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Abstract— Physiological sensors are commonly applied for
user state monitoring and consequent machine behavior
adaptation in applications such as rehabilitation and intelligent
cars. While more accurate user state monitoring is known to
lead to better user experience, increased accuracy often
requires more sensors or more complex sensors. The increased
setup time and discomfort involved in the use of such sensors
may itself worsen user experience. To examine this effect, we
conducted a study where 72 participants interacted with a
computer-based multitasking scenario whose difficulty was
periodically adapted — ostensibly based on data from either a
remote eye tracker or a lab-grade “wet”
electroencephalography sensor. Deception was used to ensure
consistent difficulty adaptation accuracies, and user experience
was measured with the Intrinsic Motivation Inventory, NASA
Task Load Index, and an ad-hoc scale. We found few user
experience differences between the eye tracker and
electroencephalography sensor - while one interaction effect
was noted, it was small, and there were no other differences.
This result is at first surprising and seems to indicate that
comfort and setup time are not major factors for laboratory-
based user experience evaluations of such technologies.
However, the result is likely due to a suboptimal study protocol
where each participant interacted with only one sensor. In
future work, we will use an alternate protocol to further
explore the effects of user comfort and setup time on user
experience.

I. INTRODUCTION

Physiological computing is a term used to describe any
technological system that measures human physiological data
and either displays these data to the human or adapts its own
functionality to them [1]. Such systems are useful in many
biomedical fields. For example, in rehabilitation robotics,
physiological responses such as heart rate are commonly used
to estimate the patient’s workload and adapt the exercise
difficulty accordingly [2]. Similarly, in affect-aware learning,
a technological system can use physiological responses to
assess learner engagement and adapt the learning materials
accordingly [3]. In intelligent cars, physiological
measurements can be used to assess driver attention levels
and alert the driver if they are distracted or engage driving
assistance if they are overwhelmed [4]. As a more casual
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example, music listeners could use physiological responses
to optimize song selections to better achieve desired mood
states [5]. Other applications are described in, e.g., a review
paper by Aranha et al. [6].

In physiological computing systems, the user’s state is
commonly inferred by applying classification, regression and
other algorithms to diverse measurements:
electrocardiography  [7], photoplethysmography, skin
conductance, respiration, electroencephalography (EEG) [8],
functional near infrared spectroscopy [9] and others. These
sensors differ in their complexity and application time: for
example, skin conductance requires two reusable dry
electrodes commonly placed on the fingertips and is easily
self-applied in less than 30 seconds [10] while laboratory-
grade EEG requires 5-30 minutes to apply, cannot be self-
applied, and often requires either skin gel or a saline-soaked
sensor cap, reducing participant comfort [11]. We may then
ask: do the benefits provided by more complex equipment
outweigh the additional setup time? For example, in our own
prior study on biocooperative rehabilitation robotics, we
evaluated the ability of a rehabilitation robot to classify the
user’s workload into two classes (low vs. high) with or
without physiological measurements. We found that adding
physiological measurements to the robot’s standard sensors
increased the workload classification accuracy from 81.8% to
89.4% but required a few minutes of setup time [2], which
could have been spent simply performing rehabilitation
exercises instead.

Historically, developers of physiological computing
systems have primarily focused on improving the accuracy of
user state recognition and consequent technology adaptation
without considering how this accuracy interacts with other
aspects of the system. Thus, researchers have specifically
called for more studies into broader user experience with
physiological computing technologies [12], [13]. Our team
previously conducted a few studies where we systematically
varied the technology’s adaptation accuracy and measured
subjective user experience with physiological computing
systems [14], [15]. Those studies showed that user experience
generally improves with adaptation accuracy and that users
can perceive a difference between accuracies that differ by
10-15% [14], [15]. Thus, adding additional sensors seems
justified as long as they increase the physiological computing
system’s adaptation accuracy by a reasonable amount. We
may, however, ask a different question: if two physiological
computing systems behave the same way but one relies on
more complex sensors, will users prefer the simpler one?
This would, for example, be a point in favor of consumer-
grade EEG devices, which are significantly more comfortable
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and have a faster setup time than lab-grade devices even if
they do not achieve the same accuracy [16].

