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ABSTRACT

The range avoidance problem (denoted by Avoip) asks to find a
string outside of the range of a given circuit C : {0,1}" — {0, 1},
where m > n. Although at least half of the strings of length m are
correct answers, it is not clear how to deterministically find one.
Recent results of Korten (FOCS’21) and Ren, Wang, and Santhanam
(FOCS’ 22) show that efficient deterministic algorithms for AvoIp
would have far-reaching consequences, including strong circuit
lower bounds and explicit constructions of combinatorial objects
(e.g., Ramsey graphs, extractors, rigid matrices). This strongly mo-
tivates the question: does an efficient deterministic algorithm for
Avorp actually exist?

In this work, we prove under the existence of subexponentially
secure indistinguishability obfuscation (i0) that polynomial-time
deterministic algorithms for Avorp imply NP = coNP. Combining
this with Jain, Lin, and Sahai’s recent breakthrough construction
of iO from well-founded assumptions (STOC’21, EUROCRYPT 22),
we provide the first plausible evidence that AvoIp has no efficient
deterministic algorithm. Moreover, we also prove the hardness of
Avorip based on polynomially-secure iO and a weaker variant of
the Nondeterministic Exponential Time Hypothesis (NETH).

Extending our techniques, we prove a surprising separation in
bounded arithmetic, conditioned on similar assumptions. Assuming
subexponentially secure iO and coNP is not infinitely often in AM,
we show that Avoip has no deterministic polynomial-time algo-
rithm even when we are allowed O(1) queries to an oracle that can
invert the given input circuit on an arbitrarily chosen m-bit string.
It follows that the dual Weak Pigeonhole Principle, the combinatorial
principle underlying AvorIp, is not provable in Cook’s theory PV;.
This gives (under plausible assumptions) the first separation of
Cook’s theory PV; for polynomial-time reasoning and Jefabek’s
theory APC; for probabilistic polynomial-time reasoning.
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1 INTRODUCTION

Given a circuit C mapping n-bit inputs to m-bit outputs, where m >
n, at least half of the possible m-bit strings are never output by C.
How efficiently can we find such a string? This meta-computational
problem is known as RANGE AVOIDANCE:

Search Problem: RANGE AvoIDANCE (a.k.a. AvOID)

Input: A Boolean circuit C with n inputs, and m > n outputs.
Output: A string y € {0,1}™ such that for all x € {0,1}",
C(x) #y.

There is a simple randomized algorithm for Avoip: a uniformly
random y € {0, 1} will be outside the range of C with probability
atleast 1-2"/2™ > 1/2.1s there an efficient deterministic algorithm
for Avoip?

This question is especially intriguing because it does not seem
clear what the answer should be. Indeed, Ren-Wang-Santhanam [66]
remark

“It is unknown whether Avorp € FNP, Avoip € FP,
or their negations are implied by any plausible as-
sumptions. As far as we know, we do not even have a
good idea of what the ‘ground truth’ should be”

(FNP and FP refer to the function versions of NP and P respectively.)

Under a plausible derandomization assumption, there is a deter-
ministic polynomial-time algorithm for Avoip given access to an
NP-oracle [49]. In randomized polynomial time with an NP oracle,
one can repeatedly sample a uniformly random y € {0,1}"” and
verify it is not in the range with the NP oracle. This process can be
derandomized, assuming ENP requires 29(n) _gized circuits [45]. In
fact, Korten [49] shows that Avorp is in FPNP if and only if ENP
does not have 2°(") -sized circuits infinitely often, so finding a de-
terministic algorithm for Avorp with a SAT oracle is equivalent to
proving circuit lower bounds.
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1.1 Background

Implications of Deterministic Algorithms for RANGE AVOIDANCE.
Kleinberg, Korten, Mitropolsky, and Papadimitriou [44] initiated
the study of Avorp (in their notation, AvoiDp is the problem a-EmpTY
for a > 1). They showed that various explicit construction problems
can be reduced to Avoip, including the problem CoMpPLEXITY, of
outputting a function with high A-oracle circuit complexity, given
the truth table of the oracle A.!

In follow-up work, Korten [49] convincingly demonstrated that
deterministic algorithms for Avoip would have significant con-
sequences for circuit complexity and combinatorics. For example,
letting C be a poly(2)-size circuit which takes as input descriptions
of 2¢/19_size circuits and outputs their 2¢-bit truth tables, solving
RANGE AvoIDANCE on such C amounts to finding truth tables of
high circuit complexity, a task that is widely believed to be solvable
in deterministic polynomial time.? Korten extended this observa-
tion considerably, showing a deterministic Avorp algorithm would
imply deterministic constructions of a variety of other objects (e.g.,
Ramsey graphs, extractors, rigid matrices) where a random choice
suffices, but explicit constructions are longstanding open problems.

Ren-Santhanam-Wang [66] found further striking consequences
of deterministic efficient Avorp algorithms. Among many other
results, they show that a polynomial-time algorithm for NCS cir-
cuits (NC% denotes circuits in which each output only depends on

k inputs) with stretch m = n + n°(!) would already yield func-
tions in E that require circuits of depth ni=o() 4 major open
problem in circuit complexity. Guruswami-Lyu-Wang [29] improve
upon several reductions of Ren-Santhanam-Wang, and also show
that RANGE AVOIDANCE is in fact solvable in deterministic poly-
nomial time for NCg circuits. Gajulapalli-Golovnev-Nagargoje-
Saraogi [24] show that a deterministic polynomial-time algorithm
for AvoIp on NCg circuits with m = n + n?/3 implies breakthrough
explicit constructions of rigid matrices. They also give deterministic
polynomial-time algorithms for Avorp on NCz circuits with stretch

m > nk_l/log n.

What to Believe? Arguments and Counterarguments. All the above
results underscore the significance of finding nontrivial algorithms
for RANGE AVOIDANCE and the importance of understanding how
difficult RANGE AvOIDANCE really is. Should we believe RANGE
AVOIDANCE is in FP (the class of polynomial-time computable
functions), or not? To illustrate the depth of this question, we
briefly consider some arguments and counterarguments.

From one point of view, it is natural to imagine a world in
which Avoip € FP. From Korten [49], we already know that if
ENP doesn’t have subexponential-size circuits, then Avorp is in
FPNP. In light of this, it seems natural to believe that under the
stronger assumption that E (without an NP oracle) doesn’t have

Kleinberg, Korten, Mitropolsky, and Papadimitriou [44] also showed that an extremely
low-stretch variant of Avoip, where one is given a circuit mapping from [2" — 1]
to [2™], is NP-hard (their Theorem 1). However, because the stretch of this variant
is exponentially small, the complexity of the problem is quite different: for example,
this version can’t be easily solved with randomness, as the total number of inputs and
outputs only differ by one.

2In more detail, constructing a 2"-bit truth table with circuit complexity 2°(") in
poly(2™) time is equivalent to showing that E requires 2*(") circuit complexity,
which is the main hypothesis powering the famous pseudorandom generators for
BPP =P [31,70].
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subexponential-size circuits (that is, the widely-believed conjec-
ture E ¢ io—SlZE(Z"(”)) [31]), one could show Avorp is in FP
(without an NP oracle). Furthermore, standard methods from pseu-
dorandomness [45] imply that there is a polynomial-time con-
structible hitting set for Avoip, assuming (for example) that E does
not have subexponential-size SAT oracle circuits. That is, under
plausible hypotheses, one can generate in FP a polynomial-size set
Ss,m € {0, 1}™ such that for every circuit C of size s with m outputs,
at least one y € S ;, is not an output of C (see Appendix A of the
full version). However, checking which y is a non-output apparently
requires an NP oracle.

To add to these points, the existence of a randomized algorithm
for AvoIDp seems to preclude a range of approaches to ruling out a
deterministic (FP) algorithm for Avorp. For example, in Appendix
B of the full version we present a barrier result against proving
Avorp ¢ FP using standard black-box randomized Turing reduc-
tions, which exploits the fact that a random string is a correct
answer with high probability. Still, the fact that AvoIp has a fast
randomized algorithm does not necessarily mean that we should
believe it has a fast deterministic one. For an extreme example,
one can easily sample strings of high Kolmogorov complexity with
randomness, but one provably cannot do this deterministically at all:
sufficiently long strings generated by fixed deterministic algorithms
always have low Kolmogorov complexity [69, Chapter 6.4].

Indeed, one might believe AvoIp ¢ FP because the opposite may
seem “too good” to be true. The prior work mentioned above shows
that, if Avoip € FP, there are many interesting consequences for
lower bounds and explicit constructions. However, as we expect all
of those consequences to actually be true, these results alone don’t
give a strong argument that Avoip ¢ FP. Rather, they indicate that
the opposite may be hard to prove, as it would have significant
consequences.

Another intuition for the difficulty of AvoID is that the generality
of the problem allows for more power than merely generating
varieties of hard functions and special combinatorial objects, each of
which correspond to specific structured instances of Avoip. Solving
Avorp for all circuits, even arbitrary ones whose descriptions may
be very “scrambled” and complex, could be far more powerful than
the generation of interesting mathematical objects.

