2023 IEEE 64th Annual Symposium on Foundations of Computer Science (FOCS) | 979-8-3503-1894-4/23/$31.00 ©2023 IEEE | DOI: 10.1109/FOCS57990.2023.00062

2023 IEEE 64th Annual Symposium on Foundations of Computer Science (FOCS)

Derandomization vs Refutation: A Unified
Framework for Characterizing Derandomization

Lijie Chen
Miller Institute for Basic Research in Science
University of California, Berkeley
Berkeley, CA, USA
wimzbmr@gmail.com

Abstract—We establish an equivalence between two algo-
rithmic tasks: derandomization, the deterministic simulation
of probabilistic algorithms; and refutation, the deterministic
construction of inputs on which a given probabilistic algorithm
fails to compute a certain hard function.

We prove that refuting low-space probabilistic streaming
algorithms which attempt to compute functions f € FP is
equivalent to proving that prBPP = pr’P, even in cases where a
lower bound for f against such streaming algorithms (without a
refuter) is already unconditionally known. We also demonstrate
the generality of our connection between refutation and deran-
domization, by establishing connections between refuting classes
of constant-depth circuits of sublinear size and derandomizing
constant-depth circuits of polynomial size with threshold gates
(i.e., 7C°).

Our connection generalizes and strengthens recent work on the
characterization of derandomization. In particular, the refuter
framework allows to directly compare several recent works to
each other and to our work, as well as to chart a path for
further progress. Along the way, we also improve the targeted
hitting-set generator of Chen and Tell (FOCS 2021), showing that
its granslation of hardness to pseudorandomness scales down to
TC".

Index Terms—Refuters, derandomization, streaming algo-
rithms, threshold circuits

I. INTRODUCTION

Can every randomized algorithm be simulated by a deter-
ministic one, with low overhead? The question of whether
universal derandomization is possible, generally expressed as
prBPP = prP, has fascinated a generation of researchers,
partly due to deep connections between derandomization and
computational lower bounds. In the classical “hardness vs
randomness” line of work, efficient derandomization (e.g.,
prBPP = prP) was shown to be possible, assuming
exponentially-strong non-uniform circuit lower bounds against
exponential time (see, e.g., [1], [2], [3], [4], [5]). That is, it
has been known for a long time that sufficiently strong non-
uniform circuit lower bounds would imply universal deran-
domization.

However, non-uniform circuit lower bound hypotheses ap-
pear to be overkill for proving prBPP = prP, since
prBPP = prP is only concerned with derandomizing prob-
abilistic uniform algorithms (e.g., Turing machines). More
recently, researchers have found potentially weaker uniform

Roei Tell
Department of Computer Science
The University of Toronto
Toronto, Canada
roeilcs.toronto.edu

Ryan Williams
EECS
Massachusetts Institute of Technology
Cambridge, MA, USA
rrw@mit.edu

lower bound assumptions which suffice (and are sometimes
equivalent) for prBPP = prP:

o Chen and Tell [6] show that prBPP = prP follows from
the assumption that there is a multi-output function f
computable by poly-size LOGSPACE-uniform circuits of
depth n? that cannot be computed on almost all inputs' by
any probabilistic fixed-polynomial-time algorithm (run-
ning faster than the deterministic poly-time algorithm for
). They also prove that the assumption is necessary when
the depth restriction is removed.

o Liu and Pass [7] show that prBPP = prP is equiv-
alent to proving a certain lower bound on probabilistic
polynomial-time algorithms attempting to approximate
the conditional Kt (Levin) complexity of a given binary
string. In follow-up work [8], they show that prBPP =
pr’P is equivalent to the existence of a poly-time f
which is “leakage-resilient” against probabilistic fixed-
polynomial-time algorithms on almost all inputs.

o Korten [9] showed that prBPP = prP is equiv-
alent to constructing a deterministic polynomial-time
algorithm that gets as input a probabilistic circuit
C: {0,1}" — {0,1}"! and a deterministic circuit
D:{0,1}"=t — {0,1}", and outputs = € {0,1}" such
that Pr[D(C(z)) = z] < 1/2.

In a different setting, a recent related work of van Melke-
beek and Sdroievski [10] shows similar results for proving that
AM = NP.

It is not a priori clear how to directly compare the various
assumptions in the above works, all of which were proved to
be equivalent to universal derandomization.

a) Efficient Refutations: Another line of work, dating
back to [11] (see also [12]), studies efficient refutation. Sup-
pose we know a lower bound “f ¢ C” for some class of
algorithms C. The problem of efficient refutation asks how
easy it is to produce “bad” inputs, on which a given “weak”
algorithm A € C fails to compute f. More formally, for a
class C of algorithms (circuits, Turing machines, streaming
algorithms, etc.) and a function f: {0,1}* — {0,1}*, we say

'Throughout the paper, the meaning of “almost all inputs” will be “all
but finitely many inputs”; that is, every probabilistic machine succeeds in
computing the function only on finitely many inputs.

979-8-3503-1894-4/23/$31.00 ©2023 IEEE
DOI 10.1109/FOCS57990.2023.00062
Authorized licensed use limited to: MIT. Downloaded on March 28,2025 at 23:43:29 UTC from IEEE Xplore. Restrictions apply.

1008

an algorithm A is a refuter for f against C if for “many”
n and all C € C, A(1™,(C)) outputs 2 € {0,1}" such that
C(z) # f(x).> A lower bound of the form “f ¢ C” is said to
be constructive if there is a efficient refuter for f against C,
e.g. there is a refuter computable in polynomial time.

A recent work by Chen, Jin, Santhanam, and Williams [13]
showed that for a variety of unconditionally known lower
bounds, constructivizing these bounds (that is, finding efficient
refuters for them) would have significant consequences in
complexity theory. Most pertinently to the current work, they
showed that sufficiently strong refutation implies derandom-
ization: if there exist polynomial-time refuters against non-
deterministic models (one-tape Turing machines, as well as
streaming algorithms), then E needs exponential-size circuits,
which in turn implies prBPP = prP.> Indeed, their results
use the classical approach for derandomization, which relies
on strong circuit lower bounds, rather than the new approaches,
which use uniform lower bounds.

b) Our Contributions: A Bird’s Eye View: The main
question motivating this work is whether we can leverage the
new approach for derandomization in order to prove stronger
connections between refutation and derandomization. For ex-
ample, can we show that more relaxed forms of refutation
(compared to the ones studied in [13]) suffice for derandom-
ization? Taking this question even further: Can we show that
refutation is equivalent to derandomization, connecting the
study of refuters to the line of work proving characterizations
of the prBPP = prP conjecture?

We provide a strong affirmative answer to the foregoing
questions, by proving a general equivalence between deran-
domization and refutation. In fact, our refuter-based char-
acterization of derandomization generalizes and significantly
strengthens all the recently discovered results studying deran-
domization from weaker hypotheses (i.e., [6], [7], [8], [9]).
It turns out that looking at derandomization through the lens
of refutation allows us to directly compare the hypotheses in
each of these works, as well as to prove stronger results.

In more detail, we study the consequences of determinis-
tically refuting classes of probabilistic algorithms, for hard
functions in FP. We show that this sort of refutation — even
for unconditionally known lower bounds — is equivalent to
derandomization. Moreover, we prove that this equivalence
holds both for general probabilistic algorithms and for weak
classes of algorithms: the equivalence (or near-equivalence)
scales down “as far as” 7C°, which is a lower complexity
class compared to previous works studying derandomization
from weaker hypotheses.

c) Setup and Notation: We consider refuting non-
uniform classes C of algorithms: for every input length n, C
contains a set C,, of probabilistic algorithms. The algorithms
in C,, do not need to be Boolean circuits, as in the usual

2The “many” n may be infinitely many 7, or all but finitely many n,
depending on the lower bound being proved.

3They also showed that any proof of classical conjectured lower bounds
(such as NEXP # BPP) would necessarily yield constructive lower
bounds; that is, constructivity is necessary for proving these conjectures.

definition of non-uniform classes; for example, C,, could be
a set of probabilistic RAM machines or streaming algorithms
with a certain description length and runtime bound, where
we consider their execution on inputs of fixed length n.

We say that A is a refuter for a function f against a
class C = U,enC,, of probabilistic algorithms if for every
n € N and every C € C,, A(1™,(C)) outputs an z € {0,1}"
such that Pr[C(z) = f(z)] < 2/3, where the probability is
over the internal randomness of C. If A runs in deterministic
polynomial time, we say that A is an FP-refuter. We say that
A is a BPP-refuter for f against C if A runs in probabilistic
polynomial time and satisfies

Pr [A(l”7 (C)) outputs an = € {0,1}" such that
Pr[C(z) = f(x)] <2/3| >2/3

for every n € N and every C' € C,,, where the outer probability
is over the randomness of A.

A. Derandomization of prBPP vs Refutation for Low-Space
Streaming Algorithms

Define str-TZSP[t(n), s(n)] as the class of probabilistic
one-pass streaming algorithms that on n-bit inputs have de-
scription length 7, and run in time ¢(n) and space s(n).
Our first result asserts that constructing an JFP-refuter for
any function in f € FP against low-space streaming algo-
rithms suffices for derandomization. (This should be compared
with [13, Theorems 1.5 and 3.4], which needed refuters for
general non-deterministic machines.) In fact, we prove an
equivalence between such refutation and prBPP = prP, as
follows:

Theorem L.1. The following statements are equivalent:

1) Forsomee > 0and f:{0,1}* — {0,1}* computable in
polynomial time T, there is an FP-refuter for [against
str-TZSP[T (n)t+e, ne).

2) prBPP = prP.

3) For every class C of probabilistic RAMs supporting
error-reduction®, and every f € FP such that there is
a BPP-refuter for f against C, there is an FP-refuter
for [against C.

Theorem I.1 states multiple compelling equivalences. First
of all, it says that universal derandomization is equivalent to
derandomizing refuters against efficient low-space streaming
algorithms. We find this equivalence particularly surprising,
since this class of algorithms seems remarkably weak. We also
stress that there are many known unconditional lower bounds
for functions in polynomial time against streaming algorithms
with space o(n) and any running time (see, e.g., [14]). Thus,
one implication of Theorem [.1 is that constructivizing known
lower bounds for streaming algorithms suffices to prove that

prBPP = prP.

“Informally, we only require that in C, we can take the majority vote of
constantly many independent runs of an algorithm in C; see Definition VI.3
for details.

1009

Authorized licensed use limited to: MIT. Downloaded on March 28,2025 at 23:43:29 UTC from IEEE Xplore. Restrictions apply.

Second, Theorem I.1 also states that universal derandom-
ization (prBPP prP) is equivalent to derandomizing
every probabilistic polynomial-time refuter against a class
of probabilistic RAMs: when a probabilistic efficient refuter
exists, there is also a deterministic one. Therefore, deran-
domizing probabilistic refuters is “complete” for universal
derandomization.

Third, Theorem I.1 says that deterministically refuting
streaming algorithms is equivalent to deterministically refuting
significantly stronger classes C. For example, constructivizing
lower bounds for certain functions in quasilinear time against
n?~¢-time and n®-space streaming algorithms (e.g., construc-
tivizing lower bounds in [14]) would also constructivize lower
bounds for certain multi-output functions in quasilinear time
against general n*>~¢-time and n°-space algorithms (e.g., it
would constructivize lower bounds such as those in [15],
[161).>

a) Refuters for Functions with Multiple Output Bits: The
reader might have noticed that the function f in Theorem I.1
is allowed to have multiple output bits. This generalization
is important: constructing refuters for functions with multiple
output bits is, intuitively, a significantly easier task than
constructing refuters for decision problems. Thus, our results
offer a characterization of derandomization in terms of weaker
hypotheses. Moreover, it is through the use of multiple output
bits that we are able to generalize and strengthen the known
characterizations of derandomization from [6], [7], [8], [9],
as well as compare them to each other (we elaborate on this
in Section I-C).

In contrast to the proofs of our results (some of which
are quite involved), it is easy to show that refuters for
functions with a single output bit implies derandomization
(see Section III-E), and indeed the latter statement has fewer
interesting consequences.’

B. Scaling Down the Equivalence to Weak Circuit Classes

We demonstrate the generality of the connection between
refutation and derandomization by showing that the equiva-
lence in Theorem I.1 scales down to weak complexity classes.
In fact, we show that this equivalence scales “as far down”
as 7C°, which is a lower complexity class than in [6], [7],
[8]. As this scaling-down requires significant technical work,
we will only illustrate this for the “extreme point” of 7C°;

SThis can be viewed as a generalization and strengthening of [8, Theorem
1.2], who showed that leakage-resilient hardness with n® bits of leakage is
equivalent to leakage-resilient hardness with n — O(log(n)) bits of leakage,
by proving that both are equivalent to derandomization (where hardness here
is in the “almost all inputs” sense).

®This situation is reminiscent of that in Chen and Tell [6]. To see this,
note that prBPP = prP trivially follows from the existence of f € P
such that for all but finitely many inputs z, Pr,[M(z,r) = f(z)] < 2/3,
where M is a probabilistic machine solving the prBP7P-complete decision
problem CAPP. The main contribution of [6] is proving that prBPP =
prP follows from a similar statement for functions with multiple output bits.
(The original statement in [6] asserts that prBPP = prP follows from the
existence of f that is hard for all probabilistic machines running in some
fixed polynomial time; but since it suffices to derandomize a machine solving
a prBPP-complete problem, it suffices to require that f will be hard on
almost all inputs for a single (specific) machine F'.)

1010

we have no reason to doubt that similar equivalences hold for
stronger classes such as A'C. A secondary reason for proving
scaled-down equivalences is a hope that our results could be
leveraged in order to prove unconditional derandomizations
for weaker circuit classes.

In the following, we show connections between refuting
classes of probabilistic circuits with constant depth and a
sub-linear number of gates, and derandomization of constant-
depth circuit families of polynomial size with threshold gates,
aka. 7C".7 Towards stating the results, recall that CAPP is
the problem in which we are given a circuit C': {0,1}" —
{0,1} and want to distinguish between the case Pr,.[C(r) =
1] > 2/3 and Pr.[C(r) = 1] < 1/3. This problem is
prBPP-complete, in that CAPP is solvable in deterministic
polynomial time if and only if prBPP = pr/P. Also recall that
in CAPPy /5, we are given a circuit C': {0,1}" — {0,1} and
have to distinguish between the cases Pr,.[C(r) = 1] > 1/2
and Pr.[C(r) = 1] = 0. This “one-sided” CAPP problem
is solvable in deterministic polynomial time if and only if
pr’RP = prP.

a) Full Equivalence for a Specific Function: We first
consider refuters only for the specific “hard” function f(z) =
z, denoted Identity. Indeed, extremely weak algorithms fail to
compute ldentity (e.g., algorithms that only access n® bits of
input), and we show that refuters for Identity against certain
such classes is equivalent to solving CAPP in polynomial time,
for all of 7C°.

Theorem L.2. The following are equivalent:

1) There is a polynomial-time algorithm solving CAPP for
TC circuits.

2) For some € > 0, there is an FP-refuter for |dentity
against probabilistic TC° o® circuits that have O(n***)
wires, and n® gates in the bottom XOR layer.

As in Theorem 1.1, the refuted class in Theorem .2 is very
weak. In particular, for ¢ < 1 we already unconditionally know
that Identity cannot be computed by 7C" o @ circuits as in
Theorem 1.2; what we lack is an FP-refuter “witnessing” the
simple lower bound.®

b) Near-Equivalence for a Broader Class of Hard Func-
tions: Theorem 1.2 shows a full equivalence, but needs a
refuter for the specific function Identity. We now relax the
hypothesis by allowing refuters for a significantly richer class
of hard functions, at the cost of proving a near-equivalence
rather than a full equivalence. Details follow.

For a TC" circuit C' with T'(n) gates, consider the function
®(i,7) = w;,;, where i € [T'(n)] is the index of a threshold
gate g of C, j € [T'(n)] is the index j of a child h of ¢ in C,
and w; ; is the weight of h in the linear combination defining

TThroughout the paper, we restrict the gates in 7C° circuits to have
polynomially bounded weights; see Section III-A.

8Since there are only n° XOR gates in the bottom layer, all functions
computed by probabilistic 7C° o @ circuits have two-party (public-coin)
probabilistic communication complexity O(n®). For all € < 1, such protocols
cannot compute ldentity, as this would require both parties to completely
reconstruct the opposite party’s n/2-bit input.

Authorized licensed use limited to: MIT. Downloaded on March 28,2025 at 23:43:29 UTC from IEEE Xplore. Restrictions apply.

g. Roughly speaking, we say that a circuit C'is highly uniform
if ® is computable by P-uniform 7C° circuits of size 7°()
(see Definition II1.6).

Consider any f computable by highly uniform 7C° circuits.
In one direction (refutation = derandomization), we show that
a refuter for f against distributions over 7C° o SUM circuits
of n® gates, where € € (0, 1) is an arbitrarily small constant,
would suffice to solve CAPPg ;5 for all of T7C°. (As usual,
the notation SUM denotes gates that compute a weighted sum
of their inputs with polynomially bounded weights, over the
integers; see Section III-B1.)

Theorem 1.3 (informal, see Theorem VI.10). For every e > 0
and d,k € N there exists d > 1 such that the following
holds. Let f:{0,1}* — {0,1}* be any function mapping
n bits to n® bits that is computable by a family of highly
uniform threshold circuits of depth d and size n*. Assume that
there is a P-computable refuter for f against distributions
over TCg, o SUM circuits with n*¢ gates. Then, there is a
deterministic polynomial-time algorithm solving CAPPq 1 /o
for TCY circuits.

Similarly to our previous results, hard functions as in The-
orem [.3 exist, for example the inner product mod 2 (IP2)
function.” The challenge is in constructivizing the lower
bound.

To complement Theorem 1.3 and show a near-equivalence,
we will slightly restrict the class of hard functions and the
class of refuted algorithms. For a family of distributions D =
{Dy},cn where D, is over n-bit TC° o SUM circuits, we
say that D is 7C-samplable if for every n € N there exists
a multi-output TC° circuit S, called a sampler, such that
the output distribution of S, over random input is D,, (see
Definition II1.8 for details). Then:

Theorem 1.4 (informal, see Theorem VI.13). Let
f:{0,1}* — {0,1}" be computable by highly uniform
TC° circuits, and assume that there is a probabilistic
TC -computable refuter for f against Samp-TC°[n?), where
Samp-TC°[n%] is the class of TC°-samplable distributions
over TC® o SUM circuits with n* gates. Then, for the
following three statements, we have (1) = (2) = (3).
1) There is a deterministic polynomial-time algorithm solv-
ing CAPP for TC°.
There is an FP-refuter for f against Samp-TC°[n>].
There is a deterministic polynomial-time algorithm solv-
ing CAPPq 1 /o for T7C°.

2)
3)

c) An Improved Targeted Hitting-Set Generator: As
mentioned above, the proofs of our results leverage the recent
new approaches to derandomization. On the way to proving
Theorems 1.3 and 1.4, we also make a significant contribution
to the technical machinery underlying these new approaches,

“Following [17], any function computed by a distribution of linear threshold
circuits with n° gates has communication complexity at most O(n® logn).
Thus, our 7C® o SUM circuits can be simulated by communication protocols
with such complexity. However, the randomized (two-party) communication
complexity of IP2 is (n) [18].

1011

and this contribution is of independent interest. Specifically,
a main technical ingredient in our results is a “scaled-down”
version of the targeted PRG of [6], as follows:

Theorem L5 (informal; see Theorem V.1). Let f: {0,1}" —
{0,1}™") be computable by a family of highly uniform TC"
circuits of size T, let v € (0,1), and let M < T, Then,
there exist d' € N and deterministic algorithms H}’T'TCO and
R(}T’TCO that for every z € {0,1}" satisfy:

1) Generator: HJQT’TCO (2) runs in time poly(T") and prints
a set of M-bit strings.
Reconstruction: R?T'Tco(ln) prints a sampler for a
distribution Ry over TCY o SUM[T"] oracle circuits,
such that for any D: {0,1}M — {0,1} that satisfies
Pr.[D(r) = 1] > 1/M but D rejects all output strings
of H]‘ET’TCO(Z), we have

2)

Pr

[R?(z) prints a TCY, oracle circuit E
Rf <—Rf

such that tt(EP) = f(z)} >2/3,

where tt(EP) is the truth-table of EP.

To compare, Chen and Tell [6] proved a version of Theo-
rem 1.5 in which the function f is computable by logspace-
uniform circuits of fixed polynomial depth, and the recon-
struction procedure is computable by probabilistic logspace-
uniform circuits of comparable depth. Achieving reconstruc-
tion with constant-depth threshold circuits requires significant
technical work.

C. Generalizing Previous Characterizations of Derandomiza-
tion

The equivalences between refutation and derandomiza-
tion generalize and strengthen previous characterizations of
prBPP = prP, as well as allow to directly compare these
characterizations. To state this, we will need a more refined
technical version of Theorem I.1.

a) A Refinement of Theorem I.1: As a first step, instead
of refuting arbitrary non-uniform models, we consider Turing
machines with non-uniform advice, and distinguish between
the machine and the advice. That is, for every machine M,
and every sufficiently large n € N, and every advice string
a € {0,1}", we give the refuter input (M, a) and ask it to
print z such that Pr[M (a, z) = f(z)] < 1/2. We also consider
the natural relaxation of refuters to list-refuters, in which the
refuter is allowed to print a list 1, ..., Zpory(n) € {0,1}", and
it is only required that for some ¢ € [poly(n)| the string z;
will be a hard input for M with advice a.

The next two relaxations are somewhat less natural, but they
make our results significantly more general. So far, the output
of the hard function f depended only on the input x; we will
also allow the function f to depend on the advice a (i.e., on the
refuted algorithm), requiring that Pr[M (a,z;) = f(a,z;)] <
1/2 for some 4. Lastly, we relax the conditions even further
by considering what we call compression list-refuters, where
we only require that M (a, z;) will fail to print a small circuit

Authorized licensed use limited to: MIT. Downloaded on March 28,2025 at 23:43:29 UTC from IEEE Xplore. Restrictions apply.

(say, of size \/|f(a,z;)|) whose truth-table is f(a,x;) (see
Definition I11.4).

Our most general technical statement is analogous to The-
orem [.1 but holds even for the very relaxed notions of
refuters described above. Let us state the result a bit informally
here, while focusing for simplicity on the “refutation =

derandomization” direction:

Theorem 1.6 (informal, see Theorem VI.1). Let ¢ > 0
and T(n) = poly(n), and let f be any advice-dependent
function that is computable in time T and hard for
str-TZSP[T "¢, n).'% Assume that there is a list-refuter in
FP for f against str-TISP[T ¢ nf] algorithms that try
to compress the output from length N to length \/N. Then,
prBPP = prp.

For a detailed technical statement, which also includes the
converse direction to Theorem VI.1 (i.e., it shows a full
equivalence), see Corollary VI.5.

b) Generalizing and Strengthening Known Results: Our
results strictly improve over the known works that characterize
prBPP = prP in terms of uniform hardness hypotheses
(see [6], [7], [7], [9]). Roughly speaking, there are three
“moving parts” in our equivalences between derandomization
and refutation: the complexity of the hard function f, the
weak class C of algorithms being refuted, and the complexity
of the deterministic refuter itself. Ideally, we would like to
deduce derandomization from refuters against the weakest-
possible class C, for any hard function f € FP, and while
only requiring that the refuter runs in FP.!"

As we explain in Section VII, results in previous works [6],
[7], [8], [9] can all be recast in the terminology of refuters
(see Table I). From this perspective, all prior works relate
derandomization to refuters for the identity function. That is,
fixing a universal constant ¢ > 1:

o Chen and Tell [6] showed that prBPP = prP follows
from refuters computable by logspace-uniform circuits of
depth n? for Identity against the class C of probabilistic
time-n® algorithms that only depend on the input length
(i.e., the weakest class in terms of input access). A
conjecture implicit in [6] asserts that prBPP = prP is
equivalent to FP-refuters for ldentity against C, without
the depth restriction. (See Section VII-C.)

o Liu and Pass [8] showed that prBPP = prP is equiv-
alent to FP-refuters for ldentity against communication
protocols with runtime n¢ and with n® bits of commu-
nication, for an arbitrarily small constant € > 0. (Recall
that this class is stronger than str-7ZSP[n¢, n¢], because
the communicating party is allowed arbitrary access to its

1ONote: The class str-TZSP[t(n),s(n)] here is defined not as non-
uniform streaming algorithms, but as uniform streaming algorithms that
receive non-uniform advice; see Sections III-A and III-A3 for an explanation
of the distinction.

There is good reason to only attempt to deduce derandomization from
refuters for f € FP, rather than (say) relax the requirement to f € FBPP.
Loosely speaking, a proof of the conditional statement “refutation of any
f € FBPP implies derandomization” would unconditionally imply that
prBPP = prP; see Claim V1.6 for precise details.

input.) Korten’s characterization [9] can be viewed in a
similar light. (See Section VII-A.)

o Finally, the hardness assumption for conditional Kol-
mogorov complexity proved by Liu and Pass [7] to
be equivalent to prBPP = prP can be viewed as
a compression list-refuter for Identity against general
probabilistic time-n® algorithms. (See Section VII-B.)

Thus, the main improvement of our results (i.e., of Theo-

rem 1.6 and Corollary VI.5) over prior work is in weakening
the class of refuted algorithms (i.e., to str-TZSP[T1¢, n¢))
and in extending the class of hard functions (i.e., from ldentity
to all functions computable in time 7).

¢) An Open Problem: A natural goal is to improve our
results by further weakening the class of refuted algorithms,
and further broadening the class of hard functions. What could
be an ideal result to hope for in this context? We suggest the
following open problem:

Open Problem 1. Prove the following statement, for some
constant ¢ > 1: If there is an F'P-refuter for some f € FP
against probabilistic algorithms running in time n® that do
not examine their input (i.e., the algorithms only depend on
their input length), then prlBPP = prP.

The refuted class of algorithms in Open Problem 1 is the
weakest possible in terms of the dependency on the input.
Recall that if prBPP = prP, then (by Theorem I.1) for
any f € FP, and essentially any class C of RAMs such
that there is a BPP-refuter for f against C, there is an FP-
refuter for f against C. Open Problem 1 asks to prove a strong
converse direction: even a refuter against the weakest possible
class C (in terms of input-dependency) suffices to prove that
prBPP = prP.'> We note that an analogous statement for
the case of functions f € P with a single output bit is easy
to prove (see Claim III.17).

D. Refuters Against Deterministic Algorithms and the Lossy
Code Problem

So far, we showed universal derandomization follows from
(or is equivalent to) deterministic refuters for probabilistic
algorithms. We show that derandomization consequences fol-
low even from a refutation task that is potentially easier:
deterministic refuters for deterministic algorithms.

To see this, let us recall Korten’s perspective on deran-
domization [19], which centers around a problem called
LossyCode. The problem is defined as follows:

Definition 1.7 (LossyCode [19]). In LossyCode, given a pair
of circuits C: {0,1}" — {0,1}"! and D: {0,1}"1 —
{0,1}™ as input, the goal is to output an x € {0,1}" such
that D(C(z)) # x.

Note that LossyCode can be solved easily using random-
ness, since half of the inputs = € {0,1}" satisfy the required

12Indeed, Open Problem 1 asks to prove its conclusion when f € FP can
be arbitrary, rather than only a function that has a BPP-refuter. However, we
stated the problem in this manner only for simplicity: proving the statement
in Open Problem 1 only for functions in f € F'P that have a BPP-refuter
would be just as interesting.

1012

Authorized licensed use limited to: MIT. Downloaded on March 28,2025 at 23:43:29 UTC from IEEE Xplore. Restrictions apply.

