
Derandomization vs Refutation: A Unified
Framework for Characterizing Derandomization

Lijie Chen
Miller Institute for Basic Research in Science

University of California, Berkeley
Berkeley, CA, USA

wjmzbmr@gmail.com

Roei Tell
Department of Computer Science

The University of Toronto
Toronto, Canada

roei@cs.toronto.edu

Ryan Williams
EECS

Massachusetts Institute of Technology
Cambridge, MA, USA

rrw@mit.edu

Abstract—We establish an equivalence between two algo-
rithmic tasks: derandomization, the deterministic simulation
of probabilistic algorithms; and refutation, the deterministic
construction of inputs on which a given probabilistic algorithm
fails to compute a certain hard function.

We prove that refuting low-space probabilistic streaming
algorithms which attempt to compute functions f ∈ FP is
equivalent to proving that prBPP = prP , even in cases where a
lower bound for f against such streaming algorithms (without a
refuter) is already unconditionally known. We also demonstrate
the generality of our connection between refutation and deran-
domization, by establishing connections between refuting classes
of constant-depth circuits of sublinear size and derandomizing
constant-depth circuits of polynomial size with threshold gates
(i.e., T C0).

Our connection generalizes and strengthens recent work on the
characterization of derandomization. In particular, the refuter
framework allows to directly compare several recent works to
each other and to our work, as well as to chart a path for
further progress. Along the way, we also improve the targeted
hitting-set generator of Chen and Tell (FOCS 2021), showing that
its translation of hardness to pseudorandomness scales down to
T C0.

Index Terms—Refuters, derandomization, streaming algo-
rithms, threshold circuits

I. INTRODUCTION

Can every randomized algorithm be simulated by a deter-

ministic one, with low overhead? The question of whether

universal derandomization is possible, generally expressed as

prBPP = prP , has fascinated a generation of researchers,

partly due to deep connections between derandomization and

computational lower bounds. In the classical “hardness vs

randomness” line of work, efficient derandomization (e.g.,

prBPP = prP) was shown to be possible, assuming

exponentially-strong non-uniform circuit lower bounds against

exponential time (see, e.g., [1], [2], [3], [4], [5]). That is, it

has been known for a long time that sufficiently strong non-

uniform circuit lower bounds would imply universal deran-

domization.

However, non-uniform circuit lower bound hypotheses ap-

pear to be overkill for proving prBPP = prP , since

prBPP = prP is only concerned with derandomizing prob-

abilistic uniform algorithms (e.g., Turing machines). More

recently, researchers have found potentially weaker uniform

lower bound assumptions which suffice (and are sometimes

equivalent) for prBPP = prP:

• Chen and Tell [6] show that prBPP = prP follows from

the assumption that there is a multi-output function f
computable by poly-size LOGSPACE-uniform circuits of

depth n2 that cannot be computed on almost all inputs1 by

any probabilistic fixed-polynomial-time algorithm (run-

ning faster than the deterministic poly-time algorithm for

f). They also prove that the assumption is necessary when

the depth restriction is removed.

• Liu and Pass [7] show that prBPP = prP is equiv-

alent to proving a certain lower bound on probabilistic

polynomial-time algorithms attempting to approximate

the conditional Kt (Levin) complexity of a given binary

string. In follow-up work [8], they show that prBPP =
prP is equivalent to the existence of a poly-time f
which is “leakage-resilient” against probabilistic fixed-

polynomial-time algorithms on almost all inputs.

• Korten [9] showed that prBPP = prP is equiv-

alent to constructing a deterministic polynomial-time

algorithm that gets as input a probabilistic circuit

C : {0, 1}n → {0, 1}n−1 and a deterministic circuit

D : {0, 1}n−1 → {0, 1}n, and outputs x ∈ {0, 1}n such

that Pr[D(C(x)) = x] < 1/2.

In a different setting, a recent related work of van Melke-

beek and Sdroievski [10] shows similar results for proving that

AM = NP .

It is not a priori clear how to directly compare the various

assumptions in the above works, all of which were proved to

be equivalent to universal derandomization.

a) Efficient Refutations: Another line of work, dating

back to [11] (see also [12]), studies efficient refutation. Sup-

pose we know a lower bound “f /∈ C” for some class of

algorithms C. The problem of efficient refutation asks how

easy it is to produce “bad” inputs, on which a given “weak”

algorithm A ∈ C fails to compute f . More formally, for a

class C of algorithms (circuits, Turing machines, streaming

algorithms, etc.) and a function f : {0, 1}∗ → {0, 1}∗, we say

1Throughout the paper, the meaning of “almost all inputs” will be “all
but finitely many inputs”; that is, every probabilistic machine succeeds in
computing the function only on finitely many inputs.

1008

2023 IEEE 64th Annual Symposium on Foundations of Computer Science (FOCS)

DOI 10.1109/FOCS57990.2023.00062

20
23

 IE
EE

 6
4t

h
A

nn
ua

l S
ym

po
si

um
 o

n
Fo

un
da

tio
ns

 o
f C

om
pu

te
r S

ci
en

ce
 (F

O
C

S)
 |

97
9-

8-
35

03
-1

89
4-

4/
23

/$
31

.0
0

©
20

23
 IE

EE
 |

D
O

I:
10

.1
10

9/
FO

C
S5

79
90

.2
02

3.
00

06
2

979-8-3503-1894-4/23/$31.00 ©2023 IEEE

Authorized licensed use limited to: MIT. Downloaded on March 28,2025 at 23:43:29 UTC from IEEE Xplore. Restrictions apply.

an algorithm A is a refuter for f against C if for “many”

n and all C ∈ C, A(1n, 〈C〉) outputs x ∈ {0, 1}n such that

C(x) �= f(x).2 A lower bound of the form “f /∈ C” is said to

be constructive if there is a efficient refuter for f against C,

e.g. there is a refuter computable in polynomial time.

A recent work by Chen, Jin, Santhanam, and Williams [13]

showed that for a variety of unconditionally known lower

bounds, constructivizing these bounds (that is, finding efficient

refuters for them) would have significant consequences in

complexity theory. Most pertinently to the current work, they

showed that sufficiently strong refutation implies derandom-
ization: if there exist polynomial-time refuters against non-
deterministic models (one-tape Turing machines, as well as

streaming algorithms), then E needs exponential-size circuits,

which in turn implies prBPP = prP .3 Indeed, their results

use the classical approach for derandomization, which relies

on strong circuit lower bounds, rather than the new approaches,

which use uniform lower bounds.

b) Our Contributions: A Bird’s Eye View: The main

question motivating this work is whether we can leverage the

new approach for derandomization in order to prove stronger

connections between refutation and derandomization. For ex-

ample, can we show that more relaxed forms of refutation

(compared to the ones studied in [13]) suffice for derandom-

ization? Taking this question even further: Can we show that

refutation is equivalent to derandomization, connecting the

study of refuters to the line of work proving characterizations
of the prBPP = prP conjecture?

We provide a strong affirmative answer to the foregoing

questions, by proving a general equivalence between deran-

domization and refutation. In fact, our refuter-based char-

acterization of derandomization generalizes and significantly

strengthens all the recently discovered results studying deran-

domization from weaker hypotheses (i.e., [6], [7], [8], [9]).

It turns out that looking at derandomization through the lens

of refutation allows us to directly compare the hypotheses in

each of these works, as well as to prove stronger results.

In more detail, we study the consequences of determinis-
tically refuting classes of probabilistic algorithms, for hard

functions in FP . We show that this sort of refutation – even

for unconditionally known lower bounds – is equivalent to

derandomization. Moreover, we prove that this equivalence

holds both for general probabilistic algorithms and for weak

classes of algorithms: the equivalence (or near-equivalence)

scales down “as far as” T C0, which is a lower complexity

class compared to previous works studying derandomization

from weaker hypotheses.

c) Setup and Notation: We consider refuting non-

uniform classes C of algorithms: for every input length n, C
contains a set Cn of probabilistic algorithms. The algorithms

in Cn do not need to be Boolean circuits, as in the usual

2The “many” n may be infinitely many n, or all but finitely many n,
depending on the lower bound being proved.

3They also showed that any proof of classical conjectured lower bounds
(such as NEXP �= BPP) would necessarily yield constructive lower
bounds; that is, constructivity is necessary for proving these conjectures.

definition of non-uniform classes; for example, Cn could be

a set of probabilistic RAM machines or streaming algorithms

with a certain description length and runtime bound, where

we consider their execution on inputs of fixed length n.

We say that A is a refuter for a function f against a
class C = ∪n∈NCn of probabilistic algorithms if for every

n ∈ N and every C ∈ Cn, A(1n, 〈C〉) outputs an x ∈ {0, 1}n
such that Pr[C(x) = f(x)] < 2/3, where the probability is

over the internal randomness of C. If A runs in deterministic

polynomial time, we say that A is an FP-refuter. We say that

A is a BPP-refuter for f against C if A runs in probabilistic

polynomial time and satisfies

Pr
[
A(1n, 〈C〉) outputs an x ∈ {0, 1}n such that

Pr[C(x) = f(x)] < 2/3
]
≥ 2/3

for every n ∈ N and every C ∈ Cn, where the outer probability

is over the randomness of A.

A. Derandomization of prBPP vs Refutation for Low-Space
Streaming Algorithms

Define str-T ISP [t(n), s(n)] as the class of probabilistic

one-pass streaming algorithms that on n-bit inputs have de-

scription length n, and run in time t(n) and space s(n).
Our first result asserts that constructing an FP-refuter for

any function in f ∈ FP against low-space streaming algo-
rithms suffices for derandomization. (This should be compared

with [13, Theorems 1.5 and 3.4], which needed refuters for

general non-deterministic machines.) In fact, we prove an

equivalence between such refutation and prBPP = prP , as

follows:

Theorem I.1. The following statements are equivalent:
1) For some ε > 0 and f : {0, 1}∗ → {0, 1}∗ computable in

polynomial time T , there is an FP-refuter for f against
str-T ISP [T (n)1+ε, nε].

2) prBPP = prP .
3) For every class C of probabilistic RAMs supporting

error-reduction4, and every f ∈ FP such that there is
a BPP-refuter for f against C, there is an FP-refuter
for f against C.

Theorem I.1 states multiple compelling equivalences. First

of all, it says that universal derandomization is equivalent to

derandomizing refuters against efficient low-space streaming
algorithms. We find this equivalence particularly surprising,

since this class of algorithms seems remarkably weak. We also

stress that there are many known unconditional lower bounds
for functions in polynomial time against streaming algorithms

with space o(n) and any running time (see, e.g., [14]). Thus,

one implication of Theorem I.1 is that constructivizing known
lower bounds for streaming algorithms suffices to prove that
prBPP = prP .

4Informally, we only require that in C, we can take the majority vote of
constantly many independent runs of an algorithm in C; see Definition VI.3
for details.

1009

Authorized licensed use limited to: MIT. Downloaded on March 28,2025 at 23:43:29 UTC from IEEE Xplore. Restrictions apply.

Second, Theorem I.1 also states that universal derandom-

ization (prBPP = prP) is equivalent to derandomizing

every probabilistic polynomial-time refuter against a class

of probabilistic RAMs: when a probabilistic efficient refuter

exists, there is also a deterministic one. Therefore, deran-

domizing probabilistic refuters is “complete” for universal

derandomization.

Third, Theorem I.1 says that deterministically refuting

streaming algorithms is equivalent to deterministically refuting

significantly stronger classes C. For example, constructivizing

lower bounds for certain functions in quasilinear time against

n2−ε-time and nε-space streaming algorithms (e.g., construc-

tivizing lower bounds in [14]) would also constructivize lower

bounds for certain multi-output functions in quasilinear time

against general n2−ε-time and nε-space algorithms (e.g., it

would constructivize lower bounds such as those in [15],

[16]).5

a) Refuters for Functions with Multiple Output Bits: The

reader might have noticed that the function f in Theorem I.1

is allowed to have multiple output bits. This generalization

is important: constructing refuters for functions with multiple

output bits is, intuitively, a significantly easier task than

constructing refuters for decision problems. Thus, our results

offer a characterization of derandomization in terms of weaker

hypotheses. Moreover, it is through the use of multiple output

bits that we are able to generalize and strengthen the known

characterizations of derandomization from [6], [7], [8], [9],

as well as compare them to each other (we elaborate on this

in Section I-C).

In contrast to the proofs of our results (some of which

are quite involved), it is easy to show that refuters for

functions with a single output bit implies derandomization

(see Section III-E), and indeed the latter statement has fewer

interesting consequences.6

B. Scaling Down the Equivalence to Weak Circuit Classes

We demonstrate the generality of the connection between

refutation and derandomization by showing that the equiva-

lence in Theorem I.1 scales down to weak complexity classes.

In fact, we show that this equivalence scales “as far down”

as T C0, which is a lower complexity class than in [6], [7],

[8]. As this scaling-down requires significant technical work,

we will only illustrate this for the “extreme point” of T C0;

5This can be viewed as a generalization and strengthening of [8, Theorem
1.2], who showed that leakage-resilient hardness with nε bits of leakage is
equivalent to leakage-resilient hardness with n−O(log(n)) bits of leakage,
by proving that both are equivalent to derandomization (where hardness here
is in the “almost all inputs” sense).

6This situation is reminiscent of that in Chen and Tell [6]. To see this,
note that prBPP = prP trivially follows from the existence of f ∈ P
such that for all but finitely many inputs x, Prr[M(x, r) = f(x)] < 2/3,
where M is a probabilistic machine solving the prBPP-complete decision
problem CAPP. The main contribution of [6] is proving that prBPP =
prP follows from a similar statement for functions with multiple output bits.
(The original statement in [6] asserts that prBPP = prP follows from the
existence of f that is hard for all probabilistic machines running in some
fixed polynomial time; but since it suffices to derandomize a machine solving
a prBPP-complete problem, it suffices to require that f will be hard on
almost all inputs for a single (specific) machine F .)

we have no reason to doubt that similar equivalences hold for

stronger classes such as NC. A secondary reason for proving

scaled-down equivalences is a hope that our results could be

leveraged in order to prove unconditional derandomizations

for weaker circuit classes.

In the following, we show connections between refuting

classes of probabilistic circuits with constant depth and a

sub-linear number of gates, and derandomization of constant-

depth circuit families of polynomial size with threshold gates,

a.k.a. T C0.7 Towards stating the results, recall that CAPP is

the problem in which we are given a circuit C : {0, 1}n →
{0, 1} and want to distinguish between the case Prr[C(r) =
1] ≥ 2/3 and Prr[C(r) = 1] ≤ 1/3. This problem is

prBPP-complete, in that CAPP is solvable in deterministic

polynomial time if and only if prBPP = prP . Also recall that

in CAPP0,1/2, we are given a circuit C : {0, 1}n → {0, 1} and

have to distinguish between the cases Prr[C(r) = 1] ≥ 1/2
and Prr[C(r) = 1] = 0. This “one-sided” CAPP problem

is solvable in deterministic polynomial time if and only if

prRP = prP .

a) Full Equivalence for a Specific Function: We first

consider refuters only for the specific “hard” function f(x) =
x, denoted Identity. Indeed, extremely weak algorithms fail to

compute Identity (e.g., algorithms that only access nε bits of

input), and we show that refuters for Identity against certain

such classes is equivalent to solving CAPP in polynomial time,

for all of T C0.

Theorem I.2. The following are equivalent:
1) There is a polynomial-time algorithm solving CAPP for

T C0 circuits.
2) For some ε > 0, there is an FP-refuter for Identity

against probabilistic T C0◦⊕ circuits that have O(n1+ε)
wires, and nε gates in the bottom XOR layer.

As in Theorem I.1, the refuted class in Theorem I.2 is very

weak. In particular, for ε < 1 we already unconditionally know

that Identity cannot be computed by T C0 ◦ ⊕ circuits as in

Theorem I.2; what we lack is an FP-refuter “witnessing” the

simple lower bound.8

b) Near-Equivalence for a Broader Class of Hard Func-
tions: Theorem I.2 shows a full equivalence, but needs a

refuter for the specific function Identity. We now relax the

hypothesis by allowing refuters for a significantly richer class

of hard functions, at the cost of proving a near-equivalence

rather than a full equivalence. Details follow.

For a T C0 circuit C with T (n) gates, consider the function

Φ(i, j) = wi,j , where i ∈ [T (n)] is the index of a threshold

gate g of C, j ∈ [T (n)] is the index j of a child h of g in C,

and wi,j is the weight of h in the linear combination defining

7Throughout the paper, we restrict the gates in T C0 circuits to have
polynomially bounded weights; see Section III-A.

8Since there are only nε XOR gates in the bottom layer, all functions
computed by probabilistic T C0 ◦ ⊕ circuits have two-party (public-coin)
probabilistic communication complexity O(nε). For all ε < 1, such protocols
cannot compute Identity, as this would require both parties to completely
reconstruct the opposite party’s n/2-bit input.

1010

Authorized licensed use limited to: MIT. Downloaded on March 28,2025 at 23:43:29 UTC from IEEE Xplore. Restrictions apply.

g. Roughly speaking, we say that a circuit C is highly uniform
if Φ is computable by P-uniform T C0 circuits of size T o(1)

(see Definition III.6).

Consider any f computable by highly uniform T C0 circuits.

In one direction (refutation ⇒ derandomization), we show that

a refuter for f against distributions over T C0 ◦ SUM circuits

of nε gates, where ε ∈ (0, 1) is an arbitrarily small constant,

would suffice to solve CAPP0,1/2 for all of T C0. (As usual,

the notation SUM denotes gates that compute a weighted sum

of their inputs with polynomially bounded weights, over the

integers; see Section III-B1.)

Theorem I.3 (informal, see Theorem VI.10). For every ε > 0
and d, k ∈ N there exists d′ > 1 such that the following
holds. Let f : {0, 1}� → {0, 1}� be any function mapping
n bits to nε bits that is computable by a family of highly
uniform threshold circuits of depth d and size nk. Assume that
there is a P-computable refuter for f against distributions
over T C0

d′ ◦ SUM circuits with n2ε gates. Then, there is a
deterministic polynomial-time algorithm solving CAPP0,1/2

for T C0
d circuits.

Similarly to our previous results, hard functions as in The-

orem I.3 exist, for example the inner product mod 2 (IP2)

function.9 The challenge is in constructivizing the lower

bound.

To complement Theorem I.3 and show a near-equivalence,

we will slightly restrict the class of hard functions and the

class of refuted algorithms. For a family of distributions D =
{Dn}n∈N

where Dn is over n-bit T C0 ◦ SUM circuits, we

say that D is T C0-samplable if for every n ∈ N there exists

a multi-output T C0 circuit Sn, called a sampler, such that

the output distribution of Sn over random input is Dn (see

Definition III.8 for details). Then:

Theorem I.4 (informal, see Theorem VI.13). Let
f : {0, 1}n → {0, 1}nε

be computable by highly uniform
T C0 circuits, and assume that there is a probabilistic
T C0-computable refuter for f against Samp-T C0[n2ε], where
Samp-T C0[n2ε] is the class of T C0-samplable distributions
over T C0 ◦ SUM circuits with n2ε gates. Then, for the
following three statements, we have (1) =⇒ (2) =⇒ (3).

1) There is a deterministic polynomial-time algorithm solv-
ing CAPP for T C0.

2) There is an FP-refuter for f against Samp-T C0[n2ε].
3) There is a deterministic polynomial-time algorithm solv-

ing CAPP0,1/2 for T C0.

c) An Improved Targeted Hitting-Set Generator: As

mentioned above, the proofs of our results leverage the recent

new approaches to derandomization. On the way to proving

Theorems I.3 and I.4, we also make a significant contribution

to the technical machinery underlying these new approaches,

9Following [17], any function computed by a distribution of linear threshold
circuits with nε gates has communication complexity at most O(nε logn).
Thus, our T C0 ◦SUM circuits can be simulated by communication protocols
with such complexity. However, the randomized (two-party) communication
complexity of IP2 is Ω(n) [18].

and this contribution is of independent interest. Specifically,

a main technical ingredient in our results is a “scaled-down”

version of the targeted PRG of [6], as follows:

Theorem I.5 (informal; see Theorem V.1). Let f : {0, 1}n →
{0, 1}m(n) be computable by a family of highly uniform T C0

circuits of size T , let γ ∈ (0, 1), and let M ≤ TΩ(γ). Then,
there exist d′ ∈ N and deterministic algorithms HCT-TC0

f and
RCT-TC0

f that for every z ∈ {0, 1}n satisfy:

1) Generator: HCT-TC0
f (z) runs in time poly(T) and prints

a set of M -bit strings.
2) Reconstruction: RCT-TC0

f (1n) prints a sampler for a
distribution Rf over T C0

d′ ◦ SUM[T γ] oracle circuits,
such that for any D : {0, 1}M → {0, 1} that satisfies
Prr[D(r) = 1] ≥ 1/M but D rejects all output strings
of HCT-TC0

f (z), we have

Pr
Rf←Rf

[
RD

f (z) prints a T C0
d′ oracle circuit E

such that tt(ED) = f(z)
]
≥ 2/3 ,

where tt(ED) is the truth-table of ED.

To compare, Chen and Tell [6] proved a version of Theo-

rem I.5 in which the function f is computable by logspace-

uniform circuits of fixed polynomial depth, and the recon-

struction procedure is computable by probabilistic logspace-

uniform circuits of comparable depth. Achieving reconstruc-

tion with constant-depth threshold circuits requires significant

technical work.

C. Generalizing Previous Characterizations of Derandomiza-
tion

The equivalences between refutation and derandomiza-

tion generalize and strengthen previous characterizations of

prBPP = prP , as well as allow to directly compare these

characterizations. To state this, we will need a more refined

technical version of Theorem I.1.

a) A Refinement of Theorem I.1: As a first step, instead

of refuting arbitrary non-uniform models, we consider Turing

machines with non-uniform advice, and distinguish between

the machine and the advice. That is, for every machine M ,

and every sufficiently large n ∈ N, and every advice string

a ∈ {0, 1}n, we give the refuter input (M,a) and ask it to

print x such that Pr[M(a, x) = f(x)] ≤ 1/2. We also consider

the natural relaxation of refuters to list-refuters, in which the

refuter is allowed to print a list x1, ..., xpoly(n) ∈ {0, 1}n, and

it is only required that for some i ∈ [poly(n)] the string xi

will be a hard input for M with advice a.

The next two relaxations are somewhat less natural, but they

make our results significantly more general. So far, the output

of the hard function f depended only on the input x; we will

also allow the function f to depend on the advice a (i.e., on the

refuted algorithm), requiring that Pr[M(a, xi) = f(a, xi)] ≤
1/2 for some i. Lastly, we relax the conditions even further

by considering what we call compression list-refuters, where

we only require that M(a, xi) will fail to print a small circuit

1011

Authorized licensed use limited to: MIT. Downloaded on March 28,2025 at 23:43:29 UTC from IEEE Xplore. Restrictions apply.

(say, of size
√
|f(a, xi)|) whose truth-table is f(a, xi) (see

Definition III.4).

Our most general technical statement is analogous to The-

orem I.1 but holds even for the very relaxed notions of

refuters described above. Let us state the result a bit informally

here, while focusing for simplicity on the “refutation ⇒
derandomization” direction:

Theorem I.6 (informal, see Theorem VI.1). Let ε > 0
and T (n) = poly(n), and let f be any advice-dependent
function that is computable in time T and hard for
str-T ISP [T 1+ε, nε].10 Assume that there is a list-refuter in
FP for f against str-T ISP [T 1+ε, nε] algorithms that try
to compress the output from length N to length

√
N . Then,

prBPP = prP .

For a detailed technical statement, which also includes the

converse direction to Theorem VI.1 (i.e., it shows a full

equivalence), see Corollary VI.5.

b) Generalizing and Strengthening Known Results: Our

results strictly improve over the known works that characterize

prBPP = prP in terms of uniform hardness hypotheses

(see [6], [7], [7], [9]). Roughly speaking, there are three

“moving parts” in our equivalences between derandomization

and refutation: the complexity of the hard function f , the

weak class C of algorithms being refuted, and the complexity

of the deterministic refuter itself. Ideally, we would like to

deduce derandomization from refuters against the weakest-

possible class C, for any hard function f ∈ FP , and while

only requiring that the refuter runs in FP .11

As we explain in Section VII, results in previous works [6],

[7], [8], [9] can all be recast in the terminology of refuters

(see Table I). From this perspective, all prior works relate

derandomization to refuters for the identity function. That is,

fixing a universal constant c > 1:

• Chen and Tell [6] showed that prBPP = prP follows

from refuters computable by logspace-uniform circuits of

depth n2 for Identity against the class C of probabilistic

time-nc algorithms that only depend on the input length

(i.e., the weakest class in terms of input access). A

conjecture implicit in [6] asserts that prBPP = prP is

equivalent to FP-refuters for Identity against C, without

the depth restriction. (See Section VII-C.)

• Liu and Pass [8] showed that prBPP = prP is equiv-

alent to FP-refuters for Identity against communication

protocols with runtime nc and with nε bits of commu-

nication, for an arbitrarily small constant ε > 0. (Recall

that this class is stronger than str-T ISP [nc, nε], because

the communicating party is allowed arbitrary access to its

10Note: The class str-T ISP[t(n), s(n)] here is defined not as non-
uniform streaming algorithms, but as uniform streaming algorithms that
receive non-uniform advice; see Sections III-A and III-A3 for an explanation
of the distinction.

11There is good reason to only attempt to deduce derandomization from
refuters for f ∈ FP , rather than (say) relax the requirement to f ∈ FBPP .
Loosely speaking, a proof of the conditional statement “refutation of any
f ∈ FBPP implies derandomization” would unconditionally imply that
prBPP = prP; see Claim VI.6 for precise details.

input.) Korten’s characterization [9] can be viewed in a

similar light. (See Section VII-A.)

• Finally, the hardness assumption for conditional Kol-

mogorov complexity proved by Liu and Pass [7] to

be equivalent to prBPP = prP can be viewed as

a compression list-refuter for Identity against general

probabilistic time-nc algorithms. (See Section VII-B.)

Thus, the main improvement of our results (i.e., of Theo-

rem I.6 and Corollary VI.5) over prior work is in weakening

the class of refuted algorithms (i.e., to str-T ISP [T 1+ε, nε])
and in extending the class of hard functions (i.e., from Identity
to all functions computable in time T).

c) An Open Problem: A natural goal is to improve our

results by further weakening the class of refuted algorithms,

and further broadening the class of hard functions. What could

be an ideal result to hope for in this context? We suggest the

following open problem:

Open Problem 1. Prove the following statement, for some
constant c ≥ 1: If there is an FP-refuter for some f ∈ FP
against probabilistic algorithms running in time nc that do
not examine their input (i.e., the algorithms only depend on
their input length), then prBPP = prP .

The refuted class of algorithms in Open Problem 1 is the

weakest possible in terms of the dependency on the input.

Recall that if prBPP = prP , then (by Theorem I.1) for

any f ∈ FP , and essentially any class C of RAMs such

that there is a BPP-refuter for f against C, there is an FP-

refuter for f against C. Open Problem 1 asks to prove a strong

converse direction: even a refuter against the weakest possible

class C (in terms of input-dependency) suffices to prove that

prBPP = prP .12 We note that an analogous statement for

the case of functions f ∈ P with a single output bit is easy

to prove (see Claim III.17).

D. Refuters Against Deterministic Algorithms and the Lossy
Code Problem

So far, we showed universal derandomization follows from

(or is equivalent to) deterministic refuters for probabilistic
algorithms. We show that derandomization consequences fol-

low even from a refutation task that is potentially easier:

deterministic refuters for deterministic algorithms.
To see this, let us recall Korten’s perspective on deran-

domization [19], which centers around a problem called

LossyCode. The problem is defined as follows:

Definition I.7 (LossyCode [19]). In LossyCode, given a pair
of circuits C : {0, 1}n → {0, 1}n−1 and D : {0, 1}n−1 →
{0, 1}n as input, the goal is to output an x ∈ {0, 1}n such
that D(C(x)) �= x.

Note that LossyCode can be solved easily using random-

ness, since half of the inputs x ∈ {0, 1}n satisfy the required

12Indeed, Open Problem 1 asks to prove its conclusion when f ∈ FP can
be arbitrary, rather than only a function that has a BPP-refuter. However, we
stated the problem in this manner only for simplicity: proving the statement
in Open Problem 1 only for functions in f ∈ FP that have a BPP-refuter
would be just as interesting.

1012

Authorized licensed use limited to: MIT. Downloaded on March 28,2025 at 23:43:29 UTC from IEEE Xplore. Restrictions apply.

Reference Hard function f Weak class C Refuter Complexity

[6] Identity obl-BPT IME[nc] lu-T IMEDEPT H[poly(n), n2]

[7] Identity BPT IME[nc] FP
[8], [9] Identity ow-COMM[nc, nε] FP

Thm I.6, Cor VI.5 DT IME[n(1−ε)·c] str-T ISP[nc, nε] FP
Conjecture FP obl-BPT IME[nc] FP

TABLE I: In the above, c > 1 is a sufficiently large universal constant, and ε > 0 is an arbitrarily small constant. We have

the following relationships:

obl-BPT IME [nc] ⊆ str-T ISP [nc, nε] ⊆ ow-COMM[nc, nε] ⊆ BPT IME [nc] ,

where obl-BPT IME [T] refers to probabilistic T -time algorithms that do not examine their input (i.e., only depend on

its length); and ow-COMM[T, k] refers to probabilistic one-way communication protocols that run in time T and send

k bits; and strT ISP [T, S] refers to probabilistic streaming algorithms running in time T and space S. Also, the class

lu-T IMEDEPT H[T, d] represents logspace-uniform circuits of size T and depth d.

property (and given x, it is easy to check if D(C(x)) �= x).

However, it seems challenging to solve the problem determin-

istically. In contrast to CAPP, we do not know if LossyCode

is complete for prBPP , and in fact proving so would imply

that BPP ⊆ NP (see [19] for an explanation). This implies

that there might be more hope for progress on deterministic

poly-time algorithms for LossyCode, compared to CAPP.

First, we show that solving LossyCode reduces to (deter-

ministically) refuting deterministic streaming algorithms, for

any hard function in FP . Leveraging the ideas of [19], we

prove:

Theorem I.8. For any function f ∈ FP and ε ∈ (0, 1), if
there is an FP-refuter for f against nε-space polynomial-time
deterministic streaming algorithms, then LossyCode ∈ FP .

To obtain a full equivalence between efficient refutation

and solving LossyCode, we consider refuters for specific,

well-studied functions. In particular, we show that solving

LossyCode is equivalent to providing efficient refuters for

Set-Disjointness (DISJ) or for Inner Product (IP)

against low-space streaming algorithms, where space is mea-

sured in the number of stored bits.13

Theorem I.9. For a function f ∈ {DISJ, IP} and all ε ∈
(0, 1), the following are equivalent:

1) There is a refuter in FP for f against nε-space poly-
time deterministic streaming algorithms.

