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There are two types of involutions on a cubic threefold: the Eckardt type (which has

been studied by the first named and the third named authors) and the non-Eckardt

type. Here we study cubic threefolds with a non-Eckardt type involution, whose fixed

locus consists of a line and a cubic curve. Specifically, we consider the period map

sending a cubic threefold with a non-Eckardt type involution to the invariant part of

the intermediate Jacobian. The main result is that the global Torelli Theorem holds for

the period map. To prove the theorem, we project the cubic threefold from the pointwise

fixed line and exhibit the invariant part of the intermediate Jacobian as a Prym variety

of a (pseudo-)double cover of stable curves. The proof relies on a result of Ikeda

and Naranjo–Ortega on the injectivity of the related Prym map. We also describe the

invariant part of the intermediate Jacobian via the projection from a general invariant

line and show that the two descriptions are related by the bigonal construction.

1 Introduction

Moduli spaces of cubic hypersurfaces are a central object of moduli theory, as they are

one of the first examples one can study via a Hodge theoretic period map. Clemens,

Griffiths [13], Mumford [34], and Beauville [8] proved the global Torelli Theorem for

cubic threefolds—namely, a cubic threefold is determined up to isomorphism by its
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Cubic Threefolds with Non-Eckardt type Involution 16105

intermediate Jacobian. Based on the work of Voisin, Hassett, Laza, and Looijenga on

the period map for cubic fourfolds, Allcock, Carlson, and Toledo [3] and Looijenga and

Swierstra [27] have exhibited the moduli space of cubic threefolds as a ball quotient.

More specifically, this is achieved via the (eigen)periodmap for cubic fourfolds admitting

an automorphism of order 3, which are obtained as triple covers of P4 branched along a

cubic threefold. Furthermore, Kudla and Rapoport [25] (see also [42]) have interpreted

the above construction as a certain map of stacks taking values in a moduli stack

of abelian varieties of Picard type; in this way they are also able to describe the

field of definition of the period map. It is worth noting that cubic hypersurfaces with

additional automorphisms are related to other interesting moduli problems, and have

been key ingredients for constructing several new period maps. Besides the moduli

of cubic threefolds [3, 27], examples include moduli of cubic surfaces [2] (via cubic

threefolds with an order 3 automorphism), moduli of cubic threefold pairs [26], and

cubic surface pairs [16] (via cubic fourfolds and cubic threefolds admitting an Eckardt

type involution, respectively). In a different direction, cubic threefolds with extra

symmetry provide examples of unlikely intersections in the intermediate Jacobian

locus [16].

Involutions on cubic fourfolds have been recently studied in [26], [41], and [31] (see

also [29]). In this paper, we focus on cubic threefolds admitting a (biregular) involution—

these have been classified in for instance [23]. In particular, there are two types of

involutions for a cubic threefold; admitting one type is equivalent to having an Eckardt

point. The moduli space of cubic threefolds admitting an Eckardt type involution has

been studied in [16]; the main result is that the period map sending an Eckardt cubic

threefold to the anti-invariant part of the intermediate Jacobian is injective. The purpose

of this paper is to study the analogous situation for the remaining involution.

More concretely,we study themoduli spaceM of cubic threefolds X ⊂ P
4 with an

involution τ of non-Eckardt type, whose fixed locus in X consists of a line L and a cubic

curve C. We define JXτ to be the invariant part of the intermediate Jacobian JX with

respect to the induced involution τ . The abelian subvariety JXτ ⊂ JX is of dimension 3

and inherits a polarization of type (1, 2, 2), and thus we obtain a period map:

P : M −→ A(1,2,2)
3

(X, τ) �→ JXτ .

Our main result is the following global Torelli theorem for P.
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16106 S. Casalaina-Martin et al.

Theorem 0.1 (Global Torelli for cubic three-folds with a non-Eckardt type involution;

Theorem 3.1). The period map P : M → A(1,2,2)
3 , which sends a cubic threefold X with a

non-Eckardt type involution τ to the invariant part JXτ ⊂ JX, is injective.

We also prove that the infinitesimal Torelli theorem holds for P : M → A(1,2,2)
3

over an open subset M0 ⊂ M (this is analogous to the situation for the moduli space of

smooth curves of genus greater than 2, where the infinitesimal Torelli theorem holds for

the non-hyperelliptic locus; see Remark 9).

Proposition 0.2 (Infinitesimal Torelli for cubic threefolds with a non-Eckardt type

involution; Proposition 3.4). Let M0 ⊂ M be the open subset described in § 3.4. The

differential dP of the period map P is an isomorphism at every point of M0 ⊂ M.

Combining this with Theorem 0.1, P|M0
: M0 → A(1,2,2)

3 is an open embedding.

The strategy for proving the global Torelli theorem for the periodmapP is similar

to that in [16]. Specifically, we project (X, τ) from the pointwise fixed line L ⊂ X to

realize the invariant part JXτ ⊂ JX as a Prym variety. In particular, we show that JXτ

is isomorphic to the dual abelian variety of the Prym variety P(C̃,C) of a double cover

π : C̃ → C of a genus 1 curve C branched in six points (see Theorem 2.5). The crucial

element in the proof is the description of Prym varieties for (pseudo-)double covers of

stable curves given in [7]. The associated Prymmap (recall thatRg,2n is the moduli space

of double covers of smooth genus g curves branched in 2n distinct points)

P1,6 : R1,6 → A(1,1,2)
3

is known to be injective (cf. [24] or [36]), allowing us to recover π : C̃ → C from JXτ . We

then apply the reconstruction result in [9] (see also [14]) to prove Theorem 0.1, noting

that the line bundle L associated with the double cover π allows one to embed C into P
2

as a plane cubic (cf. Proposition 2.2).

We also study the fibration in conics obtained via the projection of a (general)

cubic threefold X with a non-Eckardt type involution τ from a (general) invariant line

l ⊂ X. Invariant but not pointwise fixed lines in X are parameterized by the curve C̃. In

this direction, we prove that the invariant part JXτ is isomorphic to the Prym variety

P(Dτ ,Dl) associated with a double cover bτ : Dτ → Dl of a genus 2 curve Dl ramified in

four points (c.f. Theorem 4.4). The main techniques used in the proof are those developed

in [34], [20], and [38] for studying Galois covers of curves with automorphism group the

Klein four group. Letting the invariant line l vary, one would expect the generic injectivity
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Cubic Threefolds with Non-Eckardt type Involution 16107

of the natural map from C̃ to the generic fiber of the associated Prym map

P2,4 : R2,4 → A(1,2,2)
3 .

