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Abstract

Dynamic capacity allocation control for resource sharing networks (RSN) is studied when the
networks are in heavy traffic. The goal is to minimize an ergodic cost with a linear holding cost
function. Our main result shows that the optimal cost associated with an associated Brownian con-
trol problem provides a lower bound for the asymptotic ergodic cost in the RSN for any sequence of
control policies. A similar result for an infinite horizon discounted cost has been previously shown
for general resource sharing networks in [8] and for general ‘unitary networks’ in [11]. The study of
an ergodic cost criterion requires different ideas as bounds on ergodic costs only yield an estimate
on the controls in a time-averaged sense which makes the time-rescaling ideas of [8, 11] hard to
implement. Proofs rely on working with a weaker topology on the space of controlled processes
that is more amenable to an analysis for the ergodic cost. As a corollary of the main result, we
show that the explicit policies constructed in [12, 13] for general RSN are asymptotically optimal
for the ergodic cost when the underlying cost per unit time has certain monotonicity properties.

Keywords. Ergodic control, heavy traffic, resource sharing networks, bandwidth sharing, queu-
ing networks, Brownian control problems, reflected Brownian motion, hierarchical greedy ideal.

1 Introduction

We study capacity allocation control for a family of multiserver queueing networks, under heavy
traffic, in which some job types may require simultaneous processing by multiple resources (servers).
These Resource Sharing Networks (RSNs) were introduced in [26] to model Internet flows (see
also [27]) however the underlying setting is quite general and is relevant for other communication
network applications as well. We consider a sequence of RSNs indexed by the heavy traffic parameter
r ∈ N where all networks in the sequence have J job types and I resources which have individual
processing capacities given by the positive vector C = (C1, . . . , CI). The processing relationship
between resources and job types is given by an I × J ‘incidence matrix’ K, where Ki,j = 1 if
resource i is required to process job type j and Ki,j = 0 otherwise. A capacity allocation control
policy in this network is given as a time-dependent processing rate assigned to all J job types by
the system administrator, br(t) = (br1(t), ..., brJ(t)). The rate assigned to a particular job type must
be supplied by all resources needed to process that job type as determined by the matrix K, which
means that an admissible control must satisfy the capacity constraint Kbr(t) ≤ C for all t ≥ 0. For
each job type, arrivals are given by a renewal process and job sizes (which determine the integrated
processing rate required for completion) are iid nonnegative random variables. We assume mutual
independence between arrivals and sizes and from job type to job type. Although the structure of
the networks, as characterized by I, J , K, and C, does not depend on r, the distributions of job
arrivals and sizes do in such a way that a suitable heavy traffic assumption (see Condition 2.2) is
satisfied. A given strictly positive vector h = (h1, . . . , hJ) determines a linear holding cost function
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on the queue length and we study the long-term cost per unit time (also referred to as the ergodic
cost), defined in (2.4), for the diffusion-scaled queuing system, as r →∞.

Minimizing a given cost for a RSN over all potential control policies is, in general, a very difficult
problem. However, in many situations this optimization problem can be formally approximated
by a more tractable so-called Brownian control problem (BCP) related to the RSN. BCPs were
introduced in [18] and are formal diffusion approximations to the network control problem in the
heavy-traffic limit. While the BCP already represents a dramatic simplification of the control
problem, it was shown in [23] that under suitable conditions, the BCP can be restated in terms
of a dimensionally-reduced equivalent workload formulation (EWF). In the EWF the state process
changes from the J-dimensional queue length to the I-dimensional workload for each resource
which is computed using the matrix K and the expected job sizes. In applications where I � J ,
this represents a significant dimensional reduction in the control problem to be solved. To better
understand the motivation for the EWF, see [23] for a discussion of how a particular workload can
be thought of as an equivalence class of queue lengths which differ from one another by a reversible
control.

For our main result, we show that the optimal cost associated with the BCP in the EWF provides
a lower bound for the asymptotic ergodic cost in the RSN for any sequence of control policies that
are admissible (Definition 2.2). This is the same type of result shown in [8] for an infinite-horizon
discounted cost criterion and in [11] for discounted cost associated with ‘unitary’ networks. To
the best of our knowledge there are no analogous results known for an ergodic cost criterion.
Ergodic rate control problems for single class Jackson networks have been previously studied, cf.
[7], however they use very different methods. Our result fits into a series of works that investigate
the relationship between asymptotic optimality and BCP for various network models under heavy
traffic assumptions (cf. [1–4, 10, 15, 25] for a small sample of works on this theme). A sequence of
control policies is said to be asymptotically optimal if the limit of the corresponding costs as r →∞
is minimal, and since from our results the BCP provides a lower bound for this asymptotic minimal
cost, any sequence of controls whose costs converge to this value is asymptotically optimal.

While not considered here, it is an interesting and challenging problem to design control policies
that are easy-to-implement and achieve a certain quality of asymptotic performance. Since the
BCP provides a lower bound on the minimal asymptotic cost it may provide some helpful intuition
for this pursuit. In recent works [12, 13], explicit policies are constructed for RSNs which achieve
what is known as ‘hierarchical greedy ideal’ (HGI) asymptotic performance [22] for the ergodic
cost considered here as well as for a discounted cost. If the cost per unit time as a function of
the workload in the EWF (see (3.1)) is nondecreasing, the BCP has an explicit solution given as
a reflected Brownian motion, and the asymptotic cost associated with these policies matches the
cost associated with this reflected Brownian motion, namely the lower bound we establish. Thus,
as discussed further in Remark 4.2, this work proves asymptotic optimality of the policies given
in [12, 13], with an ergodic cost criterion, when the above monotonicity property is satisfied. In
general, however, HGI policies may not be optimal for the BCP.

This paper is organized as follows. Below, we discuss assumptions, proof techniques, and no-
tation. Section 2 gives basic definitions and presents the control problem of interest. Section 3
describes the BCP used in our main result (Section 4). Section 5 presents auxiliary results used in
the proof of the main theorem, which is proved in Section 6. We conclude with the proofs of various
technical results in Section 7 which were postponed in order to streamline the presentation.

1.1 Discussion of assumptions and proof techniques

We now comment on the assumptions made. We make standard mutual independence, positivity,
and uniform square integrability assumptions for interarrival times and job sizes. Additionally,
the heavy traffic assumption (Condition 2.2) we make is standard, cf. [22]. Roughly, it says
that parameters converge appropriately and that the resource capacity equals resource demand,
asymptotically. One key assumption is that of ‘local traffic’ on each resource, which was first
introduced in [24] (and also used in several subsequent works, see e.g. [22]). This says that each
resource in the RSN has a unique corresponding job type that only uses that resource. This condition
ensures that the state space of the workload process (see (2.3)) is the entirety of [0,∞)I . These
assumptions are presented precisely in Section 2.1.
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In [8], the analogous result to our main result, namely Theorem 4.1, is established for an infinite-
horizon discounted cost criterion. This work also briefly discusses an ergodic cost criterion however
no proofs are provided and its treatment is left as an open problem. A key step in the proof of
Theorem 4.1 is establishing suitable tightness properties. As one would expect, the desired tightness
properties stem from the boundedness of costs associated with a given sequence of controls. Indeed,
this observation was the key ingredient in proofs of [8] which allowed establishing desired tightness
results using a natural time-rescaling idea. However, in contrast to the discounted cost case, bounds
on the ergodic cost only guarantee ‘good behavior’ of the controls in a time-averaged sense. This
makes the time-change approach for establishing tightness taken in [8] hard to implement. Instead
we take a different approach to proving required tightness properties. Specifically, instead of arguing
tightness of the controls as random variables in the Skorohod path space, we establish tightness in
the coarser topology of weak convergence (see Theorem 6.3). More precisely, we establish tightness
of certain random path occupation measures (see Definition 6.2) which view the control process
paths as measures on [0,∞) rather than as elements of the Skorohod path space. This weak
tightness property, although insufficient to prove the convergence of controlled processes, turns out
to be enough to argue convergence of the costs and for characterization of the weak limit points
of the occupation measures. This is the main idea in the proof. We remark that this approach of
using tightness of the controls in the topology of weak convergence can also provide an alternative
proof for the discounted cost case treated in [8] that does not require the time-rescaling arguments
used there.

An important result in the proof of Theorem 4.1 is Theorem 6.5, which gives a key characteriza-
tion of the weak limit points of our random path occupation measures. In particular it shows that
any limit point can be identified as the law of a controlled system in the appropriate BCP. Its proof
rests on two results—Propositions 6.1 and 6.2. The second parts of these results establish that long-
term time-averages vanish in the limit for both the residual service times and the difference between
an arbitrary sequence of fluid scaled controls and the nominal capacity allocation determined from
the heavy traffic condition. This is another new ingredient in comparison to the proofs in [8], where
due to a discounted cost criterion such a careful analysis is not needed. Arguments therein are
closer to the uniform-in-time estimates in Propositions 6.1 (i) and 6.2 (i), which follow from basic
properties of renewal processes. Proofs of statements involving the arrival processes (namely part
(i) of Propositions 6.1 and 6.2) are simpler than those for the service process (namely parts (ii) of
the two propositions) due to the form of control in the network. That is, a system administrator
can influence resource allocation, but has no influence on arrivals to the network (cf. (2.2)). The
proofs of Propositions 6.1 and 6.2 are rather technical, so they are saved for the end (Section 7).

1.2 Notation and conventions.

We denote R+ = [0,∞). For d ∈ N, let Dd = D([0,∞) : Rd) (resp. Dd+ = D([0,∞) : Rd+))
denote the space of functions that are right continuous with left limits (RCLL) from [0,∞) to Rd
(resp. Rd+) equipped with the usual Skorohod topology (cf. [17, Chapter 3, Section 5]). Also,
let Cd = C([0,∞) : Rd) (resp. Cd+ = C([0,∞) : Rd+)) denote the space of continuous functions
from [0,∞) to Rd (resp. Rd+) equipped with the local uniform topology. For fixed T > 0, the
spaces D([0, T ] : Rd), C([0, T ] : Rd), D([0, T ] : Rd+), and C([0, T ] : Rd+) are defined similarly. All
stochastic processes in this work will have sample paths that are RCLL unless noted explicitly. We
let N d

+ denote the nondecreasing functions in Dd+ which is the space that contains the controls we
will be working with. Let M denote the space of nonnegative, locally finite measures on [0,∞).
Recall that, for mn,m ∈ M we say that mn → m in the vague topology, if for every continuous
function f : [0,∞) → R with compact support,

∫
fdmn →

∫
fdm. We let Md denote the d-fold

product space with the usual product topology, where M is equipped with the topology of vague
convergence of measures. Note that we can identify elements of N d

+ and Md, but the Skorohod
topology associated with N d

+ is finer than the vague topology associated with Md (see Section 5.2
for a discussion of this point). For our purposes here we find it more convenient to work with the
coarser weak convergence topology associated with Md when proving tightness and convergence of
controls. Details about this are provided in Section 5.2.

We let ι ∈ C1 denote the identity function on R+, namely ι(t) = t. For m ∈ N, we denote by Am
the set {1, 2, . . . ,m}. For any Polish space X we let B(X ) denote the Borel sets, P(X ) denote the
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space of probability measures on X , Cb(X ) the space of continuous, bounded, real-valued functions
on X , and C0(X ) the space of continuous, real-valued functions on X with compact support. We
let C2

0(Rd) denote the space of continuous, real-valued functions on Rd with compact support and
continuous first and second derivatives. For v ∈ Rd, |v| denotes its Euclidean norm. We will use
coordinate-wise inequalities on vectors, e.g. for u, v ∈ Rd and c ∈ R the statements u ≥ v and u ≥ c
mean uj ≥ vj and uj ≥ c for all j ∈ Ad, respectfully. As a convention, for a real sequence {al}l∈N,∑n
l=1 al is taken to be 0 if n = 0. We use

P→ to denote convergence in probability and ⇒ to denote
convergence in distribution. IA denotes the indicator function of the set A. A sequence {θn, n ≥ 1}
of probability measures on Dd is said to be C-tight if it is tight in the usual Skorohod topology and
any weak limit point θ is supported on Cd.

2 The network and control policies

A RSN in heavy traffic is a sequence of stochastic processing networks, indexed by a traffic parameter
r ∈ N, each with J types of jobs and I resources for processing them. All networks in the sequence
are described by a common I×J incidence matrix K such that Ki,j = 1 if the jth job type requires
service from the i-th resource and Ki,j = 0 otherwise. For any job type j the set {i : Ki,j = 1} is
nonempty and job type j will be processed by all resources in this set simultaneously. In particular,
all resources in this set will allocate the same capacity to job type j at every instant. The capacity
for each resource i ∈ AI is denoted by Ci. This means that if at any time instant work of type
j ∈ AJ is being processed at rate brj then we must have C ≥ Kbr, where C = (C1, . . . , CI). As the
traffic parameter r goes to∞ the networks approach criticality in the sense that the traffic intensity
converges to 1 (this is made precise in Condition 2.2).

For job type j ∈ AJ , let {urj (k)}k∈N be the iid interarrival times and {vrj (k)}k∈N be the associated
iid job-sizes. For each r, the random variables in the collection {urj (k), vrj (k), k ∈ N, j ∈ AJ} are
taken to be mutually independent. We assume that these random variables have finite second
moment and let αrj = 1/E[urj (1)] and βrj = 1/E[vrj (1)] denote the rates of the interarrival times and
job sizes. Also let σu,rj and σv,rj denote the standard deviations of urj (1) and vrj (1), respectively. We
assume a first in, first out (FIFO) policy, meaning that for each job type the oldest job in the queue
is processed before another one is started. Note that if the job sizes are exponentially distributed
the ‘memoryless’ property implies that the way the processing rate is distributed among jobs in a
particular queue has no impact on the queue length distribution so in that case we can drop FIFO
assumption without impacting the results. We now introduce our main assumptions.