Reference Hard function f Weak class C Refuter Complexity
[6] Identity obl-BPTIMEnC] | lWu-TIMEDEPT Hpoly(n),n?]
[7] Identity BPTIME[n] FP
[81, [9] Identity ow-COMM[n®, ne| FP
Thm 1.6, Cor VL5 | DTZIMENI=)¢] | str-TZSP[n¢,n%] FP
Conjecture FP obl-BPTZME[n¢] FP

TABLE I: In the above, ¢ > 1 is a sufficiently large universal constant, and € > 0 is an arbitrarily small constant. We have

the following relationships:

obl-BPTZIME[n] C str-TZSP[n®,n°] C ow-COMM[n®, n°] C BPTIME[n],

where obl-BPTZME[T] refers to probabilistic T-time algorithms that do not examine their input (i.e., only depend on
its length); and ow-COMM|T, k] refers to probabilistic one-way communication protocols that run in time 7" and send
k bits; and strTZSPIT, S| refers to probabilistic streaming algorithms running in time 7" and space S. Also, the class
lu-TZMEDEPTHT, d] represents logspace-uniform circuits of size 7" and depth d.

property (and given z, it is easy to check if D(C(x)) # z).
However, it seems challenging to solve the problem determin-
istically. In contrast to CAPP, we do not know if LossyCode
is complete for prBPP, and in fact proving so would imply
that BPP C NP (see [19] for an explanation). This implies
that there might be more hope for progress on deterministic
poly-time algorithms for LossyCode, compared to CAPP.

First, we show that solving LossyCode reduces to (deter-
ministically) refuting deterministic streaming algorithms, for
any hard function in FP. Leveraging the ideas of [19], we
prove:

Theorem L.8. For any function f € FP and ¢ € (0,1), if
there is an FP-refuter for f against n®-space polynomial-time
deterministic streaming algorithms, then LossyCode € FP.

To obtain a full equivalence between efficient refutation
and solving LossyCode, we consider refuters for specific,
well-studied functions. In particular, we show that solving
LossyCode is equivalent to providing efficient refuters for
Set-Disjointness (DISJ) or for Inner Product (IP)
against low-space streaming algorithms, where space is mea-
sured in the number of stored bits.'?

Theorem 1.9. For a function f € {DISJ,IP} and all € €
(0,1), the following are equivalent:
1) There is a refuter in FP for f against n®-space poly-
time deterministic streaming algorithms.
2) There is a refuter in FP for [against (n — 1)-space
poly-time deterministic streaming algorithms.
3) LossyCode € FP.

II. TECHNICAL OVERVIEW

The algorithmic framework for derandomization in this
work uses targeted pseudorandom generators (tarPRGs),
as defined by Goldreich [20]. As in recent works [6], [7],
[8], [10], we will use reconstructive tarPRGs. To describe

31n the DISJ,, (IP,, resp.) problem, one is given two n-bit strings x,y €
{0,1}™ (y is given after all of x) and the goal is to determine whether their
inner product ", x;y; is non-zero (odd resp.).

1013

this object, consider derandomizing the probabilistic machine
= MCAPP that solves the prBPP-complete problem
CAPP. At a high level,

1) Given input z € {0,1}", the reconstructive tarPRG
computes a string f(z), and then maps f(z) to a set
Sz, f(z) of n-bit strings s1, ..., 55, for i = poly(n). We
output MAJ{M (2, 5:)};c(7)-

The pseudorandomness of S, re) for M(x,-) fol-
lows by designing an efficient reconstruction algo-
rithm R: Assuming that Pr,.co 13~ [M(z,7) = 1] ¢
Pricm[M(z,s;) = 1] £ 1/10, the algorittm RM (=)
computes = — f(x) “too efficiently”. Since our hypoth-
esis will be that f is hard to compute very efficiently
on x, we reach a contradiction.

2)

In recent works, the mapping of f(x) to the set S, p(z
generally used known technical tools: for example, we may
think of f(z) as the truth-table of a function {0, 1}'°s(I/(=))
{0,1}, and apply the Nisan-Wigderson construction [1] (with
the code of [3]) to this function. The novelty in [7], [8],
following [6, Section 2.1], was in reanalyzing the known re-
construction argument of [1], [21], [3] to prove the correctness
of the tarPRG, applying the same high-level template outlined
above, with a suitable (new) hardness assumption.'*

For example, if the reconstruction R requires n® queries to
the truth-table f(x) (as in [1], [21], [3]), then one needs to
assume that the mapping = +— f(x) is hard to compute even if
one is allowed “leakage” of n® bits from f(x). Furthermore,
if we want the tarPRG to succeed on all inputs, then this same
type of hardness should hold for all (but at most finitely many)
inputs. This is precisely how the result in [8] is proved.

14Loosely speaking, the original argument of [21] applied only to functions
that have certain structural properties (i.e., are downward self-reducible
and randomly self-reducible), yet required standard hardness assumptions.
In [6, Section 2.1] and [7], [8] it was reanalyzed (for tarPRGs) without the
assumption that the function has structural properties, but with new types of
hardness assumptions.

Authorized licensed use limited to: MIT. Downloaded on March 28,2025 at 23:43:29 UTC from IEEE Xplore. Restrictions apply.

A. Our Starting Point: A New Perspective

We suggest a new perspective on the above framework. Let
us think of the problem of computing f algorithmically: how
hard it is to compute f that will have the required properties?
Another way to frame this question is to ask: given x, how
hard is it to find f(x) such that RM(*)(z) fails to print f(z),
when it has some “limited access” to f(z)? (The meaning of
“limited access” here could be, say, n° bits of information, as
in [8].)

Our key observation is to think of x not as specifying an
input, but rather as specifying the algorithm R, = RM () (z),
and to think of f(z) not as the output of R,, but rather as
a potential input for R,. That is, reformulating the question
above:

We are given a description of an algorithm R, and
our task is to find a string y such that R, fails to
print y, even when R, has some “limited access”
to .

Indeed, this is precisely a refutation task for the algorithm
R, where we are trying to find a “bad” input y demonstrating
that R, does not compute the hard function ldentity(y) =
y. Moreover, recall that in previous works, the requirement
was that computing the mapping « + y will be hard for the
reconstruction algorithm R on all but finitely many x. From
the current viewpoint, this translates into requiring that the
refuter will succeed in the worst-case, i.e., succeed in finding
a hard y when given any R, (except, perhaps, on finitely many
).

From a technical viewpoint, given the perspective above,
we will improve the known results by: (1) extending the class
of hard functions (i.e., allowing more hard functions than
just ldentity), and (2) creating more efficient reconstruction
algorithms R, such that they can work with “even less access”
to y, and with more restricted computational resources.

B. Warm-Up: The Nisan-Wigderson Generator

As a warm-up, let us prove that (deterministic polynomial-
time) refuting the function ldentity against streaming algo-
rithms with n® space (for an arbitrarily small constant € > 0)
implies prBPP = prP.

We are given x as input to the probabilistic algorithm
M = M®APP which solves CAPP. We know in advance
the reconstruction algorithm R that our proof will use (see
below), and moreover there is an efficient mapping from z to
R, = RM®")_ Therefore we can compute the description of
R, and feed the description to the poly-time refuter, which
outputs y. Thinking of y as a truth-table, we use the standard
construction of [1], [21], [3] to obtain a set of strings that is
hopefully pseudorandom.

The main observation needed for the proof is that the re-
construction algorithm R of [1], [21], [3] can be implemented
by a streaming algorithm that passes over y. Specifically,
the combination of the local list-decoder of [3] and of the
reconstruction of [1], [21] only requires making non-adaptive
linear queries to y (since the code of [3] is linear, and since

the queries of [1], [21] are non-adaptive). Indeed, a streaming
algorithm can first toss random coins to choose linear queries
to y, then resolve these queries in a single pass over y, and
finally run the rest of the reconstruction procedure without
accessing y again.

Furthermore, this streaming algorithm also uses low space.
This essentially follows by a padding argument: given x €
{0, 1}"0, we instantiate the argument above with 2’ = z0"~ "0,
where n = (ng)¢/* for a sufficiently large constant C' > 1.
The number of coins that M needs is |z| = n°/C, and there-
fore (closely inspecting the reconstruction argument in [1],
[21], [3] for this parameter setting) the number of queries to
y is at most, say, nc/2. Thus, the streaming algorithm only
needs n® space to resolve these queries during its pass on .

C. A Broader Class of Hard Functions

Let us now describe the proof of Theorem I.1. The main part
of the proof is to deduce derandomization from the existence
of a refuter for any function f computable in time T'(n) =
poly(n) against streaming algorithms running in time 71+¢
and space n°®.

Starting with the argument above, instead of applying the
PRG construction of [1], [21], [3] to y, we will apply a
targeted hitting-set generator (tarHSG) H®T from [6] to v,
where HCT is instantiated with the hard function f. That is,
given z, we first compute a description of R, = RM(®")
for a predetermined reconstruction algorithm R that will be
presented below, run the refuter on R, to obtain a bad input
v, and finally run H°T, instantiated with the hard function f,
on input y, to obtain a pseudorandom set.

We argue that this construction is a tarHSG,'®> which implies
that pr’RP = prP and hence (by [22], [23], [24], [25])
prBPP = prP. To do so, we analyze H°T in a different way
than in [6]. Recall that for any f computable in deterministic
time 7" and input y for f, the generator H° produces ¢ ~ T
sets S’%;,...,S;g.'ﬁ We argue that the following holds: If

M (z,-) distinguishes every set S}; from random, then we
can compute y — f(y) by a one-pass streaming algorithm
R, using time T+¢ and space n¢. Since this contradicts the
properties of the refuter (i.e., the refuter finds y that fails R,),
we conclude that our construction is indeed a tarHSG.

To prove this we need to give a reconstruction algorithm
R, with such properties. We recall the following facts about
H®T and about its known reconstruction algorithm:

1) The generator HT simulates the uniform circuit comput-
ing f(y), and transforms the matrix Gf) representing
the gate-values in this circuit into an “encoded” matrix
B/ that we call a bootstrapping system, which has

5That is, if Pry[M(z,7) = 1] > 1/2 then there exists a string s in the
pseudorandom set such that M (x,s) = 1.

10The original work [6] required that f will be compuable by logspace-
uniform circuits of size 7" and depth d, and the number of pseudorandom
sets was ¢ & d. In this work we use any function computable in time 7', and
instantiate the original construction with d ~ T' (as any function computable
in time 7" is computable by logspace-uniform circuits of size O(T') and depth
o(T)).

1014

Authorized licensed use limited to: MIT. Downloaded on March 28,2025 at 23:43:29 UTC from IEEE Xplore. Restrictions apply.

useful properties (the transformation uses the ideas of
Goldwasser, Kalai, and Rothblum [26]). For simplicity,
assume that the dimensions of B®f) are identical to
those of G(/). Then, HCT applies the generator of [1]
to each of the ¢ ~ T rows of B, to obtain pseudo-
random sets S]g;, . S}t; The output is UIS}LL

The reconstruction argument works in a layer-by-layer
fashion: it starts from the bottom layer, which has an
encoding of y, and in the end reaches the top layer,
which has f(y). For each layer i = 1, ..., ¢ sequentially,
we run the reconstruction argument of [1], [21] RNW
to obtain a small circuit C; whose truth-table is the *"
layer. The algorithm RNW needs to make queries to the
(i — 1)*" layer,'”” and since we already have a circuit
Ci—1 whose truth-table is the (i — 1)*" layer, we can
simulate C;_; to answer the queries of RNW.

As in Section II-B, since the number of random coins that
we need is, say, n¢/2, each step of the reconstruction can be
executed in time n° (and in particular, each step makes at most
n® queries and prints a circuit of size at most n®). This yields
an algorithm R, that computes y — f(y) in time T+, but
we still have not explained why R, is a low-space one-pass
streaming algorithm.

The key observation is that we can implement R, with
limited access to y. Specifically, we start the reconstruction
from the second layer of the circuit for f(y). The only time
we need access to the first layer, which encodes y, is when
answering the queries of RNW to the first layer (i.e., when we
run RNW to get a circuit Cy for the second layer). Moreover,
since the first layer is a linear encoding of y, to answer these
queries we only need to compute linear functions of y. Since
there are at most n® queries in each step, we can compute
these n® linear functions of y by an nf-space one-pass
streaming algorithm. For precise details, see Theorem III.15
and Section VI-A.

a) The Converse Direction: Obtaining an Equivalence:
To prove Theorem I.1 we also need to show the converse di-
rection, i.e., that derandomization implies refutation. Observe
that the first direction (described above) holds for any f in
time 7'; to get an equivalence, we now restrict our attention
to f’s that have a BPP-refuter, denoted Ref.

Then, proving the converse direction is simple. Note that we
can fest whether a given string y is actually a bad string for R,
(i.e., by computing f(y), simulating R,(y), and comparing
the outcomes). Thus, to find y that will be bad for R,, we
run a search-to-decision reduction as in [20]: we construct
random coins for Ref bit-by-bit, and in each step we verify
that the probability that Ref ; outputs a string that is bad for R,
(conditioned on the current prefix of coins) is approximately
maintained. Each step requires solving a decision problem in

2)

~
~

7This description abstracts away many technical details. For example, the
algorithm RNW actually needs to make queries to the i*" layer to construct
C;. We require B(f) to be downward self-reducible, and thus these queries
can be answered by a small number of queries to the (i—1)*" layer. (The other
property that we require from B(f:¥) is that each layer will be a codeword
in a sufficiently good error-correcting code; see Section V for details.)

1015

prBPP, and thus (by our assumption) this problem can be
solved in prP. For details see Theorem VI.4.

D. Extending the Connection Down to TC°, and an Improved
Chen-Tell Generator

Next, we prove that the equivalence between refutation and
derandomization is more general, and in fact scales all the way
down to 7C circuits. The equivalence stated in Theorem 1.2,
which refers to the specific hard function ldentity, follows
from ideas similar to the ones in Section II-B, only with a more
careful analysis of the known algorithms of [1], [21], [3] (for
details see Theorem III.14, Appendix B, and Theorem VI.7).

‘We therefore focus on the connection in Theorem 1.4, whose
proof is the most technically involved part of this work.
Let us first sketch the proof of the special case stated in
Theorem 1.3: if there is a refuter for any function in highly
uniform 7C° against distributions over TC%oSUM of size ne,
then CAPPg ; /5 of 7C° circuits can be solved in deterministic
polynomial time.

The CAPPg /o algorithm is similar to the one in Sec-
tion II-C: it receives an input z € {0,1}" (which represents a
TCP circuit of size n°), computes the description of a sampler
R, = S for a distribution over 7C" o SUM circuits (where S
is a predetermined uniform algorithm that we describe below),
feeds R, into the refuter to obtain y, and runs a tarHSG
HCT™C that we will construct (instantiated with the function
f) on input y to obtain pseudorandom strings.

Our goal is to construct HS™™® that is instantiated with
a function f computable by highly uniform 7C° circuits of
size T(n) = poly(n), such that HTT® has a reconstruction
algorithm Rec that is a distribution over 7C" o SUM circuits
with n® gates. To do so, consider the matrix Gy of gate-
values for f(y), which has d = O(1) rows and 7' columns.
We want to encode G/*%) into a bootstrapping system B(/+¥)
that has a 7C" o SUM reconstruction Rec, as follows:

1) For d O(d), every circuit in the support of R,
will consist of a sequence of d' — 1 TC° circuits
Rec(2), e Rec¥ of size n®, where Rec(® corresponds
to the i*" row of B,

For i = 2,...,d’, the circuit Rec® gets access to a
distinguisher D for the tarHSG (we think of D as the
TCO circuit x), and prints a circuit C; whose truth-table
is the it" layer in BUY): to do so, Rec'” makes non-
adaptive queries to C;_; (i.e., to the circuit that Recli—1)
printed).

The circuit C; (that Rec'® queries) consists of a layer
of n® “SUM gates” such that each “gate” computes a
weighted sum (over the integers) of the bits of 3.'8

a) The Technical Challenges, and our High-Level Ap-

proach: The reconstruction algorithm for each row in [6] is
an NC circuit. We do not know how to design a more efficient
reconstruction algorithm (in particular, in TC°) for each row

2)

3)

18We write “gate” because this functionality is implemented in binary, and
therefore each “SUM gate” actually consists of several gates, which represent
the outcome of the weighted sum in binary.

Authorized licensed use limited to: MIT. Downloaded on March 28,2025 at 23:43:29 UTC from IEEE Xplore. Restrictions apply.

when using their B(/*¥): the reason is that the reconstruction
algorithm implements the list-decoder for the Reed-Muller
code [3], which in turn uses the list-decoder for the Reed-
Solomon code [27]; there is currently no known list-decoder
for Reed-Solomon that works in constant depth.

To support TC° reconstruction of each row, we will con-
struct a new bootstrapping system B(/¥). This bootstrapping
system can be viewed as a new and more efficient version
of the [26] encoding of uniform circuits. For an arbitrarily
small constant § > 0, the bootstrapping system B(/*¥) has P-
uniform 7C? circuits of size 7 that can list-decode each row
from distance 1/2 +7~%(%) and that reduce the computation
of an entry in a row i to the computation of T entries in row
1 — 1. (See Proposition V.5 for a precise statement.)

The main technical ingredient in the construction of B(/:¥)
is an error-correcting code that is locally encodable and
approximately locally decodable by uniform TC° circuits; that
is:

Proposition IL.1 (informal, see Proposition IV.1). For every
v,v > 0 and finite field F of size |F| < poly(N) there exists
a mapping Enc: TN — {0,1}V, where N = N, such that
the following holds:

1) (Locally encodable.) There is a P-uniform family of
TCO circuits of size NOOH) that gets input i € [N],
queries z € TN at N7 locations, and outputs Enc(z);.

(Locally approximately decodable.) There is a P-
uniform family {Dn}ycy of probabilistic oracle
TC° circuits of size NOOH) such that for ev-
ery z € TN and any O € {0,1}V satisfying
Prjciny [Enc(z); = O(j)] > 1/2 + N7, the following
holds. The circuit Dy first has a probabilistic prepro-
cessing step, in which it non-adaptively queries z, and
with probability 1 — o(1) satisfies the following. There
is S C [N] of density |S|/N > 1— N7 such that for
every i € S,

2)

Pr [(DN)O(Z) = Zl} > 2/3 ,

where the probability is over the random coins of D
after the preprocessing step.

We believe that the improved bootstrapping system and the
code in Proposition II.1 are of independent interest, and may
find further applications. As one example, they allow us to
scale down the results in [6] to hold for TCO circuits, rather
than only for AV/C circuits; this is essentially the content of
Theorem 1.5 (see Theorem V.1 for the detailed statement).

1) The New Bootstrapping System: An Improved Version of
the GKR Encoding: The idea for constructing B%-/) in [26],
[6] is to think of each row i € [d] in GU/¥) as a function
a;: {0,1}1°8(T) — {0, 1}, arithmetize the row as a polynomial
&;: F™ — T, and insert additional polynomials between each
pair of rows that implement a sumcheck-like functionality.
This yields a matrix (with entries in IF) such that each row is
a codeword in a locally list-decodable code, and computing
any entry in row ¢ efficiently reduces to computing a few

1016

entries in row ¢ — 1 (the reader is referred to [6] for a detailed
explanation).

Our goal is to construct B¥/) when f is a highly uniform
TCO circuit, such that the local list-decoder for each row is a
T7C° circuit, and the downward reduction from row 7 to row
i — 1 is computable in 7C°.

a) Arithmetization and Sumcheck Polynomials: We first
define «; differently than in [26], [6]: for every threshold
gate g(y) = L[>, wn - h(y) > 64] (where the h’s are the
gates feeding into g, and the wy ;,’s and 6, are real numbers),
we define ;(g) = >, wyn - h(y). The arithmetization of
«; is now straightforward, ie. ;(g) = 3, ®(g,h) - h(y)
where & is an appropriate arithmetization of the function
®(g,h) = wgy,;, (see below). Whenever our algorithms (e.g.,
for downward self-reducibility) will need to obtain a value
g(y) in the i*" layer given access to &;, they will compute the
function 1[&;(g) > 6], which can be done in 7C".

Relying on the fact that the size-7" circuit for f is highly
uniform (which means that ® is computable by a uniform
TCO circuit of size T°(); see Definition [11.6), we arithmetize
the ®’s by polynomials of degree T° over a field of size
p = O(T?), where § > 0 is a sufficiently small constant.
This allows us to insert only constantly many sumcheck-like
polynomials between each pair of rows, and hence B¥) is of
constant depth d’ = O(d). (See Proposition V.3 for details.)

Now we have a sequence of d’ rows such that each row
is a codeword in the Reed-Muller code, and the sequence
is downward self-reducible by uniform 7C° circuits (again,
details appear in Proposition V.3). The main trouble is that
the local list-decoder for each row, i.e. the local list-decoder
for the Reed-Muller code, is not known to be in 7CP.

b) Local Encodability and Approximate Local Decod-
ability for Reconstruction: In [6], each row was further
encoded by the Hadamard code to yield a binary matrix B(/>¥)
(whose rows were used as truth-tables for the generator of [1]).
To resolve the problem above, instead of the Hadamard code,
we encode each row by the code from Proposition II.1.

To see why this is helpful, think of each &; as already
encoded in a code that is uniquely decodable in TC° from
distance 1—7~%M): the 7€ decoder implements the standard
unique decoding for the Reed-Muller code. Combined with
the 7C° local approximate decoder of the code from Proposi-
tion II.1, each row is now locally decodable from agreement
1/2+ 7921 by TCP circuits, as we wanted.

To prove that B%) is still downward self-reducible, we
will rely on the TCO—local—encoding property of the code.
Specifically, since each entry j in row 4 is a local encoding of
¢é;, computing the j* entry reduces to computing “a few”
values of &;; and computing each value of &; reduces to
computing “a few” values of &;_;, which in turn appear as
entries in the encoding of &;_;."” And since the local encoding
of the code is computable in P-uniform TC of size T9, this

9Tndeed, while we did not state this in Proposition II.1, the code is
systematic; see Proposition IV.1.

Authorized licensed use limited to: MIT. Downloaded on March 28,2025 at 23:43:29 UTC from IEEE Xplore. Restrictions apply.

sequence of reductions can be computed in P-uniform TC°
of such size.

The last part is implementing the base case, i.e. the bottom
row of BU:¥)_ This bottom row needs to compute values of the
low-degree extension of y (since these are the queries made
by the downward self-reducibility algorithm, when running the
reconstruction for the second row). Indeed, these values can be
computed using SUM gates (see Proposition V.3 for details).

2) A TC°Locally Encodable and TC°-Locally
Approximately-Decodable Efficient Code: The proof of
Proposition II.1 follows a recent construction of a code by
Doron and Tell [28].2° The code is actually a combination of
two codes: the first code increases the distance from N —2(1)
to a tiny constant § > 0, using a refinement of a construction
by Goldwasser et al. [29]; and the second code increases the
distance from 0 to 1/2 — N~ using the derandomized
direct product of Impagliazzo and Wigderson [2].

a) The First Code: We use the classical expander-based
distance-amplification of Alon et al. [30], to increase the
distance from N (1) to (say) 0.4. This code has a constant-
depth decoder, and as proved by Gutfreund and Viola [31]
(see [29]), using the Gabber-Galil [32] expander, encoding can
be done by constant-depth circuits (see Lemma [V.4).

The problem is that now the alphabet is large, and we
want to decrease it to binary. Moreover, we want to do
so while maintaining a non-adaptive constant-depth decoder,
since non-adaptivity is important for the construction of B(/¥).
An idea from [28] is to use a sequence of concatenation
steps with different codes to gradually decrease the alphabet,
while approximately maintaining the distance and preserving
the complexity of the decoder at each step. We follow the
same approach, while ensuring local-encodability in 7C (see
Sections IV-A2 and 1V-A3).

b) The Second Code: We use the derandomized direct-
product code of [2], concatenated with the Hadamard code,
to increase the distance from ¢ to 1/2 — N~ Indeed, this
code is locally encodable by P-uniform TC circuits; to see
this, let us focus on local encodability of the code of [2]. Given
an output index ¢, we can compute the locations in the input
that appear in the " output location, by XORing: (1) the
output of the expander-random-walk sampler (we again use
the Gabber-Galil expander, which is computable in constant
depth), and (2) the output of a combinatorial design function
(where the combinatorial design is hard-wired into the circuit
by the P-uniform algorithm constructing the circuit). See
Proposition IV.6 and Claim IV.6.1 for details.

The local decodability of this code by TC° circuits is
presented in a non-standard way in Proposition II.1, but it
(essentially) already follows from a close examination of
the decoding algorithms from [33], [2]. See the proof of
Proposition IV.6 for details.

3) Getting a Near-Equivalence: A TC°-Samplable Recon-
struction: So far, we described the proof of Theorem 1.3,

20We use the same ideas as in [28], but cherry-pick parts of the construction,
and argue different properties.

which asserts that efficient refutation of distributions over
small 7C° o SUM circuits implies derandomization of 7C°
(with one-sided error). To prove the two-way connection stated
in Theorem 1.4, we need an additional observation.

Recall that in the argument above, we denoted by Rec
the distribution over small 7C° o SUM circuits, and we also
mentioned that Rec has a uniform sampler S. However, the
argument already supports a stronger statement: going through
our proofs, we can implement S as a P-uniform TC° circuit
(of fixed polynomial size, say n?). It follows that R, = S® is
a TC circuit that samples a distribution over C, where C is
the class of small 7C° o SUM circuits.

This observation paves the way towards proving a con-
verse direction, i.e., showing that derandomization of TCO-
samplable distributions over C implies refutation of such
distributions. To see this, assume that we have a deterministic
polynomial-time CAPP algorithm for 7C°, and let f be a
function with a 7CC-refuter (as detailed in the hypothesis
of Theorem I.4). Given a 7C"-sampler for a distribution
over C, we use the same search-to-decision reduction as in
Section II-C: we construct random coins for the refuter bit-by-
bit, where the decision at each step reduces to solving CAPP
for 7C°. For the full details, see Theorem VI.13.

III. PRELIMINARIES

For a positive integer k, we use [k] to denote the set
{1,2,...,k}. We use N to denote all non-negative integers
and N> to denote all positive integers.

As mentioned in Section I, in this paper we consider refuters
for non-uniform models of computation. We will have two
formalizations of non-uniform models: the first refers to RAMs
that take advice, and is presented in Section III-A; and the
second refers to non-uniform circuits, and is presented in
Section III-B.

A. Classes of RAMs, and Refuters for Machines with Advice

The machine model in this paper is the RAM model, and
in particular we consider classes of RAMs that take advice.
More formally, these will be RAMs that take two inputs
(a,z), and we think of a as non-uniform advice and of x
as the actual input, and analyze the machine accordingly
(see Section III-A3). Throughout the paper, when referring
to such machines, we will usually omit the suffix “that takes
advice”, but this is always implicitly assumed.

1) Streaming Algorithms: One class of RAMs that we will
repeatedly refer to in the paper is streaming algorithms (that
take advice), defined as follows:

Definition IIL.1 (streaming algorithms). A one-pass stream-
ing algorithm running in time 7" and in space s is a RAM
that takes as input (a, x), runs in time T'(|a]+|x|) and in space
s(la| + |x|), and accesses x in a bit-by-bit fashion, reading
each bit of x once and in-order. (There is no limitation as
to how the machine accesses a.) We denote the class of such
algorithms by str-TIZSPIT, s].

1017

Authorized licensed use limited to: MIT. Downloaded on March 28,2025 at 23:43:29 UTC from IEEE Xplore. Restrictions apply.

Recall that in the beginning of Section I we referred to
str-TZSP as the class of non-uniform streaming algorithms,
rather than as the class of uniform streaming algorithms that
take advice. We explain this difference in Section III-A3.

2) Refuters for Classes of RAMs: To define refuters for
classes of RAMs, we consider a generalized notion of a hard
function, in which the function may also depend on the advice.
More formally:

Definition III.2 (algorithm-dependent hard function). Let
f:{0,1}* x {0,1}* — {0,1}* and let C be a class of
probabilistic RAM machines, and let p: N — N. We say
that f is a p-bounded algorithm-dependent hard function
against C if for every M € C and sufficiently large n € N
and string a € {0,1}" there exists x € {0,1}*(™) such that
Pr[M(a,z) = f(a,z)] <2/3.

A refuter for a class C gets as input a description of M € C
and also an arbitrary advice a, and outputs x such that M (a, x)
fails to compute f(a, x). The first type of refuter that we define
is a list-refuter, which outputs a set x1,...,z; such that for
some ¢ € [t] it holds that M (a, z;) fails to compute f(a,z;).

Definition IT1.3 (list-refuter). Let C be a class of probabilistic
RAM machines, and let f be a p-bounded algorithm-dependent
hard function against C for some p. An algorithm A is
a P-computable list-refuter for C against f if for every
M € C and sufficiently large n € N, when given as input
the description of M and a string a € {0,1}", the algorithm
A runs in deterministic time poly(n) and prints a length-t list
x1,..., 1 € {0,137 such that for some i € [t] it holds that

Pr [M (a,x;) prints f(a,x;)] <2/3.