However, this is not the case—if two invariant lines l and l′ form a coplanar pair

(corresponding to a point cl∪l′ ∈ C) meeting the pointwise invariant line L, then the double

covers bτ : Dτ → Dl and b′
τ : D′

τ → Dl′ are isomorphic. Indeed, we prove the following

result which relates the double covers bτ : Dτ → Dl (respectively, b
′
τ : D′

τ → Dl′ ) and

π : C̃ → C via the bigonal construction (see for example [20]). This allows us to apply

the argument in [36] or [22] to show that the generic fiber of P2,4 : R2,4 → A(1,2,2)
3 over a

general member JXτ ∈ A(1,2,2)
3 is birational to the elliptic curve C (cf. Proposition 4.6).

Proposition 0.3 (Projection from the pointwise fixed line versus projection from a

general invariant line; Proposition 4.5). Notation as above. The towers of double covers

Dτ

bτ→ Dl
r→ P

1; D′
τ

b′
τ→ Dl′

r′→ P
1

are both bigonally related to the tower of double covers C̃
π→ C

p→ P
1, where r : Dl → P

1

(respectively, r′ : Dl′ → P
1) denotes the map determined by the unique g12 of the genus 2

curve Dl (respectively, Dl′ ) and p : C → P
1 is the projection map from the point cl∪l′ ∈ C.

In particular, bτ : Dτ → Dl and b′
τ : D′

τ → Dl′ are isomorphic.

Finally, we note that exhibiting the invariant part JXτ as a Prym variety turns

out to be crucial for the ongoing project of the second named author, in applying the

LSV construction (cf. [28] and [39]) to cubic fourfolds with a non-Eckardt type involution.

This is important in the geometric study of involutions of hyper-Kähler manifolds of

OG10 type (see [32]), particularly those involutions induced from a cubic fourfold. Recall

that the Prym construction of the intermediate Jacobian of a cubic threefold is central

to the work in [28], which associates to a cubic fourfold a hyper-Kähler manifold of

OG10 type.

We now give an outline of the paper; we work throughout over the complex

numbers C. In § 1, we introduce our objects of interest, namely cubic threefolds X with a

non-Eckardt type involution τ .We also investigate lines that are invariant under such an

involution. In § 2, we exhibit such a cubic threefold X as a conic fibration via projection

from the pointwise fixed line L ⊂ X and describe the invariant part JXτ as a Prym variety.

Using this description, we prove global and infinitesimal Torelli theorems for the period

map P : M → A(1,2,2)
3 in § 3. Finally, we discuss an alternative description for J(X)τ ,

obtained by projecting X from an invariant line different from L in § 4.
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16108 S. Casalaina-Martin et al.

1 Cubic threefolds with a non-Eckardt type involution

In § 1.1, we introduce cubic threefolds X with a non-Eckardt type involution τ . We then

define a period map P for these cubic threefolds in § 1.2. In order to study the period

map P, we will project X from an invariant line to exhibit the intermediate Jacobian JX

as a Prym variety; we investigate the τ -invariant lines that are contained in X in § 1.3.

1.1 Involutions of cubic threefolds

Let X ⊂ P
n+1 be a smooth hypersurface of degree d. Denote by Aut(X) the group of

automorphisms of X, and by Lin(X) the subgroup of Aut(X) consisting of automor-

phisms induced by projective transformations of the ambient projective space leaving

X invariant. By [33, Thm. 1 and 2], assuming n ≥ 2,d ≥ 3 we have that Aut(X) = Lin(X),

except in the case n = 2,d = 4. Moreover, Aut(X) is finite (again excluding the case

n = 2,d = 4). As a consequence (and specifying to the case n = d = 3), one can obtain

a complete classification of prime order automorphisms of smooth cubic threefolds (e.g.

[23, Thm. 3.5], see also the references in [29, Rmk. 1.6]). In particular, for involutions we

have the following classification.

Proposition 1.1. Let X = V(F) be a smooth cubic threefold in P
4 that admits an

involution τ . Applying a linear change of coordinates, we can diagonalize τ , so that

τ : P4 → P
4, [x0, . . . , x4] �→ [(−1)a0x0, . . . , (−1)a4x4],

with ai ∈ {0, 1}. Let a := (a0, . . .a4), and let D be the dimension of the family of smooth

cubic threefolds that admit the involution τ . Then

1. either a = (0, 0, 0, 0, 1) and τ = τ1 fixes pointwise a hyperplane section S ⊂ X

and a point p ∈ X \ S. We have that D = 7 and

F = f (x0, x1, x2, x3) + �(x0, x1, x2, x3)x
2
4,

where � is a homogeneous linear polynomial, and f is homogeneous of degree

3.

2. or a = (0, 0, 0, 1, 1) and τ = τ2 fixes pointwise a line l ⊂ X and a plane cubic

C ⊂ X. We have that D = 6 and

F = x0q0(x3, x4) + x1q1(x3, x4) + x2q2(x3, x4) + g(x0, x1, x2),

where each qi is a homogeneous quadratic polynomial and g is a homogeneous

cubic polynomial.
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Cubic Threefolds with Non-Eckardt type Involution 16109

Proof. See [23, Thm. 3.5]. �

Admitting an involution of type τ1 is equivalent to the existence of an Eckardt

point. Such a cubic is called an Eckardt cubic and has been well studied (see for example

[26] and [16]). In this paper, we will focus on studying involutions of the type τ2; we make

the following definition.

Definition 1.2. We call an involution on a smooth cubic threefold of type τ2 (as in

Proposition 1.1) an involution of non-Eckardt type.

Throughout, X ⊂ P
4 is a smooth cubic threefold with an involution τ of non-

Eckardt type with equation

F = x0q0(x3, x4) + x1q1(x3, x4) + x2q2(x3, x4) + g(x0, x1, x2) = 0, (1)

where each qi(x3, x4) is homogeneous of degree 2 and g(x0, x1, x2) is homogeneous of

degree 3. The involution

τ : [x0, x1, x2, x3, x4] �→ [x0, x1, x2,−x3,−x4] (2)

fixes two complementary linear subspaces of P4 pointwise; the line L := V(x0, x1, x2) and

the plane � := V(x3, x4). Notice that the line L ⊂ X, and the fixed curve C is given by the

intersection X ∩ �; i.e. C = V(g(x0, x1, x2), x3, x4).