2.1 Assumptions

In addition to the assumptions of mutual independence among interarrival times and job sizes
discussed above, we assume the following.

Condition 2.1. P (urj (1) > 0) = P (vrj (1) > 0) = 1 for all r ∈ N and j ∈ AJ . Furthermore, for
each j, {urj (1)2}r∈N and {vrj (1)2}r∈N are uniformly integrable.

In fact, for notational convenience (and without loss of generality) we will assume that urj (l) > 0
and vrj (l) > 0 for all r, l ∈ N and j ∈ AJ .

Let ρrj = αrj/β
r
j for all j ∈ AJ and ρr = (ρr1, . . . , ρ

r
J). The following will be our main heavy

traffic condition:

Condition 2.2. (Heavy Traffic.) For each j ∈ AJ , there exist αj , βj ∈ (0,∞) and ᾱj , β̄j ∈ R such
that limr→∞ r(αrj − αj) = ᾱj , limr→∞ r(βrj − βj) = β̄j , and there exist σuj , σ

v
j ∈ (0,∞) such that

limr→∞ σu,rj = σuj , limr→∞ σv,rj = σvj .
Furthermore, with ρj = αj/βj for each j ∈ AJ and ρ = (ρ1, . . . , ρJ), C = Kρ.

Define θ
.
= Kη, where

ηj
.
=
ᾱjβj − αj β̄j

β2
j

, j ∈ AJ , (2.1)

and η = (η1, . . . , ηJ) and note that Condition 2.2 implies that

lim
r→∞

r(ρr − ρ) = η.
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The quantity θ arises when considering the workload process given below in (2.3) and plays an
important role in the Brownian control problems introduced in Section 3. Throughout we assume
that θ < 0. This is a necessary and sufficient condition for the reflected Brownian motion that arises
from HGI performance in the Brownian control problem to have a unique stationary distribution
(see [19]). As we will see in Proposition 3.1 and Theorem 3.2, θ < 0 is also necessary and sufficient
for a finite ergodic cost.

We will assume the following local traffic condition which says that every resources has at least
one associated job-type which only requires processing from that particular resource. This condition
guarantees that the workload process (see (2.3)) can achieve all vectors in RI+.

Condition 2.3. (Local Traffic.) For every i ∈ AI there exists j ∈ AJ such that Ki,j = 1 and
Kl,j = 0 for all l ∈ AI \ {i}.

Conditions 2.1 –2.3 will be assumed throughout and will not be noted explicitly in the statements
of various results.

2.2 State processes

Define the collection of renewal processes

Arj (t) = max

{
` ∈ N :

∑̀
i=1

urj (i) ≤ t

}
, j ∈ AJ , t ≥ 0,

and

Srj (t) = max

{
` ∈ N :

∑̀
i=1

vrj (i) ≤ t

}
, j ∈ AJ , t ≥ 0.

A control policy in the r-th network is an RJ+-valued stochastic process Br(·) satisfying certain
feasibility and measurability conditions described in Definition 2.2. The quantity Brj (t) represents
the cumulative amount of capacity allocated to type j jobs at time t. We denote by Qrj (t), j ∈ AJ ,
the number of type-j jobs in the queue at time instant t. The J-dimensional queue length process
is given by

Qr(t)
.
= qr +Ar(t)− Sr(Br(t)), t ≥ 0, (2.2)

where qr ∈ NJ denotes the initial queue length vector, Ar(t) is the number of jobs that have arrived
by time t, and Sr(Br(t)) is the number of jobs that have been processed by time t under the
allocation policy Br(·). Here, we are using the notational shorthand

Sr(Br(t)) = (Sr1(Br1(t)), Sr2(Br2(t)), . . . , SrJ(BrJ(t))).

Recall that Ci indicates the capacity of resource i. We define the I-dimensional process

Ur(t)
.
= tC −KBr(t),

which gives the unused capacity of each resource at time t. Let Mr denote the J×J diagonal matrix
with entries {1/βrj }j∈AJ , and let M denote the J×J diagonal matrix with entries {1/βj}j∈AJ . The
I-dimensional workload process W r, which gives the amount of work in the system for each resource,
is defined by

W r(t)
.
= KMrQr(t) = wr +KMrAr(t)−KMrSr(Br(t)), t ≥ 0 (2.3)

where wr
.
= KMrqr.

In order to study the behavior as the systems approach criticality we consider two types of
scaling: diffusion scaling and fluid scaling. In both of these scalings, time is accelerated by a factor
of r2 but in diffusion scaling the magnitude is scaled down by a factor of r while in the fluid scaling
the magnitude is scaled down by a factor of r2. Processes using the diffusion scaling will be denoted
with a ‘hat’ symbol while processes with the fluid scaling will be denoted with a ‘bar’ symbol. We
define

Ār(t) = r−2Ar(r2t), S̄r(t) = r−2Sr(r2t),

5



Q̄r(t) = r−2Qr(r2t), W̄ r(t) = r−2W r(r2t),

B̄r(t) = r−2Br(r2t), Ūr(t) = r−2Ur(r2t),

and

Âr(t) = r−1 (Ar(r2t)− r2tαr
)
, Ŝr(t) = r−1 (Sr(r2t)− r2tβr

)
,

Q̂r(t) = r−1Qr(r2t), Ŵ r(t) = r−1W r(r2t),

B̂r(t) = r−1Br(r2t), Ûr(t) = r−1Ur(r2t).

Our primary focus is on the diffusion scaling so for notational convenience we also define the diffusion
scaled initial queue lengths and workloads, q̂r

.
= 1

r
qr and ŵr

.
= KMr q̂r, as well as the process

X̂r(t)
.
= KMr

(
Âr(t)− Ŝr(B̄r(t))

)
+ rtK(ρr − ρ). (2.4)

The process X̂r may be viewed as a ‘pre-Brownian motion’ as we will see that, under conditions, its
weak limit is given as a Brownian motion (with a drift). Observe that the diffusion scaled workload
process can be written as

Ŵ r(t) = KMr q̂r +KMr
(
Âr(t)− Ŝr(B̄r(t)) + r(αrt− βrB̄r(t))

)
= KMr q̂r +KMr

(
Âr(t)− Ŝr(B̄r(t))

)
+Krtρr − rKB̄r(t)

= KMr q̂r +KMr
(
Âr(t)− Ŝr(B̄r(t))

)
+ rtK(ρr − ρ) + r(Ct−KB̄r(t))

= ŵr + X̂r(t) + Ûr(t) (2.5)

where in the third equality we used C = Kρ which comes from Condition 2.2.

2.3 Admissible control policies

We will now make precise what one means by an admissible control policy. We need to introduce
the following multiparameter filtrations.

Definition 2.1. For m = (m1, . . . ,mJ) ∈ NJ and n = (n1, . . . , nJ) ∈ NJ , let

Fr(m,n) = σ
{
urj (m

′
j), v

r
j (n′j) : m′j ≤ mj , n

′
j ≤ nj , j ∈ AJ

}
.

Then {Fr(m,n),m, n ∈ NJ} is a multiparameter filtration generated by the interarrival times and
job-sizes with the following partial ordering:

(m1, n1) ≤ (m2, n2) if and only if m1
j ≤ m2

j and n1
j ≤ n2

j for all j ∈ AJ .

Let

Fr = σ

 ⋃
(m,n)∈N2J

Fr(m,n)

 .

We refer the reader to [17, Section 6.2] for definitions and properties of multiparameter stopping
times. We can now define the class of admissible control policies. Parts (ii)-(iii) are natural
feasibility constraints while parts (iv)-(v) capture the fact that the control policies can only be
based on information available until the current time instant. These are satisfied for a very broad
family of natural control policies (cf. [11, Theorem 5.4]).

Definition 2.2. For r ∈ N, a RJ+-valued process Br is said to be an admissible resource allocation
policy or an admissible control policy if it satisfies the following:

(i) t 7→ Br(t) is an absolutely continuous, nonnegative, nondecreasing function on [0,∞), with
Br(0) = 0.

(ii) C ≥ K d
dt
Br(t) for a.e. t ≥ 0, a.s.
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(iii) The process Qr(·) defined by (2.2) satisfies Qr(t) ≥ 0 for all t ≥ 0 a.s.

(iv) For each r ∈ N and t ≥ 0 consider the N2J valued random variable

τr(t)
.
= (τr,A1 (t), . . . , τ r,AJ (t), τ r,S1 (t), . . . , τ r,SJ (t))

where, for j ∈ NJ ,

τr,Aj (t) = min

{
n ≥ 0 :

n∑
l=1

urj (l) ≥ r2t

}
,

and

τr,Sj (t) = min

{
n ≥ 0 :

n∑
l=1

vrj (l) ≥ r2B̄rj (t)

}
.

Then τr(t) is a (multiparameter) {Fr(n,m)}-stopping time for all t ≥ 0.

(v) If we define the filtration

Gr(t) = Fr(τr(t))

= σ
{
A ∈ Fr : A ∩ {τr(t) ≤ (m,n)} ∈ Fr(m,n) for all (m,n) ∈ N2J

}
,

then Br(r2t) is {Gr(t)}-adapted.

The collection of admissible controls for the rth network is denoted Ar. A sequence of control
policies {Br}r∈N is called admissible if, for each r ∈ N, Br ∈ Ar. Denote the class of all such
admissible sequences as A.

We note that the requirement in Definition 2.2 part (ii) implies that for any admissible control
policy Br, the process Ur(t) = tC −KBr(t) is nonnegative, nondecreasing, and for any 0 ≤ s ≤ t,

0 ≤ K(Br(t)−Br(s)) = (t− s)C − (Ur(t)− Ur(s)) ≤ (t− s)C.

Recall that for each j ∈ AJ there is an i ∈ AI such that Kij = 1. Thus, for all j ∈ AJ and 0 ≤ s ≤ t
we have

0 ≤ Brj (t)−Brj (s) ≤ L(t− s), L = max
1≤i≤I

Ci, (2.6)

i.e., Br is Lipschitz continuous with Lipschitz constant not depending on r.
For the rest of this work we will only consider admissible control policies and so frequently the

adjective ‘admissible’ will be omitted.

2.4 Cost function

We now introduce the cost function of interest. We consider linear ‘holding costs’ given through a
fixed, strictly positive J-dimensional vector h. In the r-th network, consider the long-term cost per
unit time (or the ergodic cost) associated with a control policy Br, defined as

JrE(Br) = lim sup
T→∞

E

[
1

T

∫ T

0

h · Q̂r(t) dt
]
.

For a sequence of control policies {Br}r∈N, the associated ergodic asymptotic cost is defined as

JE({Br}) = lim inf
r→∞

JrE(Br).

The infimum of the asymptotic ergodic cost over all admissible sequences of control policies will be
referred to as the asymptotic value function for the ergodic control problem and is given as

J∗E = inf
{Br}∈A

JE({Br}). (2.7)

We remark that, in the next section, we will introduce the value function associated with a Brownian
control problem which is distinct from the asymptotic value function defined above. Regarding the
formulation above which involves both a lim sup and lim inf, we note that the definition of JrE(Br)
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with a lim sup in T is motivated by the fact that in practice one would like to construct policies
that give ‘good performance’ for all sufficiently large T and thus a cost criterial that controls the
lim sup in T is natural. The reasoning for the lim inf in the defintion of J∗E is that our goal is to
prove an asymptotic lower bound for any sequence of admissable policies, which can be captured
by a formulation with lim inf. Indeed, for any ε > 0, and a sequence {rk, Brk}k∈N, such that rk ∈ N
and satisfies rk ↑ ∞ and Brk ∈ Ark , we have J

rk
E (Brk ) ≥ J∗E − ε for all sufficently large k.

3 The Brownian control problem and its workload for-
mulation

The main result of this work gives a lower bound on the asymptotic ergodic control cost in terms of
the value function of a certain control problem for Brownian motions [20,21,23]. We present below
the Equivalent Workload Formulations (EWF) of these control problems. We refer the reader to
[23] for a discussion on equivalence between this formulation and the Brownian control problems as
formulated in Harrison [18]. We begin by introducing the notion of an effective cost function. For
each w ∈ RI+, define the effective cost function as

ĥ(w) = min{h · q : KMq = w, q ≥ 0}. (3.1)

Note that, from the local traffic condition (Condition 2.3), the set on the right side is nonempty for
every w ∈ RI+. It is known that we can select a continuous minimizer in the above linear program
(cf. [6]), i.e. there is a continuous map q∗ : RI+ → RJ+ such that

q∗(w) ∈ arg min
q
{h · q : KMq = w, q ≥ 0}.

Recall θ
.
= Kη from (2.1) and let Σ denote the I × I matrix

Σ
.
= KM(Σu + ΣvR)1/2(KM(Σu + ΣvR)1/2)T , (3.2)

where Σu is the J × J diagonal matrix with entries α3
j (σ

u
j )2, Σv is the J × J diagonal matrix with

entries β3
j (σvj )2, and R is the J × J diagonal matrix with entries ρj . The EWF and the associated

controls and state processes are defined as follows.

Definition 3.1. Let (Ω̃, F̃ , P̃ , {F̃(t)}) be a filtered probability space which supports an I-dimensional
F̃(t)-Brownian motion X̃ with drift θ and covariance matrix Σ. An I-dimensional {F̃(t)}-adapted
process Ũ on this space is called an admissible control for the ergodic EWF if there is a {F̃(t)}-
adapted RI+-valued process W̃ such that the following hold P̃ -a.s.:

(i) W̃ (t) = W̃ (0) + X̃(t) + Ũ(t) for all t ≥ 0,

(ii) Ũ(t) is nondecreasing and Ũ(0) = 0,

(iii) W̃ is stationary, namely, for all t ≥ 0, W̃ (t+ ·) has the same distribution on DI+ as W̃ (·).