2) There is a refuter in FP for f against (n − 1)-space
poly-time deterministic streaming algorithms.

3) LossyCode ∈ FP .

II. TECHNICAL OVERVIEW

The algorithmic framework for derandomization in this

work uses targeted pseudorandom generators (tarPRGs),
as defined by Goldreich [20]. As in recent works [6], [7],

[8], [10], we will use reconstructive tarPRGs. To describe

13In the DISJn (IPn resp.) problem, one is given two n-bit strings x, y ∈
{0, 1}n (y is given after all of x) and the goal is to determine whether their
inner product

∑n
i=1 xiyi is non-zero (odd resp.).

this object, consider derandomizing the probabilistic machine

M = MCAPP that solves the prBPP-complete problem

CAPP. At a high level,

1) Given input x ∈ {0, 1}n, the reconstructive tarPRG

computes a string f(x), and then maps f(x) to a set

Sx,f(x) of n-bit strings s1, ..., sn̄, for n̄ = poly(n). We

output MAJ {M(x, si)}i∈[n̄].

2) The pseudorandomness of Sx,f(x) for M(x, ·) fol-

lows by designing an efficient reconstruction algo-

rithm R: Assuming that Prr∈{0,1}n [M(x, r) = 1] /∈
Pri∈[n̄][M(x, si) = 1] ± 1/10, the algorithm RM(x,·)

computes x �→ f(x) “too efficiently”. Since our hypoth-

esis will be that f is hard to compute very efficiently

on x, we reach a contradiction.

In recent works, the mapping of f(x) to the set Sx,f(x)

generally used known technical tools: for example, we may

think of f(x) as the truth-table of a function {0, 1}log(|f(x)|) →
{0, 1}, and apply the Nisan-Wigderson construction [1] (with

the code of [3]) to this function. The novelty in [7], [8],

following [6, Section 2.1], was in reanalyzing the known re-

construction argument of [1], [21], [3] to prove the correctness

of the tarPRG, applying the same high-level template outlined

above, with a suitable (new) hardness assumption.14

For example, if the reconstruction R requires nε queries to

the truth-table f(x) (as in [1], [21], [3]), then one needs to

assume that the mapping x �→ f(x) is hard to compute even if

one is allowed “leakage” of nε bits from f(x). Furthermore,

if we want the tarPRG to succeed on all inputs, then this same

type of hardness should hold for all (but at most finitely many)

inputs. This is precisely how the result in [8] is proved.

14Loosely speaking, the original argument of [21] applied only to functions
that have certain structural properties (i.e., are downward self-reducible
and randomly self-reducible), yet required standard hardness assumptions.
In [6, Section 2.1] and [7], [8] it was reanalyzed (for tarPRGs) without the
assumption that the function has structural properties, but with new types of
hardness assumptions.

1013

Authorized licensed use limited to: MIT. Downloaded on March 28,2025 at 23:43:29 UTC from IEEE Xplore. Restrictions apply.

A. Our Starting Point: A New Perspective

We suggest a new perspective on the above framework. Let

us think of the problem of computing f algorithmically: how

hard it is to compute f that will have the required properties?

Another way to frame this question is to ask: given x, how
hard is it to find f(x) such that RM(x,·)(x) fails to print f(x),
when it has some “limited access” to f(x)? (The meaning of

“limited access” here could be, say, nε bits of information, as

in [8].)

Our key observation is to think of x not as specifying an

input, but rather as specifying the algorithm Rx = RM(x,·)(x),
and to think of f(x) not as the output of Rx, but rather as

a potential input for Rx. That is, reformulating the question

above:

We are given a description of an algorithm Rx, and
our task is to find a string y such that Rx fails to
print y, even when Rx has some “limited access”
to y.

Indeed, this is precisely a refutation task for the algorithm

Rx, where we are trying to find a “bad” input y demonstrating

that Rx does not compute the hard function Identity(y) =
y. Moreover, recall that in previous works, the requirement

was that computing the mapping x �→ y will be hard for the

reconstruction algorithm R on all but finitely many x. From

the current viewpoint, this translates into requiring that the

refuter will succeed in the worst-case, i.e., succeed in finding

a hard y when given any Rx (except, perhaps, on finitely many

x).

From a technical viewpoint, given the perspective above,

we will improve the known results by: (1) extending the class

of hard functions (i.e., allowing more hard functions than

just Identity), and (2) creating more efficient reconstruction

algorithms R, such that they can work with “even less access”

to y, and with more restricted computational resources.

B. Warm-Up: The Nisan-Wigderson Generator

As a warm-up, let us prove that (deterministic polynomial-

time) refuting the function Identity against streaming algo-

rithms with nε space (for an arbitrarily small constant ε > 0)

implies prBPP = prP .

We are given x as input to the probabilistic algorithm

M = MCAPP which solves CAPP. We know in advance

the reconstruction algorithm R that our proof will use (see

below), and moreover there is an efficient mapping from x to

Rx = RM(x,·). Therefore we can compute the description of

Rx, and feed the description to the poly-time refuter, which

outputs y. Thinking of y as a truth-table, we use the standard

construction of [1], [21], [3] to obtain a set of strings that is

hopefully pseudorandom.

The main observation needed for the proof is that the re-

construction algorithm R of [1], [21], [3] can be implemented

by a streaming algorithm that passes over y. Specifically,

the combination of the local list-decoder of [3] and of the

reconstruction of [1], [21] only requires making non-adaptive

linear queries to y (since the code of [3] is linear, and since

the queries of [1], [21] are non-adaptive). Indeed, a streaming

algorithm can first toss random coins to choose linear queries

to y, then resolve these queries in a single pass over y, and

finally run the rest of the reconstruction procedure without

accessing y again.

Furthermore, this streaming algorithm also uses low space.

This essentially follows by a padding argument: given x ∈
{0, 1}n0 , we instantiate the argument above with x′ = x0n−n0 ,

where n = (n0)
C/ε for a sufficiently large constant C > 1.

The number of coins that M needs is |x| = nε/C , and there-

fore (closely inspecting the reconstruction argument in [1],

[21], [3] for this parameter setting) the number of queries to

y is at most, say, nε/2. Thus, the streaming algorithm only

needs nε space to resolve these queries during its pass on y.

C. A Broader Class of Hard Functions

Let us now describe the proof of Theorem I.1. The main part

of the proof is to deduce derandomization from the existence

of a refuter for any function f computable in time T (n) =
poly(n) against streaming algorithms running in time T 1+ε

and space nε.

Starting with the argument above, instead of applying the

PRG construction of [1], [21], [3] to y, we will apply a

targeted hitting-set generator (tarHSG) HCT from [6] to y,

where HCT is instantiated with the hard function f . That is,

given x, we first compute a description of Rx = RM(x,·)

for a predetermined reconstruction algorithm R that will be

presented below, run the refuter on Rx to obtain a bad input

y, and finally run HCT, instantiated with the hard function f ,

on input y, to obtain a pseudorandom set.

We argue that this construction is a tarHSG,15 which implies

that prRP = prP and hence (by [22], [23], [24], [25])

prBPP = prP . To do so, we analyze HCT in a different way

than in [6]. Recall that for any f computable in deterministic

time T and input y for f , the generator HCT produces t ≈ T

sets S
(1)
f,y, ..., S

(t)
f,y.16 We argue that the following holds: If

M(x, ·) distinguishes every set S
(i)
f,y from random, then we

can compute y �→ f(y) by a one-pass streaming algorithm

Rx using time T 1+ε and space nε. Since this contradicts the

properties of the refuter (i.e., the refuter finds y that fails Rx),

we conclude that our construction is indeed a tarHSG.

To prove this we need to give a reconstruction algorithm

Rx with such properties. We recall the following facts about

HCT and about its known reconstruction algorithm:

1) The generator HCT simulates the uniform circuit comput-

ing f(y), and transforms the matrix G(y,f) representing

the gate-values in this circuit into an “encoded” matrix

B(y,f) that we call a bootstrapping system, which has

15That is, if Prx[M(x, r) = 1] ≥ 1/2 then there exists a string s in the
pseudorandom set such that M(x, s) = 1.

16The original work [6] required that f will be compuable by logspace-
uniform circuits of size T and depth d, and the number of pseudorandom
sets was t ≈ d. In this work we use any function computable in time T , and
instantiate the original construction with d ≈ T (as any function computable
in time T is computable by logspace-uniform circuits of size Õ(T) and depth
Õ(T)).

1014

Authorized licensed use limited to: MIT. Downloaded on March 28,2025 at 23:43:29 UTC from IEEE Xplore. Restrictions apply.

useful properties (the transformation uses the ideas of

Goldwasser, Kalai, and Rothblum [26]). For simplicity,

assume that the dimensions of B(y,f) are identical to

those of G(y,f). Then, HCT applies the generator of [1]

to each of the t ≈ T rows of B(y,f), to obtain pseudo-

random sets S
(1)
f,y, ..., S

(t)
f,y. The output is ∪iS

(i)
f,y .

2) The reconstruction argument works in a layer-by-layer

fashion: it starts from the bottom layer, which has an

encoding of y, and in the end reaches the top layer,

which has f(y). For each layer i = 1, ..., t sequentially,

we run the reconstruction argument of [1], [21] RNW

to obtain a small circuit Ci whose truth-table is the ith

layer. The algorithm RNW needs to make queries to the

(i − 1)th layer,17 and since we already have a circuit

Ci−1 whose truth-table is the (i − 1)th layer, we can

simulate Ci−1 to answer the queries of RNW.

As in Section II-B, since the number of random coins that

we need is, say, nε/2, each step of the reconstruction can be

executed in time nε (and in particular, each step makes at most

nε queries and prints a circuit of size at most nε). This yields

an algorithm Rx that computes y �→ f(y) in time T 1+ε, but

we still have not explained why Rx is a low-space one-pass

streaming algorithm.

The key observation is that we can implement Rx with

limited access to y. Specifically, we start the reconstruction

from the second layer of the circuit for f(y). The only time

we need access to the first layer, which encodes y, is when

answering the queries of RNW to the first layer (i.e., when we

run RNW to get a circuit C2 for the second layer). Moreover,

since the first layer is a linear encoding of y, to answer these

queries we only need to compute linear functions of y. Since

there are at most nε queries in each step, we can compute

these nε linear functions of y by an ≈ nε-space one-pass

streaming algorithm. For precise details, see Theorem III.15

and Section VI-A.

a) The Converse Direction: Obtaining an Equivalence:
To prove Theorem I.1 we also need to show the converse di-

rection, i.e., that derandomization implies refutation. Observe

that the first direction (described above) holds for any f in

time T ; to get an equivalence, we now restrict our attention

to f ’s that have a BPP-refuter, denoted Reff .

Then, proving the converse direction is simple. Note that we

can test whether a given string y is actually a bad string for Rx

(i.e., by computing f(y), simulating Rx(y), and comparing

the outcomes). Thus, to find y that will be bad for Rx, we

run a search-to-decision reduction as in [20]: we construct

random coins for Reff bit-by-bit, and in each step we verify

that the probability that Reff outputs a string that is bad for Rx

(conditioned on the current prefix of coins) is approximately

maintained. Each step requires solving a decision problem in

17This description abstracts away many technical details. For example, the
algorithm RNW actually needs to make queries to the ith layer to construct
Ci. We require B(f,y) to be downward self-reducible, and thus these queries
can be answered by a small number of queries to the (i−1)th layer. (The other
property that we require from B(f,y) is that each layer will be a codeword
in a sufficiently good error-correcting code; see Section V for details.)

prBPP , and thus (by our assumption) this problem can be

solved in prP . For details see Theorem VI.4.

D. Extending the Connection Down to T C0, and an Improved
Chen-Tell Generator

Next, we prove that the equivalence between refutation and

derandomization is more general, and in fact scales all the way

down to T C0 circuits. The equivalence stated in Theorem I.2,

which refers to the specific hard function Identity, follows

from ideas similar to the ones in Section II-B, only with a more

careful analysis of the known algorithms of [1], [21], [3] (for

details see Theorem III.14, Appendix B, and Theorem VI.7).

We therefore focus on the connection in Theorem I.4, whose

proof is the most technically involved part of this work.

Let us first sketch the proof of the special case stated in

Theorem I.3: if there is a refuter for any function in highly

uniform T C0 against distributions over T C0 ◦SUM of size nε,

then CAPP0,1/2 of T C0 circuits can be solved in deterministic

polynomial time.

The CAPP0,1/2 algorithm is similar to the one in Sec-

tion II-C: it receives an input x ∈ {0, 1}n (which represents a

T C0 circuit of size nε), computes the description of a sampler

Rx = Sx for a distribution over T C0 ◦SUM circuits (where S
is a predetermined uniform algorithm that we describe below),

feeds Rx into the refuter to obtain y, and runs a tarHSG

HCT-TC0 that we will construct (instantiated with the function

f) on input y to obtain pseudorandom strings.

Our goal is to construct HCT-TC0 that is instantiated with

a function f computable by highly uniform T C0 circuits of

size T (n) = poly(n), such that HCT-TC0 has a reconstruction

algorithm Rec that is a distribution over T C0 ◦ SUM circuits

with nε gates. To do so, consider the matrix G(f,y) of gate-

values for f(y), which has d = O(1) rows and T columns.

We want to encode G(f,y) into a bootstrapping system B(f,y)

that has a T C0 ◦ SUM reconstruction Rec, as follows:

1) For d′ = O(d), every circuit in the support of Rx

will consist of a sequence of d′ − 1 T C0 circuits

Rec(2), ...,Rec(d) of size nε, where Rec(i) corresponds

to the ith row of B(f,y).

2) For i = 2, ..., d′, the circuit Rec(i) gets access to a

distinguisher D for the tarHSG (we think of D as the

T C0 circuit x), and prints a circuit Ci whose truth-table

is the ith layer in B(f,y); to do so, Rec(i) makes non-

adaptive queries to Ci−1 (i.e., to the circuit that Rec(i−1)

printed).

3) The circuit C1 (that Rec(2) queries) consists of a layer

of nε “SUM gates” such that each “gate” computes a

weighted sum (over the integers) of the bits of y.18

a) The Technical Challenges, and our High-Level Ap-
proach: The reconstruction algorithm for each row in [6] is

an NC circuit. We do not know how to design a more efficient

reconstruction algorithm (in particular, in T C0) for each row

18We write “gate” because this functionality is implemented in binary, and
therefore each “SUM gate” actually consists of several gates, which represent
the outcome of the weighted sum in binary.

1015

Authorized licensed use limited to: MIT. Downloaded on March 28,2025 at 23:43:29 UTC from IEEE Xplore. Restrictions apply.

when using their B(f,y): the reason is that the reconstruction

algorithm implements the list-decoder for the Reed-Muller

code [3], which in turn uses the list-decoder for the Reed-

Solomon code [27]; there is currently no known list-decoder

for Reed-Solomon that works in constant depth.

To support T C0 reconstruction of each row, we will con-

struct a new bootstrapping system B(f,y). This bootstrapping

system can be viewed as a new and more efficient version

of the [26] encoding of uniform circuits. For an arbitrarily

small constant δ > 0, the bootstrapping system B(f,y) has P-

uniform T C0 circuits of size T δ that can list-decode each row

from distance 1/2+ T−Ω(δ), and that reduce the computation

of an entry in a row i to the computation of T δ entries in row

i− 1. (See Proposition V.5 for a precise statement.)

The main technical ingredient in the construction of B(f,y)

is an error-correcting code that is locally encodable and

approximately locally decodable by uniform T C0 circuits; that

is:

Proposition II.1 (informal, see Proposition IV.1). For every
γ, ν > 0 and finite field F of size |F| ≤ poly(N) there exists
a mapping Enc : FN → {0, 1}N̄ , where N̄ = N cγ,ν , such that
the following holds:

1) (Locally encodable.) There is a P-uniform family of
T C0 circuits of size NO(γ+ν) that gets input i ∈ [N̄],
queries z ∈ F

N at Nγ locations, and outputs Enc(z)i.
2) (Locally approximately decodable.) There is a P-

uniform family {DN}N∈N
of probabilistic oracle

T C0 circuits of size NO(γ+ν) such that for ev-
ery z ∈ F

N and any O ∈ {0, 1}N̄ satisfying
Prj∈[N̄] [Enc(z)j = O(j)] > 1/2 + N−ν , the following
holds. The circuit DN first has a probabilistic prepro-
cessing step, in which it non-adaptively queries z, and
with probability 1 − o(1) satisfies the following. There
is S ⊆ [N] of density |S|/N ≥ 1 −N−γ such that for
every i ∈ S,

Pr
[
(DN)O(i) = zi

]
> 2/3 ,

where the probability is over the random coins of DN

after the preprocessing step.

We believe that the improved bootstrapping system and the

code in Proposition II.1 are of independent interest, and may

find further applications. As one example, they allow us to

scale down the results in [6] to hold for T C0 circuits, rather

than only for NC circuits; this is essentially the content of

Theorem I.5 (see Theorem V.1 for the detailed statement).

1) The New Bootstrapping System: An Improved Version of
the GKR Encoding: The idea for constructing B(y,f) in [26],

[6] is to think of each row i ∈ [d] in G(f,y) as a function

αi : {0, 1}log(T) → {0, 1}, arithmetize the row as a polynomial

α̂i : F
m → F, and insert additional polynomials between each

pair of rows that implement a sumcheck-like functionality.

This yields a matrix (with entries in F) such that each row is

a codeword in a locally list-decodable code, and computing

any entry in row i efficiently reduces to computing a few

entries in row i−1 (the reader is referred to [6] for a detailed

explanation).

Our goal is to construct B(y,f) when f is a highly uniform

T C0 circuit, such that the local list-decoder for each row is a

T C0 circuit, and the downward reduction from row i to row

i− 1 is computable in T C0.

a) Arithmetization and Sumcheck Polynomials: We first

define αi differently than in [26], [6]: for every threshold

gate g(y) = 1[
∑

h wh · h(y) > θg] (where the h’s are the

gates feeding into g, and the wg,h’s and θg are real numbers),

we define αi(g) =
∑

h wg,h · h(y). The arithmetization of

αi is now straightforward, i.e. α̂i(g) =
∑

h Φ̂(g, h) · h(y)
where Φ̂ is an appropriate arithmetization of the function

Φ(g, h) = wg,h (see below). Whenever our algorithms (e.g.,

for downward self-reducibility) will need to obtain a value

g(y) in the ith layer given access to α̂i, they will compute the

function 1[α̂i(g) > θg], which can be done in T C0.

Relying on the fact that the size-T circuit for f is highly

uniform (which means that Φ is computable by a uniform

T C0 circuit of size T o(1); see Definition III.6), we arithmetize

the Φ’s by polynomials of degree T δ over a field of size

p = Θ(T 2), where δ > 0 is a sufficiently small constant.

This allows us to insert only constantly many sumcheck-like

polynomials between each pair of rows, and hence B(f,y) is of

constant depth d′ = O(d). (See Proposition V.3 for details.)

Now we have a sequence of d′ rows such that each row

is a codeword in the Reed-Muller code, and the sequence

is downward self-reducible by uniform T C0 circuits (again,

details appear in Proposition V.3). The main trouble is that

the local list-decoder for each row, i.e. the local list-decoder

for the Reed-Muller code, is not known to be in T C0.

b) Local Encodability and Approximate Local Decod-
ability for Reconstruction: In [6], each row was further

encoded by the Hadamard code to yield a binary matrix B(f,y)

(whose rows were used as truth-tables for the generator of [1]).

To resolve the problem above, instead of the Hadamard code,

we encode each row by the code from Proposition II.1.

To see why this is helpful, think of each α̂i as already

encoded in a code that is uniquely decodable in T C0 from

distance 1−T−Ω(1): the T C0 decoder implements the standard

unique decoding for the Reed-Muller code. Combined with

the T C0 local approximate decoder of the code from Proposi-

tion II.1, each row is now locally decodable from agreement

1/2 + T−Ω(1) by T C0 circuits, as we wanted.

To prove that B(f,y) is still downward self-reducible, we

will rely on the T C0-local-encoding property of the code.

Specifically, since each entry j in row i is a local encoding of

α̂i, computing the jth entry reduces to computing “a few”

values of α̂i; and computing each value of α̂i reduces to

computing “a few” values of α̂i−1, which in turn appear as

entries in the encoding of α̂i−1.19 And since the local encoding

of the code is computable in P-uniform T C0 of size T δ , this

19Indeed, while we did not state this in Proposition II.1, the code is
systematic; see Proposition IV.1.

1016

Authorized licensed use limited to: MIT. Downloaded on March 28,2025 at 23:43:29 UTC from IEEE Xplore. Restrictions apply.

sequence of reductions can be computed in P-uniform T C0

of such size.

The last part is implementing the base case, i.e. the bottom

row of B(f,y). This bottom row needs to compute values of the

low-degree extension of y (since these are the queries made

by the downward self-reducibility algorithm, when running the

reconstruction for the second row). Indeed, these values can be

computed using SUM gates (see Proposition V.3 for details).

2) A T C0-Locally Encodable and T C0-Locally
Approximately-Decodable Efficient Code: The proof of

Proposition II.1 follows a recent construction of a code by

Doron and Tell [28].20 The code is actually a combination of

two codes: the first code increases the distance from N−Ω(1)

to a tiny constant δ > 0, using a refinement of a construction

by Goldwasser et al. [29]; and the second code increases the

distance from δ to 1/2 − N−Ω(1), using the derandomized

direct product of Impagliazzo and Wigderson [2].

a) The First Code: We use the classical expander-based

distance-amplification of Alon et al. [30], to increase the

distance from N−Ω(1) to (say) 0.4. This code has a constant-

depth decoder, and as proved by Gutfreund and Viola [31]

(see [29]), using the Gabber-Galil [32] expander, encoding can

be done by constant-depth circuits (see Lemma IV.4).

The problem is that now the alphabet is large, and we

want to decrease it to binary. Moreover, we want to do

so while maintaining a non-adaptive constant-depth decoder,

since non-adaptivity is important for the construction of B(f,y).

An idea from [28] is to use a sequence of concatenation

steps with different codes to gradually decrease the alphabet,

while approximately maintaining the distance and preserving

the complexity of the decoder at each step. We follow the

same approach, while ensuring local-encodability in T C0 (see

Sections IV-A2 and IV-A3).

b) The Second Code: We use the derandomized direct-

product code of [2], concatenated with the Hadamard code,

to increase the distance from δ to 1/2−N−Ω(1). Indeed, this

code is locally encodable by P-uniform T C0 circuits; to see

this, let us focus on local encodability of the code of [2]. Given

an output index i, we can compute the locations in the input

that appear in the ith output location, by XORing: (1) the

output of the expander-random-walk sampler (we again use

the Gabber-Galil expander, which is computable in constant

depth), and (2) the output of a combinatorial design function

(where the combinatorial design is hard-wired into the circuit

by the P-uniform algorithm constructing the circuit). See

Proposition IV.6 and Claim IV.6.1 for details.

The local decodability of this code by T C0 circuits is

presented in a non-standard way in Proposition II.1, but it

(essentially) already follows from a close examination of

the decoding algorithms from [33], [2]. See the proof of

Proposition IV.6 for details.

3) Getting a Near-Equivalence: A T C0-Samplable Recon-
struction: So far, we described the proof of Theorem I.3,

20We use the same ideas as in [28], but cherry-pick parts of the construction,
and argue different properties.

which asserts that efficient refutation of distributions over

small T C0 ◦ SUM circuits implies derandomization of T C0

(with one-sided error). To prove the two-way connection stated

in Theorem I.4, we need an additional observation.

Recall that in the argument above, we denoted by Rec
the distribution over small T C0 ◦ SUM circuits, and we also

mentioned that Rec has a uniform sampler S. However, the

argument already supports a stronger statement: going through

our proofs, we can implement S as a P-uniform T C0 circuit
(of fixed polynomial size, say n2). It follows that Rx = Sx is

a T C0 circuit that samples a distribution over C, where C is

the class of small T C0 ◦ SUM circuits.

This observation paves the way towards proving a con-

verse direction, i.e., showing that derandomization of T C0-

samplable distributions over C implies refutation of such

distributions. To see this, assume that we have a deterministic

polynomial-time CAPP algorithm for T C0, and let f be a

function with a T C0-refuter (as detailed in the hypothesis

of Theorem I.4). Given a T C0-sampler for a distribution

over C, we use the same search-to-decision reduction as in

Section II-C: we construct random coins for the refuter bit-by-

bit, where the decision at each step reduces to solving CAPP
for T C0. For the full details, see Theorem VI.13.

III. PRELIMINARIES

For a positive integer k, we use [k] to denote the set

{1, 2, . . . , k}. We use N to denote all non-negative integers

and N≥1 to denote all positive integers.

As mentioned in Section I, in this paper we consider refuters

for non-uniform models of computation. We will have two

formalizations of non-uniform models: the first refers to RAMs

that take advice, and is presented in Section III-A; and the

second refers to non-uniform circuits, and is presented in

Section III-B.

A. Classes of RAMs, and Refuters for Machines with Advice

The machine model in this paper is the RAM model, and

in particular we consider classes of RAMs that take advice.

More formally, these will be RAMs that take two inputs

(a, x), and we think of a as non-uniform advice and of x
as the actual input, and analyze the machine accordingly

(see Section III-A3). Throughout the paper, when referring

to such machines, we will usually omit the suffix “that takes

advice”, but this is always implicitly assumed.

1) Streaming Algorithms: One class of RAMs that we will

repeatedly refer to in the paper is streaming algorithms (that

take advice), defined as follows:

Definition III.1 (streaming algorithms). A one-pass stream-
ing algorithm running in time T and in space s is a RAM
that takes as input (a, x), runs in time T (|a|+|x|) and in space
s(|a| + |x|), and accesses x in a bit-by-bit fashion, reading
each bit of x once and in-order. (There is no limitation as
to how the machine accesses a.) We denote the class of such
algorithms by str-T ISP [T, s].

1017

Authorized licensed use limited to: MIT. Downloaded on March 28,2025 at 23:43:29 UTC from IEEE Xplore. Restrictions apply.

Recall that in the beginning of Section I we referred to

str-T ISP as the class of non-uniform streaming algorithms,

rather than as the class of uniform streaming algorithms that

take advice. We explain this difference in Section III-A3.

2) Refuters for Classes of RAMs: To define refuters for

classes of RAMs, we consider a generalized notion of a hard

function, in which the function may also depend on the advice.

More formally:

Definition III.2 (algorithm-dependent hard function). Let
f : {0, 1}∗ × {0, 1}∗ → {0, 1}∗ and let C be a class of
probabilistic RAM machines, and let p : N → N. We say
that f is a p-bounded algorithm-dependent hard function
against C if for every M ∈ C and sufficiently large n ∈ N

and string a ∈ {0, 1}n there exists x ∈ {0, 1}p(n) such that
Pr[M(a, x) = f(a, x)] < 2/3.

A refuter for a class C gets as input a description of M ∈ C
and also an arbitrary advice a, and outputs x such that M(a, x)
fails to compute f(a, x). The first type of refuter that we define

is a list-refuter, which outputs a set x1, ..., xt such that for

some i ∈ [t] it holds that M(a, xi) fails to compute f(a, xi).

Definition III.3 (list-refuter). Let C be a class of probabilistic
RAM machines, and let f be a p-bounded algorithm-dependent
hard function against C for some p. An algorithm A is
a P-computable list-refuter for C against f if for every
M ∈ C and sufficiently large n ∈ N, when given as input
the description of M and a string a ∈ {0, 1}n, the algorithm
A runs in deterministic time poly(n) and prints a length-t list
x1, . . . , xt ∈ {0, 1}p(n) such that for some i ∈ [t] it holds that

Pr [M(a, xi) prints f(a, xi)] < 2/3 .

We say A is a refuter if the length of all output lists is always
1.

The next notion of refuter is more relaxed: we ask the refuter

again to output x1, ..., xt, but this time we only require that

for some i ∈ [t] it holds that M(a, xi) fails to compute a

compressed version of f(a, xi), in the form of a small circuit

whose truth-table is f(a, xi).

Definition III.4 (compression list-refuter). Let C be a class
of probabilistic RAM machines, and let f be a p-bounded
algorithm-dependent hard function against C for some p. An
algorithm A is a P-computable s-compression list-refuter
for C against f if for every M ∈ C and sufficiently large n ∈
N, when given as input the description of M and a string a ∈
{0, 1}n, the algorithm A runs in deterministic time poly(n)
and prints a length-t list x1, . . . , xt ∈ {0, 1}p(n) such that for
some i ∈ [t] it holds that

Pr
[
M(a, xi) prints a circuit of size s(|a|+ |xi|)

whose truth-table is f(a, xi)
]
< 2/3 .

We say A is an s-compression refuter if the length of all output
lists is always 1.

Note that the circuit size s in Definition III.4 is a function of

the input length to f (i.e., of |a|+ |x|), rather than a function

of the length of the truth-table |f(a, x)|. One may think of

this as compressing the input (a, x) such that the compressed

version still contains enough information to efficiently produce

the output f(a, x).

The next notion of refuters is randomized refuters, which

tosses random coins, and with noticeable probability prints a

string x such that M(a, x) fails to compute f(a, x). (In this

definition we will not use the relaxations of list-refuters and

of compression refuters.)

Definition III.5 (randomized refuters). Let p : N → N, let C
be a class of probabilistic RAM machines, and let f : {0, 1}∗×
{0, 1}∗ → {0, 1}∗ be a p-bounded algorithm-dependent hard
function against C. We say that f admits a polynomial-time

randomized refuter against C, if there exists a randomized
algorithm B and a polynomial q such that for every M ∈ C
and sufficiently large n ∈ N and string a ∈ {0, 1}n, with
probability at least 1/q(n), B(M,a) outputs a length-p(n)
string x satisfying Pr[M(a, x) = f(a, x)] < 2/3.

3) Non-Uniform Classes of RAMs: In Theorem I.1, we

considered what we referred to there as non-uniform classes
of algorithms, where for every input length n, the class

contains a set Cn of probabilistic algorithms whose description

is of length n and that are executed on inputs of length n.

This presentation in Theorem I.1 was done merely for

simplicity. The formalization of non-uniform classes of RAMs

does not explicitly appear in our technical results, since our

technical results use the more refined notion presented in this

section, which separates a machine M ∈ C from the advice

a ∈ {0, 1}∗ that it gets.21 However, the refined formalization

does capture the notion of non-uniform algorithms. For ex-

ample, to capture any streaming algorithm C of description

length n, we can fix C to contain a universal machine U that

intreprets its input as a description of a streaming algorithm,

and let a ∈ {0, 1}n be a description of C.

B. Classes of Circuits, and Refuters for Circuits

For convenience, we consider circuit families with many

input parameters. Specifically, a circuit family with k input

parameters �	 = (1, 	2, . . . , 	k) ∈ N
k is defined as {C��}��∈Nk .