We say A is a refuter if the length of all output lists is always
1.

The next notion of refuter is more relaxed: we ask the refuter
again to output x1, ..., 2, but this time we only require that
for some i € [t] it holds that M (a,x;) fails to compute a
compressed version of f(a,x;), in the form of a small circuit
whose truth-table is f(a,z;).

Definition IIL.4 (compression list-refuter). Let C be a class
of probabilistic RAM machines, and let f be a p-bounded
algorithm-dependent hard function against C for some p. An
algorithm A is a P-computable s-compression list-refuter
for C against f if for every M € C and sufficiently large n €
N, when given as input the description of M and a string a €
{0,1}™, the algorithm A runs in deterministic time poly(n)
and prints a length-t list x1, ...,z € {0, 1}p(") such that for
some i € [t] it holds that

Pr |M(a,x;) prints a circuit of size s(|a| + |x;|)

whose truth-table is f(a, xz)} <2/3.

We say A is an s-compression refuter if the length of all output
lists is always 1.

Note that the circuit size s in Definition II1.4 is a function of
the input length to f (i.e., of |a| + |z[), rather than a function
of the length of the truth-table |f(a,z)|. One may think of
this as compressing the input (a,) such that the compressed
version still contains enough information to efficiently produce
the output f(a,x).

The next notion of refuters is randomized refuters, which
tosses random coins, and with noticeable probability prints a
string « such that M (a,x) fails to compute f(a,x). (In this
definition we will not use the relaxations of list-refuters and
of compression refuters.)

Definition ITL.5 (randomized refuters). Let p: N — N, let C
be a class of probabilistic RAM machines, and let f: {0,1}* x
{0,1}* — {0,1}* be a p-bounded algorithm-dependent hard
Sfunction against C. We say that f admits a polynomial-time
randomized refuter against C, if there exists a randomized
algorithm B and a polynomial q such that for every M € C
and sufficiently large n € N and string a € {0,1}", with
probability at least 1/q(n), B(M,a) outputs a length-p(n)
string x satisfying Pr[M (a,z) = f(a,z)] < 2/3.

3) Non-Uniform Classes of RAMs: In Theorem 1.1, we
considered what we referred to there as non-uniform classes
of algorithms, where for every input length n, the class
contains a set C,, of probabilistic algorithms whose description
is of length n and that are executed on inputs of length n.

This presentation in Theorem 1.1 was done merely for
simplicity. The formalization of non-uniform classes of RAMs
does not explicitly appear in our technical results, since our
technical results use the more refined notion presented in this
section, which separates a machine M € C from the advice
a € {0,1}* that it gets.”! However, the refined formalization
does capture the notion of non-uniform algorithms. For ex-
ample, to capture any streaming algorithm C' of description
length n, we can fix C to contain a universal machine U that
intreprets its input as a description of a streaming algorithm,
and let a € {0,1}" be a description of C'.

B. Classes of Circuits, and Refuters for Circuits

For convenience, we consider circuit families with many
input parameters. Specifically, a circuit family with & input
parameters { = ({1, (s, ..., ¢;) € NF is defined as {Cz} ;-
We say that a circuit family {C7} 7 is P-uniform if there is
an algorithm A that, given input parameters £ € N*, outputs
the description of C in |Cy{ time.

1) Threshold Circuits:

a) Notation.: Consider a family of threshold circuits of
depth d = d(n) and with 7' = (n) gates. For any n € N and

2mplicitly, the machine’s description is of constant size, since in our
formalization we first fix the machine and then consider an advice a that
is arbirarily long.

1018

Authorized licensed use limited to: MIT. Downloaded on March 28,2025 at 23:43:29 UTC from IEEE Xplore. Restrictions apply.

i € [d] and j € [T], denote by g; ; the j** gate in the i
layer, and denote the function that g; ; computes by

9ig (@) =1 Y wijn - giiw(@) > 055
ke[T)

where 0; ; € Z and w; j i € Z for all k € [T]. Denoting W =
max; ; r {|wi j x|}, we assume throughout the paper that W' <
T. We also assume, without loss of generality, that |, ;| < T2

We denote by 7C" 0 SUM the class of families of constant-
depth circuits with threshold gates such that for every family
there exists a constant C' > 1 for which the following holds.
Each circuit in the family has a layer of gates at the bottom,
where the gates in the layer are partitioned into blocks of size
(C + 1) -log(n), and each block computes a weighted sum
of the inputs (represented in binary) over the integers, with
weights bounded by n®.

For S: N — N, we use 7C9-WIRES[S] to denote the class
of depth-d threshold circuits with at most S' wires (instead of
gates). We also use 7CY-WIRES[S]ol-XOR to denote a circuit
consists with a top 7CY circuit of S total wires and a bottom
layer of ¢ parity gates. Similarly for 7C5-WIRES[S] o /-SUM.

b) Highly Uniform Circuits: The following definition of
highly uniform threshold circuits is a more precise and fine-
grained version of the definition that appeared in Section I-B.

Definition III.6 (highly uniform threshold circuits). Let
T,d: N — N, and let §y € (0,1) and dy € N>1. We say that
a family of threshold circuits of size T'(n) and depth d(n) is
(00, do)-highly uniform if:

1) There exists a P-uniform family of threshold circuits
{Weight,, ; }nen.,, icld(n)) of size T(n)% and depth d
such that Weight,, takes (j, k) € [T] x [T] as input and
outputs Wi j k-

2) There exists a P-uniform family of threshold circuits
{Thry i bnens,, iclam) of size T(n)% and depth dy
such that Thry, ; takes j € [T] as input and outputs
0.

For convenience, we also say a family of threshold circuits

is 6-highly uniform if it is (62,1/8)-highly uniform.

2) Samplable Distributions Over Circuits, and Refuters for
Them: In this paper we will often consider a distribution
over n-input €-circuits (i.e., a randomized € circuits). Since a
general distribution may not be described succinctly, we will
consider the following two standards to describe randomized
¢ circuits:

Definition II1.7 (probabilistic circuits). A size-s n-input prob-
abilistic € circuit C' is a € circuit that takes two inputs
r € {0,1}" and v € {0,1}F, where R < s is the number
of random coins used by C. Given an input z € {0,1}", C
draws r < Ug and outputs C(x,r).

22More formally, since by definition of threshold circuits we have 0 <
w; ik, 0i; < T, Weight,, and Thr, both have [logT'| output gates,
specifying the binary representation of w; j . and 0; ;, respectively.

Definition IIL.8 (samplable distribution over circuits). Let
€, & be two circuit classes. We say that a distribution D
over & -circuits is €-samplable if there exists a €-circuit S,
which we call a sampler for D, that satisfies the following:
The circuit S gets random coins as input, prints a description
of a € -circuit, and the output distribution (over a uniform
choice of coins) is exactly D. We say that a family {Dy}, o
of distributions, where D,, is a distribution over circuits with
n input bits, is samplable by €-circuits if for every n € N
there is a C-circuit sampler for D,,. In shorthand, we say that
{D,,} is a probabilistic (€ — ¢&’)-circuit family.

Loosely speaking, a refuter for f against samplable distri-
butions over circuits gets as input a description of a sampler .S,
and outputs a string x such that the distribution over circuits
fails to compute f(z).

Definition II1.9 (refuter for samplable distributions of cir-
cuits). Let €, & be two circuit classes, and let T € (0,1).
We say that an algorithm R is a P-computable 7-refuter
for f against probabilistic (¢ — ¢')-circuits, if for every
probabilistic (€ — €')-circuit family {D,} and sufficiently
large n € N, when R is given input 1™ and a description of a
&-sampler S, for D,, outputs a string x € {0,1}" such that
Pr{f(z) = D, (z)] < 7.

Similarly to Definition II1.4, a compression refuter for f
against a distribution over circuits outputs x such that the
distribution fails to output a small circuit whose truth-table

is f(x).

Definition III.10 (compression refuter for samplable distribu-
tions of circuits). Let €, ¢ be two circuit classes. We say that
an algorithm R is a P-computable (D, n®)-compression
list refuter for f against probabilistic (€ — ¢’)-circuits,
if for every probabilistic (€ — €')-circuit family {D,,} and
sufficiently large n € N, when R is given input 1" and a
description of a &-sampler S, for D,, it prints a length-t list
Z1,...,x¢ € {0,1}"™ such that

for some i € [t],
Pr {Dn (x;) outputs a ®© circuit of size
n® whose truth-table is f((EL):| <2/3.

When we omit the circuit class © above, we set it to
unrestricted Boolean circuits by default.

Definition III.11. Let § be a circuit class. We say R is a prob-
abilistic F-computable 7-refuter for f against probabilistic
(€ — &)-circuits, if with probability 1 — 7, R(1™) outputs a
string x € {0,1}" such that Pr[f(z) = D, (x)] < 7.

When 7 is not specified, we take 7 = 2/3 by default (in both
definitions of refuters for samplable distributions of circuits).
C. Reconstructive PRGs and HSGs

In this section we present known construtions of pseudo-
random generators and of (targeted) hitting-set generators. To

1019

Authorized licensed use limited to: MIT. Downloaded on March 28,2025 at 23:43:29 UTC from IEEE Xplore. Restrictions apply.

that end, let us recall the standard notion of a circuit that
distinguishes a distribution from the uniform distribution, and
of a circuit that avoids a distribution.

Definition II1.12 (Avoiding and Distinguishing). Let m,t €
N, D: {0,1}" — {0,1}, and Z = (2i);c[y be a list of strings
Sfrom {0,1}™. Let € € (0,1). We say that D e-distinguishes
Z, if

Pr [D(r)=1] - Pr[D(z) =1]| > .
Pr D6 = 1= Pr D) = 1] 2
We say that D e-avoids Z, if Pr,cio,1y=[D(r) = 1] > € and
D(z;) = 0 for every i € [t].

The first PRG is the Nisan-Wigderson [1] construction, with
flexible parameters and with its reconstruction presented as a
distribution over deterministic 7C° circuits that is samplable
by P-uniform probabilistic 7C° circuits.

Theorem IIL.13 (the NW PRG with 7C° reconstruction).
There are universal constants cyy > 1 and dyy € N> and

deterministic algorithms G™ and R™ such that the following
holds:

1) Generator: When given a string a € {0,1}" and m €
N such that (log(n))™ < m < n'/v, the algorithm
G™ runs in time now (1°8(0)/108(m) " and prints a list of
strings in {0,1}™.

2) Reconstruction: On input (1™, m) such that
(log(n))™ < m < n'/w the algorithm R™ runs
in time new 08/ 18(m)) ynd prints the description
of a non-adaptive oracle TC?IW circuit S with m®
gates that maps randomness to a description of a
non-adaptive oracle 7'CgNw circuit Dec with m™
gates. For any oracle D: {0,1}" — {0,1} that
1/m-distinguishes G™ (a,m), with probability at least
1 — 273" over Dec drawn from S, it holds that

Pr [DecD(i) = al} >1/2+m™3.
i€[n]

Proof. The algorithm G™ constructs a combinatorial design
S1, ...y Sm C [d] with sets of size |S;| = log(n) and with
pairwise intersections |[S; N S;| < 10 - log(m) for distinct
i,j € [m] and d = 2(log(n))?/log(m) (see, e.g., [34, Lemma
20.14]). For every s € {0,1}%, the s* output string in the list
is (az1g, sz,) € 10,1}

Let us describe the oracle circuit .S that prints Dec (it will be
evident from the description that a polynomial-time algorithm
R™ can print S). For t = 1, ..., O(m?) in parallel, the circuit
S:

1) Randomly chooses i € [m] and z € {0,1}4* and a bit

o €{0,1}, and queries a in < m - 210-log(m) [pcations
according to (i,z,0) and the design.

2) Randomly chooses 7 = O(m?*) locations ¢i, ..., ¢, € [n],

and queries a on these locations.

3) Let Dec’ be a deterministic AC” oracle circuit comput-

ing the standard reconstruction of [1] with the fixed val-
ues (i,2,0) and the fixed design hard-wired into Dec’.

The circuit S prints a deterministic 7C° oracle circuit
Est’ that computes v* = Pr;c(, [(Dec)?(g;) = ayg,].
(The circuits Dec’ for ¢ € [O(m)] will be sub-circuits
of Dec.)

Then, the circuit .S prints a top gadget for the circuit Dec,
which finds ¢ that maximizes v* (breaking ties arbitrarily), and
on input 7 € [n] answers (Dec’)P(i).

Note that both S and Dec are non-adaptive oracle circuits
(i.e., S queries a non-adaptively, and Dec queries D non-
adaptively) whose depth is bounded by a universal constant
dyy € N, and whose size is at most poly(m) - 2101es(m) <
m“. By a standard analysis from [1], for each ¢, with
probability at least 1/O(m) over choice of (i, z,0) it holds
that

pt = Ig[r] [(Dec")P(q) = aq] > 1/2+ 1/O(m?).
qe|n
Hence, with probability 1 — 2—(m) there exists ¢ such that
ut > 1/241/0(m?). Now, conditioned on [vf — pf| < 1/m?
for all ¢, which also happens with probability 1 —2~%("™) we
have Pric(n) [(Dec)P (i) = a;] > 1/24+m™>. N

The second PRG is the standard combination of the Nisan-
Wigderson [1] construction with the error-correcting code of
Sudan, Trevisan, and Vadhan [3] for hardness amplification.
We present it while arguing that the reconstruction is a non-
uniform 7C° o XOR circuit.

Theorem IIL.14 (the STV PRG with 7C° o XOR reconstruc-
tion). There are universal constants csty > 1 and dsty € N>q
such that for every sufficiently small constant v € (0,1), there
are deterministic algorithms G®™ and RSY that satisfy the
following:

1) Generator: When given a string a € {0,1}", GV runs
in time n/7" and prints a list of strings in {0,1}™,
where m = n".

2) Reconstruction: RSV (1™) outputs the description of a
probabilistic

(TCSSTV [n-ms™] — TCgSTV) XOR[mCST"])

oracle circuit Ry, such that given D: {0,1}" — {0,1}
that 1/m-distinguishes GS™ (a) as oracle, we have

Rflier [RJI? (a) outputs a TCy_ non-adaptive oracle

circuit E such that tt(EP) = a} >2/3.

The fact that the reconstruction can be done with a non-
uniform 7C° o XOR circuit follows from the original proof,
but it is non-standard. We therefore include a proof of this fact
in Appendix B.

Next, we present the targeted hitting-set generator of Chen
and Tell [6]. Specifically, we present the generator while
arguing that its reconstruction is a streaming algorithm using
bounded space.

Theorem III.15 (the reconstructive targeted HSG from [6] as a
streaming algorithm). There exists a universal constant ¢ > 1

1020

Authorized licensed use limited to: MIT. Downloaded on March 28,2025 at 23:43:29 UTC from IEEE Xplore. Restrictions apply.

such that the following holds. Let f: {0,1}" — {0,1}" be
computable in time T'(n), let v > 0, and let M : N — N such
that c-log(T) < M < TV/¢, Then, there exists a deterministic
algorithm H§" and a probabilistic oracle machine R$" that for
every z € {0, 1}V satisfy the following:

1) Generator: When given input z, the machine H;ZT runs
in time poly(T(N)) and prints a list of strings in
{0, 1}M.

2) Reconstruction: R(}T gets input z, and can be imple-
mented by an M°€-space one-pass streaming algorithm
over the input z with running time M¢ - T'*Y. When
R$" is given oracle access to a function D: {0,1}" —
{0, 1} that 1/M-avoids H'(z), with probability at least
1—1/M the machine R§" outputs an oracle circuit C')
of size T such that the truth-table of (Cy(.))" is f(z).

The fact that the reconstruction algorithm of the generator
in Theorem III.15 is a one-pass streaming algorithm was not
explicitly stated before, but it follows already from the original
construction and proof. For completeness, we explain why this
is the case in Appendix A.

D. Search-To-Decision Reduction for Randomized Algorithms

We will use the following search-to-decision reduction for
prBPP. The reduction constructs an (approximate) solution
to a BPP-search problem (as defined in [20]) by repeatedly
calling an algorithm for corresponding decision problem. In
fact, in the following statement, we consider search problems
such that solutions can be verified by circuits from a certain
(potentially weak) class €, and reduce finding (approximate)
solutions to such problems to a CAPP-like decision problem
for €. That is:

Theorem II1.16. Let € be a circuit class, and assume that for
every i € (0,1) and ¢ € N there is a deterministic polynomial-
time algorithm that gets as input C' € €, accepts if Pr,.[C(r) =
1] > u, and rejects if Pr,.[C(r) = 1] < p— 1/|C|°. Then, for
every 0 < a < b < 1, there is a deterministic polynomial-time
algorithm that, given a € circuit C': {0,1}**# — {0, 1} such
that Pr._o1ye+5[C(2) = 1] > b, outputs a string x such
that Pr,_ o 1y5[C(7, 2)] > a.

Proof. The proof is a search-to-decision reduction a-la [20],
constructing x bit-by-bit. Starting with x’ that is the empty
string, we will maintain the invariant that after iteration
i € [a], the updated prefix 2’ € {0,1}* will satisfy
Procioiye—izefo1ys[C(@'1,2) = 1] > b — i/|C|%. To do
so, in each iteration ¢ € [«], the algorithm decides whether
Pr C@'or,2)=1>b— (i —1)/|C]® (1
I B CLO BT B (RO
or
Pr Cz'or',2) =1 <b—1i/|C|?, 2
T’G{O,l}”*i,ze{o,l}ﬂ[()]* /l l @
by calling the hypothesized deterministic polynomial-time
algorithm Est for this problem. If Est accepts, then 2’0 does
not satisfy Eq. (2), and we proceed with the i-bit prefix

x'0; if Est rejects, then 2’0 does not satisfy Eq. (1), and
we proceed with the i-bit prefix z’1. Since at least one
string 2’0 or x’1 satisfies Eq. (1), the invariant is maintained
after the iteration. After o < |C| iterations, we have that
Procgo1ye[C(z,2) =1 >b—-1/|C| >a. W

E. Refuting Functions with One Output Bit

Recall that, as stated in Section I-A, it is straightforward
to show that refuters for functions with a single output bit
implies derandomization. In fact, the proof holds even when
the class of refuted algorithms is the weakest possible in terms
of dependency on the input:

Claim III.17. Assume that there is an FP-refuter for some
decision problem f € P against the class of probabilistic size-
n circuits that are insensitive to their input (i.e., their output
depends only on the input length). Then, prBPP = prP.

Proof. Let A be a refuter in FP for f € P against probabilis-
tic circuits that are insensitive to their input; we show how to
solve CAPP in deterministic polynomial time. Given a circuit
C of size at most n, let D be a probabilistic circuit that ignores
its input x, chooses r € {0, 1}" uniformly at random, and out-
puts C'(r); note D also has size n (ignoring the inputs). Given
C, our algorithm for CAPP constructs D and runs A(D),
printing an z such that Pr,[D(z,r) # f(z)] > 1/3. Since
D(z,r) = C(r), we have Pr,.[C(r) # f(x)] > 1/3; in other
words, we are not in the case that Pr,.[C(r) = f(x)] > 2/3.
Since f € P, we can compute —f(x) and output it. [l

Note that Open Problem 1 asks to prove a statement as in
Claim III.17 but for arbitrary functions f € FP, rather than
only for decision problem f € P.

IV. A TC°-LOCALLY-ENCODABLE AND
TC-LOCALLY-APPROXIMATELY-DECODABLE CODE

Our main goal in this section is to prove the following state-
ment, which asserts that there is an error-correcting code that is
locally encodable by 7C" circuits, and locally approximately
decodable by 7C° circuits. That is:

Proposition IV.1 (a locally encodable and locally approxi-
mately decodable code). There is a universal constant co > 1
such that the following holds. For every v,v > 0 and finite
field F of size |F| < poly(NN) there exists c = cy, > 1 and a
mapping Enc: FN — {0,1}¥, where N = N°¢, such that the
Jollowing holds:
1) (Locally encodable.) There is a P-uniform family
{QnN}yen of threshold circuits of constant depth and
size |Qn| = N) such that Qx gets input i € [N
and prints a set qi,...,qp € [N], where M = N7.
Also, there is a P-uniform family { En } 5oy of threshold
circuits of constant depth and size |Ey| = N (+v)
such that Ey gets input i € [N] and w1, ...,y € T,
and outputs a bit o such that the following holds: For
any z € FN satisfying zq, = ¢ for all { € [M], the
output of Ex is 0 = Enc(z2);.

1021

Authorized licensed use limited to: MIT. Downloaded on March 28,2025 at 23:43:29 UTC from IEEE Xplore. Restrictions apply.

2) (Locally approximately decodable.) There is a P-
uniform family { DN} \ o of probabilistic oracle thresh-
old circuits of constant depth and size |Dy| =
Neo () such that for every z € TFN the fol-
lowing holds. The circuit Dy first has a proba-
bilistic preprocessing step, in which it non-adaptively
queries z. Now, fix any O € {0,1}V satisfying
Prjcin [Enc(2); = O(j)] > 1/2 + N7". Then, with
probability at least 1 — o(1) over the coins in the
preprocessing step, there exists a set S C [N] of density
|S|/N > 1— N~ such that for every i € S,

Pr[(Dn)?(i) = 2] > 2/3,

where the probability is over the random coins of Dy
after the preprocessing step.

3) (Systematic.) There is a P-uniform family {In} oy of
non-adaptive oracle threshold circuits of constant depth
and size |In| = NeoO+) such that Iy gets input i €
[N] and oracle access to an N-bit string and for every
x € FN and every i € [N] satisfies In(i)E"*) = ;.

At a high-level, the code underlying Proposition IV.1 will
be a combination of two different (locally encodable and
approximately locally decodable) codes. Loosely speaking,
the first code (uniquely) N ~7-approximately decodes from
agreement 1 — ¢ for a small constant § (i.e., given a codeword
that is corrupted on § of the coordinates, it recovers the
unique original message on all but N7 of the coordinates);
and the second code J-approximately decodes from agreement
1/24+ N—".

We first present the two codes in Sections IV-A and IV-B,
respectively, and then prove Proposition V.1 in Section IV-C
by combining them in a straightforward way.

A. The First Code: From Distance N=%) 1o Distance 0.01

The first code, which we now present, N ~7-approximately
decodes from agreement 1 — 6.

Proposition IV.2. There are two universal constants ¢; > 1
and 0 > 0 such that for every v > 0 there exists ¢ = ¢, > 1
for which the following holds. Let {Fn} oy be a sequence
of finite fields of size |Fy| = poly(N) . Then, there is a
mapping Ency: (Fx)N — {0,1}Y, where N = N¢, such that
the following holds:
1) (Locally encodable.) There is a P-uniform family
{QN} nen of threshold circuits of constant depth and
size |Qn| = N7 such that Qn gets input i € N
and prints a set qi,...,qu € [N], where M = N7,
Also, there is a P-uniform family { Ex } 5o of threshold
circuits of constant depth and size |En| = N7 such
that En gets input i € [N} and x1,...,xp € Fy, and
outputs a bit o such that the following holds: For any
z € (Fn)VN satisfying zq, = ¢ for all £ € [M], the
output of En is 0 = Ency(2);.
2) (Locally approximately decodable.) There is a P-
uniform family { Dy} y oy of probabilistic non-adaptive

oracle threshold circuits of constant depth and size
|Dn| = N such that for every z € (Fy)N the
following holds. Let O: {0,1}" — {0,1} such that
Pr,cix [Enci(2); = O(j)] = 1 — 6. Then, there exists
a set S C [N] of density |S|/N > 1 — N~7 such that
for every i € S,

Pr [(DN)O(Z) = Zz] > 2/3 ,

where the probability is over the random coins of Dy.

3) (Systematic.) There is a P-uniform family {In} oy of
non-adaptive oracle threshold circuits of constant depth
and size |In| = N7 such that In gets input i € [N]
and oracle access to an N-bit string and for every z €
FN and every i € [N] satisfies In(i)E"1(*) = 2.

At a high level, we will first use the classical expander-
based distance-amplification of Alon er al. [30] to increase
the distance of the code from N ™7 to (say) 0.4. Then we will
reduce the alphabet to {0, 1} in a sequence of concatenation
steps, where each concatenation step mildly reduces the size
of the alphabet while approximately preserving the distance.

Towards presenting the proof, in Sections IV-A1 and IV-A2
we construct two building-blocks that will be used repeatedly
in the code. Then, in Section IV-A3 we prove Proposition V.2
The following auxiliary technical definition will be used in
both building-blocks.

Definition IV.3 (nice alphabets). We say that a sequence
{EM}yen of alphabets of size is nice if there are two
functions ® = {<I>M: Yar — {0, 1} o= D] }MeN and
o1 = {‘ifwl: {0, 1}“0g(|2Mm N EM}MGN that are com-
putable in P-uniform TC® of size polylog(|Xy|) and that
satisfy ®) (®pr(x)) = = for every M € N and x € Sy

1) Efficient Implementation of Expander-Based Distance
Amplification: The first building-block is an efficient im-
plementation of the expander-based distance amplification
of [30], presented in [29] (following [31]).

Lemma I'V4 (efficient expander-based distance amplification)
There exists o € (0,1) such that the following holds. Let
{Xn} pen be a nice sequence of alphabets, and let d(M) =
MO or d(M) = poly(|Xa|). Then, there exists Enc®™ =
{Enc§: (Ea)™ — (39,)M} such that the following holds.

1) (Locally encodable.) There is a P-uniform family of
TC° circuits {Enm}pen of size poly(d,log(M)) such
that Ey; gets input @ € [M] and prints a set of
coordinates T s (i,1),...,Tas(i,d). For every z € %A%,
let EncSy(2) € (29,)™ such that every i € [M] it holds
Enc?v}}(z)i = (ZFA/I(i,l)» vy ZFM(i,d))-

2) (Locally approximately decodable.) There is a P-
uniform family of non-adaptive oracle TC° circuits
{D1} pren of size poly(d,log(M),log(|X])) that satis-
fies the following. Let y € (X9,)™ such that there exists
z € (Sm)M for which Prieny [Enciy(z) =y] > 0.6.
Then, for all but d= of the coordinates i € [M] we
have (Dyr)Y (i) = zi.

1022

Authorized licensed use limited to: MIT. Downloaded on March 28,2025 at 23:43:29 UTC from IEEE Xplore. Restrictions apply.

Proof. Let a > 0 be a sufficiently small constant. We consider
a family of bipartite graphs [M] x [M] that are d-biregular and
have the following property: for any set B C [M] of vertices
on the right side satisfying |B| < 2M{/5, there are at most §- M
vertices v on the left side satisfying |I'(v) N B| > d/2, where
['(v) is the list of neighbors of v. As shown in [29, Claim 4.1]
(following [31], using powers of the expanders of [32]), there
exists such a family coupled with a family of P-uniform AC°
circuits of size poly(d,log(M)) such that given the name of
a vertex v (on either side of the graph), the circuit outputs the
list I'(v).

Turning to decoding, consider D), that gets input i € [M]
and oracle access to y € (34,)™ as in the hypothesis. The
circuit D), computes the list I'(7), queries y on each j € I'(4)
to obtain a list of d-tuples, and for each j € [d] it computes
k; € [d] such that i is the (k;)!" neighbor of j. The output is
the majority vote, over all j € [d], of the (k;)!" entry in the
4" tuple. Note that the majority vote can be computed in P-
uniform 7C° of size poly(d,log(|x])),>* and hence Dy can
be implemented by a P-uniform 7C" circuit of such size. For
a standard proof of correctness of this decoder, see e.g. [29,
Proof of Theorem 1.3].

2) Efficient Alphabet Reduction: The second building-
block, presented next, will be used to reduce the alphabet of
a code by an almost exponential factor, while approximately
preserving its original constant distance. The building block
itself is a mapping of every alphabet symbol to a short
sequence of symbols over a smaller alphabet, in a way that
supports efficient unique decoding of the original symbol from
any sequence that has smll constant distance from the correct
encoding.

Lemma IV.5 (efficient alphabet reduction). Let {¥n}),y
be a nice sequence of alphabets. Then, there exists a map-
ping Enc® Encii: Sar — (Zh,)™), where || =
gpolyloglog(Ial) - and ¢y, polylog(|Xs|), such that the
Jollowing holds.