In summary, it was entirely unclear whether RANGE AVOIDANCE
should be solvable in deterministic polynomial time, or not. In this
paper, we shall give evidence that is not, starting from the intuition
of the previous paragraph.

Indistinguishability Obfuscation. Before stating our results, we take
a quick detour to discuss one of our main tools: Indistinguishability
Obfuscation (i0), a notion first defined by Barak et al. [6, 7]. Roughly
speaking, an iO is a polynomial-time probabilistic algorithm that
given a circuit C, outputs an “obfuscated” circuit iO(C) computing
the same function. The security guarantee of iO is that, for any
two circuits C and C’ of the same size that compute the same
function, iO(C) and iO(C’) are computationally indistinguishable
to a class of “adversaries” (for example, polynomial-sized circuits).
See Section 2.1 for a formal definition.

For many years, iO had the dual deficiency of neither having
any candidate constructions, nor having particularly interesting
applications. However, in the two decades since its definition, both
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of these statements have seen dramatic reversals. While iO’s se-
curity definition initially seems weak (as it only gives a guarantee
about circuits computing the same function), it turns out to be ex-
tremely powerful. We now know that nearly every cryptographic
primitive (e.g., one-way functions [48], public-key encryption [67],
multi-party non-interactive key exchange [10], etc.) can be con-
structed assuming iO exists and NP is not in BPP infinitely often
(see Section 1.3 of Jain-Lin-Sahai [33] for a more comprehensive
list).

Similarly, while many initial candidate constructions required
new assumptions that were later broken, groundbreaking work
of Jain, Lin, and Sahai [33] showed that iO exists assuming four
“well-founded” assumptions (this has been improved to three as-
sumptions, in [35]). Moreover, the iO they construct has strong
security properties: no polynomial-sized circuit adversary can dis-
tinguish the iO of equivalent circuits except with subexponentially
small probability. We refer to iO with these security properties as
JLS-security (a formal definition is in Section 2.1). Following the
work of Jain, Lin, and Sahai, iO has now become a widely-believed
assumption in cryptography (see for example the recent Quanta
article of Klarreich [43]).

1.2 Our Results

In this paper, we give the first concrete evidence that RANGE AvoID-
ANCE is hard to solve deterministically when the number of outputs
m(n) = poly(n). In particular, our conditional lower bound for
RANGE AvoIDANCE follows from indistinguishability obfuscation
and various forms of NP # coNP. Our argument is quite general
in that it holds for a variety of parameters with trade-offs on the
assumptions, but we state a simple version first.

Theorem 1. Assume that NP # coNP and iO with JLS-security
exists. Then for all c > 1, there is a k > c such that there is no
deterministic polynomial-time algorithm for AvoIb on nk
with n inputs and m(n) = n€ outputs.

-size circuits

That is, assuming NP # coNP and JLS-secure iO exists, there are
no efficient deterministic algorithms for Avoip, even if the number
m of output bits is allowed to be an arbitrarily large polynomial
in n. Note that when m is an arbitrarily large polynomial in n, all
but an exponentially small fraction (27™*™") of length-m strings are
outside of the range of C. Interestingly, the hard instances in our
proof are circuits C with at most two elements in their range!* In
fact, one of those two elements is always the string 0.

Before we discuss extensions of Theorem 1, let us briefly motivate
how the assumptions in Theorem 1 arise. Suppose a deterministic
algorithm for AvoIp exists, and one is aiming to show a contra-
diction. What can you do with a deterministic algorithm, that you
could not do with a randomized algorithm (which we know exists)?
With a deterministic efficient algorithm for Avoip, one can guaran-
tee that for every circuit C, there is a short “proof” that a specific
string yc is outside the range of C. In particular, the computation
history of the deterministic Avorp algorithm running on C and
outputting yc, constitutes such a “proof.” In contrast, it is unclear
how to get such a guarantee from the simple randomized algorithm
3Having a range of only two elements is best-possible, in a sense. For circuits C with

only one string in their range, there is a simple AvoIp algorithm: output any m-bit
string different from C(0™).
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for Avorp that picks a string uniformly at random. A priori, it seems
powerful that every circuit C has a short proof that a specific y¢
is outside its range. If the description C was complex enough to
function like a “black box,” then the shortest proof that y¢ is not in
the range may simply evaluate C on all inputs and observe that C
never outputs yc. Thus, at a very high level, a deterministic Avorp
algorithm may provide short proofs for statements that might not
have short proofs (motivating an assumption like NP # coNP) for
circuits that behave like black boxes (motivating an assumption
like i0). Of course, this is a very rough intuition; for more details
we point the reader to the (relatively short) proof of Theorem 1 in
Section 3. We remark that our work is certainly not the first time
that iO is being applied in complexity theory (see Section 2.1 for
references).

Extensions. We now discuss extensions of Theorem 1, which
illustrate various tradeoffs between the time complexity of Avorp,
simulations of coNP with nondeterminism, and the allowed stretch
m. A more general version of our result rules out subexponential-

time (2”0(1) -time) deterministic algorithms for Avoip, as well as
algorithms for Avorp where the number of outputs m can be subex-
ponential in n. To rule out subexponential-time Avorp algorithms,
we apparently require a stronger (but still standard) notion of se-
curity for iO than that of JLS-security. In particular, we need that
no subexponential-size circuit adversary can distinguish the iO of
equivalent circuits, except with subexponentially small probabil-
ity. We refer to iO with this security as subexponentially-secure iO.
We point the reader to Section 2.1 for formal definitions, but we
stress that subexponentially-secure iO is very plausible and holds if,
for example, corresponding security guarantees hold for the three
well-founded assumptions used by Jain-Lin-Sahai [34].

In the statement below (and throughout this paper) we always
assume the number of outputs m(n) is a time-constructible function.

Theorem 2. Assume subexponentially-secure iO exists. For every
m(n) > n there is an s(n) = poly(m) such that, if there is a deter-
ministic t-time algorithm for AvoIp circuits with m(n) outputs and
size s(n), then

coNP € | | NTIME[t(m* (n)]
keN
Here, NTIME[¢] refers to the set of languages computable by a
nondeterministic Turing machine in time O(#). Setting t = o
we conclude that RANGE AVOIDANCE cannot be solved in determin-
istic 2°"" time on circuits of size s, assuming subexponentially-
secure i0 and a rather weak exponential-time hypothesis. Let

NSUBEXP = Ngexr NTIME[277].

Corollary 3. Assuming coNP ¢ NSUBEXP and subexponentially-

. . . o(1)
secure iO, RANGE AVOIDANCE cannot be solved in deterministic 2°
time on circuits of size s.

The assumption coNP ¢ NSUBEXP is significantly weaker than
what is often assumed in fine-grained complexity. For example, the
Nondeterministic Exponential Time Hypothesis (NETH) [17, 18]
states that there is an ¢ > 0 such that unsatisfiable 3SAT instances
with n variables cannot be refuted in nondeterministic 2" time.
Note NETH is a much stronger hypothesis than coNP ¢ NSUBEXP.
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Setting m(n) to be any constructible function that is 2
Theorem 2, we conclude that even when the number of outputs m
is close to exponential in n, AvorD still does not have a polynomial-
time deterministic algorithm, assuming coNP ¢ NSUBEXP and

subexponentially secure iO.

n

Corollary 4. Assuming coNP € NSUBEXP and subexponentially-
secure iO, RANGE AVOIDANCE cannot be solved in deterministic
polynomial-time for every constructible m(n) = o

We also prove that iO with security weaker than JLS-security or
subexponential security can still be used to show the non-existence
of deterministic algorithms for Avoip. We show Avoip ¢ FP as-
suming only polynomially-secure iO and a still weaker statement
than the typical NETH.

Hypothesis 5 (NETH for Circuits). There is an ¢ > 0 such that
Circuit Unsatisfiability on n-input circuits of size 2°(") cannot be
solved nondeterministically in 26" time.

Theorem 6. Assuming NETH for Circuits and polynomially-secure
i0, Avorp is not in FP. Moreover, under the assumptions, it follows
that for allb, ¢ > 1 there is an ¢ > 0 such that AvoID cannot be solved
in O(2™) time on circuits of size 2™ with n inputs and bn outputs.

Note that, in the case of circuits with 2°(") size and bn out-
puts, exhaustive search solves RANGE AVOIDANCE in time about
2bnto(n) Under our assumptions, we rule out 20(1) time for 20(n) -
size circuits, when the number of outputs m is linear in n. Therefore,
even subexponential-time improvements over exhaustive search
for RANGE AvoIDANCE should already be considered unlikely for
these parameters, under our assumptions.