We say that a circuit family {C��}��∈Nk is P-uniform if there is

an algorithm AC that, given input parameters �	 ∈ N
k, outputs

the description of C�� in |C��| time.

1) Threshold Circuits:

a) Notation.: Consider a family of threshold circuits of

depth d = d(n) and with T = (n) gates. For any n ∈ N and

21Implicitly, the machine’s description is of constant size, since in our
formalization we first fix the machine and then consider an advice a that
is arbirarily long.

1018

Authorized licensed use limited to: MIT. Downloaded on March 28,2025 at 23:43:29 UTC from IEEE Xplore. Restrictions apply.

i ∈ [d] and j ∈ [T], denote by gi,j the jth gate in the ith

layer, and denote the function that gi,j computes by

gi,j(x) = 1

⎡⎣∑
k∈[T]

wi,j,k · gi−1,k(x) > θi,j

⎤⎦ ,

where θi,j ∈ Z and wi,j,k ∈ Z for all k ∈ [T]. Denoting W =
maxi,j,k {|wi,j,k|}, we assume throughout the paper that W ≤
T . We also assume, without loss of generality, that |θi,j | ≤ T 2.

We denote by T C0 ◦SUM the class of families of constant-

depth circuits with threshold gates such that for every family

there exists a constant C > 1 for which the following holds.

Each circuit in the family has a layer of gates at the bottom,

where the gates in the layer are partitioned into blocks of size

(C + 1) · log(n), and each block computes a weighted sum

of the inputs (represented in binary) over the integers, with

weights bounded by nC .

For S : N → N, we use T C0
d-WIRES[S] to denote the class

of depth-d threshold circuits with at most S wires (instead of

gates). We also use T C0
d-WIRES[S]◦	-XOR to denote a circuit

consists with a top T C0
d circuit of S total wires and a bottom

layer of 	 parity gates. Similarly for T C0
d-WIRES[S]◦ 	-SUM.

b) Highly Uniform Circuits: The following definition of

highly uniform threshold circuits is a more precise and fine-

grained version of the definition that appeared in Section I-B.

Definition III.6 (highly uniform threshold circuits). Let
T, d : N → N, and let δ0 ∈ (0, 1) and d0 ∈ N≥1. We say that
a family of threshold circuits of size T (n) and depth d(n) is
(δ0, d0)-highly uniform if:

1) There exists a P-uniform family of threshold circuits
{Weightn,i}n∈N≥1, i∈[d(n)] of size T (n)δ0 and depth d0
such that Weightn takes (j, k) ∈ [T]× [T] as input and
outputs wi,j,k.

2) There exists a P-uniform family of threshold circuits
{Thrn,i}n∈N≥1, i∈[d(n)] of size T (n)δ0 and depth d0
such that Thrn,i takes j ∈ [T] as input and outputs
θi,j .22

For convenience, we also say a family of threshold circuits
is δ-highly uniform if it is

(
δ2, 1/δ

)
-highly uniform.

2) Samplable Distributions Over Circuits, and Refuters for
Them: In this paper we will often consider a distribution

over n-input C-circuits (i.e., a randomized C circuits). Since a

general distribution may not be described succinctly, we will

consider the following two standards to describe randomized

C circuits:

Definition III.7 (probabilistic circuits). A size-s n-input prob-
abilistic C circuit C is a C circuit that takes two inputs
x ∈ {0, 1}n and r ∈ {0, 1}R, where R ≤ s is the number
of random coins used by C. Given an input x ∈ {0, 1}n, C
draws r ← UR and outputs C(x, r).

22More formally, since by definition of threshold circuits we have 0 ≤
wi,j,k, θi,j ≤ T , Weightn and Thrn both have 	log T
 output gates,
specifying the binary representation of wi,j,k and θi,j , respectively.

Definition III.8 (samplable distribution over circuits). Let
C,C′ be two circuit classes. We say that a distribution D
over C′-circuits is C-samplable if there exists a C-circuit S,
which we call a sampler for D, that satisfies the following:
The circuit S gets random coins as input, prints a description
of a C′-circuit, and the output distribution (over a uniform
choice of coins) is exactly D. We say that a family {Dn}n∈N

of distributions, where Dn is a distribution over circuits with
n input bits, is samplable by C-circuits if for every n ∈ N

there is a C-circuit sampler for Dn. In shorthand, we say that
{Dn} is a probabilistic (C �→ C′)-circuit family.

Loosely speaking, a refuter for f against samplable distri-

butions over circuits gets as input a description of a sampler S,

and outputs a string x such that the distribution over circuits

fails to compute f(x).

Definition III.9 (refuter for samplable distributions of cir-

cuits). Let C,C′ be two circuit classes, and let τ ∈ (0, 1).
We say that an algorithm R is a P-computable τ -refuter
for f against probabilistic (C �→ C′)-circuits, if for every
probabilistic (C �→ C′)-circuit family {Dn} and sufficiently
large n ∈ N, when R is given input 1n and a description of a
C-sampler Sn for Dn, outputs a string x ∈ {0, 1}n such that
Pr[f(x) = Dn(x)] ≤ τ .

Similarly to Definition III.4, a compression refuter for f
against a distribution over circuits outputs x such that the

distribution fails to output a small circuit whose truth-table

is f(x).

Definition III.10 (compression refuter for samplable distribu-

tions of circuits). Let C,C′ be two circuit classes. We say that
an algorithm R is a P-computable (D, nε)-compression
list refuter for f against probabilistic (C �→ C′)-circuits,
if for every probabilistic (C �→ C′)-circuit family {Dn} and
sufficiently large n ∈ N, when R is given input 1n and a
description of a C-sampler Sn for Dn, it prints a length-t list
x1, . . . , xt ∈ {0, 1}n such that

for some i ∈ [t],

Pr
[
Dn(xi) outputs a D circuit of size

nε whose truth-table is f(xi)
]
< 2/3 .

When we omit the circuit class D above, we set it to
unrestricted Boolean circuits by default.

Definition III.11. Let F be a circuit class. We say R is a prob-
abilistic F-computable τ -refuter for f against probabilistic
(C �→ C′)-circuits, if with probability 1− τ , R(1n) outputs a
string x ∈ {0, 1}n such that Pr[f(x) = Dn(x)] ≤ τ .

When τ is not specified, we take τ = 2/3 by default (in both

definitions of refuters for samplable distributions of circuits).

C. Reconstructive PRGs and HSGs

In this section we present known construtions of pseudo-

random generators and of (targeted) hitting-set generators. To

1019

Authorized licensed use limited to: MIT. Downloaded on March 28,2025 at 23:43:29 UTC from IEEE Xplore. Restrictions apply.

that end, let us recall the standard notion of a circuit that

distinguishes a distribution from the uniform distribution, and

of a circuit that avoids a distribution.

Definition III.12 (Avoiding and Distinguishing). Let m, t ∈
N, D : {0, 1}m → {0, 1}, and Z = (zi)i∈[t] be a list of strings
from {0, 1}m. Let ε ∈ (0, 1). We say that D ε-distinguishes

Z, if ∣∣∣∣ Pr
r∈{0,1}m

[D(r) = 1]− Pr
r∈[t]

[D(zi) = 1]

∣∣∣∣ ≥ ε.

We say that D ε-avoids Z, if Prr∈{0,1}m [D(r) = 1] ≥ ε and
D(zi) = 0 for every i ∈ [t].

The first PRG is the Nisan-Wigderson [1] construction, with

flexible parameters and with its reconstruction presented as a

distribution over deterministic T C0 circuits that is samplable

by P-uniform probabilistic T C0 circuits.

Theorem III.13 (the NW PRG with T C0 reconstruction).
There are universal constants cNW > 1 and dNW ∈ N≥1 and
deterministic algorithms GNW and RNW such that the following
holds:

1) Generator: When given a string a ∈ {0, 1}n and m ∈
N such that (log(n))cNW ≤ m ≤ n1/cNW , the algorithm
GNW runs in time ncNW·(log(n)/ log(m)), and prints a list of
strings in {0, 1}m.

2) Reconstruction: On input (1n,m) such that
(log(n))cNW ≤ m ≤ n1/cNW , the algorithm RNW runs
in time ncNW·(log(n)/ log(m)) and prints the description
of a non-adaptive oracle T C0

dNW circuit S with mcNW

gates that maps randomness to a description of a
non-adaptive oracle T C0

dNW circuit Dec with mcNW

gates. For any oracle D : {0, 1}m → {0, 1} that
1/m-distinguishes GNW(a,m), with probability at least
1− 2−3m over Dec drawn from Sa, it holds that

Pr
i∈[n]

[
DecD(i) = ai

]
≥ 1/2 +m−3.

Proof. The algorithm GNW constructs a combinatorial design

S1, ..., Sm ⊆ [d] with sets of size |Si| = log(n) and with

pairwise intersections |Si ∩ Sj | ≤ 10 · log(m) for distinct

i, j ∈ [m] and d = 2(log(n))2/ log(m) (see, e.g., [34, Lemma

20.14]). For every s ∈ {0, 1}d, the sth output string in the list

is (az�S1
, ..., az�Sm

) ∈ {0, 1}m.

Let us describe the oracle circuit S that prints Dec (it will be

evident from the description that a polynomial-time algorithm

RNW can print S). For t = 1, ..., O(m2) in parallel, the circuit

S:

1) Randomly chooses i ∈ [m] and z ∈ {0, 1}d−� and a bit

σ ∈ {0, 1}, and queries a in ≤ m · 210·log(m) locations

according to (i, z, σ) and the design.

2) Randomly chooses r = O(m4) locations q1, ..., qr ∈ [n],
and queries a on these locations.

3) Let Dect be a deterministic AC0 oracle circuit comput-

ing the standard reconstruction of [1] with the fixed val-

ues (i, z, σ) and the fixed design hard-wired into Dect.

The circuit S prints a deterministic T C0 oracle circuit

Estt that computes νt = Pri∈[r]

[
(Dect)D(qi) = aqi

]
.

(The circuits Dect for t ∈ [O(m)] will be sub-circuits

of Dec.)

Then, the circuit S prints a top gadget for the circuit Dec,

which finds t that maximizes νt (breaking ties arbitrarily), and

on input i ∈ [n] answers (Dect)D(i).
Note that both S and Dec are non-adaptive oracle circuits

(i.e., S queries a non-adaptively, and Dec queries D non-

adaptively) whose depth is bounded by a universal constant

dNW ∈ N, and whose size is at most poly(m) · 210·log(m) ≤
mcNW . By a standard analysis from [1], for each t, with

probability at least 1/O(m) over choice of (i, z, σ) it holds

that

μt = Pr
q∈[n]

[
(Dect)D(q) = aq

]
≥ 1/2 + 1/O(m2).

Hence, with probability 1 − 2−Ω(m), there exists t such that

μt ≥ 1/2+1/O(m2). Now, conditioned on |νt−μt| ≤ 1/m3

for all t, which also happens with probability 1− 2−Ω(m), we

have Pri∈[n]

[
(Dec)D(i) = ai

]
≥ 1/2 +m−3.

The second PRG is the standard combination of the Nisan-

Wigderson [1] construction with the error-correcting code of

Sudan, Trevisan, and Vadhan [3] for hardness amplification.

We present it while arguing that the reconstruction is a non-

uniform T C0 ◦ XOR circuit.

Theorem III.14 (the STV PRG with T C0 ◦ XOR reconstruc-

tion). There are universal constants cSTV > 1 and dSTV ∈ N≥1

such that for every sufficiently small constant γ ∈ (0, 1), there
are deterministic algorithms GSTV and RSTV that satisfy the
following:

1) Generator: When given a string a ∈ {0, 1}n, GSTV runs
in time ncNW/γ

2

and prints a list of strings in {0, 1}m,
where m = nγ .

2) Reconstruction: RSTV(1n) outputs the description of a
probabilistic(

T C0
dSTV [n ·mcSTV] �→ T C0

dSTV ◦ XOR[mcSTV]
)

oracle circuit Rf , such that given D : {0, 1}m → {0, 1}
that 1/m-distinguishes GSTV(a) as oracle, we have

Pr
Rf←Rf

[
RD

f (a) outputs a T C0
dSTV non-adaptive oracle

circuit E such that tt(ED) = a
]
≥ 2/3.

The fact that the reconstruction can be done with a non-

uniform T C0 ◦ XOR circuit follows from the original proof,

but it is non-standard. We therefore include a proof of this fact

in Appendix B.

Next, we present the targeted hitting-set generator of Chen

and Tell [6]. Specifically, we present the generator while

arguing that its reconstruction is a streaming algorithm using

bounded space.

Theorem III.15 (the reconstructive targeted HSG from [6] as a

streaming algorithm). There exists a universal constant c > 1

1020

Authorized licensed use limited to: MIT. Downloaded on March 28,2025 at 23:43:29 UTC from IEEE Xplore. Restrictions apply.

such that the following holds. Let f : {0, 1}n → {0, 1}n be
computable in time T (n), let γ > 0, and let M : N → N such
that c · log(T) ≤ M ≤ T γ/c. Then, there exists a deterministic
algorithm HCT

f and a probabilistic oracle machine RCT
f that for

every z ∈ {0, 1}N satisfy the following:
1) Generator: When given input z, the machine HCT

f runs
in time poly(T (N)) and prints a list of strings in
{0, 1}M .

2) Reconstruction: RCT
f gets input z, and can be imple-

mented by an M c-space one-pass streaming algorithm
over the input z with running time M c · T 1+γ . When
RCT

f is given oracle access to a function D : {0, 1}M →
{0, 1} that 1/M -avoids HCT

f (z), with probability at least
1−1/M the machine RCT

f outputs an oracle circuit Cf(z)

of size T γ such that the truth-table of (Cf(z))
D is f(z).

The fact that the reconstruction algorithm of the generator

in Theorem III.15 is a one-pass streaming algorithm was not

explicitly stated before, but it follows already from the original

construction and proof. For completeness, we explain why this

is the case in Appendix A.

D. Search-To-Decision Reduction for Randomized Algorithms

We will use the following search-to-decision reduction for

prBPP . The reduction constructs an (approximate) solution

to a BPP-search problem (as defined in [20]) by repeatedly

calling an algorithm for corresponding decision problem. In

fact, in the following statement, we consider search problems

such that solutions can be verified by circuits from a certain

(potentially weak) class C, and reduce finding (approximate)

solutions to such problems to a CAPP-like decision problem

for C. That is:

Theorem III.16. Let C be a circuit class, and assume that for
every μ ∈ (0, 1) and c ∈ N there is a deterministic polynomial-
time algorithm that gets as input C ∈ C, accepts if Prr[C(r) =
1] ≥ μ, and rejects if Prr[C(r) = 1] ≤ μ− 1/|C|c. Then, for
every 0 < a < b < 1, there is a deterministic polynomial-time
algorithm that, given a C circuit C : {0, 1}α+β → {0, 1} such
that Prz←{0,1}α+β [C(z) = 1] ≥ b, outputs a string x such
that Prz←{0,1}β [C(x, z)] ≥ a.

Proof. The proof is a search-to-decision reduction a-la [20],

constructing x bit-by-bit. Starting with x′ that is the empty

string, we will maintain the invariant that after iteration

i ∈ [α], the updated prefix x′ ∈ {0, 1}i will satisfy

Prr′∈{0,1}α−i,z∈{0,1}β [C(x′r′, z) = 1] ≥ b − i/|C|2. To do

so, in each iteration i ∈ [α], the algorithm decides whether

Pr
r′∈{0,1}α−i,z∈{0,1}β

[C(x′0r′, z) = 1] ≥ b− (i− 1)/|C|2 (1)

or

Pr
r′∈{0,1}α−i,z∈{0,1}β

[C(x′0r′, z) = 1] ≤ b− i/|C|2 , (2)

by calling the hypothesized deterministic polynomial-time

algorithm Est for this problem. If Est accepts, then x′0 does

not satisfy Eq. (2), and we proceed with the i-bit prefix

x′0; if Est rejects, then x′0 does not satisfy Eq. (1), and

we proceed with the i-bit prefix x′1. Since at least one

string x′0 or x′1 satisfies Eq. (1), the invariant is maintained

after the iteration. After α ≤ |C| iterations, we have that

Prz∈{0,1}β [C(x, z) = 1] ≥ b− 1/|C| > a.

E. Refuting Functions with One Output Bit

Recall that, as stated in Section I-A, it is straightforward

to show that refuters for functions with a single output bit
implies derandomization. In fact, the proof holds even when

the class of refuted algorithms is the weakest possible in terms

of dependency on the input:

Claim III.17. Assume that there is an FP-refuter for some
decision problem f ∈ P against the class of probabilistic size-
n circuits that are insensitive to their input (i.e., their output
depends only on the input length). Then, prBPP = prP .

Proof. Let A be a refuter in FP for f ∈ P against probabilis-

tic circuits that are insensitive to their input; we show how to

solve CAPP in deterministic polynomial time. Given a circuit

C of size at most n, let D be a probabilistic circuit that ignores

its input x, chooses r ∈ {0, 1}n uniformly at random, and out-

puts C(r); note D also has size n (ignoring the inputs). Given

C, our algorithm for CAPP constructs D and runs A(D),
printing an x such that Prr[D(x, r) �= f(x)] > 1/3. Since

D(x, r) = C(r), we have Prr[C(r) �= f(x)] > 1/3; in other

words, we are not in the case that Prr[C(r) = f(x)] ≥ 2/3.

Since f ∈ P , we can compute ¬f(x) and output it.

Note that Open Problem 1 asks to prove a statement as in

Claim III.17 but for arbitrary functions f ∈ FP , rather than

only for decision problem f ∈ P .

IV. A T C0-LOCALLY-ENCODABLE AND

T C0-LOCALLY-APPROXIMATELY-DECODABLE CODE

Our main goal in this section is to prove the following state-

ment, which asserts that there is an error-correcting code that is

locally encodable by T C0 circuits, and locally approximately

decodable by T C0 circuits. That is:

Proposition IV.1 (a locally encodable and locally approxi-

mately decodable code). There is a universal constant c0 > 1
such that the following holds. For every γ, ν > 0 and finite
field F of size |F| ≤ poly(N) there exists c = cγ,ν > 1 and a
mapping Enc : FN → {0, 1}N̄ , where N̄ = N c, such that the
following holds:

1) (Locally encodable.) There is a P-uniform family
{QN}N∈N

of threshold circuits of constant depth and
size |QN | = N c0·(γ+ν) such that QN gets input i ∈ [N̄]
and prints a set q1, ..., qM ∈ [N], where M = Nγ .
Also, there is a P-uniform family {EN}N∈N

of threshold
circuits of constant depth and size |EN | = N c0·(γ+ν)

such that EN gets input i ∈ [N̄] and x1, ..., xM ∈ F,
and outputs a bit σ such that the following holds: For
any z ∈ F

N satisfying zq� = x� for all 	 ∈ [M], the
output of EN is σ = Enc(z)i.

1021

Authorized licensed use limited to: MIT. Downloaded on March 28,2025 at 23:43:29 UTC from IEEE Xplore. Restrictions apply.

2) (Locally approximately decodable.) There is a P-
uniform family {DN}N∈N

of probabilistic oracle thresh-
old circuits of constant depth and size |DN | =
N c0·(γ+ν) such that for every z ∈ F

N the fol-
lowing holds. The circuit DN first has a proba-
bilistic preprocessing step, in which it non-adaptively
queries z. Now, fix any O ∈ {0, 1}N̄ satisfying
Prj∈[N̄] [Enc(z)j = O(j)] > 1/2 + N−ν . Then, with
probability at least 1 − o(1) over the coins in the
preprocessing step, there exists a set S ⊆ [N] of density
|S|/N ≥ 1−N−γ such that for every i ∈ S,

Pr
[
(DN)O(i) = zi

]
> 2/3 ,

where the probability is over the random coins of DN

after the preprocessing step.
3) (Systematic.) There is a P-uniform family {IN}N∈N

of
non-adaptive oracle threshold circuits of constant depth
and size |IN | = N c0·(γ+ν) such that IN gets input i ∈
[N] and oracle access to an N̄ -bit string and for every
x ∈ F

N and every i ∈ [N] satisfies IN (i)Enc(x) = xi.

At a high-level, the code underlying Proposition IV.1 will

be a combination of two different (locally encodable and

approximately locally decodable) codes. Loosely speaking,

the first code (uniquely) N−γ-approximately decodes from

agreement 1− δ for a small constant δ (i.e., given a codeword

that is corrupted on δ of the coordinates, it recovers the

unique original message on all but N−γ of the coordinates);

and the second code δ-approximately decodes from agreement

1/2 +N−ν .

We first present the two codes in Sections IV-A and IV-B,

respectively, and then prove Proposition IV.1 in Section IV-C

by combining them in a straightforward way.

A. The First Code: From Distance N−Ω(1) to Distance 0.01

The first code, which we now present, N−γ-approximately

decodes from agreement 1− δ.

Proposition IV.2. There are two universal constants c1 > 1
and δ > 0 such that for every γ > 0 there exists ĉ = ĉγ > 1
for which the following holds. Let {FN}N∈N

be a sequence
of finite fields of size |FN | = poly(N) . Then, there is a
mapping Enc1 : (FN)N → {0, 1}N̂ , where N̂ = N ĉ, such that
the following holds:

1) (Locally encodable.) There is a P-uniform family
{QN}N∈N

of threshold circuits of constant depth and

size |QN | = N c1·γ such that QN gets input i ∈
[
N̂
]

and prints a set q1, ..., qM ∈ [N], where M = N c1·γ .
Also, there is a P-uniform family {EN}N∈N

of threshold
circuits of constant depth and size |EN | = N c1·γ such
that EN gets input i ∈ [N̂] and x1, ..., xM ∈ FN , and
outputs a bit σ such that the following holds: For any
z ∈ (FN)N satisfying zq� = x� for all 	 ∈ [M], the
output of EN is σ = Enc1(z)i.

2) (Locally approximately decodable.) There is a P-
uniform family {DN}N∈N

of probabilistic non-adaptive

oracle threshold circuits of constant depth and size
|DN | = N c1·γ such that for every z ∈ (FN)N the
following holds. Let O : {0, 1}N̂ → {0, 1} such that
Prj∈[N̂] [Enc1(z)j = O(j)] ≥ 1 − δ. Then, there exists
a set S ⊆ [N] of density |S|/N ≥ 1 − N−γ such that
for every i ∈ S,

Pr
[
(DN)O(i) = zi

]
≥ 2/3 ,

where the probability is over the random coins of DN .
3) (Systematic.) There is a P-uniform family {IN}N∈N

of
non-adaptive oracle threshold circuits of constant depth
and size |IN | = N c1·γ such that IN gets input i ∈ [N]
and oracle access to an N̂ -bit string and for every z ∈
F
N and every i ∈ [N] satisfies IN (i)Enc1(z) = zi.

At a high level, we will first use the classical expander-

based distance-amplification of Alon et al. [30] to increase

the distance of the code from N−γ to (say) 0.4. Then we will

reduce the alphabet to {0, 1} in a sequence of concatenation

steps, where each concatenation step mildly reduces the size

of the alphabet while approximately preserving the distance.

Towards presenting the proof, in Sections IV-A1 and IV-A2

we construct two building-blocks that will be used repeatedly

in the code. Then, in Section IV-A3 we prove Proposition IV.2.

The following auxiliary technical definition will be used in

both building-blocks.

Definition IV.3 (nice alphabets). We say that a sequence
{ΣM}M∈N

of alphabets of size is nice if there are two
functions Φ =

{
ΦM : ΣM → {0, 1}�log(|ΣM |)�}

M∈N
and

Φ−1 =
{
Φ−1

M : {0, 1}�log(|ΣM |)� → ΣM

}
M∈N

that are com-
putable in P-uniform T C0 of size polylog(|ΣM |) and that
satisfy Φ−1

M (ΦM (x)) = x for every M ∈ N and x ∈ ΣM .

1) Efficient Implementation of Expander-Based Distance
Amplification: The first building-block is an efficient im-

plementation of the expander-based distance amplification

of [30], presented in [29] (following [31]).

Lemma IV.4 (efficient expander-based distance amplification).
There exists α ∈ (0, 1) such that the following holds. Let
{ΣM}M∈N

be a nice sequence of alphabets, and let d(M) =
MO(γ) or d(M) = poly(|ΣM |). Then, there exists Encex ={
EncexM : (ΣM)M → (Σd

M)M
}

such that the following holds.
1) (Locally encodable.) There is a P-uniform family of

T C0 circuits {EM}M∈N
of size poly(d, log(M)) such

that EM gets input i ∈ [M] and prints a set of
coordinates ΓM (i, 1), ...,ΓM (i, d). For every z ∈ ΣM

M ,
let EncexM (z) ∈ (Σd

M)M such that every i ∈ [M] it holds
EncexM (z)i = (zΓM (i,1), ..., zΓM (i,d)).

2) (Locally approximately decodable.) There is a P-
uniform family of non-adaptive oracle T C0 circuits
{DM}M∈N

of size poly(d, log(M), log(|Σ|)) that satis-
fies the following. Let y ∈ (Σd

M)M such that there exists
z ∈ (ΣM)M for which Pri∈[M] [Enc

ex
M (z) = y] ≥ 0.6.

Then, for all but d−α of the coordinates i ∈ [M] we
have (DM)y(i) = zi.

1022

Authorized licensed use limited to: MIT. Downloaded on March 28,2025 at 23:43:29 UTC from IEEE Xplore. Restrictions apply.

Proof. Let α > 0 be a sufficiently small constant. We consider

a family of bipartite graphs [M]× [M] that are d-biregular and

have the following property: for any set B ⊆ [M] of vertices

on the right side satisfying |B| ≤ 2M/5, there are at most δ·M
vertices v on the left side satisfying |Γ(v)∩B| ≥ d/2, where

Γ(v) is the list of neighbors of v. As shown in [29, Claim 4.1]

(following [31], using powers of the expanders of [32]), there

exists such a family coupled with a family of P-uniform AC0

circuits of size poly(d, log(M)) such that given the name of

a vertex v (on either side of the graph), the circuit outputs the

list Γ(v).
Turning to decoding, consider DM that gets input i ∈ [M]

and oracle access to y ∈ (Σd
M)M as in the hypothesis. The

circuit DM computes the list Γ(i), queries y on each j ∈ Γ(i)
to obtain a list of d-tuples, and for each j ∈ [d] it computes

kj ∈ [d] such that i is the (kj)
th neighbor of j. The output is

the majority vote, over all j ∈ [d], of the (kj)
th entry in the

jth tuple. Note that the majority vote can be computed in P-

uniform T C0 of size poly(d, log(|Σ|)),23 and hence DM can

be implemented by a P-uniform T C0 circuit of such size. For

a standard proof of correctness of this decoder, see e.g. [29,

Proof of Theorem 1.3].

2) Efficient Alphabet Reduction: The second building-

block, presented next, will be used to reduce the alphabet of

a code by an almost exponential factor, while approximately

preserving its original constant distance. The building block

itself is a mapping of every alphabet symbol to a short

sequence of symbols over a smaller alphabet, in a way that

supports efficient unique decoding of the original symbol from

any sequence that has smll constant distance from the correct

encoding.

Lemma IV.5 (efficient alphabet reduction). Let {ΣM}M∈N

be a nice sequence of alphabets. Then, there exists a map-
ping Encal =

{
EncalM : ΣM → (Σ′

M)�M
}

, where |Σ′
M | =

2polyloglog(|ΣM |) and 	M = polylog(|ΣM |), such that the
following holds.

1) (Locally encodable.) There is a P-uniform family of
T C0 circuits {EM}M∈N

of size polyloglog(|Σ|) such
that EM gets input z ∈ ΣM and i ∈ [M] and outputs
EncalM (z)i. 24

2) (Locally decodable.) There is a P-uniform fam-
ily of probabilistic non-adaptive oracle T C0 circuits
{DM}M∈N

of size polyloglog(|Σ|) that satisfies the fol-
lowing. Let y ∈ (Σ′

M)�M such that there exists z ∈ ΣM

for which Pri∈[�M]

[
EncalM (z)i = yi

]
≥ 0.6. Then, for

every i ∈ [log(|ΣM |)] we have that Pr[(DM)y(i) =
zi] ≥ 2/3, where the probability is over the internal
coins of DM .

23To see this, let σ1, ..., σd be the symbols appearing in the corresponding
places in the d tuples. For every σj ∈ Σ, we compute cj = | {k : σk = σj} |
in T C0 of size poly(d, log(|Σ|)). Now we compare the d integers {cj}j∈[d]
in T C0 of size poly(d) to find the maximal cj , and output σj .

24The uniform circuits receive Σ-symbols and output symbols in binary
representation, relying on the efficient bijection between Σ and {0, 1}log(|Σ|)
that exists because Σ is nice.

3) (Niceness preserving.) The alphabet sequence Σ′ =
{Σ′

M}M∈N
is nice.

Proof. At a high level, we combine a Reed-Muller encoding

over a relatively small field with the expander-based encoding

from Lemma IV.4. Towards describing the construction, for

simplicity we denote Σ = ΣM and Encal = EncalM , etc.

Given z ∈ Σ, we identify z with the corresponding

vector in {0, 1}k=log(|Σ|) (using the niceness of the alpha-

bet Σ), and encode it by the low-degree extension view

of the Reed-Muller code, with a field F
′ of size |F′| =

2�2loglog(k)� = O(loglog|Σ|)2 and interpolation set H of

size |H| = 2�loglog(k)� = O(loglog(|Σ)), and m = |H|
log(|H|)

variables. Note that this yields z(1) ∈ (F′)|F|
′m

. 25

Now we encode z(1) by the code from Lemma IV.4, instan-

tiated with alphabet F′ and length 	 = |F′|m = polylog(|Σ|)
and parameter value d = poly(|F|′), to obtain z(2) ∈ ((F′)d)�.
Note that the alphabet F

′ is nice, and hence we can use

Lemma IV.4.

Let Encal(z) = z(2), and note that

|Encal(z)| =
(
(F′)d

)�
;

we think of Encal(z) as consisting of 	 symbols from Σ′ =
(F′)d, and note that

|Σ′| = (loglog|Σ|)polyloglog(|Σ|) = 2polyloglog(|Σ|)

and that Σ′ is nice.

Let us first describe the encoding circuit EM . We map z to

z(1) via standard Lagrange interpolation over the field F
′ and

with |H| = loglog(|Σ|), which can be done by a P-uniform

T C0 circuit of size poly(m ·H, log(|F′|)) = polyloglog(|Σ|).
Then we map z(1) to z(2) via Lemma IV.4, which can also be

done by a P-uniform T C0 circuit of size poly(d, log()) =
polyloglog(|Σ|).

Turning to decoding of a corrupt codeword y ∈ (Σ′)�, we

will use standard decoding of composed codes. That is, we

run the standard unique local decoder for the Reed-Muller

code from distance Δ = d−α = H/100|F′| (where α > 0 is

the universal constant from Lemma IV.4), and whenever this

decoder accesses a symbol, we answer by running the decoder

for the code from Lemma IV.4 and giving it access to y.