Lemma 1.3. Let (X, τ) be a smooth cubic threefold with a non-Eckardt type involution.

Then the fixed curve C ⊂ X as above is smooth.

Proof. Suppose that C is not smooth.Then there exists a = [a0,a1,a2] ∈ C ⊂ � ∼= P
2
x0,x1,x2

such that ∂g
∂xi

(a) = 0 for i = 0, 1, 2. Taking partial derivatives of the Equation (1) shows

that X is singular at the point [a0,a1,a2, 0, 0]. �

1.2 The period map for cubic threefolds with a non-Eckardt type involution

Let X be a cubic threefold with the involution τ of non-Eckardt type as discussed in

the previous subsection. By abuse of notation, we use τ to denote the involution on the

principally polarized intermediate Jacobian JX induced by the involution τ of X. Define

the invariant part JXτ and the anti-invariant part JX−τ , respectively, by

JXτ := Im(1 + τ); JX−τ := Im(1 − τ). (3)
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16110 S. Casalaina-Martin et al.

Note that JXτ and JX−τ are τ -stable complementary abelian subvarieties of JX (cf. [11,

Prop. 13.6.1]).

Lemma 1.4. The abelian subvarieties JXτ and JX−τ have dimensions 3 and 2, respec-

tively. The principal polarization of JX induces polarizations of type (1, 2, 2) and (2, 2)

on JXτ and JX−τ , respectively.

Proof. The abelian subvarieties JXτ and JX−τ correspond to the symmetric idem-

potents 1+τ
2 and 1−τ

2 in EndQ(JX), respectively. Using [11, Prop. 5.3.10], we compute

their dimensions by studying the eigenspace decomposition of τ on H1,2(X) or H2,1(X)

for a particular smooth cubic threefold with an involution of non-Eckardt type (e.g.

V(x0x
2
3 + x0x

2
4 + x1x

2
3 + x2x

2
4 − x30 + x31 + x32)). Identifying the eigenspaces is a standard

computation using Griffiths residues (see for instance [15, Thm. 3.2.10]). The claim on the

polarization types will be proved later in Theorem 2.5 (see also Theorem 4.4). Note that

here the number of 2’s in the polarization types for JXτ and JX−τ are the same, which

for instance follows from [16, Lem. 1.13]. �

Let M be the moduli space of cubic threefolds X with an involution τ of non-

Eckardt type constructed using GIT (see for example [41, §2.2]). Let A(1,2,2)
3 be the moduli

space of abelian threefolds with a polarization of type (1, 2, 2). Note that dimM = 6 and

dimA(1,2,2)
3 = 6. Define a period map (via Lemma 1.4):

P : M −→ A(1,2,2)
3 ;

(X, τ) �→ JXτ ,

which sends a smooth cubic threefold X with an involution τ of non-Eckardt type to the

invariant part JXτ of the intermediate Jacobian JX.

1.3 Invariant lines

In order to study the period map P in § 1.2, we will need to understand how the

intermediate Jacobian JX of such a cubic threefold (X, τ) decomposes with respect to

the involution τ . As in [16], our strategy will be to project X from a τ -invariant line to

exhibit JX as the Prym variety of the associated discriminant double cover.

Lemma 1.5. Let X be a smooth cubic threefold with an involution τ of non-Eckardt type,

cut out by Equation (1). Let l ⊂ X be a τ -invariant line. Then either l is pointwise fixed
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Cubic Threefolds with Non-Eckardt type Involution 16111

by τ (i.e. l = L = V(x0, x1, x2)), or l intersects both the fixed line L and the fixed curve

C = V(g(x0, x1, x2), x3, x4) ⊂ X.

Proof. We use the notation in § 1.1. The fixed locus of the involution τ acting on P
4

consists of the line L and the plane � = V(x3, x4). If τ fixes every point of l ⊂ C, then

either l = L, or l is a component of C. By Lemma 1.3, the curve C is smooth, and so l = L.

Otherwise, τ fixes two points of l ⊂ X. One of the points needs to be off of the fixed line

L, and hence must be a point of C. Thus l intersects both L and C. �

Observe that the plane 〈L, l〉 spanned by the pointwise fixed line L and an

invariant line l �= L is itself τ -invariant and therefore must intersect X along a third

invariant line l′. Through projecting X from the pointwise fixed line L ⊂ X, we will see in

§ 2.2 (and also the proof of Proposition 2.4) that the τ -invariant lines l ⊂ X which are not

pointwise fixed are parameterized by a smooth genus 4 curve C̃ which is a double cover

of C. In other words, the fixed locus of τ on the Fano surface F(X) of lines consists of a

point corresponding to the pointwise fixed line L and the other curve C̃ parameterizing

other τ -invariant lines l: F(X)τ = {L} ∪ C̃.

2 Cubic threefolds with an involution of non-Eckardt type as fibrations in conics I:

pointwise fixed line

In this section, we study the intermediate Jacobians JX of cubic threefolds (X, τ) with

an involution of non-Eckardt type via projections from the pointwise fixed lines L ⊂ X.

Some basic facts about cubic threefolds as fibrations in conics are first recalled in §

2.1. We then focus on cubic threefolds with a non-Eckardt type involution and study

the fibrations in conics obtained by projecting these cubic threefolds from pointwise

fixed lines in § 2.2. An important observation is that the discriminant quintic curves

split as the union of smooth cubic curves and transverse quadratic curves. Based on the

observation and the results in [7, §0.3], we give a characterization of the invariant and

anti-invariant parts of the intermediate Jacobians in § 2.3.

2.1 Cubic threefolds as fibrations in conics

Let X ⊂ P
4 be a smooth cubic threefold with a line l ⊂ X. The linear projection with

center l expresses X as a conic fibration over a complementary plane P
2; indeed, P2 also

parametrizes the space of P2-sections of X containing l. The blow up BllP
4 of the ambient
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16112 S. Casalaina-Martin et al.

projective space along l gives a commutative diagram

where BllX is the strict transform of X in BllP
4, yielding a fibration in conics πl : BllX →

P
2. The discriminant curve is a plane quintic D ⊂ P

2 which by [7, Prop. 1.2] is stable,

and there is an associated pseudo-double cover (Let D̃ → D be a double cover of stable

curves with the associated covering involution ι. We say that D̃ → D is admissible if

the fixed points of ι are nodes, and the local branches are not interchanged by ι at each

fixed node of D̃. An admissible double cover D̃ → D is called allowable (see [6, (**), p.