Witness Encryption Suffices. A careful inspection of our proofs
reveals that our use of indistinguishability obfuscation can be re-
placed with a seemingly weaker cryptographic primitive called
witness encryption. At a high level, witness encryption [26] allows
one to, given a SAT formula ¢, encrypt a message m such that only
recipients who know a satisfying assignment to ¢ can decrypt m
(the actual definition is more involved, but this is the basic idea). It
is known that iO implies witness encryption as a special case [25].
We state our results in terms of iO instead of witness encryption for
two reasons. First, currently the only known way to construct wit-
ness encryption with our desired parameters under well-founded
assumptions is via iO. Second, this paper is aimed primarily at a
complexity-theoretic audience, who is likely more familiar with the
notion of iO than witness encryption.

Nevertheless, witness encryption is believed to be a weaker
assumption compared to i0, and admits several plausible construc-
tions. Chen, Vaikuntanathan, and Wee [19] proposed a simple con-
struction from LWE-like problems, whose security was proved later
by Vaikuntanathan, Wee, and Wichs [72] based on LWE-like as-
sumptions. An alternative LWE-based construction was proposed
by Tsabary [71] under similar assumptions. Barta, Ishai, Ostrovsky,
and Wu [8] also gave a construction in “generic group model” based
on an (unproven) hardness of approximation hypothesis of certain
coding problems.

Application: Separations in Bounded Arithmetic. Bounded arithmetic
refers to fragments of Peano arithmetic that aim to formalize the
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(computational) complexity of reasoning. For instance, Cook’s theory
PV; [22] corresponds to “reasoning in polynomial time”, Jefabek’s
theory APC; [36-38, 40]* corresponds to randomized polynomial-
time computation, and Buss’s theories S 1 S%, ... correspond to the
polynomial-time hierarchy [12]. Indeed, theories corresponding
to other complexity classes such as TC?, NC!, and PSPACE have
been studied (see, e.g., [21, 51]). From a proof complexity point of
view, bounded theories can also be regarded as uniform versions of
propositional proof systems (see, e.g., [53]).

One motivation to study bounded arithmetic is that it may ex-
plain why longstanding complexity-theoretic conjectures such as
P # NP and NEXP ¢ P/, are hard to prove. In contrast to barriers
such as relativization [5], natural proofs [65], and algebrization [2]
that capture the limitation of specific techniques, it is more desir-
able to demonstrate the unprovability of these conjectures in strong
mathematical theories with a solid logical foundation. Bounded
arithmetic provides an ideal testing ground for this program. On
the one hand, a rather large fragment of known algorithms and com-
plexity theory results can be formalized in bounded theories such as
PV and APC; [58, 60, 61, 63]. On the other hand, connections be-
tween bounded arithmetic and complexity theory make it possible
to employ complexity-theoretic techniques to obtain unprovability
results, leading to exciting developments on the unprovability of
complexity upper bounds [14-16, 56] and lower bounds [52, 62, 64]
in PV.

To better understand the power of feasible reasoning, it is im-
portant to prove relations (separations or equivalences) among
bounded theories. In particular, it has been open for about twenty
years whether the dual Weak Pigeonhole Principle for PV functions®
(denoted by dWPHP(PV)) is provable in PVy. In other words, the
question is whether Jefabek’s APC1, defined as PV; +dWPHP(PV),
is the same as PVj. Here, dWPHP(PV) is the “logic version” of
Avorp® that says for every PV function f and every n and z, there is
ay € {0,1}™ such that for every x € {0,1}", f(z,x) # y. Similar
to the complexity of Avolp, there has been no strong evidence
for either APC; = PVy and APC; # PV;. Known results on this
problem include the separation of the relativized versions of APCy
and PV [39] and a conditional separation based on the assumption
that P C SIZE[n*] for some k [54]. (However, this assumption con-
tradicts the widely-believed derandomization assumption that E
requires circuits of size 22(") ) Krajicek [55] recently proposed an
open problem of showing a conditional separation of PV; and APC;
under a “mainstream hypothesis” as the first step to understand
the logical power of dWPHP(PV). Moreover, it might seem reason-
able to believe that APC; is the same as PVj, since its complexity-
theoretic counterpart BPP = P follows from plausible circuit lower
bounds [31, 70].

In this work, we provide the first plausible evidence that Jetabek’s
theory APC; is a strict extension of PVj.

Theorem 7 (Corollary 23, Informal). AssumingiO with JLS-security
and coNP is not infinitely often in AM, the dual Weak Pigeonhole

4Note the terminology APC was first used in [13].

By Cobham’s characterization of the polynomial-time functions, PV functions (when
interpreted in the standard model) are exactly polynomial-time computable functions
(see Section 2.3 for details).

®Indeed, Korten’s investigation of the complexity of explicit constructions was inspired
by the early developments of Jefabek’s theory APCy, as noted in [49, 50].
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Principle is not provable in PV (in particular, APC1 is a strict extension
ofPVl)‘

Our proof utilizes the standard KPT Witnessing Theorem (see
Theorem 18) which extracts an algorithm for Avorp that is allowed
to invert the input circuit on a constant number of m-bit strings,
assuming APC; is the same as PV. Corollary 23 then follows from
an extension of the conditional lower bound for Avorp which holds
against polynomial-time algorithms with such circuit-inversion
oracles.”

Theorem 8 (Theorem 21, Informal). Assuming the existence of iO
with JLS-security and NP is not infinitely often in AM, there is no
polynomial-time algorithm for Avorp with O(1) queries to a circuit-
inversion oracle.

This conditional lower bound stands in interesting contrast to
the fact that, under standard derandomization hypotheses (E does
not have 2(") _size circuits), there is a deterministic polynomial-
time algorithm for Avoip that makes polynomially-many circuit
inversion queries (follows from [49]; see Appendix C of the full
version). Alternatively, under a stronger assumption, namely E does
not have 22(")_size SAT-oracle circuits, we can construct a hitting
set of size poly(n) (see Appendix A of the full version) and then
find a non-output of the given circuit with poly(n) circuit-inversion
queries.

Under similar assumptions, we also demonstrate a separation
of APC; and its fragment UAPC; that is strong enough to prove
interesting results in complexity theory and formalize approximate
counting in Jefabek’s framework [38], see Section 4.3 of the full
version for more details.

Application: the Oracle Derandomization Hypothesis for Time-Bounded
Kolmogorov Complexity. Our results also have bearing on other hy-
potheses regarding derandomization. Motivated by applications
in parameterized complexity and questions related to “instance
compressibility,” Fortnow and Santhanam [23] introduced the Ora-
cle Derandomization Hypothesis (ODH). Roughly speaking, ODH
says that, given a length-n truth table z of an arbitrary Boolean
function, one can efficiently deterministically generate a truth table
y of length at least n%! such that the function represented by y has
circuit complexity n2(1) even when the circuits are given oracle
access to the function represented by z. (See Hypothesis 24 for a
formal definition, and Section 5 for a comparison to the related
problem COMPLEXITY.)

This hypothesis is especially intriguing because it is unclear
whether it should be true or false. Indeed, Fortnow and Santhanam
remark:

“In our opinion, quite apart from its relevance to com-
pressibility, the Oracle Derandomization Hypothesis
is interesting in its own right because it tests our intu-
itions of which kinds of derandomization are plausible
and which are not... We do not have a strong belief

"The drawback of the lower bound result comparing with Theorem 2 is that the as-
sumption NP # coNP is strengthened to coNP € i.0. AM due to technical reasons.
Intuitively, we need the Goldwasser-Sipser protocol in AM (see Lemma 13) for ap-
proximate counting, and we only know how to “eliminate” oracle queries in the range
avoidance algorithm assuming infinitely often lower bounds for coNP.
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about the truth of our derandomization assumption,
but we do believe it is hard to refute”

Using essentially the same proof as in Theorem 1, we rule out a
related time-bounded Kolmogorov complexity version of ODH (for-
mally, Hypothesis 25) under plausible assumptions. Roughly speak-
ing, Hypothesis 25 says that given a string z of length n, one can
efficiently deterministically generate a string y of length n-%! such
that the conditional polynomial-time bounded Kolmogorov com-
plexity of y given z is at least n*(1) Here, the conditional ¢-time
bounded Kolmogorov complexity of y given z refers to the length
of the shortest program that outputs x on input y in time ¢(|x|) (see
Section 2.4 for a formal definition) [46, 47, 68].

Theorem 9 (Informal version of Theorem 26). The time-bounded
Kolmogorov complexity ODH is false assuming NP # coNP and
subexponentially secure iO exists.

It is a tantalizing open question as to whether one can extend
this result to rule out ODH itself. To prove Theorem 9 we crucially
make use of the fact that, in this version of ODH, the computational
model is able to read the entire string z. In contrast, in the (original)
ODH setting, the computational model is only allowed to make a
limited number of queries to the string z.

2 PRELIMINARIES

We assume basic familiarity with notions in computational com-
plexity [3]. We first review two extensively used tools: Indistin-
guishability Obfuscation and interactive (Arthur-Merlin) protocols.
We also provide a brief introduction on bounded theories PV; and
APC (see [21, 51, 53] for more detailed expositions), as well as the
time-bounded Kolmogorov complexity.