Since y is (1/4)-close to Encal(z) for some z ∈ Σ, it holds

that y is (1/4)-close to the mapping z(2) of z(1) by Encex.

Thus, by Lemma IV.4, there exists z̃ ∈ (F′)|F
′|m that agrees

with z(1) on all but Δ of the coordinates such that the queries

of the local decoder for the Reed-Muller code are answered

according to z̃. It follows that for every i ∈ [k], with high

probability, the local decoder for the Reed-Muller code outputs

the correct ith symbol in the encoding of z.

As for the complexity of the decoder, first note that its

queries are indeed non-adaptive, because the two decoders that

25In more detail, let H be the set of vectors in (F′)m with last m−log(|H|)
coordinates equaling zero. Since |H|m ≥ k, we identify each coordinate

i ∈ [k] with a corresponding element �hi ∈ H . Given z ∈ {0, 1}k , for every
�v ∈ (F′)m we define p(�v) =

∑
i∈[k] δ�hi

(�v) · zi. The output is z(1) =

(p(�v))�v∈(F′)m .

1023

Authorized licensed use limited to: MIT. Downloaded on March 28,2025 at 23:43:29 UTC from IEEE Xplore. Restrictions apply.

it uses are non-adaptive. The unique decoder for the Reed-

Muller code can be implemented by P-uniform T C0 circuits

of size poly(|H|, log(|F′|)), and the decoder from Lemma IV.4

can be implemented by P-uniform T C0 circuits of size

poly(d, log(), log(|F′|)) = poly(|F′|) = polyloglog(|Σ|) .

The bound follows by combining both circuits.

3) Proof of Proposition IV.2: For simplicity, denote F =
FN . Given z ∈ F

N , we compute Enc1(z) in four steps, as

follows.

1) Encode z to z(1) ∈ (Fd)N using the code from

Lemma IV.4, where d = NO(γ).

2) Concatenate z(1) with the code from Lemma IV.5;

that is, encode each (Fd)-symbol of z(1) by the code

from Lemma IV.5, to obtain z(2) ∈
(
Σ(2)

)�·N
, where

|Σ(2)| = 2polyloglog(F
d) = 2polylog(N,log(|F|)) and 	 =

polylog(|F|d) = poly(N, log(|F|)). Denote N (2) =
N · 	 = poly(N).

3) Concatenate z(2) with the code from Lemma IV.5

again, to obtain z(3) ∈
(
Σ(3)

)�′·N(2)

, where

|Σ(3)| = 2polyloglog(|Σ
(2)|) = 2polyloglog(N,log(|F|)) and

	′ = polylog(|Σ|(2)) = polylog(N, log(|F|)). Denote

N (3) = N (2) · 	′ = poly(N).
4) Concatenate z(3) with the good binary code of [3], to

obtain z(4) ∈ {0, 1}poly(N). We define Enc1(z) = z(4)

and N̂ = |z(4)| = poly(N).

a) Local Encoding: By the definition of Enc1, each

output bit i ∈ [N̂] of Enc1(z) = z(4) is a function of all the bits

encoding of a Σ(3)-symbol in z(3). In turn, each Σ(3)-symbol

in z(3) is the encoding under Lemma IV.5 of a Σ(2)-symbol

in z(2), and each Σ(2)-symbol in z(2) is the encoding under

Lemma IV.5 of an F
d-symbol in z(1). Finally, each F

d-symbol

in z(1) is the concatenation of d symbols in z. It follows that

each output bit i of Enc1(z) depends on d symbols in z.

We now argue that the mapping of i to the d locations of

the symbols in z that affect Enc1(z)i can be computed in P-

uniform T C0 of size NO(γ). To see this, note that tracing back

i to the relevant location of the symbol in z(3), then further to

the relevant location in z(2), and then to the relevant location

ji in z(1) is computable easily from the index i (because the

encodings z(1) �→ z(2) �→ z(3) �→ z(4) are concatenations).

Given ji ∈ |z(1)|, we run the circuit EN from Lemma IV.4 to

compute the d locations.

Also, by the constructions of EN ’s from Lemmas IV.4

and IV.5, we can compute Enc1(z)i from the values of z in

these d locations by a P-uniform T C0 circuit of size NO(γ).

(The main bottleneck is the encoder from Lemma IV.4, which

uses size poly(d, log(N)) for d = NO(γ).)26

26Note that this does not use the local encoding property of Lemma IV.4;
that is, to compute Enc1(z)i we compute all the bits of the rele-
vant Σ(2)-symbols and Σ(3)-symbols. This causes a size blow-up of
polylog(N, log(|F|)), which does not affect the complexity of the encoder.

b) Local Decoding: At a high-level, the decoder DN

implements standard decoding for concatenated codes. Specif-

ically, given i ∈ [N] and oracle access to O as in our

assumption, we:

1) Run the decoder D
(1)
N for the code from Lemma IV.4

instantiated with parameter d = NO(γ). Whenever it

tries to access an F
d-symbol q1 ∈ [N], perform Step (2)

to obtain the answer.

2) For all j ∈ [log(|Fd|)] in parallel, we run the decoder

D
(2)
N for the code from Lemma IV.5, instantiated with

alphabet Fd and with input j. Whenever the decoder tries

to access a Σ(2)-symbol q2 ∈ [N (2)], perform Step (3)

to obtain the answer.

3) For all k ∈ [log(|Σ(2)|)], we run the decoder D
(3)
N for

the code from Lemma IV.5, instantiated with alphabet

Σ(2) and with input k. Whenever the decoder tries to

access a Σ(3)-symbol q3 ∈ [N (3)], perform Step (4) to

obtain the answer.

4) Let EncSTV be the encoding of [3], and recall that

it maps log(|Σ(3)|) bits to t = polylog(|Σ(3)|) =
polyloglog(N) bits. We query O at the t locations

corresponding to the encoding of the qth symbol, to

obtain an answer a ∈ {0, 1}t. Then we enumerate over

all messages m ∈ Σ(3), compute EncSTV(m) for each

m, and output m that maximizes Prj∈[t][Enc
STV(m)j =

aj].

Since all the decoders are non-adaptive, the composed

decoder is also non-adaptive. Also, the original decoder from

Lemma IV.5 is probabilistic and has error probability 1/3;

by naive error-reduction, we can assume that it has error

probability N−ω(1), at the cost of increasing the circuit size

by a polylog(N) factor. (This will not affect our analysis, and

it preserves non-adaptivity.)

Let us first bound the complexity of the decoder. It can be

implemented by combining four P-uniform probabilistic non-

adaptive oracle T C0 circuits, which yields a circuit of total

size

poly(d)︸ ︷︷ ︸
D

(1)
N

+ ((1 + o(1)) · log(|F|d) · polyloglog(|F|d)︸ ︷︷ ︸
D

(2)
N and D

(3)
N

)

+ |Σ(3)|︸ ︷︷ ︸
decoding EncSTV

≤ NO(γ) .

The proof of correctness follows a standard proof of correct-

ness for decoding concatenated codes. Specifically, with high

probability, all invocations of the decoder from Lemma IV.5

were successful (recall that we reduced its error to N−ω(1));

we condition on this event. Now, for a sufficiently small δ > 0,

if the distance of O from Enc1(z) is at most δ, then for at most√
δ of the blocks of length t corresponding to encodings of

Σ(3)-symbols in z(3), at most
√
δ of the bits in the block are

1024

Authorized licensed use limited to: MIT. Downloaded on March 28,2025 at 23:43:29 UTC from IEEE Xplore. Restrictions apply.

corrupted. Hence, the decoder for EncSTV succeeds on at least√
δ of locations q3 ∈ [N (3)], which implies that the decoder

in Step (3) gets oracle access to a string that is of distance
√
δ

from z(3). The same logic applies to Step (2), and to Step (1).
Relying on Lemma IV.4 and on a sufficiently small choice of

δ > 0 (such that δ1/8 < 2/5) the decoder maps i to zi for all

but d−α = N−γ of the coordinates i ∈ [N].
c) Systematic: We are given an index i ∈ [N], and our

goal is to find an output index i′ ∈ [N̂] such that Enc1(z)i′ =
zi for all z. The main thing that we need to verify is that

for the code Encex : (ΣM)M → (Σd
M)M , given an input index

i0 ∈ [M], we can find j ∈ [M] and i′ ∈ [d] such that i is

the (i′)h symbol in Encex(z)j . The reason that this suffices

is that Enc1 first encodes z �→ Encex(z), and then performs

a sequence of concatenation steps, where each concatenation

step encodes each block by a systematic code (i.e., either the

combination of the Reed-Muller code, which is systematic,

with Encex, which we will now show is indeed systematic; or

the code of [3], which is systematic).

To verify the claim about Encex, recall that given i ∈ [N]
we can produce the list of neighbors of i (in the degree-d
expander graph [M] × [M] underlying Encex) in P-uniform

AC0 of size poly(d, log(M)). In our setting we will always

have poly(d, log(M)) ≤ NO(γ). Letting j be the first neighbor

of i in the list, we can find the index i′ of i in the list of

neighbors of j by P-uniform AC0 circuits of size NO(γ) (i.e.,

by computing the list of neighbors of j).

B. The Second Code: From Distance 0.01 to Distance 1/2−
N−Ω(1)

We now present the second code, which (1 − δ)-
approximately decodes from agreement 1/2 + N−ν , for an

arbitrarily small constant δ > 0. Note that at such agreement

we cannot hope to support unique decoding, and thus this code

can be thought of as list-decodable. In the statement below, the

code will use a preliminary preprocessing step, to ensure that

it can find the right message in the list of possible messages.

Proposition IV.6. There is a universal constant c2 > 1 such
that the following holds. For every δ, ν′ > 0 there exists c′ =
c′δ,ν′ > 1 and a mapping Enc2 : {0, 1}N̂ → {0, 1}N̄ , where
N̄ = N̂ c′ , such that the following holds:

1) (Locally encodable.) There is a P-uniform family{
QN̂

}
N̂∈N

of T C0 circuits of size |QN̂ | = N̂ c2·ν′

such that QN̂ gets input i ∈ [N̄] and prints a set
q1, ..., qk ∈ [N̂], where k ≤ c2 · (ν′/δ2) · log(N̂). Also,
there is a P-uniform family

{
EN̂

}
N̂∈N

of threshold
circuits of constant depth and size |EN̂ | = (N̂)c2·ν

′

such that EN̂ gets input i ∈ [N̄] and x1, ..., xk ∈ F,
and outputs a bit σ such that the following holds: For
any z ∈ {0, 1}N̂ satisfying zq� = x� for all 	 ∈ [k], the
output of EN̂ is σ = Enc2(z)i.

2) (Locally approximately decodable.) There is a P-
uniform family

{
DN̂

}
N̂∈N

of probabilistic non-adaptive
oracle T C0 circuits of size |DN̂ | = (N̂)c2·ν

′
such

that for every z ∈ {0, 1}N̂ the following holds. Fix

any O ∈ {0, 1}N̄ satisfying Prj∈[N̄] [Enc2(z)j = Oj] ≥
1/2 + (N̂)−ν′

. The circuit DN̂ first has a probabilistic
preprocessing step, in which it non-adaptively queries z.
Then, with probability at least 1 − o(1) over the coins
in the preprocessing step, there exists a set S ⊆ [N̂] of
density |S|/N̂ ≥ 1 − δ such that (DN̂)O(i) = zi for
every i ∈ S.

3) (Systematic.) There is a P-uniform family
{
IN̂
}
N∈N

of
non-adaptive oracle threshold circuits of constant depth
and size |IN̂ | = (N̂)c2·ν

′
such that IN̂ gets input i ∈[

N̂
]

and oracle access to an N̄ -bit string and for every

z ∈ {0, 1}N̂ and every i ∈
[
N̂
]

satisfies IN̂ (i)Enc2(z) =
zi.

Proof. At a high-level, the code is the concatenation of the

derandomized direct product code of Impagliazzo and Wigder-

son [2] and of the Hadamard code.

a) Construction: Let n = log(N̂), let ε = (N̂)−c′′·ν′
, let

δ′ = δ/2, and let k = (c′′/(δ′)2) · log(1/ε), for a sufficienty

large universal constant c′′ > 1. Consider the two following

algorithms:

1) The expander-random-walk sampler. Specifically, fix

any expander over {0, 1}n with constant degree and a

sufficiently small (constant) normalized second largest

eigenvalue. Lt Samp : {0, 1}m1 → ({0, 1}n)k be the

function that takes as input a description of a k-length

walk on the expander (i.e., an initial n-bit index of a

vertex and k indices of edges) and outputs the indices

of the k vertices encountered in the walk. Note that

m1 = n+O(k).
2) An efficiently computable combinatorial design

Des : {0, 1}m2 × [k] → {0, 1}n, which takes as input

z ∈ {0, 1}m2 and the index i ∈ [k] of a set Si ⊆ [n] of

size |Si| = n, and outputs z�Si
. The design has the prop-

erty that for any i �= j it holds that |Si∩Sj | ≤ (ν′/2)·n.

We will use designs with m2 = O(n/ν′) and k as

above.27

Let n̄ = m1+m2 = Oν′,δ′(n+log(1/ε)). For any (y1, y2) ∈
{0, 1}n̄ and i ∈ [k], we define Loc(y1, y2, i) = Samp(y1, i)⊕
Des(y2, i) ∈ {0, 1}n. Then, given z ∈ {0, 1}N̂ , we map it to

z′ ∈ ({0, 1}k)2n̄ such that for any (y1, y2) ∈ {0, 1}n̄ it holds

that

z′y1,y2
=
(
zLoc(y1,y2,1), ..., zLoc(y1,y2,k)

)
.

The output of Enc2(z) is the concatenation of z′ with the

Hadamard code. Since k = Oδ′(log(1/ε)), this yields a binary

codeword Enc(z) of length

2n̄+k = N̂ · (1/ε)cν′ = N̂ c′
δ,ν′ ,

for a sufficiently large c′δ,ν′ > 1.

27There exist designs with a significantly larger number of sets k =
2Θ(ν′)·n, but we will not need such a large k.

1025

Authorized licensed use limited to: MIT. Downloaded on March 28,2025 at 23:43:29 UTC from IEEE Xplore. Restrictions apply.

b) Local Encoding: We prove that there exists a P-

uniform family of T C0 circuits of small size for local en-

coding of the code. We first show that the locations for the

derandomized direct product encoding of [2] can be computed

in uniform AC0:

Claim IV.6.1. There is a P-uniform family of AC0 circuits of
size (N̂)c

′′·ν′
that get input (y1, y2) ∈ {0, 1}n̄ and print the

set {Loc(y1, y2, i)}i∈[k].

Proof. We instantiate Samp with the Gabber-Galil ex-

pander [32] of constant degree over [N̂].28 As was shown

in [31], there is a P-uniform family of AC0 circuits of size

poly(log(N̂), 2k) < (N̂)c
′′·ν′

that gets as input i ∈ [k] and

the description of a k-length walk (i.e., a starting vertex and

a list of indices of edges) and outputs the ith vertex in the

walk.29 In particular, given y1 ∈ {0, 1}m1 and i ∈ [k], such

circuits can output Samp(y1, i).
Also, combinatorial designs with parameters as those

of Des above are well-known to be computable in time

poly(k,m2) � N̂ (see, e.g., [35, Problem 3.2]). We con-

sider a P-uniform family of circuits in which the P-uniform

algorithm that constructs the circuit computes such a design

and hard-wires it into the circuit; the description of a design

is of length k · n � (N̂)ν
′
. Given input y2 ∈ {0, 1}m2 and

i ∈ [n], the circuit projects y2 to the coordinates in the ith set

in the design.

By combining the two families of circuits above, we obtain

a P-uniform family of AC0 circuits of size at most N c′′·ν′

that, given (y1, y2, i), computes Loc(y1, y2, i). (That is, the

family computes Samp(y1, i) and Des(y2, i) in parallel and

XORs them.) The claim follows by computing Loc(y1, y2, i)
in parallel for all i ∈ [k]. �

For the final encoding of z ∈ {0, 1}N̂ to Enc2(z) ∈ {0, 1}N̄ ,

note that any output index ī ∈ [N̄] can be thought of as a pair

(i, j) where i = (y1, y2) ∈ {0, 1}n̄ and j ∈ {0, 1}k. The

set of coordinates that the īth output depends on is the set

Sī = {Loc(y1, y2, i)}i∈[k], and the value of the īth output

is ⊕i∈[k]ji · Loc(y1, y2, i). By Claim IV.6.1, there is a P-

uniform family of AC0 circuits of size (N̂)c
′′·ν′

computing

the mapping ī �→ Sī, and the output list is of size |Sī| = k·.
The final output can be computed by computing a parity over

k values, and this can be done in P-uniform T C0 of size

poly(k) � N c′′·ν′
.

c) Systematic: Given i ∈ [N̂] ≡ {0, 1}n, the circuit IN̂
finds a neighbor j of i in the expander over {0, 1}n (that

was used for the encoding, in the proof of Claim IV.6.2), and

finds the index σ ∈ [O(1)] of the edge that goes from j to

i (by trying all O(1) indices in parallel). Let y1 describe the

walk that starts from j, goes along index σ to i in the first

28A minor technical point is that such expanders are only defined over
vertex-set of size that is a square (i.e., N2 for some N ∈ N). Since we are
considering expanders over the vertex-set [N̄], and we do not mind a quadratic

increase in the value of N̂ in the previous steps, we may assume without loss
of generality that N̂ is a square.

29In [31] this claim is stated only for a specific value of k, but as observed
in [29] the original proof already supports the claim for every k.

step, and proceeds arbitrarily (e.g., walking along index σ for

k − 1 additional steps). Note that Samp(y1, i
′) = i. Also let

y2 = 0m2 , and note that Loc(y1, y2, 1) = i. Then, IN̂ queries

its oracle at the location that corresponds to (y1, y2) and to the

linear function f(x1, ..., xk) = x1 (we can assume that this is

the first location in the block that corresponds to (y1, y2)). As

argued in the proof of Claim IV.6.2, by our choice of expander

this can be executed by a AC0 circuit of size (N̂)c
′′·ν′

.

d) Local Approximate Decoding: The claimed decod-

ability essentially follows from the classical works of [2]

and [33], yet we spell the argument out in detail to explain

why the specific properties that we claim hold.

Let us recall the local decoding algorithm of [2], and use

the presentation of the construction and proof from [28]. For

convenience, we denote by IWN̂ the mapping of z to z′ defined

as above (i.e., z′y1,y2
=
(
zLoc(y1,y2,1), ..., zLoc(y1,y2,k)

)
). Then,

we argue that:

Claim IV.6.2. There is a P-uniform family of probabilis-
tic non-adaptive oracle T C0 circuits

{
DIW

N̂

}
N̂∈N

of size

(N̂)c
′′·ν′

satisfying the following. Let w ∈ {0, 1}N̂ , and let
Ō : {0, 1}n̄ → {0, 1}k such that Pry1,y2∈{0,1}n̄ [Ō(y1, y2) =
IWN̂ (w)y1,y2] ≥ ε. The circuit DIW

N̂
first has a probabilistic

preprocessing step in which it queries w. Then, with prob-
ability at least 1 − o(1) over the randomness of DIW

N̂
in

the preprocessing step, there is a set X ⊆ [N̂] of density
|X|/N̂ ≥ 1 − δ′ such that for every x ∈ X it holds
that (DIW

N̂
)Ō(x) = wx (note that this computational step is

deterministic).

Proof. The uniform circuit is essentially the decoding al-

gorithm of [2], as presented in [28, Lemma A.2 and the

subsequent description]. In the preprocessing step it repeats

the following procedure t = O(n/ε2) times, in parallel:

Choose at random a seed z1 ∈ {0, 1}m1 for Samp,

and an index i ∈ [k], and values α ∈ {0, 1}m2−n for

the entries of z2 ∈ {0, 1}m2 on coordinates outside

Si. Now query w in parallel on a set of at most

(k − 1) · 2(ν′/2)·n locations, which are determined

by (i, α) and by the combinatorial design.30

Now, given x ∈ [N̂], the output is the majority of the outputs

of t sub-circuits on x, where each sub-circuit corresponds to

one of the experiments in the preprocessing steps (i.e., to a

fixed choice of (z1, i, α)), and performs the following:

1) Compute x′ = x ⊕ Samp(z1, i), complete x′ (using α)

to z2 ∈ {0, 1}m2 , and query Ō on input (z1, z2).
31

2) For each j ∈ [k] \ {i}, let cj ∈ {0, 1} equal zero iff

Ō(z1, z2)j = wLoc(z1,z2,j).

30Specifically, in parallel for all j ∈ [k] \ {i} do the following. Compute

the set Si ∩Sj , iterate in parallel over all choices for x(j) ∈ {0, 1}|Si∩Sj |,
and compute the n-bit string x′ obtained by placing x(j) in locations Si∩Sj

and α�Sj
in locations Sj \ Si. Query w in position Loc(z1, z2, j) = x′ ⊕

Samp(z1, j).
31To parse the meaning of this step, note that Loc(z1, z2, i) =

Samp(z1, i) ◦ x′ = x, so we hope to have Ō(z1, z2)i = wx.

1026

Authorized licensed use limited to: MIT. Downloaded on March 28,2025 at 23:43:29 UTC from IEEE Xplore. Restrictions apply.

3) For 	 =
∑

j 	=i cj , output Ō(z1, z2)i with probability 2−�

and a random bit otherwise.

Since this is precisely the construction of [2], its correctness

follows from the original proof (see, e.g., [28, Proof of

Lemma A.2]). In the construction above the second step (after

preprocessing) is probabilistic, and the original proof shows

that with probability 1− o(1) over coins in the preprocessing

phase, there is X of density 1−δ′ such that for every x ∈ X it

holds that Pr
[
(DIW

N̂
)Ō(x) = wx

]
≥ 0.99. Using naive error-

reduction, we can reduce the error probability from 0.01 to

1/(N̂)2, and choose random coins for the second step in

advance (i.e., in the preprocessing phase). Then, the second

step is deterministic, and with probability at least 1 − o(1)
over the coins in the preprocessing phase, the second step is

correct for every x ∈ X .

As for the complexity of the construction, note that the

number of queries in the preprocessing step is less than

Q = 2(ν
′/2)·n · k · (n/ε2) = (N̂)c

′′·ν′
,

and that the size of the circuit is at most

O
(
t · (N̂)c

′′·ν′ · polylog(N̂)
)
< N̂2c′′·ν′

. �

Next, we recall the list-decoding algorithm for the

Hadamard code from [33].

Claim IV.6.3. There is a P-uniform family
{
DGL

N̂

}
N̂∈N

of

probabilistic non-adaptive oracle T C0 circuits of size (N̂)c
′′·ν′

that satisfies the following. For every z ∈ {0, 1}N̂ and every
O ∈ {0, 1}N̄ that agrees with Enc2(z) on 1/2 + (N̂)−ν′

of
the inputs,

Pr
[
(DGL

N̂
)O(x) = IWN̂ (z)x

]
≥ 2ε ,

where the probability is over x ∈ {0, 1}n̄ and over the random
coins of DGL

N̂
.

We are now ready to construct the final decoder DN̂ . In

the preprocessing step, we repeat the following experiment

for O(1/ε) times, in parallel. For j = 1, ..., O(1/ε):

1) Run the preprocessing step of DIW
N̂

.

2) Choose uniformly at random a set of 	 = O(log(1/ε))

locations q
(j)
1 , ..., q

(j)
� ∈ [N̂], and query w on these

locations.

3) Choose in advance fixed random coins r(j) to be used

by DGL
N̂

and by the second step of DIW
N̂

.32

4) For i ∈ [], run DIW
N̂
(i), and whenever it queries its

oracle Ō at location q′ ∈ {0, 1}n̄, answer using DGL
N̂
(q′).

(Both decoders are run using the fixed random coins.)

Let w̃
(j)
i be the answer of this procedure.

5) Let ṽ(j) = Pri∈[�]

[
w̃

(j)
i = wi

]
. If ṽ(j) ≥ 1 − δ′/2,

consider this experiment successful; otherwise, consider

the experiment failed.

32We stress that we choose different (independent) random coins for DGL
N̂

and for DIW
N̂

, and denote by r(j) the concatenation of these two fixed choices.

Now, let j∗ ∈ [O(1/ε)] be the index of the first successful

experiment (if there was no successful experiment, abort). In

the second step, the decoder is given i ∈ [N̂]; it runs DIW
N̂
(i)

and answers its queries using DGL
N̂

, where both decoders use

the fixed random coins specified by r(j
∗).

Observe that the final decoder only non-adaptive oracle

queries, and can be implemented by P-uniform T C0 circuits

of size

r · 	 ·O
(
(N̂)c

′′·ν′ · (N̂)c
′′·ν′) ≤ (N̂)c2·ν

′
.

As for the correctness of the decoder, note that with prob-

ability at least ε over choice of random coins for DGL
N̂

, there

exists a set X0 ⊆ {0, 1}n̄ of density at least |X0|/2n̄ ≥ ε such

that for every x ∈ X0 it holds that (DGL
N̂
)O(x) = IWN̂ (z)x.

Whenever this happens, there exists Ō : {0, 1}n̄ → {0, 1}k sat-

isfying Pry1,y2∈{0,1}n̄

[
Ō(y1, y2) = IWN̂ (w)y1,y2

]
≥ ε such

that the queries of DIW
N̂

will be answered (by DGL
N̂

) according

to Ō. Then, with probability at least 1 − o(1) over the coins

in the preprocessing step of DIW
N̂

, there exists a set X ⊆ [N̂]
of density at least 1 − δ′ such that for every x ∈ X it holds

that (DIW
N̂
)Ō(x) = wx.

For j ∈ [r], let D(j) be the decoding procedure that

runs DIW
N̂

and answers its queries using DGL
N̂

where both

decoders use the coins specified by r(j). Also let vj =
Prx∈[N̂]

[
(D(j))O(i) = wi

]
. Since we repeat the experiment

for r = O(1/ε) times, with probability 1− o(1) there exists j
such that vj ≥ 1− δ′. Also, with probability at least 1− o(1),
for every j it holds that |vj − ṽj | ≤ δ′/2. Condition on both

events happening. Then, j∗ satisfies vj∗ ≥ 1 − 2δ′ = 1 − δ.

By definition, the decoder will answer in the second step

according to D(j∗), and hence will answer correctly on at

least 1− δ of the coordinates x ∈ [N̂].

C. Proof of Proposition IV.1

Given the two codes in Proposition IV.2 and IV.6, we are

now ready to prove Proposition IV.1.

Let γ, ν be the parameters and F be the finite field. Let c =
cγ,ν to be a sufficiently large enough constant to be specified

later and c0 be a sufficiently large universal constant.
Notation of First Code: Let c1 and δ be the universal

constants from Proposition IV.2, and let γ̂ be a constant to be

specified later. We apply Proposition IV.2 with parameters γ̂
and field F to obtain the encoding

Enc1 : F
N → {0, 1}N̂ , where N̂ = N ĉ and ĉ = ĉγ̂ .

We then use Ê, Q̂, D̂ to denote the circuits Q,D,N
from Proposition IV.2.

Notation of Second Code: Let c2 be the universal constant

from Proposition IV.6, and let ν̄ be two constants to be

specified later. We apply Proposition IV.6 with parameters δ, ν̄
and to obtain the encoding

Enc2 : {0, 1}N̂ → {0, 1}N̄ , where N̄ = N̂ c̄ and c̄ = c̄δ,ν̄ .

We then use Ē, Q̄, D̄ to denote the circuits Q,D,N
from Proposition IV.6.

1027

Authorized licensed use limited to: MIT. Downloaded on March 28,2025 at 23:43:29 UTC from IEEE Xplore. Restrictions apply.

The Mapping Enc: With the notation set up, we now

define the encoding map Enc : FN → {0, 1}N̄ as

Enc(x) = Enc2(Enc1(x)), where x ∈ F
N .

We also let x̂ = Enc1(x) and x̄ = Enc2(x̂). That is, we

have the following

Enc : x ∈ F
N Enc1−−−→ x̂ ∈ {0, 1}N̂ Enc2−−−→ x̄ ∈ {0, 1}N̄ .

In particular, we now set c = ĉ · c̄ so that N̄ = N c.

The Construction of QN : Now we are ready to define

QN , which is going to be a natural composition of Q̄N̂ and

Q̂N . Formally, QN works as follows:

1) Given input i ∈
[
N̄
]
, run Q̄N̂ (i) to obtain q1, . . . , qM̄ ∈[

N̂
]

where M̄ = c2 · (ν̄/δ2) · log(N̂).33

2) For every j ∈ [M̄], run Q̂N (qj) to obtain

qj,1, . . . , qj,M̂ ∈ [N] where M̂ = N c1·γ̂ .

3) Output all of qj,� for j ∈ [M̄] and 	 ∈ [M̂].

Now, note that QN has M = M̄ · M̂ ≤ N2·c1·γ̂ outputs in

[N]. We now set γ̂ = γ/(2 · c1) and ν̄ = ν/ĉ. We then have

M ≤ Nγ as desired.

Also, we have |Q̄N̂ | ≤ N̂ c2·ν̄ and |Q̂N | ≤ N c1·γ̂ , it follows

their composition QN is a T C0 circuit of size

O
(
N̂ c2·ν̄ + M̄ ·N c1·γ̂

)
≤ O

(
N c2·ν̄·ĉ +N2·c1·γ̂) ≤ N c0·(γ+ν),

for a sufficiently large constant c0, by our choice of ν̄ and γ̂.

The Construction of EN : After defining QN , we are now

ready to define EN in the natural way.

1) Given input i ∈
[
N̄
]

and xj,� ∈ F for (j,) ∈ [M̄]×[M̂],

Q̄N̂ (i) to obtain q1, . . . , qM̄ ∈
[
N̂
]
.

2) For every j ∈ [M̄], run ÊN with input qj ∈
[
N̂
]

and

list qj,1, . . . , qj,M̂ to obtain σj ∈ {0, 1}.

3) Run ĒN̂ with input i and list σ1, . . . , σM̄ to obtain the

output σ.

Similarly to the case of QN , we can implement EN by a

T C0 circuit of size N c0·(γ+ν). Moreover, the desired properties

of QN and EN follows immediately from the properties of

Q̂, Ê, Q̄, Ē from Proposition IV.2 and Proposition IV.6.

The Construction of DN : Again, DN is given by the

natural composition of D̄N̂ and D̂N . Formally, it works as

follows:

1) Given an oracle O : {0, 1}N̄ → {0, 1} such that

Pr
j∈[N̄]

[x̄j = O(j)] > 1/2 +
(
N̂
)−ν̄

.

2) (Preprocessing phase.) Run the preprocessing phase of

D̄N̂ to obtain non-adaptive queries q1, . . . , qt ∈
[
N̂
]

to

x̂, where t ≤ |D̄N̂ |, run Q̂N to convert these into non-

adaptive queries {qj,�}j∈[t],�∈[M̂] to x, and run ÊN to

convert the answers of the new queries to answers of

the original queries.