1) (Locally encodable.) There is a P-uniform family of

TC circuits {En}yen of size polyloglog(|S|) such
that Eny gets input z € Xy and i € [€yy] and outputs
Enc3j(z2);.
(Locally decodable.) There is a P-uniform fam-
ily of probabilistic non-adaptive oracle TC® circuits
{D1} pren Of size polyloglog(|X|) that satisfies the fol-
lowing. Let y € (Xh,) such that there exists z € Yps
for which Pricje,, [Enci;(2); = yi] > 0.6. Then, for
every i € [log(|Xn])] we have that Pr[(Dpr)Y(i) =
zi] > 2/3, where the probability is over the internal
coins of Dyy.

2)

23To see this, let o1, ..., 04 be the symbols appearing in the corresponding
places in the d tuples. For every o; € X, we compute ¢; = |{k : o = 0} |
in 7CY of size poly(d, log(|X|)). Now we compare the d integers {c; }je[d]
in 7CO of size poly(d) to find the maximal c;, and output o;.

24The uniform circuits receive X-symbols and output symbols in bin:
representation, relying on the efficient bijection between ¥ and {0, l}log(‘z‘
that exists because X is nice.

1023

3) (Niceness preserving.) The alphabet sequence Y.' =
{0} aren is nice.

Proof. At a high level, we combine a Reed-Muller encoding
over a relatively small field with the expander-based encoding
from Lemma [V.4. Towards describing the construction, for
simplicity we denote ¥ = ¥, and Enc®* = Enc3;, etc.

Given z € X, we identify z with the corresponding
vector in {0,1}*=1&(>) (using the niceness of the alpha-
bet Y), and encode it by the low-degree extension view
of the Reed-Muller code, with a field F’ of size [F'|
22loglog(F)] - — (O(loglog|>|)? and interpolation set H of
size |H| = 2[1gloe(M]1 = O(loglog(|%)), and m = log‘,(ﬂ{II-I\)
variables. Note that this yields z(1) e (F/)IFI"", 25

Now we encode z(1) by the code from Lemma V.4, instan-
tiated with alphabet F” and length ¢ = |F/|™ = polylog(|3])
and parameter value d = poly(|F|'), to obtain 2(2) € ((F")9)".
Note that the alphabet F’ is nice, and hence we can use
Lemma IV.4.

Let Enc*(z) = 2(?), and note that

[Enc®(2)] = ((F")7)

[.

we think of Enc*(z) as consisting of ¢ symbols from ¥/ =
(F")?, and note that

12| = (loglog‘m)polyloglog(\x\) _ gpolyloglog(|X])

and that ' is nice.

Let us first describe the encoding circuit Ey;. We map z to
2() via standard Lagrange interpolation over the field F’ and
with |H| = loglog(|%|), which can be done by a P-uniform
TC° circuit of size poly(m - H,log(|F’|)) = polyloglog(|%|).
Then we map 2 to 2®2) via Lemma IV.4, which can also be
done by a P-uniform TC° circuit of size poly(d,log(¢)) =
polyloglog(|%]).

Turning to decoding of a corrupt codeword y € (¥)¢, we
will use standard decoding of composed codes. That is, we
run the standard unique local decoder for the Reed-Muller
code from distance A = d~* = H/100[F'| (where o > 0 is
the universal constant from Lemma I1V.4), and whenever this
decoder accesses a symbol, we answer by running the decoder
for the code from Lemma IV.4 and giving it access to y.

Since y is (1/4)-close to Enc® (z) for some z € ¥, it holds
that y is (1/4)-close to the mapping z(®) of z(!) by Enc®*.
Thus, by Lemma IV.4, there exists Z € (F’)”F/'m that agrees
with z(!) on all but A of the coordinates such that the queries
of the local decoder for the Reed-Muller code are answered
according to Z. It follows that for every i € [k], with high
probability, the local decoder for the Reed-Muller code outputs
the correct i** symbol in the encoding of z.

As for the complexity of the decoder, first note that its
queries are indeed non-adaptive, because the two decoders that

25In more detail, let H be the set of vectors in (F)™ with last m—log(| H|)
coordinates equaling zero. Since |H|™ > k, we identify each coordinate
i € [k] with a corresponding element k; € H. Given z € {0, 1}*, for every
7 € (F')™ we define p(¥) = 32, 05 (V) - zi. The output is 2 =
(P(9)5e wrym -

Authorized licensed use limited to: MIT. Downloaded on March 28,2025 at 23:43:29 UTC from IEEE Xplore. Restrictions apply.

it uses are non-adaptive. The unique decoder for the Reed-
Muller code can be implemented by P-uniform 7C° circuits
of size poly(|H|,log(|F’|)), and the decoder from Lemma I'V.4
can be implemented by P-uniform 7C" circuits of size

poly(d,log(¢),log(|F'|)) = poly(|F’|) = polyloglog(|Z|) .

The bound follows by combining both circuits.

3) Proof of Proposition IV.2: For simplicity, denote F =
Fy. Given z € FVN, we compute Ency(z) in four steps, as
follows.

1) Encode z to () € (F9)N using the code from
Lemma IV.4, where d = N9,

Concatenate z!) with the code from Lemma IV.5;
that is, encode each (F?)-symbol of z(!) by the code
from Lemma IV.5, to obtain 2(?) € (2(2))“\[, where
|22 = gpolyloglog(F?) — gpolylog(N.log(IF])) gapd ¢ =
polylog(|F|4) = poly(N,log(|F|)). Denote N2 =
N - ¢ = poly(N).

Concatenate 2(?) with the code from/ Le(:glma Vs
again, to obtain z(®) € (2(3))6 N where
|5(3)] = gpolyloglog(I=®)]) — gpolyloglog(N.log(IF)) apd
¢ = polylog(|2|®) = polylog(N,log(|F|)). Denote
NGB = N® . ¢ = poly(N).

Concatenate z®) with the good binary code of [3], to
obtain z(*) € {0,1}P°Y(N). We define Enc,(z) = 2z
and N = 2] = poly(N).

a) Local Encoding: By the definition of Ency, each
output bit i € [N] of Ency (z) = 2(*) is a function of all the bits
encoding of a () -symbol in z(3). In turn, each X()-symbol
in 2 is the encoding under Lemma IV.5 of a ¥(?)-symbol
in 2(®), and each ©(®)-symbol in z(?) is the encoding under
Lemma IV.5 of an F%-symbol in 2, Finally, each F¢-symbol
in 21 is the concatenation of d symbols in z. It follows that
each output bit i of Ency(z) depends on d symbols in z.

2)

3)

4)

We now argue that the mapping of i to the d locations of
the symbols in z that affect Ency(z); can be computed in P-
uniform 7C° of size N To see this, note that tracing back
¢ to the relevant location of the symbol in 23, then further to
the relevant location in z(?), and then to the relevant location
4i in z(1) is computable easily from the index i (because the
encodings z(1) — 22 — zB) s 2 are concatenations).
Given j; € |2(Y)|, we run the circuit Fyy from Lemma IV.4 to
compute the d locations.

Also, by the constructions of Exn’s from Lemmas V.4
and IV.5, we can compute Ency(z); from the values of z in
these d locations by a P-uniform 7C° circuit of size N9,
(The main bottleneck is the encoder from Lemma IV.4, which
uses size poly(d,log(N)) for d = NOO))%

26Note that this does not use the local encoding property of Lemma 1V.4;
that is, to compute Encj(z)i we compute all the bits of the rele-
vant 3(2)-symbols and X(3)-symbols. This causes a size blow-up of
polylog (N, log(|F|)), which does not affect the complexity of the encoder.

1024

b) Local Decoding: At a high-level, the decoder Dy
implements standard decoding for concatenated codes. Specif-
ically, given ¢ € [N] and oracle access to O as in our
assumption, we:

1) Run the decoder DE\}) for the code from Lemma IV.4
instantiated with parameter d = N, Whenever it
tries to access an F%-symbol ¢; € [N], perform Step (2)
to obtain the answer.

For all j € [log(|F?|)] in parallel, we run the decoder
D’ for the code from Lemma IV.5, instantiated with
alphabet F and with input j. Whenever the decoder tries
to access a X.(?)-symbol g € [N?)], perform Step (3)
to obtain the answer.

For all k € [log(|2(®])], we run the decoder Dg\?) for
the code from Lemma IV.5, instantiated with alphabet
(2 and with input k. Whenever the decoder tries to
access a X(®)-symbol g3 € [N®)], perform Step (4) to
obtain the answer.

Let Enc®™Y be the encoding of [3], and recall that
it maps log(|2®)|) bits to t = polylog(|2®]) =
polyloglog(N) bits. We query O at the ¢ locations
corresponding to the encoding of the ¢*" symbol, to
obtain an answer a € {0, 1}". Then we enumerate over
all messages m € £(), compute Enc®™V(m) for each
m, and output m that maximizes Pr;cpy| STV(m)j
aj].

Since all the decoders are non-adaptive, the composed
decoder is also non-adaptive. Also, the original decoder from
Lemma IV.5 is probabilistic and has error probability 1/3;
by naive error-reduction, we can assume that it has error
probability N~ at the cost of increasing the circuit size
by a polylog (V) factor. (This will not affect our analysis, and
it preserves non-adaptivity.)

Let us first bound the complexity of the decoder. It can be
implemented by combining four P-uniform probabilistic non-
adaptive oracle 7C° circuits, which yields a circuit of total
size

2)

3)

4)

poly(d)
N——
DY
+ ((1+o(1)) - log(|F|*) - polyloglog(|F|*))

Dg\?) and Dg\?)

+ |=®)

decoding EncSTV

< NOO)

The proof of correctness follows a standard proof of correct-
ness for decoding concatenated codes. Specifically, with high
probability, all invocations of the decoder from Lemma IV.5
were successful (recall that we reduced its error to N~«1));
we condition on this event. Now, for a sufficiently small § > 0,
if the distance of O from Ency (z) is at most ¢, then for at most
/6 of the blocks of length ¢ corresponding to encodings of
2(3)—symbols in z®3), at most v/ of the bits in the block are

Authorized licensed use limited to: MIT. Downloaded on March 28,2025 at 23:43:29 UTC from IEEE Xplore. Restrictions apply.

corrupted. Hence, the decoder for Enc®™ succeeds on at least

/8 of locations g3 € [N®], which implies that the decoder
in Step (3) gets oracle access to a string that is of distance Vo
from 2(3), The same logic applies to Step (2), and to Step (1).
Relying on Lemma IV.4 and on a sufficiently small choice of
§ > 0 (such that 6*/8 < 2/5) the decoder maps i to z; for all
but d~® = N~7 of the coordinates i € [N].

c¢) Systematic: We are given an index ¢ € [N], and our
goal is to find an output index i’ € [N] such that Enc; (2); =
z; for all z. The main thing that we need to verify is that
for the code Enc®™: (3,)™ — (34,)M, given an input index
ip € [M], we can find j € [M] and i’ € [d] such that 7 is
the (i')" symbol in Enc®*(z);. The reason that this suffices
is that Enc; first encodes z — Enc®*(z), and then performs
a sequence of concatenation steps, where each concatenation
step encodes each block by a systematic code (i.e., either the
combination of the Reed-Muller code, which is systematic,
with Enc®*, which we will now show is indeed systematic; or
the code of [3], which is systematic).

To verify the claim about Enc®™, recall that given i € [N]
we can produce the list of neighbors of i (in the degree-d
expander graph [M] x [M] underlying Enc®*) in P-uniform
AC of size poly(d,log(M)). In our setting we will always
have poly(d,log(M)) < N9 Letting j be the first neighbor
of i in the list, we can find the index i’ of 4 in the list of
neighbors of j by P-uniform AC" circuits of size N°") (i.e.,
by computing the list of neighbors of j).

B. The Second Code: From Distance 0.01 to Distance 1/2 —
N—Q@)

We now present the second code, which (1 — §)-
approximately decodes from agreement 1/2 + N %, for an
arbitrarily small constant 6 > 0. Note that at such agreement
we cannot hope to support unique decoding, and thus this code
can be thought of as list-decodable. In the statement below, the
code will use a preliminary preprocessing step, to ensure that
it can find the right message in the list of possible messages.

Proposition IV.6. There is a universal constant co > 1 such
that the following holds. For every 6,1 > 0 there exists ¢ =
cs.,» > 1 and a mapping Ency: {0,1}N — {0,1}, where
N = N¢, such that the following holds:

1) (Locally encodable.) There is a P-uniform family
{QN}NGN of TC° circuits of size Qx| = Nezv'
such that Qg gets input i € [N] and prints a set
Q1s - Qi € [N, where k < ¢y - (1 /62) - log(N). Also,
there is a P-uniform family {EN of threshold

}NeN
circuits of constant depth and size |Eg| = (N)
such that Ey gets input i € [N] and 1,...,x1, € F,
and outputs a bit o such that the following holds: For
any z € {0, 1} satisfying z,, = x for all € € [k], the
output of E is 0 = Enca(2);.

(Locally approximately decodable.) There is a P-
uniform family {D N} sen Of probabilistic non-adaptive
oracle TC° circuits of size |Dg| = (N2 such
that for every z € {0,1}Y the following holds. Fix

’
coV

2)

1025

any O € {0,1}" satisfying Pr;c(xy [Enca(2); = O;] >
1/2+ (N)~". The circuit Dy, first has a probabilistic
preprocessing step, in which it non-adaptively queries z.
Then, with probability at least 1 — o(1) over the coins
in the preprocessing step, there exists a set S C [N | of
density |S|/N > 1 — 6 such that (Dx)C (i) = 2 for
every i € S.

(Systematic.) There is a P-uniform family {15}y of
non-adaptive oracle threshold circuits of constant depth
and size |Ig| = (N)"" such that Iy gets input i €

3)

{N and oracle access to an N-bit string and for every

2 € {0,1}Y and every i € []\7} satisfies I (i)Enc2(*) =
Zi.

Proof. At a high-level, the code is the concatenation of the
derandomized direct product code of Impagliazzo and Wigder-
son [2] and of the Hadamard code.

a) Construction: Let n = log(N), lete = (N)~<"*", let
§ = §/2, and let k = (¢ /(8)?) - log(1/¢), for a sufficienty
large universal constant ¢’ > 1. Consider the two following
algorithms:

1) The expander-random-walk sampler. Specifically, fix
any expander over {0,1}" with constant degree and a
sufficiently small (constant) normalized second largest
eigenvalue. Lt Samp: {0,1}™ — ({0,1}")* be the
function that takes as input a description of a k-length
walk on the expander (i.e., an initial n-bit index of a
vertex and k indices of edges) and outputs the indices
of the %k vertices encountered in the walk. Note that
my =n+ O(k).

An efficiently computable combinatorial design
Des: {0,1}™2 x [k] — {0,1}™, which takes as input
z € {0,1}™2 and the index ¢ € [k] of a set S; C [n] of
size |S;| = n, and outputs z[.. The design has the prop-
erty that for any ¢ # j it holds that [S;N.S;| < (v//2)-n.
We will use designs with mag O(n/v') and k as
above.”’

2)

Let 2 = mi+mgy = O, 5 (n+log(1/¢)). For any (y1,y2) €
{0,1}™ and i € [k], we define Loc(y1,¥2,i) = Samp(y1,i) @
Des(yz2,1) € {0,1}". Then, given z € {0,1}", we map it to
2 € ({0,1}*)2" such that for any (yi,y2) € {0,1}" it holds
that

!

Fyrys (ZLOC(ZI17U2,1)’ "'>ZLOC(y17y27k)) :

The output of Ency(z) is the concatenation of 2’ with the
Hadamard code. Since k = Og (log(1/¢)), this yields a binary
codeword Enc(z) of length

ontk _ N (1/5)Cyl _ Ncgm, ,
for a sufficiently large cgyy, > 1.

?TThere exist designs with a significantly larger number of sets k
20(v)‘", but we will not need such a large k.

Authorized licensed use limited to: MIT. Downloaded on March 28,2025 at 23:43:29 UTC from IEEE Xplore. Restrictions apply.

b) Local Encoding: We prove that there exists a P-
uniform family of 7CO circuits of small size for local en-
coding of the code. We first show that the locations for the
derandomized direct product encoding of [2] can be computed
in uniform AC°:

Claim IV.6.1. There is a P-uniform family of AC° circuits of
size (N that get input (yy,v2) € {0,1}" and print the
set {Loc(y1,2,4)}ieu-

Proof. We instantiate Samp with the Gabber-Galil ex-
pander [32] of constant degree over [N]28 As was shown
in [31], there is a P-uniform family of ACY circuits of size
poly(log(N),2%) < (N)"**' that gets as input i € [k] and
the description of a k-length walk (i.e., a starting vertex and
a list of indices of edges) and outputs the i*" vertex in the
walk.”” In particular, given y; € {0,1}™ and i € [k], such
circuits can output Samp(y1,).

Also, combinatorial designs with parameters as those
of Des above are well-known to be computable in time
poly(k,ms) < N (see, e.g., [35, Problem 3.2]). We con-
sider a P-uniform family of circuits in which the P-uniform
algorithm that constructs the circuit computes such a design
and hard-wires it into the circuit; the description of a design
is of length k- n < (N)¥'. Given input y € {0,1}™2 and
i € [n], the circuit projects ys to the coordinates in the ith set
in the design.

By combining the two families of circuits above, we obtain
a P-uniform family of AC® circuits of size at most N¢ '
that, given (y1,ya2,7), computes Loc(y1,ya2,?). (That is, the
family computes Samp(yy,4) and Des(ys,7) in parallel and
XORs them.) The claim follows by computing Loc(y1,y2,1%)
in parallel for all i € [k]. O

For the final encoding of z € {0,1}" to Enca(2) € {0,1}¥,
note that any output index i € [N] can be thought of as a pair
(i,7) where i = (y1,y2) € {0,1}" and j € {0,1}*. The
set of coordinates that the i*" output depends on is the set
S; = {Loc(y1,¥2,1)},eps)» and the value of the i output
is ©ieqrdi - Loc(yr, y2,i). By Claim IV.6.1, there is a P-
uniform family of AC° circuits of size (N)¢"*" computing
the mapping i + S;, and the output list is of size |S;| = k-.
The final output can be computed by computing a parity over
k values, and this can be done in P-uniform TC° of size
poly(k) < NV,

¢) Systematic: Given i € [N] = {0,1}", the circuit I
finds a neighbor j of ¢ in the expander over {0,1}" (that
was used for the encoding, in the proof of Claim IV.6.2), and
finds the index o € [O(1)] of the edge that goes from j to
i (by trying all O(1) indices in parallel). Let y; describe the
walk that starts from j, goes along index ¢ to 7 in the first

28 A minor technical point is that such expanders are only defined over
vertex-set of size that is a square (i.e., N2 for some N € N). Since we are
considering expanders over the vertex-set [N], and we do not mind a quadratic
increase in the value of N in the previous steps, we may assume without loss
of generality that N is a square.

291n [31] this claim is stated only for a specific value of k, but as observed
in [29] the original proof already supports the claim for every k.

1026

step, and proceeds arbitrarily (e.g., walking along index o for
k — 1 additional steps). Note that Samp(yy,4’) = 4. Also let
y2 = 0™2, and note that Loc(yy,y2,1) = i. Then, I queries
its oracle at the location that corresponds to (y1,y2) and to the
linear function f(x1,...,x;) = x; (wWe can assume that this is
the first location in the block that corresponds to (y1,y2)). As
argued in the proof of Claim IV.6.2, by our choice of expander
this can be executed by a AC circuit of size (N)<" .

d) Local Approximate Decoding: The claimed decod-
ability essentially follows from the classical works of [2]
and [33], yet we spell the argument out in detail to explain
why the specific properties that we claim hold.

Let us recall the local decoding algorithm of [2], and use
the presentation of the construction and proof from [28]. For
convenience, we denote by IW g, the mapping of z to 2’ defined
as above (i.e., 2, . = (ZLoc(yr,ya.1) -+ ZLoc(ys ya,k)))- Then,
we argue that:

Claim IV.6.2. There is a P-uniform family of probabilis-
W :
(N)ev satisfying the following. Let w € {0, 1}N, and let
O: {0,1}” — {O,I}k such that Pl"yl’yzg{o,l}ﬁ, [O(yl,yg)
IW g (w)y,] > € The circuit D%V first has a probabilistic
preprocessing step in which it queries w. Then, with prob-
ability at least 1 — o(1) over the randomness of D%V in

tic non-adaptive oracle TC° circuits

the preprocessing step, there is a set X C [N | of density
|X|/N > 1 — & such that for every x € X it holds
that (D%V)O(Jc) = w, (note that this computational step is
deterministic).

Proof. The uniform circuit is essentially the decoding al-
gorithm of [2], as presented in [28, Lemma A.2 and the
subsequent description]. In the preprocessing step it repeats
the following procedure ¢t = O(n/e?) times, in parallel:

Choose at random a seed z; € {0,1}™ for Samp,
and an index ¢ € [k], and values o € {0,1}"2~" for
the entries of zo € {0,1}™2 on coordinates outside
S;. Now query w in parallel on a set of at most
(k —1) - 20:'/2)n Jocations, which are determined
by (i,) and by the combinatorial design.*

Now, given z € [N], the output is the majority of the outputs
of t sub-circuits on x, where each sub-circuit corresponds to
one of the experiments in the preprocessing steps (i.e., to a
fixed choice of (z1,14,a)), and performs the following:

1) Compute &’ = = ® Samp(z1,i), complete z’ (using)

to z» € {0,1}™2, and query O on input (zy, z).”!
2) For each j € [k] \ {i}, let ¢; € {0,1} equal zero iff
O(21,22)j = Wioe(zy,2,5)-

30Specifically, in parallel for all j € [k] \ {i} do the following. Compute
the set S; N S}, iterate in parallel over all choices for (/) € {0, 1}1%:051,
and compute the n-bit string 2’ obtained by placing () in locations S; nS;
and a[sj in locations S; \ S;. Query w in position Loc(z1, 22,7) = =’ @&
Samp(z1,j).

3To parse the meaning of this step, note that Loc(z1,z2,1)
Samp(z1,1) o 2’ = x, so we hope to have O(z1, 22); = Wg.

Authorized licensed use limited to: MIT. Downloaded on March 28,2025 at 23:43:29 UTC from IEEE Xplore. Restrictions apply.

3) For{ =37, cj, output O(z1, 2z); with probability 2~¢

and a random bit otherwise.

Since this is precisely the construction of [2], its correctness
follows from the original proof (see, e.g., [28, Proof of
Lemma A.2]). In the construction above the second step (after
preprocessing) is probabilistic, and the original proof shows
that with probability 1 — o(1) over coins in the preprocessing
phase, there is X of density 1 —¢’ such that for every x € X it
holds that Pr [(D']:/,V)O(x) = w, | > 0.99. Using naive error-
reduction, we can reduce the error probability from 0.01 to
1/ (N)2, and choose random coins for the second step in
advance (i.e., in the preprocessing phase). Then, the second
step is deterministic, and with probability at least 1 — o(1)
over the coins in the preprocessing phase, the second step is
correct for every x € X.

As for the complexity of the construction, note that the
number of queries in the preprocessing step is less than

Q=21 (nfe?) = (R)"
and that the size of the circuit is at most

O(t () .polylog(N)) < N%' O
Next, we recall the list-decoding algorithm for the
Hadamard code from [33].

Claim 1V.6.3. There is a P-uniform family {D]GQL} of

]YEN/ ’
probabilistic non-adaptive oracle TCO circuits of size (N)© ¥

that satisfies the following. For every z € {0, I and every
O € {0,1}" that agrees with Ency(z) on 1/2+ (N)™" of

the inputs,
Pr [(D$H)°(2) = W (2)] > 2¢,

where the probability is over x € {0, 1}"™ and over the random
coins of D](;i]".

We are now ready to construct the final decoder Dg. In
the preprocessing step, we repeat the following experiment
for O(1/¢) times, in parallel. For j = 1,...,0(1/e):

1) Run the preprocessing step of D%V.

2) Choose uniformly at random a set of £ = O(log(1/¢))
locations q?),...7q§]) S [N}, and query w on these
locations.

Choose in advance fixed random coins) to be used
by D% and by the second step of DY.*

For i € [{], run D']‘{[V(i), and whenever it queries its
oracle O at location ¢ € {0,1}", answer using D$(¢').
(Both decoders are run using the fixed random coins.)
Let IDZQ) be the answer of this procedure.

Let 50) = Pricq [wﬁ” - w} If 50 > 1 §/2
consider this experiment successful; otherwise, consider
the experiment failed.

3)

4)

5)

32We stress that we choose different (independent) random coins for D%L
and for D']\A\'[V, and denote by r(4) the concatenation of these two fixed choices.

1027

Now, let j* € [O(1/¢)] be the index of the first successful
experiment (if there was no successful experiment, abort). In
the second step, the decoder is given i € [N]; it runs D']‘\?’(z)
and answers its queries using D]%L, where both decoders use
the fixed random coins specified by U .

Observe that the final decoder only non-adaptive oracle
queries, and can be implemented by P-uniform TC circuits
of size

P -0 () < (e

As for the correctness of the decoder, note that with prob-
ability at least € over choice of random coins for D]%L, there
exists a set X C {0,1}" of density at least | X|/2™ > & such
that for every = € Xo it holds that (D) (z) = IW g(2),.
Whenever this happens, there exists O: {0, 1} — {0, 1}* sat-
isfying Pry, y.eq0.13n [O(y1,92) = |WN(w)y1,sz > ¢ such
that the queries of D' will be answered (by D$") according
to O. Then, with probability at least 1 — o(1) over the coins
in the preprocessing step of D%V, there exists a set X C [N]
of density at least 1 — ¢’ such that for every x € X it holds
that (D'NW)O(:E) = wy.

For j € [r], let DY) be the decoding procedure that
runs DY and answers its queries using D% where both
decoders use the coins specified by 7). Also let v =
Pr e [(D(j))o(i) = w;]. Since we repeat the experiment
for r = O(1/¢) times, with probability 1 — o(1) there exists j
such that v; > 1 —6’. Also, with probability at least 1 —o(1),
for every j it holds that |v; — 0;| < §’/2. Condition on both
events happening. Then, j* satisfies vj« > 1 —2" =1 — 4.
By definition, the decoder will answer in the second step
according to DU™), and hence will answer correctly on at

least 1 — § of the coordinates = € [N].

C. Proof of Proposition 1V.1

Given the two codes in Proposition 1V.2 and 1V.6, we are
now ready to prove Proposition IV.1.

Let 7, v be the parameters and [F be the finite field. Let ¢ =
¢y, to be a sufficiently large enough constant to be specified
later and ¢(be a sufficiently large universal constant.

Notation of First Code: Let c¢; and ¢ be the universal
constants from Proposition IV.2, and let 4 be a constant to be
specified later. We apply Proposition IV.2 with parameters 4
and field F to obtain the encoding

Ency: FY — {O,l}N7 where N = N¢and é = ¢ .

We then use E,Q,D to denote the circuits Q,D, N
from Proposition IV.2.

Notation of Second Code: Let co be the universal constant
from Proposition IV.6, and let v be two constants to be
specified later. We apply Proposition IV.6 with parameters §, 7
and to obtain the encoding

Enco: {0,1}Y — {0,1}V, where N = N¢ and ¢ = ¢5., .

We then use E,Q,D to denote the circuits Q,D,N
from Proposition 1V.6.

Authorized licensed use limited to: MIT. Downloaded on March 28,2025 at 23:43:29 UTC from IEEE Xplore. Restrictions apply.

The Mapping Enc: With the notation set up, we now
define the encoding map Enc: FY — {0, 1}V as

Enc(z) = Ency(Ency(x)), where z € Y |

We also let & = Ency(z) and = Enca(Z). That is, we
have the following
Enc:z e FV 2% 5 e {0, 1}V 22 7 ¢ {0, 1}V,

In particular, we now set ¢ = ¢ - ¢ so that N = N¢,

The Construction of ()n: Now we are ready to define
Q. which is going to be a natural composition of Q x5 and
Q ~. Formally, Q) works as follows:

1) Given input i € [N], run Qg (4) to obtain ¢y, . ..

[]ﬂ where M = ¢, - (7/62) - log(N).»
2) For every j € [M], run Qn(g;) to obtain
Qs r € [N] where M = Ne7,

3) Output all of ¢; ¢ for j € [M] and ¢ € [M].

Now, note that Qx has M = M- M < N2Zey outputs in
[N]. We now set 4 = /(2 ¢1) and 7 = v/é. We then have
M < N7 as desired.