Denote the class of all such admissible controls as ÃE.

The cost for a control Ũ ∈ ÃE in the ergodic cost Brownian control problem (BCP) is defined
as

J̃BCPE (Ũ) = Ẽ[ĥ(W̃ (0))],

where Ẽ denotes expectation on (Ω̃, F̃ , P̃ ). The corresponding value function is

J̃BCP,∗E

.
=

{
∞ if ÃE = ∅
infŨ∈ÃE J̃

BCP
E (Ũ) otherwise,

where the infimum above is also taken over all filtered probability spaces as in Definition 3.1. The
following proposition shows that θ < 0 is a necessary condition for J̃BCP,∗E <∞. The sufficiency of
this condition is a consequence of Theorem 3.2 given below. Before presenting this result we recall
the definition of the Skorohod map.
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Definition 3.2. Let ψ ∈ DI such that ψ(0) ∈ RI+. The pair (ϕ, η) ∈ D2I is said to solve the
Skorohod problem for ψ (in RI+, with normal reflection) if ϕ = ψ + η; ϕ(t) ∈ RI+ for all t ≥ 0;
η(0) = 0; η is nondecreasing and

∫
[0,∞)

1{ϕi(t)>0} dηi(t) = 0 for all i ∈ NI . We write ϕ = Γ(ψ) and

refer to Γ as the I-dimensional Skorohod map.

It is known that there is a unique solution to the above Skorohod problem for every ψ ∈ DI
with ψ(0) ∈ RI+. When I = 1, we will denote Γ as Γ1.

Proposition 3.1. If θi ≥ 0 for some i ∈ AI then J̃BCP,∗E =∞

Proof. Let i ∈ AI satisfy θi ≥ 0 and assume ÃE 6= ∅. Let Ũ ∈ ÃE be an arbitrary admissible
control on a filtered probability (Ω̃, F̃ , P̃ , {F̃(t)}) with X̃ and W̃ as in Definition 3.1. Then from
well known minimality properties of the Skorohod map (cf. Proposition 5.1 in [13]) we have

W̃i(t) = W̃i(0) + X̃i(t) + Ũi(t) ≥ Γ1

(
W̃i(0) + X̃i(t)

)
.

Since X̃i(·) is a one-dimensional Brownian motion with drift θi ≥ 0, we have, for any w ∈ R+ and
K <∞

lim
t→∞

P
(

Γ1

(
w + X̃i(·)

)
(t) ≥ K

)
= 1.

Since for all w1, w2 ∈ R+ and t ≥ 0 we have

sup
s∈[0,t]

∣∣∣∣Γ1

(
w1 + X̃i(·)

)
(t)− Γ1

(
w2 + X̃i(·)

)
(t)

∣∣∣∣ ≤ 2|w1 − w2|

and X̃(·) is independent of W̃ (0) it follows that

lim
t→∞

P
(
W̃i(t) ≥ K

)
≥ lim
t→∞

P
(

Γ1

(
W̃i(0) + X̃i(·)

)
(t) ≥ K

)
= 1

for all K <∞. This contradicts the that fact W̃ (t) has the same distribution as W̃ (0) for all t ≥ 0.
The result follows.

Obtaining explicit simple form solutions for the control problems in Definition 3.1 is in general
impossible. However, there is one important setting, given in Theorem 3.2 below, where explicit
solutions are available. Proof of the first statement follows from [19], while the second statement is
a consequence of the well known exponential integrability of the stationary distribution (cf. [14]).
Final statement in the theorem follows from standard minimality properties of the Skorohod map
with normal reflections on the domain RI+ (cf. [19]). Proof is omitted.

Theorem 3.2. Let (Ω̃, F̃ , P̃ , {F̃(t)}) and X̃ be as in Definition 3.1. Suppose in addition that θ < 0.
Then there is a unique stationary distribution π for the Markov process described by

W̌ (t)
.
= Γ(w + X̃)(t), t ≥ 0, w ∈ RI+.

Assume without loss of generality that the filtered probability space (Ω̃, F̃ , P̃ , {F̃(t)}) supports an F̃0-
measurable RI+-valued random variable W̌ ′(0) with distribution π, and let {W̌ ′(t)} be the stationary
process defined as

W̌ ′(t)
.
= Γ(W̌ ′(0) + X̃)(t) = W̌ ′(0) + X̃(t) + Ǔ ′(t), t ≥ 0.

Then Ǔ ′ ∈ ÃE and

J̃BCP,∗E ≤ J̃BCPE (Ǔ ′) =

∫
RI+

ĥ(w)π(dw) <∞.

Suppose in addition that ĥ is monotonically nondecreasing, namely if w1, w2 ∈ RI+ satisfy w1 ≤ w2

then ĥ(w1) ≤ ĥ(w2). Then

J̃BCP,∗E = J̃BCPE (Ǔ ′) =

∫
RI+

ĥ(w)π(dw).
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j1 j2

Figure 4.1: A 2LLN Network

4 Main result

We now present the main result of this work.

Theorem 4.1. The optimal cost under the Brownian control problem provides a lower bound for
the optimal asymptotic cost in the resource sharing network. Namely, J∗E ≥ J̃BCP,∗E

Remark 4.2. In [13], under the conditions assumed in the current work, the condition that θ < 0,
and an additional exponential integrability assumption on the interarrival times and job-sizes (see
Condition 1 in [13]), explicit threshold form admissible control policies {B̌r} are constructed for
which the following holds: If supr q̂

r < ∞ then JrE(B̌r) → J̃BCPE (Ǔ ′). Here, Ǔ ′ is the reflected
Brownian motion control defined in Theorem 3.2 for the ergodic cost Brownian control problem. In
view of Theorems 3.2 and 4.1, we then have that under the conditions of [13] and with the additional
assumption that ĥ is nondecreasing, the sequence of control policies {B̌r} of [13] is asymptotically
optimal for the ergodic cost problem. Namely, we have that

J̃BCP,∗E ≤ J∗E ≤ lim inf
r→∞

JrE(B̌r) ≤ lim sup
r→∞

JrE(B̌r) = J̃BCP,∗E ,

equivalently, under these assumptions, J∗E = J̃BCP,∗E .
These control policies {B̌r} are designed around two goals in the BCP limit. Unnecessary

idle time needs to be avoided to achieve the reflected Brownian motion control Ǔ ′ and the queue
length vector must be directed to configurations that are cost-minimizing for their corresponding
workloads w so that the holding cost is given by ĥ(w). The possibility of ‘blocking’ in resource
sharing networks, where due to empty queue lengths a resource is unable to work at full capacity
despite having a positive workload, needs to be addressed to simultaneously achieve these two goals.
For a detailed description of the overall structure of these policies we refer the reader to [13].

To illustrate settings where the cost function ĥ is monotonic and where it is not, consider the
network pictured in Figure 4.1, which is refered to as type ‘2LLN’ in [22], and which has incidence
matrix

K =

[
1 0 1
0 1 1

]
.

Let α = β = (.5, .5, .5), so that ρ = (1, 1) and C = (1, 1). First assume the holding cost vector is
h = (2, 2, 3). In this case,

ĥ(w) = 3(w1 ∧ w2) + 2(w1 − w1 ∧ w2) + 2(w2 − w1 ∧ w2).

So, ĥ(w) is an increasing function of the workload, and the solution to the BCP is given by the
reflected Brownian motion described in Theorem 3.2 because it minimizes the workload. In contrast,
if h = (2, 2, 1) then

ĥ(w) = w1 ∨ w2 + (w1 ∨ w2 − w1 ∧ w2),

meaning if the two workload components are not equal we can decrease the cost by increasing the
smaller component. Since ĥ(w) is no longer monotonically nondecreasing the reflected Brownian
motion may not be optimal meaning some unnecessary idling of resources could be desirable.

We refer the reader to papers [12, 13,22] for detailed discussions of several other examples that
explain the challenges associated with the class of control problems considered here.
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The rest of this work is devoted to the proof of Theorem 4.1. First, in Section 5, we introduce
some preliminary results and notation needed in the proof of the theorem. This is divided into
two subsections; Subsection 5.1 which is primarily focused on the underlying renewal processes and
Subsection 5.2 which focuses on the topology on the space MI that will be used when proving
the tightness and convergences of the controls. In Section 6 we prove our main result. Finally,
Section 7 contains the proofs of some supplementary results that were postponed to streamline the
exposition.

5 Preliminary results

In this section we give some preparatory results.

5.1 The renewal processes and cost function

We first introduce some additional notation that will be used in the remainder of the paper. In the
proof of Theorem 4.1 we will consider increments of X̂r after some time t > 0, i.e., X̂r(t+ ·)−X̂r(t),
and we will be concerned with the extent to which these increments depend on Gr(t). To this end
we introduce the following.

Definition 5.1. For t ∈ [0,∞), r ∈ N, and j ∈ AJ define

ξ̄A,rj (t)
.
=

1

r2

τ
r,A
j (t)∑
l=1

urj (l) and ξ̄S,rj (t)
.
=

1

r2

τ
r,S
j (t)∑
l=1

vrj (l).

Moreover, let
ῩA,r
j (t)

.
= ξ̄A,rj (t)− t and ῩS,r

j (t)
.
= ξ̄S,rj (t)− B̄rj (t),

and lastly define
Υ̂A,r
j (t) = rῩA,r

j (t) and Υ̂S,r
j (t) = rῩS,r

j (t).

Observe that all the random variables in Definition 5.1 are Gr(t)-measurable.

Definition 5.2. For t ∈ R+ and j ∈ AJ , define

Ar,tj (s)
.
= max

n ≥ 0 :

τ
r,A
j (t)+n∑

l=τ
r,A
j (t)+1

urj (l) ≤ s

 ,

and

Sr,tj (s)
.
= max

n ≥ 0 :

τ
r,S
j (t)+n∑

l=τ
r,S
j (t)+1

vrj (l) ≤ s

 ,

along with their diffusion-scaled versions

Âr,tj (s)
.
=

1

r
Ar,tj (r2s)− rsαrj and Ŝr,tj (s)

.
=

1

r
Sr,tj (r2s)− rsβrj .

The following lemma describes useful properties of (Âr,t, Ŝr,t). The proof is standard using
properties of stopping times and is therefore omitted.

Lemma 5.1. Let t ∈ R+ and r ∈ N. Then (Âr,t, Ŝr,t) is independent of Gr(t), and (Âr,t, Ŝr,t) has
the same distribution as (Âr, Ŝr).

Note that we may write (cf. [13, Equation 9]), for all j ∈ AJ and 0 ≤ s < t,

Q̂rj (t) = Q̂rj (s) + r−1I{t−s≥Ῡ
A,r
j (s)>0} + r−1Ar,sj

(
r2
(
t− s− ῩA,r

j (s)
)+
)

− r−1I{B̄rj (t)−B̄rj (s)≥Ῡ
S,r
j (s)>0} − r

−1Sr,sj

(
r2
(
B̄rj (t)− B̄rj (s)− ῩS,r

j (s)
)+
)
. (5.1)
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The above equation says that the (scaled) queue length at time t can be obtained by adding to
the same quantity at time s, the various contributions to the changes that have occurred over the
time interval [s, t]. The first and third terms give the contributions from residual arrival and service
times at time instant s, the second from all the ‘new arrivals’ over [s, t], and the fourth from all the
‘new service completions’ over [s, t].

In a similar fashion, using (2.4), for 0 ≤ s ≤ t,

X̂r(t) = X̂r(s) +KMrÂr,s
((

t− s− ῩA,r(s)
)+
)
−KMrŜr,s

((
B̄r(t)− B̄r(s)− ῩS,r(s)

)+
)

+
1

r
KMrI{t−s≥ῩA,r(s)>0} −

1

r
KMrI{B̄r(t)−B̄r(s)≥ῩS,r(s)>0}

+ r(t− s)K(ρr − ρ)− rKρr
(

(t− s) ∧ ῩA,r(s)
)

+ rK
(

(B̄r(t)− B̄r(s)) ∧ ῩS,r(s)
)
.

(5.2)
The two equations above express Qr(t) and X̂r(t) in terms of Gr(s)-measurable random variables

and the Gr(s)-independent processes (Âr,s, Ŝr,s) in a way that will be useful later in the paper.
The proof of the following lemma provides some useful properties of the holding cost and the

corresponding effective cost function on the workload. Its proof is omitted because it follows easily
from the local traffic condition (Condition 2.3) and the fact that hj > 0 for all j ∈ AJ .

Lemma 5.2. There exists a constant ch ∈ (1,∞) such that for all w ∈ RI+, q ∈ RJ+, and r ∈ N we
have

ch|w| ≥ ĥ(w) ≥ c−1
h |w|

and
ch|KMrq| ≥ h · q ≥ c−1

h |KM
rq|

The next result follows from the functional central limit theorem for renewal processes.

Lemma 5.3. Recall the definitions of θ, Σu, Σv, and Σ in (3.2).

(i) The following central limit theorem holds:

(Âr, Ŝr,KMr(Âr − Ŝr(ρι)) + rK(ρr − ρ)ι)⇒ (Â, Ŝ, X̂) in D2J+I , as r →∞,

where Â and Ŝ are independent J-dimensional Brownian motions with drift 0 and covariances
Σu and Σv, respectively, and X̂ = KM(Â+ Ŝ(ρι)) + θι. In particular, X̂ is an I-dimensional
Brownian motion with drift θ and covariance Σ.

(ii) The following law of large numbers holds:

(Ār, S̄r)
P→ (αι, βι) in D2J as r →∞.

Proof. The first statement is just the functional central limit theorem for renewal processes (see
Theorem 14.6 in [5]), and the independence of A and S follows from the independence of {urj (k)}
and {vrj (k)}. The second statement follows from the first statement, on observing that

(Ār, S̄r) =

(
Âr

r
+ αrι,

Ŝr

r
+ βrι

)
P→ (αι, βι).

