size,
running in time

sincen > m, g(n) = n@M By Theorem 11, this implies that NTIME[2"] & Pjpoy.
O

Now we prove the main result of this section, which proves that #SAT algorithms
for poly(n)-sized C-circuits running in time 2" /n®" imply EMAJ o C lower bounds.

Theorem 13 Suppose C is typical, and the parity function has poly(n)-uniform,
poly(n)-sized C circuits. Then for every k, NTIME[2"] does not have EMAJ o C cir-
cuits of size poly(n), if there is a #SAT algorithm running in time 2" /w(n) for all
poly(n)-sized circuits from class C, where w(n) = n®M.

Proof Let us assume NTIME[2"] has poly(n)-sized H = EMAJ o C circuits, which
implies NTIME[2"] C Pjpoy. By Theorem 12, we will derive a contradiction if we can
construct a 2" /g(n)®) time nondeterministic algorithm that, given a circuit D with
n inputs and size m < poly(n), can distinguish between:

1. YES case: D is unsatisfiable.
2. NOcase: D has at least 2" (1 — 1/g(n)) satisfying assignments.

Under the hypothesis, we will give such an algorithm for every g(n) satisfying
n®® < g(n) < wmn)°M. Note that as g(n) < w(n)°? we also have g(n) = 2°™.
Let h(n) be a function such that n®1V < h(n) < gmn)°W. Using Lemma 3 we
reduce D to independent set instance on Gp (with k = logh(n)) over n, <
poly(m, 200y < poly(m, h(n)) < poly(h(n)) vertices and edges as h(n) > ne®
and m < poly(n). As described in Lemma 3, we also find sets of pairs S; for every
vertex i € [n3]. Let . be the partial assignment which assigns a vertex i to 0 if there
exist (j',b) € S; such that ENC;/(x) # b and leaves i unassigned otherwise. By
Lemma 3, G p has the following properties:

1. If D(x) = 0O then there is an independent set of size « in G p (;ry ). Further given
x we can find this assignment in poly(%(n)) time.
2. If D(x) = 1 then all independent sets have size < o/ h(n) in Gp (7).
This means we need to distinguish between the following two cases:
1. YES case: For all x, G p(m,) has an independent set of size .

2. NO case: For at most 2" /g(n) values of x, Gp(w,) has an independent set of
size > o/ h(n).
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Guessing a Succinct Witness Circuit As guaranteed by Lemma 3, given an x such that
D(x) = 0, we can find the assignment A(x) to G p which is consistent with , and
represents an independent set of size «, in poly(k(n)) time. Let A(x, i) denote the
assignment to the i th vertex in A(x). Given x and vertex i € [ny] we can produce
—A(x, i) in time poly(h(n)).

Lemma 12 Under the hypothesis, there exists a poly(n)-sized EMAJ o C circuit U
with (x, i) as input representing A(x, ).

Proof Under the hypothesis, NTIME[2"] has poly-sized EMAJ o C circuits. Given x
and vertex i € [n7] in time poly(h(n)) < 200 we can produce —A(x, i). It follows
that given x and i € [ny] we can also produce —A(x, i) by a poly(n + logny) =
poly(n + O (logh(n))) = poly(n) EMAJ o C circuit with (x, i) as input. O]

Our nondeterministic algorithm for GAP-UNSAT begins by guessing U guaran-
teed by Lemma 12 which is supposed to represent —A. Then by the reduction in
Lemma 1, we can convert U to a SUMZY o C circuit R for A(x, i) of size poly(n).
Note that if our guess for U is correct, i.e., U = —A, then R represents A.

Let the subcircuits of R be R, R, ..., Ry, i.e.,, R(x) = Zje[t] R; where R; is
a (-)C-circuit and ¢ < poly(n). The number of inputs to R; is n’ = |x| + logny =
n + O(log h(n)), and the size of R; is poly(n).

Note that R(x, i) = O represents that the i’" vertex is not in the independent set in
a solution corresponding to x, while R(x,i) > 0 represents that the i’ vertex is in
the independent set in a solution corresponding to x. Forall x,i,0 < R(x,i) <t <

poly(n).

Verifying that R Encodes Valid Independent Sets As in Section 4, we need to verify
that

ZR(x,il) - R(x,i2) = 0.

Since R(x,i) =Y ] Rj(x, i), it suffices to verify that

ST 3 Ry@iin - Ry i) =0
]

X ji,j2€lt

Jjelt

Let Rj, j,(x,i1,i2) = Rj (x,i1) - Rj,(x,i2). Since C is closed under AND, R;, ;,
also has a poly(n) sized (-)C circuit. Swapping the order of summations, we find that

we need to verify
Z ZR.jl’./Q(xvilsiZ):().