Also, we have |Q | < Ne2? and |Qn| < N7, it follows
their composition Qy is a TC° circuit of size

ydnr €

o) (Nﬂz‘ﬁ 4 M - Nﬁ"?) <0 (]\/‘Cz‘ﬁ‘6 + NQ‘Cl"?) < Nﬂu‘(’H—V)

for a sufficiently large constant cy, by our choice of v and 4.

The Construction of E: After defining () 5, we are now
ready to define F/ny in the natural way.

1) Giveninputi € [N]and z;, € I for (j,¢) € [M]x[M],

Q (i) to obtain q1,...,qy € [Zﬂ

2) For every j € [M], run Ey with input ¢; € [N} and

list gj,1,...,q; y to obtain 0; € {0,1}.

3) Run E with input ¢ and list o1, ..., 0 to obtain the

output o.

Similarly to the case of Qn, we can implement Ex by a
TCO circuit of size N (v+¥)_ Moreover, the desired properties
of Qn and Fy follows immediately from the properties of
Q, E ,Q, E from Proposition IV.2 and Proposition IV.6.

The Construction of Dy: Again, Dy is given by the
natural composition of D x5 and Dy. Formally, it works as
follows:

1) Given an oracle O: {0,1}" — {0, 1} such that

Pr [z, = O()] > 1/2+ (N)_ﬂ .

r
J€[N]
2) (Preprocessing phase.) Run the preprocessing phase of

D x to obtain non-adaptive queries qi,...,q; € {N } to

z, where t < |D X |> run QN to convert these into non-
adaptive queries {qJ'f}je[t},ee[M] to z, and run Ex to
convert the answers of the new queries to answers of
the original queries.

BFor simplicity, we add some _dummy queries to make the number of
queries exactly co - (7/62) - log(N).

3) Run the main phase of Dy ©(log N) times with in-
dependent randomness, taking a majority, and fixing
the randomness to obtain a deterministic oracle circuit
W:{0,1} — {0,1} such that the following

A Oy -
B [=WOG)] 2 273

happens with 1 — o(1) probability over all randomness
above.**
4) (Main phase.) Given input i € [N], output

(DN) e ().

Now, Dy can be implemented by a probabilistic 7C°
circuit, and its size can be bounded as follows

Dx| <O (1Dg|-log N + Dy | - N7)

<o((#)"" ne1)

<O (NEevted)

(log N < Ne1'%)
(N = N9

Note that the required approximation is 1/2+ N~". Recall
that 7 = v//¢, we have (N) — N7 = N~7. And the size
of Dy can be bounded by N (") by our choice of 7 and
4, and setting ¢y to be large enough. The correctness of Dy
follows directly from Proposition IV.2 and Proposition 1V.6,
which completes the proof.

Systematic: Finally, we note that since both Enc; and
Ency are systematic, their composed code Enc is systematic
as well. This completes the proof.

V. IMPROVED CHEN-TELL HITTING SET GENERATOR
WITH 7C" RECONSTRUCTION

The goal of this section is to prove the following result,
which is an improved version of the targeted hitting-set
generator of [6]:

Theorem V.1 (Reconstructive targeted HSG for highly uni-
form 7C° circuits). Let ¢ € N> be a sufficiently large
universal constant. For every v € (0,1) and d € N>q there
exist di € N>y and 6 € (0,1) such that the following
holds. Let T,M,m: N — N be such that M < TV/¢. Let
f:{0,1}" — {0,1}™™) be computable by a family of -
highly uniform threshold circuits of depth d and T size. Then,
there exist deterministic algorithms HS™™ and R(}T'TCO that
for every z € {0,1}" the following hold:

1) Generator: When given input z, the machine H/?T'TCO
runs in time poly(T) and prints a set of strings in
{0,1}M,

2) Compression Reconstruction: R?T'Tco(ln) outputs the
description of a probabilistic

(TCY, [n-T7] = TCY, o SUM[T])

3Note that both phases of D are considered as the preprocessing phase of
Dpr. The execution of D below is considered as the main phase of D .

1028

Authorized licensed use limited to: MIT. Downloaded on March 28,2025 at 23:43:29 UTC from IEEE Xplore. Restrictions apply.

oracle circuit Ry, such that given D: {0,1}M — {0,1}
that 1/M -avoids H](ET'TCO(Z) as oracle, we have

Pr

RP(2) outputs a TCY. oracle circuit E
Ry<+TRy |: f() P gl

such that tt(EP) = f(z)] >2/3.

The proof of Theorem V.I relies on the 7C°-locally-
encodable and TCO—locally—approximately—decodable code
from Section IV. In Section V-A we present the construction
of a bootstrapping system for highly uniform 7C° circuit,
whose high-level description was given in Section II-D1, and
in Section V-B we present the proof of Theorem V.1.

A. Efficient Polynomial Decompositions of Highly Uniform
Threshold Circuits

Towards constructing the bootstrapping system, let us now
define an intermediary object called a polynomial decompo-
sition of a circuit. This object, following the ideas of [26], was
defined in [6] for general (logspace-uniform) circuits, and we
present another definition that is suitable for 7C° circuits.

Definition V.2 (polynomial decomposition of a threshold
circuit). Let C be a circuit that has n input bits, size T,
depth d, and unweighted majority gates of fan-in ¢. For
every x € {0,1}", we call a collection of polynomials a
polynomial decomposition of C(z) if it meets the following
specifications.
1) (Notation.) For any i € [d] and j € [T, denote by g; ;
the j'" gate in the i*" layer, and denote the function
that g; j computes by

gij(r) =1 Z Wik Gi1k(T) >0,
ke[T]

where § = | /2], and w; ; 1, € {0,1} indicates whether
gi—1,k feeds into g; ;.

(Arithmetic setting.) For some prime 5 -T2 < p <
10-T2, the polynomials are defined over the prime field
F =T,. For some integer h < p, let H = [h] C F, let m
be the minimal integer such that h™ > T. Let &: [T] —
H™ be an injection and ¢~1: H™ — [T] U {L} be its
inverse.*

(Circuit-structure polynomial.) For each i € [d], let
®;: H?>™ — {~T,..., T} be the following function. On
input (4,7) € H™ x H™, we interpret the pair as
(4, k) € [T] x [T), and output w; ; .>° The polynomial
®;: F2™ — F can be any extension of ®;.

(Input polynomial.) Ler «g: H™ — {0,1} represent
the string z0"" =", and let évo: F™ — T be defined by

> o) an(2),

ie[n], 7=¢(i)

2)

3)

4)

040(17:) =

35If @ is not in the range of £ then £ ~1(@) = L. We always use £ to encode
an index 7 as an element from H™. We will pick an & such that £~ is also
easy to compute, and for simplicity we ignore the complexity of computing &
and ¢! since it is negligible; we only need them to be computable in 7CY.
30If 4 or ¥ represents an integer larger than T', then ®; (i, ¥) = 0.

1029

where 0z is Kronecker’s delta function (i.e., dz()

[Lepm 11 =

acH\(z} 7 —a

5) (Layer polynomials.) For each i € [d], let o;: H™ —
{0, 1} represent the values of the gates at the i*" layer of
C' in the computation of C(z) (with zeroes in locations
that do not index valid gates).”’ We define polynomials
Q;: F"™ — T as follows:
G (i) = Y Py(il,) - o (¥)
veH™
Gi(i) = > i(l,0) 550 (G5 1() , i €{2,...,d} .
seH™
where §~¢ is a degree-(p — 1) polynomial such that
1 >0
dsp(a) = “ for every a € [¢].3®
0 ow
6) (Sumcheck polynomials.) For each i € [d], let
Qi F?™ — F be the polynomial
Qi 0(Ty 01, ooy O) = Py, 01,) - 050 (@im1(01, m))
and for every j € [m — 1), let &; j: F*™~J — F be the
polynomial

dlj (ﬁv 01y eevy anfj) =

>

Om—jt1,-0mEH

(I)i(ﬁv Ul,...,m) 69 (di—l(Ul,...

m))

where O, kir = Ok, Oktl, e Oktr. We also denote

Oéi’m = Q4.

Next, we argue that for every highly uniform family of 7C°
circuits {C,,} there is another highly uniform family of 7C°
circuits {C/,} that has the same functionality and that admits
a very efficient polynomial decomposition. The proof has
two steps: First, using ideas similar to those of Allender and
Koucky [36, Theorem 11], we simulate C, by a circuit C/, that
is mildly deeper but consists only of unweighted majority gates
of small fan-in; and then we arithmetize the circuit-structure
function ® of C”,, relying on a suitable arithmetization of the
(small) uniform circuits for ® (which exist because the family
{C/} is highly uniform).

Proposition V.3 (efficient polynomial decompositions of
highly uniform threshold circuits). There exists a universal
constant ¢ € N such that the following holds. Let § > 0 be
a sufficiently small constant, and let {Cn}neN be a -highly
uniform family of circuits of size T'(n) and depth d(n). Then,
there exists a 20-highly uniform family of circuits {C},} of size
T'(n) = T(n)® and depth d'(n) = O(d(n)/§) such that for
every x € {0,1}" it holds that C) (x) = C,(z), and there

exists a polynomial decomposition of C! () satisfying:
1) (Arithmetic setting.) The polynomials are defined over
F,, where p is the smallest prime in the interval

Formally, for every @ € H™ we have a;(d) =
Gie—1@ ETH@AL
0 o.w. ’

BThat is, 6s9(a) = Yoeie) Horeion oy 5=27 - Lo > 6].

Authorized licensed use limited to: MIT. Downloaded on March 28,2025 at 23:43:29 UTC from IEEE Xplore. Restrictions apply.

[5-(T")2 +1, 10-(T")?]. Let H = [h] C F, where h is
the smallest power of two of magnitude at least (T")%/?,
and let m be the minimal integer such that h™ > 21"

2) (Faithful representation.) For every i € [d'(n)] and
@i € H™ representing a gate in the i*" layer of C!,, the
value of the gate in C!(x) is 1 if and only if &; (@) >
9“}39

3) (Low degree.) All polynomials in the polynomial de-
composition have total degree at most T,

4) (Base case.) There is a P-uniform TCO circuit of size
n - h® that given u € F™, outputs the description of a
SUM gate Cy such that Cz(x) = b ().

5) (Downward self-reducibility.) There are two P-uniform
non-adaptive oracle threshold circuits of size h¢ and
constant depth that solve each of the following tasks,
respectively:

a) Given inputi € [d'] and (i, 01, ...,0m) € F>™ and
oracle access to &;_y, output & o(@, 01, ..., Tpm).

b) Given input (i,5) € [d] x [m] and
(@, 01y ey Om—j) € F>™7J and oracle access
to &i,j—l) output (3[1'73'(’17, T1y.nney Jm—j)-

Proof. We first construct a family {C]} that computes the
same function as {C,} and that has properties making it
amenable for arithmetization:

Claim V.3.1. There is a 20-highly uniform family {C} of
circuits of size T'(n) and depth d'(n) such that for each n,
the gates in C! are unweighted majority gates of fan-in at
most TOC), and C! (x) = C,,(x) for every x € {0,1}™

Proof. We replace each gate of (), by a sub-circuit of depth
O(1/56) whose nodes are unweighted majority gates with
fan-in 79, along with an additional AC" gadget of size
polylog(T") on top of the tree, as follows.

Let g be a threshold gate with inputs hy, ..., hp, weights
wy, ..., wp € {~T,...,T}, and threshold 6, € {-T7, ..., T?}.
Consider a tree of depth 1/6 whose bottom nodes are
{wi - hi};c), whose intermediate nodes have fan-in T? and
compute the sum of their children, and whose root computes
Zie[T] w; - h;. We implement this tree with unweighted
majority gates of fan-in 70 using the standard construc-
tions of 7C° circuits for iterated addition and multiplication:
Specifically, we replace each bottom node with a 7C° circuit
of size polylog(T') computing h; +— wj; - h;; and we replace
each intermediate node with a 7C° circuit of size 79 for
iterated addition of 7 integers. The sub-circuit that imple-
ments this tree outputs [2log(7")] + 1 bits, representing an
integer v € {—T72,...,T%}. We add a gadget on top checking
whether v > 04; this functionality can be implemented by an
ACP circuit of size polylog(T'). Note that the entire sub-circuit
indeed simulates g, and it has depth O(1/§) and T'+O()
unweighted majority gates of fan-in 7700,

¥The notation 0; ; refers to the threshold value of gate @ in the i

layer of CJ,. To avoid confusion, we note in advance that C/, will only
have unweighted majority gates of fixed fan-in ¢, and thus 6; 7 = [©/2]
regardless of (¢,).

Replacing each gate in C), with a sub-circuit as above yields
a circuit C”, of size T?T9() < T3 and depth O(d(n)/d) that
has the same functionality as C,. To see that C, is 20-highly
uniform, it suffices to show a P-uniform family {Weight;w}
of size T(9° and depth 1/26 such that Weightiw» gets
input (j, k) € [T] x [T] and outputs “yes” if gate k at the
(i — 1)*" layer feeds into gate j at the i*" layer.*’ To see
that there indeed exist such a family Weight;m-, let Weight,, ;
and Thr,; be the corresponding families for C),. Now, the
connectivity in the standard TCP circuits for iterated addition
and multiplication can be decided by P-uniform AC circuits
of polylogarithmic size, where the circuits for multiplication
(i.e., for computing h; — w; - h;) use Weight,, ; to compute
w;. Also, the connectivity in the top gadget can be decided by
an AC" circuit of size polylog(T) that uses Thr,, ; to compute
the threshold value (i.e., to compute 6,). O

Let 6’ = 26. To show a suitable polynomial decomposition
of {C! }, it suffices to specify the circuit structure polynomials
in. We will first do so, and then argue that the polynomial
decomposition has the claimed properties.

Construction of polynomials ®;.: Since {Ch}en is 0’
highly uniform, there exists a P-uniform family of thresh-
old circuits {Weight, ;}en.,, icja(m)) Of size T'(n)@)” and
depth 1/6’ such that Weight/, ; takes (j,k) € [T] x [T] as
input and outputs w;_; . '

First, by composing with £~! from Definition V.2, we can
convert Weight,, ; into a circuit D,, ;: H*™ — F,, as follows.
For any input (@, %), if £ *(u) # L and £~ '(v) # L then
D, ;(@,7) = Weight,, ;(¢ (u),£ ! (v)) mod p (where we
use z mod p to denote the unique conjugate number of z € Z
in Fp), and otherwise D,, ;(u,7) = 0. Note that D,, ; can
be implemented by a P-uniform 7C° circuit of size 70
and depth (1/6 + O(1)),*! and that D,,; computes ®; as
per Definition V.2.

The circuits D,, ; have domain H 2m - which we can also
think of as {0, 1}2"[°s(")] For the next step we will need
the following lemma, which allows us to transform each D,, ;
into a circuit of similar complexity that computes a low-degree
extension F2m Mog(M)] _y | of D, ;.

Lemma V.3.2. There is a universal constant ¢ € N> and a
polynomial-time algorithm that takes a prime 5 - t> < p < 2!
together with the description of a t-size d-depth n-input TC°
circuit C: {0,1}" — F, as input, and outputs another t°-size
(c-d)-depth TC circuit C": Iy —), such that the following
hold:

o C' computes a degree-t>? polynomial over F,,.
o For every z € {0,1}", we have C(z) = C'(z).

4OWe do not need to specify circuits Thr,, ; that compute the threhsolds
of gates in CY,, since the gates in C/, are all unweighted majority gates.

“'In more detail, D,, ; takes 2m blocks of length-[log h] Boolean strings
as input, interpret each of them as an integer in H (if any of the strings
does not encode a valid integer in H, D, ; outputs 0 immediately) to obtain
a pair (4,9) € H™ x H™, and outputs Weight], ;, (67" (u), 71 (v)) if
& Y(u) # L and €1 (v) # L and 0 otherwise.

1030

Authorized licensed use limited to: MIT. Downloaded on March 28,2025 at 23:43:29 UTC from IEEE Xplore. Restrictions apply.

Proof. Let m [logp]. Note that C' can be decomposed
into m Boolean output circuits C1, ..., C,,, such that C;(2)
outputs the i-th bit of the binary representation of C'(z). Recall
that in the field I, a negative number —z for z € [p—1] equals
p— z.

For each i € [m], we will construct a low-degree polynomial
1; such that C;(z) = 1;(z) for every z € {0,1}", and show
1; can be computed by another 7C° circuit C/. Then, we will
combine all the C{’s into a a single circuit C’, and all the v;
into a single polynomial).

Fixing ¢ € [m], for every gate g: {0,1}" — {0,1} in C;
(here v < t), we have

9 y) =1 > wjiy; > 0],

JE[]

where w;, 0 € {—t,—t+1,...,t} for every j € [v]. By stan-
dard interpolation, and using our assumption about p, we can
interpolate a degree-2t? polynomial 75: F,, — F, such that
T9(2) = 1[z > 0] forevery z € {—t2, —t2+1,...,12}.? Next,
we define 1, : Fy — Fp, as ¥y (y1,.. ., 90) = TG(Zie[v] wi -
y;). Note that 1, has degree 2 - 2 as well, and that it can
be computed by a 7C® circuit of size poly(t) - polylog(p)
that can be constructed from C; in time poly(¢) [37]. Since
the weights w; are of absolute value at most ¢, and by our
assumption about p, the sum) w, - y; (over the integers)
has absolute value at most ¢2; and since p > 5t2, we
have that Z]' w; -y; > 0 (over the integers) if and only if
Yg(y1, ..., yp) = 1 (over F)).

Now, we replace every gate g in C; by 14, to obtain a
polynomial ¢;: b IF,,. Since C; has depth d, we know that
1; has degree at most (2t)2d. Moreover, 1); can be computed
by a poly(t)-size O(d)-depth TC® circuit C! that can be
constructed from C}; in polynomial time.

Finally, we set ¢(z) = Y1 271 -4p;(2) for every z € Fy".
Note that 1) has degree (2¢)2? and 1) can be computed
by a poly(t)-size O(d)-depth 7C® circuit C’ that can be
constructed from C' in polynomial time. U

Let t = 790" be an upper bound on the size of the D,, ;’s.
Noting that p > 5 - (T")? > 5t2, we apply Lemma V.3.2 to
D,,,i to obtain a circuit D, ; of size TO(") and depth O(1/6)
that computes a degree-7°(%) polynomial F2m o8] — | that
agrees with D,, ; on all Boolean inputs.

To obtain the desired arithmetization CfDi: F2™ 5 F, we
compute a degree-h “projection” polynomial IT: F — Fllosh]
by interpolation such that for every u € [H], we have that
II(u) equals the binary representation of w as an integer.
Finally, we define
. ,Ugm) = D:q,,i(H(/Ul% ey H(’Ugm)) .

(I)n,i(vla ..

By the discussion above, the polynomial i)m- can be com-
puted by a P-uniform family of 7C° circuits of size 70

“Here {—t2,—t2 + 1,...,t%} denotes {p — t?,p —t?> + 1,...,p —
1,0,1,...,t%}.

1031

and depth O(1/§). Also note that the degree of ém is at
most 790 given our choice of h. Most importantly, it is
an extension of ®; defined in Definition V.2 (by identifying
negative numbers as their conjugates in F,).

Verification of properties.: Recall that the circuit CJ,
has unweighted majority gates of fan-in p = 79 and
thus all thresholds are 6 = |p/2]. Let us first prove the
faithful representation. We do so by induction on i = 1, ..., d".
For each ¢ and @ € H™ representing a gate g(x)
1[Zie[<p] hi > 6| with children hy,...,h,, we argue that
&; () = ey Mi- (The case of i = 1 follows from the
definition of &g, of &1, and of CiJi; and the generic induction
step follows from the definition of &; and of CiJi.)

Now let us prove the degree bound on the polynomials.
Observe that in layer polynomials

(i) = Y By, 5) - 65 (G (

176 Hm

)

the value J¢ (¢;—1 (%)) does not depend on the input , and
thus the degree of &; is identical to that of ®,, ;. In sumcheck
polynomials

di,j(ﬂy 01, -~-<,0'm—j) =

eens

Om—jtlsOmEH

the value ds¢ (&i—1(01,...m)), but since d¢ is of degree ¢ —
1 < 7°0) and @&;_4 is of degree deg(ém) < TO0) the
degree of sumcheck polynomials is also at most 7°(%) .

To verify the base case, note that for every # we have
Ca(@) = > ;e 9¢(i)(@) - x;. Thus, it suffices to compute
the mapping @ — (d¢(;)(i))ie[n)> and indeed each of the n
Kronecker functions can be computed by a P-uniform 7C°
circuit of size poly(h).

Finally, for downward self-reducibility, for any i €
[d'] computing &; o(W,01,...,00) reduces to computing
i)i(al, .., 0m) and to comparing the value of &;_1(o1,....m)
to 6, both of which can be done in P-uniform TCO of size
TO6*) < poly(h) and depth O(1/6) = O(1) with oracle
access to &;_1. By a similar argument, we can compute ¢&; ;
in P-uniform T7C° of size h - TOC") < poly(h) and depth
O(1/d) = O(1) with oracle access to &; ;_1.

We need the following standard TC° decoder for Reed-
Muller codes.

Lemma V.4 (Low Depth Decoder for Reed-Muller Code, [34,
Section 19.3, 19.4]). Let p be a prime, F =), and d,m €
N> such that d < p/3. Suppose there is a (hidden) degree-d
m-variate polynomial P over F, and let ¢ € [0). For
any oracle O: F™ — F such that

_Pr [0) = P(@)] > 1-4,

_1
) 3(d+1)

there is a P-uniform probabilistic TC° circuit family
{RM-LDC,, 1. d}p.m.den of size poly(m,logp) with non-
adaptive O oracle gates, such that for every ¥ € F™,

Pr[RM-LDC?, ,(¥) = P(Z)] > 1 —p~2™,

p,m,d

Authorized licensed use limited to: MIT. Downloaded on March 28,2025 at 23:43:29 UTC from IEEE Xplore. Restrictions apply.

where the probability is over the randomness of RM-LDC,, 1, 4.

Proof. Let ¥ € F™ be the input; recall that we want to
compute P(Z). We will give a randomized non-adaptive oracle
TCP circuit C© (with O oracle gates) of size poly(m, d, log p)
that computes P(Z) with probability at least 2/3 for every
Z € T™. The error probability can then be reduced to
p~2™, by running C© for O(mlog p) times with independent
randomness and taking a majority.

We draw a random vector v < ™, and for every t € F
we define Q(t) = P(Z+t- V). Now for every t € [d+ 1] we
compute oy = O(Z + ¢ - V). Letting z denote the number of
t € [d+1] such that oy # Q(t), we have E[z] < 6(d+1) since
all o, distributes uniformly over F™". By the Markov bound,
we have Prz = 0] > 2/3.

We then use Lagrange polynomial interpolation to compute
a degree-d polynomial W : F — F such that W (¢) = «, for all
t € [d+ 1], and output W(0). Note that since W and @ both
have degree at most d, when z = 0, we have W (0) = Q(0) =
P(Z), which completes the proof. The whole procedure can
be done with P-uniform probabilistic 7C® oracle circuits of

poly(m, d, logp)-size [38]. W

We are now ready to present the bootstrapping system for
highly uniform families of 7C" circuits. Roughly speaking,
the bootstrapping system will be obtained by encoding the
polynomials from the polynomial decomposition in Proposi-
tion V.3 by the code from Proposition IV.1.

Proposition V.5 (refined encoding of efficient polynomial
decompositions for highly uniform circuits). There exists a
universal constant ¢y € N such that the following holds. Let
6 € (0, 1) be a sufficiently small constant, and let {Cy },, o be

a 0-highly uniform family of circuits of size T'(n) and constant
depth d. Then, there is a constant k that only depends on ¢
such that for every x € {0,1}" there exists a sequence of
functions wi" .. wi): 2 [T%] — {0,1}, where T = T(n)
and d' = O(d), satzsfymg the following:

1) (Faithful representation.) There is a P-uniform TC°
oracle circuit family {OUT,}, o\ of size T Osuch that
when OUT" is given i € [T as input and oracle access
0w it outputs Cy,(x);.

(Base case.) There is P-uniform TC° circuit family
{BASE, }nen of size n - T that given i € [T*],
outputs the description of a polylog(n)-size TC®oSUM
circuit C; such that C;(x) outputs wgg)(i).

(Downward self-reducibility.) There is a P-uniform
TC" oracle circuit family {DSR,, Fren, ief2,..ay Of size
T% that, when given j € [T"] and oracle access to

(z 1), outputs w?(g).

(Layer reconstruction.) There is a P-uniform proba-
bilistic TC° oracle circuit family {REC,.},,c that for
any i € {2,...,d'} satisfies the following. The circuit
REC,, first has a probabilistic preprocessing step, in
which it makes non-adaptive queries to w,gf). Now, fix

2)

3)

4)

1032

any O: [T"] — {0,1} such that Prjcip[O(j)

(i)(] > 1/24 T/, Then, with probability at least
1 — 27" over the coins in the preprocessing step, for
any j € [T*] it holds that Pr [RECO(]) = wz)()} >
1-2-1",
of REC,,

where the probability is over the random coins
after the preprocessing step.

Proof. Let ¢ be the universal constant from Proposition V.3.
We apply Proposition V.3 to {C,}. Let p, h,F be as defined
in Proposition V.3. Let x be a sufficiently large constant that
depends on J. Let ¢; be a sufficiently large constant.

We first define a sequence polynomial {P;}ica
{P;}icra)- We set d' =m -d+ 1 and

{Piticla) =
{dOa dl,lv ceey

al,'ITHOéQ,l’ M '7a2,2ﬁlv ct 7ad,1’ M ~7ad,m}-

By adding dummy variables, we can view all of the poly-
nomials above as mappings from F?" to . Note that they all
have degree at most 77,

Let N = |[F?™| = p?>™. By the choice of h and m, we have
N = T#/9 for a universal constant /.

Now, we let wi compute the following Boolean function:
given @ € F™ and ¢ € [log p], output the i-th bit of the binary
representation of & (). (We fill the unused space in [1"] with
zeroes.) The base case follows immediately from the base case
of Proposition V.3.

We 1nstant1ate the code Enc from Proposition IV.1 with
v = 2:60% and y = = 62, and let ¢y be the universal constant
from Proposition IV.1 and c* %, be the corresponding
constant. We now set so that 7% = N¢ = N. For every
i€{2,...,d'}, we define w as Enc(P;), where we view P,
as a vector from FV.

Downward Self-Reducibility: Fixi € {2,...,
operates as follows:

1) Given j € [N} as input, run Qx(j) to obtain M =
N7 many queries qi,...,qu € [N] to P;, such that
Enc(Pi)j = EN((P'L)ql gaany (Pi)qM)'

For each ¢ € [M], run the corresponding DSR algorithm
that computes P; with input g, (interpreted as a vector
in F2™) of Proposition V.3 given an oracle for P;_i;
we answer its query to FP;_; either using our oracle to
w,g,;i_l) directly (when ¢ 2), or using ngil) from
the systematic property of Proposition IV.1 (by which
Enc(P;—1)
Iy computes P;_1).

Since (1) |Qn|,|En|,|[In| < NG+ < T70O0) and
(2) the DSR TC° oracle circuits in Proposition V.3 and the
TC° circuit Iy from Proposition I'V.1 are both non-adaptive,
DSR,, ; can be implemented by a PP-uniform non-adaptive 7C o
oracle circuit of size 7909,

Layer Reconstruction: Fix i € {2,...,d'} and given
an oracle O: {0,1}¥ — {0,1} such that Pr e[V][O(])

Enc(P;)] > 1/2 + N~". REC,, operates as follows

1) Run Dy from Proposition IV.1 with oracle O. We know
that with 1—o(1) probability over the preprocessing step

d'}. DSR,,;

2)

Authorized licensed use limited to: MIT. Downloaded on March 28,2025 at 23:43:29 UTC from IEEE Xplore. Restrictions apply.

of Dy, there is a set S C [N] with |[S|/N >1—- N7
such that Pr [(DN)O(Z) Pz(z)} > 2/3 for every
z € S (here we can interpret z as an element in
[F2™). By running the main step (after the preprocessing
step) of Dy for O(log N) times, each with independent
randomness, we can indeed obtain a probabilistic non-
adaptive oracle circuit D such that for all z € S,
Pr f(D)O (2) = Pi(z)} >1-1/N2

Hence, by a simple union bound, with probability 1 —
o(1) over all the randomness above (including the ran-

~ \O
domness of the main step), we know that (D N) (2)

P;(z) for all z € S, where we use D to denote D with

randomness fixed.)
2.8.8
I

2) Now, note that N7 = (T“/‘S) = T2 In

particular, let d = T¢° be the degree of P;, we have
O

N7 = d?. Therefore we output RM-LDCﬁé"m’d(j) for

the given input j € [N].