The following lemma follows from standard arguments. See e.g. [11, Lemma 3.5]. Proof is
omitted.

Lemma 5.4. There is a constant c ∈ (0,∞) such that for all j ∈ AJ , r ∈ N, and t ≥ 0,

E

[
sup

0≤s≤t
Ârj (s)

2

]
+ E

[
sup

0≤s≤t
Ŝrj (s)2

]
≤ c(t+ 1).

The proof of the following Proposition is very similar to the proof of Proposition 7.5 in [13],
except here we are not assuming that the moment generating functions of the interarrival times
are uniformly bounded in a neighborhood of the origin (see Condition 1 in [13]). Thus, instead of
uniform exponential integrability, we get a weaker result. See Section 7.1 for the proof. We take
the convention that urj (0) = 0 for all r ∈ N and j ∈ AJ .
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Proposition 5.5. There exists R ∈ (0,∞) such that for all j ∈ AJ we have

sup
t∈[0,∞)

sup
r≥R

E
[
urj (τ

A,r
j (t))

]
<∞.

5.2 The space MI

Recall that Md is the d-fold product space of nonnegative, locally finite measures on [0,∞) and
N d

+ is the subset of Dd+ consisting of nondecreasing functions. Recall that the space Dd+ is equipped
with the Skorohod topology. For details on this topology see, for example, [17, Chapter 3, Section
5]. We will use the connection between N I

+ and MI to prove tightness and convergence of our
controls. Note that for any d ∈ N there is a one-to-one correspondence between N d

+ andMd where
for any g ∈ N d

+ the corresponding µg ∈Md is defined by

µgi ([0, t])
.
= gi(t) for all t ∈ [0,∞) and i ∈ Ad,

and for any µ ∈Md the corresponding gµ ∈ N d
+ is defined by

gµi (t)
.
= µi([0, t]) for all t ∈ [0,∞) and i ∈ Ad.

Note that with g ∈ N d
+ and µ ∈Md identified in the above fashion, g(0) = µ({0}).

Recall that we endow Md with the weakest topology such that, for any f ∈ C0([0,∞)) and
i ∈ Ad, the function µ 7→

∫∞
0
f(x)µi(dx) from Md to R is continuous. We use the distance defined

below to make this a Polish space. This metric is a straightforward extension to multiple dimensions
of the metric described in [9, Appendix A.4].

Definition 5.3. For all k ∈ N define

BL0
k
.
=

{
f ∈ C([0, k]) : sup

t∈[0,k]

|f(t)| ≤ 1, sup
t,s∈[0,k]

|f(t)− f(s)|
|t− s| ≤ 1, and f(k) = 0

}

and

dM,k(µ, ν)
.
= sup
f∈BL0

k

∣∣∣∣∣
∫

[0,k]

f(t)µ(dt)−
∫

[0,k]

f(t)ν(dt)

∣∣∣∣∣ , µ, ν ∈M1.

Then the distance on M1 is given by

dM(µ, ν)
.
=

∞∑
k=1

2−k (dM,k(µ, ν) ∧ 1) , µ, ν ∈M1,

and the corresponding distance on Md is

dMd(µ, ν)
.
=

d∑
i=1

dM(µi, νi), µ, ν ∈Md.

It is easily seen that limn→∞ dMd(µn, µ) = 0 if and only if µni → µi in the weak topology as
finite measures on [0, k) for all i ∈ Ad and k ∈ N. It can be verified thatMd is a Polish space under
the distance dMd . Although we often identify elements ofMd and N d

+, when referring to the space
Md it is implied that we are using the topology from the dMd distance and when referring to the
space N d

+ it is implied that we are using the stronger Skorohod topology.
Recall that µn([0, ·])→ µ([0, ·])) in N d

+ implies µni ([0, t])→ µi([0, t]) at any continuity point t of
µi([0, ·]), i ∈ Nd (cf. [17, Proposition 3.5.2] and [5, Theorem 16.2]). This implies that µn → µ inMd.
So, convergence in N d

+ implies convergence in Md. However, it is easily checked that the opposite
is not true. For instance, consider µ̃n(dt) = nI[1−n−1,1](t)dt and µ̃(dt) = δ1(dt) where δ1 indicates

the unit mass at 1. Observe that µ̃n → µ̃ inM1, while it is not true that µ̃n([0, ·])→ µ̃([0, ·]) in N 1
+.

A key fifference between the two topologies is that if two paths are close in the Skorohod topology
they must be similar everywhere (after allowing for small time changes) while closeness under the
vague topology can allow for brief large differences. In particular, under the vague topology one
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can have a sequence of continuous paths converge to a path with jumps, while this cannot happen
in the Skorohod topology since it would require similar jumps in the sequence. Consequently, if
we identify the elements of N d

+ and Md as discussed above, the Skorohod topology is finer than
the vague convergence topology. We choose to use the vague convergence topology for our controls
because it is sufficient for our purposes and proving tightness in this topology is easier. The key fact
that allows us to use the tightness in the coarser vague convergence topology is that the Borel sigma
fields corresponding to the vague convergence topology and the Skorohod topology (relative to N d

+)
are the same. This result is given in Lemma 5.6 below. We start with the following definition.

Definition 5.4. For t ∈ [0,∞) define the projection πt from Dd to Rd by πt(x) = x(t) for x ∈ Dd.
With an abuse of notation, we denote the analogous map on N d

+ by πt as well. Namely, πt :Md →
Rd is given by πt(µ) = µ([0, t]) for µ ∈Md.

It is known (cf. [17, Proposition 3.7.1]) that B(Dd) = σ{πt : t ≥ 0}. Thus, since N d
+ is equipped

with the topology inherited from Dd, it follows that, restricted to N d
+, B(N d

+) = σ{πt : t ≥ 0} as
well. The following lemma says that σ{πt : t ≥ 0} also equals B(Md) and consequently, although
the Skorohod topology is finer than the topology of vague convergence, they both generate the same
Borel σ-algebras. The proof of the lemma follows on noting first that, by a simple monotone class
argument, σ{πt : t ∈ [0,∞)} is the same as σ{πA : A ∈ B([0,∞))} where πA : M1 → [0,∞] is
defined as πA(ν)

.
= ν(A); and then by a standard approximation argument that the latter sigma

field is the same as σ{πf : f ∈ C0[0,∞)} where πf :M1 → [0,∞) is defined as πf (ν)
.
=
∫
fdν. We

omit the details.

Lemma 5.6. B(Md) = σ (πt : t ∈ [0,∞)). In particular, the map from Md to N d
+ given by µ →

µ([0, ·]) is measurable.

The following lemma allows us to easily prove tightness of controls when working with the
vague convergence topology and is our main motivation for using the space MI . The proof is
straightforward and therefore omitted.

Lemma 5.7. For any sequence K = (K1,K2, ...) satisfying Kn ∈ [0,∞) for all n ∈ N the set

CK
.
= {µ ∈Md : |µ([0, n))| ≤ Kn for all n ∈ N}

is a compact1 subset of Md. Furthermore, if {θk, k ∈ N} is a sequence of Md-valued random vari-
ables, then this sequence is tight (namely the corresponding probability laws are relatively compact),
if and only if the sequence {θk[0, n), k ∈ N} is tight for each n ∈ N.

The next lemma gives an important continuity property that makes use of the above identifica-
tion between N d

+ and Md.

Lemma 5.8. Suppose that f : Rd × R+ → R is measurable and satisfies

(i) f(·, t) is a continuous for a.e. t ∈ R+, and

(ii) there exists a measurable function K : R+ → R+ such that
∫∞

0
K(t)dt <∞ and for all t ∈ R+

we have supy∈Rd |f(y, t)| ≤ K(t).

Then, the real-valued function on Rd ×Dd ×Md given by

(w, x, υ) 7→
∫ ∞

0

f(w + x(t) + υ([0, t]), t)dt

is bounded and continuous.

The above lemma follows on making the following observations. If {(wn, xn, υn)}n is a sequence
in Rd × Dd ×Md such limn→∞(wn, xn, υn) = (w, x, υ), then for a.e. t, (wn, xn(t), υn([0, t])) →
(w, x(t), υ([0, t])) in R3d. The convergence of

∫∞
0
f(wn + xn(t) + υn([0, t]), t)dt to

∫∞
0
f(w + x(t) +

υ([0, t]), t)dt is then an immediate consequence of dominated convergence theorem which proves the
continuity of the above map. The boundedness of the map is clear. We omit the details.

1I changed this from relatively compact to compact because the set is closed.
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6 Proof of Theorem 4.1

Here we prove our main result. Recall the definition of J∗E given in (2.7). Note that if J∗E = ∞,
then Theorem 4.1 holds trivially. Thus throughout the rest of this section we assume that J∗E <∞.
We start by considering a subsequence of networks and corresponding controls which achieve the
asymptotically optimal cost.

Definition 6.1. Assume J∗E <∞. Let {rk, Brk , Tk}k∈N be a sequence such that rk ∈ N, Brk ∈ Ark ,
and Tk ∈ R+ for all k ∈ N, and which satisfies

rk ↑ ∞, Tk ↑ ∞, and sup
T≥Tk

J
rk,T
E (Brk ) ≤ J∗E +

1

rk
,

where Jr,TE (Br) = E
[
T−1

∫ T
0
h · Q̂r(t)dt

]
.

Note that one can always find a sequence with properties as in the above definition. For nota-
tional simplicity, we will frequently write the superscripts rk in various quantities (e.g. as in Brk )
as simply k (i.e. as Bk).

The next two propositions are central to the proof of Theorem 4.1, but their proofs are somewhat
technical and given in Section 7. The first allows us to control the impact of the residual arrival and
service times. In this proposition, in contrast to rkῩA,k

j (t), we only have a ‘time-averaged’ control

over rkῩS,k
j (t). which is obtained by leveraging the bound on supk J

rk
E (Brk ) in Definition 6.1.

Proposition 6.1. Consider the sequence {rk, Bk, Tk}k∈N from Definition 6.1. For any j ∈ AJ and
ε > 0, we have

(i) lim
k→∞

sup
t≥0

P
(

Υ̂A,k
j (t) > ε

)
= 0, and

(ii) lim
k→∞

1

Tk

∫ Tk

0

P
(

Υ̂S,k
j (t) > ε

)
dt = 0.

The first part of the next proposition follows in a straightforward manner from Proposition
6.1(i). The main work is in proving the second part which says that the (time-averaged) allocation
policy B̄r is suitably close to ρ.

Proposition 6.2. Consider the sequence {rk, Bk, Tk}k∈N from Definition 6.1. For any u ∈ [0,∞)
and ε > 0, we have

(i) lim
k→∞

sup
t≥0

P

(
sup
s∈[0,u]

∣∣∣∣(s− ῩA,k(t)
)+

− s
∣∣∣∣ > ε

)
= 0, and

(ii) lim
k→∞

1

Tk

∫ Tk

0

P

(
sup
s∈[0,u]

∣∣∣ (B̄k(s+ t)− ξ̄S,k(t)
)+

− ρs
∣∣∣ > ε

)
dt = 0.

Recall the process Ûr associated with a control Br, as defined in Section 2.2. We now introduce
the path occupation measures that are key to our analysis.

Definition 6.2. Given r ∈ N, T ∈ R+, and a control Br ∈ Ar define the corresponding MI-valued
stochastic process υ̂r = {υ̂rt : t ≥ 0} by υ̂rt ({0}) = 0 and

υ̂rt ([0, s])
.
= Ûr(t+ s)− Ûr(t), s > 0.

Define the random variables {µT,r} in P(RI+ ×DI ×MI) by

µT,r
.
=

1

T

∫ T

0

δ(Ŵr(t),X̂r(t+·)−X̂r(t),υ̂rt )
dt.

Since, |Ûri (t + s) − Ûri (t)| ≤ rCi|t − s| for all r ∈ N, i ∈ AI , and t, s ∈ R+, υ̂rt is indeed a MI

valued process. Note that µT,r depends on the control Br but that this dependence is left out of the
notation for the sake of brevity. Also, frequently we write µTk,rk as simply µk. In what follows, we
will several times make use of the fact that a sequence {γk, k ∈ N} of P(S) valued random variables
(where S is some Polish space) is tight (namely the corresponding probability laws are relatively
compact in P(P(S))), if and only if the sequence {E(γk), k ∈ N} is relatively compact in P(S). (cf.
[9, Theorem 2.11]).
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Theorem 6.3. Let {rk, Bk, Tk}k∈N be the sequence in Definition 6.1, and let {µk}k∈N be the
corresponding sequence of random measures given by Definition 6.2. Then {µk}k∈N is tight in
P(RI+ ×DI ×MI).

Proof. We will prove the result by showing that each of the three marginals are tight. We will start
with the first marginals, {µk(1)}∞k=1.

Due to Lemma 5.2 there exists ch < ∞ such that for all w ∈ RI+ we have |w| ≤ chĥ(w), which
gives

E

[∫
RI+

|w|µk(1)(dw)

]
= E

[
1

Tk

∫ Tk

0

|Ŵ k(s)|ds
]
≤ E

[
ch
Tk

∫ Tk

0

h · Q̂k(s)ds

]
≤ ch

(
J∗E +

1

rk

)
,

where the last inequality uses the properties of (rk, B
k, Tk) given in Definition 6.1. The tightness

of the first marginals follows.
We will now show that the second marginals, {µk(2)(dx)}∞k=1, are tight. It suffices to show that

for any ε1, ε2 > 0 and T ∈ [0,∞), there exists δ > 0 and K ∈ [0,∞) such that for all k ≥ K we
have

E

[
µk(2)

(
sup

s,t∈[0,T ],|t−s|<δ
|x(t)− x(s)| > ε1

)]
< ε2, (6.1)

where x denotes the coordinate variable on DI (note that this actually gives the stronger C-tightness
result). Observe that the left side of equation (6.1) equals

1

Tk

∫ Tk

0

P

(
sup

s,t∈[u,u+T ],|t−s|<δ

∣∣∣X̂k(t)− X̂k(s)
∣∣∣ > ε1

)
du.