2.1 Indistinguishability Obfuscation

Definition 10 (Indistinguishability Obfuscation). A polynomial-
time randomized algorithm iO that takes as input a security param-
eter A and a circuit C, and randomness r is an indistinguishability
obfuscator with security (S, €) if both of the following hold:

o Perfect Functionality: For all C and A, iO(lA, C) outputs a
circuit computing the same function as C with probability
one over its randomness.

¢ Indistinguishability: For all A, any two circuits C and
C’ of size at most A computing the same function, and any
S(A)-sized adversary circuit A, we have that

|Pr[A(I0(17,C) = 1] - Pr[AGGO(11,C") = 1]| < ()

When A is clear from the context, we write iO(C) instead of
i0(1%,C). When we want to specify the randomness r used by the
i0O algorithm, we write iO(lA, GC;r).

We say an iO is polynomially-secure if it is secure for some
S(n) = n®M and e(n) < 1/n®V). We say it is subexponentially-
secure if it is secure with S(n) = 2"’ and e(n) = 2-"° for some
d > 0. We say it is JLS-secure if it is secure with S(n) = n®() and
and e(n) = 27" for some & > 0. For our results, it is important
that our adversaries are non-uniform circuits.

The breakthrough results of Jain-Lin-Sahai [33, 35] give con-
structions of both JLS-secure and subexponentially secure iO.
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Theorem 11 (Informal version of Jain-Lin-Sahai [35]). If three
“well-founded” cryptographic assumptions hold, then JLS-secure iO
exists.

Theorem 12 (Informal version of Jain-Lin-Sahai [34]). Assuming
three “well-founded” cryptographic assumptions are secure against
subexponential-sized adversaries with subexponential advantage, then
subexponentially secure iO exists.

Other Complexity Theory Work Using iO.. Building on the work of
Bitansky, Paneth, and Rosen [9], Garg, Pandey, and Srinivasan [27]
show that computing Nash Equilibria (and thus the TFNP class
PPAD) is intractable assuming one-way permutations and iO exist.
Impagliazzo, Kabanets, and Volkovich [30] show that if iO exists
then the Minimum Circuit Size Problem [41] is in ZPP if and only
if NP € ZPP.

2.2 Arthur-Merlin Protocols

An Arthur-Merlin protocol [4] for a language L C {0, 1}* is defined
as a constant-round interactive protocol between a computationally
unbounded prover (Prover) and a polynomial-time probabilistic
verifier (Verifier). For a given input x € {0, 1}" that is accessible
by both Prover and Verifier, Prover wants to convince Verifier that
x € L (even if x ¢ L) with poly(n) bits of communication, whereas
the Verifier needs to decide whether x € L based on the information
provided by Prover. Formally, the protocol needs to satisfy the
following properties.

e Completeness: If x € L, it is possible for Prover to send
poly(n)-bits of messages in constant rounds such that Verifier
accepts with probability at least 2/3.

e Soundness: If x ¢ L, given any messages from Prover,
Verifier accepts with probability at most 1/3.

The complexity class AM is defined as the languages that have
a sound and complete Arthur-Merlin protocol. As coNP € AM
implies the collapse of PH [11], it is widely believed that coNP ¢
AM and therefore UNSAT ¢ AM. Indeed, we know that NP = AM
assuming a standard derandomization hypothesis: namely, there
exists alanguage L € NENcoNE requiring nondeterministic circuits
of size 22(") [45, 59]. This implies that coNP is unlikely to even be
infinitely often in AM.

Goldwasser-Sipser Set Lowerbound Protocol. We will need a well-
known Arthur-Merlin protocol for approximately counting the size
of a set that has efficiently computable membership queries.

Lemma 13 ([28], also see [3, Section 8.4]). There is an Arthur-Merlin
protocol such that the following holds. Suppose that both Prover and
Verifier receive a circuit C : {0,1}" — {0, 1} and a numbers < 2",
Let S = {x € {0,1}"" | C(x) = 1}. Then

o Completeness: If |S| > s, then there exist messages Prover
can send such that Verifier accepts with probability at least
2/3.

o Soundness: If S| < s/2, then regardless of what Prover sends,
Verifier accepts with probability at most 1/3.

Moreover, the protocol is a two-round public-key protocol: Verifier
first sends a random seed r and receives a message m; then it deter-
ministically decides whether to accept based on r and m.
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2.3 Bounded Theories PV; and APC;

Cook [22] defined the theory PV related to polynomial-time com-
plexity as an equational theory (i.e. sentences are of the form t = u
for terms t and u). Based on a machine-independent characteri-
zation of FP due to Cobham [20], it can be shown that the set of
function symbols introduced in PV (when interpreted in the stan-
dard model) is exactly FP. PV is defined as a first-order theory
that is a conservative extension of PV axiomatized by universal
sentences. The formal definitions of PV and PV; are tedious and
we refer interested readers to [53, Chapter 12]. We define Tpy to
be the universal true theory over the language L(PV) of PV over
the standard model N.8

To formalize the probabilistic methods that are widely used
in complexity theory and combinatorics, Jefabek [36-38, 40] in-
troduced an extension of Cook’s PV by including the dual Weak
Pigeonhole Principle for PV function symbols as axioms, which is
now known as APC; (stands for approximate counting). Let f(w, x)
be function symbols’, and let m(n) > n be a function. We define
the dual weak Pigeonhole Principle for f(w,-) with stretch function
m,!0 denoted by dWPHP,(f), as

dWPHP,,,(f) :=Vn € Log Vw Jy € {0,1}™")

Vx € {0,1}" f(w,x) # 1, (1)

which claims that f(w, ) : {0, 1}" — {0, 1}™(") cannot be surjec-
tive. Here, Vn € Log is short for VN Vn = |N|, which means that
the feasible reasoning is with respect to strings of length n instead
of log n. We use dWPHP(f) (where m is omitted in the subscript)
to mean dWPHP,, (f) for m(n) = n+ 1. We define

dWPHP(PV) = {dWPHP(f) | f € L(PV)},

and the theory APC; is defined as PV, + dWPHP(PV). Since any
polynomial-time function can be computed with a multi-output
polynomial-size circuit, APC; can also be defined equivalently as
PV1 + dWPHP(Eval), where Eval(C, x) evaluates the circuit C on
the input x.

Remark 14. The stretch function m for dWPHP(PV) used to de-
fine APC; can be a subtle issue, as we cannot prove an equivalence
between dWPHP(PV) with different stretch functions within PVy
(such equivalence can be proved within Buss’s theory 521 for poly-
nomial computation, see, e.g., [39, Theorem 3.1]). Jefabek [39] also
proved that PV () (a relativised version of PV1) cannot prove the
equivalence of dAWPHP(«a) between different parameters. This will
not be a problem for us, since our unprovability result works for the
weakest version of dWPHP (i.e. with stretch function m(n) allowed
to be an arbitrarily large polynomial). A

We remark that, besides the application of bounded arithmetic to
understanding complexity barriers, there are also recent interesting
applications in propositional proof complexity [42] and cryptogra-
phy [32].

8That is, Tpy contains all sentences of the form VX 8 for some quantifier-free formula
P that are true in the standard model N.

9Note that the inclusion of w is crucial; if we remove w in the definition of APC;, we
will obtain a (possibly) weaker fragment of APC; (see, e.g., [64, Section 2]).

1071 the rest of the paper, we assume that the stretch function m(n) is a PV-function.
This is without loss of generality, as the set of PV functions (when interpreted in the
standard model) is exactly FP, the class of polynomial-time computable functions.
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2.4 Time-Bounded Kolmogorov Complexity

There are multiple notions of time-bounded Kolmogorov complex-
ity in the literature; in this paper, we consider the following. Let
U be a fixed universal Turing machine such that U (M, x, 1%) runs
the Turing machine encoded by M for ¢t steps on the input x and
outputs the string on the tape.

Let t : N — N be a function.

Definition 15 (Time-Bounded Kolmogorov Complexity [46, 47,
68]). The K’-complexity of a string x € {0, 1}", denoted by K!(x), is
the minimum ¢ such that for some M € {0, 1}, U(M, ¢, 1“”)) =x.

Definition 16 (Conditional K?-Complexity). The Kf-complexity of
a string x € {0, 1}" conditioned on a string y, denoted by K (x|y), is
the minimum ¢ such that for some M € {0, 1}¢, U(M, y, 1ty =«

Although the definitions of K’-complexity and conditional K*-
complexity depend on the universal Turing machine U, the results
in this paper (as well as most results on these notions) are not
sensitive to the choice of U. Therefore we will omit U and simply
use “the encoding of M” to denote the encoding of M with respect
to U.

3 NO EFFICIENT DETERMINISTIC
ALGORITHMS FOR RANGE AVOIDANCE

In this section, we prove Theorem 1 and Theorem 2. We restate
both of these theorems below.

REMINDER OF THEOREM 1. Assume that NP # coNP and iO with
JLS-security exists. Then for all ¢ > 1, there is ak > c such that there
is no deterministic polynomial-time algorithm for AvoID on nk
circuits with n inputs and n® outputs.