173] and [21, §I.1.3]) if the associated Prym is compact. An allowable double cover D̃ →
D is said to be a pseudo-double cover (cf. [6, (*), p. 157] and [7, Def. 0.3.1]) if the fixed

points of ι are exactly the nodes of D̃.) π : D̃ → D determined by interchanging the

lines in the fiber of πl over the points of D (cf. [7, Prop. 1.5]). For a projection from a

general line l ⊂ X, D is smooth and D̃ → D is connected and étale (see for example

[13, Appendix C]).

Associated with the discriminant double cover π : D̃ → D is a rank-1 torsion-free

sheaf ηD which is reflexive, i.e.Hom(ηD,OD) ∼= ηD (more precisely, D̃ → D is constructed

as Spec
D
(OD ⊕ ηD) → D, where the OD-algebra structure on OD ⊕ ηD is induced by

Hom(ηD,OD) ∼= ηD). Let κD := ηD⊗OD(1). Then κD is an odd theta characteristic satisfying

Hom(κD,ωD) ∼= κD and h0(D, κD) = 1. Note also that κD (and therefore ηD) is locally free at

a point d ∈ D if and only if D̃ → D is étale over d. By [7, §1.6] and [14, Prop. 4.2], the conic

fibration construction gives a one-to-one correspondence between pairs (X, l) consisting

of a smooth cubic threefold X and a line l ⊂ X and pairs (D, κD), where D is a stable plane

quintic curve and κD is a theta characteristic with h0(D, κD) = 1, both up to projective

linear transformations.

The above construction can also be described in coordinates. We may assume

that l ⊂ P
4 is cut out by x0 = x1 = x2 = 0. Since l ⊂ X, the equation of X is of

the form

�1(x0, x1, x2)x
2
3 + �2(x0, x1, x2)x

2
4 + 2�3(x0, x1, x2)x3x4

+ 2q1(x0, x1, x2)x3 + 2q2(x0, x1, x2)x4 + c(x0, x1, x2) = 0,
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Cubic Threefolds with Non-Eckardt type Involution 16113

where �i, qj and c are homogeneous polynomials of degree 1, 2, and 3, respectively. LetM

be the matrix

M =

⎛⎜⎜⎝
�1(x0, x1, x2) �3(x0, x1, x2) q1(x0, x1, x2)

�3(x0, x1, x2) �2(x0, x1, x2) q2(x0, x1, x2)

q1(x0, x1, x2) q2(x0, x1, x2) c(x0, x1, x2)

⎞⎟⎟⎠ . (4)

Then the discriminant quintic curve D ⊂ V(x3, x4) ∼= P
2 for the conic fibration πl : BllX →

P
2 is cut out by the discriminant of M: D = V(det(M)). In particular, a point d ∈ D is a

smooth point if and only if the corank of M at d is 1 (note that because X is smooth the

corank of M is at most 2). Moreover, following [9, Prop. 4.2] and [14, Thm. 4.1] the theta

characteristic κD admits a short exact sequence

0 → OP2(−2)⊕2 ⊕ OP2(−3)
M→ OP2(−1)⊕2 ⊕ OP2 → κD → 0.

(Indeed, the smooth cubic threefold X and the line l ⊂ X can be recovered from the

above minimal resolution of κD up to projective linear transformations, cf. [14, Prop. 4.2].)

When the plane discriminant quintic D is smooth and the discriminant double cover

π : D̃ → D is connected and étale, the theta characteristic κD corresponds to the divisor√
(�1�2 − �23 = 0) (which is the unique effective divisor such that twice of the divisor is

the divisor (�1�2 − �23 = 0) on D), and the étale double cover D̃ → D is associated with the

2-torsion line bundle ηD = κD(−1).

Denote the Prym variety of the discriminant pseudo-double cover π : D̃ → D by

P(D̃,D), which is defined as

P(D̃,D) := (ker(Nmπ : J(D̃) → J(D)))0

(cf. [34, §3] and [6, §3]). For later use, let us give an explicit description of P(D̃,D) following

[7, §0.3]. Set ν̃ : N(D̃) → D̃ (respectively, ν : N(D) → D) to be the normalization of D̃

(respectively, D). Denote by π ′ : N(D̃) → N(D) the induced double cover. By [6, Prop.

3.5], there exists an isogeny ν̃∗ : P(D̃,D) → P(N(D̃),N(D)). More precisely, denote by

�J(N(D̃)) the principal polarization on J(N(D̃)) and consider the restriction of �J(N(D̃))

to P(N(D̃),N(D)):

�P(N(D̃),N(D)) := �J(N(D̃))|P(N(D̃),N(D)).

By [6, Thm. 3.7], �P(N(D̃),N(D)) induces twice of a principal polarization 
 on P(D̃,D):

(ν̃∗)−1�P(N(D̃),N(D)) ≡alg 2
.
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16114 S. Casalaina-Martin et al.

In other words, the isogeny above is an isogeny of polarized abelian varieties:

ν̃∗ : (P(D̃,D), 2
) → (P(N(D̃),N(D)),�P(N(D̃),N(D))).

From [11, Prop. 12.1.3], we deduce that

(P(N(D̃),N(D))∨, (�P(N(D̃),N(D)))
∨) ∼= (J(N(D̃))/π ′∗J(N(D)),�′)

where �′ denotes the dual polarization (Here we are using the dual polarization defined

in [10, Thm. 2.1] (see also [16, Rmk. 1.14]) which is slightly different from the one used in

[11, §14.4]. In particular, for a polarization of type (d1,d2, . . . ,dg) the dual polarization

has type (
dg
dg

, dg
dg−1

, . . . , dgd1
).). As a result, we get the dual isogeny of polarized abelian

varieties

(ν̃∗)∨ : (J(N(D̃))/π ′∗J(D),�′) → (P(D̃,D)∨, (2
)∨) ∼= (P(D̃,D),
).

For a pseudo-double cover, the kernel of (ν̃∗)∨ has been described in [7, §0.3] (see also [1,

p. 76]). Specifically, let H ′ ⊂ Pic(N(D̃)) be the subgroup generated by ON(D̃)(s− s′), where

s, s′ ∈ N(D̃) with ν̃(s) = ν̃(s′). Set H to be the image of H0 := H ′ ∩ J(N(D̃)) in the quotient

J(N(D̃))/π ′∗J(N(D)). Then H is the kernel of the isogeny of polarized abelian varieties

0 → H → J(N(D̃))/π ′∗J(D)
(ν̃∗)∨→ P(D̃,D) → 0.