Recall (5.2) and that for all s, t ∈ [0,∞), j ∈ AJ , and r ∈ N we have |B̄r(t) − B̄r(s)| ≤ L|t − s|,
where L = maxi{Ci}

Consequently, to prove (6.1) it is sufficient to show that for any ε1, ε2 > 0 and T ∈ [0,∞), there
exists δ > 0 and K ∈ [0,∞) such that for all k ≥ K we have the following:

(a)
1

Tk

∫ Tk

0

P

(
sup

s,t∈[0,T ],|t−s|<δ

∣∣∣Âk,u(t)− Âk,u(s)
∣∣∣ > ε1

)
du < ε2,

(b)
1

Tk

∫ Tk

0

P

(
sup

s,t∈[0,LT ],|t−s|<Lδ

∣∣∣Ŝk,u(t)− Ŝk,u(s)
∣∣∣ > ε1

)
du < ε2,

(c)
1

Tk

∫ Tk

0

P
(
rk|ῩA,k(u)|+ rk|ῩS,k(u)| > ε1

)
du < ε2, and

(d) sup
s,t∈[0,T ],|t−s|<δ

|(t− s)rk(ρk − ρ)| ≤ ε1.

The inequalities (a) and (b) follow from Lemma 5.3 (i) and Lemma 5.1, (c) follows from Proposition
6.1, and (d) follows from Condition 2.2 and the sentence below it. This gives (6.1) and proves the
tightness of the second marginals.

Now we show that the sequence of third marginals, {µk(3)(dυ)}∞k=1, is tight. Due to Lemma 5.7,
it is sufficient to show that for any n ∈ N and ε > 0, there exists corresponding M,K ∈ [0,∞) such
that

sup
k≥K

E
[
µk(3) (|υ([0, n])| > M)

]
< ε,

where υ denotes the coordinate variable on MI .
Note that

E
[
µk(3) (|υ([0, n])| > M)

]
=

1

Tk

∫ Tk

0

P
(
|Ûk(u+ n)− Ûk(u)| > M

)
du.

From (2.5), for all u ≥ 0 and n, k ∈ N, we have

Ûk(u+ n)− Ûk(u) = Ŵ k(u+ n)− Ŵ k(u)− (X̂k(u+ n)− X̂k(u)),
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so
|Ûk(u+ n)− Ûk(u)| ≤ |Ŵ k(u+ n)|+ |Ŵ k(u)|+ |X̂k(u+ n)− X̂k(u)|.

Thus, tightness of third marginals will follow if we can show that there exists corresponding M,K ∈
[0,∞) such that

sup
k≥K

1

Tk

∫ Tk

0

P
(
|X̂k(u+ n)− X̂k(u)| > M

)
du ≤ ε, (6.2)

and

sup
k≥K

1

Tk

∫ Tk

0

P
(
|Ŵ k(u+ n)|+ |Ŵ k(u)| > M

)
du ≤ ε. (6.3)

The statement in (6.2) is a consequence of the tightness property shown in (6.1). In addition, due
to Lemma 5.2 there exists ch <∞ such that for all w ∈ RI+ we have chĥ(w) ≥ |w| which gives

1

Tk

∫ Tk

0

(
E
[
|Ŵ k(u+ n)|

]
+ E

[
|Ŵ k(u)|

])
du ≤ 2ch

Tk

∫ Tk+n

0

E
[
h · Q̂k(u)

]
du

≤ 2ch
Tk + n

Tk

(
J∗E +

1

rk

)
,

where the last line uses the properties of (rk, B
k, Tk) given in Definition 6.1. From this (6.3) follows

readily.

The following continuous approximations of functions in Dd will be useful.

Definition 6.3. For any δ > 0 and x ∈ D1 define ψδ(x) ∈ C1 by

ψδ(x)(t)
.
=

1

δ

∫ t+δ

t

x(u)du, t ∈ [0,∞).

For µ ∈ M1, we will write ψδ(µ) to denote ψδ(µ([0, ·]). For x ∈ Dd (resp. µ ∈ Md) we define ψδ
component-wise so ψδ(x)i = ψδ(xi) (resp. ψδ(µ)i = ψδ(µi)) for all i ∈ Ad.

It is straightforward to verify that for fixed δ > 0, and x ∈ D1, µ ∈ M1, the functions
ψδ(x)(·) and ψδ(µ)(·) are continuous, and due to right continuity we have limδ→0 ψδ(x)(t) = x(t),
limδ→0 ψδ(µ)(t) = µ([0, t]) for all t ≥ 0. In addition, it is easily verified that for any δ > 0 and
µ ∈ M1 the function ψδ(µ)(·) is nondecreasing. Thus, for µ ∈ Md, ψδ(µ) ∈ N d

+. The following
lemma says that the map ψδ is continuous.

Lemma 6.4. Consider sequences {µn} and {xn} in Md and Dd, respectively, and let δ > 0 be
arbitrary.

(i) If µn → µ in Md, then ψδ(µ
n)→ ψδ(µ) in Cd.

(ii) If xn → x in Dd, then ψδ(x
n)→ ψδ(x) in Cd.

To see the proof of part (i), it is sufficient to consider d = 1 and note that µn → µ implies
supn µ

n([0, t]) < ∞ for all t and µn([0, t]) → µ([0, t]) for a.e. t. This implies the pointwise conver-
gence of ψδ(µ

n)→ ψδ(µ) and that {ψδ(µn)}n≥1 is equicontinuous from which uniform convergence
follows. The statement in part (ii) is standard, and follows using an argument similar to that em-
ployed for the proof of part (i) combined with the results of [17, Problem 3.11.26]. We omit the
details.

Theorem 6.5. Consider a subsequence {µm}∞m=1 of the tight sequence in Theorem 6.3 that con-
verges weakly to a random variable µ∗ ∈ P(RI+ × DI × MI) defined on some probability space
(Ω∗,F∗, P ∗). Let (w, x, υ) denote the coordinate variables on RI+ × DI ×MI . Then, P ∗-a.s., µ∗

satisfies the following.

(i) Under µ∗, x(·) is a Brownian motion with drift θ and covariance Σ with respect to the filtration
F∗(t) = σ{w, x(s), υ([0, s]) : s ≤ t},

(ii) if w(0)
.
= w + υ({0}) and w(t)

.
= w + x(t) + υ([0, t]) for t > 0, then w(t) ≥ 0 for all t ≥ 0,

µ∗-a.s., and
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(iii) if u(0)
.
= 0 and u(t)

.
= υ((0, t]) for t > 0, then under µ∗, (w(t+·),u(t+·)−u(t))

d
= (w(·),u(·))

on D2I , for every t ≥ 0. That is,

µ∗ ((w(t+ ·),u(t+ ·)− u(t)) ∈ ·) = µ∗ ((w(·),u(·)) ∈ ·) ,

for all t.

Proof. We first prove (i). Recall in the proof of Theorem 6.3 we actually proved C-tightness of
the second marginals {µm2 (·)}∞m=1 which gives µ∗(x ∈ CI) = 1 P ∗-a.s. Fix k ∈ N and 0 ≤ r1 ≤
r2 ≤ · · · ≤ rk ≤ s̃ < t, Φ ∈ Cb(R(1+2k)I), f ∈ C2

0(RI). Define φ : RI+ × DI ×MI → R as, for
(w, x, υ) ∈ RI+ ×DI ×MI ,

φ(w, x, υ)
.
= Φ(w, x(r1), . . . x(rk), υ([0, r1]), . . . υ([0, rk])).

To prove (i) it suffices to show that

E∗
[(∫

RI+×D
I×MI

φ (w, x, υ)

(
f(x(t))− f(x(s̃))−

∫ t

s̃

Lf(x(z)) dz

)
µ∗(dw, dx, dυ)

)2]
= 0,

(6.4)
where L is the generator of a Brownian motion with drift θ and covariance Σ. Namely,

Lf(x) =

I∑
i=1

θi
∂f

∂xi
(x) +

1

2

I∑
i=1

I∑
j=1

Σi,j
∂2f

∂xi∂xj
(x), f ∈ C2

0(RI).

One of the issues to be careful about is that we do not know that µ∗(υ[0, ·) ∈ CI) = 1. Thus to
employ a weak convergence argument, some mollification of υ is useful. Fix δ ∈ (0, t− s̃) and define
φδ : RI+ ×DI ×MI → R as, for (w, x, υ) ∈ RI+ ×DI ×MI ,

φδ(w, x, υ)
.
= Φ(w, x(r1), . . . x(rk), ψδ(υ)(r1), . . . ψδ(υ)(rk)).

We will now argue that

E∗
[(∫

RI+×D
I×MI

φδ (w, x, υ)

(
f(x(t))− f(x(s̃+ δ))−

∫ t

s̃+δ

Lf(x(z)) dz

)
µ∗(dw, dx, dυ)

)2]
= 0,

(6.5)
The claimed identity in (6.4) follows immediately from this on noting that µ∗(x ∈ CI) = 1 P ∗-a.s.,
using the fact that for any µ ∈ Md, limδ→0 ψδ(µ)(t) = µ([0, t]) for all t ≥ 0, and sending δ → 0 in
the above display.

We now show (6.5) to complete the proof of (i). Let s = s̃+ δ. For notational convenience, for
any u ∈ [0,∞), x ∈ DI , ξ ∈ DI+, and an MI -valued process ν = {νu : u ≥ 0}, we define

Fus,t(x)
.
= f(x(u+ t)− x(u))− f(x(u+ s)− x(u))−

∫ t

s

Lf(x(u+ z)− x(u)) dz,

and
Guδ (ξ, x, ν)

.
= φδ (ξ(u), x(u+ ·)− x(u), νu) .

Due to the weak convergence µm → µ∗, and recalling that µ∗(x ∈ CI) = 1 P ∗-a.s. and φδ is a
bounded function that is continuous for x ∈ CI due to Lemma 6.4, we have

E∗
[(∫

RI+×D
I×MI

φδ (w, x, υ)

(
f(x(t))− f(x(s))−

∫ t

s

Lf(x(z)) dz

)
µ∗(dw, dx, dυ)

)2]

= lim
m→∞

E

[(∫
RI+×D

I×MI

φδ (w, x, υ)

(
f(x(t))− f(x(s))

−
∫ t

s

Lf(x(z)) dz

)
µm(dw, dx, dυ)

)2
]

= lim
m→∞

E

[(
1

Tm

∫ Tm

0

Guδ (Ŵm, X̂m, υ̂m)Fus,t(X̂
m)du

)2
]
,
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where we recall the convention that the superscripts rm are simply written as m and the process
υ̂m = υ̂rm from Definition 6.2. Note also that

E

[(
1

Tm

∫ Tm

0

Guδ (Ŵm, X̂m, υ̂m)Fus,t(X̂
m)du

)2
]

=
1

T 2
m

∫ Tm

0

∫ Tm

0

E
[
Guδ (Ŵm, X̂m, υ̂m)Fus,t(X̂

m)Gvδ(Ŵm, X̂m, υ̂m)F vs,t(X̂
m)
]
dvdu

=
2

T 2
m

∫ Tm

0

∫ u

0

E
[
Guδ (Ŵm, X̂m, υ̂m)Fus,t(X̂

m)Gvδ(Ŵm, X̂m, υ̂m)F vs,t(X̂
m)
]
dvdu.

Recall the definitions Âr,t and Ŝr,t from Section 5.1 and recall that we denote Ârm,t and Ŝrm,t as
Âm,t and Ŝm,t, respectively. For all z, v ≥ 0 and m ∈ N, define

X̃m,v(z)
.
= KMm

(
Âm,v(z)− Ŝm,v(ρz)

)
+ rmzK(ρm − ρ),

and

X̆m,v(z)
.
=

{
X̂m(z) if z ≤ v,
X̂m(v) + X̃m,v(z − v) if z > v.

By Lemma 5.3 (i) and Lemma 5.1, for any ε > 0 there exists an M ∈ [0,∞) and κ > 0 such that

sup
u≥0,m≥M

P

(
sup

v,z∈[0,Lt],|v−z|≤κ

∣∣∣Ŝm,u+s(v)− Ŝm,u+s(z)
∣∣∣ > ε

)
< ε,

and

sup
u≥0,m≥M

P

(
sup

v,z∈[0,t],|v−z|≤κ

∣∣∣Âm,u+s(v)− Âm,u+s(z)
∣∣∣ > ε

)
< ε.

Consequently, recalling (5.2) and using Propositions 6.1 and 6.2, it follows that for any ε > 0 we
have

lim
m→∞

1

Tm

∫ Tm

0

P

(
sup

z∈[0,u+t]

∣∣∣X̂m(z)− X̆m,u+s(z)
∣∣∣ > ε

)
du

= lim
m→∞

1

Tm

∫ Tm

0

P

(
sup

z∈[0,t−s]

∣∣∣X̂m(u+ s+ z)− X̂m(u+ s)− X̃m,u+s(z)
∣∣∣ > ε

)
du = 0,

which, combined with the fact that f ∈ C2
0(RI), implies that for any ε > 0 we have

lim
m→∞

1

Tm

∫ Tm

0

P
(∣∣∣Fus,t(X̂m)− Fus,t(X̆m,u+s)

∣∣∣ > ε
)
du = 0. (6.6)

Recall from Lemma 5.1 that for all m ∈ N and v ≥ 0, we have X̃m,v d
= X̃m,0 and from Lemma

5.3 (i) that X̃m,0 ⇒ X̂ in DI , where X̂ is an I-dimensional Brownian motion with drift θ and
covariance matrix Σ. Since f ∈ C2

0(RI), for all y ∈ RI we have

E∗
[
f(X̂(t− s) + y)− f(y)−

∫ t

s

Lf(X̂(z − s) + y) dz

]
= 0.