This paper presents a pilot study to compare user
experience with two physiological computing systems: one
based on a noncontact eye tracker and one based on a “wet”
EEG sensor, with associated differences in setup time and
discomfort. While different physiological computing systems
commonly exhibit different behavior due to hardware and
software differences, a deception-based protocol from
previous work [15] was used to induce similar technology
adaptation behavior in both systems. As part of the deception,
all physiological data were ignored by the system, and
adaptation was instead done by simply following the user’s
preference a predefined percentage of the time. Thus, the two
systems did not differ in adaptation accuracy, and any
differences in user experience were likely due to differences
in comfort and setup time. Our research question was: Does a
comfortable, easy-to-set-up physiological computing system
result in a better user experience than a less user-friendly
system?

II. MATERIALS AND METHODS

A. Participants

Seventy-two  participants were recruited among
University of Wyoming students. There were 56 women, 15
men, and one agender participant. They were 19.5 + 2.4 years
old (mean =+ standard deviation). Each participant was
randomly assigned to one of four groups corresponding to the
sensor (eye tracker or EEG) and the magnitude of difficulty
adaptation actions (large or small — explained later). The “eye
tracker & small” group had 21 participants while all other
groups had 17 each. Students received either course credit or
$15 for participation.

B. Sensors and Scenario

Each participant took part in a single session where they
interacted with a computer-based multitasking scenario while
“monitored” with either an eye tracker or EEG sensor
depending on the participant’s group. The eye tracker was the
Gazepoint GP3 (Vancouver, Canada) remote eye tracker
placed under the screen on which the scenario was presented.
The EEG system was a Geodesic Sensor Net with 128
electrodes (Electrical Geodesics Inc., USA). Fig. 1 shows a
person interacting with the scenario using both sensor types.

Figure 1. A person interacts with the adaptive OpenMATB scenario while
monitored using both the electroencephalography sensor net and the eye
tracker. Actual participants experienced only one sensor type.

The sensors were selected as two extremes in physiological
computing — the eye tracker involves no physical contact and
little setup time while the EEG involves potentially
unpleasant physical contact and a much longer setup time.

The scenario (Fig. 2) was a modified version of the
OpenMATB, a popular multitasking scenario used in
physiological computing [17]. Participants interacted with it
using a computer screen, speakers, keyboard, and joystick.
The modified version was the same as in our previous study
[15] and consisted of three subtasks:

e Tracking (Fig. 2, top center): A blue reticle starts at
the center of the tracking section and gradually drifts
toward the edges. The participant must use the
joystick to keep it close to the center (indicated by a
central ‘target’ square). If the reticle stays outside the
center too long, it flashes red and an error counter on
the screen increments by one.

e  System monitoring (Fig. 2, top left): There are four
vertical status indicator columns (F1-F4) and two
warning lights (F5-F6). The columns have arrows in
them that begin near the center, but occasionally
move toward the top/bottom edge. If an arrow gets
far away from the center, the participant must press
the corresponding F1-F4 key on the keyboard to reset
it. The warning lights periodically turn yellow, and
the participant must then press the corresponding F5-
F6 key. If the participant fails to press a required key
or presses one of the F1-F6 keys at an unnecessary
time, the corresponding indicator briefly turns red
and the error counter increments by one.

o  Communications (Fig. 2, bottom left): Periodically, a
voice comes over the speaker that instructs a listener
to change one setting (NAV1, NAV2, COMI, or
COM2) to a specific number. The message includes
an identifier, and the participant has their own
identifier shown on the screen (e.g., DP94). If the
identifier in the message does not match the
participant’s identifier, the participant does not need
to take action. If the identifiers match, the participant
should use the up/down keys to switch to the target
setting and then wuse the left/right keys to
decrement/increment the number to the requested
value. If the participant fails to do so in time, the

5
£
H

-

g

2
3
s
5
5
7

0
00
o

00
00
00
400
o

Figure 2. The adaptive OpenMATB used in this study. It was created
for our previous study [15] based on an open-source implementation
[17]. The user focuses on three tasks: system monitoring (top left),
tracking (top middle), and communications (bottom left).
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section flashes red and the error counter increments
by one. If the participant changes the settings when
not required, no penalty is given.