By repeating the above procedure O(7) times and taking
the majority answer, we can reduce the error probability to
2T as desired. Moreover, one can see that RECy can
be implemented by T°(%)-size probabilistic 7C circuits as
desired. I}

B. Reconstructive Targeted HSG for Highly Uniform TC°
Circuits

Now we are ready to prove Theorem V.1.

Reminder of Theorem V.1. Let ¢ € N>y be a sufficiently
large universal constant. For every v € (0,1) and d € N>,
there exist di € N>q and 6 € (0,1) such that the following
holds. Let T,M: N — N be such that M < TV/¢. Let
f:4{0,1}™ — {0,1}* be computable by a family of 6-highly
uniform threshold circuits of depth d and T size. Then, there
exist deterministic algorithms HJ(ET'TCO and R(}T'TCO that for
every z € {0,1}" the following hold:

1) Generator: When given input z, the machine H?T'TCO
runs in time poly(T') and prints a set of strings in
{0,1}M,

2) Reconstruction: R‘}T'TCO(I") outputs the description of
a probabilistic

(TCY,[n-T7] = TCY, o SUM[T])

oracle circuit Ry, such that given D: {0,1}M — {0,1}
that 1/M-avoids H}:T'Tco(z) as oracle, we have

Pr

R?(2) output CY. oracle circuit E
RfeRf{ 7 (2) outputs a TC,, oracle circui

such that tt(EP) = f(z)} >2/3.

Proof. Let c; be the universal constant from Proposition V.5.
Let d; € N>; and § € (0,1) to be specified later. Let k =
k(9) be the corresponding constant from Proposition V.5. Let
¢ € N>, be a sufficient large universal constant.

1033

Without loss of generality, we can assume M = T/ since
for smaller M we can truncate H J?T’Tco’s outputs to their first
M bits and it is straightforward to verify the reconstruction
works with minor modifications.

Applying Proposition V.5 to the §-highly uniform threshold
circuit {C,,} of size T'(n) and depth d that computes f,
for every z € {0,1}", there is a sequence of functions
w®, . w®): [T] = {0,1), where &' = O(d(n)), that
satisfies the conditions in Proposition V.5.

1) The Generator H }?T'TCO : We set 71 = -L-. We apply The-
orem II1.13 with parameter v, and define

U GNw(ng))

icld’]

H](;‘T-TCO (z) _

Note that H;T'Tco(z) outputs a set of string of length 7" =
TV/¢ = M, as desired.

Moreover, from the base case and the downward self-
reducibility of Proposition V.5, given z, one can compute wgl)
for all i € [d'] in poly(7T') time. Since G also takes poly(7T')
time to compute (Theorem I11.13), we conclude that H](iT'TCO (2)
can be computed in poly(T) time as desired.

2) The Reconstruction R‘}T’TCO : We need to output a
7CY, [n-T7] sampler S that maps randomness to a 7Cy, o
SUMIT"] oracle circuit, so that the corresponding probabilistic
oracle circuit R satisfies the conditions in the reconstruction
part of the theorem.

Notation: Fix an oracle D: {0,1}* — {0,1} that 1/M-
avoids H]?T’Tco(z) = Uie GM(w'"). In particular, it holds
that D also 1/M-distinguishes G™(w'") for every i € [d].
Let cyy and dyy be the universal constants from Theorem I11.13.
Let Syy = R™(17°"). Without loss of generality, we assume
that Syy takes exactly ryy = M bits as input. Let dy, u €
N>, be sufficiently large universal constants such that dy >
dyy-

High-Level Overview of the Construction:
speaking, we will first construct d’ samplers So, ..., Sg 11,
such that each S; maps its own input (i.e., the randomness) to
a (deterministic) oracle circuit E;. The overall sampler S then
runs all the .S; with independent randomness, and composes
their outputted circuits together to form a single circuit

Roughly

E:Ed/+10~-~OE2.

In more detail, for every i € {2,...,d'}, E; takes the
output of F;_1 (¢ > 2) or z (¢ = 2) as input, and outputs the
description of an oracle circuit C; such that C is supposed to
compute wg). Fori = d'+1, Sg 41 outputs a circuit Ey 4 that
takes the output of Ey as input and outputs the description
of an oracle circuit Cyg41 such that C2 41 18 supposed to
computes f(z).

Notation for REC,,: Let rpre, Tmain < T°1"% be the number
of random bits used by REC, of Proposition V.5 for the
preprocessing step and the main step, respectively. (We use
the main step to denote the operation of REC,, after the
preprocessing step.)

Authorized licensed use limited to: MIT. Downloaded on March 28,2025 at 23:43:29 UTC from IEEE Xplore. Restrictions apply.

Let Spre and Spain be the ’TCSO [T9] samplers for the
preprocessing step and the main step of REC,,, respectively.
Let ¢ € [d'] (note that REC,, does not depend on). In more
detail: (1) Spre takes apre € {0, 1} bits as input, and outputs
a list of queries to w!?, denoted by ¢1,92,...,q € [T°],
where ¢ < T¢%; (2) Siain takes main € {0, 1} as input,
and outputs a ’TCSO oracle circuit C! of size 71 that takes
t bits and j € [T!] as input.

The promise of Proposition V.5 implies that for any
0: {0,1}7" — {0,1} satisfying

Pr [0(j) = wl(j)] = 1/2+ T/,

JE[Te1]
27T 41 e > 1 = 27T°/2 gyer
Qpre U . and apmain Uy, it holds that (C)° (j) ==
(C’) (w S(q;l) w,(f)(qt)7j) computes wl. We set ¢ >
?chl so that we have 1/2+ M3 > T—%/¢1, (To see this,
note that M3 = T37/¢ > T%/¢1 by our choice of c.)

3) Construction of Sy: We first construct the sampler So,
whose properties are summarized by the claim below. We
remark that the sampled circuit Es below does not need an
oracle.

with probability at least 1 —

Claim V.6. There is a polynomial-time algorithm that, given
1™, outputs a TC%(dO)[n -T2 circuit Sy satisfying the
Jollowing:
1) Sy takes ro = n - T7/? bits as input, and outputs the
description of a TO(¢1"9) _size TCOO(dO> oSUM circuit Es.
2) E5 takes z € {0,1}" as input, and outputs the descrip-
tion of a T *%-size Tc,{{.do oracle circuit Cs.
3) Forevery z € {0, 1}™, with probability at least 1—1/3d'
over Ey < S3(U,,), letting Cy = Es(2), it holds that
CP computes w?.

Before proving Claim V.6. We need the following observa-
tion, which follows directly by combining the base case and
the properties of DSR,, of Proposition V.5.

Observation V.7. There is a P-uniform n-T91 9 size TCY,
circuit that takes input i € [T'] and outputs a TO(C1 9)_size
TCSO o SUM circuit W; such that W;(z) = w? () for all
z € {0,1}™

Proof of Claim V.6. Sy consists of two stages, S 1 and S5 o,
such that Sy ; aims to sample a circuit Fs; that runs the
Nisan-Wigderson reconstruction of Theorem III.13 to obtain
an oracle circuit CQ that weakly approximates - wg), and S5 o
aims to sample a circuit F o that corrects C’g into another
oracle circuit C'y that computes w() on all inputs. From now
on, we describe Sy and Si 2 separately, and show how §
combines them together.

Construction of So1: S2,1 takes ryy bits as input, denoted
by ro1 € {0,1}™. Sy first uses 721 to compute a circuit
Es, that maps z € {0,1}" to the description of a M “%-size
TCY,, oracle circuit Cy= SNW (ro1).

Formally, glven r9.1, S2,1 computes all the queries of Syy
made to w'? in TCO J[Mew] (note that Syy is a non-adaptive

oracle 01rcu1t) and applies Observation V.7 to replace all calls
to w'™ in Syw by TO(c1°9)_size TCd oSUM circuits with input
z. This way, S> 1 outputs the desired T0(€1:8) gjze TCO(d)©
SUM circuit E271

Moreover, by Observation V.7, we know that S5 ; can be
implemented by a n - 7919 size TCOO(dO) circuit.

Construction of Sz 2: Let 122 = Tpre + T'main. S2,2 takes
(tpre, main) € {0,1}7>2 as input, it first runs Spre(tpre) to
compute qi,qo,...,q: € [T], and then runs Smain(main)
to obtain the oracle circuit C%, then it constructs the desired
circuit E5 5 that first computes wgz)(ql),.. w?)(qf) and
then outputs CY by fixing the first ¢ bits of the input to C%
to w? (qr),..., 0> (g;). Note that C% is a T 9-size TCY,
circuit.

By Observation V.7, Ey 5 is a T9(19)size TC%(dO) oSUM
circuit, and S3 2 can be implemented by a n - TO(1-9) gjize
TC%(dO) circuit.

Construction of Sy: Finally, Sy runs Sy 1 and S3 o with
independent randomness to obtain circuits Fq and Eo 9. It
then constructs the final circuit E5 that works as follows: Fs
first runs 5 ¢ and E5 o in parallel (on input z) to obtain the
description of the oracle circuit 52 and t~he oracle circuit C¥,
and then replaces the oracle in C by C5 to obtain the final
oracle circuit Cy. Recall that dy > dyy, Cs is a TH 19 gize
TC 4, circuit.

With a standard encoding of TP oracle circuits, this oracle
replacement operation can be done by a polynomial-size
7;C00(d0) circuit (polynomial in terms of the total input length
|Cs| + |CY]). Hence Ey is a TO1%)size TCH 4,y © SUM
circuit, and Sy can be implemented by a n - TC(19)_gize
TC%(dU) circuit.

Analysis of So: We set ¢ sufficiently small compared to
v, so that the TO(e1:9) above is at most T7/2. The first two
items of the claim are established by the discussions above.
Now we show the last item. By Theorem III.13, we know
that with probability 1 — 273M over Fy1 < Sa1(Up), for
Co = E2(2), it holds that CP (1/2 4+ M~3)-approximates

w£2). Then recall that by our choice of ¢ we have 1/ 2+M 3>
1/2 + T=%/¢1, we have that with probability 1 —2-7"/2 over
Ey 5 < So2(Uy, ,), for Cf = Ea5(2), it holds that (C)

computes wg2

. A simple union bound completes the proof.

4) Construction of S; for i > 2: Now we construct the
sampler S; for i € {3,...,d'}, whose properties are sum-
marized by the claim below. Unlike Claim V.6, the sampled
circuit F; below needs D as the oracle.

Claim V.8. There is a polynomial-time algorithm that, given
1" and i € {3,...,d'}, outputs a TC%(d[,) [T7/2] circuit S;
satisfying the following:
1) S; takes r; = TV/? bits as input, and outputs the
description of a T(1"9)_size TC%(dO) circuit E;.

1034

Authorized licensed use limited to: MIT. Downloaded on March 28,2025 at 23:43:29 UTC from IEEE Xplore. Restrictions apply.

2) E; takes the description of a T size TCg d4, oracle
circuit C;_1 as mput and outputs the description of a
THed gize 'TCH 4, oracle circuit C;.

For every oracle circuit C;_1 such that CD 1 computes

9 1), with probability at least 1 — 1/3d’ over E; —
Sy(U,.), it holds that C; = E ()

i(Ci—1) computes w;
given the oracle D.

Proof. First, in polynomial-time one can compute a
TCOO(d) [TO9)] circuit Ej g that takes the description of a
7CY o [T#¢1-] oracle circuit C;_ such that C{? ; computes

wi™), composes it with the DSR,, algorithm of Proposi-
tion V.5, and outputs the description of an TCOO(dO) [TO(e1-9))

3)

oracle circuit Fj such that FZ-D computes wg). Since F; o does
not depend on z, we can hardwire F;(in to the description
of S; so that S; can output it directly.

After E; o, similar to So, S; consists of two stages, S; 1 and
Si 2, such that S; ; aims to sample a circuit £; ; that runs the
Nisan-Wigderson reconstruction of Theorem II1.13 to obtain
an oracle circuit C; that weakly approximates_ wg), and S; 2
aims to sample a circuit F; 5 that corrects C into another
oracle circuit C; that computes w!” on all inputs. From now
on, we describe S; 1 and S; o separately, and show how S;
combines them together.

Construction of S;1: S; 1 takes ryy bits as input, denoted
by r;1 € {0,1}™. S, 1 first uses 7, 1 to compute a circuit E; ;
that maps the description of F; to the description of a M -
size TCSW oracle circuit C; = S’ﬁ;,zl (ri1)-

Formally, given r; 1, S;1 computes all the queries of Syy
made to w'” in TCY, [Me%] (note that Syy is a non-adaptive
oracle circuit) and outputs the oracle circuit I; ; that works
as follows: F; ; takes the description of the oracle circuit Fj
as input, replaces all calls to w() in Sy by evaluating NFiD ,
and then outputs the description of the resulting circuit C;.

Note that S;; can be implemented by a TO(e1:9) gize
TCOO<dO) circuit, and E; ; is a 7919 size ’TCOO(dO) oracle
circuit.

Construction of S; 2: Let 729 = T'pre + Tmain. Si,2 takes
(Otpre, Otmain) € {0,1}72 as input. It first runs Spre(tpre) to
computes qi,q2,...,q € [T°], and then runs Smain(Qmain)
to obtain the oracle circuit C, then it constructs the de-
sired circuit I; o that takes the description of F; as input,
computes wg)(ql) (i)(1) by evaluating Fj, and then
outputs C/' by ﬁxmg the first ¢ bits of the input to CY
o w(q),...,w"(q). Note that E;, is a TOC) size
TCOO(dU> circuit, and S; » can be implemented by a 79(¢1-9).
size TCOO(dD) circuit.

Construction and Analysis of S;: Finally, S; runs S; 1
and S; o with independent randomness to obtain circuits F; ;
and F; 5. It then constructs the final circuit I; that works as
follows: E; first runs E; o with input C';_ to obtain the oracle
circuit I, then it runs F; 1 and F; » with input F; in parallel
to obtain the description of the oracle circuit 51 and the oracle
circuit CY’, and then replace the oracle in C/’ by C; to obtain
the final oracle circuit C;.

1035

Similarly to the proof of Claim V.6, this oracle replacement
operation can be done by a polynomlal size TCd circuits.
Hence E; is a T9(¢19)_size TCO(d) circuit, and S; can be
implemented by a T9(“19)-size TC{),,) circuit.

The analysis follows from the same argument of Claim V.6.

5) Final Construction: Finally, using the OUT,, circuit
from Proposition V.5, in polynomial time we can compute
a TCOO(d)[TO(Cl“;)} circuit Eq 4, that takes the description
of a THc1 9 size TC oracle circuit Cy as input, and
outputs the descrlptlon of a TOWe19) gize TCO(H do) Oracle

circuit Cy 41, such that if Cd, computes wgd) then C’d, 11
computes f(z). Since the above algorithm is deterministic,
we can construct a TCOO(dO)[TO(Cl"S)] circuit Sg41 that takes
no input and outputs E4 41 as the “sampler” for the last stage.
(We define Sy 41 only for notational convenience.)

As already discussed in the high-level overview, the final
sampler S runs Ss, ..., Sy 41 with independent randomness
to obtain circuits Fs, ..., Eg 1. The final output of S is then

E:Ed/+1OEd/O~~-OE2.

By setting § small enough and d; large enough, the desired
complexity on £ and S follows from Claim V.6 and Claim V.8,
and the correctness follows from a union bound. [

VI. DERANDOMIZATION VS REFUTATION

In this section we prove our main results, relying on the
technical tools that were developed in previous sections. First,
in Section VI-A, we prove Theorem I.1. Then, in Section VI-B,
we prove Theorems 1.2, [.3 and 1.4. Finally, in Section VI-C,
we prove Theorem 1.8.

A. Derandomization vs Refutation Against Low-Space Stream-
ing Algorithms

Let us start by proving the direction “refutation = deran-
domization”. That is, we show that deterministically refuting
low-space streaming algorithms implies that prBPP = prPp.

Theorem VI.1 (refutation of streaming algorithms implies
derandomization). Let ¢ € (0,1), let T(N) > N and p(n)
be polynomials, and let [be a p-bounded T-time algorithm-
dependent hard function for str-TISP[T' ¢ nf]. Assume that
there exists a P-computable N¢-compression list-refuter for f
against str-TISP[T**e nf). Then, prBPP = prP.

Proof. To prove the theorem, it suffices to show that for every
linear-time machine M, given input = € {0,1}", we can
distinguish between the case that Pr,.[M(z,r) = 1] > 1/2
and Pr.[M(z,r) = 1] = 0. Without loss of generality, we
assume that M uses exactly m bits of randomness.

Notation: We begin by introducing some notation. Let
M be a probabilistic linear-time machine, and let ¢ be the
universal constant from Theorem III.15. Let 6 = ¢/4c. We
set n = m!'/%. For every a € {0,1}", we use a € {0,1}" to
denote the padded string @ = (a, 0"~"™). We also set v = ¥(0)
be such that T(N)¥ = N</4,

Authorized licensed use limited to: MIT. Downloaded on March 28,2025 at 23:43:29 UTC from IEEE Xplore. Restrictions apply.

Let (a,z) € {0,1}™ x {0,1}*(™) and N = |(@,z)| = n +
p(n). We also set S, , = H§'(a,x), with parameter and
output length m. (Note that m = n®/4¢ < T(N)7/¢ = Ne/4e,
so the assumption of Theorem III.15 is satisfied.)

Lemma VL2 (instance-wise reconstruction). There is a one-
pass streaming algorithm R = Ry (i.e., the algorithm depends
on f) that uses space N¢ and time T(N)'¢ and satisfies the
following. For any fixed (a,x) € {0,1}™ x {0,1}*(™), if

Pr[M(a,r) =1] > 1/2 and I;r [M(a,s)=1]=0,
r 5€Sa 0

then, when R is given input (a,x), with probability at least
2/3 it prints a circuit of size N® whose truth-table is f(a, x).

Proof. Let z = (a,z). We define R to be the reconstruction
algorithm RS' from Theorem II1.15 with oracle replaced by
D, (r) := M(a,r). From the assumption we know that D,(-)
1/2-avoids H]?T(z) = Sz, we know that with probability at
least 2/3, R$" outputs an oracle circuit C'y ;) of size T(N)? =
N#/% such that the truth-table of CJ’?(‘;) is f(2). R then simply
composes C(,y with D, to output a circuit of Ne/tom? <
N¢. This establishes the correctness of R.

Now we verify the time and space complexity of R.
From Theorem III.15, R is a one-pass streaming algorithm
that runs in met! - T(N)!*7 < T(N)'*¢ time and uses at
most m¢ < N¢ space. This completes the proof. [

Now we are ready to prove the theorem. Given input
a € {0,1}™ for M, we run the list-refuter on input (R,a)
to obtain x1,...,xx € {0,1}?("), where k& = poly(n). For
each i € [k], we compute the list S; = S, ,,, and finally we
output vie[k],seSi M (a, s). From Theorem III.15, the whole
procedure can be done in poly(n) time.

Assume towards a contradiction that for some a € {0,1}™
it holds that

Pr

M(a,r) =1] > 1/2 and
7»e{o,m[(a,r) =1] > 1/2 an

\/ M(a,s) =0.

i€[k],s€S;

By Lemma V1.2, for every i € [k] it holds that R(a, x;) prints,
with high probability, a circuit of size N° whose truth-table
is f(a,x;). This contradicts the properties of the compression
list-refuter. [l

We now prove the converse direction, which asserts that
derandomization implies refutation. Recall that the deduced
refuter in Theorem I.1 works not only for streaming algo-
rithms, but for essentially any class of RAMs, where the class
only needs to satisfy a very weak property. Let us define this
property and prove the result.

Definition VL.3 (closure under error-reduction). We say that
a class C of probabilistic RAMs is closed under error-
reduction if there is a deterministic polynomial-time algorithm
that takes as input a description of any M € C and outputs
a description of M’ such that M'(xz) runs M (x) for 100
times with independent coins each time, and outputs the most
frequent outcome (breaking ties arbitrarily).

1036

Theorem V1.4 (derandomization implies refutation). Let C be
a class of probabilistic RAMs closed under error-reduction,
let p be a polynomial, and let f € FP be a p-bounded
algorithm-dependent hard function for C that admits a BPP-
refuter. Assuming pr'P = prBBPP, there is an FP-refuter for
C against f.

Proof. Let Ref be the BPP-refuter for f against C. Given
input (M, a) where M € C, let M’ € C be the error-reduced
version of M from Definition VI.3. We construct the circuit

D(r,r") =1[M'((a,z),r") # f(a,)] ,
where z = Ref((M’,a),7) ;

that is, D takes as input random coins r for Ref and random
coins ' for M’; it runs Ref on input (M’,a) with random
coins 7, to obtain an input x for M’; then it runs M’ on input
(a,) with random coins 7”/; and finally, it compares the output
of M’ on x to f(a,z).

Since Ref is a BPP-refuter, with probability at least 2/3
over 7, the output x satisfies Pr/[M ((a,x),7") = f(a,x)] <
2/3. Thus, Pr, . [D(r,r") = 1] > (2/9). Running the search-
to-decision reduction from Theorem II1.16 on the circuit D,*
we find 7* such that Pr..[D(r*,7") = 1] > 1/9. Equivalently,
denoting x* = Ref((M’, a),r*), we have that

PriM’((a,2"),r") # f(a,2")] 2 1/9 .

The output of the deterministic refuter is x*.

Now, assume towards a contradiction that
Pr./[M((a,z*),r") = f(a,z*)] > 2/3. Then, by the
definition of M’ as the error-reduced version of M, we have
that Pr,.[M'((a,2*),7") = f(a,z*) > 0.99. This yields a
contradiction. [

The following corollary is a more general version of Theo-
rem [.1, and it asserts an equivalence between refutation and
derandomization.

Corollary VLS. The following statements are equivalent:

1) For some € > 0 and polynomials p,T" and a p-
bounded T-time algorithm-dependent hard function
[against strTISP[T(n)'*e n®), there there is an
N¢-compression list-refuter in FP for [against
strTZSP[T(n)! ¢, ne].

2) prBPP = prP.

3) For every class C of probabilistic RAMs closed un-
der error-reduction, and any p-bounded algorithm-
dependent hard function f € FP for C that admits
a BPP-refuter (where p is a polynomial), there is an
FP-refuter for [against C.

Proof. The implication (1) = (2) follows from Theorem VI.1.
The implication (2) = (3) follows from Theorem VI.4. For
the implication (3) = (1), it suffices to show, unconditionally,

4By our assumption that prBPP = prP, it follows that CAPP for
general circuits is solvable in deterministic polynomial time, and hence an
algorithm as in the hypothesis of Theorem III.16 exists.

Authorized licensed use limited to: MIT. Downloaded on March 28,2025 at 23:43:29 UTC from IEEE Xplore. Restrictions apply.

that there is a function f computable in polynomial time
T that is hard against str-TZSP[T*¢ n], and that has a
BPP-refuter. (Note that we will be using a standard hard
function, which is a special case of an algorithm-dependent
hard function.)

Such a function indeed exists, because the well-known lower
bounds for functions in FP against streaming algorithms of
sublinear space complexity (and any time complexity) actually
hold on average. That is, the classical proofs define very
simple distributions, and show that with probability (1)
over an input sampled from these distributions, the streaming
algorithm fails on that input.** Thus, the BPP-refuter can
repeatedly sample an input and verify that the streaming
algorithm fails to compute the hard function on it (until it
finds a suitable input). [l

Finally, recall that in Section I-C we mentioned that proving
a statement along the lines of “BPP-refuters imply derandom-
ization” would unconditionally imply that prBPP = prP. Let
us now state this claim formally and prove it.

Claim VIL.6. Let C be any class of RAMs running in polyno-
mial time such that for every M € C and every input z there
is a string y such that Pr[M(z) = y] > 2/3. Consider the
following statement:
(Cond.Stt.) Assume that there is a probabilis-
tic polynomial-time RAM f and a deterministic
polynomial-time algorithm R such that for every
M € C and sufficiently large n € N and a € {0,1}",
the algorithm R(M,a) prints x € {0,1}Poy(®)
satisfying Pr[M (x,a) = f(x,a)] < 2/3, where the
probability is over the random coins of M and of f.
Then, prBPP = prP.

Then, we have that
(Cond.Stt.) = prBPP = prP.

In other words, to prove that prBPP = prP, it suffices to
prove the conditional statement (Cond.Stt.).

Proof. For any C, we show that f and R as in the hypothesis
of (Cond.Stt.) exist unconditionally. Thus, if (Cond.Stt.) is
true, then prBPP = prP.

To see this, let 7" be the polynomial bound on the running
times of machines in C, and consider the following machine
/. Given as input (z, a), simulate the first £ = log™(n) RAMs
My, ..., My on input (z, a). Specifically, each machine is sim-
ulated for 7" steps, and we repeat the simulation for O(log(¢))
times (so that if there exists y such that Pr[M;(a,z) = y| >
2/3, then with probability at least 1/(100¢), this y will be
the output of M; in at least 0.6 of its simulations). For each

#For example, the lower bound in [14, Proposition 3.1] holds with proba-
bility (1) over a distribution that is obtained by applying a polynomial-time
transformation to the hard distribution from the proof of the communication
lower bound for disjointness [39]. Alternatively, one can directly consider
the latter lower bound as a lower bound on streaming algorithms (where the
streaming algorithm first sees Alice’s input x, bit-by-bit, and then sees Bob’s
input y, bit-by-bit), in which case the hard distribution from [39] is also hard
for streaming algorithms.

1037

i € [{], denote by y*) the output that M; prints in at least 0.6
of its simulations (if no such string exists, or if M; does not
halt after T1< steps in one of the simulations, then y(9) = 0°).

SRS

Y;

Let z; = . Finally, print the ¢-bit string such

o.w.
that for every ¢ € [¢] it holds that f(z,a); = —z;.

Note that f runs in probabilistic polynomial time. Also note
that for every M € C there are at most finitely many inputs
(z,a) such that Pr[M (z,a) = f(z,a)] > 2/3. (Recall that,
by the definition of C, for every M € C and every input (z,a)
there exists y such that Pr[M (z, a) = y] > 2/3.) Hence, there
is a trivial algorithm R that satisfies the hypothesis, namely
the algorithm that gets input (M, a) and outputs any fixed x
(e.g., z = 0P(eD). By the conditional statement (Cond.Stt.),
it follows that prBPP =prP. W

B. Derandomization vs Refutation for 7C°

In this section we present connections between refutation
and derandomization in the setting of weak circuit classes,
and in particular for 7C°. In Section VI-B1 we present the
results concerning refuting Identity (i.e., Theorem 1.2), and in
Section VI-B2 we present the results concerning refuting any
function in highly uniform 7C" (i.e., Theorems 1.3 and 1.4).

1) Special Case: Derandomization vs Refutation for
Identity Against TC°: Let us prove Theorem 1.2, which asserts
an equivalence between refuting Identity against small prob-
abilistic 7C° o @ circuits, and derandomization of 7C°. As a
first step, we prove that compression-refuters for probabilistic
TC" o @ circuits with n° gates suffices for derandomization:

Theorem VI.7 (compression refutation for Identity against
small probabilistic 7C circuits implies derandomization). For
every d € N>y there exists d' € N>y such that the following
holds. Assume the following:

o For some ¢ € (0,1), there is a P-computable (TCY,,n°)-
compression refuter for ldentity against probabilistic
(TCY [n**+] = (TCY o XOR)[n®])-circuits.

Then, there is a deterministic polynomial-time algorithm solv-
ing CAPP for TCY circuits.

Proof. Fix d € Nsj. Given a TCY circuit C: {0,1}" —
{0,1}. By adding dummy inputs, we can assume C' has size
n as well. Our goal is to estimate Pr_¢ 9 13m[C(z) = 1] within
an additive error of 1/m.