Ji.j2€lt]
For a fixed ji, j2, the number of inputs to Rj, j, is [x| = n, and its size is at most
poly(n). Hence for a fixed pair of ji, j>, we can compute > Rj, j,(x, i1, i2) using
the #SAT algorithm from our assumption, in time 2" /w(n). Summing over all j;, j»
pairs only adds another multiplicative factor of #> = poly(n). This allows us to verify
that the edge (i1, i2) is satisfied by R.
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Checking all edges only adds another multiplicative factor of poly(4(n)). Hence
the total running time for verifying that R encodes valid independent sets is still
2"poly(h(n))/w(n).

Verifying Consistency of the Independent Set Produced by R with x4 (forall x) Asin
Section 4, we need to check that

Z Z(ENC]'/(X) ®b)R;(x,i) =0

x€{0,1}" jelt]

for all i, (j/,b) € S;. Note that Rjr(x,i) has a poly(n)-sized C circuit. By our
assumption, (ENC;(x) @ b) has a poly(n)-uniform, poly(n)-sized C-circuit. Hence
(ENC;(x)®b) - Rjs(x, i) has a poly(n)-sized C-circuit as we are given that C is typi-
cal. Moreover, we can construct the C-circuit for (ENC; (x) ®b)- R/ (x, i) in poly(n)
time as we have already guessed R and the circuit for ENC; is poly(n)-uniform.

For fixed (i, j, j/), (ENC;/(x) @ b) - Rj(x,i) € C has |x| = n inputs and size at
most poly(n). Hence we can use the #SAT algorithm from our assumption to calculate
er{o,l}" (ENCj/(x) ® b)R(x, i), in time 2" /w(n). Summing over all j € [¢] adds
another multiplicative factor of poly(n). This allows us to verify the condition for a
fixed i and (j’, b) € S;.

Enumerating over all i, (j/, b) € S; (|S;| < O(n) by Theorem 4) only adds another
multiplicative factor of poly(h(n)) - O(n) < poly(h(n)) in time. The total running
time for verifying consistency with respect to 7, (for all x) is 2"poly(h(n))/w(n).

Distinguishing Between the YES and NO Cases As we now know that R represents an
independent set, and that R is consistent with 77, we need to distinguish between:

1. YES case: For all x, R(x, -) represents an independent set of size .
2. NO case: For at most 2" /g (n) values of x, R(x, -) represents an independent set
of size > o/ h(n).

We next state an analogous Lemma to Lemma 11. We omit the proof as it is exactly

the same.

Lemma 13 For all x such that R(x, -) represents an independent set of size a, we
have a < Z | R(x,i) < at.

ie nz

To distinguish between the YES and NO cases, we now compute
> Y ken
x€{0,1}" ie[na]
We can then distinguish between the YES case and NO case, as follows.

1. YES case: For at least 2" (1 — 1/g(n)) values of x, we have an independent set
of size at most o/ h(n). By Lemma 13, for such x, Zie[nz] R(x,i) < ta/h(n).
For the rest of the 2" /g(n) values of x, the independent is at most all vertices
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in the graph Gp. By Lemma 13, for such values of x, Z
poly(h(n)). Hence

Y D R(x,i) < (2"/g(m) - poly(h(n)) +2"ter/ h(n)

x€{0,1}" i€[ns]

ielns] R(x,i) <tnp =

A

IA

0(2") + 2"ta/ h(n) [As h(n) = g(n)* "]
02" + 0(2"a) [As t = h(n)°V]
< 2o [Asa > 1]

A

2. NO case: For all x € {0, 1}, the independent set is at least of size «. Hence by
Lemma 13, the sum is ZXE{O’I}IZ Z ] R(X,l) > 2"a

i€lny

All that remains is to determine how to compute ) . 0,1y > iciny) R(x,1). Since
R(x,i) = Zje[t] R;(x, i), we can compute

2. 2 Ri=23, ) | 2 RitxD)

xe{0,1} ie[nsy] jelr) Jjeltlielnz] \xe{0,1}"

For a fixed i, j, Rj(x,i) € C has x| = n inputs and size poly(n). Hence we
can use the #SAT algorithm from the assumption to calculate ), (o )0 R;(x, )
in time 2"/w(n). Doing the summation for all j € [f],i € [n2] adds another
h(n)"<1)poly(h (n)) = poly(h(n)) multiplicative factor. The running time for distin-
guishing the YES case and NO case is at most 2"poly(h(n))/w(n).

In total, our running time is 2"poly(h(n))/w(n) = 2"/g(n)®. By Theorem 12,
this yields a contradiction which completes the proof. [
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