Additionally, three subtasks on the screen (scheduling,
resources management, pump status) run automatically and
do not need attention from the user. These can be controlled
manually in the original OpenMATB [17] but were changed
to run automatically in our previous work [15] since three
subtasks were sufficiently challenging for the user.

Finally, the modified OpenMATB has 10 difficulty
levels. Difficulty level is a global setting that simultaneously
influences the degree of reticle drift, the frequency of
monitoring events, and the frequency of communications
instructions. The 10 levels were designed so that level 1
should be very easy for all users while level 10 should be
very hard for all users. Specifics about the difficulty levels,
including numerical values of subtask difficulty parameters,
are available in our previous paper [15].

C. Study Protocol

The protocol was similar to that used in a previous study
that explored different aspects of physiological computing
[15]. It was approved by the University of Wyoming
Institutional Review Board, and all participants gave written
informed consent. Overall, each participant was given their
assigned sensor (eye tracker or EEG) and interacted with the
modified OpenMATB for three 11-minute intervals, with
each interval having a higher accuracy of difficulty
adaptation. While some elements of the protocol (e.g., use of
three intervals) were not needed to answer our research
question, they were reused for easier comparison to previous
work [15] (which, e.g., also used three intervals). The study
involved extensive deception to induce consistently accurate
difficulty adaptation; we thus first present the protocol as told
to the participant, then the deception aspects.

1) Protocol as Presented to Participant

Upon arrival, participants were told that the study purpose
was to test a system that would adapt the difficulty of the
modified OpenMATB based on physiological measurements.
Participants were told that 3 different algorithms had been
developed to extract information from the eye tracker or EEG
system (depending on the assigned group) and that they
would test all 3 algorithms. They were further told that their
difficulty preferences would be collected periodically but
would not influence difficulty adaptation; they would only be
used to post-hoc verify algorithm performance after the
session.

In the EEG group, participants were fitted with an
electrode cap. The fitting process was fixed to be 10 min in
duration (see Deception subsection) and involved measuring
head size with a cloth tape, applying a water-drenched
electrode cap, adjusting the cap to obtain a proper fit, and
having the participant sit silently while the experimenter
prepared recording software on a separate computer. The eye
tracker group, by contrast, did not experience any specific
sensor setup as the sensor was positioned below the screen
prior to the participant’s arrival.

The OpenMATB was started and participants practiced
with it for 5 min at difficulty level 5 of 10. The experimenter

offered advice and answered questions during practice. In the
eye tracker group, the eye tracker was then “calibrated” by
having participants look at several points on the screen for a
few seconds each (~30 s total). In the EEG group, the EEG
was “calibrated” by having participants briefly close their
eyes, then blink rapidly, then move their eyes in multiple
directions, then count backwards silently from 1000 (5 min
total).

Participants then interacted with the OpenMATB scenario
for three 1l-minute intervals, which they were told
corresponded to the three algorithms developed for
physiological data analysis. In each interval, the OpenMATB
was initialized at difficulty level 5. The system then paused
every 60 s with a popup text asking participants how they
would prefer difficulty to change (options: increase, decrease,
no change). After participants made a selection, the
OpenMATB resumed at a different difficulty level;
participants were not explicitly told how difficulty had
changed. At the end of each 11-min interval, participants
completed two questionnaires: the Intrinsic Motivation
Inventory (IMI — 8-item version as our previous study [15])
and the NASA Task Load Index (TLX) [18]. After the third
11-minute interval, participants were asked how much they
liked each of the three algorithms and rated all three on a
visual analog scale from “did not like at all” to “liked very
much”. Participants rated all three simultaneously and were
encouraged to consider them relative to each other. This
questionnaire was reused from our prior work [14], [15].