-size

REMINDER OF THEOREM 2. Assume subexponentially-secure iO
exists. For every m(n) > n there exists an s(n) = poly(m) such that
if there is a deterministic t-time algorithm for AvoID circuits with
m(n) outputs and size s(n), then

coNP C U NTIME[t(m* (n))]
keN

We prove Theorem 2 and remark in the proof how to modify it
prove Theorem 1.

Proor or THEOREM 2. We will show that, under the assump-
tions, there is a t(poly(s))-time nondeterministic algorithm A for
the coNP-complete problem of checking whether a propositional
formula with n variables and O(n) size'! is unsatisfiable. Our algo-
rithm A takes as input an O(n)-size formula ¢ with n variables, and
A accepts ¢ if and only if ¢ is unsatisfiable. A works as follows:

(1) Nondeterministically guess a y € {0,1}") and an r €
{0, 1}POly(n+1) where A = poly(m(n)).
(The degree of the polynomial for A will be chosen later.)

!1To see this problem is coNP-complete, note that an arbitrary formula can be made
linear-sized with polynomial blowup while preserving unsatisfiability: simply add
extra variables that do nothing.
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(2) Let C[¢,y] denote a circuit!?

m(n) > n bits, and satisfies

that takes n input bits, outputs
om(n) ifp(x)=0

y, ifo(x)=1.

(3) Accept if and only if y = Avoip(iO(Cl e, y];r)).

(Here, we abuse notation and let Avoip and iO denote their
corresponding algorithms.)

Cle.yl(x) = {

This completes the description of A.

We now argue the correctness of the reduction A. Observe
that, by construction, iO(C[¢, y];r) is a circuit with n-inputs, m(n)-
outputs, and size poly(m(n)). (To see this size bound, note that ¢ has
size O(n), so C[g,y] has size O(m(n)€) for some constant ¢ > 1,
and iO blows up this size by at most a fixed polynomial in A =
poly(m(n)).) Thus, by setting s to be a sufficiently large polynomial
in m, the input circuit iO(C[g, y];r) to the Avoip algorithm in
item 3 is indeed an instance where the algorithm is assumed to
work. Furthermore, it is easy to see that A runs in nondeterministic
time t(poly(m(n)))+poly(m(n)) = t(poly(m(n))). Hence, to prove
the theorem we just need to show soundness (if A accepts, then
¢ is unsatisfiable) and completeness (if ¢ is unsatisfiable, then A
accepts).

First we show soundness. Suppose A accepts ¢. Then there exists
y and r such that y = Avoip(iO(C[¢, y];r)). By the correctness of
Avorp and the perfect functionality of iO, we know that y is not in
the range of C[¢, y]. By construction of C[¢, y], this means that ¢
is not satisfiable.

Now we show completeness. Suppose the formula ¢ is unsatisfi-
able. For simplicity of notation, we let m = m(n) in the following.
We begin by considering the output distribution of the Avorp algo-
rithm on iO(C[¢, 0™];r) for uniformly random r (notice we have
set y here to be 0™). Since AvoID always outputs a string in {0, 1},
there exists a “frequent” string y* such that

Prr[y* = Avon(iO(C[e,0™];7))] = 27™.

We now consider what happens when we set y = y*. The crucial
point is this: because ¢ is unsatisfiable, observe that C[¢, 0™] and
C[, y*] compute the same function! Therefore, by the subexponen-
tial security of iQ, there is an € > 0 such that for every adversary
B of size 24° taking input of length poly(m(n)),

Pr[B(i0(Cl,0™]) = 1] - Pr[B(iO(Clg.y*]) = 1]| < 27*".

In particular, we can consider the non-uniform!? circuit adversary
B(X) that outputs 1 if and only if Avorp(X) = y*. Without loss of
generality, we can assume the size of B is at most 2p°|y<m(")), as
the exhaustive search algorithm for Avorp would provide such a
size bound. Thus the size of B is at most

gpoly(m(n)) o 5A°

when A is a sufficiently large polynomial in m. (To modify this proof
to prove Theorem 1 instead, the only difference is to observe that,
if t(q) = poly(g), then it suffices to have iO with JLS-security in
this step, since the circuit checking if the output of AvoIip equals

121t does not matter precisely how we implement C|[ ¢, y|; the argument will work as
long as our C[ ¢, y] satisfies the specification and has size poly(m(n)).
3The non-uniformity comes from y*.
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y* has polynomial size.) Consequently, applying iO security to B,
we derive

Pr[y* = Avon(iO(Cle. y*];r))]

.
> Pr[y* = Avo(i0(C[g, 0™];7))] — 274
>27m_ ™A 5,

by setting A to be a sufficiently large polynomial in m. Hence, we
can conclude there is an r such that

y* = Avon(iO(C[g, y*]; 7)),

so A will accept ¢. O
Remark 17. For readers familiar with the cryptographic notion
of witness encryption [26], we note that in Theorem 2 (and in fact
all theorems in this paper that assume iO), we can relax the as-
sumption that iO exists to the potentially weaker assumption that
witness encryption with similar security and a deterministic de-
cryption algorithm exists. Informally, witness encryption allows
one to encrypt a string y with a SAT formula ¢ such that

o (Correctness). If ¢ is satisfiable, then one can efficiently
decrypt y given a satisfying assignment.

o (Security). If ¢ is unsatisfiable, then the encryption of y and
0lY! are computationally indistinguishable.

Garg et al. [25] observed that iO implies witness encryption (with
a deterministic decryption algorithm) as a special case. Indeed, in
Garg et al’s construction, one can witness-encrypt a message y with
a formula ¢ by outputting iO(C| ¢, y]). We are implicitly using this
construction in our proofs.

To modify the proof of Theorem 2 to use witness encryption
instead, one modifies the algorithm A to the nondeterministic
algorithm below:

(1) Nondeterministically guess a y € {0,1}™™) and an r €
{0, 1}p0]y(n+)t)

(2) Let e be the witness encryption of the string y according to
¢ using randomness r and security parameter A.

(3) Let C be the circuit that takes as input a string x € {0, 1}" and
attempts to output the decryption of e using the purported
witness x (if decryption fails, output 0™).

(4) Accept if and only if y = Avoip(C).

The analysis of the new algorithm is essentially the same as the
analysis of the original A, where the perfect functionality and indis-
tinguishability properties of iO are now replaced by the correctness
and security properties of the witness encryption scheme respec-
tively. Our other proofs using iO can be similarly modified. A

The proof of Theorem 2 can be generalized in several other ways.
For one, the same proof also works to rule out zero-error random-
ized algorithms (although zero-error randomized algorithms also
imply deterministic algorithms under a derandomization assump-
tion).

The proof can also be generalized to work with just polynomially-
secure i0. To do this, instead of NP # coNP, we consider a nonde-
terministic version of the exponential time hypothesis:
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REMINDER OF HypoTHESIS 5. (NETH for Circuits) There is an
& > 0 such that Circuit Unsatisfiability problem on n-input circuits of
size 2°(") cannot be solved nondeterministically in 25" time.

Hypothesis 5 is in fact a much weaker statement than the usual
NETH, which posits that nondeterministically refuting unsatisfi-
able 3-CNFs requires 2¢"-size proofs verifiable in 2" time. We
only require an exponential lower bound in the case of refuting
subexponential-size circuits.

REMINDER OF THEOREM 6. Assuming NETH for Circuits and the
existence of polynomially-secure iO, AvoID is not in FP. Moreover,
under the assumptions, it follows that for all b,c > 1 thereisane > 0
such that Avorp cannot be solved in O(2°“™) time on circuits of size
2¢™ with n inputs and bn outputs.

Proor. The algorithm for UNSAT in our proof is essentially the
same as that of Theorem 2, except we analyze the case of a very
large security parameter A.

Assume there is a universal constant d > 1 and an algorithm B for
polynomially-secure iO which runs in time O((s - ).)d) on circuits
of size s with security parameter A. Furthermore, assume that there
are universal constants b, ¢ > 1 such that for all sufficiently small
a € (0,1), RANGE AVOIDANCE can be solved in O(2°%"") time on
circuits of size 2*™ with n inputs and bn outputs. Given the assump-
tions, we show how to construct a nondeterministic algorithm for
proving the unsatisfiability of arbitrary subexponential-size circuits
in subexponential time.

Fix b,c > 1. Let m = bn, @ € (0,1) be a constant to be chosen
later, and A be an algorithm for RANGE AvOIDANCE as described
above. Let € > 0 be an arbitrarily small constant. Given a circuit ¢
with n inputs and size 2°(") | we run precisely the same reduction
as Theorem 2, except with an exponentially large value of A.

(1) Nondeterministically guess y € {0,1}™ and r € {0,1}¢,
where ¢ = (poly(Jg[)A)% and A = 26,
(The parameter ¢ is upper-bounded by the running time of
B.)

(2) Let C[¢, y] be a circuit taking n input bits and outputting m
bits with the specification:

ifp(x)=0

o™,
Clo,yl(x) = {y’ if () = 1.

(3) Accept if and only if y = A(B(Cle, y];r)).