By [13, Appendix C] and [7, Thm. 2.1], the conic fibration construction πl : BllX →
P
2 induces a canonical isomorphism of principally polarized abelian varieties

JX ∼= P(D̃,D)

between the intermediate Jacobian JX of the smooth cubic threefold X and the Prym

variety P(D̃,D) of the discriminant double cover D̃ → D.

2.2 Projecting cubic threefolds with a non-Eckardt type involution from the pointwise fixed

lines

Let (X, τ) be a smooth cubic threefold with a non-Eckardt type involution as in § 1.1. Let

L ⊂ X be the pointwise fixed line under τ (see Lemma 1.5). We can rewrite the equation

of X in Equation (1) as

�1(x0, x1, x2)x
2
3 + �2(x0, x1, x2)x

2
4 + 2�3(x0, x1, x2)x3x4 + g(x0, x1, x2) = 0, (5)

where �i(x0, x1, x2) are linear forms, and g(x0, x1, x2) is homogeneous of degree 3. As

in § 2.1 we project X from the fixed line L = V(x0, x1, x2) to the complementary plane
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Cubic Threefolds with Non-Eckardt type Involution 16115

� := V(x3, x4) ∼= P
2
x0,x1,x2 , and obtain a fibration in conics πL : BlLX → �. The plane

discriminant quintic DL ⊂ � has equation detM = 0 where the matrix M is

M =

⎛⎜⎜⎝
�1(x0, x1, x2) �3(x0, x1, x2) 0

�3(x0, x1, x2) �2(x0, x1, x2) 0

0 0 g(x0, x1, x2)

⎞⎟⎟⎠ . (6)

We are ready to see that DL is nodal and consists of the following components: a smooth

plane cubic

C := V(g(x0, x1, x2), x3, x4) ⊂ �,

and a (possibly degenerate) plane conic

Q := V(�1(x0, x1, x2)�2(x0, x1, x2) − �23(x0, x1, x2), x3, x4) ⊂ �.

Note that C = X ∩ � is the pointwise fixed curve by the involution τ in § 1.1.

Lemma 2.1. Let (X, τ) be a smooth cubic threefold with a non-Eckardt type involution

as above, and let πL : BlLX → � be the projection from the fixed line L ⊂ X. Then the

discriminant curve DL is a union of a cubic curve C and a conic curve Q. Moreover, the

cubic component C is smooth, and C meets the conic component Q transversely.

Proof. The claim that C is smooth has been verified in Lemma 1.3. It is shown in [7,

Prop. 1.2] that DL is at worst nodal, and therefore C and Q meet transversally. �

Denote by πL : D̃L → DL = C ∪ Q the discriminant double cover of the fibration

in conics πL : BlLX → �. Note that πL : D̃L → DL is branched at the intersection points

C ∩Q. Let us also observe that D̃L = C̃ ∪ Q̃, where C̃ (respectively, Q̃) is a double cover of

the smooth cubic C (respectively, the conic Q) ramified in the intersection points C ∩ Q.

We now restrict the discriminant double cover πL : D̃L = C̃ ∪ Q̃ → DL = C ∪ Q to C and

focus on the obtained double cover πL|C̃ : C̃ → C (if no confusion is likely to be caused

we will simply write π instead of πL|C̃). Specifically, we describe the quadruple (C,β,L, s)
corresponding to π : C̃ → C, where β is the branch divisor,L is the associated line bundle

on C satisfying L⊗2 ∼= OC(β), and s is a section of OC(β) vanishing on β. For π : C̃ → C,

clearly one has β = C ∩ Q and s = �1(x0, x1, x2)�2(x0, x1, x2) − �23(x0, x1, x2). It remains to

determine the associated line bundle L.
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16116 S. Casalaina-Martin et al.

Proposition 2.2. The double cover π : C̃ → C obtained by restricting the discriminant

double cover πL : D̃L → DL to the smooth cubic component C is associated with the line

bundle L = OC(1).

Proof. We may assume that the conic Q is smooth (note that this is the case for a

general cubic threefold with a non-Eckardt type involution; a similar argument applies

to the case when Q has rank 2). As in § 2.1, set ηDL to be the rank-1 torsion-free

sheaf which is associated with the discriminant double cover D̃L → DL and satisfies

Hom(ηDL ,OD) ∼= ηDL . Let κDL = ηDL ⊗ODL(1) be the theta characteristic on DL. By a result

of Beauville (see [9, Prop. 4.2] and [14, Thm. 4.1]), there exists a short exact sequence

0 → OP2(−2)⊕2 ⊕ OP2(−3)
M→ OP2(−1)⊕2 ⊕ OP2 → κDL → 0,

where P
2 denotes the plane � = V(x3, x4) ∼= P

2
x0,x1,x2 and M is the matrix in Equation (6).

Restricting the above exact sequence to the smooth cubic component C, one gets

the following sequence which coincides with the closed subscheme sequence for

C = V(g) ⊂ P
2:

0 → OP2(−3)
·g→ OP2 → (κDL |C)/torsion → 0.

As a consequence, we get (κDL |C)/torsion ∼= OC. Similarly, from [9, Prop. 4.2] one

deduces that (κDL |Q)/torsion is θQ := OQ(−pt). Since ηDL = κDL ⊗ ODL(−1), we have

that (ηDL |C)/torsion ∼= OC(−1) and that (ηDL |Q)/torsion ∼= θQ(−1). Since πL : D̃L → DL is

associated with the rank-1 reflexive sheaf ηDL , it holds that πL∗OD̃L
∼= ODL ⊕ ηDL (also

compare [18, Prop. 2.5]). Pulling back to C, one gets

π∗OC̃
∼= (πL∗OD̃L |C)/torsion ∼= OC ⊕ (ηDL |C)/torsion.

The isomorphism on the left arises as follows. The pull-back and push-forward functors

induce a natural morphism πL∗OD̃L |C → π∗(OD̃L |C̃) = π∗OC̃. Since π∗OC̃ is a rank-2 vector

bundle, the morphism factors through the quotient by the torsion sub-sheaf, and then a

local computation at the nodes shows the morphism is an isomorphism. Now, because

(ηDL |C)/torsion ∼= OC(−1), the line bundle L determining the double cover π : C̃ → C is

then ((ηDL |C)/torsion)∨ ∼= OC(1). �

Remark 7. We give the following characterizations of the rank-1 torsion-free reflexive

sheaf ηDL . Without loss of generality, we assume the conic component Q of the discrimi-

nant quintic DL is smooth.