Thus, the compact support of f implies

lim
m→∞

sup
y∈RI ,v≥0

∣∣∣∣E [f(X̃m,v(t− s) + y)− f(y)−
∫ t

s

Lf(X̃m,v(z − s) + y) dz

]∣∣∣∣ = 0. (6.7)

Now, writing

Fus,t(X̆
m,u+s) =f(X̃m,u+s(t− s) + X̂m(u+ s)− X̂m(u))− f(X̂m(u+ s)− X̂m(u))
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−
∫ t

s

Lf(X̃m,u+s(z − s) + X̂m(u+ s)− X̂m(u)) dz,

and since X̃m,u+s(·) is independent of Grm(u+s) and X̂m(u+s)−X̂m(u) is Grm(u+s)-measurable,
we have

sup
u≥0

E
[
Fus,t(X̆

m,u+s)
∣∣∣Gm(u+ s)

]
≤ sup
y∈RI ,u≥0

E

[
f(X̃m,u+s(t− s) + y)− f(y)−

∫ t

s

Lf(X̃m,u+s(z − s) + y) dz

]
.

(6.8)

Finally, since Gur,δ and Fus,t are uniformly bounded in u, we have

E∗
[(∫

RI+×D
I×MI

φδ (w, x, υ)

(
f(x(t))− f(x(s))−

∫ t

s

Lf(x(z)) dz

)
µ∗(dw, dx, dυ)

)2]

= lim
m→∞

2

T 2
m

∫ Tm

0

∫ u

0

E
[
Guδ (Ŵm, X̂m, υ̂m)Fus,t(X̂

m)Gvδ(Ŵm, X̂m, υ̂m)F vs,t(X̂
m)
]
dvdu

= lim
m→∞

2

T 2
m

∫ Tm

0

∫ u−t+s

0

E
[
Guδ (Ŵm, X̂m, υ̂m)Fus,t(X̂

m)Gvδ(Ŵm, X̂m, υ̂m)F vs,t(X̂
m)
]
dvdu

= lim
m→∞

2

T 2
m

∫ Tm

0

∫ u−t+s

0

E
[
Guδ (Ŵm, X̂m, υ̂m)Fus,t(X̆

m,u+s)

× Gvδ(Ŵm, X̂m, υ̂m)F vs,t(X̂
m)
]
dvdu

= lim
m→∞

2

T 2
m

∫ Tm

0

∫ u−t+s

0

E
[
E
[
Fus,t(X̆

m,u+s)
∣∣∣Grm(u+ s)

]
Guδ (Ŵm, X̂m, υ̂m)

× Gvδ(Ŵm, X̂m, υ̂m)F vs,t(X̂
m)
]
dvdu

= 0.

Above, the third equality uses (6.6), the fourth equality uses the fact that Guδ (Ŵm, X̂m, υ̂m),
Gvδ(Ŵm, X̂m, υ̂m), and F vs,t(X̂

m) are Grm(u+ s)-measurable for v ≤ u− t+ s, and the last equality
uses (6.8) combined with (6.7). This shows (6.5) and completes the proof of (i).

We now prove (ii). Since w(0) = w + υ({0}) ≥ 0, it suffices, from the continuity and right
continuity properties of x and υ[0, ·], to show that, for all t > 0,

E∗
[
µ∗
(
w + x(t) + υ([0, t]) ∈ RI+

)]
= 1. (6.9)

Now fix t ≥ 0. For ε ≥ 0 define

Nε
.
=

{
y ∈ RI : inf

x∈RI+
|y − x| > ε

}
,

i.e., Nε is the set of values y ∈ RI that are more than ε away from the positive orthant RI+. Let
δ > 0 be arbitrary and note that due to Lemma 6.4, the mapping

(w, x, υ) 7→ w + ψδ(x)(t) + ψδ(υ)(t), (w, x, υ) ∈ RI+ ×DI ×MI ,

is continuous. Consequently, because Nε is an open set, the mapping

(w, x, υ) 7→ INε(w + ψδ(x)(t) + ψδ(υ)(t)), (w, x, υ) ∈ RI+ ×DI ×MI ,

is lower semicontinuous. This then implies (cf. [16, Theorem A.3.12]) that the mapping

µ 7→
∫
RI+×D

I×MI

INε(w + ψδ(x)(t) + ψδ(υ)(t))µ(dw, dx, dυ)

= µ (w + ψδ(x)(t) + ψδ(υ)(t) ∈ Nε) , µ ∈ P(RI+ ×DI ×MI),
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is also lower semicontinuous. Recalling, for u ≥ 0, Ŵ r(u) = ŵr + X̂r(u) + Ûr(u) ∈ RI+ a.s., note
that

Ŵ r(u) + ψδ(X̂
r(u+ ·)− X̂r(u))(t) + ψδ(υ̂

r
u)(t)

= Ŵ r(u) +
1

δ

∫ t+δ

t

(X̂r(u+ z)− X̂r(u))dz +
1

δ

∫ t+δ

t

υ̂ru([0, z])dz

= Ŵ r(u)− X̂r(u)− Ûr(u) +
1

δ

∫ t+δ

t

(X̂r(u+ z) + Ûr(u+ z))dz

=
1

δ

∫ t+δ

t

Ŵ r(u+ z)dz = ψδ(Ŵ
r(u+ ·))(t) ∈ RI+ a.s.

(6.10)

Then, from weak convergence of µm → µ∗

E∗ [µ∗ (w + ψδ(x)(t) + ψδ(υ)(t) ∈ Nε)] ≤ lim
m→∞

E [µm (w + ψδ(x)(t) + ψδ(υ)(t) ∈ Nε)]

= lim
m→∞

1

Tm

∫ Tm

0

P
(
ψδ(Ŵ

m(u+ ·))(t) ∈ Nε
)
du = 0.

Since N0 =
⋃
n∈NN1/n, it follows that

E∗ [µ∗ (w + ψδ(x)(t) + ψδ(υ)(t) ∈ N0)] ≤
∑
n∈N

E∗
[
µ∗
(
w + ψδ(x)(t) + ψδ(υ)(t) ∈ N1/n

)]
= 0.

(6.11)
Next, since

w + x(t) + υ([0, t]) = lim
δ→0

(w + ψδ(x)(t) + ψδ(υ)(t)) ,

the statement in (6.9) follows on sending δ → 0 in (6.11). This completes the proof of (ii).
Finally, we turn to (iii). For n ∈ N, {si}ni=1 ⊂ Rn+, t ≥ 0, (y, z) ∈ D2I , and f ∈ Cb(Rn2I), define

the quantities

Ψf
{si}

(y, z)
.
= f

(
π{si}(y(·), z(·)− z(0))

)
, Ψf,t

{si}
(y, z)

.
= f

(
π{si}(y(t+ ·), z(t+ ·)− z(t))

)
,

and
Φf,t{si}(y, z)

.
= Ψf

{si}
(y, z)−Ψf,t

{si}
(y, z),

where π{si}
.
= (πs1 , ..., πsn) and πt is the projection mapping given in Definition 5.4. Recall that

(cf. [17, Proposition 3.7.1]), there is a countable collection of measure-determining maps on D2I of
the form

(y, z) 7→ f
(
π{si}(y, z)

)
, (y, z) ∈ D2I .

Together with the right continuity of t 7→ (w(t+ ·),u(t+ ·)− u(t)), this says that, to show (iii) it
suffices to show that for any t ≥ 0, n ∈ N, {si}ni=1 ⊂ Rn, and f ∈ Cb(Rn2I) we have

E∗
[∣∣∣∣ ∫

RI+×D
I×MI

Φf,t{si}(w + x+ υ([0, ·]), υ([0, ·]))µ∗(dw, dx, dυ)

∣∣∣∣
]

= 0. (6.12)

We now prove (6.12). Let δ > 0. Due to Lemma 6.4, the map

(w, x, υ) 7→ Φf,t{si}(w + ψδ(x) + ψδ(υ), ψδ(υ)), (w, x, υ) ∈ RI+ ×DI ×MI .

is bounded and continuous. Then,

E∗
[∣∣∣∣ ∫

RI+×D
I×MI

Φf,t{si}(w + ψδ(x) + ψδ(υ), ψδ(υ))µ∗(dw, dx, dυ)

∣∣∣∣
]

= lim
m→∞

E

[∣∣∣∣ ∫
RI+×D

I×MI

Φf,t{si}(w + ψδ(x) + ψδ(υ), ψδ(υ))µm(dw, dx, dυ)

∣∣∣∣
]

= lim
m→∞

E

[∣∣∣∣ 1

Tm

∫ Tm

0

Φf,t{si}(ψδ(Ŵ
m(u+ ·)), ψδ(Ûm(u+ ·)− Ûm(u)))du

∣∣∣∣] ,
(6.13)
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where the second equality uses the calculation in (6.10). Note that

Ψf
{si}

(ψδ(Ŵ
m(u+ t+ ·)), ψδ(Ûm(u+ t+ ·)− Ûm(u+ t)))

= Ψf,t
{si}

(ψδ(Ŵ
m(u+ ·)), ψδ(Ûm(u+ ·)− Ûm(u)))

for all u, t ≥ 0, and therefore∫ Tm

0

Ψf
{si}

(ψδ(Ŵ
rm(u+ ·)), ψδ(Ûrm(u+ ·)− Ûrm(u)))du

=

∫ t

0

Ψf
{si}

(ψδ(Ŵ
rm(u+ ·)), ψδ(Ûrm(u+ ·)− Ûrm(u)))du

+

∫ Tm−t

0

Ψf,t
{si}

(ψδ(Ŵ
rm(u+ ·)), ψδ(Ûrm(u+ ·)− Ûrm(u)))du.

It then follows that∫ Tm

0

Φf,t{si}(ψδ(Ŵ
rm(u+ ·)), ψδ(Ûrm(u+ ·)− Ûrm(u)))du

=

∫ t

0

Ψf
{si}

(ψδ(Ŵ
rm(u+ ·)), ψδ(Ûrm(u+ ·)− Ûrm(u)))du

−
∫ Tm

Tm−t
Ψf,t
{si}

(ψδ(Ŵ
rm(u+ ·)), ψδ(Ûrm(u+ ·)− Ûrm(u)))du.

Recalling the boundedness of f we now see that the right side (and therefore also the left side) of
(6.13) is 0. The statement in (6.12) now follows on sending δ → 0. This completes the proof of
(iii).

We now prove our main result.

Proof of Theorem 4.1. Note that the inequality J∗E ≥ J̃BCP,∗E holds trivially when J∗E =∞.
So suppose now that J∗E < ∞. Under this assumption, by Theorems 6.3 and 6.5, there exists a
subsequence {rm, Bm, Trm}∞m=1 of the sequence defined in Definition 6.1 such that the corresponding
random measures {µm}∞m=1 given by Definition 6.2 converge weakly to a random variable µ∗ ∈
P(RI+ ×DI ×MI), defined on some space (Ω∗,F∗, P ∗), which satisfies the conclusions of Theorem
6.5.

For arbitrary N ∈ [0,∞), define the following bounded approximation of the effective cost
function:

ĥN (w)
.
= ĥ(w) ∧N, w ∈ RI+. (6.14)

Note that ĥN is a bounded, continuous function on RI+ and that ĥN (w) ↑ ĥ(w) as N → ∞ for all

w ∈ RI+. Let z > 0 be arbitrary. Lemma 5.8 applied to the function f(y, s) = z−1ĥN (y)I{s≤z} says
that the map

(w, x, υ) 7→ 1

z

∫ z

0

ĥN (w + x(s) + υ([0, s])ds, (w, x, υ) ∈ RI+ ×DI ×MI ,

is bounded and continuous, and so

µ 7→
∫
RI+×D

I×MI

1

z

∫ z

0

ĥN (w + x(s) + υ([0, s]))dsµ(dw, dx, dυ), µ ∈ P(RI+ ×DI ×MI),

is a bounded and continuous function. Combined with the fact that µm ⇒ µ∗ in P(RI+×DI×MI),
this implies that

lim
m→∞

E

[∫
RI+×D

I×MI

1

z

∫ z

0

ĥN (w + x(s) + υ([0, s]))dsµm(dw, dx, dυ)

]

= E∗
[∫

RI+×D
I×MI

1

z

∫ z

0

ĥN (w + x(s) + υ([0, s]))dsµ∗(dw, dx, dυ)

]
.

(6.15)
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In addition, for all m ∈ N we have

E

[∫
RI+×D

I×MI

1

z

∫ z

0

ĥN (w + x(s) + υ([0, s]))dsµm(dw, dx, dµ)

]

= E

[
1

zTm

∫ Tm

0

∫ z

0

ĥN (Ŵm(s+ t))dsdt

]
= E

[
1

zTm

∫ Tm+z

0

∫ u∧Tm

(u−z)∨0

ĥN (Ŵ rm(u))dtdu

]

≤ E
[

1

Tm

∫ Tm+z

0

ĥN (Ŵ rm(u))du

]
≤ E

[
1

Tm

∫ Tm+z

0

h · Q̂rm(u)du

]
≤ Tm + z

Tm

(
J∗E +

1

rm

)
,

where the second equality uses a change of variables with u = s+ t, the first inequality uses the fact
that ĥN (·) is nonnegative, the second inequality uses the definitions of ĥ and ĥN in (3.1) and (6.14),
and the third inequality uses the properties of (rm, B

rm , Tm) given in Definition 6.1. Combining
this bound with (6.15) implies

E∗
[∫

RI+×D
I×MI

1

z

∫ z

0

ĥN (w + x(s) + υ([0, s]))dsµ∗(dw, dx, dυ)

]
≤ J∗E

Since this holds for all z > 0, and right continuity implies

lim
z→0

1

z

∫ z

0

ĥN (w + x(s) + υ([0, s]))ds = ĥN (w + x(0) + υ({0})),

for all (w, x, υ) ∈ RI+×DI ×MI , the dominated convergence theorem (combined with the fact that
µ∗({x(0) = 0}) = 1 P ∗-a.s.) gives

E∗
[∫

RI+×D
I×MI

ĥN (w + υ({0}))µ∗(dw, dx, dυ)

]

= lim
z→0

E

[∫
RI+×D

I×MI

1

z

∫ z

0

ĥ(w + x(s) + υ([0, s]))dsµ∗(dw, dx, dυ)

]
≤ J∗E .