It takes poly(]¢|) time to construct C[¢, y]. Given our assump-
tion on algorithm B, the output of B(C[¢,y]) is a circuit of size
(poly( |(p|)/1)d = gedn+o(n) Thyg our algorithm A for RANGE AvoID-
ANCE applies to the circuit B(C[¢, y]), by setting a = 2&d so that
(poly(JeA)4 = gedn+o(n) < gan Therefore the above algorithm
runs in nondeterministic time 2€%" = 22¢¢dn_Ag the input circuit ¢
has size 20("), c and d are fixed, and ¢ > 0 can be made arbitrarily
small, this would refute NETH for Circuits.

As in the proof of Theorem 2, it remains to show that ¢ is unsat-
isfiable if and only if there is a y and r such that y is the output of
A on B(C[¢,y];r). First, if such y and r exist, then analogously to
the proof of Theorem 2, we conclude that ¢ is unsatisfiable by the
construction of C[g, y].
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For the other direction, suppose that ¢ is unsatisfiable. As in the
proof of Theorem 2, we know that there is some y* € {0, 1}™ such
that

Prly* = A(B(Clp, 0" ;)] 2 27,

Given y*, we may define an “adversary” circuit D which has y* €
{0, 1} hard-coded, takes in an input circuit C’ (ostensibly simu-
lating B(C[¢,y];r) on some y and r), and outputs 1 if and only if
y* = A(C’). Using a standard translation of t-time algorithms into
O(t3)-size circuits, the input circuit C’ only has to have size at most
23edn+o(n) Translating the composition of A, B, and C[¢, y] into
circuits, the size of the adversary circuit D is at most 26ecdn which
is only polynomially larger than its input circuit C’.

Assuming polynomially-secure iO, since C[¢,0™] and C[¢, y*]
compute the same function, we have for every constant K > 1 that

Pr[D(B(Clg.0™]:) = 1] = Pr[D(B(Clp, 0™];1)) = 1]| <

K
which implies
Pr{y* = A(B(Clo,y*];1))]
1
* *7. _
2 Prly” = A(B(Cle.y"1in)] - -
1 1

= 2—m - A_K (2)
The above probability is greater than 0, provided that 2™ < AX  ie.,
A>2mK, 3)

Recall that we set A = 2°™ for an arbitrarily small fixed & > 0, and
m = bn for a fixed b > 1, while the constant K > 1 can be as
arbitrarily large as needed (independently of all other constants).
Therefore (3) holds.

By (2), there is an r such that y* = A(B(C[¢,y*];r)), which
completes the proof. O

4 APPLICATION IN BOUNDED ARITHMETIC:
SEPARATING APC; AND PV,

In this section, we prove a conditional separation of the bounded
theories APC1 and PV1, assuming that iO with JLS-security exists
and coNP is not infinitely often in AM.

The only result from logic that we need is the standard KPT
Witnessing Theorem for V3V formulas, which connects the prov-
ability of any (V3V)-sentence with a Student-Teacher game for
interactively computing a witness to the existential quantifier.

Theorem 18 (KPT Witnessing Theorem for Tpy [57]). For every
quantifier-free formula ¢ (X, vy, z) in the language L(PV), if Tpy
VX JyVz (X, y, z), then thereisak € N and L(PV)-termsty, ta, . .
such that

k
Tpy F VX Vz1 Vzp ... Yz \/(p()_c), ti(X,z1,...,zi—1),2zi). (4)
i=1

It is well-known that the terms t1, to, . . ., t; extracted from the
proof in the KPT Witnessing Theorem can be interpreted as an k-
round interactive computation of a witness y such that Vz ¢ (%, y, z)
given the input X. Consider the following game between a Student
who wants to find a correct witness y and a Teacher who will pro-
vide help. In the first round, the Student proposes y; (%)

Stk
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as a candidate, and, in the case, y; is not a correct witness of
Jy Vz ¢(X,y, z), the Teacher provides a counterexample z; such
that ¢(X, y1, z1) is false. The Student then proposes a new candi-
date y3 := £2(X, z1) based on the counterexample given in the first
round, and the Teacher, again, provides a counterexample z3 if y2 is
not a correct witness, etc. Equation (4) means that after k rounds of
interaction between the Student and the Teacher, at least one of the
Y1, Y2, - - ., Yi proposed by the Student has to be a correct witness
of Jy Yz (X, y, z). We refer the readers to [53] for more discussion
about the KPT Witnessing Theorem and the Student-Teacher game.

4.1 Provability of dWPHP and the Tractability
of Avoip

The KPT Witnessing Theorem (Theorem 18) provides a connection
between the provability of dWPHP and the tractability of Avorp,
in the sense of the Student-Teacher game. Let Eval(C, x) := C(x) be
the circuit evaluation function. Recall that dWPHP,(Eval) refers to
the following sentences:

dWPHP,(Eval) :=Vn € Log Vcircuits C : {0,1}" — {0, 1}*
3y € {0, 1} Vx € {0, 1} [Eval(C,x) # y].

Suppose that dWPHP,(Eval) is provable in Tpy. Then there is a
constant-round Student-Teacher game that finds a y € {0, 1}¢ wit-
nessing the existential quantifier, where the Teacher provides coun-
terexamples for the universal quantifier over x € {0, 1}". Taking
a closer look at this game, we can see that this corresponds to an
algorithm for Avorp with circuit-inversion oracle queries, which is
formally defined as follows.

Definition 19 (Solving Avorp with a Circuit-Inversion Oracle).
Let m = m(n) and k = k(n). A polynomial-time algorithm with
k circuit-inversion oracle queries for Avoip with m outputs is a
polynomial-time oracle algorithm A such that given a circuit C :
{0,1}" — {0, 1}™ and access to an oracle O(-) : {0,1}"™ — {0, 1}"
with at most k queries, A9C) (C) outputs a y € {0,1}™ such that
C(O(y)) # y. Furthermore, O(y) always returns an x such that
C(x) =y, when such an x exists.

Theorem 20. For every constructive function m(n) < poly(n) such
that m(n) > n, if Tpy F dAWPHPg(Eval), then AvoIp with m outputs
has a polynomial-time algorithm with O(1) circuit-inversion oracle
queries.

Proor. Let m(n) = poly(n) be some constructive function. By
the assumptions, we know that

Tpy F Vn € Log ¥C Jy € {0,1}"") Vx € {0,1}" [Eval(C,x) # y].

By the KPT Witnessing Theorem (Theorem 18), there is a k = O(1)
and L(PV)-terms t1, ta, . . ., t; such that

Tpy FVnVCVz ... Vz, ([Eva|(c,21) # t1(n, O)]v
[Eval(C, z2) # t2(n,C,z1)] V -+ -V

[Eval(C,z) # t(n,C, 21, . . ., Zk—l)])~

Now we show that given any circuit C : {0,1}" — {0, 1}m(n)
and access to an oracle O : {0,1}™(") — {0,1}", there is a poly-
nomial time algorithm that makes k queries to O(+) and finds a
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y € {0,1}™(") such that C(O(y)) # y. Let fi, for....fr € FP
be the functions that are the interpretations of t1, s, ..., ty, re-
spectively, in the standard model. We play the aforementioned
Student-Teacher game, where in the i-th round, the Student pro-
poses y; = fi(n,C, z1,...,zi—1), and the Teacher responds with
zi = O(y;). By Equation (4) and the soundness of Tpy in the
standard model, we know that for some i € [k], the Teacher
fails to provide a correct counterexample z; in the i-th round, i.e.,
Eval(C, z;) # y;. The algorithm can then output y;. O

4.2 Impossibility of Solving Avoip with a
Circuit-Inversion Oracle

Now we show that Avoip has no polynomial-time algorithm with
O(1) circuit-inversion oracle queries under plausible assumptions
by generalizing the proof of Theorem 2.

Theorem 21. Let m = m(n) = poly(n) and k = O(1) such that
m > n+ 1. Assume that coNP is not infinitely often in AM and
iO with JLS-security exists. Then there is no polynomial-time de-
terministic algorithm for AvoIp on circuits with m outputs using k
circuit-inversion oracle queries.

Proor. Let m and k be defined as above and let iO be a JLS-
secure indistinguishability obfuscator. To prove that Avorp with
the given parameters cannot be solved in deterministic polynomial
time, it suffices to show that for every k-query oracle algorithm A,
there exists a circuit C mapping n-bits to m-bits and a (consistent)
inversion oracle O(-) : {0,1}™ — {0,1}" such that A2()(C)
outputs a y where C(O(y)) = y (in which case, A fails to solve
Avorp on C). For any polynomial-time algorithm A that makes k
queries to O(+) : {0,1} — {0,1}", we can decompose A into
k + 1 polynomial-time algorithms Ay, Ay, . .., Agy (without oracle
queries) that work as follows:

e A;p: Given the input circuit C, it computes y; = A1(C) and
queries O(y1).

e Ajy: Letting x1 be the answer to the last query, it computes
y2 = A2(C, x1) and queries O(y2).

o As: Letting x3 be the answer to the last query, it computes
y3 = A3(C, x1, x2) and queries O(y3).

o ...