D
ow

nloaded from
 https://academ

ic.oup.com
/im

rn/article/2023/18/16104/7190408 by C
olum

bia U
niversity Libraries user on 29 M

arch 2025



Cubic Threefolds with Non-Eckardt type Involution 16117

1. Let ν : C
∐
Q → DL = C ∪ Q be the normalization map. Denote the preimages

of the six intersection points d1, . . . ,d6 ∈ C ∩ Q on C (respectively, Q) by

c1, . . . , c6 (respectively, q1, . . . , q6). Note that ηDL is not locally free at the

intersection points C ∩ Q. Pulling back ηDL via the normalization map ν

gives a line bundle L′ (denote the corresponding geometric line bundle by

L
′) on C

∐
Q together with gluing maps along fibers αCQ,i = 0 : L

′
ci → L

′
qi

which are all zero for 1 ≤ i ≤ 6. Equivalently, we could also describe

ηDL using the data (L′′ := L′(�ici − �iqi),αQC,i = 0 : L
′′
qi → L

′′
ci) (again

L
′′ denotes the geometric line bundle corresponding to L′′). From the proof

of Proposition 2.2, we deduce that L′|C = (ηDL |C)/torsion ∼= OC(−1) and

L′′|Q = (ηDL |Q)/torsion ∼= θQ(−1). In other words, ηDL corresponds to the

data (LC ∼= OC(−1),LQ(�iqi) ∼= θQ(2),αCQ,i = 0), or equivalently, to the

data (LC(�ici) ∼= OC(1),LQ ∼= θQ(−1),αQC,i = 0). In particular, it holds that

ηDL
∼= Hom(ηDL ,OD).

2. Alternatively, we describe the rank-1 torsion-free sheaf ηDL using line

bundles over a semistable model of DL = C ∪ Q. Specifically, set T :=
Proj

DL
Sym•ηDL . Note that ηDL is not locally free at the nodes C ∩ Q. Then

T is a semistable curve obtained by replacing every intersection point

di ∈ C ∩ Q with 1 ≤ i ≤ 6 by a smooth rational component Ei which meets

the component C at ci and the component Q at qi. Moreover, T admits a

natural map st : T → DL contracting the exceptional components E1, . . . ,E6.

Letting ξ be the tautological invertible sheaf on T which has total degree 0,

we have that st∗ξ = ηDL and ξ |Ei ∼= OEi(1). From (ηDL |C)/torsion ∼= OC(−1) and

(ηDL |Q)/torsion ∼= θQ(−1), one gets that ξ |C ∼= OC(−1) and ξ |Q ∼= θQ(−1). Now

set γ : ξ⊗2 → OT to be the homomorphism which vanishes on the exceptional

components E1, . . . ,E6 and coincides with (ξ |C)⊗2 ∼= OC(−�ici) ↪→ OC on

C and (ξ |Q)⊗2 ∼= OQ(−�iqi) ↪→ OQ on Q. Then (T, ξ , γ ) is a Prym curve

in the sense of [5, Def. 1] (see also [17]). Moreover, under the isomorphism

between the moduli space Pr
+
g of non-trivial genus g Prym curves and the

moduli space Rg of admissible double covers of stable curves of genus

g described in [5, Prop. 5], the Prym curve (T, ξ , γ ) corresponds to the

admissible discriminant double cover D̃L → DL.

We summarize the discussion in the below proposition.

Proposition 2.3. Let (X, τ) be a smooth cubic threefold with an involution τ of non-

Eckardt type, and set L ⊂ X to be the pointwise fixed line. Then the discriminant plane
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16118 S. Casalaina-Martin et al.

quintic DL for the projection πL : BlL → � ∼= P
2 is the union DL = C∪Q of a smooth plane

cubic C and a transverse conic Q. Moreover, the restriction of the discriminant double

cover πL : D̃L → DL to the cubic component C is a double cover π : C̃ → C branched in the

six intersection points C ∩Q and associated with the line bundle OC(1).

2.3 The intermediate Jacobians of cubic threefolds with a non-Eckardt type involution via

the projections from the pointwise fixed line

Let (X, τ) be a smooth cubic threefold with an involution of non-Eckardt type as in

Equations (1) and (2). Consider as in the previous subsection the conic fibration πL :

BlLX → � = V(x3, x4) ∼= P
2
x0,x1,x2 obtained by projecting X from the unique pointwise

fixed line L ⊂ X. Denote the discriminant double cover by πL : D̃L → DL, where D̃L = C̃∪ Q̃
and DL = C ∪ Q. Also let π : C̃ → C be the restriction of πL to C. Since L is fixed,

there exists an involution on BlLX induced by τ , which further induces an involution

on D̃L commuting with πL : D̃L → DL. By abuse of notation, we still denote by τ the

involution on D̃L (and also the involution on the Prym variety P(D̃L,DL)) induced by the

non-Eckardt type involution on X. Define the invariant part P(D̃L,DL)
τ := Im(1 + τ) and

the anti-invariant part P(D̃L,DL)
−τ := Im(1 − τ). As recalled in § 2.1, the intermediate

Jacobian JX is canonically isomorphic to the Prym variety P(D̃L,DL). We now give an

explicit description of P(D̃L,DL) following [7, §0.3] which allows us to study the induced

involution τ on JX ∼= P(D̃L,DL).

Let ν̃ : C̃
∐
Q̃ → C̃ ∪ Q̃ and ν : C

∐
Q → C ∪Q be the normalizations of D̃L = C̃ ∪ Q̃

and DL = C ∪Q, respectively. Let

π ′
L : C̃

∐
Q̃ → C

∐
Q

be the double cover induced by the discriminant double cover πL : C̃∪ Q̃ → C∪Q. Denote

the ramification points of C̃ → C (respectively, Q̃ → Q) by c̃1, . . . c̃6 ∈ C̃ (respectively,

q̃1, . . . q̃6 ∈ Q̃). Note that ν̃(c̃i) = ν̃(q̃i) for i = 1, . . . 6. Following [7, §0.3] (see also § 2.1), we

set H ′ to be the subgroup of Pic(C̃
∐
Q̃) generated by O(c̃i − q̃i) for 1 ≤ i ≤ 6. Let H denote

the image of H0 := H ′ ∩ J(C̃
∐
Q̃) in the quotient abelian variety

J(C̃
∐

Q̃)/π ′∗
L J(C

∐
Q) ∼= (

J(C̃)/π∗J(C)
) × J(Q̃).