33For simplicity, we add some dummy queries to make the number of
queries exactly c2 · (ν̄/δ2) · log(N̂).

3) Run the main phase of D̄N̂ Θ(log N̂) times with in-

dependent randomness, taking a majority, and fixing

the randomness to obtain a deterministic oracle circuit

W : {0, 1}N̂ → {0, 1} such that the following

Pr
j∈[N̂]

[
x̂j = WO(j)

]
≥ 2/3

happens with 1 − o(1) probability over all randomness

above.34

4) (Main phase.) Given input i ∈ [N], output(
D̂N

)WO

(i).

Now, DN can be implemented by a probabilistic T C0

circuit, and its size can be bounded as follows

|DN | ≤ O
(
|D̄N̂ | · log N̂ + |D̄N̂ | ·N c1·γ̂

)
≤ O

((
N̂
)c2·ν̄

·N c1·γ̂
)

(log N̂ ≤ N c1·γ̂)

≤ O
(
N ĉ·c2·ν̄+c1·γ̂) . (N̂ = N ĉ)

Note that the required approximation is 1/2+N−ν . Recall

that ν̄ = ν/ĉ, we have
(
N̂
)−ν̄

= N−ĉ·ν̄ = N−ν . And the size

of DN can be bounded by N c0·(γ+ν) by our choice of ν̄ and

γ̂, and setting c0 to be large enough. The correctness of DN

follows directly from Proposition IV.2 and Proposition IV.6,

which completes the proof.

Systematic: Finally, we note that since both Enc1 and

Enc2 are systematic, their composed code Enc is systematic

as well. This completes the proof.

V. IMPROVED CHEN-TELL HITTING SET GENERATOR

WITH T C0 RECONSTRUCTION

The goal of this section is to prove the following result,

which is an improved version of the targeted hitting-set

generator of [6]:

Theorem V.1 (Reconstructive targeted HSG for highly uni-

form T C0 circuits). Let c ∈ N≥1 be a sufficiently large
universal constant. For every γ ∈ (0, 1) and d ∈ N≥1 there
exist d1 ∈ N≥1 and δ ∈ (0, 1) such that the following
holds. Let T,M,m : N → N be such that M ≤ T γ/c. Let
f : {0, 1}n → {0, 1}m(n) be computable by a family of δ-
highly uniform threshold circuits of depth d and T size. Then,
there exist deterministic algorithms HCT-TC0

f and RCT-TC0
f that

for every z ∈ {0, 1}n the following hold:
1) Generator: When given input z, the machine HCT-TC0

f

runs in time poly(T) and prints a set of strings in
{0, 1}M .

2) Compression Reconstruction: RCT-TC0
f (1n) outputs the

description of a probabilistic(
T C0

d1
[n · T γ] �→ T C0

d1
◦ SUM[T γ]

)
34Note that both phases of D̄ are considered as the preprocessing phase of

DN . The execution of D̂ below is considered as the main phase of DN .

1028

Authorized licensed use limited to: MIT. Downloaded on March 28,2025 at 23:43:29 UTC from IEEE Xplore. Restrictions apply.

oracle circuit Rf , such that given D : {0, 1}M → {0, 1}
that 1/M -avoids HCT-TC0

f (z) as oracle, we have

Pr
Rf←Rf

[
RD

f (z) outputs a T C0
d1

oracle circuit E

such that tt(ED) = f(z)
]
≥ 2/3 .

The proof of Theorem V.1 relies on the T C0-locally-

encodable and T C0-locally-approximately-decodable code

from Section IV. In Section V-A we present the construction

of a bootstrapping system for highly uniform T C0 circuit,

whose high-level description was given in Section II-D1, and

in Section V-B we present the proof of Theorem V.1.

A. Efficient Polynomial Decompositions of Highly Uniform
Threshold Circuits

Towards constructing the bootstrapping system, let us now

define an intermediary object called a polynomial decompo-
sition of a circuit. This object, following the ideas of [26], was

defined in [6] for general (logspace-uniform) circuits, and we

present another definition that is suitable for T C0 circuits.

Definition V.2 (polynomial decomposition of a threshold

circuit). Let C be a circuit that has n input bits, size T ,
depth d, and unweighted majority gates of fan-in ϕ. For
every x ∈ {0, 1}n, we call a collection of polynomials a
polynomial decomposition of C(x) if it meets the following
specifications.

1) (Notation.) For any i ∈ [d] and j ∈ [T], denote by gi,j
the jth gate in the ith layer, and denote the function
that gi,j computes by

gi,j(x) = 1

⎡⎣∑
k∈[T]

wi,j,k · gi−1,k(x) > θ

⎤⎦ ,

where θ = �ϕ/2�, and wi,j,k ∈ {0, 1} indicates whether
gi−1,k feeds into gi,j .

2) (Arithmetic setting.) For some prime 5 · T 2 < p ≤
10 ·T 2, the polynomials are defined over the prime field
F = Fp. For some integer h ≤ p, let H = [h] ⊆ F, let m
be the minimal integer such that hm ≥ T . Let ξ : [T] →
Hm be an injection and ξ−1 : Hm → [T] ∪ {⊥} be its
inverse.35

3) (Circuit-structure polynomial.) For each i ∈ [d], let
Φi : H

2m → {−T, ..., T} be the following function. On
input (�u,�v) ∈ Hm × Hm, we interpret the pair as
(j, k) ∈ [T] × [T], and output wi,j,k.36 The polynomial
Φ̂i : F

2m → F can be any extension of Φi.
4) (Input polynomial.) Let α0 : H

m → {0, 1} represent
the string x0h

m−n, and let α̂0 : F
m → F be defined by

α̂0(�u) =
∑

i∈[n], �z=ξ(i)

δ�z(�u) · α0(�z) ,

35If �u is not in the range of ξ then ξ−1(�u) = ⊥. We always use ξ to encode
an index i as an element from Hm. We will pick an ξ such that ξ−1 is also
easy to compute, and for simplicity we ignore the complexity of computing ξ
and ξ−1 since it is negligible; we only need them to be computable in T C0.

36If �u or �v represents an integer larger than T , then Φi(�u,�v) = 0.

where δ�z is Kronecker’s delta function (i.e., δ�z(�u) =∏
j∈[m]

∏
a∈H\{zj}

uj−a
zj−a).

5) (Layer polynomials.) For each i ∈ [d], let αi : H
m →

{0, 1} represent the values of the gates at the ith layer of
C in the computation of C(x) (with zeroes in locations
that do not index valid gates).37 We define polynomials
α̂i : F

m → F as follows:

α̂1(�u) =
∑

�v∈Hm

Φ̂i(�u,�v) · α̂0(�v)

α̂i(�u) =
∑

�v∈Hm

Φ̂i(�u,�v) · δ>θ (α̂i−1(�v)) , i ∈ {2, ..., d} .

where δ>θ is a degree-(ϕ − 1) polynomial such that

δ>θ(a) =

{
1 a > θ

0 o.w.
for every a ∈ [ϕ].38

6) (Sumcheck polynomials.) For each i ∈ [d], let
α̂i,0 : F

2m → F be the polynomial

α̂i,0(�u, σ1, ..., σm) = Φ̂i(�u, σ1,...,m) · δ>θ (α̂i−1(σ1,...,m)) ,

and for every j ∈ [m− 1], let α̂i,j : F
2m−j → F be the

polynomial

α̂i,j(�u, σ1, ..., σm−j) =∑
σm−j+1,...,σm∈H

Φ̂i(�u, σ1,...,m) · δ>θ (α̂i−1(σ1,...,m)) ,

where σk,...,k+r = σk, σk+1, ..., σk+r. We also denote
α̂i,m ≡ α̂i.

Next, we argue that for every highly uniform family of T C0

circuits {Cn} there is another highly uniform family of T C0

circuits {C ′
n} that has the same functionality and that admits

a very efficient polynomial decomposition. The proof has

two steps: First, using ideas similar to those of Allender and

Koucký [36, Theorem 11], we simulate Cn by a circuit C ′
n that

is mildly deeper but consists only of unweighted majority gates

of small fan-in; and then we arithmetize the circuit-structure

function Φ of C ′
n, relying on a suitable arithmetization of the

(small) uniform circuits for Φ (which exist because the family

{C ′
n} is highly uniform).

Proposition V.3 (efficient polynomial decompositions of

highly uniform threshold circuits). There exists a universal
constant c ∈ N such that the following holds. Let δ > 0 be
a sufficiently small constant, and let {Cn}n∈N

be a δ-highly
uniform family of circuits of size T (n) and depth d(n). Then,
there exists a 2δ-highly uniform family of circuits {C ′

n} of size
T ′(n) = T (n)3 and depth d′(n) = O(d(n)/δ) such that for
every x ∈ {0, 1}n it holds that C ′

n(x) = Cn(x), and there
exists a polynomial decomposition of C ′

n(x) satisfying:
1) (Arithmetic setting.) The polynomials are defined over

Fp, where p is the smallest prime in the interval

37Formally, for every �u ∈ Hm we have αi(�u) ={
gi,ξ−1(�u) ξ−1(�u) �= ⊥
0 o.w.

.

38That is, δ>θ(a) =
∑

σ∈[ϕ]

∏
σ′∈[ϕ]\{σ}

a−σ′
σ−σ′ · 1[σ > θ].

1029

Authorized licensed use limited to: MIT. Downloaded on March 28,2025 at 23:43:29 UTC from IEEE Xplore. Restrictions apply.

[
5 · (T ′)2 + 1, 10 · (T ′)2

]
. Let H = [h] ⊆ F, where h is

the smallest power of two of magnitude at least (T ′)δ/3,
and let m be the minimal integer such that hm ≥ 2T ′.

2) (Faithful representation.) For every i ∈ [d′(n)] and
�u ∈ Hm representing a gate in the ith layer of C ′

n, the
value of the gate in C ′

n(x) is 1 if and only if α̂i(�u) ≥
θi,�u.39

3) (Low degree.) All polynomials in the polynomial de-
composition have total degree at most T c·δ .

4) (Base case.) There is a P-uniform T C0 circuit of size
n · hc that given �u ∈ F

m, outputs the description of a
SUM gate C�u such that C�u(x) = α̂0(�u).

5) (Downward self-reducibility.) There are two P-uniform
non-adaptive oracle threshold circuits of size hc and
constant depth that solve each of the following tasks,
respectively:

a) Given input i ∈ [d′] and (�u, σ1, ..., σm) ∈ F
2m and

oracle access to α̂i−1, output α̂i,0(�u, σ1, ..., σm).
b) Given input (i, j) ∈ [d′] × [m] and

(�u, σ1, ..., σm−j) ∈ F
2m−j and oracle access

to α̂i,j−1, output α̂i,j(�u, σ1, ..., σm−j).

Proof. We first construct a family {C ′
n} that computes the

same function as {Cn} and that has properties making it

amenable for arithmetization:

Claim V.3.1. There is a 2δ-highly uniform family {C ′
n} of

circuits of size T ′(n) and depth d′(n) such that for each n,
the gates in C ′

n are unweighted majority gates of fan-in at
most TO(δ), and C ′

n(x) = Cn(x) for every x ∈ {0, 1}n.

Proof. We replace each gate of Cn by a sub-circuit of depth

O(1/δ) whose nodes are unweighted majority gates with

fan-in TO(δ), along with an additional AC0 gadget of size

polylog(T) on top of the tree, as follows.

Let g be a threshold gate with inputs h1, ..., hT , weights

w1, ..., wT ∈ {−T, ..., T}, and threshold θg ∈
{
−T 2, ..., T 2

}
.

Consider a tree of depth 1/δ whose bottom nodes are

{wi · hi}i∈[T], whose intermediate nodes have fan-in T δ and

compute the sum of their children, and whose root computes∑
i∈[T] wi · hi. We implement this tree with unweighted

majority gates of fan-in TO(δ), using the standard construc-

tions of T C0 circuits for iterated addition and multiplication:

Specifically, we replace each bottom node with a T C0 circuit

of size polylog(T) computing hi �→ wi · hi; and we replace

each intermediate node with a T C0 circuit of size TO(δ) for

iterated addition of T δ integers. The sub-circuit that imple-

ments this tree outputs �2 log(T)� + 1 bits, representing an

integer v ∈
{
−T 2, ..., T 2

}
. We add a gadget on top checking

whether v > θg; this functionality can be implemented by an

AC0 circuit of size polylog(T). Note that the entire sub-circuit

indeed simulates g, and it has depth O(1/δ) and T 1+O(δ)

unweighted majority gates of fan-in TO(δ).

39The notation θi,�u refers to the threshold value of gate �u in the ith

layer of C′n. To avoid confusion, we note in advance that C′n will only
have unweighted majority gates of fixed fan-in ϕ, and thus θi,�u =
ϕ/2�
regardless of (i, �u).

Replacing each gate in Cn with a sub-circuit as above yields

a circuit C ′
n of size T 2+O(δ) < T 3 and depth O(d(n)/δ) that

has the same functionality as Cn. To see that C ′
n is 2δ-highly

uniform, it suffices to show a P-uniform family
{
Weight′n,i

}
of size T (2δ)2 and depth 1/2δ such that Weight′n,i gets

input (j, k) ∈ [T] × [T] and outputs “yes” if gate k at the

(i − 1)th layer feeds into gate j at the ith layer.40 To see

that there indeed exist such a family Weight′n,i, let Weightn,i
and Thrn,i be the corresponding families for Cn. Now, the

connectivity in the standard T C0 circuits for iterated addition

and multiplication can be decided by P-uniform AC0 circuits

of polylogarithmic size, where the circuits for multiplication

(i.e., for computing hi �→ wi · hi) use Weightn,i to compute

wi. Also, the connectivity in the top gadget can be decided by

an AC0 circuit of size polylog(T) that uses Thrn,i to compute

the threshold value (i.e., to compute θg). �

Let δ′ = 2δ. To show a suitable polynomial decomposition

of {C ′
n}, it suffices to specify the circuit structure polynomials

Φ̂i. We will first do so, and then argue that the polynomial

decomposition has the claimed properties.

Construction of polynomials Φ̂i.: Since {C ′
n}n∈N

is δ′-
highly uniform, there exists a P-uniform family of thresh-

old circuits {Weight′n,i}n∈N≥1, i∈[d(n)] of size T ′(n)(δ
′)2 and

depth 1/δ′ such that Weight′n,i takes (j, k) ∈ [T] × [T] as

input and outputs wi,j,k.

First, by composing with ξ−1 from Definition V.2, we can

convert Weight′n,i into a circuit Dn,i : H
2m → Fp as follows.

For any input (�u,�v), if ξ−1(u) �= ⊥ and ξ−1(v) �= ⊥ then

Dn,i(�u,�v) = Weight′n,i(ξ
−1(u), ξ−1(v)) mod p (where we

use z mod p to denote the unique conjugate number of z ∈ Z

in Fp), and otherwise Dn,i(�u,�v) = 0. Note that Dn,i can

be implemented by a P-uniform T C0 circuit of size TO(δ2)

and depth (1/δ + O(1)),41 and that Dn,i computes Φi as

per Definition V.2.

The circuits Dn,i have domain H2m, which we can also

think of as {0, 1}2m·�log(h)�. For the next step we will need

the following lemma, which allows us to transform each Dn,i

into a circuit of similar complexity that computes a low-degree

extension F
2m·�log(h)� → F of Dn,i.

Lemma V.3.2. There is a universal constant c ∈ N≥1 and a
polynomial-time algorithm that takes a prime 5 · t2 < p ≤ 2t

together with the description of a t-size d-depth n-input T C0

circuit C : {0, 1}n → Fp as input, and outputs another tc-size
(c ·d)-depth T C0 circuit C ′ : Fn

p → Fp such that the following
hold:

• C ′ computes a degree-tc·d polynomial over Fp.
• For every z ∈ {0, 1}n, we have C(z) = C ′(z).

40We do not need to specify circuits Thrn,i that compute the threhsolds
of gates in C′n, since the gates in C′n are all unweighted majority gates.

41In more detail, Dn,i takes 2m blocks of length-	log h
 Boolean strings
as input, interpret each of them as an integer in H (if any of the strings
does not encode a valid integer in H , Dn,i outputs 0 immediately) to obtain
a pair (�u,�v) ∈ Hm × Hm, and outputs Weight′n,i(ξ

−1(u), ξ−1(v)) if

ξ−1(u) �= ⊥ and ξ−1(v) �= ⊥ and 0 otherwise.

1030

Authorized licensed use limited to: MIT. Downloaded on March 28,2025 at 23:43:29 UTC from IEEE Xplore. Restrictions apply.

Proof. Let m = �log p�. Note that C can be decomposed

into m Boolean output circuits C1, . . . , Cm, such that Ci(z)
outputs the i-th bit of the binary representation of C(z). Recall

that in the field Fp, a negative number −z for z ∈ [p−1] equals

p− z.

For each i ∈ [m], we will construct a low-degree polynomial

ψi such that Ci(z) = ψi(z) for every z ∈ {0, 1}n, and show

ψi can be computed by another T C0 circuit C ′
i. Then, we will

combine all the C ′
i’s into a a single circuit C ′, and all the ψi

into a single polynomial ψ.

Fixing i ∈ [m], for every gate g : {0, 1}v → {0, 1} in Ci

(here v ≤ t), we have

g(y1, . . . , yv) := 1

⎡⎣∑
j∈[v]

wj · yj ≥ θ

⎤⎦ ,
where wj , θ ∈ {−t,−t+ 1, . . . , t} for every j ∈ [v]. By stan-

dard interpolation, and using our assumption about p, we can

interpolate a degree-2t2 polynomial τθ : Fp → Fp such that

τθ(z) = 1[z ≥ θ] for every z ∈ {−t2,−t2+1, . . . , t2}.42 Next,

we define ψg : F
v
p → Fp as ψg(y1, . . . , yv) = τθ(

∑
i∈[v] wi ·

yi). Note that ψg has degree 2 · t2 as well, and that it can

be computed by a T C0 circuit of size poly(t) · polylog(p)
that can be constructed from Ci in time poly(t) [37]. Since

the weights wj are of absolute value at most t, and by our

assumption about p, the sum
∑

wj · yj (over the integers)

has absolute value at most t2; and since p > 5t2, we

have that
∑

j wj · yj ≥ θ (over the integers) if and only if

ψg(y1, ..., yv) = 1 (over Fp).

Now, we replace every gate g in Ci by ψg , to obtain a

polynomial ψi : F
n
p → Fp. Since Ci has depth d, we know that

ψi has degree at most (2t)2d. Moreover, ψi can be computed

by a poly(t)-size O(d)-depth T C0 circuit C ′
i that can be

constructed from Ci in polynomial time.

Finally, we set ψ(z) =
∑m

i=1 2
i−1 ·ψi(z) for every z ∈ F

m
p .

Note that ψ has degree (2t)2d and ψ can be computed

by a poly(t)-size O(d)-depth T C0 circuit C ′ that can be

constructed from C in polynomial time. �

Let t = TO(δ2) be an upper bound on the size of the Dn,i’s.

Noting that p > 5 · (T ′)2 > 5t2, we apply Lemma V.3.2 to

Dn,i to obtain a circuit D′
n,i of size TO(δ2) and depth O(1/δ)

that computes a degree-TO(δ) polynomial F2m�log h� → F that

agrees with Dn,i on all Boolean inputs.

To obtain the desired arithmetization Φ̂i : F
2m → F, we

compute a degree-h “projection” polynomial Π: F → F
�log h�

by interpolation such that for every u ∈ [H], we have that

Π(u) equals the binary representation of u as an integer.

Finally, we define

Φ̂n,i(v1, . . . , v2m) = D′
n,i(Π(v1), . . . ,Π(v2m)) .

By the discussion above, the polynomial Φ̂n,i can be com-

puted by a P-uniform family of T C0 circuits of size TO(δ2)

42Here {−t2,−t2 + 1, . . . , t2} denotes {p − t2, p − t2 + 1, . . . , p −
1, 0, 1, . . . , t2}.

and depth O(1/δ). Also note that the degree of Φ̂n,i is at

most TO(δ), given our choice of h. Most importantly, it is

an extension of Φi defined in Definition V.2 (by identifying

negative numbers as their conjugates in Fp).

Verification of properties.: Recall that the circuit C ′
n

has unweighted majority gates of fan-in ϕ = TO(δ), and

thus all thresholds are θ = �ϕ/2�. Let us first prove the

faithful representation. We do so by induction on i = 1, ..., d′.
For each i and �u ∈ Hm representing a gate g(x) =

1
[∑

i∈[ϕ] hi > θ
]

with children h1, ..., hϕ, we argue that

α̂i(�u) =
∑

i∈[ϕ] hi. (The case of i = 1 follows from the

definition of α̂0, of α̂1, and of Φ̂i; and the generic induction

step follows from the definition of α̂i and of Φ̂i.)

Now let us prove the degree bound on the polynomials.

Observe that in layer polynomials

α̂i(�u) =
∑

�v∈Hm

Φ̂i(�u,�v) · δ>θ (α̂i−1(�v)) ,

the value δ>θ (α̂i−1(�v)) does not depend on the input �u, and

thus the degree of α̂i is identical to that of Φ̂n,i. In sumcheck

polynomials

α̂i,j(�u, σ1, ..., σm−j) =
∑

σm−j+1,...,σm∈H

Φ̂i(�u, σ1,...,m) · δ>θ (α̂i−1(σ1,...,m

the value δ>θ (α̂i−1(σ1,...,m)), but since δ>θ is of degree ϕ−
1 ≤ TO(δ) and α̂i−1 is of degree deg(Φ̂n,i) ≤ TO(δ), the

degree of sumcheck polynomials is also at most TO(δ).

To verify the base case, note that for every �u we have

C�u(x) =
∑

i∈[n] δξ(i)(�u) · xi. Thus, it suffices to compute

the mapping �u �→ (δξ(i)(�u))i∈[n], and indeed each of the n
Kronecker functions can be computed by a P-uniform T C0

circuit of size poly(h).
Finally, for downward self-reducibility, for any i ∈

[d′] computing α̂i,0(�u, σ1, ..., σm) reduces to computing

Φ̂i(σ1, ..., σm) and to comparing the value of α̂i−1(σ1,...,m)
to θ, both of which can be done in P-uniform T C0 of size

TO(δ2) ≤ poly(h) and depth O(1/δ) = O(1) with oracle

access to α̂i−1. By a similar argument, we can compute α̂i,j

in P-uniform T C0 of size h · TO(δ2) ≤ poly(h) and depth

O(1/δ) = O(1) with oracle access to α̂i,j−1.

We need the following standard T C0 decoder for Reed-

Muller codes.

Lemma V.4 (Low Depth Decoder for Reed-Muller Code, [34,

Section 19.3, 19.4]). Let p be a prime, F = Fp and d,m ∈
N≥1 such that d < p/3. Suppose there is a (hidden) degree-d
m-variate polynomial P over F, and let δ ∈ [0, 1

3(d+1)). For
any oracle O : Fm → F such that

Pr
�x←Fm

[O(�x) = P (�x)] > 1− δ,

there is a P-uniform probabilistic T C0 circuit family
{RM-LDCp,m,d}p,m,d∈N of size poly(m, log p) with non-
adaptive O oracle gates, such that for every �x ∈ F

m,

Pr[RM-LDCO
p,m,d(�x) = P (�x)] ≥ 1− p−2m,

1031

Authorized licensed use limited to: MIT. Downloaded on March 28,2025 at 23:43:29 UTC from IEEE Xplore. Restrictions apply.

where the probability is over the randomness of RM-LDCp,m,d.

Proof. Let �x ∈ F
m be the input; recall that we want to

compute P (�x). We will give a randomized non-adaptive oracle

T C0 circuit CO (with O oracle gates) of size poly(m, d, log p)
that computes P (�x) with probability at least 2/3 for every

�x ∈ F
m. The error probability can then be reduced to

p−2m, by running CO for O(m log p) times with independent

randomness and taking a majority.

We draw a random vector �v ← F
m, and for every t ∈ F

we define Q(t) = P (�x+ t · �v). Now for every t ∈ [d+ 1] we

compute αt = O(�x + t · �v). Letting z denote the number of

t ∈ [d+1] such that αt �= Q(t), we have E[z] ≤ δ(d+1) since

all αt distributes uniformly over F
m. By the Markov bound,

we have Pr[z = 0] ≥ 2/3.

We then use Lagrange polynomial interpolation to compute

a degree-d polynomial W : F → F such that W (t) = αt for all

t ∈ [d+ 1], and output W (0). Note that since W and Q both

have degree at most d, when z = 0, we have W (0) = Q(0) =
P (�x), which completes the proof. The whole procedure can

be done with P-uniform probabilistic T C0 oracle circuits of

poly(m, d, log p)-size [38].

We are now ready to present the bootstrapping system for

highly uniform families of T C0 circuits. Roughly speaking,

the bootstrapping system will be obtained by encoding the

polynomials from the polynomial decomposition in Proposi-

tion V.3 by the code from Proposition IV.1.

Proposition V.5 (refined encoding of efficient polynomial

decompositions for highly uniform circuits). There exists a
universal constant c1 ∈ N such that the following holds. Let
δ ∈ (0, 1) be a sufficiently small constant, and let {Cn}n∈N

be
a δ-highly uniform family of circuits of size T (n) and constant
depth d. Then, there is a constant κ that only depends on δ
such that for every x ∈ {0, 1}n there exists a sequence of
functions w

(1)
x , ..., w

(d′)
x : [Tκ] → {0, 1}, where T = T (n)

and d′ = O(d), satisfying the following:

1) (Faithful representation.) There is a P-uniform T C0

oracle circuit family {OUTn}n∈N
of size T c1·δsuch that

when OUTn is given i ∈ [T] as input and oracle access
to w

(d′)
x it outputs Cn(x)i.

2) (Base case.) There is P-uniform T C0 circuit family
{BASEn}n∈N of size n · T c1·δ that given i ∈ [Tκ],
outputs the description of a polylog(n)-size T C0 ◦SUM
circuit Ci such that Ci(x) outputs w

(1)
x (i).

3) (Downward self-reducibility.) There is a P-uniform
T C0 oracle circuit family {DSRn}n∈N, i∈{2,...,d′} of size
T c1·δ that, when given j ∈ [Tκ] and oracle access to
w

(i−1)
x , outputs w

(i)
x (j).

4) (Layer reconstruction.) There is a P-uniform proba-
bilistic T C0 oracle circuit family {RECn}n∈N

that for
any i ∈ {2, . . . , d′} satisfies the following. The circuit
RECn first has a probabilistic preprocessing step, in
which it makes non-adaptive queries to w

(i)
x . Now, fix

any O : [Tκ] → {0, 1} such that Prj∈[Tκ][O(j) =

w
(i)
x (j)] ≥ 1/2+T−δ/c1 . Then, with probability at least

1 − 2−T δ

over the coins in the preprocessing step, for
any j ∈ [Tκ] it holds that Pr

[
RECO

n (j) = w
(i)
x (j)

]
≥

1−2−T δ

, where the probability is over the random coins
of RECn after the preprocessing step.

Proof. Let ĉ be the universal constant from Proposition V.3.

We apply Proposition V.3 to {Cn}. Let p, h,F be as defined

in Proposition V.3. Let κ be a sufficiently large constant that

depends on δ. Let c1 be a sufficiently large constant.

We first define a sequence polynomial {Pi}i∈[d′] =
{Pi}i∈[d′]. We set d′ = m · d+ 1 and

{Pi}i∈[d′] =

{α̂0, α̂1,1, . . . , α̂1,m, α̂2,1, . . . , α̂2,2m, . . . , α̂d,1, . . . , α̂d,m}.

By adding dummy variables, we can view all of the poly-

nomials above as mappings from F
2m to F. Note that they all

have degree at most T ĉ·δ .

Let N = |F2m| = p2m. By the choice of h and m, we have

N = Tμ/δ for a universal constant μ.

Now, we let w
(1)
x compute the following Boolean function:

given �u ∈ F
m and i ∈ �log p�, output the i-th bit of the binary

representation of α̂0(�u). (We fill the unused space in [Tκ] with

zeroes.) The base case follows immediately from the base case

of Proposition V.3.

We instantiate the code Enc from Proposition IV.1 with

γ = 2·ĉ·δ2
μ and ν = δ2, and let c0 be the universal constant

from Proposition IV.1 and c� = c�γ,ν be the corresponding

constant. We now set κ so that Tκ = N c
 = N̄ . For every

i ∈ {2, . . . , d′}, we define w
(i)
x as Enc(Pi), where we view Pi

as a vector from F
N .

Downward Self-Reducibility: Fix i ∈ {2, . . . , d′}. DSRn,i

operates as follows:

1) Given j ∈
[
N̄
]

as input, run QN (j) to obtain M =
Nγ many queries q1, . . . , qM ∈ [N] to Pi, such that

Enc(Pi)j = EN ((Pi)q1 , . . . , (Pi)qM).
2) For each 	 ∈ [M], run the corresponding DSR algorithm

that computes Pi with input q� (interpreted as a vector

in F
2m) of Proposition V.3 given an oracle for Pi−1;

we answer its query to Pi−1 either using our oracle to

w
(i−1)
x directly (when i = 2), or using I

w(i−1)
x

N from

the systematic property of Proposition IV.1 (by which

I
Enc(Pi−1)
N computes Pi−1).

Since (1) |QN |, |EN |, |IN | ≤ N c0·(γ+ν) ≤ TO(δ) and

(2) the DSR T C0 oracle circuits in Proposition V.3 and the

T C0 circuit IN from Proposition IV.1 are both non-adaptive,

DSRn,i can be implemented by a P-uniform non-adaptive T C0

oracle circuit of size TO(δ).

Layer Reconstruction: Fix i ∈ {2, . . . , d′} and given

an oracle O : {0, 1}N̄ → {0, 1} such that Prj∈[N̄][O(j) =

Enc(Pi)] ≥ 1/2 +N−ν . RECn operates as follows:

1) Run DN from Proposition IV.1 with oracle O. We know

that with 1−o(1) probability over the preprocessing step

1032

Authorized licensed use limited to: MIT. Downloaded on March 28,2025 at 23:43:29 UTC from IEEE Xplore. Restrictions apply.

of DN , there is a set S ⊆ [N] with |S|/N ≥ 1−N−γ

such that Pr
[
(DN)

O
(z) = Pi(z)

]
≥ 2/3 for every

z ∈ S (here we can interpret z as an element in

F
2m). By running the main step (after the preprocessing

step) of DN for O(logN) times, each with independent

randomness, we can indeed obtain a probabilistic non-

adaptive oracle circuit D̄ such that for all z ∈ S,

Pr
[(
D̄
)O

(z) = Pi(z)
]
≥ 1− 1/N2.