(6.16)

Due to the fact that ĥN (w) ↑ ĥ(w) as N →∞ for all w ∈ RI+, the monotone convergence theorem
and (6.16) then give

E∗
[∫

RI+×D
I×MI

ĥ(w + υ({0}))µ∗(dw, dx, dυ)

]

= lim
N→∞

E∗
[∫

RI+×D
I×MI

ĥN (w + υ({0}))µ∗(dw, dx, dυ)

]
≤ J∗E . (6.17)

Due to Theorem 6.5, P ∗-a.s., u(·) = υ((0, ·]) is an admissible control as in Definition 3.1 with
(RI+ × DI ×MI ,B(RI+ × DI ×MI), µ∗, {F∗(t)}, x,w) in place of (Ω̃, F̃ , P̃ , {F̃(t)}, X̃, W̃ ), where
w(·) = w + x(·) + υ([0, ·]). So, from (6.17), P ∗-a.s. we have

J̃BCP,∗E ≤
∫
RI+×D

I×MI

ĥ(w(0))µ∗(dw, dx, dυ)

=

∫
RI+×D

I×MI

ĥ(w + υ({0}))µ∗(dw, dx, dυ) ≤ J∗E ,

completing the proof.

7 Proofs of Auxiliary Results

We finish with the proofs of several results used above. Section 7.1 contains the proof of Proposition
5.5, and the proofs of Propositions 6.1 and 6.2 are given in Sections 7.2 and 7.3, respectively.
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7.1 Proof of Proposition 5.5

Recall the convention that urj (0) = 0 for all r ∈ N and j ∈ AJ . Let j ∈ AJ and t ∈ [0,∞) be
arbitrary. For n ∈ N, we have

{
τr,Aj (t) = n

}
=

{(
tr2 − urj (n)

)+ ≤ n−1∑
l=1

urj (l) < tr2

}

=

{
τr,Aj

((
t−

urj (n)

r2

)+
)
≤ n− 1

}
∩
{
τr,Aj (t) > n− 1

}
,

and note that, for any fixed x ∈ [0,∞), the event{
τr,Aj

((
t− x

r2

)+
)
≤ n− 1 < τ r,Aj (t)

}
is independent of urj (n). Moreover, by standard results about random walks, τr,Aj (t) < ∞ a.s.
Then, recalling that the {urj (l)}∞l=1 are i.i.d., and denoting by γrj the distribution of urj (1),

E
[
urj (τ

r,A
j (t))

]
=

∞∑
n=1

E

[
urj (n)I{τr,Aj (t)=n}

]

=

∞∑
n=1

E

[
urj (n)I{

τ
r,A
j

(
(t−r−2urj (n))+

)
≤n−1<τ

r,A
j (t)

}]

=

∞∑
n=1

∫ ∞
0

xE

[
I{
τ
r,A
j

(
(t−r−2x)+

)
≤n−1<τ

r,A
j (t)

}] γrj (dx)

=

∫ ∞
0

xE

[
∞∑
n=1

I{
τ
r,A
j

(
(t−r−2x)+

)
≤n−1<τ

r,A
j (t)

}
]
γrj (dx)

=

∫ ∞
0

xE

[
τr,Aj (t)− τr,Aj

((
t− x

r2

)+
)]

γrj (dx). (7.1)

Note that

τr,Aj (t)− τr,Aj
((

t− x

r2

)+
)
≤ min

n ≥ 1 :

τ
r,A
j

(
(t−r−2x)+

)
+n∑

l=τ
r,A
j

(
(t−r−2x)+

)
+1

urj (l) ≥ xr−2

 d
= τr,Aj

( x
r2

)
.

Consequently, from (7.1) we have

sup
t>0

E
[
urj (τ

r,A
j (t))

]
≤
∫ ∞

0

xE
[
τr,Aj

( x
r2

)]
γrj (dx). (7.2)

Now, due to Condition (2.1), there exists K ∈ [0,∞) such that

sup
r≥0

E
[
urj (1)I{urj (1)>K}

]
≤ 1

4αj
,

and without loss of generality, we may suppose that K > 1/(4αj). Let R0 > 0 be such that, for all
r ≥ R0, 3

4
α−1
j ≤ (αrj )

−1. Then, for r ≥ R0,

E
[
urj (1)I{urj (1)≤K}

]
=

1

αrj
− E

[
urj (1)I{urj (1)>K}

]
≥ 3

4αj
− 1

4αj
=

1

2αj
,

as well as

E
[
urj (1)I{urj (1)≤K}

]
≤ 1

4αj
P

(
urj (1) <

1

4αj

)
+KP

(
1

4αi
≤ urj (1) ≤ K

)
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≤ 1

4αj
+KP

(
urj (1) ≥ 1

4αj

)
.

Therefore, for r ≥ R0 we have

P

(
urj (1) ≥ 1

4αj

)
≥ 1

K
E
[
urj (1)I{urj (1)≤K}

]
− 1

4Kαj
≥ 1

2Kαj
− 1

4Kαj
≥ 1

4Kαj
. (7.3)

Now, define

Crj (n) =

n∑
l=1

I{urj (l)≥(4αj)−1} and ζrj (x) = min{n ≥ 0 : Crj (n) = d4xαje}.

For some m ∈ N, suppose that ζrj (x) ≤ m. Then,

m∑
l=1

urj (l) ≥
Crj (m)

4αj
≥ 4xαj

4αj
= x,

or τr,Aj (r−2x) ≤ m. Therefore, E
[
τr,Aj

(
r−2x

)]
≤ E

[
ζrj (x)

]
. Because the {urj (l)}∞l=1 are i.i.d., from

(7.3) we see that ζrj (x) is the sum of d4xαje independent geometric distributions with probability
of success P (urj (1) ≥ (4αj)

−1) ≥ (4Kαj)
−1. Thus, for all r ≥ R0, we have

E
[
τr,Aj

( x
r2

)]
≤ E

[
ζrj (x)

]
≤ (1 + 4xαj)4Kαj ≤ 4Kαj + 16xKα2

j .

Combining this with (7.2) implies that for r ≥ R0 we have

sup
t>0

E
[
urj (τ

r,A
j (t))

]
≤
∫ ∞

0

x(4Kαj + 16xKα2
j )γ

r
j (dx)

=
4Kαj
αrj

+ 16

(
(σu,rj )2 +

1

(αrj )
2

)
Kα2

j .

The result now follows from the uniform integrability assumed in Condition 2.1.

7.2 Proof of Proposition 6.1

For (i), note that since τr,Aj (t) is the first n such that
∑n
l=1 u

r
j (l) ≥ r2t,

Υ̂A,r
j (t) = r

 1

r2

τ
r,A
j (t)∑
l=1

urj (l)− t

 <
urj (τ

r,A
j (t))

r
.

Therefore, Proposition 5.5 gives

lim sup
k→∞

sup
t≥0

P
(

Υ̂A,k
j (t) > ε

)
≤ lim sup

k→∞

1

rkε
sup
t≥0

E
[
u
rk
j (τ

rk,A
j (t))

]
= 0.

The proof of (ii) is more complicated because it involves the allocation policy Bk(t). Let j ∈ AJ
and ε > 0 be arbitrary. For k ∈ N define the event

Ht,k =

{
ῩA,k
j (t) ≤ 1

4
, sup
0≤s≤1

∣∣∣∣ 1

rk
Ak,tj (r2

ks)− rksαrkj

∣∣∣∣ ≤ rkα
rk
j

4

}
.

Due to Proposition 5.5, Lemma 5.3 (i) and Lemma 5.1, we have

lim
k→∞

sup
t≥0

P (Ht,k)c = 0. (7.4)
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For t ≥ 0, k ≥ K, and ε > 0 define the event

Ct,kε =

 sup
x,y∈[0,r−1

k
ε+L],|x−y|≤r−1

k
ε

∣∣∣Ŝk,tj (x)− Ŝk,tj (y)
∣∣∣ ≤ ε

 ,

where we recall L = maxi Ci from (2.6).
Due to Lemma 5.3 (i) combined with Lemma 5.1, for fixed ε > 0 we have

lim
k→∞

sup
t≥0

P (Ct,kε )c = 0. (7.5)

Let β0
.
= infj∈AJ infr>0 β

r
j and let ε0

.
= β0ε. Note that, for t > 1,

P
(
rkῩS,k

j (t) > ε
)
≤ P

(
{τk,Sj (t− 1) < τk,Sj (t)} ∩ {rkῩS,k

j (t) > ε}
)

+ P
(
τk,Sj (t− 1) = τk,Sj (t)

)
.

(7.6)

We will now argue that, for t > 1,

P
(
{rkῩS,k

j (t) > ε} ∩ {τk,Sj (t− 1) < τk,Sj (t)}
)
≤ P (Ct−1,k

ε0 )c. (7.7)

For that note that, for t > 1, on the event {τk,Sj (t− 1) < τk,Sj (t)}, we have ξ̄S,kj (t− 1) < B̄kj (t)
and

B̄kj (t) = B̄kj (t− 1) + (B̄kj (t)− B̄kj (t− 1)) ≤ ξ̄S,kj (t− 1) + L

which gives ξ̄S,kj (t−1) < B̄kj (t) ≤ ξ̄S,kj (t−1)+L. In addition, for s ∈ [0, ῩS,k
j (t)), B̄kj (t)+s < ξ̄S,kj (t),

and so on this event, for s ∈ [0, ῩS,k
j (t)), we have

Sk,t−1
j

(
r2
k

(
s+ B̄kj (t)− ξ̄S,kj (t− 1)

))
− Sk,t−1

j

(
r2
k

(
B̄kj (t)− ξ̄S,kj (t− 1)

))
= Skj

(
r2
k

(
s+ B̄kj (t)

))
− Skj

(
r2
k

(
B̄kj (t)

))
= 0

which gives

Ŝk,t−1
j

(
s+ B̄kj (t)− ξ̄S,kj (t− 1)

)
− Ŝk,t−1

j

(
B̄kj (t)− ξ̄S,kj (t− 1)

)
= −rkβkj s.

So, replacing the s above with ε/rk, we see that, on the set {rkῩS,k
j (t) > ε}∩{τk,Sj (t−1) < τk,Sj (t)},

ε0 ≤ εβkj ≤ sup
s∈[0,r−1

k
ε]

∣∣∣Ŝk,t−1
j

(
s+ B̄kj (t)− ξ̄S,kj (t− 1)

)
− Ŝk,t−1

j

(
B̄kj (t)− ξ̄S,kj (t− 1)

)∣∣∣
≤ sup
x,y∈[0,r−1

k
ε+L],|x−y|≤r−1

k
ε

∣∣∣Ŝk,t−1
j (x)− Ŝk,t−1

j (y)
∣∣∣ .

This proves (7.7) and so from (7.6) we obtain that

P
(
rkῩS,k

j (t) > ε
)
≤ P (Ct−1,k

ε0 )c + P (Ht−1,k)c + P
(
{τk,Sj (t− 1) = τk,Sj (t)} ∩ Ht−1,k

)
.

(7.8)

Now we estimate the third probability on the right side. On the event {τk,Sj (t− 1) = τk,Sj (t)}, we
have

Skj

(
r2
kB̄

k
j (t)

)
= Skj

(
r2
kB̄

k
j (t− 1)

)
. (7.9)

Also, since for any s ≥ 0

Akj
(
r2
k(s+ t− 1)

)
= Ak,t−1

j

(
r2
k(s− ῩA,k

j (t− 1))+
)

+Akj
(
r2
k(t− 1)

)
+ I{s≥Ῡ

A,k
j (t−1)>0},
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on Ht−1,k we also have

1

rk
Akj
(
r2
k(t− 1/4)

)
≥ 1

rk
Ak,t−1
j

(
r2
k(3/4− ῩA,k(t− 1))

)
+

1

rk
Akj
(
r2
k(t− 1)

)
≥ 1

rk
Akj
(
r2
k(t− 1)

)
+ rkα

rk
j (3/4− ῩA,rk (t− 1))−

rkα
rk
j

4

≥ 1

rk
Akj (r2

k(t− 1)) +
rkα

k
j

4
.

This and (7.9) give, on the event {τk,Sj (t− 1) = τk,Sj (t)} ∩ Ht−1,k,

Q̂kj (s) ≥ Q̂kj (t− 1) +
rkα

k
j

4
≥
rkα

k
j

4
, s ∈ [t− 1/4, t] .

Therefore, on this event we have∫ t

t−1

Q̂kj (s)ds ≥
∫ t

t−1/4

Q̂kj (s)ds ≥
rkα

k
j

16
,

from which it follows that, for any t > 1,

P
(
{τk,Sj (t− 1) = τk,Sj (t)} ∩ Ht−1,k

)
≤

16E
[∫ t
t−1

Q̂kj (s)ds
]

rkαkj
≤

16
∫ t
t−1

E
[
h · Q̂k(s)

]
ds

rkαkj min1≤l≤J hl
.