2) Deception

Though participants were told that their preferences
would not influence difficulty adaptation, this was not true. In
reality, the physiological data were not collected at all, and
neither sensor was truly calibrated — participants experienced
a realistic approximation of a setup and calibration procedure
whose duration was fixed. For example, in the EEG group,
setup duration was fixed by giving the experimenter a hidden
10-min timer and having them finish “setup” once 10 min
had passed. Without physiological data, difficulty adaptation
was done based on participants’ preferences. Specifically, the
3 intervals had predefined adaptation accuracies: difficulty
adaptation followed the participant’s preference 70% of the
time in the first interval, 80% in the second, and 90% in the
third. Since participants were queried for their preference 10
times (every 60 s), 70% agreement was for example induced
by following the preference after 7 of 10 queries. When
following the participant’s preference, difficulty was adapted
in the preferred direction by 1 difficulty level (if participant
was assigned to the ‘small’ group) or by 3 levels (if assigned
to ‘large’ group). When not following the preference,
difficulty was adapted by 1 or 3 levels in the opposite of the
preferred direction (if participant preferred
increasing/decreasing difficulty) or a random direction (if
they preferred not changing difficulty). Both ‘small’ and
‘large’ groups were included since our previous study found
significant differences in user experience as a result of this
factor [15].

Similar deception without time-consuming sensor setup
was used in our previous study [15] and allowed the behavior
of the physiological computing system to be kept consistent
between participants. A realistic physiological computing
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system would have variations in pattern recognition accuracy
between participants, and the EEG and eye tracker would
have different average accuracies. Furthermore, in a realistic
physiological computing system, the setup time for EEG may
vary significantly between participants due to factors such as
hair. Deception allowed us to keep these aspects of the
protocol consistent.

D. Data Analysis

Each participant’s self-report data consisted of 6
outcomes for each of the three intervals. The IMI has 4
subscales: interest/enjoyment, effort/importance, perceived
competence, and pressure tension; each of these 4 was
analyzed as a separate outcome. The NASA TLX has six
subscales, which were merged into one TLX score by
summing all subscales with performance reversed [18].
Finally, answers to the visual analog scale at the end of the
session were converted to a 0-100 numerical scale, dubbed
“relative liking”. As mentioned, physiological data were not
truly collected and were used only as part of the deception, so
no physiological data analysis was done.

Each outcome was analyzed with a mixed analysis of
variance with one within-subjects factor (interval: 1, 2, 3)
and two between-subjects factors (sensor: eye tracker / EEG,
adaptation magnitude: small/large). Greenhouse-Geisser
corrections were used, and effects are reported as
significance (p) and effect size (partial eta squared — #5°).
For our research question, we were mainly interested in
effects of the sensor: a main or interaction effect of the
sensor would indicate that the eye tracker led to a different
user experience than the EEG.

III. RESULTS

Table I shows main effects of interval, sensor and
adaptation magnitude on all six outcomes while Table II
shows two-way interaction effects. There was only one effect
of sensor with p < 0.05: the interval * sensor interaction
effect on effort/importance with p = 0.04 and 5> = 0.049.
Specifically, effort/importance scores for intervals 1, 2 and 3
were as follows in the two sensor groups:

-EEG: 11.8 £1.8,12.6 £1.7,12.0+ 2.1
- Eye tracker: 12.2 + 1.6, 12.2+2.0,124+ 1.8
IV. DISCUSSION

Main effects of interval were observed on
effort/importance and competence: both increased as
adaptation accuracy increased. While this does not answer
our research question, it shows that better adaptation makes
participants apply more effort and feel more competent — a
phenomenon also observed in our previous work [15]. The
significant main effect of magnitude on interest/enjoyment
indicates that enjoyment was higher with large adaptation
actions, which is likely because large adaptation actions
allowed users to reach a suitable target difficulty more
quickly. This is a slightly different result from our previous
study [15], which found effects of magnitude on other IMI
subscales but not interest/enjoyment; however, we do not
discuss this (or the interval * magnitude interaction effects) in
further detail since it does not relate to the research question.