® Apyq: Letting xi be the answer to the last query, it computes
Yrr1 = Ags1(C, x1, ..., xx) and outputs yp, ;.

Therefore to rule out the existence of the oracle algorithm A
as described above, it suffices to show that for all deterministic
polynomial-time algorithms Ay, ..., Agyq, there is a circuit C :
{0,1}" — {0,1}™, strings y1,...,ygs1 € {0,1}™, and strings
X1, .- Xkg1 € {0, 1} such that:

e (Oracle Consistency). For all i, j € [k+1] such that y; =y,
we have x; = x;.
(That is, the oracle gives consistent answers x; to input
strings y;.)

e (Oracle Inverting). For every i € [k + 1], we have C(x;) =

yi = Ai(C,x1, ..., xi—1).
(That is, given y;, the oracle indeed provides an x; such that
C(xi) = yi.)
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To add more detail, the aforementioned circuit C and any oracle
satisfying O(y;) = x; for every i € [k + 1] can force each A;
(equivalently, the i-th oracle query of A) to output y;. In such a
case, Ag,1 (equivalently, the oracle algorithm A) outputs a string
Yrs1 = C(xiy1) that is in the output range of the input circuit C,
and thus does not solve Avorp.

We first introduce some notation. For n-variable 3-CNF formu-
las @1, ..., ¢ of size n and strings y1,...,yx € {0,1}™, we let
Cle1,- - @r; Y1, - - -» Y] denote a polynomial-size circuit that takes
an input (x,1i) € {0,1}" x [k] and outputs

om
Yi,

if pi(x) =0

Clot,.... 091, .., X, 1) :=
(o1, o1 y1s -+ Y] (3, 0) { i) = 1.

In the case that we do not specify a ¢; and its corresponding y;, such
as in C[¢1, ¢2; Y1, y2] for k = 3, we adopt the convention that any
missing ¢; is the trivial unsatisfiable formula L and y; = 0™. For
instance when k = 3, C[¢1, 92; y1, y2] = Clo1, 92, L; y1,y2,0™].

Fix any polynomial-time algorithm A with k oracle queries and
its decomposition as polynomial-time algorithms Ay, Az, ..., Agyq.
We begin by making the following claim.

Claim 22. Forall j € {0,...,k + 1} and for all sufficiently large n,
there exist n-variable satisfiable 3-CNF formulas ¢1, ..., ¢; of size
n, strings xi,...,xj € {0,1}", and strings y1,...,y; € {0, 1} such
that the following holds.
e For all distinct iy, iz € [j], if 9i, = @i,, then x;;, = xj,.
e Foreveryi € [j], pi(x;) = 1.
o Let (:’j = i0(Cleo1,...,0j;y1,...,yjl;r). Over the random
seed r of iO, it holds with probability at least 2~ ((2k=7)m)
that for everyi € [j], yi = Ai(éj,xl, O Xio1).

Observe that when j = k + 1, Claim 22 implies the existence
of 1, .., Prat1s X1, - - -» Xy, and Y1, . . ., Y41 that satisfy the afore-
mentioned Oracle Consistency property (which follows from the
first bullet of Claim 22) and Oracle Inverting property (which follows
from the second and the third bullet of Claim 22 and the perfect
functionality of i0). Indeed, this claim shows that the polynomial-
time algorithm A with k circuit-inversion oracle queries will fail on
Cryq (A will output a string in the range of Cry1) with probability
at least 2~ ((k=1)m) Therefore, to prove the theorem, it remains
to prove Claim 22.

Before we start, one crucial definition is in order. Define a circuit
D to be j-good if for every i € [j],y; = Ai(D,x1,...,xi-1). In other
words, D is j-good if it satisfies the property in the third bullet of
Claim 22.

We prove Claim 22 by induction on j. The base case j = 0 is
trivially true. Now we assume the claim is true for j — 1, which
gives 3-CNF formulas ¢y, ..., ¢j-1 of size n, strings x1,...,xj-1,
and strings y1,...,y;j—1 that make the claim true for j — 1. Let
A = poly(m) be the security parameter to be determined later, and
let £ = poly(n, A) be the randomness complexity of iO with security
parameter A. We define an AM protocol P, detailed in Algorithm
1, that attempts to solve UNSAT (i.e., the Prover aims to convince
the Verifier that a given formula is unsatisfiable). For simplicity,
we assume without loss of generality that our formulas are 3-CNFs
with n clauses and n variables.
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Input: A 3-CNF formula ¢(x) on n variables and clauses.
1 Prover sends 3-CNF formulas ¢, ..., ¢;-1, strings
Sy €{0,1}™;
2 Verifier rejects if ¢;(x;) # 1 for some i € [j], or ¢;, = ¢;,

x1,...,xj—1 € {0,1}", and yy, ..

and x;, # x;, for distinct iy, iy € [j];
// For r e {0,1}f, let
Ci =10(Clo1, ., @j-1, 93y, - Y1) -
// Let E:{0,1} — {0,1} be a circuit such that
E(r)=1 if and only if C; is j-good.
3 Prover and Verifier run the Goldwasser-Sipser protocol
(Lemma 13) on the instance (E, 9);
// The parameter & = 2{~((Zk=j)m)
// Prover aims to convince Verifier that
{r € {0,1}f | E(r) = 1}| = 6.

Algorithm 1: The AM protocol P that aims to solve UNSAT.

Completeness of P. We now show that the AM protocol P is
complete; the Verifier accepts every unsatisfiable 3-CNF formula ¢
on n variables with probability at least 2/3. Let ¢ be an arbitrary
unsatisfiable formula, and let C 'j—1 be the random variable ¢ -1 =
iO(Clo1,..-,@j-15Y1,. .., Yj—1];7) defined over r € {0, 1}5. By the
induction hypothesis, we know that

Pr [Cjyis (j - 1)-good] > 9= Q((2k—j+1)m)

re{01}¢
By an averaging argument, there is a y € {0, 1}'” such that
Pr Ci_1is (j — 1)-good] A =A-é-_,x,...,x-_
re{O,l}"[[ j-1 (J )-good] A [y ]( j—1,X1 j 1)]]

S 9=Q((2k=j+1)m) _g=m _ 5=Q((2k=j)m)

(©)

Lety; € {0,1}" be one such y, and let ¢ 'j be the random variable
(:‘j =1i0(Cle1,...,0j-1,¢;Y1,...,y;];r) defined over r € {0,1}[.
Since ¢ is unsatisfiable, it follows that

C[(pl, ..

compute the same function. By the JLS-security of iO, we know that

Q-1 @Y1, .-, yjland Clog, ..., @j-15y1, .. ., Yj-1]

¢ '; and ¢ 'j—1 are 274 -indistinguishablﬁ: against any polynomial-
size adversary. To verify that a circuit C of poly(n) size is j-good,
we need to check y; = A;(C, x1,...,x;_1) for every i € [j], which
can be done by a circuit of poly(n) size. This means by Equation (5)
that

Pr [C;is j-good

re{Ofl}’[ j 1s j-goo ]

= Pr [[Cjis (j—1)-good] A [yj = Aj(Cjx1,...,xj-1)]]
re{0,1}¢

> 27 A@k=j)m) _ 5=A° (6)

Let A == m?/€ = poly(n) and § := 2¢ - (6) = 2(=Q2k=j)m The
Prover will work as follows. In the first step, the Prover sends
3-CNF formulas ¢y, ...,¢j-1, strings x1,...,xj-1 € {0,1}", and
Y1,---,yj € {0,1}". By Equation (6), we know that éj is j-good
with probability at least §/2¢, which means by the definition of
E : {0,1}¥ — {0,1} (which can be implemented in poly(n) size)
that there is a Prover for the Goldwasser-Sipser protocol in Line
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3 of Algorithm 1 such that the Verifier accepts with probability at
least 2/3. This concludes the completeness of the protocol .

Employ the Lack of Soundness. At this point, we have shown
that # is a polynomial-time AM protocol attempting to check un-
satisfiability, and that # has the completeness property. By the
assumption that coNP is not infinitely often in AM,  cannot solve
unsatisfiability even infinitely often, which means that this # does
not have soundness for all sufficiently large n. In other words, there
is a Prover such that for sufficiently large n, the Verifier accepts
some satisfiable 3-CNF formula ¢ on n variables with probability
> 1/3. Let ¢; be this formula ¢ and let

e 3-CNF formulas ¢1, ¢2, ..., ¢j-1,
e strings x1,x2,...,xj—1 € {0,1}", and
e strings y1,y2,...,y; € {0,1}™

be the message sent in Line 1 (of Algorithm 1) by this Prover on
the input ¢;. Since the Verifier does not reject in Line 2, we have

o ¢i(x;) =1foreveryie [j—1],and

o for all distinct iy, iy € [j], if i, = @i,, then x;;, = x;,.
We define the string x; € {0, 1}" to be x; if there is some i € [j - 1]
such that ¢; = ¢j; otherwise, we set x; to be an arbitrary n-bit string
such that ¢;j(xj) = 1. Now we show that the formulas ¢, ..., ¢;,
strings x1,...,x; € {0,1}", and strings y1, ..., y; € {0,1}" satisfy
the conditions of Claim 22, which will conclude the proof.