Consequently, recalling (7.8), for all t > 1 we have, with κ
.
= 16 supr>0,j∈AJ (αrj )

−1(min1≤l≤J hl)
−1

P
(
rkῩS,k

j (t) > ε
)
≤ P (Ct−1,k

ε0 )c + P (Ht−1,k)c +
κ

rk

∫ t

t−1

E
[
h · Q̂k(s)

]
ds,

which gives

1

Tk

∫ Tk

0

P
(
rkῩS,k

j (t) > ε
)
dt

≤ 1

Tk
+

1

Tk

∫ Tk

1

(
P (Ct−1,k

ε0 )c + P (Ht−1,k)c
)
dt+

κ

rk
· 1

Tk

∫ Tk

1

∫ t

t−1

E
[
h · Q̂k(s)

]
dsdt

≤ 1

Tk
+ sup

t≥0
P (Ct,kε0 )c + sup

t≥0
P (Ht,k)c +

κ

rk
· 1

Tk

∫ Tk

0

E
[
h · Q̂k(t)

]
dt

≤ 1

Tk
+ sup

t≥0
P (Ct,kε0 )c + sup

t≥0
P (Ht,k)c +

κ

rk

(
JkE(Bk) +

1

rk

)
.

Equations (7.4) and (7.5) show that the right side of the above inequality goes to 0 as k → ∞,
which, since j ∈ AJ and ε > 0 were arbitrary, completes the proof of (ii).

7.3 Proof of Proposition 6.2

Part (i) follows directly from Proposition 6.1 (i) and∣∣∣∣(s− ῩA,k(t)
)+

− s
∣∣∣∣ ≤ ∣∣∣ῩA,k(t)

∣∣∣ .
Now we prove part (ii). Fix u ≥ 0, and for each j ∈ AJ and ε > 0 define

Uj,kε,t =

{
inf

0≤s≤u

(
1

ρj

(
B̄kj (s+ t)− ξ̄S,kj (t)

)+

− s
)
< −ε

}
,

Oj,kε,t =

{
sup

0≤s≤u

(
1

ρj

(
B̄kj (s+ t)− ξ̄S,kj (t)

)+

− s
)
> ε

}
,
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and

Ej,kε,t =

{
sup

0≤s≤u

∣∣∣∣ 1

rk
Ak,tj (r2

ks)− rksαkj
∣∣∣∣ ≤ ε

24
αjrk

}
∩
{

sup
0≤s≤Lu

∣∣∣∣ 1

rk
Sk,tj (r2

ks)− rksβkj
∣∣∣∣ ≤ ε

24
αjrk

}
∩
{

sup
0≤s≤u

∣∣∣∣(s− ῩA,k
j (t)

)+

− s
∣∣∣∣ ≤ ε

24

}
.

Note that with these definitions,{
sup
s∈[0,u]

∣∣∣∣(B̄kj (s+ t)− ξ̄S,kj (u)
)+

− ρjs
∣∣∣∣ > ε

}
= Uj,k

ρ−1
j ε,t

∪ Oj,k
ρ−1
j ε,t

, (7.10)

and due to Lemma 5.3 (i) combined with Lemma 5.1 and part (i) proved above, we have

lim
k→∞

sup
t≥0

P (Ej,kε,t )c = 0 (7.11)

for all j ∈ AJ .
The idea behind the proof is as follows. On the event Ej,kε,t , an under-allocation of resource j

(the event Uj,kε,t ) implies that the scaled queue length, Q̂rj , gets very large. So, we can show that the

(time averaged) probability of Uj,kε,t goes to 0 using the fact that {Bk} is an asymptotically optimal
sequence of controls along with (7.11). We then use this along with the fact that an over-allocation
in resource j (the event Oj,kε,t ) implies an underallocation in another (see the resource constraint in

Definition 2.2 (ii)) to show that the (time averaged) probability of Oj,kε,t goes to 0. These two results
combined with (7.10) complete the proof.

We first show that

lim
k→∞

1

Tk

∫ Tk

0

P
(
Uj,kε,t

)
dt = 0 (7.12)

for all j ∈ AJ and ε > 0. When u = 0, Uj,kε,t = {(B̄kj (t) − ξ̄S,kj (t))+ < −ε} = ∅, so we may assume
that u > 0, and without loss of generality that ε ∈ (0, u). Also assume that k is sufficiently large
that 1/r2

k ≤ αjε/8 and that, for all j ∈ AJ ,(
1− ε

12u

)
αj ≤ αkj ≤ 2αj , (7.13)

and
βkj ρj = βkj

αj
βj
≤
(

1 +
ε

12u

)
αj . (7.14)

For any t, s ≥ 0, from (5.1),

Q̂kj (s+ t) = Q̂kj (t) +
1

rk
Ak,tj

(
r2
k

(
s− ῩA,k

j (t)
)+
)
− 1

rk
Sk,tj

(
r2
k

(
B̄kj (s+ t)− ξ̄S,kj (t)

)+
)

+
1

rk
I{
s≥Ῡ

A,k
j (t)>0

} − 1

rk
I{
B̄kj (s+t)≥ξ̄S,kj (t),Ῡ

S,k
j (t)>0

}, (7.15)

which, combined with 1/r2
k ≤ αjε/8, gives

Q̂kj (s+ t) ≥ 1

rk
Ak,tj

(
r2
k

(
s− ῩA,k

j (t)
)+
)
− 1

rk
Sk,tj

(
r2
k

(
B̄kj (s+ t)− ξ̄S,kj (t)

)+
)
− αjrkε

8
.

Note that ρ−1
j (B̄kj (s+ t)− ξ̄S,r(t))+ − s ≥ −ε for all s ∈ [0, ε], so on the set Uj,kε,t , there exists some

s∗ ∈ (ε, u] such that
1

ρj

(
B̄kj (s∗ + t)− ξ̄S,r(t)

)+

− s∗ < −ε.

Consequently, on the set Ej,kε,t ∩ U
j,k
ε,t we have

Q̂kj (s∗ + t) ≥ αkj rk
(
s∗ − ῩA,k

j (t)
)+

− ε

24
αjrk − rkβkj

(
B̄kj (s∗ + t)− ξ̄S,kj (t)

)+

− ε

24
αjrk −

αjrkε

8
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≥ αkj rk
(
s∗ − ε

24

)
− rkβkj ρj(s∗ − ε)−

ε

12
αjrk −

αjrkε

8

≥
(

1− ε

12u

)
αjrk

(
s∗ − ε

24

)
− rk

(
1 +

ε

12u

)
αj(s

∗ − ε)− 5αjrkε

24

= −αjrks
∗ε

6u
+

9αjrkε

12
+

25αjrkε
2

288u

≥ 7αjrkε

12
,

where third inequality uses (7.13) and (7.14), and the last inequality uses s∗ ≤ u. Now consider
s ∈ [ε/24, s∗]. Note that, on Ej,kε,t ∩ U

j,k
ε,t , ῩA,k

j (t) ≤ ε
24

, and so using (7.15), (7.13), (7.14), the fact

that Sk,tj (·) and B̄kj (·) are increasing, and that on Ej,kε,t

α
rk
j rkx−

αjrkε

24
≤ 1

rk
Ak,tj (r2

kx) ≤ αrkj rkx+
αjrkε

24
, x ∈ [0, u],

we have, on Ej,kε,t ∩ U
j,k
ε,t ,

Q̂kj (s+ t)− Q̂kj (s∗ + t) ≥ 1

rk
Ak,tj

(
r2
k

(
s− ῩA,k

j (t)
)+
)
− 1

rk
Ak,tj

(
r2
k

(
s∗ − ῩA,k

j (t)
)+
)

≥ αkj rk
(
s− ῩA,k

j (t)
)+

− αjrkε

24
− αkj rk

(
s∗ − ῩA,k

j (t)
)+

− αjrkε

24

≥ −αrkj rk(s∗ − s)− αjrkε

12

≥ −2αjrk(s∗ − s)− αjrkε

12
.

It follows that

Q̂kj (s+ t) ≥ 7αjrkε

12
− 2αjrk(s∗ − s)− αjrkε

12
=
αjrkε

2
− 2αjrk(s∗ − s).

Then, recalling that s∗ > ε, for any s ∈
[
s∗ − ε

8
, s∗
]
⊂ [ε/24, s∗] and on the event Ej,kε,t ∩ U

j,k
ε,t , we

have
Q̂kj (s+ t) ≥ αjrkε

2
− αjrkε

4
=
αjrkε

4
.

Therefore,

E

[∫ s∗

s∗− ε
8

Q̂kj (s+ t)ds

∣∣∣∣∣ Ej,kε,t ∩ Uj,kε,t
]
≥ rkαjε

2

32
,

and consequently,

E

[∫ u

0

Q̂kj (s+ t)ds

]
≥ E

[
IEj,kε,t ∩Uj,kε,t

∫ s∗

s∗− ε
8

Q̂kj (s+ t)ds

]

= E

[
IEj,kε,t ∩Uj,kε,t E

[∫ s∗

s∗− ε
8

Q̂kj (s+ t)ds

∣∣∣∣∣ Ej,kε,t ∩ Uj,kε,t
]]

≥ P
(
Ej,kε,t ∩ U

j,k
ε,t

)
· rkαjε

2

32
,

which says that

P
(
Ej,kε,t ∩ U

j,k
ε,t

)
≤ 32

rkαjε2
E

[∫ u

0

Q̂kj (s+ t)ds

]
.

Therefore,

1

Tk

∫ Tk

0

P
(
Uj,kε,t

)
dt ≤ 1

Tk

∫ Tk

0

(
P
(

(Ej,kε,t )c
)

+ P
(
Ej,kε,t ∩ U

j,k
ε,t

))
dt

≤ sup
t≥0

P
(

(Ej,kε,t )c
)

+
32

rkαjε2
· 1

Tk

∫ Tk

0

E

[∫ u

0

Q̂kj (s+ t)ds

]
dt
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≤ sup
t≥0

P
(

(Ej,kε,t )c
)

+
32

rkαjε2
· u
Tk
E

[∫ Tk+u

0

Q̂kj (t)dt

]
≤ sup

t≥0
P
(

(Ej,kε,t )c
)

+
32

rkαjε2
· u(Tk + u)

Tk
E

[
1

Tk + u

∫ Tk+u

0

Q̂kj (t)dt

]
.

Now (7.12) follows as in the proof of Proposition 6.1 on using (7.11), the properties of (rk, B
k, Tk)

in Definition 6.1, and Lemma 5.2.
Next, we show that

lim
k→∞

1

Tk

∫ Tk

0

P
(
Ol,kε,t

)
dt = 0 (7.16)

for all l ∈ AJ and ε > 0. Fix l ∈ AJ , so on the set Ol,kε,t there exists some s∗ ∈ [0, u] such that

B̄kl (s∗ + t)− B̄kl (t) ≥
(
B̄kl (s∗ + t)− ξ̄S,rl (t)

)+

> ρls
∗ + ρlε.

Note that there exists some i ∈ AI such that Ki,l = 1. If {j : Ki,j = 1} \ {l} = ∅ (i.e., that l is the
only job type processed by resource i), then Ci = ρl (see Condition 2.2) and[

K
(
B̄kl (s∗ + t)− B̄kl (t)

)]
i
> ρls

∗ + ρlε > Cis
∗,

which, due to Definition 2.2 (ii), cannot occur with positive probability. This means that {j : Ki,j =

1} \ {l} = ∅ implies that P
(
Ol,kε,t

)
= 0. So, now assume that {j : Ki,j = 1} \ {l} 6= ∅, i.e. that

resource i processes job types other than l. Then in order to satisfy Definition 2.2 (ii), we must
have

Cis
∗ ≥

∑
j∈AJ

Ki,j

(
B̄kj (s∗ + t)− B̄kj (t)

)
>

∑
j∈AJ\{l}

Ki,j

(
B̄kj (s∗ + t)− B̄kj (t)

)
+ ρls

∗ + ρlε.

Since Ci =
∑
j∈AJ Ki,jρj , this gives∑

j∈AJ\{l}

Ki,jρjs
∗ − ρlε >

∑
j∈AJ\{l}

Ki,j

(
B̄kj (s∗ + t)− B̄kj (t)

)
,

which implies

−ρlε >
∑

j∈AJ\{l}

Ki,j

(
B̄kj (s∗ + t)− B̄kj (t)− ρjs∗

)
≥ # ({j : Ki,j = 1} \ {l}) · max

j∈AJ\{l}
ρj · min

j∈AJ\{l}

(
1

ρj

(
B̄kj (s∗ + t)− B̄kj (t)

)
− s∗

)
≥ J ·max

j∈AJ
ρj · min

j∈AJ\{l}

(
1

ρj

(
B̄kj (s∗ + t)− B̄kj (t)

)
− s∗

)
,

since {j : Ki,j = 1} \ {l} 6= ∅ and we must have (ρ−1
j (B̄kj (s∗ + t) − B̄kj (t)) − s∗) < 0 for some

j ∈ AJ \ {l} in order for the inequality to be satisfied. This gives

min
j∈AJ

(
1

ρj

(
B̄kj (s∗ + t)− ξ̄S,rj (t)

)+

− s∗
)
≤ min
j∈AJ\{l}

(
1

ρj

(
B̄kj (s∗ + t)− B̄kj (t)

)
− s∗

)
< − ρlε

J maxj ρj

.
= −ε̃.

Consequently,

Ol,kε,t ⊂
⋃
j∈Aj

Uj,kε̃,t ,

and so, from (7.12) we now have that

lim
k→∞

1

Tk

∫ Tk

0

P
(
Ol,kε,t

)
dt ≤ lim

k→∞

∑
j∈AJ

1

Tk

∫ Tk

0

P
(
Uj,kε̃,t

)
dt = 0.
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This establishes (7.16), which together with (7.10) and (7.12) completes the proof of (ii).
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