TABLE L MAIN EFFECTS OF INTERVAL, SENSOR, AND ADAPTATION
MAGNITUDE ON ALL 6 OUTCOME VARIABLES, PRESENTED AS P-VALUES AND
PARTIAL ETA SQUARED. EFFECTS WITH P < (.05 ARE BOLDED.

Main effects

Outcome Interval Sensor Magnitud
)4 0 )4 ne r ne
Relative liking 37 | 015 | .73 002 | 91 .000

Task Load Index 13 032 | .53 .006 .16 .030
Interest/Enjoyment 96 | .001 | .49 .036
Effort/Importance 026 | .055 | 46 .009 .087 .044

Competence 001 | .16 .83 .001 .76 .001

Pressure/Tension 44 | 012 | .72 .002 .064 .052

TABLE II. TWO-WAY INTERACTION EFFECTS OF INTERVAL, SENSOR,
AND ADAPTATION MAGNITUDE ON ALL 6 OUTCOME VARIABLES, PRESENTED
AS P-VALUES AND PARTIAL ETA SQUARED. EFFECTS WITH P <0.05 ARE
BOLDED.

Interaction effects

Interval * Interval * Sensor *

Outcome Sensor Magnitude Magnitud
p n’ | p n’ | p nv’
Relative liking 38 | 015 47 .012 46 .009

Task Load Index 73| .005 .03 .054 A5 .009
Interest/Enjoyment 48 | 011 33 .017 40 011
Effort/Importance .04 | .049 016 | .063 .33 .014
Competence .81 .003 .003 | .087 .65 .003
Pressure/Tension .80 | .003 21 .024 .83 .001

With regard to our research question, there is little
evidence that different sensors resulted in a different self-
reported user experience. While there was one interval *
sensor interaction effect, it was small by effect size standards
[19] and does not have a clear interpretation. Thus, although
the two sensors have very different setup/calibration times
(30 s for eye tracker, 15 min for EEG) and
discomfort/invasiveness levels (no physical contact for eye
tracker vs. wet cap for EEG), this does not seem to be
reflected in self-reported opinions of the session.

This surprising result can likely be explained by
weaknesses of the study protocol. Each participant only
experienced one of the two sensors, and the hardware was
thus not a major factor to consider when rating user
experience. Previous studies indicate that users are poor at
rating physiological computing technologies without prior
experience with other technologies [14], [15]; while those
studies did not vary the sensor type, a similar finding would
likely apply here. In the future, we will thus explore a
different protocol to better answer our research question.
Specifically, we will have each participant experience two or
more sensor types, and we will ask questions to explicitly
compare these sensor types.

Nonetheless, results of our study have value for
developers and evaluators of similar technologies. They show
that, in the absence of experience with more comfortable
technologies, participant ratings of technology performance
and user experience are overall not affected by discomfort or
long setup time. While such issues should still be addressed
before such technologies are broadly deployed, they do not
appear to negatively impact single-session lab-based
evaluations done with participants drawn from the general
population.
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V. CONCLUSION

Our study found few differences in self-reported user
experience between two physiological computing systems
with very different setup times and user comfort levels. Only
one effect of sensor type was found, and it was small. This
lack of differences is surprising and can likely be explained
by the fact that each participant only experienced one sensor
and thus likely did not consider this aspect when rating their
experience. Nonetheless, it suggests that, in the absence of
experience with more user-friendly devices, users’ perception
of device performance is not influenced by discomfort or
long setup time. These factors thus do not negatively impact
short evaluations of prototype technologies. Nonetheless, in
the future, we will explore an alternative study protocol
where each participant experiences two or more sensor types.
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