By [7, Exer. 0.3.5], H consists of 2-torsion elements and is isomorphic to (Z/2Z)4.

Furthermore, H is the kernel of the isogeny of polarized abelian varieties

φ := (ν̃∗)∨ : J(C̃
∐

Q̃)/π ′∗
L J(C

∐
Q) ∼= (J(C̃)/π∗J(C)) × J(Q̃) → P(D̃L,DL).
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Cubic Threefolds with Non-Eckardt type Involution 16119

More precisely, P(D̃L,DL) admits the principal polarization defined in [6, Thm. 3.7].

Following [11, Prop. 12.1.3], J(C̃
∐
Q̃)/π ′∗

L J(C
∐
Q) is dual to P(C̃

∐
Q̃,C

∐
Q) ∼= P(C̃,C) ×

P(Q̃,Q), and the dual polarization on it corresponds to the product of the following

polarizations on J(C̃)/π∗J(C) and on J(Q̃): J(C̃)/π∗J(C) is the dual abelian variety (See for

instance [11, Prop. 12.1.3]. Let us also recall the following. Let π : C̃ → C be a connected

double cover of smooth curves branched in 2r points. Then the principal polarization on

J(C̃) induces a polarization on the Prym variety P(C̃,C) which is of type (1, . . . , 1, 2, . . . , 2)

with 1’s repeated max{0, r−1} times. As the dual abelian variety, J(C̃)/π∗J(C) is equipped

with a dual polarization of type (1, . . . , 1, 2, . . . , 2) with 2’s repeated max{0, r − 1} times

(compare [10, §2]).) to P(C̃,C) and therefore comes with a dual polarization, and J(Q̃) is

equipped with twice of the canonical principal polarization.

Proposition 2.4. Notation as above. There exists an isogeny of polarized abelian

varieties

φ :
(
J(C̃)/π∗J(C)

) × J(Q̃) → P(D̃L,DL)

with kernel H ∼= (Z/2Z)4. Moreover, with respect to the action τ on P(D̃L,DL) induced by

the non-Eckardt type involution on X, the isogeny induces isomorphisms of polarized

abelian varieties

P(D̃L,DL)
τ ∼= J(C̃)/π∗J(C); P(D̃L,DL)

−τ ∼= J(Q̃).

Proof. The proof is quite similar to that of [16, Prop. 3.10]. The existence of the isogeny

φ and the description of the kernel H is the content of [7, Prop. 0.3.3] (see also § 2.1).

It suffices to prove the assertion regarding the invariant and anti-invariant abelian

subvarieties P(D̃L,DL)
τ and P(D̃L,DL)

−τ .

Let ι = ιL be the covering involution associated with the double cover πL : D̃L =
C̃∪Q̃ → DL = C∪Q. Consider the involution τ : C̃∪Q̃ → C̃∪Q̃ induced by the non-Eckardt

type involution on X. We claim that the action of τ on C̃ is trivial, while the action on Q̃

coincides with ι. Recall that the curve D̃L = C̃ ∪ Q̃ parametrizes the residual lines to L

in a degenerate fiber of the conic fibration πL : BlLX → � = V(x3, x4) ∼= P
2
x0,x1,x2 . Take a

point x ∈ �, and consider the plane it corresponds to, namely, the span 〈L,x〉 ⊂ P
4. Since

both L and x ∈ � are fixed by τ : [x0, x1, x2, x3, x4] �→ [x0, x1, x2,−x3,−x4], the plane 〈L,x〉
is invariant under τ . Assume now that x is a point on C or Q but not both (otherwise, the

claim clearly holds). Then the P
2-section 〈L,x〉 ∩X is three distinct lines, L∪M ∪M ′. The

lines M,M ′ correspond to distinct points on C̃ ∪ Q̃. The involution τ either interchanges
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16120 S. Casalaina-Martin et al.

M and M ′, or it leaves both fixed. In other words, τ either acts as the identity on a point

of C̃ ∪ Q̃, or by the covering involution ι. The curve C ⊂ P
2 parametrizes pairs of lines

such that each line is invariant under the involution of non-Eckardt type on X (Lemma

1.5), and so the points of C̃ are fixed by the action of τ . The lines M,M ′ parametrized

by x ∈ Q ⊂ P
2 are not preserved and hence must be interchanged by the involution of

non-Eckardt type on X; thus τ acts by the covering involution ι on Q̃ as claimed.

It follows that the isogeny φ is equivariant with respect to the involution σ :=
(1, ι) on the product (J(C̃)/π∗J(C)) × J(Q̃). Since Im(1 + ι) = (πL|Q̃)∗J(Q) = 0 on J(Q̃),

the invariant part Im(1 + σ) = (J(C̃)/π∗J(C)) × {0}. Similarly, the anti-invariant part

Im(1 − σ) = {0} × J(Q̃). We then deduce that φ induces isogenies

(
J(C̃)/π∗J(C)

) × {0} → P(D̃L,DL)
τ ; {0} × J(Q̃) → P(D̃L,DL)

−τ ,

which are isogenies of polarized abelian varieties since φ preserves the polarizations. It

is not difficult to show that H ∩ ((J(C̃)/π∗J(C)) × {0}) = H ∩ ({0} × J(Q̃)) = {(0, 0)} using
the description of the kernel H given earlier in this subsection. As a result, the above

isogenies are isomorphisms which completes the proof of the proposition. �

Putting the above discussion together, we obtain the following theorem.

Theorem 2.5 (Intermediate Jacobian via projecting from the pointwise fixed line). Let

(X, τ) be a smooth cubic threefold with an involution τ of non-Eckardt type fixing

pointwise a line L ⊂ X. Let JX be the intermediate Jacobian which is principally

polarized. Projecting X from L, we obtain a fibration in conics πL : BlLX → � ∼= P
2. Let

πL : D̃L = C̃∪Q̃ → DL = C∪Q be the discriminant double cover, where C is a smooth cubic

and Q is a conic intersecting C transversely. We identify J(C̃)/π∗J(C) as the dual abelian

variety to P(C̃,C) with the dual polarization.We also equip the Jacobian J(Q̃) with twice

of the canonical principal polarization. Then there exists an isogeny of polarized abelian

varieties

φ :
(
J(C̃)/π∗J(C)

) × J(Q̃) → JX

with kerφ ∼= (Z/2Z)4. Moreover, with respect to the action of τ on JX, the isogeny φ

induces isomorphisms of polarized abelian varieties

JXτ ∼= J(C̃)/π∗J(C); JX−τ ∼= J(Q̃).
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Cubic Threefolds with Non-Eckardt type Involution 16121

Proof. Since the intermediate Jacobian JX is canonically isomorphic to the Prymvariety

P(D̃L,DL), and the involutions are both induced from the non-Eckardt type involution on

X, the theorem follows from Proposition 2.4. �

3 Global Torelli for cubic threefolds with an involution of non-Eckardt type

Let M be the moduli space of cubic threefolds with a non-Eckardt type involution, and

setA(1,2,2)
3 to be themoduli space of abelian threefoldswith a polarization of type (1, 2, 2).