Let C '; be the random variable defined as

(:‘j_1 =i0(Clo1, .., @3 Y1, ..., yj1;1).
Since the Verifier accepts with probability > 1/3, by the soundness
of the Goldwasser-Sipser protocol (Lemma 13), we know that

Pr 9. § = 9-Q((2k=)m)

re{0,1}¢

W=

[C‘j is j-good| >

This implies the third bullet of Claim 22. The first two bullets hold
by the definition of ¢;, x;, and y;. O

By combining Theorem 20 and Theorem 21, we conclude that
dWPHP(Eval) is not provable in Tpy based on the assumptions of
Theorem 21. Since Tpy is an extension of PV, this further means
that dWPHP(PV) is not provable in PV, which separates PV; and
APC1. We summarize the results as follows.

Corollary 23. Assume the existence of JLS-secureiO and coNP is not
infinitely often in AM. For every constructive function £(n) < poly(n)
such that £(n) > n, Tpy ¥ dWPHP(Eval). In particular, APC; is a
strict extension of PV1.

5 THE ORACLE DERANDOMIZATION
HYPOTHESIS FOR TIME-BOUNDED
KOLMOGOROV COMPLEXITY

In this section, we investigate the Oracle Derandomization Hypoth-
esis (ODH) and its variants.

Hypothesis 24 (Oracle Derandomization Hypothesis [23]). For
any m withn < m < poly(n), there is a deterministic algorithm
A mapping m bits to n bits such that for all z € {0,1}"" we have
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that y = A(z) satisfies that the circuit complexity'* of y given oracle
access to z is at least n%(1) (when y and z are viewed as truth tables
in the natural way).

We note that ODH is closely related to the COMPLEXITY problem
studied by Kleinberg, Korten, Mitropolsky, and Papadimitriou [44],
which is defined as follows:

Search Problem: COMPLEXITY

Input: A length-n truth table z of a Boolean function.
Output: A length-n truth table y such that the circuit com-
plexity of the function represented by y given oracle access to
the function represented by z is at least Q(longn)'

There are two main differences between ODH, and having a
deterministic polynomial-time algorithm for CompLExITY. First,
to solve COMPLEXITY, one is interested in truth tables with near-
maximal conditional circuit complexity, while in ODH it suffices to
output truth tables that have conditional circuit complexity n2(1)
Second, in COMPLEXITY, |z| = |y|, while in ODH one needs to handle
cases where |y| is polynomially smaller than |z|.

We consider a time-bounded Kolmogorov complexity version of
ODH. Roughly speaking, this version says that given a string z of
length n, one can efficiently deterministically generate a string y of
length n%! such that the time-bounded Kolmogorov complexity of
y given z is large. We give a formal definition below.

Hypothesis 25 (Time-Bounded Kolmogorov Complexity Oracle
Derandomization Hypothesis). For every m withn < m < poly(n)
and for any t = poly(n), there is a deterministic algorithm A mapping
m bits to n bits such that for all z € {0, 1}'" we have that y = A(z) is
a string such that K! (y|z) = n@M,

Theorem 26. Hypothesis 25 is false assuming NP # coNP and
JLS-secure iO exists.

Proor. The proof is very similar to the proof of Theorem 2.

Let m = poly(n) and t = poly(n) be parameters we set later. For
contradiction, let A be an algorithm mapping m bits to n bits such
that for all z € {0, 1} we have K (y|z) = Q(n€) for some € > 0,
where y = A(z).

We give a polynomial-time nondeterministic algorithm for check-
ing if an n€/2-variable formula ¢ is unsatisfiable.

(1) Nondeterministically guess strings y € {0,1}" and r €
{0, 1}Poly(n+2) \where A = poly(n) is the security parame-
ter of the JLS-secure iO to be determined later.

(2) Let C[¢,y] denote a poly(n)-size circuit that takes n input
bits and outputs m bits and satisfies

if p(x) =0

0™,
cw,y]<x)={y) ot 1.

(3) Set z to be the m-bit string given by the description of the
circuit iO(Clg, y]; 7). (We set m > n so that this is possible.
We can also pad the description with zeroes if necessary.)

(4) Accept if and only if y = A(z).

4Actually, [23] considers nondeterministic circuit complexity instead of the usual
circuit complexity.
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It is easy to see that this is a polynomial-time nondeterministic
algorithm. We now will show soundness and completeness for
sufficiently large n.

First, we show soundness. If ¢ is satisfiable, then we claim that
for all choices of y and r, we have K’(y|z) < O(n¢/?). This is
because if ¢ is satisfiable, then there is an input x* € {0, 1}"6/2
such that ¢(x*) = 1. Consequently, C[¢,y] (x*) = y. Thus, when
z is interpreted as the description of the circuit iO(C[g, y];r), we
have z(x*) = y. This shows that K¥(y|z) < O(n¢/?) (setting t to
be a sufficiently large polynomial). This completes our proof of
soundness.

Now we show completeness. Suppose ¢ is unsatisfiable. As in
the proof of Theorem 2, we consider A being run on iO(C[¢, 0"]; r)
for uniformly random r. As A must output an element of {0, 1}",
we know there’s a y* satisfying

Pry* = A(IO(C[p,0™];r))] 2 27"

To this end, we (just as in Theorem 2) consider an adversary circuit B
which takes in a circuit C” (ostensibly of the form C’ = iO(C[¢p, 0™])
and outputs 1 if and only if y* = A(C’). As in Theorem 2, we can
argue that the size of the adversary B is small enough that our iO
assumption applies.

As in Theorem 2, C[¢p, 0"] and C[¢p, y*] compute the same func-
tion. Thus, by the JLS-security of iO, applied to the adversary circuit
B on the input circuits iO(C[¢,0"]) and iO(C[g, y*), we have

Pr[y* = A(iO(Clp.y*]:1))]
> Prly* = AGO(Clp, 0™];m)] - 27"

>27"_27% 5

by setting A to be a sufficiently large polynomial in n. Thus, there
is an r such that

y* = AGO(Clo.y* ;1))
so A accepts @.

6 CONCLUSION

We conclude with several open questions and directions of particu-
lar interest.

Intractability of C-Avoid? For a given circuit class C (e.g., AC’,
TCO, NCl), Ren, Santhanam, and Wang [66] introduce the C-Avoip
problem, which considers Avorp over circuits drawn from C. They
showed many interesting lower bound consequences from showing
C-Avorp is in FP (or even FPNP),

Our work suggests the following natural question:

What is the “weakest” circuit class C such that, under
plausible assumptions, C-AvoID is not in FP?

It seems reasonable that NC-Avorp (i.e., RANGE AVOIDANCE over
poly(log n)-depth circuits of poly(n) size) is not in FP, under similar
assumptions to ours.

Intractability of Range Avoidance on Uniform Circuits? The spe-
cific instances used to show lower bound and combinatorial con-
sequences of AvoIp € FP [29, 50, 66] arise from uniform circuits.
Formally, for these instances, there is a deterministic machine M
with an O(1)-bit description such that, given 1", M runs in poly(n)
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time and prints the description of a C, on n inputs and m > n
outputs. Could AvoIp on such uniformly-generated circuits be in
FP? On the one hand, our arguments concluding Avorp ¢ FP evi-
dently rely on the non-uniformity of input circuits in a crucial way.
On the other hand, since (for example) NP-complete problems on
uniformly-generated instances typically remain hard in a different
way (e.g., NEXP-complete), some of the authors are skeptical that
this special case of AvoID is easy.

The Landscape Around Range Avoidance. Prior to our work, there
were no examples of a relational problem that has both an effi-
cient randomized algorithm (i.e. in the class FBPP) and an ineffi-
cient deterministic algorithm (for example, in FPH), but was un-
likely to have an efficient deterministic algorithm. (For compari-
son, Aaronson, Buhrman, and Kretschmer [1] give an example of
problem that is in FEXP N FBPP but unconditionally not in FP.)
Avorp has these properties, and (for large stretch) apparently lies
in (FBPP N FPH) \ FP, under the assumptions of this paper. What
are other examples of such problems? The space of such problems
seems interesting to study, in itself.

The Structure of Probabilistic Feasible Reasoning. We have demon-
strated that under plausible assumptions, PV is a strict sub-theory
of APC;. Furthermore, the fragment UAPC; of APC; that sustains
the basic mechanism of Jefabek’s approximate counting framework
[38] is strictly weaker than APC; under similar assumptions. This
motivates revisiting the question of what is the “right” theory to
capture probabilistic feasible reasoning. For instance, we may ask
the following question: Is UAPC; conservative over PV;? Is there a
strict fragment of UAPC; that (in some sense) captures probabilistic
feasible reasoning? Are there interesting mathematical theorems
that are provable in APC; but not provable in UAPC; (or its weaker
fragments)?
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