Let € € (0,1). Let cgry and dsyy be the universal constants
from Theorem III.14, and let v = ¢/4csry, and n = m/7.
We instantiate Theorem III1.14 with parameter . And we run
RS™(1™) to obtain the description of a probabilistic

(TCay [- m™] = TCy,., © XOR[m™])

oracle circuit R’, such that for every a € {0,1}", given
D: {0,1}™ — {0,1} that 1/m-distinguishes G5"V(a) as
oracle, we have

0 0
dsty dsty

Pr [(R’)" (a) outputs a TCy,., oracle circuit E
RIR

such that tt(EP) = a| > 2/3.

Authorized licensed use limited to: MIT. Downloaded on March 28,2025 at 23:43:29 UTC from IEEE Xplore. Restrictions apply.

Now, noting that m®™ = ne/4, we replace the oracle of R’

by our m-size T(Zg circuit C' to obtain the description of a
probabilistic

(TCY [n'F5] = TCY o XOR[n])

circuit R for some constant d’ that only depends on dsry and

d.

We next run the assumed PP-computable (7CY,n°)-
compression refuter for ldentity on R to obtain a bad input
a € {0,1}"™. From the construction of R, we know that C' does
not 1/m-distinguishes G3™(a). Therefore, we can enumerate
all outputs of G°™(a) to estimate Pr.c(o13m[C(2) = 1]
within an additive error of 1/m. This completes the proof.

Towards proving Theorem 1.2, we want to show that de-
randomization of 7C° follows from refuters against small
probabilistic TC° o @ circuits, rather than from compression-
refuters against such circuits. This statement seems obvious,
since a refuter is intuitively stronger than a list-refuter: given
a circuit C' whose truth-table is f(x), we can print f(x) by
printing the truth-table of C' (thus, if we have x such that f(z)
cannot be printed by small circuits, then f(x) also cannot
be compressed by small circuits). But the point is that the
foregoing transformation has computational overheads, which
strengthen the circuit model that needs to be refuted.

Thus, we now prove a corollary asserting that derandomiza-
tion of 7C° follows from (standard, non-compression) refuters
against small probabilistic TC° o @ circuits, while accounting
for this overhead. Recall that we use 7CY-WIRES[S] o /-XOR
to denote a circuit consists with a top 7CY circuit of S total
wires and a bottom layer of ¢ parity gates. Then:

Corollary VL8 (refutation for Identity against small prob-
abilistic 7C° circuits implies derandomization). For every
d € N>y there exists d' € N>y such that the following holds.
Assume the following:

e For some ¢ € (0,1), there is a P-computable re-
futer for \dentity against probabilistic (TCY[n'*]
(TCY-WIRES[n'*¢] o n°-XOR)-circuits.

Then, there is a deterministic polynomial-time algorithm solv-
ing CAPP for TCY circuits.

Proof. Let €1 € (0,1) be a constant to be specified later. We
first apply Theorem V1.7 with parameters ¢; and d, and let d}
be the corresponding constants. Let © € N be a sufficiently
large constant.

Given the description of a probabilistic ('TCO/1 [nlter]
(7—(72/1 o XOR)[n®t]) circuit C, in polynomial-time we can
construct the description of a probabilistic

(TCh.y [+ 1 (TC}.sy-WIRES [- n*1] o " -XOR)

circuit C’, such that C’ first runs C and treats its output as the
description of a TCgll circuit £ of n®' size, and outputs the
first n bits of E’s truth-table.¥

Letd = p-d} and e = p-e;. From the above transformation,
it follows that a P-computable refuter for ldentity against
probabilistic (7Cy [n'*<] — TCy-WIRES[n!*<] o n°-XOR)-
circuits implies a 7P-computable (TCgll ,nfl)-compression
refuter for Identity against probabilistic (7'(:'0/1 [niTer]
(Tcg,l o XOR)[n®'])-circuits. The corollary then follows
from Theorem VI.7. W

We now complement Corollary VI.8 by proving a converse
direction (i.e., “derandomization = refutation”), which will
complete the proof of Theorem I.2.

Theorem VL9 (Theorem 1.2, formally stated). The following
two statements are equivalent:

1) For every d € N, there is a polynomial-time algorithm
solving CAPP for TCY circuits.

2) For every d' € N, there exist ¢ € (0,1) and a
P-computable refuter for l\dentity against probabilis-
tic (TCYn'*e] — (TCY-WIRES[n!*¢] o n®-XOR)-

circuits.

Proof. The direction (2) = (1) follows immediately
from Corollary VI.8. So it suffices to show the (1) = (2)
direction.

Fix d’ € N. For convenience, we use § to denote probabilis-
tic (7CY [n'*e] — (TCY%-WIRES[n'*¢] o n*-XOR)-circuits.

We first note that given the description of an m-input §
circuit C, in polynomial time we can construct a 7C° circuit
B such that for every x € {0,1}", we have C(z) has the
same distribution as B(z,U,,), where r; < poly(n). We
note that since C only has n® gates at the bottom, we have
Procg0,137[C(a) = a] < 0.01. We construct the following
TCO circuit W: {0,1}" x {0,1}"* — {0,1} as

W(a, f) =1|B(a, 8) = f(a)|.

We know that Pr, g[W(a,5) = 1] < 0.01. From (1)
and Theorem III.16, in polynomial deterministic time we can
find an a € {0, 1} such that Prg[W (a,) = 1] < 2/3, then
«a is the output of our deterministic refuter. [l

2) Generalization to Any Hard Function Computable by
Highly Uniform TC® Circuits: Tn Section VI-B1 we proved
results focusing on refuters against small probabilistic TC°
circuits for the “hard function” f = Identity. In this section
we broaden the class of hard functions f, from Identity to all
functions computable in highly uniform 7C°. To do so we
will crucially rely on Theorem V.I. We start by proving (a
more general and technical version of) Theorem I.3.

4More precisely, C’ is the composition of C and a TCO(d/l y circuit U that
takes the description of a TCS, circuit F2 of n®1 size as input, and outputs
1

the first n bits of E’s truth-table. It it easy to see that U has n-n©(¢1) wires.

1038

Authorized licensed use limited to: MIT. Downloaded on March 28,2025 at 23:43:29 UTC from IEEE Xplore. Restrictions apply.

Theorem VI.10 (compression refutation against small proba-
bilistic 7C circuits implies derandomization). For every ¢ €
(0,1) and d,dy, k € N>y there exist d € N>y and § € (0,1)
such that the following holds. Let f: {0,1}* — {0,1}* be any
Sfunction computable by a family of 6-highly uniform threshold
circuits of depth dy and n* size. Assume the following:

o There is a P-computable (TCY ,n®)-compression list-
refuter for f against probabilistic (TCY[n'*e]
(TCY o SUM)[n])-circuits.

Then, there is a deterministic polynomial-time algorithm solv-
ing CAPPq 1 /o for TCY circuits.

Proof. Let T(n) = n*, and let be such that T'(n)" = n=/*.
Let ¢ be the universal constant from Theorem V.1. Let d; and
& be the corresponding parameters from Theorem V.1 when
applying it with « and dy.

Let f: {0,1}* — {0,1}* be a function computable by a
family of §-highly uniform threshold circuits of depth d; and
T(n) size.

Given an m-input 7CY circuit C': {0,1}" — {0,1}, our
goal is to decide between the case that Pr,.[C(r) = 1] > 1/2
and Pr,.[C(r) = 1] = 0. By adding dummy gates, without loss
of generality, we can assume C' can be described by an m-bit
string a € {0,1}™, and we also use C,: {0,1}" — {0,1}
to denote the circuit corresponds to a. Let n = m?*¢/¢ so that
m = n°/%.

Applying Theorem V.l with function f, parameter ~ and
output length m, for = € {0,1}", we set S, = H{"(z). (Note
that m = n/4¢ = T'(n)?/¢, so the assumption of Theorem V.1
is satisfied.)

Lemma VIL11 (instance-wise reconstruction). There is a
constant d' € N that only depends on d, fi, and dy such
that d' > max(dy,d, dy) and the following holds. Given a €
{0,1}™, there is a polynomial-time algorithm that computes
the description of a (TCS, [n'*¢])-samplable probabilistic
TCY 0 SUM n-input circuit R, of size n, such that for every
z € {0,1}", if

PTr[Ca(r) =1]>1/2 and SIED§ [Co(s) =1] =0,

then, when R is given input x, with probability at least 2/3 it
prints a TCY, circuit of size n® whose truth-table is f(x).

Proof Let Ry = R$T(1") be the (7CY [n-T7))-
samplable probabilistic 7'(721 o SUM oracle circuit Ry of size
T7 outputted by Rf.»T'TCO from Theorem V.1. We replace the
oracle of R, by C, to obtain R,. Recalling that m = ne/4e
and 77 = n®/%, R, corresponds to a (7Cy [n'*<])-samplable
probabilistic TCg, o SUM n-input circuit of size n®, for a
sufficiently large d’ that only depends on di, df, and d.
And from its construction, R, can be computed from a in
polynomial time.

From Theorem V.1, if Pr.[C,(r) = 1 >
1/2 and Prses,[Co(s) = 1] = 0, then it holds that
R, (z) prints a TCY circuit of size n® whose truth-table is
f(x) with probability at least 2/3. O

Now, given input a € {0,1}™ to CAPP /5, we construct
R, from Lemma VI.11, and run the compression list-refuter
on input (1", R,) to obtain z1,...,x; € {0,1}", where t <
poly(n). For each i € [t], we compute the list S; = S, and
finally we output vie[t],se s, Ca(s). From Theorem V.1, the
whole procedure runs in polynomial time.

Assume towards a contradiction that for some a € {0,1}™
it holds that

P C, =1]>1/2 and
LB (G =11=1/2an

\/ Ca(s)=0.

i€t],s€S;

By Lemma VL1, for every ¢ € [t] it holds that R,(z;)
prints, with high probability, a 7CY, circuit of size n° whose
truth-table is f(x;). This contradicts the properties of the
compression list-refuter. [l

Analogously to Corollary VI.8, we now show that con-
structing a refuter (rather than a compression-refuter) against
probabilistic 7C" o SUM circuits suffices for derandomization,
and this will induce some overhead in the circuit model. Since
now we are concerned with arbitrary functions f: {0,1}" —
{0,1}™ rather than with f = ldentity, we will quantify the
output length m = m(n) of f, and account for the overhead
in the circuit model according to m.

Corollary VI.12 (refutation implies derandomization for small
probabilistic 7C° circuits). For every e € (0,1) and d,dy, k €
N> there exist d € N>q and § € (0,1) such that the
following holds. Let m: N — N. Let f: {0,1}" — {0,1}™(")
be any function computable by a family of 6-highly uniform
threshold circuits of depth dy and n* size. Assume the follow-
ing:

o There is a P-computable list-refuter for f against prob-

abilistic

(TCY[(m + n) - n°] = TCY-WIRES[m - n°] o n°-SUM)

circuits.

Then, there is a deterministic polynomial-time algorithm solv-
ing CAPP 15 for TCY circuits.

Proof. Let 1 € (0,1) be a constant to be specified later.
We first apply Theorem VI.10 with parameters €1, d, df, and
k, and let d} and &, be the corresponding constants. We let
0 = 01. Let 1 € N be a sufficiently large constant.

Given the description of a probabilistic (TCO/1 [nite]
(7'(72/1 o SUM)[n®t]) circuit C, in polynomial-time we can
construct the description of a probabilistic

(Tcgd,l [(m+n) - nPe] o

TCh.4;-WIRES[m - '] 0 1 -SUM)

1039

Authorized licensed use limited to: MIT. Downloaded on March 28,2025 at 23:43:29 UTC from IEEE Xplore. Restrictions apply.

circuit C’, such that C’ first runs C and treats its output as the
description of a TCg/l circuit E of n®' size, and outputs the
first m bits of E’s truth-table.*

Let d = pu -dj and ¢ = p - . From
the above transformation, it follows that a P-
computable list-refuter for f against probabilistic

(TCY [m - n'*e] = TCY-WIRES[m - n¥] 0 n=-SUM)-
circuits immediately implies a P-computable (7'(72/1 ,mEL)-
compression list-refuter for f against probabilistic
(TCg/l [nitei] — (7—ng1 o SUM)[n®1])-circuits. The corollary
then follows from Theorem VI.10. [}

We can now prove Theorem [.4. In the following statement,
we use f: {0,1}"™ — {0, 1} with an arbitrary output length
m = m(n); the statement of Theorem [.4 is obtained by using
m=n’.

Theorem VI.13 (derandomization vs refutation for
TC° o n*-SUM circuits). Let ¢ € (0,1), m: N — N,
and f:{0,1}" — {0,1}™") be such that
o For every 6 € (0,1), f is computable by a family of
0-highly threshold circuits of constant depth.
o For every d € N, there is a probabilistic TC°-
computable 1/10-refuter for f against probabilistic

(TCY [m - n'*¢] = TCY-WIRES[m - n°] o n°-SUM)

-circuits .

Then, for the following three statements, we have (1) —
2) = 3)
1) For every d € N, there is a deterministic polynomial-
time algorithm solving CAPP for TCS circuits.
2) For every d' € N, there is a P-computable refuter for f
against probabilistic

(TCY [m - n' =] = TCY-WIRES[m - n¥] 0 n°-SUM)
-circuits .
3) For every d € N, there is a deterministic polynomial-
time algorithm solving CAPP 1 /5 for ’TCS circuits.

Proof. First, note that (2) = (3) follows immediately
from Corollary VI.12. So it suffices to prove (1) = (2).

Fix d’ € N. For convenience, we use § to denote proba-
bilistic

(TCy [m - n'*<] = TCY-WIRES[m - n¥] 0 n°-SUM) ~circuits.

We first note that given the description of an n-input §
circuit C, in polynomial time we can construct a T7C° circuit
B such that for every z € {0,1}", we have C(z) has the same
distribution as B(z, U,), where r; < poly(n).

Let R be the probabilistic 7C® refuter for f. Given the
description of an n-input § circuit C as input, with probability

46More precisely, C’ is the composition of C and a 7C o(d}) circuit U that
takes the description of a 7'(33, circuit E/ of n®1 size as input, and outputs
1

the first m bits of E’s truth-table. It it easy to see that U has m - nO(e1)
wires.

at least 9/10 over its randomness, R outputs a string z €
{0,1}™ such that Pr[C(z) = f(z)] < 1/10. Now, let r5 be the
number of random bits used by R. We construct the following
TC° circuit W: {0,1}72 x {0,1}"* — {0,1} as

Wia,8) = 1[B(R(C;a), 8) = f(R(C;).

By the condition on R, we know that Pr, g[W(«,) =
1] < 1/5. From (1) and Theorem IIL16, in polynomial
deterministic time we can find an « € {0,1}" such that
Prg[W (o, 8) = 1] < 2/3, then R(C,) is the output of our
deterministic refuter. [}

C. Refuting Deterministic Streaming Algorithms vs Lossy
Code

In this section we prove Theorem 1.8 and Theorem I.9.

Reminder of Theorem 1.8. For any function [€ FP,
e € (0,1), a deterministic refuter for [against n°-space
polynomial-time deterministic streaming algorithms implies
that LossyCode € FP.

Proof. The theorem would easily follow from Korten’s J-
tree construction [19]. Below we give a much simpler self-
contained proof, but the ideas are very similar to Korten’s
results.

Fix f € FP and ¢ € (0,1), and let R be the corresponding
refuter from the theorem statement. We show how to solve
LossyCode € FP.

Let C: {0,1}" — {0,1}" ! and D: {0,1}"~t — {0,1}"
be two circuits of size s (we have n < s), interpreted as the
input to LossyCode. For simplicity, we will assume f,,, (the
restriction of f on m-bit inputs) is a function from {0, 1}™
to {0,1}™. Since f € FP, there is a constant k£ € N such
that f,, admits an m”-time single-tape Turing machine. We
further assume that that the output of the machine is the first
m bits in its tape at the end of the execution.

Let m = s%¢, we construct the following me-space
streaming algorithm B that attempts to compute f,:

o Given streaming access to the input z € {0,1}™, let
B = x[1,y). For every i € {n+1,... ,m’“}, we set [<+
C(p) o x;. In other words, we set 3 as an n-bit succinct
representation of the string x - 0™" =™ which represent
the initial tape of the single-tape Turing machine.*’

o Given a string 5 € {0,1}", consider the string y €
{0, 1}mk defined as follows: letting 8 = 2~V for
every i from m”* down to n + 1, we set y; < 3, and
B < D(Bp1,n—1)); and yp,) < B. By its definition, given
an index i € [m*] and 8 € {0,1}" as input, one can
output y; using space O(s) and running time poly(s)-m*.
We denote its output by Access(f3,1).

We initialize the location of the head to be idx = 1 and
q to be the starting state of Turing machine.

4TWe assume for simplicity that the single-tape Turing machine also gets
another input-length tape on which the input length |z| = m is written; so
we don’t have to include a termination symbol # after x on the input tape.

1040

Authorized licensed use limited to: MIT. Downloaded on March 28,2025 at 23:43:29 UTC from IEEE Xplore. Restrictions apply.

« For every t € [m*]:

1) Let oidx «+ idx. Given Access(3,0idx) and ¢, get
the new content of the oidx-th cell (denoted as u €
{0,1}) and update idx and ¢ according to the Turing
machine.

Set tmp < /. Define a string y € {0,1}™" such
that y; = Access(tmp, i) if ¢ # oidx, and y; = u
otherwise.

2) Let B =y, Forevery i € {n+1,.. ., m*}, we
set 3« C(B) o y.

o For every i € [m]: output Access(f3,).

Roughly speaking, we use C' and D to maintain an n-bit
succinct representation 3 of the current m”*-bit content of the
Turing machine tape. The Access(3,) function allows us to
access the i-th bit of the tape in O(s) space and poly(m)
time.*® The overall running time of B is also bounded by
poly(m).

We use 39 to denote the value of 8 before the 1-th round
(of the execution of the Turing machine) and /3 ®) to denote
the value of 3 at the end of the ¢-th round. We note that
B is our succinct representation of the content of the tape
after the Turing machine runs for ¢ steps. We also let the
string) to denote the string y defined at the ¢-th round, and
y(O) —ro Omkfm.

Now, one can observe that if for every ¢ € {0,1,...,m"}
and for every j € [mF], we have y](t) = Access(8®), j). Then

by a simple induction, y(mk) is the correct tape content at the
end of the execution of the Turing machine, meaning that B
computes f(x) correctly on input = € {0,1}".

Hence, running the refuter R on B, we get an input
x € {0,1}™ such that B(z) # fm(x), which in particular
means there exists ¢, j such that yj(t) # Access(5™), j). By the
definition of 5(), we can see that in the process of repeatedly
applying C' on y*) to obtain 5, at least once we would
encounter a (such that D(C()) # B. This allows us to
solve LossyCode with input (C, D), and completes the proof.

Reminder of Theorem L9. For a function f € {DISJ,IP}
and ¢ € (0, 1), the following are equivalent:

1) There is a refuter in FP for f against n°-space poly-

time deterministic streaming algorithms.

2) There is a refuter in FP for [against (n — 1)-space

poly-time deterministic streaming algorithms.

3) LossyCode € FP.

Proof. The (1) = (3) direction follows immediately
from Theorem I.8. And (2) = (1) direction is immediate.

In the following we establish the (3) = (2) direction. We
will only show it for DISJ; the proof for IP is almost identical.
Given a deterministic (n — 1)-space n*-time streaming algo-
rithm B that attempts to solve DISJ,,, we construct an input
pair C, D to LossyCode as follows:

48The J-tree construction from [19] allows a much faster access time of
poly(logm, s); but poly(m) already suffices for our purpose.

1) The compression circuit C: {0,1}" — {0,1}""':
runs B on x as the first half of the input to DISJ, and
then output the memory of the algorithm B after reading
all of z.

2) The decompression circuit D: {0,1}"~1 — {0,1}":
Given a memory state z € {0,1}"7!, we construct
output € {0,1}" as follows: for every ¢ € [n], we
run B starting with memory z and the second half being
string e; € {0,1}" (e; means only the i-th bit is 1, all
others being 0) to obtain an output and set z; = 7.

Now, since LossyCode € JF'P, in polynomial time we

can find an input z € {0,1}" such that D(C(z)) # =. By
definition of C' and D, it means that for some ¢ € [n], B fails
on the input (z,e;). Therefore, we can enumerate all i € [n]
to find out which of the (z, e;) is the desired counter example.

VII. CHARACTERIZATION OF DERANDOMIZATION VIA
THE REFUTER FRAMEWORK

In this section we explain how using the terminology of re-
futers allows to capture and generalize previous results. In Sec-
tion VII-A we explain how to generalize [7], in Section VII-B
we explain how to generalize [8], and in Section VII-C we
explain how to generalize [6].

A. Leakage-Resilient Hardness and Refuter for ldentity

We first recall the definition of almost-all-input leakage-
resilient hardness from [8], and explain why it’s equivalent to
the existence of refuter for Identity against a certain class of
algorithms.

Definition VIL.1 (Almost-all-input (a.a.i.) leakage-resilient
hardness). Let f: {0,1}" — {0,1}" be a (multi-output)
function. We say that f is almost-all-input (T, ()-leakage
resilient hard if for all T-time*® probabilistic algorithms leak
and A satisfying leak(z, f(z)) < (|x|), for all sufficiently
long strings x, A(x,leak(z, f(x))) # f(x) with probability at
least 2/3 (over their internal randomness).

We now define non-uniform probabilistic one-way efficient
communication protocols (denoted as one-way efficient CP for
convenience) as a special class of RAM machines: for input
length n € N>, communication ¢ = ¢(n) € N, and running
time 7' = T'(n) € N, there are two randomized uniform T'(n)-
time algorithms A and B that™” take n-bit input z € {0, 1}"
and n-bit advice a € {0,1}" such that A(a,z) outputs an
¢-bit message m € {0,1}* and B(a,m) outputs a Boolean
string.’! We can also define non-uniform probabilistic efficient
communication protocols with communication ¢ and running
time 7" in a similar way, by giving the current transcript to A
and B as an additional input.

49This means the running time of A and leak are bounded by 7'(n) where
n = |z| is the length of their first input.

50This means that running time of A and B are bounded by 7'(n).

Slwe fix the advice length to be the same as input length for simplicity,
but we can certainly separate them as different parameters. Also, note that
here the second agent (modeled by B) has no input.

1041

Authorized licensed use limited to: MIT. Downloaded on March 28,2025 at 23:43:29 UTC from IEEE Xplore. Restrictions apply.

We now note that aai leakage-resilient hardness is by
definition equivalent to refuter for ldentity against one-way
efficient CP.

Observation VIL.2. The following statements are equivalent:
1) There is a function f: {0,1}" — {0,1}" that is a.a.i.
(T, £)-leakage resilient hard.
2) There exists a refuter R for ldentity against T-time one-
way efficient CP with communication complexity (.

Proof. From their definitions, there is a one-to-one correspon-
dence between leak and A, A and B, and (crucially) the a.a.i.-
leakage resilient hard function f and the refuter R. [l

We can show the following equivalence.

Theorem VIL3. For every polynomial T'(n) > n't%W), and
for every € € (0,1), the following statements are equivalent:

1) prP = prBPP.

2) There is a 'P-computable nf-compression refuter
for Identity against probablistic (SIZE[n'*¢]
SIZE-XOR[n®)])-circuits.

3) There is a refuter for |dentity against T-time one-way
efficient CP with communication complexity n°.

4) There is a refuter for |dentity against T'-time efficient
CP with communication complexity n — 1.

Proof. 1t is easy to see that (4) = (3). To see that (3) —
(2), note that a probabilistic (SIZE[n!*¢] — SIZE-XOR[n?])-
circuit C implies a n'**-time one-way efficient CP with
communication complexity n® as follows: A(z) simulates
C(x), and sends its n®-bit output £ to B. B(x, ¢) treats ¢ as an
log n-input n®-size circuit and outputs its truth-table.

We note that (2) = (1) follows from an identical proof
as in Theorem VI.7. To show (1) = (4), we note that
for any T-time efficient CP P = (A,B) with communication
complexity at most 1/2, we have Pr_c o 13 [P(2) = 2] < 1/2
(the randomness is also over the inner randomness of P)
by a simple counting argument. Assuming prP = prBPP
and applying Theorem III.16, we can find an z such that
Pr;P(z) = z] < 2/3 deterministically. This completes the
proof. W

Remark VIL.4. We remark that Item (2) in Theorem VII.3 is
indeed (syntactically) equivalent to the notion of a.a.i. leakage-
resilient hardness local hardness in [8].

In particular, the equivalence between Item (1) and Item (2)
above shows that even assuming the leak function from Def-
inition VIL1 to be a probabilistic SIZE o XOR[n®] circuit
sampled by an n'*¢ circuit and the A function to be the truth-
table generation function (given an n°-size circuit, output its
length-n truth-table) that does not depend on the input z, the
existence of a.a.i. leakage resilient hard is still equivalent to
derandomization.

B. Hardness of Conditional Kolmogorov Complexity

We now explain how the viewpoint of refuters allows to
generalize the results of [7]. To do so, let us first recall

the definitions of Levin’s Kolmogorov complexity and of
the problem GapMcKtP, which refes to conditional Levin’s
Kolmogorov complexity.

Definition VILS5 (Levin’s Kolmogorov complexity). For a
fixed universal Turing machine U, and any x,z € {0,1}%,
we define

Kt(z|z) = min

| + log(t) : U(IL(2),1") =z} .
He{o.,l}*,tel\f{| | +1log(t) : UI(2), 1Y) = o}
Definition VIL.6 (GapMcKtP). Let T\gs, Tno: N — N. The
problem problem GapMcKtP[Tygs, Tno] is defined as follows:

o YES instances: (x, z) such that |z| = |z| and Kt(z|z) <
Tves(|z|).

o NO instances: (x,z) such that |z| = |z| and Kt(z|z) >
Tno(|x).

The main result from [7] asserts that derandomization is
equivalent to hardness of GapMcKtP against probabilistic
polynomial-time algorithms on almost all conditions z; that
is, for every algorithm and every z (except, at most, finitely
many), there is an = such that the algorithm fails on input

(z, 2).

Theorem VIL.7 (derandomization vs almost-all-conditions
hardness of GapMcKtP; [7, Theorem 1]). There exists a
constant ¢ > 1 such that the following two statements are
equivalent.

1) prBPP = prPp.

2) There exists v € R such that for every probabilistic
algorithm M running in time n°, for all but finitely many
z € {0,1}*, there exists v € {0,1}* such that M fails
to solve GapMcKtP[y -log(n), n — 1] correctly on input

(z, 2).

We now show that Corollary VI.5 is a strengthening of
Theorem VIL7. Specifically, we prove that the hypothesis
of Theorem VIL.7 is at least as strong as the hypothesis
in Corollary VI.5, which asserts the existence of a compression
list-refuter for probabilistic algorithms running in time n°.

Claim VIL8 (hardness of GapMcKtP implies refutation).
Suppose that the hypothesis in Item (2) of Theorem VIL.7 holds.
Then, there exists a P-computable \/n-compression list-refuter
for ldentity against general probabilistic algorithms running
in time nc°(1),

Proof. The refuter Ref gets input (M,a), where |a] = n,
and enumerates over all strings IIy,...,IIye+1_; of length at
most £ = v - log(n). Treating each II; as the description of a
RAM, it simulates the machine for 2¢ steps on input a, and
if the machine prints an n-bit string w;, then Ref prints w;
(otherwise, the refuter just moves on to II; ;). The final output
list of Ref consists of all w;’s that it printed.

Assume towards a contradiction that there is a time-n¢—°(1)
RAM M’ and an infinite set A C {0, 1}* such that for every

1042

Authorized licensed use limited to: MIT. Downloaded on March 28,2025 at 23:43:29 UTC from IEEE Xplore. Restrictions apply.

a € {0,1}*, for all w; that Ref(M’, a) prints, it holds that
Pr []VI’(a, w;) prints a circuit of size \/2|al
whose truth-table is wl} >2/3,

where the probability is over the random coins of M’.5?