Hence, by a simple union bound, with probability 1 −
o(1) over all the randomness above (including the ran-

domness of the main step), we know that
(
D̃N

)O
(z) =

Pi(z) for all z ∈ S, where we use D̃ to denote D̄ with

randomness fixed.

2) Now, note that Nγ =
(
Tμ/δ

) 2·ĉ·δ2
μ = T 2·ĉ·δ . In

particular, let d = T ĉ·δ be the degree of Pi, we have

Nγ = d2. Therefore we output RM-LDC
˜DO
N

p,2m,d(j) for

the given input j ∈ [N̄].

By repeating the above procedure O(T δ) times and taking

the majority answer, we can reduce the error probability to

2−T δ

as desired. Moreover, one can see that RECN can

be implemented by TO(δ)-size probabilistic T C0 circuits as

desired.

B. Reconstructive Targeted HSG for Highly Uniform T C0

Circuits

Now we are ready to prove Theorem V.1.

Reminder of Theorem V.1. Let c ∈ N≥1 be a sufficiently
large universal constant. For every γ ∈ (0, 1) and d ∈ N≥1

there exist d1 ∈ N≥1 and δ ∈ (0, 1) such that the following
holds. Let T,M : N → N be such that M ≤ T γ/c. Let
f : {0, 1}n → {0, 1}∗ be computable by a family of δ-highly
uniform threshold circuits of depth d and T size. Then, there
exist deterministic algorithms HCT-TC0

f and RCT-TC0
f that for

every z ∈ {0, 1}n the following hold:
1) Generator: When given input z, the machine HCT-TC0

f

runs in time poly(T) and prints a set of strings in
{0, 1}M .

2) Reconstruction: RCT-TC0
f (1n) outputs the description of

a probabilistic(
T C0

d1
[n · T γ] �→ T C0

d1
◦ SUM[T γ]

)
oracle circuit Rf , such that given D : {0, 1}M → {0, 1}
that 1/M -avoids HCT-TC0

f (z) as oracle, we have

Pr
Rf←Rf

[
RD

f (z) outputs a T C0
d1

oracle circuit E

such that tt(ED) = f(z)
]
≥ 2/3.

Proof. Let c1 be the universal constant from Proposition V.5.

Let d1 ∈ N≥1 and δ ∈ (0, 1) to be specified later. Let κ =
κ(δ) be the corresponding constant from Proposition V.5. Let

c ∈ N≥1 be a sufficient large universal constant.

Without loss of generality, we can assume M = T γ/c since

for smaller M we can truncate HCT-TC0

f ’s outputs to their first

M bits and it is straightforward to verify the reconstruction

works with minor modifications.

Applying Proposition V.5 to the δ-highly uniform threshold

circuit {Cn} of size T (n) and depth d that computes f ,

for every z ∈ {0, 1}n, there is a sequence of functions

w
(1)
z , ..., w

(d′)
z : [T c1] → {0, 1}, where d′ = O(d(n)), that

satisfies the conditions in Proposition V.5.

1) The Generator HCT-TC0
f : We set γ1 = γ

c·κ . We apply The-

orem III.13 with parameter γ1 and define

HCT-TC0

f (z) =
⋃

i∈[d′]

GNW(w(i)
z).

Note that HCT-TC0

f (z) outputs a set of string of length Tκ·γ1 =

T γ/c = M , as desired.

Moreover, from the base case and the downward self-

reducibility of Proposition V.5, given z, one can compute w
(i)
z

for all i ∈ [d′] in poly(T) time. Since GNW also takes poly(T)
time to compute (Theorem III.13), we conclude that HCT-TC0

f (z)
can be computed in poly(T) time as desired.

2) The Reconstruction RCT-TC0
f : We need to output a

T C0
d1
[n · T γ] sampler S that maps randomness to a T C0

d1
◦

SUM[T γ] oracle circuit, so that the corresponding probabilistic

oracle circuit Rf satisfies the conditions in the reconstruction

part of the theorem.

Notation: Fix an oracle D : {0, 1}M → {0, 1} that 1/M -

avoids HCT-TC0

f (z) =
⋃

i∈[d′] G
NW(w

(i)
z). In particular, it holds

that D also 1/M -distinguishes GNW(w
(i)
z) for every i ∈ [d′].

Let cNW and dNW be the universal constants from Theorem III.13.

Let SNW = RNW(1T
c1
). Without loss of generality, we assume

that SNW takes exactly rNW = M cNW bits as input. Let d0, μ ∈
N≥1 be sufficiently large universal constants such that d0 ≥
dNW.

High-Level Overview of the Construction: Roughly

speaking, we will first construct d′ samplers S2, . . . , Sd′+1,

such that each Si maps its own input (i.e., the randomness) to

a (deterministic) oracle circuit Ei. The overall sampler S then

runs all the Si with independent randomness, and composes

their outputted circuits together to form a single circuit

E = Ed′+1 ◦ · · · ◦ E2.

In more detail, for every i ∈ {2, . . . , d′}, Ei takes the

output of Ei−1 (i > 2) or z (i = 2) as input, and outputs the

description of an oracle circuit Ci such that CD
i is supposed to

compute w
(i)
z . For i = d′+1, Sd′+1 outputs a circuit Ed′+1 that

takes the output of Ed′ as input and outputs the description

of an oracle circuit Cd′+1 such that CD
d′+1 is supposed to

computes f(z).

Notation for RECn: Let rpre, rmain ≤ T c1·δ be the number

of random bits used by RECn of Proposition V.5 for the

preprocessing step and the main step, respectively. (We use

the main step to denote the operation of RECn after the

preprocessing step.)

1033

Authorized licensed use limited to: MIT. Downloaded on March 28,2025 at 23:43:29 UTC from IEEE Xplore. Restrictions apply.

Let Spre and Smain be the T C0
d0
[T c1·δ] samplers for the

preprocessing step and the main step of RECn, respectively.

Let i ∈ [d′] (note that RECn does not depend on i). In more

detail: (1) Spre takes αpre ∈ {0, 1}rpre bits as input, and outputs

a list of queries to w
(i)
z , denoted by q1, q2, . . . , qt ∈ [T c1],

where t ≤ T c1·δ; (2) Smain takes αmain ∈ {0, 1}rmain as input,

and outputs a T C0
d0

oracle circuit C ′
i of size T c1·δ that takes

t bits and j ∈ [T c1] as input.

The promise of Proposition V.5 implies that for any

O : {0, 1}T c1 → {0, 1} satisfying

Pr
j∈[T c1]

[O(j) = w(i)
z (j)] ≥ 1/2 + T−δ/c1 ,

with probability at least 1− 2−T δ+1 · T c1 ≥ 1− 2−T δ/2 over

αpre ← Urpre and αmain ← Urmain , it holds that (C ′′
i)

O
(j) :=

(C ′
i)

O
(w

(i)
z (q1), . . . , w

(i)
z (qt), j) computes w

(i)
z . We set c ≥

3γ·c1
δ so that we have 1/2 + M−3 ≥ T−δ/c1 . (To see this,

note that M3 = T 3γ/c ≥ T δ/c1 by our choice of c.)
3) Construction of S2: We first construct the sampler S2,

whose properties are summarized by the claim below. We

remark that the sampled circuit E2 below does not need an

oracle.

Claim V.6. There is a polynomial-time algorithm that, given
1n, outputs a T C0

O(d0)[n · T γ/2] circuit S2 satisfying the
following:

1) S2 takes r2 = n · T γ/2 bits as input, and outputs the
description of a TO(c1·δ)-size T C0

O(d0)◦SUM circuit E2.
2) E2 takes z ∈ {0, 1}n as input, and outputs the descrip-

tion of a Tμ·c1·δ-size T C0
μ·d0

oracle circuit C2.
3) For every z ∈ {0, 1}n, with probability at least 1−1/3d′

over E2 ← S2(Ur2), letting C2 = E2(z), it holds that
CD

2 computes w
(2)
z .

Before proving Claim V.6. We need the following observa-

tion, which follows directly by combining the base case and

the properties of DSRn of Proposition V.5.

Observation V.7. There is a P-uniform n ·TO(c1·δ)-size T C0
d0

circuit that takes input i ∈ [T c1] and outputs a TO(c1·δ)-size
T C0

d0
◦ SUM circuit Wi such that Wi(z) = w

(2)
z (i) for all

z ∈ {0, 1}n.

Proof of Claim V.6. S2 consists of two stages, S2,1 and S2,2,

such that S2,1 aims to sample a circuit E2,1 that runs the

Nisan-Wigderson reconstruction of Theorem III.13 to obtain

an oracle circuit C̃2 that weakly approximates w
(2)
z , and S2,2

aims to sample a circuit E2,2 that corrects C̃2 into another

oracle circuit C2 that computes w
(2)
z on all inputs. From now

on, we describe S2,1 and S2,2 separately, and show how S
combines them together.

Construction of S2,1: S2,1 takes rNW bits as input, denoted

by r2,1 ∈ {0, 1}rNW . S2,1 first uses r2,1 to compute a circuit

E2,1 that maps z ∈ {0, 1}n to the description of a M cNW -size

T C0
dNW oracle circuit C̃2 = S

w(2)
z

NW (r2,1).
Formally, given r2,1, S2,1 computes all the queries of SNW

made to w
(2)
z in T C0

dNW [M
cNW] (note that SNW is a non-adaptive

oracle circuit), and applies Observation V.7 to replace all calls

to w
(z)
z in SNW by TO(c1·δ)-size T C0

d0
◦SUM circuits with input

z. This way, S2,1 outputs the desired TO(c1·δ)-size T C0
O(d0) ◦

SUM circuit E2,1.

Moreover, by Observation V.7, we know that S2,1 can be

implemented by a n · TO(c1·δ)-size T C0
O(d0) circuit.

Construction of S2,2: Let r2,2 = rpre + rmain. S2,2 takes

(αpre, αmain) ∈ {0, 1}r2,2 as input, it first runs Spre(αpre) to

compute q1, q2, . . . , qt ∈ [T c1], and then runs Smain(αmain)
to obtain the oracle circuit C ′

2, then it constructs the desired

circuit E2,2 that first computes w
(2)
z (q1), . . . , w

(2)
z (qt), and

then outputs C ′′
2 by fixing the first t bits of the input to C ′

2

to w
(2)
z (q1), . . . , w

(2)
z (qt). Note that C ′′

2 is a T c1·δ-size T C0
d0

circuit.

By Observation V.7, E2,2 is a TO(c1·δ)-size T C0
O(d0) ◦SUM

circuit, and S2,2 can be implemented by a n · TO(c1·δ)-size

T C0
O(d0) circuit.

Construction of S2: Finally, S2 runs S2,1 and S2,2 with

independent randomness to obtain circuits E2,1 and E2,2. It

then constructs the final circuit E2 that works as follows: E2

first runs E2,1 and E2,2 in parallel (on input z) to obtain the

description of the oracle circuit C̃2 and the oracle circuit C ′′
2 ,

and then replaces the oracle in C ′′
2 by C̃2 to obtain the final

oracle circuit C2. Recall that d0 ≥ dNW, C2 is a Tμ·c1·δ-size

T C0
μ·d0

circuit.

With a standard encoding of T C0 oracle circuits, this oracle

replacement operation can be done by a polynomial-size

T C0
O(d0) circuit (polynomial in terms of the total input length

|C̃2| + |C ′′
2 |). Hence E2 is a TO(c1·δ)-size T C0

O(d0) ◦ SUM

circuit, and S2 can be implemented by a n · TO(c1·δ)-size

T C0
O(d0) circuit.

Analysis of S2: We set δ sufficiently small compared to

γ, so that the TO(c1·δ) above is at most T γ/2. The first two

items of the claim are established by the discussions above.

Now we show the last item. By Theorem III.13, we know

that with probability 1 − 2−3M over E2,1 ← S2,1(UrNW), for

C̃2 = E2,1(z), it holds that C̃D
2

(
1/2 +M−3

)
-approximates

w
(2)
z . Then recall that by our choice of c we have 1/2+M−3 ≥

1/2+ T−δ/c1 , we have that with probability 1− 2−T δ/2 over

E2,2 ← S2,2(Ur2,2), for C ′′
2 = E2,2(z), it holds that (C ′′

2)
˜CD

computes w
(2)
z . A simple union bound completes the proof.

4) Construction of Si for i > 2: Now we construct the

sampler Si for i ∈ {3, . . . , d′}, whose properties are sum-

marized by the claim below. Unlike Claim V.6, the sampled

circuit Ei below needs D as the oracle.

Claim V.8. There is a polynomial-time algorithm that, given
1n and i ∈ {3, . . . , d′}, outputs a T C0

O(d0)

[
T γ/2

]
circuit Si

satisfying the following:

1) Si takes ri = T γ/2 bits as input, and outputs the
description of a TO(c1·δ)-size T C0

O(d0) circuit Ei.

1034

Authorized licensed use limited to: MIT. Downloaded on March 28,2025 at 23:43:29 UTC from IEEE Xplore. Restrictions apply.

2) Ei takes the description of a Tμ·c1·δ-size T C0
μ·d0

oracle
circuit Ci−1 as input, and outputs the description of a
Tμ·c1·δ-size T C0

μ·d0
oracle circuit Ci.

3) For every oracle circuit Ci−1 such that CD
i−1 computes

w
(i−1)
z , with probability at least 1 − 1/3d′ over Ei ←

Si(Uri), it holds that Ci = Ei(Ci−1) computes w
(i)
z

given the oracle D.

Proof. First, in polynomial-time one can compute a

T C0
O(d0)[T

O(c1·δ)] circuit Ei,0 that takes the description of a

T C0
μ·d0

[
Tμ·c1·δ] oracle circuit Ci−1 such that CD

i−1 computes

w
(i−1)
z , composes it with the DSRn algorithm of Proposi-

tion V.5, and outputs the description of an T C0
O(d0)[T

O(c1·δ)]
oracle circuit Fi such that FD

i computes w
(i)
z . Since Ei,0 does

not depend on z, we can hardwire Ei,0 in to the description

of Si so that Si can output it directly.
After Ei,0, similar to S2, Si consists of two stages, Si,1 and

Si,2, such that Si,1 aims to sample a circuit Ei,1 that runs the

Nisan-Wigderson reconstruction of Theorem III.13 to obtain

an oracle circuit C̃i that weakly approximates w
(i)
z , and Si,2

aims to sample a circuit Ei,2 that corrects C̃i into another

oracle circuit Ci that computes w
(i)
z on all inputs. From now

on, we describe Si,1 and Si,2 separately, and show how Si

combines them together.
Construction of Si,1: Si,1 takes rNW bits as input, denoted

by ri,1 ∈ {0, 1}rNW . Si,1 first uses ri,1 to compute a circuit Ei,1

that maps the description of Fi to the description of a M cNW -

size T C0
dNW oracle circuit C̃i = S

w(i)
z

NW (ri,1).
Formally, given ri,1, Si,1 computes all the queries of SNW

made to w
(i)
z in T C0

dNW [M
cNW] (note that SNW is a non-adaptive

oracle circuit) and outputs the oracle circuit Ei,1 that works

as follows: Ei,1 takes the description of the oracle circuit Fi

as input, replaces all calls to w
(z)
z in SNW by evaluating FD

i ,

and then outputs the description of the resulting circuit C̃i.
Note that Si,1 can be implemented by a TO(c1·δ)-size

T C0
O(d0) circuit, and Ei,1 is a TO(c1·δ)-size T C0

O(d0) oracle

circuit.
Construction of Si,2: Let r2,2 = rpre + rmain. Si,2 takes

(αpre, αmain) ∈ {0, 1}r2,2 as input. It first runs Spre(αpre) to

computes q1, q2, . . . , qt ∈ [T c1], and then runs Smain(αmain)
to obtain the oracle circuit C ′

2, then it constructs the de-

sired circuit Ei,2 that takes the description of Fi as input,

computes w
(i)
z (q1), . . . , w

(i)
z (qt) by evaluating Fi, and then

outputs C ′′
i by fixing the first t bits of the input to C ′

i

to w
(i)
z (q1), . . . , w

(i)
z (qt). Note that Ei,2 is a TO(c1·δ)-size

T C0
O(d0) circuit, and Si,2 can be implemented by a TO(c1·δ)-

size T C0
O(d0) circuit.

Construction and Analysis of Si: Finally, Si runs Si,1

and Si,2 with independent randomness to obtain circuits Ei,1

and Ei,2. It then constructs the final circuit Ei that works as

follows: Ei first runs Ei,0 with input Ci−1 to obtain the oracle

circuit Fi, then it runs Ei,1 and Ei,2 with input Fi in parallel

to obtain the description of the oracle circuit C̃i and the oracle

circuit C ′′
i , and then replace the oracle in C ′′

i by C̃i to obtain

the final oracle circuit Ci.

Similarly to the proof of Claim V.6, this oracle replacement

operation can be done by a polynomial-size T C0
d0

circuits.

Hence Ei is a TO(c1·δ)-size T C0
O(d0) circuit, and Si can be

implemented by a TO(c1·δ)-size T C0
O(d0) circuit.

The analysis follows from the same argument of Claim V.6.

5) Final Construction: Finally, using the OUTn circuit

from Proposition V.5, in polynomial time we can compute

a T C0
O(d0)[T

O(c1·δ)] circuit Ed′+1 that takes the description

of a Tμ·c1·δ-size T C0
μ·d0

oracle circuit Cd′ as input, and

outputs the description of a TO(μ·c1·δ)-size T C0
O(μ·d0) oracle

circuit Cd′+1, such that if CD
d′ computes w

(d′)
z , then CD

d′+1

computes f(z). Since the above algorithm is deterministic,

we can construct a T C0
O(d0)[T

O(c1·δ)] circuit Sd′+1 that takes

no input and outputs Ed′+1 as the “sampler” for the last stage.

(We define Sd′+1 only for notational convenience.)

As already discussed in the high-level overview, the final

sampler S runs S2, . . . , Sd′+1 with independent randomness

to obtain circuits E2, . . . , Ed′+1. The final output of S is then

E = Ed′+1 ◦ Ed′ ◦ · · · ◦ E2.

By setting δ small enough and d1 large enough, the desired

complexity on E and S follows from Claim V.6 and Claim V.8,

and the correctness follows from a union bound.

VI. DERANDOMIZATION VS REFUTATION

In this section we prove our main results, relying on the

technical tools that were developed in previous sections. First,

in Section VI-A, we prove Theorem I.1. Then, in Section VI-B,

we prove Theorems I.2, I.3 and I.4. Finally, in Section VI-C,

we prove Theorem I.8.

A. Derandomization vs Refutation Against Low-Space Stream-
ing Algorithms

Let us start by proving the direction “refutation ⇒ deran-

domization”. That is, we show that deterministically refuting

low-space streaming algorithms implies that prBPP = prP .

Theorem VI.1 (refutation of streaming algorithms implies

derandomization). Let ε ∈ (0, 1), let T (N) ≥ N and p(n)
be polynomials, and let f be a p-bounded T -time algorithm-
dependent hard function for str-T ISP [T 1+ε, nε]. Assume that
there exists a P-computable Nε-compression list-refuter for f
against str-T ISP[T 1+ε, nε]. Then, prBPP = prP .

Proof. To prove the theorem, it suffices to show that for every

linear-time machine M , given input x ∈ {0, 1}m, we can

distinguish between the case that Prr[M(x, r) = 1] ≥ 1/2
and Prr[M(x, r) = 1] = 0. Without loss of generality, we

assume that M uses exactly m bits of randomness.
Notation: We begin by introducing some notation. Let

M be a probabilistic linear-time machine, and let c be the

universal constant from Theorem III.15. Let δ = ε/4c. We

set n = m1/δ . For every a ∈ {0, 1}m, we use ā ∈ {0, 1}n to

denote the padded string ā = (a, 0n−m). We also set γ = γ(δ)
be such that T (N)γ = Nε/4.

1035

Authorized licensed use limited to: MIT. Downloaded on March 28,2025 at 23:43:29 UTC from IEEE Xplore. Restrictions apply.

Let (a, x) ∈ {0, 1}m × {0, 1}p(n) and N = |(ā, x)| = n +
p(n). We also set Sa,x = HCT

f (ā, x), with parameter γ and

output length m. (Note that m = nε/4c < T (N)γ/c = Nε/4c,

so the assumption of Theorem III.15 is satisfied.)

Lemma VI.2 (instance-wise reconstruction). There is a one-
pass streaming algorithm R = Rf (i.e., the algorithm depends
on f) that uses space Nε and time T (N)1+ε and satisfies the
following. For any fixed (a, x) ∈ {0, 1}m × {0, 1}p(n), if

Pr
r
[M(a, r) = 1] ≥ 1/2 and Pr

s∈Sa,x

[M(a, s) = 1] = 0 ,

then, when R is given input (ā, x), with probability at least
2/3 it prints a circuit of size Nε whose truth-table is f(ā, x).

Proof. Let z = (ā, x). We define R to be the reconstruction

algorithm RCT
f from Theorem III.15 with oracle replaced by

Da(r) := M(a, r). From the assumption we know that Da(·)
1/2-avoids HCT

f (z) = Sa,x, we know that with probability at

least 2/3, RCT
f outputs an oracle circuit Cf(z) of size T (N)γ =

Nε/4 such that the truth-table of CDa

f(z) is f(z). R then simply

composes Cf(z) with Da to output a circuit of Nε/4 ·m2 ≤
Nε. This establishes the correctness of R.

Now we verify the time and space complexity of R.

From Theorem III.15, R is a one-pass streaming algorithm

that runs in mc+1 · T (N)1+γ ≤ T (N)1+ε time and uses at

most mc ≤ Nε space. This completes the proof.

Now we are ready to prove the theorem. Given input

a ∈ {0, 1}m for M , we run the list-refuter on input (R, ā)
to obtain x1, ..., xk ∈ {0, 1}p(n), where k = poly(n). For

each i ∈ [k], we compute the list Si = Sa,xi
, and finally we

output
∨

i∈[k],s∈Si
M(a, s). From Theorem III.15, the whole

procedure can be done in poly(n) time.

Assume towards a contradiction that for some a ∈ {0, 1}m
it holds that

Pr
r∈{0,1}m

[M(a, r) = 1] ≥ 1/2 and
∨

i∈[k],s∈Si

M(a, s) = 0 .

By Lemma VI.2, for every i ∈ [k] it holds that R(ā, xi) prints,

with high probability, a circuit of size Nε whose truth-table

is f(ā, xi). This contradicts the properties of the compression

list-refuter.

We now prove the converse direction, which asserts that

derandomization implies refutation. Recall that the deduced

refuter in Theorem I.1 works not only for streaming algo-

rithms, but for essentially any class of RAMs, where the class

only needs to satisfy a very weak property. Let us define this

property and prove the result.

Definition VI.3 (closure under error-reduction). We say that
a class C of probabilistic RAMs is closed under error-
reduction if there is a deterministic polynomial-time algorithm
that takes as input a description of any M ∈ C and outputs
a description of M ′ such that M ′(x) runs M(x) for 100
times with independent coins each time, and outputs the most
frequent outcome (breaking ties arbitrarily).

Theorem VI.4 (derandomization implies refutation). Let C be
a class of probabilistic RAMs closed under error-reduction,
let p be a polynomial, and let f ∈ FP be a p-bounded
algorithm-dependent hard function for C that admits a BPP-
refuter. Assuming prP = prBPP , there is an FP-refuter for
C against f .

Proof. Let Ref be the BPP-refuter for f against C. Given

input (M,a) where M ∈ C, let M ′ ∈ C be the error-reduced

version of M from Definition VI.3. We construct the circuit

D(r, r′) = 1 [M ′((a, x), r′) �= f(a, x)] ,

where x = Ref((M ′, a), r) ;

that is, D takes as input random coins r for Ref and random

coins r′ for M ′; it runs Ref on input (M ′, a) with random

coins r, to obtain an input x for M ′; then it runs M ′ on input

(a, x) with random coins r′; and finally, it compares the output

of M ′ on x to f(a, x).
Since Ref is a BPP-refuter, with probability at least 2/3

over r, the output x satisfies Prr′ [M((a, x), r′) = f(a, x)] <
2/3. Thus, Prr,r′ [D(r, r′) = 1] ≥ (2/9). Running the search-

to-decision reduction from Theorem III.16 on the circuit D,43

we find r∗ such that Prr′ [D(r∗, r′) = 1] ≥ 1/9. Equivalently,

denoting x∗ = Ref((M ′, a), r∗), we have that

Pr
r′

[M ′((a, x∗), r′) �= f(a, x∗)] ≥ 1/9 .

The output of the deterministic refuter is x∗.

Now, assume towards a contradiction that

Prr′′ [M((a, x∗), r′′) = f(a, x∗)] ≥ 2/3. Then, by the

definition of M ′ as the error-reduced version of M , we have

that Prr′ [M
′((a, x∗), r′) = f(a, x∗) ≥ 0.99. This yields a

contradiction.

The following corollary is a more general version of Theo-

rem I.1, and it asserts an equivalence between refutation and

derandomization.

Corollary VI.5. The following statements are equivalent:
1) For some ε > 0 and polynomials p, T and a p-

bounded T -time algorithm-dependent hard function
f against strT ISP [T (n)1+ε, nε], there there is an
Nε-compression list-refuter in FP for f against
strT ISP [T (n)1+ε, nε].

2) prBPP = prP .
3) For every class C of probabilistic RAMs closed un-

der error-reduction, and any p-bounded algorithm-
dependent hard function f ∈ FP for C that admits
a BPP-refuter (where p is a polynomial), there is an
FP-refuter for f against C.

Proof. The implication (1) ⇒ (2) follows from Theorem VI.1.

The implication (2) ⇒ (3) follows from Theorem VI.4. For

the implication (3) ⇒ (1), it suffices to show, unconditionally,

43By our assumption that prBPP = prP , it follows that CAPP for
general circuits is solvable in deterministic polynomial time, and hence an
algorithm as in the hypothesis of Theorem III.16 exists.

1036

Authorized licensed use limited to: MIT. Downloaded on March 28,2025 at 23:43:29 UTC from IEEE Xplore. Restrictions apply.

that there is a function f computable in polynomial time

T that is hard against str-T ISP[T 1+ε, nε], and that has a
BPP-refuter. (Note that we will be using a standard hard

function, which is a special case of an algorithm-dependent

hard function.)

Such a function indeed exists, because the well-known lower

bounds for functions in FP against streaming algorithms of

sublinear space complexity (and any time complexity) actually

hold on average. That is, the classical proofs define very

simple distributions, and show that with probability Ω(1)
over an input sampled from these distributions, the streaming

algorithm fails on that input.44 Thus, the BPP-refuter can

repeatedly sample an input and verify that the streaming

algorithm fails to compute the hard function on it (until it

finds a suitable input).

Finally, recall that in Section I-C we mentioned that proving

a statement along the lines of “BPP-refuters imply derandom-

ization” would unconditionally imply that prBPP = prP . Let

us now state this claim formally and prove it.

Claim VI.6. Let C be any class of RAMs running in polyno-
mial time such that for every M ∈ C and every input z there
is a string y such that Pr[M(z) = y] ≥ 2/3. Consider the
following statement:

(Cond.Stt.) Assume that there is a probabilis-
tic polynomial-time RAM f and a deterministic
polynomial-time algorithm R such that for every
M ∈ C and sufficiently large n ∈ N and a ∈ {0, 1}n,
the algorithm R(M,a) prints x ∈ {0, 1}poly(n)
satisfying Pr[M(x, a) = f(x, a)] < 2/3, where the
probability is over the random coins of M and of f .
Then, prBPP = prP .

Then, we have that

(Cond.Stt.) =⇒ prBPP = prP .

In other words, to prove that prBPP = prP , it suffices to
prove the conditional statement (Cond.Stt.).

Proof. For any C, we show that f and R as in the hypothesis

of (Cond.Stt.) exist unconditionally. Thus, if (Cond.Stt.) is

true, then prBPP = prP .

To see this, let T be the polynomial bound on the running

times of machines in C, and consider the following machine

f . Given as input (x, a), simulate the first 	 = log∗(n) RAMs

M1, ...,M� on input (x, a). Specifically, each machine is sim-

ulated for T steps, and we repeat the simulation for O(log())
times (so that if there exists y such that Pr[Mi(a, x) = y] ≥
2/3, then with probability at least 1/(100), this y will be

the output of Mi in at least 0.6 of its simulations). For each

44For example, the lower bound in [14, Proposition 3.1] holds with proba-
bility Ω(1) over a distribution that is obtained by applying a polynomial-time
transformation to the hard distribution from the proof of the communication
lower bound for disjointness [39]. Alternatively, one can directly consider
the latter lower bound as a lower bound on streaming algorithms (where the
streaming algorithm first sees Alice’s input x, bit-by-bit, and then sees Bob’s
input y, bit-by-bit), in which case the hard distribution from [39] is also hard
for streaming algorithms.

i ∈ [], denote by y(i) the output that Mi prints in at least 0.6
of its simulations (if no such string exists, or if Mi does not

halt after T 1+ε steps in one of the simulations, then y(i) = 0�).

Let zi =

{
y
(i)
i |y(i)| ≥ i

0 o.w.
. Finally, print the 	-bit string such

that for every i ∈ [] it holds that f(x, a)i = ¬zi.
Note that f runs in probabilistic polynomial time. Also note

that for every M ∈ C there are at most finitely many inputs

(x, a) such that Pr[M(x, a) = f(x, a)] ≥ 2/3. (Recall that,

by the definition of C, for every M ∈ C and every input (x, a)
there exists y such that Pr[M(x, a) = y] ≥ 2/3.) Hence, there

is a trivial algorithm R that satisfies the hypothesis, namely

the algorithm that gets input (M,a) and outputs any fixed x
(e.g., x = 0p(|a|)). By the conditional statement (Cond.Stt.),
it follows that prBPP = prP .

B. Derandomization vs Refutation for T C0

In this section we present connections between refutation

and derandomization in the setting of weak circuit classes,

and in particular for T C0. In Section VI-B1 we present the

results concerning refuting Identity (i.e., Theorem I.2), and in

Section VI-B2 we present the results concerning refuting any

function in highly uniform T C0 (i.e., Theorems I.3 and I.4).
1) Special Case: Derandomization vs Refutation for

Identity Against T C0: Let us prove Theorem I.2, which asserts

an equivalence between refuting Identity against small prob-

abilistic T C0 ◦ ⊕ circuits, and derandomization of T C0. As a

first step, we prove that compression-refuters for probabilistic

T C0 ◦ ⊕ circuits with nε gates suffices for derandomization:

Theorem VI.7 (compression refutation for Identity against

small probabilistic T C0 circuits implies derandomization). For
every d ∈ N≥1 there exists d′ ∈ N≥1 such that the following
holds. Assume the following:

• For some ε ∈ (0, 1), there is a P-computable (T C0
d′ , nε)-

compression refuter for Identity against probabilistic
(T C0

d′ [n1+ε] �→ (T C0
d′ ◦ XOR)[nε])-circuits.

Then, there is a deterministic polynomial-time algorithm solv-
ing CAPP for T C0

d circuits.

Proof. Fix d ∈ N≥1. Given a T C0
d circuit C : {0, 1}m →

{0, 1}. By adding dummy inputs, we can assume C has size

n as well. Our goal is to estimate Prz∈{0,1}m [C(z) = 1] within

an additive error of 1/m.
Let ε ∈ (0, 1). Let cSTV and dSTV be the universal constants

from Theorem III.14, and let γ = ε/4cSTV, and n = m1/γ .

We instantiate Theorem III.14 with parameter γ. And we run

RSTV(1n) to obtain the description of a probabilistic(
T C0

dSTV [n ·mcSTV] �→ T C0
dSTV ◦ XOR[mcSTV]

)
oracle circuit R′, such that for every a ∈ {0, 1}n, given

D : {0, 1}m → {0, 1} that 1/m-distinguishes GSTV(a) as

oracle, we have

Pr
R′←R′

[
(R′)D (a) outputs a T C0

dSTV oracle circuit E

such that tt(ED) = a
]
≥ 2/3.

1037

Authorized licensed use limited to: MIT. Downloaded on March 28,2025 at 23:43:29 UTC from IEEE Xplore. Restrictions apply.

Now, noting that mcSTV = nε/4, we replace the oracle of R′

by our m-size T C0
d circuit C to obtain the description of a

probabilistic

(
T C0

d′ [n1+ε] �→ T C0
d′ ◦ XOR[nε]

)
circuit R for some constant d′ that only depends on dSTV and

d.

We next run the assumed P-computable (T C0
d′ , nε)-

compression refuter for Identity on R to obtain a bad input

a ∈ {0, 1}n. From the construction of R, we know that C does

not 1/m-distinguishes GSTV(a). Therefore, we can enumerate

all outputs of GSTV(a) to estimate Prz∈{0,1}m [C(z) = 1]
within an additive error of 1/m. This completes the proof.

Towards proving Theorem I.2, we want to show that de-

randomization of T C0 follows from refuters against small

probabilistic T C0 ◦ ⊕ circuits, rather than from compression-

refuters against such circuits. This statement seems obvious,

since a refuter is intuitively stronger than a list-refuter: given

a circuit C whose truth-table is f(x), we can print f(x) by

printing the truth-table of C (thus, if we have x such that f(x)
cannot be printed by small circuits, then f(x) also cannot

be compressed by small circuits). But the point is that the

foregoing transformation has computational overheads, which

strengthen the circuit model that needs to be refuted.

Thus, we now prove a corollary asserting that derandomiza-

tion of T C0 follows from (standard, non-compression) refuters

against small probabilistic T C0 ◦⊕ circuits, while accounting

for this overhead. Recall that we use T C0
d-WIRES[S]◦ 	-XOR

to denote a circuit consists with a top T C0
d circuit of S total

wires and a bottom layer of 	 parity gates. Then:

Corollary VI.8 (refutation for Identity against small prob-

abilistic T C0 circuits implies derandomization). For every
d ∈ N≥1 there exists d′ ∈ N≥1 such that the following holds.
Assume the following:

• For some ε ∈ (0, 1), there is a P-computable re-
futer for Identity against probabilistic (T C0

d′ [n1+ε] �→
(T C0

d′ -WIRES[n1+ε] ◦ nε-XOR)-circuits.

Then, there is a deterministic polynomial-time algorithm solv-
ing CAPP for T C0

d circuits.

Proof. Let ε1 ∈ (0, 1) be a constant to be specified later. We

first apply Theorem VI.7 with parameters ε1 and d, and let d′1
be the corresponding constants. Let μ ∈ N be a sufficiently

large constant.

Given the description of a probabilistic (T C0
d′
1
[n1+ε1] �→

(T C0
d′
1
◦ XOR)[nε1]) circuit C, in polynomial-time we can

construct the description of a probabilistic(
T C0

μ·d′
1
[n1+μ·ε1] �→ (T C0

μ·d′
1
-WIRES[n · nμ·ε1] ◦ nε1 -XOR

)

circuit C′, such that C′ first runs C and treats its output as the

description of a T C0
d′
1

circuit E of nε1 size, and outputs the

first n bits of E’s truth-table.45

Let d′ = μ·d′1 and ε = μ·ε1. From the above transformation,

it follows that a P-computable refuter for Identity against

probabilistic
(
T C0

d′ [n1+ε] �→ T C0
d′ -WIRES[n1+ε] ◦ nε-XOR

)
-

circuits implies a P-computable (T C0
d′
1
, nε1)-compression

refuter for Identity against probabilistic (T C0
d′
1
[n1+ε1] �→

(T C0
d′
1
◦ XOR)[nε1])-circuits. The corollary then follows

from Theorem VI.7.

We now complement Corollary VI.8 by proving a converse

direction (i.e., “derandomization ⇒ refutation”), which will

complete the proof of Theorem I.2.

Theorem VI.9 (Theorem I.2, formally stated). The following
two statements are equivalent:

1) For every d ∈ N, there is a polynomial-time algorithm
solving CAPP for T C0

d circuits.
2) For every d′ ∈ N, there exist ε ∈ (0, 1) and a

P-computable refuter for Identity against probabilis-
tic (T C0

d′ [n1+ε] �→ (T C0
d′ -WIRES[n1+ε] ◦ nε-XOR)-

circuits.

Proof. The direction (2) =⇒ (1) follows immediately

from Corollary VI.8. So it suffices to show the (1) =⇒ (2)
direction.

Fix d′ ∈ N. For convenience, we use F to denote probabilis-

tic (T C0
d′ [n1+ε] �→ (T C0

d′ -WIRES[n1+ε] ◦ nε-XOR)-circuits.

We first note that given the description of an n-input F
circuit C, in polynomial time we can construct a T C0 circuit

B such that for every x ∈ {0, 1}n, we have C(x) has the

same distribution as B(x,Ur1), where r1 ≤ poly(n). We

note that since C only has nε gates at the bottom, we have

Prα←{0,1}n [C(α) = α] ≤ 0.01. We construct the following

T C0 circuit W : {0, 1}n × {0, 1}r1 → {0, 1} as

W (α, β) = 1
[
B(α, β) = f(α)

]
.

We know that Prα,β [W (α, β) = 1] < 0.01. From (1)

and Theorem III.16, in polynomial deterministic time we can

find an α ∈ {0, 1}r2 such that Prβ [W (α, β) = 1] < 2/3, then

α is the output of our deterministic refuter.

2) Generalization to Any Hard Function Computable by
Highly Uniform T C0 Circuits: In Section VI-B1 we proved

results focusing on refuters against small probabilistic T C0

circuits for the “hard function” f = Identity. In this section

we broaden the class of hard functions f , from Identity to all

functions computable in highly uniform T C0. To do so we

will crucially rely on Theorem V.1. We start by proving (a

more general and technical version of) Theorem I.3.

45More precisely, C′ is the composition of C and a T CO(d′1)
circuit U that

takes the description of a T C0
d′1

circuit E of nε1 size as input, and outputs

the first n bits of E’s truth-table. It it easy to see that U has n ·nO(ε1) wires.

1038

Authorized licensed use limited to: MIT. Downloaded on March 28,2025 at 23:43:29 UTC from IEEE Xplore. Restrictions apply.

Theorem VI.10 (compression refutation against small proba-

bilistic T C0 circuits implies derandomization). For every ε ∈
(0, 1) and d, df , k ∈ N≥1 there exist d′ ∈ N≥1 and δ ∈ (0, 1)
such that the following holds. Let f : {0, 1}∗ → {0, 1}∗ be any
function computable by a family of δ-highly uniform threshold
circuits of depth df and nk size. Assume the following:

• There is a P-computable (T C0
d′ , nε)-compression list-

refuter for f against probabilistic (T C0
d′ [n1+ε] �→

(T C0
d′ ◦ SUM)[nε])-circuits.

Then, there is a deterministic polynomial-time algorithm solv-
ing CAPP0,1/2 for T C0

d circuits.

Proof. Let T (n) = nk, and let γ be such that T (n)γ = nε/4.

Let c be the universal constant from Theorem V.1. Let d1 and

δ be the corresponding parameters from Theorem V.1 when

applying it with γ and df .

Let f : {0, 1}∗ → {0, 1}∗ be a function computable by a

family of δ-highly uniform threshold circuits of depth df and

T (n) size.

Given an m-input T C0
d circuit C : {0, 1}m → {0, 1}, our

goal is to decide between the case that Prr[C(r) = 1] ≥ 1/2
and Prr[C(r) = 1] = 0. By adding dummy gates, without loss

of generality, we can assume C can be described by an m-bit

string a ∈ {0, 1}m, and we also use Ca : {0, 1}m → {0, 1}
to denote the circuit corresponds to a. Let n = m4c/ε so that

m = nε/4c.

Applying Theorem V.1 with function f , parameter γ and

output length m, for x ∈ {0, 1}n, we set Sx = HCT
f (x). (Note

that m = nε/4c = T (n)γ/c, so the assumption of Theorem V.1

is satisfied.)

Lemma VI.11 (instance-wise reconstruction). There is a
constant d′ ∈ N that only depends on d, f1, and d1 such
that d′ ≥ max(df , d, d1) and the following holds. Given a ∈
{0, 1}m, there is a polynomial-time algorithm that computes
the description of a

(
T C0

d′ [n1+ε]
)
-samplable probabilistic

T C0
d′ ◦SUM n-input circuit Ra of size nε, such that for every

x ∈ {0, 1}n, if

Pr
r
[Ca(r) = 1] ≥ 1/2 and Pr

s∈Sx

[Ca(s) = 1] = 0 ,

then, when R is given input x, with probability at least 2/3 it
prints a T C0

d′ circuit of size nε whose truth-table is f(x).

Proof. Let Rf = RCT-TC0

f (1n) be the
(
T C0

d1
[n · T γ]

)
-

samplable probabilistic T C0
d1

◦ SUM oracle circuit Rf of size

T γ outputted by RCT-TC0

f from Theorem V.1. We replace the

oracle of Ra by Ca to obtain Ra. Recalling that m = nε/4c

and T γ = nε/4, Ra corresponds to a
(
T C0

d′ [n1+ε]
)
-samplable

probabilistic T C0
d′ ◦ SUM n-input circuit of size nε, for a

sufficiently large d′ that only depends on d1, df , and d.

And from its construction, Ra can be computed from a in

polynomial time.

From Theorem V.1, if Prr[Ca(r) = 1] ≥
1/2 and Prs∈Sx

[Ca(s) = 1] = 0, then it holds that

Ra(x) prints a T C0
d′ circuit of size nε whose truth-table is

f(x) with probability at least 2/3. �

Now, given input a ∈ {0, 1}m to CAPP0,1/2, we construct

Ra from Lemma VI.11, and run the compression list-refuter

on input (1n, Ra) to obtain x1, ..., xt ∈ {0, 1}n, where t ≤
poly(n). For each i ∈ [t], we compute the list Si = Sxi

, and

finally we output
∨

i∈[t],s∈Si
Ca(s). From Theorem V.1, the

whole procedure runs in polynomial time.

Assume towards a contradiction that for some a ∈ {0, 1}m
it holds that

Pr
r∈{0,1}m

[Ca(r) = 1] ≥ 1/2 and
∨

i∈[t],s∈Si

Ca(s) = 0 .

By Lemma VI.11, for every i ∈ [t] it holds that Ra(xi)
prints, with high probability, a T C0

d′ circuit of size nε whose

truth-table is f(xi). This contradicts the properties of the

compression list-refuter.

Analogously to Corollary VI.8, we now show that con-

structing a refuter (rather than a compression-refuter) against

probabilistic T C0 ◦SUM circuits suffices for derandomization,

and this will induce some overhead in the circuit model. Since

now we are concerned with arbitrary functions f : {0, 1}n →
{0, 1}m rather than with f = Identity, we will quantify the

output length m = m(n) of f , and account for the overhead

in the circuit model according to m.

Corollary VI.12 (refutation implies derandomization for small

probabilistic T C0 circuits). For every ε ∈ (0, 1) and d, df , k ∈
N≥1 there exist d′ ∈ N≥1 and δ ∈ (0, 1) such that the
following holds. Let m : N → N. Let f : {0, 1}n → {0, 1}m(n)

be any function computable by a family of δ-highly uniform
threshold circuits of depth df and nk size. Assume the follow-
ing:

• There is a P-computable list-refuter for f against prob-
abilistic

(
T C0

d′ [(m+ n) · nε] �→ T C0
d′ -WIRES[m · nε] ◦ nε-SUM

)
circuits.

Then, there is a deterministic polynomial-time algorithm solv-
ing CAPP0,1/2 for T C0

d circuits.

Proof. Let ε1 ∈ (0, 1) be a constant to be specified later.

We first apply Theorem VI.10 with parameters ε1, d, df , and

k, and let d′1 and δ1 be the corresponding constants. We let

δ = δ1. Let μ ∈ N be a sufficiently large constant.

Given the description of a probabilistic (T C0
d′
1
[n1+ε1] �→

(T C0
d′
1
◦ SUM)[nε1]) circuit C, in polynomial-time we can

construct the description of a probabilistic(
T C0

μ·d′
1
[(m+ n) · nμ·ε1] �→

T C0
μ·d′

1
-WIRES[m · nμ·ε1] ◦ nε1 -SUM

)

1039

Authorized licensed use limited to: MIT. Downloaded on March 28,2025 at 23:43:29 UTC from IEEE Xplore. Restrictions apply.

circuit C′, such that C′ first runs C and treats its output as the

description of a T C0
d′
1

circuit E of nε1 size, and outputs the

first m bits of E’s truth-table.46

Let d′ = μ · d′1 and ε = μ · ε1. From

the above transformation, it follows that a P-

computable list-refuter for f against probabilistic(
T C0

d′ [m · n1+ε] �→ T C0
d′ -WIRES[m · nε] ◦ nε-SUM

)
-

circuits immediately implies a P-computable (T C0
d′
1
, nε1)-

compression list-refuter for f against probabilistic

(T C0
d′
1
[n1+ε1] �→ (T C0

d′
1
◦ SUM)[nε1])-circuits. The corollary

then follows from Theorem VI.10.

We can now prove Theorem I.4. In the following statement,

we use f : {0, 1}n → {0, 1}m with an arbitrary output length

m = m(n); the statement of Theorem I.4 is obtained by using

m = nε.

Theorem VI.13 (derandomization vs refutation for

T C0 ◦ nε-SUM circuits). Let ε ∈ (0, 1), m : N → N,
and f : {0, 1}n → {0, 1}m(n) be such that

• For every δ ∈ (0, 1), f is computable by a family of
δ-highly threshold circuits of constant depth.

• For every d′ ∈ N, there is a probabilistic T C0-
computable 1/10-refuter for f against probabilistic(

T C0
d′ [m · n1+ε] �→ T C0

d′ -WIRES[m · nε] ◦ nε-SUM
)

-circuits .

Then, for the following three statements, we have (1) =⇒
(2) =⇒ (3).

1) For every d ∈ N, there is a deterministic polynomial-
time algorithm solving CAPP for T C0

d circuits.
2) For every d′ ∈ N, there is a P-computable refuter for f

against probabilistic(
T C0

d′ [m · n1+ε] �→ T C0
d′ -WIRES[m · nε] ◦ nε-SUM

)
-circuits .

3) For every d ∈ N, there is a deterministic polynomial-
time algorithm solving CAPP0,1/2 for T C0

d circuits.

Proof. First, note that (2) =⇒ (3) follows immediately

from Corollary VI.12. So it suffices to prove (1) =⇒ (2).
Fix d′ ∈ N. For convenience, we use F to denote proba-

bilistic(
T C0

d′ [m · n1+ε] �→ T C0
d′ -WIRES[m · nε] ◦ nε-SUM

)
-circuits.

We first note that given the description of an n-input F
circuit C, in polynomial time we can construct a T C0 circuit

B such that for every x ∈ {0, 1}n, we have C(x) has the same

distribution as B(x,Ur1), where r1 ≤ poly(n).
Let R be the probabilistic T C0 refuter for f . Given the

description of an n-input F circuit C as input, with probability

46More precisely, C′ is the composition of C and a T CO(d′1)
circuit U that

takes the description of a T C0
d′1

circuit E of nε1 size as input, and outputs

the first m bits of E’s truth-table. It it easy to see that U has m · nO(ε1)

wires.

at least 9/10 over its randomness, R outputs a string z ∈
{0, 1}n such that Pr[C(z) = f(z)] < 1/10. Now, let r2 be the

number of random bits used by R. We construct the following

T C0 circuit W : {0, 1}r2 × {0, 1}r1 → {0, 1} as

W (α, β) = 1
[
B(R(C;α), β) = f(R(C;α))

]
.

By the condition on R, we know that Prα,β [W (α, β) =
1] < 1/5. From (1) and Theorem III.16, in polynomial

deterministic time we can find an α ∈ {0, 1}r2 such that

Prβ [W (α, β) = 1] < 2/3, then R(C, α) is the output of our

deterministic refuter.

C. Refuting Deterministic Streaming Algorithms vs Lossy
Code

In this section we prove Theorem I.8 and Theorem I.9.

Reminder of Theorem I.8. For any function f ∈ FP ,
ε ∈ (0, 1), a deterministic refuter for f against nε-space
polynomial-time deterministic streaming algorithms implies
that LossyCode ∈ FP .

Proof. The theorem would easily follow from Korten’s J-

tree construction [19]. Below we give a much simpler self-

contained proof, but the ideas are very similar to Korten’s

results.

Fix f ∈ FP and ε ∈ (0, 1), and let R be the corresponding

refuter from the theorem statement. We show how to solve

LossyCode ∈ FP .

Let C : {0, 1}n → {0, 1}n−1 and D : {0, 1}n−1 → {0, 1}n
be two circuits of size s (we have n ≤ s), interpreted as the

input to LossyCode. For simplicity, we will assume fm (the

restriction of f on m-bit inputs) is a function from {0, 1}m
to {0, 1}m. Since f ∈ FP , there is a constant k ∈ N such

that fm admits an mk-time single-tape Turing machine. We

further assume that that the output of the machine is the first

m bits in its tape at the end of the execution.

Let m = s2/ε, we construct the following mε-space

streaming algorithm B that attempts to compute fm:

• Given streaming access to the input x ∈ {0, 1}m, let

β = x[1,n]. For every i ∈ {n+ 1, . . . ,mk}, we set β ←
C(β) ◦ xi. In other words, we set β as an n-bit succinct
representation of the string x · 0mk−m, which represent

the initial tape of the single-tape Turing machine.47

• Given a string β ∈ {0, 1}n, consider the string y ∈
{0, 1}mk

defined as follows: letting β = z(�−1), for

every i from mk down to n + 1, we set yi ← βn and

β ← D(β[1,n−1]); and y[n] ← β. By its definition, given

an index i ∈ [mk] and β ∈ {0, 1}n as input, one can

output yi using space O(s) and running time poly(s)·mk.

We denote its output by Access(β, i).
We initialize the location of the head to be idx = 1 and

q to be the starting state of Turing machine.

47We assume for simplicity that the single-tape Turing machine also gets
another input-length tape on which the input length |x| = m is written; so
we don’t have to include a termination symbol # after x on the input tape.

1040

Authorized licensed use limited to: MIT. Downloaded on March 28,2025 at 23:43:29 UTC from IEEE Xplore. Restrictions apply.

• For every t ∈ [mk]:

1) Let oidx ← idx. Given Access(β, oidx) and q, get

the new content of the oidx-th cell (denoted as u ∈
{0, 1}) and update idx and q according to the Turing

machine.

Set tmp ← β. Define a string y ∈ {0, 1}mk

such

that yi = Access(tmp, i) if i �= oidx, and yi = u
otherwise.

2) Let β = y[1,n]. For every i ∈ {n+ 1, . . . ,mk}, we

set β ← C(β) ◦ yi.
• For every i ∈ [m]: output Access(β, i).

Roughly speaking, we use C and D to maintain an n-bit

succinct representation β of the current mk-bit content of the

Turing machine tape. The Access(β, i) function allows us to

access the i-th bit of the tape in O(s) space and poly(m)
time.48 The overall running time of B is also bounded by

poly(m).
We use β(0) to denote the value of β before the 1-th round

(of the execution of the Turing machine) and β(t) to denote

the value of β at the end of the t-th round. We note that

β(i) is our succinct representation of the content of the tape

after the Turing machine runs for i steps. We also let the

string y(t) to denote the string y defined at the t-th round, and

y(0) = x ◦ 0mk−m.

Now, one can observe that if for every t ∈ {0, 1, . . . ,mk}
and for every j ∈ [mk], we have y

(t)
j = Access(β(t), j). Then

by a simple induction, y(m
k) is the correct tape content at the

end of the execution of the Turing machine, meaning that B
computes f(x) correctly on input x ∈ {0, 1}m.

Hence, running the refuter R on B, we get an input

x ∈ {0, 1}m such that B(x) �= fm(x), which in particular

means there exists t, j such that y
(t)
j �= Access(β(t), j). By the

definition of β(t), we can see that in the process of repeatedly

applying C on y(t) to obtain β(t), at least once we would

encounter a β such that D(C(β)) �= β. This allows us to

solve LossyCode with input (C,D), and completes the proof.

Reminder of Theorem I.9. For a function f ∈ {DISJ, IP}
and ε ∈ (0, 1), the following are equivalent:

1) There is a refuter in FP for f against nε-space poly-
time deterministic streaming algorithms.

2) There is a refuter in FP for f against (n − 1)-space
poly-time deterministic streaming algorithms.

3) LossyCode ∈ FP .
Proof. The (1) ⇒ (3) direction follows immediately

from Theorem I.8. And (2) ⇒ (1) direction is immediate.

In the following we establish the (3) ⇒ (2) direction. We

will only show it for DISJ; the proof for IP is almost identical.

Given a deterministic (n − 1)-space nk-time streaming algo-

rithm B that attempts to solve DISJn, we construct an input

pair C,D to LossyCode as follows:

48The J-tree construction from [19] allows a much faster access time of
poly(logm, s); but poly(m) already suffices for our purpose.

1) The compression circuit C : {0, 1}n → {0, 1}n−1:
runs B on x as the first half of the input to DISJ, and

then output the memory of the algorithm B after reading

all of x.

2) The decompression circuit D : {0, 1}n−1 → {0, 1}n:
Given a memory state z ∈ {0, 1}n−1, we construct

output x ∈ {0, 1}n as follows: for every i ∈ [n], we

run B starting with memory z and the second half being

string ei ∈ {0, 1}n (ei means only the i-th bit is 1, all

others being 0) to obtain an output x̄ and set xi = x̄.

Now, since LossyCode ∈ FP , in polynomial time we

can find an input x ∈ {0, 1}n such that D(C(x)) �= x. By

definition of C and D, it means that for some i ∈ [n], B fails

on the input (x, ei). Therefore, we can enumerate all i ∈ [n]
to find out which of the (x, ei) is the desired counter example.

VII. CHARACTERIZATION OF DERANDOMIZATION VIA

THE REFUTER FRAMEWORK

In this section we explain how using the terminology of re-

futers allows to capture and generalize previous results. In Sec-

tion VII-A we explain how to generalize [7], in Section VII-B

we explain how to generalize [8], and in Section VII-C we

explain how to generalize [6].

A. Leakage-Resilient Hardness and Refuter for Identity

We first recall the definition of almost-all-input leakage-

resilient hardness from [8], and explain why it’s equivalent to

the existence of refuter for Identity against a certain class of

algorithms.

Definition VII.1 (Almost-all-input (a.a.i.) leakage-resilient

hardness). Let f : {0, 1}n → {0, 1}n be a (multi-output)
function. We say that f is almost-all-input (T,)-leakage
resilient hard if for all T -time49 probabilistic algorithms leak
and A satisfying leak(x, f(x)) ≤ 	(|x|), for all sufficiently
long strings x, A(x, leak(x, f(x))) �= f(x) with probability at
least 2/3 (over their internal randomness).

We now define non-uniform probabilistic one-way efficient
communication protocols (denoted as one-way efficient CP for

convenience) as a special class of RAM machines: for input

length n ∈ N≥1, communication 	 = 	(n) ∈ N, and running

time T = T (n) ∈ N, there are two randomized uniform T (n)-
time algorithms A and B that50 take n-bit input x ∈ {0, 1}n
and n-bit advice a ∈ {0, 1}n such that A(a, x) outputs an

	-bit message m ∈ {0, 1}� and B(a,m) outputs a Boolean

string.51 We can also define non-uniform probabilistic efficient

communication protocols with communication 	 and running

time T in a similar way, by giving the current transcript to A

and B as an additional input.

49This means the running time of A and leak are bounded by T (n) where
n = |x| is the length of their first input.

50This means that running time of A and B are bounded by T (n).
51We fix the advice length to be the same as input length for simplicity,

but we can certainly separate them as different parameters. Also, note that
here the second agent (modeled by B) has no input.

1041

Authorized licensed use limited to: MIT. Downloaded on March 28,2025 at 23:43:29 UTC from IEEE Xplore. Restrictions apply.

We now note that aai leakage-resilient hardness is by

definition equivalent to refuter for Identity against one-way

efficient CP.

Observation VII.2. The following statements are equivalent:
1) There is a function f : {0, 1}n → {0, 1}n that is a.a.i.

(T,)-leakage resilient hard.
2) There exists a refuter R for Identity against T -time one-

way efficient CP with communication complexity 	.

Proof. From their definitions, there is a one-to-one correspon-

dence between leak and A, A and B, and (crucially) the a.a.i.-

leakage resilient hard function f and the refuter R.

We can show the following equivalence.

Theorem VII.3. For every polynomial T (n) ≥ n1+Ω(1), and
for every ε ∈ (0, 1), the following statements are equivalent:

1) prP = prBPP .
2) There is a P-computable nε-compression refuter

for Identity against probablistic (SIZE[n1+ε] �→
SIZE-XOR[nε])-circuits.

3) There is a refuter for Identity against T -time one-way
efficient CP with communication complexity nε.

4) There is a refuter for Identity against T -time efficient
CP with communication complexity n− 1.

Proof. It is easy to see that (4) =⇒ (3). To see that (3) =⇒
(2), note that a probabilistic (SIZE[n1+ε] �→ SIZE-XOR[nε])-
circuit C implies a n1+ε-time one-way efficient CP with

communication complexity nε as follows: A(x) simulates

C(x), and sends its nε-bit output 	 to B. B(x,) treats 	 as an

log n-input nε-size circuit and outputs its truth-table.

We note that (2) =⇒ (1) follows from an identical proof

as in Theorem VI.7. To show (1) =⇒ (4), we note that

for any T -time efficient CP P = (A,B) with communication

complexity at most 1/2, we have Prz∈{0,1}n [P(z) = z] ≤ 1/2
(the randomness is also over the inner randomness of P)

by a simple counting argument. Assuming prP = prBPP
and applying Theorem III.16, we can find an z such that

Pr[P(z) = z] < 2/3 deterministically. This completes the

proof.

Remark VII.4. We remark that Item (2) in Theorem VII.3 is
indeed (syntactically) equivalent to the notion of a.a.i. leakage-
resilient hardness local hardness in [8].

In particular, the equivalence between Item (1) and Item (2)

above shows that even assuming the leak function from Def-

inition VII.1 to be a probabilistic SIZE ◦ XOR[nε] circuit

sampled by an n1+ε circuit and the A function to be the truth-

table generation function (given an nε-size circuit, output its

length-n truth-table) that does not depend on the input x, the

existence of a.a.i. leakage resilient hard is still equivalent to

derandomization.

B. Hardness of Conditional Kolmogorov Complexity

We now explain how the viewpoint of refuters allows to

generalize the results of [7]. To do so, let us first recall

the definitions of Levin’s Kolmogorov complexity and of

the problem GapMcKtP, which refes to conditional Levin’s

Kolmogorov complexity.

Definition VII.5 (Levin’s Kolmogorov complexity). For a
fixed universal Turing machine U , and any x, z ∈ {0, 1}∗,
we define

Kt(x|z) = min
Π∈{0,1}∗,t∈N

{
|Π|+ log(t) : U(Π(z), 1t) = x

}
.

Definition VII.6 (GapMcKtP). Let TYES, TNO : N → N. The
problem problem GapMcKtP[TYES, TNO] is defined as follows:

• YES instances: (x, z) such that |x| = |z| and Kt(x|z) ≤
TYES(|x|).

• NO instances: (x, z) such that |x| = |z| and Kt(x|z) ≥
TNO(|x|).

The main result from [7] asserts that derandomization is

equivalent to hardness of GapMcKtP against probabilistic

polynomial-time algorithms on almost all conditions z; that

is, for every algorithm and every z (except, at most, finitely

many), there is an x such that the algorithm fails on input

(x, z).

Theorem VII.7 (derandomization vs almost-all-conditions

hardness of GapMcKtP; [7, Theorem 1]). There exists a
constant c ≥ 1 such that the following two statements are
equivalent.

1) prBPP = prP .
2) There exists γ ∈ R such that for every probabilistic

algorithm M running in time nc, for all but finitely many
z ∈ {0, 1}∗, there exists x ∈ {0, 1}∗ such that M fails
to solve GapMcKtP[γ · log(n), n− 1] correctly on input
(x, z).

We now show that Corollary VI.5 is a strengthening of

Theorem VII.7. Specifically, we prove that the hypothesis

of Theorem VII.7 is at least as strong as the hypothesis

in Corollary VI.5, which asserts the existence of a compression

list-refuter for probabilistic algorithms running in time nc.

Claim VII.8 (hardness of GapMcKtP implies refutation).
Suppose that the hypothesis in Item (2) of Theorem VII.7 holds.
Then, there exists a P-computable

√
n-compression list-refuter

for Identity against general probabilistic algorithms running
in time nc−o(1).

Proof. The refuter Ref gets input (M,a), where |a| = n,

and enumerates over all strings Π1, ...,Π2�+1−1 of length at

most 	 = γ · log(n). Treating each Πi as the description of a

RAM, it simulates the machine for 2� steps on input a, and

if the machine prints an n-bit string wi, then Ref prints wi

(otherwise, the refuter just moves on to Πi+1). The final output

list of Ref consists of all wi’s that it printed.

Assume towards a contradiction that there is a time-nc−o(1)

RAM M ′ and an infinite set A ⊆ {0, 1}∗ such that for every

1042

Authorized licensed use limited to: MIT. Downloaded on March 28,2025 at 23:43:29 UTC from IEEE Xplore. Restrictions apply.

a ∈ {0, 1}∗, for all wi that Ref(M ′, a) prints, it holds that

Pr
[
M ′(a,wi) prints a circuit of size

√
2|a|

whose truth-table is wi

]
≥ 2/3 ,

where the probability is over the random coins of M ′.52

Then, for any z ∈ A, for all x we solve GapMcKtP[γ ·
log(n), n − 1] on input (x, z) as follows. Given (x, z), we

simulate M ′(z, x) for constantly many independent trials; if

in one of those trials, M outputs a circuit of size
√

2|z| with

truth-table equal to x then we accept, otherwise we reject.