Then, for any z € A, for all © we solve GapMcKtP[y -
log(n),n — 1] on input (x,z) as follows. Given (z,z), we
simulate M’(z,x) for constantly many independent trials; if
in one of those trials, M outputs a circuit of size 1/2|z| with
truth-table equal to z then we accept, otherwise we reject.
Note that on “no” instances, we always reject (because no such
circuit exists). On “yes” instances, by definition there exists a
program IT of size at most ¢ running in at most 2¢ steps such
that II(z) = 2. By the definition of Ref, one of the outputs in
the list that Ref(M’, z) prints will be 2. By the assumption on
M’ and the fact that a € Z, with high probability M’'(z, x)
prints a circuit of size \/2|z| with truth-table z, therefore we
accept. W

C. Almost-All-Inputs Hardness

We now explain how the viewpoint of refuters also allows
us to capture and generalize the results of Chen and Tell [6].
Recall that they considered the notion of hardness on almost
all inputs, defined as follows:

Definition VIL9 (almost-all-inputs hardness). A function
f:{0,1}* — {0,1}* is hard on almost all inputs for
probabilistic algorithms running in time T if for every T-
time algorithm M and for all but finitely many inputs x,
Pr[M(z) = f(x)] <2/3.

The main result of [6] is a two-way connections between
derandomization (i.e., prBPP = prP) and the existence of
functions that are hard on almost all inputs for probabilistic
algorithms running in fixed polynomial time.

Theorem VIL.10 (the main result of [6]). For any /
polylog(n), the following statements hold:

1) If there is a function mapping n bits to n/{ bits that is
computable by logspace-uniform circuits of polynomial
size and depth O(n?), and that is hard for probabilistic
time n° on almost all inputs, where ¢ > 1 is a sufficiently
large universal constant, then prlBPP = prP.

2) If prBPP = prP, then for every ¢ > 1 there is a
Sfunction in FP mapping n bits to n/{ bits that is hard
for probabilistic time n° on almost all inputs.

The original statement in [6] referred to length-preserving
functions, but (as mentioned in that paper) the precise output
length is immaterial for the result. We have chosen to present
the result in Theorem VII.10 using output length n/polylog(n)
to facilitate capturing cleanly it using refuter terminology.

2The reason that the circuit size is +/2[a| instead of \/|a| is that we
defined s-compression refuters with s = 1/~ being a function of |a| + |w;| =
2|al.

1043

To capture Theorem VII.10 in refuter terminology, we define
algorithms that get advice and do not examine their input
as the class of RAMs M that get two inputs and satisfy the
following: for every a € {0,1}* and every z,2’ € {0,1}*
such that |z| = |«/| it holds that M (z,a) = M (2’,a). (When
M 1is probabilistic, we require the equality to hold for every
fixed choice of random coins.)

The following claim asserts that hardness on almost all
inputs is equivalent to refuting algorithms that do not examine
their input.

Claim VIL11 (almost-all-inputs hardness is equivalent to
refuting machines that don’t examine their inputs). For any
polynomial T(n) > n?, the following statements are equiva-
lent:

1) There is an JFP-refuter for ldentity against algo-
rithms that on n-bit inputs run in probabilistic time
O(T(O(n))), get O(n) bits of advice, and do not
examine their input.

2) There is a function f € JFP mapping n bits to
n/polylog(n) bits that is hard on almost all inputs for
probabilistic algorithms running in time O(T).

Proof. We first prove that (1) = (2). Let R be the refuter,
let ¢(n) = polylog(n) be a sufficiently large polylogarithm.
Given input « € {0,1}", consider the first m log(n)
Turing machines, denoted My, ..., M,,, according to some
canonical enumeration. For every ¢ € [m], we compute
yi = R(M;, x)) € {0,1}"/¢% and print the string

f)=y10y20...0Un,

which is of length n/¢-log(n) = n/polylog(n). (For i € [m)
such that the refuter does not output a string y;, we print
yi =0"")

Assume towards a contradiction that there is a time-O(T)
Turing machine F' and an infinite set X C {0,1}* such that
for every x € X it holds that Pr[F(z) = f(z)] > 2/3.
Let A be an advice-taking machine that on any input of
length n, and given advice € {0,1}"" where N satisfies
n = N/{, simulates F on input = and outputs the (i4)*"
substring of F'(x), where i4 is A’s index in the enumeration
of Turing machines.”* Note that the advice complexity of
Ais N = n-{N) = O(n), and its running time is
O(T(N)) = O(T(O(n))). Thus, for every sufficiently long
r € X we have

Pr [A(R(A,x), 1) = R(A, x)} = Pr[F(z);, = R(A,1)]

> Pr[F(z) = f(z)]
>2/3,

which contradicts the properties of the refuter.
Now, let us prove that (2) = (1). For a sufficiently large
polylogarithm ¢ = polylog(n), the refuter gets input (M, a)

33We ignore rounding issues throughout the proof, for simplicity.

54We can assume that A can use its own index 14 in its execution, by
Kleene’s recursion theorem and assuming an efficient mapping of machine
descriptions to their indices in the enumeration of machines.

Authorized licensed use limited to: MIT. Downloaded on March 28,2025 at 23:43:29 UTC from IEEE Xplore. Restrictions apply.

where M is the description of a 7-time machine that does
not examine its input and a € {0,1}", and the refuter outputs
f(a) € {0,1}™/*. Assume towards a contradiction that for
some machine M running in time 7”(m) = O(T(O(m)))
and infinitely many advice strings a € {0,1}* it holds that
Pr[M(f(a),a) = f(a)] > 2/3. Consider the machine M’ that
gets input a € {0,1}" and outputs M (0™/* a). The running
time of M’ is T'(n/¢) < O(T'(n)), and we have that M'(a) =
M(0™*, a) = M(f(a),a). Thus, for infinitely many a’s we
have that Pr[M’(a) = f(a)] > 2/3, a contradiction. [l

Observe that in the proof above, the refuter and the almost-
all-inputs hard function have essentially the same complexity.
In particular, if one is computable by logspace-uniform circuits
of polynomial size and depth 12, then the other is computable
by logspace-uniform circuits of polynomial size and depth
O(n?). Hence, we can present Theorem VIL10 in refuter
terminology:

Corollary VIL.12 (the main result of [6], in refuter terminol-
ogy). For every ¢ > 1, let O, be the class of probabilistic
algorithms that on n-bit inputs run in time n®, get O(n) bits
of advice, and do not examine their input. Then, the following
statements hold:

1) For a sufficiently large ¢ > 1, assume that there is a
refuter for ldentity against O that is computable by
logspace-uniform circuits of polynomial size and depth
n?. Then, prBPP = prP.

2) If prBPP = prP, then for every constant ¢ > 1 there
is an FP-refuter for |dentity against O..

ACKNOWLEDGMENTS

Roei Tell is supported in part by the NSF under grant
numbers CCF-1445755 and CCF-1900460. Ryan Williams is
supported in part by the Simons Institute at UC Berkeley, NSF
CCF-2127597, and a Frank Quick Faculty Research Innovation
Fellowship. Part of this work was done while the authors were
visiting the Simons Institute for the Theory of Computing. We
are grateful to anonymous FOCS reviewers for pointing out
various typos and inaccuracies.

APPENDIX A
THE TARHSG OF [6] WITH LOW-SPACE STREAMING
RECONSTRUCTION

In this section we prove Theorem III.15 (restated below).

Reminder of Theorem IIL.15. There exists a universal con-
stant ¢ > 1 such that the following holds. Let f: {0,1}" —
{0,1}N be computable in time T(N), let v > 0, and let
M: N — N such that ¢ -log(T) < M < TV/¢. Then, there
exists a deterministic algorithm H](iT and a probabilistic oracle
machine R$' that for every z € {0, 1}V satisfy the following:
1) Generator: When given input z, the machine H' runs
in time poly(T(N)) and prints a list of strings in

{0, 1},
2) Reconstruction: R$' gets input z, and can be imple-
mented by a T7-space one-pass streaming algorithm

1044

over the input z with running time M¢ - T'*Y. When
RG is given oracle access to a function D {0, M -
{0, 1} that 1/M-avoids H'(z), with probability at least
1—1/M the machine R§" outputs an oracle circuit C)
of size T such that the truth-table of (Cy(.))" is f(z).

Proof sketch. From our assumption, f is also computable by
a logspace-uniform circuit of O(T') size and O(T') depth.
We follow the reconstruction algorithm described in [6, Sec-
tion 4.4] and observe that everything except for the first
iteration takes only

(t-T7 - M) . (d+ N) < TH00) . pr0m

time and 7°(") space. Moreover, the first iteration is the only
place where the algorithm needs access to the input string z.

Hence, the remaining challenge is to implement the first
phase by a T9_space one-pass streaming algorithm. The
original reconstruction algorithm in [6, Section 4.4] constructs
a circuit of size ¢ty > N for the first polynomial p;, which
already requires NNV bits to restore (which can be much larger
than the 790 space bound we aim for). We observe that
this is not necessary: instead of building a circuit C; for pq,
we can directly start from building a circuit Cy for ps, and
using the fo-time base case algorithm to answer all queries
when running [6, Lemma 4.10] for ¢ = 2. This can be done
in T . poly(M) - tg < T+ . poly(M) time and only
uses 7907 space.

Moreover, we can further observe that [6, Lemma 4.10] only
makes 7°°Y) non-adaptive queries to C;_1, meaning that one
can first gather all these queries using 7°°(") space, and then
try to answer all of them together using a single pass over
the input. We note that p; correspond to the input polynomial
G&g: F™ — F, which is defined by

2

zeH™ x{o}ym—m'

b (@) = Oz(W) - ag(Z) s

where 0z is Kronecker’s delta function (i.e., dz(w)
[L;epm Hacm q2,1 3=) and ag(Z) denotes an input bit to f

indexed by Z. From its definition, one can see that in O(logT)
space one can compute &g (W) via a single pass over the input.

Finally, we can set the above small enough compared
to the « in the statement, and the whole algorithm can be
implemented by a 7"7-space one-pass streaming algorithm over
the input z with running time M€ - T'+7. This completes the

proof. [l

APPENDIX B
THE STV PRG WITH 7C° 0 XOR RECONSTRUCTION

A. Finite Fields

Throughout this section, we will only consider finite fields
of the form GF(223") for some ¢ € N since they enjoy simple
representations that will be useful for us. We say p=2"is a
nice power of 2, if r =2- 3¢ for some ¢ € N.

Let £ € N and n = 2- 3% In the following we use F to
denote Fon for convenience. We will always represent GFon

Authorized licensed use limited to: MIT. Downloaded on March 28,2025 at 23:43:29 UTC from IEEE Xplore. Restrictions apply.

as o [x]/(x" +x™/2 +1).5 That is, we identify each element
of GF(2™) with an Fy[x] polynomial of degree less than n.
To avoid confusion, given a polynomial P(x) € Fo[x] with
degree less than n, we will use (P(x))r to denote the unique
element in IF identified with P(x).

Let (™ be the natural bijection between {0,1}" and
F GF(2"): for every a € {0,1}", k" (a)
(Zie[n] a;-x'~1) . We always use (™ to encode elements

from F by Boolean strings. That is, whenever we say that
an algorithm takes an input from F, we mean it takes a
string € {0,1}" and interprets it as an element of I via
#("). Similarly, whenever we say that an algorithm outputs an
element from F, we mean it outputs a string {0, 1}" encoding
that element via (™). For simplicity, sometimes we use (a)p
to denote (™) (a). Also, when we say the i-th element in IF, we
mean the element in F encoded by the i-th lexicographically
smallest Boolean string in {0, 1}".

B. Proof of Theorem IIl.14

Theorem B.1 (the STV PRG with 7C° o XOR reconstruction).
There are universal constants csty > 1 and dsry € N>1 such
that for every sufficiently small constant 4 € (0,1), there
are deterministic algorithms G5 and RS™V that satisfy the
following:

1) Generator: When given a string z € {0,1}", G runs
in time poly(n) and prints a list of strings in {0,1}™,
where m = n’.

2) Reconstruction: RS™V(1™) outputs the description of a
probabilistic

0

dSTV

(1€, [n-m®™] — TCY_ o XOR[m="])
oracle circuit Ry, such that given D: {0,1}" — {0,1}
that 1/m-distinguishes G®™'(z) as oracle, we have

Pr

R? tputs a TCY le circuit E
I [7 (2) outputs a TC,, oracle circui

such that tt(EP) = z} >2/3.

Proof. We begin by setting some notation.

Notation: Let h be the smallest nice power of 2 that is
at least m. Let p = h?" (therefore p is also a nice power
of 2). Let ¢ be the smallest integer such that ht > n. Let
F =T, and H be the first i elements from F,. Let £: [n] —
H™ be an efficiently computable injection mapping.”® Let z €
{0, 1}"™ be our input. Let cyy and dyy be the universal constants
from Theorem II1.13.

Let dy € N be a sufficiently large constant such that dy >
dyy. Let © € N be a sufficiently large constant.

SNote that x23° + x3° +1 € Fo[x] is always irreducible; see [40,
Theorem 1.1.28].

S6For simplicity we ignore the complexity of computing & since it is
negligible.

1045

The Generator GS™V: First, we define P,: F! — T as

P.(1) = 0 (
i€[n], W=¢£(7)

—

@) - a; ,

where 5 is Kronecker’s delta function (i.e., 0z(%)
Iicig Maer gz Z’J—:Z) Let d = £- (h—1) be the degree of

From our choice of h, we know that m < h < m3. We also
have n < h? < n?, and n?” < p’ < nd.

Let 2 = tt(P,) € FIFl" and let N = |2| = [F|’. We
instantiate Theorem IV.1 with v = 4 and v 7. Note
that N<o(+) < poly(m). Let ¢y be the universal constant
from Theorem IV.l and c* ¢, , be the corresponding
constant. Let Z = Enc(2) and N = |Z|. Note that N = N¢".
Now let v; so that N¢71 = nY = m (note that 71 is not a
constant, but since N < poly(n) by the definition of h,p, we
have that ~y; is bounded away from 0), and we define

GM(2) = GM(z,m).

Note that GS™V(2) runs in poly(n) time as desired.
Reconstruction RS™: We need the following fact.

Fact B.2. The following two statements hold:

1) There is a P-uniform n - poly(m)-size TCy, circuit that
takes input i € [|Z|] and outputs a circuit G; consisting
of (logyp) XOR gates such that Gi(z) = 2; for all
z€{0,1}™
There is a P-uniform n - poly(m)-size TCSU circuit
that takes input i € [|Z|] and outputs a poly(m)-size
'TCSO o XOR circuit W; such that W;(z) = z; for all
ze{0,1}"

2)

Proof. Let i € [#] and @ € F’ be the corresponding vector.
To compute the gate G, it suffices to compute the coefficients
Br = O¢y (W) for every k € [n] (so that 2; = P.(w) =
> _kefn) B - ax). From the definition of d¢(x (w), this can be
by a P-uniform n - poly(m)-size TCSO circuit.
The circuit W; is computed as follows:
1) Given input ¢ € [|z]]. Run @n(i) to obtain a list
q,---,qm € [N], where M = N7.
2) For each j € [M], interpreting g; as a vector ; € F*.
Output the circuit W; defined as

Wi(z) = En(i,Gqy,(2), .. (2)).

Note that |Qn|, |Ex| < N (+¥) < poly(m). Hence, W
can be computed from j by a P-uniform n - poly(m)-size

7Cy,- N

G

° qam

Let Sy = RW(12l m). Without loss of generality, we
assume that Syy takes exactly ryy = m™ bits as input.

In the following we will construct two samplers S; and So,
and combine them to obtain our final sampler S.

Claim B.3. There is a polynomial-time algorithm that, given
1", outputs a TC’%(dU)[n -me™/2) circuit Sy satisfying the
following:

Authorized licensed use limited to: MIT. Downloaded on March 28,2025 at 23:43:29 UTC from IEEE Xplore. Restrictions apply.

1) Sy takes ry = mryy bits as input, and outputs the
description of a poly(m)-size TC%(dn) o XOR circuit
FEs.

2) Ej takes z € {0,1}" as input, and outputs the descrip-
tion of a m“v-size Tng oracle circuit C.

3) For every z € {0,1}", with probability at least 0.99
over Ey + S1(U,.), letting C1 = Ey(z), it holds that

Pr

- [CP(i)=7%] > 1/2+m™>.
i€[N]

Proof. Formally, given oy € {0,1}"™, S; computes all the
queries of Syy made to @ in 7'CSINw [m] (note that Syy is a
non-adaptive oracle circuit), and applies Fact B.2 to replace
all calls to @ in Syy by poly(m)-size TCSO oXOR circuits with
input z € {0,1}". This way, Sy outputs the desired poly(m)-
size TCOO(dO) o XOR circuit E.

Moreover, by Fact B.2, we know that S; can be imple-
mented by a TCo g circuit of n - poly(m) size. M

Claim B.4. There is a polynomial-time algorithm that, given
1", outputs a TC%(dO)[n - mev/2) circuit Sy satisfying the
Jfollowing:

1) Sy takes ro = m®™/? bits as input, and outputs the
description of a poly(m)-size TC%(dO) o XOR circuit
Fs.

2) Es takes z € {0,1}" as input, and outputs the descrip-
tion of a m*-size TCgo oracle circuit Co.

3) For every z € {0,1}" and every oracle O: [N] —
{0, 1} such that Prc(xp [O(i) = z] > 1/24m™>, with
probability at least 1 —0.99 over Ey < S2(U,.,), letting
Cy = Es(2), it holds that

Pr [C9()=z%] >1-1/d

i€[N]
Proof. Let Tpre, Tmain < T°1% be the number of random bits
used by Dy of Proposition V.5 for the preprocessing step and
the main step, respectively. (We use the main step to denote
the operation of REC,, after the preprocessing step.)

Let Spre and Smain be the TCSU [Neo- ()] samplers for the
preprocessing step and the main step of Dy, respectively. In
more detail: (1) Spre takes cpre € {0, 1}7 bits as input, and
outputs a list of queries to Z, denoted by q1,¢2,...,q € [t],
where ¢ < N 1H9): (2) Spin takes Gmain € {0, 1}7main as
input, and outputs a TCSO oracle circuit C of size N (7+V)
that takes ¢ bits and j € [IN] as input.

The promise of Proposition IV.1 implies that for any
O: {0,13N — {0,1} satistying Pr;c;y[0(j) = 2(j)] >
1/2 + N7%, with probability at least 1 — o(1) over
+ Uy, and omain < U, it holds that C$(j)
(cp© (241+---+2q,,7) computes 2 on a (1 — N~7) fraction
of inputs from [N]. Note that by our choice of v and v and the
facts that N > n?7 and m < h < m?3, it holds that NV > m?
and N7 > d2, as desired by the claim.

Let 79 = T'pre + Tmain- S2 takes (pre; main) € {0,1}72 as
input, it first runs Spre(apre) to compute qi1, g, ..., q: € [N],
and then runs Smain(@main) to obtain the oracle circuit CY,

Qlpre =

'main >

1046

then it constructs the desired circuit Es that first computes
Zq1+- -+, 2q,, and then outputs Cy by fixing the first ¢ bits of
the input to C% to Zg,,..., 2. Note that Cy is a m*-size
TCgU circuit.

By Fact B.2, E, is a poly(m)-size TC%(dO) o XOR circuit,
S can be implemented by an n-poly(m)-size TC%(d ,) circuit.

Let 73 be the number of random bits used by RM-LDC,, ; 4.
Finally, S takes (a1, a2, a3) € {0,1}™ x {0,1}" x {0,1}"3
as input, and computes Fy = S1(r1), Fa = Sa(r2), and C5 by
fixing the randomness in RM-LDC, ; 4 (Lemma V.4) by as.
It then constructs the final circuit £ on input z that operates
as follows: compute Cy = F1(z), Cy = F3(z), and compute
an oracle circuit

cCr
(@) = 2 (

)
for @ € F™, where O: {0,1}" — {0,1} is an oracle. Output
CO(i) = (& (€(0).

The complexity and correctness of S follows from the two
claims above, and from Lemma V.4. [

REFERENCES

N. Nisan and A. Wigderson, “Hardness vs. randomness,” Journal of
Computer and System Sciences, vol. 49, no. 2, pp. 149-167, 1994.

R. Impagliazzo and A. Wigderson, “P = BPP if E requires exponential
circuits: derandomizing the XOR lemma,” in Proc. 29th Annual ACM
Symposium on Theory of Computing (STOC), 1997, pp. 220-229.

M. Sudan, L. Trevisan, and S. Vadhan, “Pseudorandom generators
without the XOR lemma,” Journal of Computer and System Sciences,
vol. 62, no. 2, pp. 236-266, 2001.

R. Shaltiel and C. Umans, “Simple extractors for all min-entropies and
a new pseudorandom generator,” Journal of the ACM, vol. 52, no. 2, pp.
172-216, 2005.

C. Umans, “Pseudo-random generators for all hardnesses,” Journal of
Computer and System Sciences, vol. 67, no. 2, pp. 419-440, 2003.

L. Chen and R. Tell, “Hardness vs randomness, revised: Uniform, non-
black-box, and instance-wise,” in Proc. 62nd Annual IEEE Symposium
on Foundations of Computer Science (FOCS), 2021, pp. 125-136.

Y. Liu and R. Pass, “Characterizing derandomization through hardness of
Levin-Kolmogorov complexity,” in Proc. 37th Annual IEEE Conference
on Computational Complexity (CCC), ser. LIPIcs. Leibniz Int. Proc.
Inform., 2022, vol. 234, pp. Art. No. 35, 17.

——, “Leakage-resilient hardness v.s. randomness,” Electronic Collo-
quium on Computational Complexity: ECCC, vol. TR22-113, 2022.

O. Korten, “Derandomization from time-space tradeoffs,” in Proc. 37th
Annual IEEE Conference on Computational Complexity (CCC), ser.
LIPIcs. Leibniz Int. Proc. Inform., 2022, vol. 234, pp. Art. No. 37, 26.
D. van Melkebeek and N. Sdroievski, “Instance-wise hardness versus
randomness tradeoffs for arthur-merlin protocols,” Electronic Collo-
quium on Computational Complexity: ECCC, vol. 30, p. 029, 2023.

V. Kabanets, “Easiness assumptions and hardness tests: trading time for
zero error,” Journal of Computer and System Sciences, vol. 63, no. 2,
pp. 236-252, 2001.

D. Gutfreund, R. Shaltiel, and A. Ta-Shma, “If NP languages are
hard on the worst-case, then it is easy to find their hard instances,”
Computational Complexity, vol. 16, no. 4, pp. 412441, 2007.

L. Chen, C. Jin, R. Santhanam, and R. Williams, “Constructive separa-
tions and their consequences,” in Proc. 62nd Annual IEEE Symposium
on Foundations of Computer Science (FOCS), 2021, pp. 646-657.

N. Alon, Y. Matias, and M. Szegedy, “The space complexity of ap-
proximating the frequency moments,” 1999, vol. 58, no. 1, part 2, pp.
137-147, twenty-eighth Annual ACM Symposium on the Theory of
Computing (Philadelphia, PA, 1996).

[10]

[11]

[12]

[13]

[14]

Authorized licensed use limited to: MIT. Downloaded on March 28,2025 at 23:43:29 UTC from IEEE Xplore. Restrictions apply.

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

P. Beame, “A general sequential time-space tradeoff for finding unique
elements,” SIAM Journal of Computing, vol. 20, no. 2, pp. 270-277,
1991.

D. M. McKay and R. R. Williams, “Quadratic Time-Space Lower
Bounds for Computing Natural Functions with a Random Oracle,” in
Proc. 10th Conference on Innovations in Theoretical Computer Science
(ITCS), 2018, pp. 56:1-56:20.

N. Nisan, “The communication complexity of threshold gates,” in Com-
binatorics, Paul Erdds is eighty, Vol. 1, ser. Bolyai Society Mathematical
Studies, 1993, pp. 301-315.

B. Chor and O. Goldreich, “Unbiased bits from sources of weak random-
ness and probabilistic communication complexity,” SIAM J. Comput.,
vol. 17, no. 2, pp. 230-261, 1988.

O. Korten, “Derandomization from time-space tradeoffs,” in 37th
Computational Complexity Conference, CCC 2022, July 20-23, 2022,
Philadelphia, PA, USA, ser. LIPIcs, S. Lovett, Ed., vol. 234. Schloss
Dagstuhl - Leibniz-Zentrum fiir Informatik, 2022, pp. 37:1-37:26.

O. Goldreich, “In a world of P=BPP,” in Studies in Complexity and
Cryptography. Miscellanea on the Interplay Randomness and Computa-
tion, 2011, pp. 191-232.

R. Impagliazzo and A. Wigderson, “Randomness vs. time: De-
randomization under a uniform assumption,” in Proc. 39th Annual IEEE
Symposium on Foundations of Computer Science (FOCS), 1998, pp.
734-743.

M. Sipser, “A complexity theoretic approach to randomness,” in Proc.
15th Annual ACM Symposium on Theory of Computing (STOC), 1983,
pp. 330-335.

C. Lautemann, “BPP and the polynomial hierarchy,” Information Pro-
cessing Letters, vol. 17, no. 4, pp. 215-217, 1983.

H. Buhrman and L. Fortnow, “One-sided versus two-sided error in
probabilistic computation,” in Proc. 16th Symposium on Theoretical
Aspects of Computer Science (STACS), 1999, pp. 100-109.

O. Goldreich and D. Zuckerman, “Another proof that BPP C PH (and
more),” in Studies in complexity and cryptography, ser. Lecture Notes
in Comput. Sci. Springer, Heidelberg, 2011, vol. 6650, pp. 40-53.

S. Goldwasser, Y. T. Kalai, and G. N. Rothblum, “Delegating computa-
tion: interactive proofs for muggles,” Journal of the ACM, vol. 62, no. 4,
pp. 27:1-27:64, 2015.

M. Sudan, “Decoding of reed solomon codes beyond the error-

1047

[28]

[29]

[30]

[31]

[32]

[33]

[34]
[35]
[36]

[37]

[38]

[39]

[40]

correction bound,” J. Complex., vol. 13, no. 1, pp. 180-193, 1997.
[Online]. Available: https://doi.org/10.1006/jcom.1997.0439

D. Doron and R. Tell, “Derandomization with minimal memory foot-
print,” Electronic Colloquium on Computational Complexity: ECCC,
vol. 30, p. 036, 2023.

S. Goldwasser, D. Gutfreund, A. Healy, T. Kaufman, and G. N.
Rothblum, “Verifying and decoding in constant depth,” in Proc. 39th
Annual ACM Symposium on Theory of Computing (STOC), 2007, pp.
440-449. [Online]. Available: https://doi.org/10.1145/1250790.1250855
N. Alon, J. Bruck, J. Naor, M. Naor, and R. M. Roth, “Construction
of asymptotically good low-rate error-correcting codes through pseudo-
random graphs,” IEEE Transactions on Information Theory, vol. 38,
no. 2, pp. 509-516, 1992.

D. Gutfreund and E. Viola, “Fooling parity tests with parity gates,” in
Proc. 8th International Workshop on Randomization and Approximation
Techniques in Computer Science (RANDOM), 2004, pp. 381-392.

O. Gabber and Z. Galil, “Explicit constructions of linear size supercon-
centrators,” in Proc. 20th Annual IEEE Symposium on Foundations of
Computer Science (FOCS), 1979, pp. 364-370.

O. Goldreich and L. A. Levin, “A hard-core predicate for all one-
way functions,” in Proc. 21st Annual ACM Symposium on Theory of
Computing (STOC), 1989, pp. 25-32.

S. Arora and B. Barak, Computational complexity: A modern approach.
Cambridge University Press, Cambridge, 2009.

S. P. Vadhan, Pseudorandomness, ser. Foundations and Trends in The-
oretical Computer Science. Now Publishers, 2012.

E. Allender and M. Koucky, “Amplifying lower bounds by means of
self-reducibility,” Journal of the ACM, vol. 57, no. 3, pp. 14, 36, 2010.
W. Hesse, E. Allender, and D. A. M. Barrington, “Uniform constant-
depth threshold circuits for division and iterated multiplication,” Journal
of Computer and System Sciences, vol. 65, no. 4, pp. 695-716, 2002.
——, “Uniform constant-depth threshold circuits for division and iter-
ated multiplication,” J. Comput. Syst. Sci., vol. 65, no. 4, pp. 695-716,
2002.

A. A. Razborov, “On the distributional complexity of disjointness,”
Theoretical Computer Science, vol. 106, no. 2, pp. 385-390, 1992.

J. H. Van Lint, Introduction to coding theory. Springer-Verlag Berlin
Heidelberg, 1999, vol. 86.

Authorized licensed use limited to: MIT. Downloaded on March 28,2025 at 23:43:29 UTC from IEEE Xplore. Restrictions apply.