Note that on “no” instances, we always reject (because no such

circuit exists). On “yes” instances, by definition there exists a

program Π of size at most 	 running in at most 2� steps such

that Π(z) = x. By the definition of Ref, one of the outputs in

the list that Ref(M ′, z) prints will be x. By the assumption on

M ′ and the fact that a ∈ Z, with high probability M ′(z, x)
prints a circuit of size

√
2|z| with truth-table x, therefore we

accept.

C. Almost-All-Inputs Hardness

We now explain how the viewpoint of refuters also allows

us to capture and generalize the results of Chen and Tell [6].

Recall that they considered the notion of hardness on almost

all inputs, defined as follows:

Definition VII.9 (almost-all-inputs hardness). A function
f : {0, 1}∗ → {0, 1}∗ is hard on almost all inputs for
probabilistic algorithms running in time T if for every T -
time algorithm M and for all but finitely many inputs x,
Pr[M(x) = f(x)] < 2/3.

The main result of [6] is a two-way connections between

derandomization (i.e., prBPP = prP) and the existence of

functions that are hard on almost all inputs for probabilistic

algorithms running in fixed polynomial time.

Theorem VII.10 (the main result of [6]). For any 	 =
polylog(n), the following statements hold:

1) If there is a function mapping n bits to n/	 bits that is
computable by logspace-uniform circuits of polynomial
size and depth O(n2), and that is hard for probabilistic
time nc on almost all inputs, where c > 1 is a sufficiently
large universal constant, then prBPP = prP .

2) If prBPP = prP , then for every c ≥ 1 there is a
function in FP mapping n bits to n/	 bits that is hard
for probabilistic time nc on almost all inputs.

The original statement in [6] referred to length-preserving

functions, but (as mentioned in that paper) the precise output

length is immaterial for the result. We have chosen to present

the result in Theorem VII.10 using output length n/polylog(n)
to facilitate capturing cleanly it using refuter terminology.

52The reason that the circuit size is
√

2|a| instead of
√

|a| is that we
defined s-compression refuters with s =

√· being a function of |a|+ |wi| =
2|a|.

To capture Theorem VII.10 in refuter terminology, we define

algorithms that get advice and do not examine their input
as the class of RAMs M that get two inputs and satisfy the

following: for every a ∈ {0, 1}∗ and every x, x′ ∈ {0, 1}∗
such that |x| = |x′| it holds that M(x, a) = M(x′, a). (When

M is probabilistic, we require the equality to hold for every

fixed choice of random coins.)

The following claim asserts that hardness on almost all

inputs is equivalent to refuting algorithms that do not examine

their input.

Claim VII.11 (almost-all-inputs hardness is equivalent to

refuting machines that don’t examine their inputs). For any
polynomial T (n) ≥ n2, the following statements are equiva-
lent:

1) There is an FP-refuter for Identity against algo-
rithms that on n-bit inputs run in probabilistic time
O(T (Õ(n))), get Õ(n) bits of advice, and do not
examine their input.

2) There is a function f ∈ FP mapping n bits to
n/polylog(n) bits that is hard on almost all inputs for
probabilistic algorithms running in time O(T).

Proof. We first prove that (1) ⇒ (2). Let R be the refuter,

let 	(n) = polylog(n) be a sufficiently large polylogarithm.

Given input x ∈ {0, 1}n, consider the first m = log(n)
Turing machines, denoted M1, ...,Mm, according to some

canonical enumeration. For every i ∈ [m], we compute

yi = R(Mi, x)) ∈ {0, 1}n/�,53 and print the string

f(x) = y1 ◦ y2 ◦ ... ◦ ym ,

which is of length n/	 · log(n) = n/polylog(n). (For i ∈ [m]
such that the refuter does not output a string yi, we print

yi = 0n/�.)
Assume towards a contradiction that there is a time-O(T)

Turing machine F and an infinite set X ⊆ {0, 1}∗ such that

for every x ∈ X it holds that Pr[F (x) = f(x)] ≥ 2/3.

Let A be an advice-taking machine that on any input of

length n, and given advice x ∈ {0, 1}N where N satisfies

n = N/	, simulates F on input x and outputs the (iA)
th

substring of F (x), where iA is A’s index in the enumeration

of Turing machines.54 Note that the advice complexity of

A is N = n · 	(N) = Õ(n), and its running time is

O(T (N)) = O(T (Õ(n))). Thus, for every sufficiently long

x ∈ X we have

Pr
[
A
(
R(A, x), x

)
= R(A, x)

]
= Pr[F (x)iA = R(A, x)]

≥ Pr[F (x) = f(x)]

≥ 2/3 ,

which contradicts the properties of the refuter.

Now, let us prove that (2) ⇒ (1). For a sufficiently large

polylogarithm 	 = polylog(n), the refuter gets input (M,a)

53We ignore rounding issues throughout the proof, for simplicity.
54We can assume that A can use its own index iA in its execution, by

Kleene’s recursion theorem and assuming an efficient mapping of machine
descriptions to their indices in the enumeration of machines.

1043

Authorized licensed use limited to: MIT. Downloaded on March 28,2025 at 23:43:29 UTC from IEEE Xplore. Restrictions apply.

where M is the description of a T -time machine that does

not examine its input and a ∈ {0, 1}n, and the refuter outputs

f(a) ∈ {0, 1}n/�. Assume towards a contradiction that for

some machine M running in time T ′(m) = O(T (Õ(m)))
and infinitely many advice strings a ∈ {0, 1}∗ it holds that

Pr[M(f(a), a) = f(a)] ≥ 2/3. Consider the machine M ′ that

gets input a ∈ {0, 1}n and outputs M(0n/�, a). The running

time of M ′ is T ′(n/) < O(T (n)), and we have that M ′(a) =
M(0n/�, a) = M(f(a), a). Thus, for infinitely many a’s we

have that Pr[M ′(a) = f(a)] ≥ 2/3, a contradiction.

Observe that in the proof above, the refuter and the almost-

all-inputs hard function have essentially the same complexity.

In particular, if one is computable by logspace-uniform circuits

of polynomial size and depth n2, then the other is computable

by logspace-uniform circuits of polynomial size and depth

O(n2). Hence, we can present Theorem VII.10 in refuter

terminology:

Corollary VII.12 (the main result of [6], in refuter terminol-

ogy). For every c ≥ 1, let Oc be the class of probabilistic
algorithms that on n-bit inputs run in time nc, get Õ(n) bits
of advice, and do not examine their input. Then, the following
statements hold:

1) For a sufficiently large c ≥ 1, assume that there is a
refuter for Identity against Oc that is computable by
logspace-uniform circuits of polynomial size and depth
n2. Then, prBPP = prP .

2) If prBPP = prP , then for every constant c > 1 there
is an FP-refuter for Identity against Oc.

ACKNOWLEDGMENTS

Roei Tell is supported in part by the NSF under grant

numbers CCF-1445755 and CCF-1900460. Ryan Williams is

supported in part by the Simons Institute at UC Berkeley, NSF

CCF-2127597, and a Frank Quick Faculty Research Innovation

Fellowship. Part of this work was done while the authors were

visiting the Simons Institute for the Theory of Computing. We

are grateful to anonymous FOCS reviewers for pointing out

various typos and inaccuracies.

APPENDIX A

THE TARHSG OF [6] WITH LOW-SPACE STREAMING

RECONSTRUCTION

In this section we prove Theorem III.15 (restated below).

Reminder of Theorem III.15. There exists a universal con-
stant c > 1 such that the following holds. Let f : {0, 1}N →
{0, 1}N be computable in time T (N), let γ > 0, and let
M : N → N such that c · log(T) < M < T γ/c. Then, there
exists a deterministic algorithm HCT

f and a probabilistic oracle
machine RCT

f that for every z ∈ {0, 1}N satisfy the following:
1) Generator: When given input z, the machine HCT

f runs
in time poly(T (N)) and prints a list of strings in
{0, 1}M .

2) Reconstruction: RCT
f gets input z, and can be imple-

mented by a T γ-space one-pass streaming algorithm

over the input z with running time M c · T 1+γ . When
RCT

f is given oracle access to a function D : {0, 1}M →
{0, 1} that 1/M -avoids HCT

f (z), with probability at least
1−1/M the machine RCT

f outputs an oracle circuit Cf(z)

of size T γ such that the truth-table of (Cf(z))
D is f(z).

Proof sketch. From our assumption, f is also computable by

a logspace-uniform circuit of Õ(T) size and Õ(T) depth.

We follow the reconstruction algorithm described in [6, Sec-

tion 4.4] and observe that everything except for the first

iteration takes only

(t · T γ ·M)4c
2
0 · (d+N) ≤ T 1+O(γ) ·MO(1)

time and TO(γ) space. Moreover, the first iteration is the only

place where the algorithm needs access to the input string z.

Hence, the remaining challenge is to implement the first

phase by a TO(γ)-space one-pass streaming algorithm. The

original reconstruction algorithm in [6, Section 4.4] constructs

a circuit of size t0 ≥ N for the first polynomial p1, which

already requires N bits to restore (which can be much larger

than the TO(γ) space bound we aim for). We observe that

this is not necessary: instead of building a circuit C1 for p1,

we can directly start from building a circuit C2 for p2, and

using the t0-time base case algorithm to answer all queries

when running [6, Lemma 4.10] for i = 2. This can be done

in TO(γ) · poly(M) · t0 ≤ T 1+O(γ) · poly(M) time and only

uses TO(γ) space.

Moreover, we can further observe that [6, Lemma 4.10] only

makes TO(γ) non-adaptive queries to Ci−1, meaning that one

can first gather all these queries using TO(γ) space, and then

try to answer all of them together using a single pass over

the input. We note that p1 correspond to the input polynomial

α̂0 : F
m → F, which is defined by

α̂0(�w) =
∑

�z∈Hm′×{0}m−m′
δ�z(�w) · α0(�z) ,

where δ�z is Kronecker’s delta function (i.e., δ�z(�w) =∏
j∈[m]

∏
a∈H\{zj}

wj−a
zj−a) and α0(�z) denotes an input bit to f

indexed by �z. From its definition, one can see that in O(log T)
space one can compute α̂0(�w) via a single pass over the input.

Finally, we can set the γ above small enough compared

to the γ in the statement, and the whole algorithm can be

implemented by a T γ-space one-pass streaming algorithm over

the input z with running time M c · T 1+γ . This completes the

proof.

APPENDIX B

THE STV PRG WITH T C0 ◦ XOR RECONSTRUCTION

A. Finite Fields

Throughout this section, we will only consider finite fields

of the form GF(22·3
�

) for some 	 ∈ N since they enjoy simple

representations that will be useful for us. We say p = 2r is a

nice power of 2, if r = 2 · 3� for some 	 ∈ N.

Let 	 ∈ N and n = 2 · 3�. In the following we use F to

denote F2n for convenience. We will always represent GF2n

1044

Authorized licensed use limited to: MIT. Downloaded on March 28,2025 at 23:43:29 UTC from IEEE Xplore. Restrictions apply.

as F2[x]/(x
n+xn/2+1).55 That is, we identify each element

of GF(2n) with an F2[x] polynomial of degree less than n.

To avoid confusion, given a polynomial P (x) ∈ F2[x] with

degree less than n, we will use (P (x))F to denote the unique

element in F identified with P (x).

Let κ(n) be the natural bijection between {0, 1}n and

F = GF(2n): for every a ∈ {0, 1}n, κ(n)(a) =(∑
i∈[n] ai · xi−1

)
F

. We always use κ(n) to encode elements

from F by Boolean strings. That is, whenever we say that

an algorithm takes an input from F, we mean it takes a

string x ∈ {0, 1}n and interprets it as an element of F via

κ(n). Similarly, whenever we say that an algorithm outputs an

element from F, we mean it outputs a string {0, 1}n encoding

that element via κ(n). For simplicity, sometimes we use (a)F
to denote κ(n)(a). Also, when we say the i-th element in F, we

mean the element in F encoded by the i-th lexicographically

smallest Boolean string in {0, 1}n.

B. Proof of Theorem III.14

Theorem B.1 (the STV PRG with T C0◦XOR reconstruction).
There are universal constants cSTV > 1 and dSTV ∈ N≥1 such
that for every sufficiently small constant γ̄ ∈ (0, 1), there
are deterministic algorithms GSTV and RSTV that satisfy the
following:

1) Generator: When given a string z ∈ {0, 1}n, GSTV runs
in time poly(n) and prints a list of strings in {0, 1}m,
where m = nγ̄ .

2) Reconstruction: RSTV(1n) outputs the description of a
probabilistic(

T C0
dSTV [n ·mcSTV] �→ T C0

dSTV ◦ XOR[mcSTV]
)

oracle circuit Rf , such that given D : {0, 1}m → {0, 1}
that 1/m-distinguishes GSTV(z) as oracle, we have

Pr
Rf←Rf

[
RD

f (z) outputs a T C0
d1

oracle circuit E

such that tt(ED) = z
]
≥ 2/3.

Proof. We begin by setting some notation.

Notation: Let h be the smallest nice power of 2 that is

at least m. Let p = h27 (therefore p is also a nice power

of 2). Let 	 be the smallest integer such that h� ≥ n. Let

F = Fp and H be the first h elements from Fp. Let ξ : [n] →
Hm be an efficiently computable injection mapping.56 Let z ∈
{0, 1}n be our input. Let cNW and dNW be the universal constants

from Theorem III.13.

Let d0 ∈ N be a sufficiently large constant such that d0 ≥
dNW. Let μ ∈ N be a sufficiently large constant.

55Note that x2·3� + x3� + 1 ∈ F2[x] is always irreducible; see [40,
Theorem 1.1.28].

56For simplicity we ignore the complexity of computing ξ since it is
negligible.

The Generator GSTV: First, we define Pz : F
� → F as

Pz(�u) =
∑

i∈[n], �w=ξ(i)

δ�w(�u) · ai ,

where δ�w is Kronecker’s delta function (i.e., δ�w(�u) =∏
j∈[�]

∏
a∈H\{zj}

uj−a
wj−a). Let d = 	 · (h− 1) be the degree of

Pz .

From our choice of h, we know that m ≤ h ≤ m3. We also

have n ≤ h� ≤ n2, and n27 ≤ p� ≤ n54.

Let ẑ = tt(Pz) ∈ F
|F|� and let N = |ẑ| = |F|�. We

instantiate Theorem IV.1 with γ = γ̄ and ν = γ̄. Note

that N c0·(γ+ν) ≤ poly(m). Let c0 be the universal constant

from Theorem IV.1 and c� = c�γ,ν be the corresponding

constant. Let z̄ = Enc(ẑ) and N̄ = |z̄|. Note that N̄ = N c
 .

Now let γ1 so that N c
·γ1 = nγ̄ = m (note that γ1 is not a

constant, but since N ≤ poly(n) by the definition of h, p, we

have that γ1 is bounded away from 0), and we define

GSTV(z) = GNW(z̄,m).

Note that GSTV(z) runs in poly(n) time as desired.

Reconstruction RSTV: We need the following fact.

Fact B.2. The following two statements hold:
1) There is a P-uniform n ·poly(m)-size T C0

d0
circuit that

takes input i ∈ [|ẑ|] and outputs a circuit Gi consisting
of (log2 p) XOR gates such that Gi(z) = ẑi for all
z ∈ {0, 1}n.

2) There is a P-uniform n · poly(m)-size T C0
d0

circuit
that takes input i ∈ [|z̄|] and outputs a poly(m)-size
T C0

d0
◦ XOR circuit Wi such that Wi(z) = z̄i for all

z ∈ {0, 1}n.

Proof. Let i ∈ [ẑ] and �w ∈ F
� be the corresponding vector.

To compute the gate Gi, it suffices to compute the coefficients

βk = δξ(k)(�w) for every k ∈ [n] (so that ẑi = Pz(�w) =∑
k∈[n] βk · ak). From the definition of δξ(k)(�w), this can be

by a P-uniform n · poly(m)-size T C0
d0

circuit.

The circuit Wj is computed as follows:

1) Given input i ∈ [|z̄|]. Run QN (i) to obtain a list

q1, . . . , qM ∈ [N], where M = Nγ .

2) For each j ∈ [M], interpreting qj as a vector �wj ∈ F
�.

Output the circuit Wi defined as

Wi(z) = EN (i, Gqi(z), . . . , GqM (z)).

Note that |QN |, |EN | ≤ N c0·(γ+ν) ≤ poly(m). Hence, Wj

can be computed from j by a P-uniform n · poly(m)-size

T C0
d0

.

Let SNW = RNW(1|z̄|,m). Without loss of generality, we

assume that SNW takes exactly rNW = mcNW bits as input.

In the following we will construct two samplers S1 and S2,

and combine them to obtain our final sampler S.

Claim B.3. There is a polynomial-time algorithm that, given
1n, outputs a T C0

O(d0)[n · mcSTV/2] circuit S1 satisfying the
following:

1045

Authorized licensed use limited to: MIT. Downloaded on March 28,2025 at 23:43:29 UTC from IEEE Xplore. Restrictions apply.

1) S1 takes r1 = rNW bits as input, and outputs the
description of a poly(m)-size T C0

O(d0) ◦ XOR circuit
E1.

2) E1 takes z ∈ {0, 1}n as input, and outputs the descrip-
tion of a mcNW -size T C0

dNW oracle circuit C1.
3) For every z ∈ {0, 1}n, with probability at least 0.99

over E1 ← S1(Ur1), letting C1 = E1(z), it holds that

Pr
i∈[N̄]

[
CD

1 (i) = z̄i
]
≥ 1/2 +m−3.

Proof. Formally, given α1 ∈ {0, 1}r1 , S1 computes all the

queries of SNW made to ā in T C0
dNW [m

cNW] (note that SNW is a

non-adaptive oracle circuit), and applies Fact B.2 to replace

all calls to ā in SNW by poly(m)-size T C0
d0
◦XOR circuits with

input z ∈ {0, 1}n. This way, S1 outputs the desired poly(m)-
size T C0

O(d0) ◦ XOR circuit E1.

Moreover, by Fact B.2, we know that S1 can be imple-

mented by a T C0
O(d0) circuit of n · poly(m) size.

Claim B.4. There is a polynomial-time algorithm that, given
1n, outputs a T C0

O(d0)[n · mcSTV/2] circuit S2 satisfying the
following:

1) S2 takes r2 = mcSTV/2 bits as input, and outputs the
description of a poly(m)-size T C0

O(d0) ◦ XOR circuit
E2.

2) E2 takes z ∈ {0, 1}n as input, and outputs the descrip-
tion of a mμ-size T C0

d0
oracle circuit C2.

3) For every z ∈ {0, 1}n and every oracle O :
[
N̄
]
→

{0, 1} such that Pri∈[N̄] [O(i) = z̄i] ≥ 1/2+m−3, with
probability at least 1−0.99 over E2 ← S2(Ur2), letting
C2 = E2(z), it holds that

Pr
i∈[N̄]

[
CO

2 (i) = z̄i
]
≥ 1− 1/d2.

Proof. Let rpre, rmain ≤ T c1·δ be the number of random bits

used by DN of Proposition V.5 for the preprocessing step and

the main step, respectively. (We use the main step to denote

the operation of RECn after the preprocessing step.)

Let Spre and Smain be the T C0
d0
[N c0·(η+ν)] samplers for the

preprocessing step and the main step of DN , respectively. In

more detail: (1) Spre takes αpre ∈ {0, 1}rpre bits as input, and

outputs a list of queries to ẑ, denoted by q1, q2, . . . , qt ∈ [t],
where t ≤ N c0·(η+ν); (2) Smain takes αmain ∈ {0, 1}rmain as

input, and outputs a T C0
d0

oracle circuit C ′
2 of size N c0·(η+ν)

that takes t bits and j ∈ [N] as input.

The promise of Proposition IV.1 implies that for any

O : {0, 1}N̄ → {0, 1} satisfying Prj∈[N̄][O(j) = z̄(j)] ≥
1/2 + N−ν , with probability at least 1 − o(1) over

αpre ← Urpre and αmain ← Urmain , it holds that CO
2 (j) :=

(C ′
2)

O
(ẑq1 , . . . , ẑqt , j) computes ẑ on a (1 − N−γ) fraction

of inputs from [N]. Note that by our choice of γ and ν and the

facts that N ≥ n27 and m ≤ h ≤ m3, it holds that Nν ≥ m3

and Nγ ≥ d2, as desired by the claim.

Let r2 = rpre + rmain. S2 takes (αpre, αmain) ∈ {0, 1}r2 as

input, it first runs Spre(αpre) to compute q1, q2, . . . , qt ∈ [N],
and then runs Smain(αmain) to obtain the oracle circuit C ′

2,

then it constructs the desired circuit E2 that first computes

ẑq1 , . . . , ẑqt , and then outputs C2 by fixing the first t bits of

the input to C ′
2 to ẑq1 , . . . , ẑqt . Note that C2 is a mμ-size

T C0
d0

circuit.

By Fact B.2, E2 is a poly(m)-size T C0
O(d0) ◦XOR circuit,

S2 can be implemented by an n·poly(m)-size T C0
O(d0) circuit.

Let r3 be the number of random bits used by RM-LDCp,�,d.

Finally, S takes (α1, α2, α3) ∈ {0, 1}r1 × {0, 1}r2 × {0, 1}r3
as input, and computes E1 = S1(r1), E2 = S2(r2), and C3 by

fixing the randomness in RM-LDCp,�,d (Lemma V.4) by α3.

It then constructs the final circuit E on input z that operates

as follows: compute C1 = E1(z), C2 = E2(z), and compute

an oracle circuit

C ′O(�u) := C
C

CO
1

2
3 (�u)

for �u ∈ F
m, where O : {0, 1}m → {0, 1} is an oracle. Output

CO(i) = (C ′)O (ξ(i)).

The complexity and correctness of S follows from the two

claims above, and from Lemma V.4.

REFERENCES

[1] N. Nisan and A. Wigderson, “Hardness vs. randomness,” Journal of
Computer and System Sciences, vol. 49, no. 2, pp. 149–167, 1994.

[2] R. Impagliazzo and A. Wigderson, “P = BPP if E requires exponential
circuits: derandomizing the XOR lemma,” in Proc. 29th Annual ACM
Symposium on Theory of Computing (STOC), 1997, pp. 220–229.

[3] M. Sudan, L. Trevisan, and S. Vadhan, “Pseudorandom generators
without the XOR lemma,” Journal of Computer and System Sciences,
vol. 62, no. 2, pp. 236–266, 2001.

[4] R. Shaltiel and C. Umans, “Simple extractors for all min-entropies and
a new pseudorandom generator,” Journal of the ACM, vol. 52, no. 2, pp.
172–216, 2005.

[5] C. Umans, “Pseudo-random generators for all hardnesses,” Journal of
Computer and System Sciences, vol. 67, no. 2, pp. 419–440, 2003.

[6] L. Chen and R. Tell, “Hardness vs randomness, revised: Uniform, non-
black-box, and instance-wise,” in Proc. 62nd Annual IEEE Symposium
on Foundations of Computer Science (FOCS), 2021, pp. 125–136.

[7] Y. Liu and R. Pass, “Characterizing derandomization through hardness of
Levin-Kolmogorov complexity,” in Proc. 37th Annual IEEE Conference
on Computational Complexity (CCC), ser. LIPIcs. Leibniz Int. Proc.
Inform., 2022, vol. 234, pp. Art. No. 35, 17.

[8] ——, “Leakage-resilient hardness v.s. randomness,” Electronic Collo-
quium on Computational Complexity: ECCC, vol. TR22-113, 2022.

[9] O. Korten, “Derandomization from time-space tradeoffs,” in Proc. 37th
Annual IEEE Conference on Computational Complexity (CCC), ser.
LIPIcs. Leibniz Int. Proc. Inform., 2022, vol. 234, pp. Art. No. 37, 26.

[10] D. van Melkebeek and N. Sdroievski, “Instance-wise hardness versus
randomness tradeoffs for arthur-merlin protocols,” Electronic Collo-
quium on Computational Complexity: ECCC, vol. 30, p. 029, 2023.

[11] V. Kabanets, “Easiness assumptions and hardness tests: trading time for
zero error,” Journal of Computer and System Sciences, vol. 63, no. 2,
pp. 236–252, 2001.

[12] D. Gutfreund, R. Shaltiel, and A. Ta-Shma, “If NP languages are
hard on the worst-case, then it is easy to find their hard instances,”
Computational Complexity, vol. 16, no. 4, pp. 412–441, 2007.

[13] L. Chen, C. Jin, R. Santhanam, and R. Williams, “Constructive separa-
tions and their consequences,” in Proc. 62nd Annual IEEE Symposium
on Foundations of Computer Science (FOCS), 2021, pp. 646–657.

[14] N. Alon, Y. Matias, and M. Szegedy, “The space complexity of ap-
proximating the frequency moments,” 1999, vol. 58, no. 1, part 2, pp.
137–147, twenty-eighth Annual ACM Symposium on the Theory of
Computing (Philadelphia, PA, 1996).

1046

Authorized licensed use limited to: MIT. Downloaded on March 28,2025 at 23:43:29 UTC from IEEE Xplore. Restrictions apply.

[15] P. Beame, “A general sequential time-space tradeoff for finding unique
elements,” SIAM Journal of Computing, vol. 20, no. 2, pp. 270–277,
1991.

[16] D. M. McKay and R. R. Williams, “Quadratic Time-Space Lower
Bounds for Computing Natural Functions with a Random Oracle,” in
Proc. 10th Conference on Innovations in Theoretical Computer Science
(ITCS), 2018, pp. 56:1–56:20.

[17] N. Nisan, “The communication complexity of threshold gates,” in Com-
binatorics, Paul Erdős is eighty, Vol. 1, ser. Bolyai Society Mathematical
Studies, 1993, pp. 301–315.

[18] B. Chor and O. Goldreich, “Unbiased bits from sources of weak random-
ness and probabilistic communication complexity,” SIAM J. Comput.,
vol. 17, no. 2, pp. 230–261, 1988.

[19] O. Korten, “Derandomization from time-space tradeoffs,” in 37th
Computational Complexity Conference, CCC 2022, July 20-23, 2022,
Philadelphia, PA, USA, ser. LIPIcs, S. Lovett, Ed., vol. 234. Schloss
Dagstuhl - Leibniz-Zentrum für Informatik, 2022, pp. 37:1–37:26.

[20] O. Goldreich, “In a world of P=BPP,” in Studies in Complexity and
Cryptography. Miscellanea on the Interplay Randomness and Computa-
tion, 2011, pp. 191–232.

[21] R. Impagliazzo and A. Wigderson, “Randomness vs. time: De-
randomization under a uniform assumption,” in Proc. 39th Annual IEEE
Symposium on Foundations of Computer Science (FOCS), 1998, pp.
734–743.

[22] M. Sipser, “A complexity theoretic approach to randomness,” in Proc.
15th Annual ACM Symposium on Theory of Computing (STOC), 1983,
pp. 330–335.

[23] C. Lautemann, “BPP and the polynomial hierarchy,” Information Pro-
cessing Letters, vol. 17, no. 4, pp. 215–217, 1983.

[24] H. Buhrman and L. Fortnow, “One-sided versus two-sided error in
probabilistic computation,” in Proc. 16th Symposium on Theoretical
Aspects of Computer Science (STACS), 1999, pp. 100–109.

[25] O. Goldreich and D. Zuckerman, “Another proof that BPP ⊆ PH (and
more),” in Studies in complexity and cryptography, ser. Lecture Notes
in Comput. Sci. Springer, Heidelberg, 2011, vol. 6650, pp. 40–53.

[26] S. Goldwasser, Y. T. Kalai, and G. N. Rothblum, “Delegating computa-
tion: interactive proofs for muggles,” Journal of the ACM, vol. 62, no. 4,
pp. 27:1–27:64, 2015.

[27] M. Sudan, “Decoding of reed solomon codes beyond the error-

correction bound,” J. Complex., vol. 13, no. 1, pp. 180–193, 1997.
[Online]. Available: https://doi.org/10.1006/jcom.1997.0439

[28] D. Doron and R. Tell, “Derandomization with minimal memory foot-
print,” Electronic Colloquium on Computational Complexity: ECCC,
vol. 30, p. 036, 2023.

[29] S. Goldwasser, D. Gutfreund, A. Healy, T. Kaufman, and G. N.
Rothblum, “Verifying and decoding in constant depth,” in Proc. 39th
Annual ACM Symposium on Theory of Computing (STOC), 2007, pp.
440–449. [Online]. Available: https://doi.org/10.1145/1250790.1250855

[30] N. Alon, J. Bruck, J. Naor, M. Naor, and R. M. Roth, “Construction
of asymptotically good low-rate error-correcting codes through pseudo-
random graphs,” IEEE Transactions on Information Theory, vol. 38,
no. 2, pp. 509–516, 1992.

[31] D. Gutfreund and E. Viola, “Fooling parity tests with parity gates,” in
Proc. 8th International Workshop on Randomization and Approximation
Techniques in Computer Science (RANDOM), 2004, pp. 381–392.

[32] O. Gabber and Z. Galil, “Explicit constructions of linear size supercon-
centrators,” in Proc. 20th Annual IEEE Symposium on Foundations of
Computer Science (FOCS), 1979, pp. 364–370.

[33] O. Goldreich and L. A. Levin, “A hard-core predicate for all one-
way functions,” in Proc. 21st Annual ACM Symposium on Theory of
Computing (STOC), 1989, pp. 25–32.

[34] S. Arora and B. Barak, Computational complexity: A modern approach.
Cambridge University Press, Cambridge, 2009.

[35] S. P. Vadhan, Pseudorandomness, ser. Foundations and Trends in The-
oretical Computer Science. Now Publishers, 2012.

[36] E. Allender and M. Koucký, “Amplifying lower bounds by means of
self-reducibility,” Journal of the ACM, vol. 57, no. 3, pp. 14, 36, 2010.

[37] W. Hesse, E. Allender, and D. A. M. Barrington, “Uniform constant-
depth threshold circuits for division and iterated multiplication,” Journal
of Computer and System Sciences, vol. 65, no. 4, pp. 695–716, 2002.

[38] ——, “Uniform constant-depth threshold circuits for division and iter-
ated multiplication,” J. Comput. Syst. Sci., vol. 65, no. 4, pp. 695–716,
2002.

[39] A. A. Razborov, “On the distributional complexity of disjointness,”
Theoretical Computer Science, vol. 106, no. 2, pp. 385–390, 1992.

[40] J. H. Van Lint, Introduction to coding theory. Springer-Verlag Berlin
Heidelberg, 1999, vol. 86.

1047

Authorized licensed use limited to: MIT. Downloaded on March 28,2025 at 23:43:29 UTC from IEEE Xplore. Restrictions apply.