Recall that we have defined in § 1.2 the following period map:

P : M −→ A(1,2,2)
3 ;

(X, τ) �→ JXτ ,

which sends a smooth cubic threefold X with a non-Eckardt type involution τ to the

invariant part JXτ of the intermediate Jacobian. The goal of this section is to prove the

following global Torelli theorem for P.

Theorem 3.1 (Global Torelli for cubic threefolds with a non-Eckardt type involution).

The period map P : M → A(1,2,2)
3 for smooth cubic threefolds with a non-Eckardt type

involution is injective.

Let us briefly outline the strategy. Let (X, τ) be a smooth cubic threefold with

an involution of non-Eckardt type. We have shown in § 2.2 that projecting X from the

unique pointwise fixed line L ⊂ X (as in Lemma 1.5) determines a double cover π : C̃ → C

which is the restriction of the discriminant double cover πL : D̃L = C̃ ∪ Q̃ → DL = C ∪ Q

to the smooth cubic component C. Equivalently, the fibration in conics πL : BlLX → P
2

gives a quadruple (C,β,L, s) consisting of the branch divisor β = C ∩ Q, the line bundle

L = OC(1) (see Proposition 2.2) associated with the double cover and a section s =
�1(x0, x1, x2)�2(x0, x1, x2)−�23(x0, x1, x2) (see Equation (5)) ofOC(β) vanishing on β = C∩Q.

Conversely, we will prove in § 3.1 that (X, τ) can be reconstructed (up to projective

equivalence) from the double cover π : C̃ → C, or equivalently, from the quadruple

(C,β,L, s). Note that here we can also view C as a smooth genus 1 curve whose embedding

into P
2 as a smooth cubic curve is given by the linear system |L| = |OC(1)| (such that

the branch divisor β lies on a quadratic curve Q). In particular, our reconstruction of

the cubic threefold (X, τ) with a non-Eckardt type involution can be thought of as a

degenerate case of [7, §1.6] and [14, Prop. 4.2]. The other key ingredient, which we will
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16122 S. Casalaina-Martin et al.

recall in § 3.2, is the injectivity of the Prym map P1,6 : R1,6 → A(1,1,2)
3 for double covers

of smooth genus 1 curves ramified in six distinct points due to Ikeda [24] and Naranjo

and Ortega [36]. The proof of Theorem 3.1 will be completed in § 3.3 using Theorem 2.5

and the above results. The infinitesimal Torelli theorem will be discussed in § 3.4.

3.1 Reconstructing cubic threefolds with a non-Eckardt type involution

We keep notation as in § 2.2. From [7, §1.6] and [14, Prop. 4.2] (see also § 2.1), we know

that the data of a smooth cubic threefold together with a line determine the data of a

stable plane quintic curve and an odd theta characteristic (up to projective equivalence),

and vice versa. We have a similar result for cubic threefolds with a non-Eckardt type

involution.

Theorem 3.2 (Reconstructing a cubic threefold with a non-Eckardt type involution from

a ramified double cover of a genus 1 curve). Given a double cover C̃ → C of a smooth

genus 1 curve C branched in six distinct points, one can associate a smooth cubic

threefold (X, τ) with an involution of non-Eckardt type, such that C̃ → C is obtained by

projecting X from the unique pointwise fixed line L ⊂ X (i.e. we restrict the discriminant

double cover of the conic fibration πL : BlLX → � ∼= P
2 to the smooth cubic component).

Proof. The first observation is that a double cover C̃ → C of a smooth genus 1 curve C

branched in six distinct points determines an admissible double cover D̃ → D of a nodal

plane quintic D containing C as a component. More precisely, the data of a double cover

C̃ → C of a smooth genus 1 curve C ramified in six distinct points can be described

equivalently as a quadruple (C,β,L, s), where β is the branch divisor on C consisting of

six distinct points, L is a line bundle on C with L⊗2 ∼= OC(β), and s is a section of OC(β)

vanishing on β. We claim that the data of such a quadruple (C,β,L, s) are equivalent

to the data of a pair (C ⊂ P
2,Q ⊂ P

2) recording the embedding of a smooth cubic C

and a transverse conic Q in P
2. Indeed, the line bundle L is very ample (since degL ≥

2g(C) + 1), and hence defines an embedding C ↪→ P
2 of C as a plane cubic, such that

OP2(1)|C ∼= L. From the identification H0(P2,OP2(2))
∼→ H0(C,OP2(2)|C) = H0(C,OC(β)),

we see that there is a unique conic Q in the plane so that Q ∩ C = β. Since β consists

of six distinct points, Q is reduced. In summary, we let D := C ∪ Q which is a nodal

plane quintic, and set D̃ → D to be the unique double cover branched at the nodes of D,

such that the restriction to C is the cover C̃ → C (note that, since Q is rational, only one

irreducible double cover of it exists, branched at C ∩Q).
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Cubic Threefolds with Non-Eckardt type Involution 16123

If we knew that the cover D̃ → D were odd, then [7, §1.6] (see also [14, Prop. 4.2])

would provide a smooth cubic threefold X and a line L ⊂ X so that projection from L

gave the discriminant cover D̃ → D. However, we would still need to show that X was a

cubic threefold with non-Eckardt type involution, and that L was the unique pointwise

fixed line.

For this reason, we instead construct directly the smooth cubic threefold X with

a non-Eckardt type involution τ so that projection from the pointwise fixed line gives the

desired cover. To begin, since the rank of Q is 2 or 3, it is given by

det

(
�1(x0, x1, x2) �3(x0, x1, x2)

�3(x0, x1, x2) �2(x0, x1, x2)

)
= 0

for some choice of coordinates on P
2 and some linear forms �i(x0, x1, x2). Let

g(x0, x1, x2) = 0 be the equation for C. Take X to be the cubic threefold in P
4 given by

�1(x0, x1, x2)x
2
3 + �2(x0, x1, x2)x

2
4 + 2�3(x0, x1, x2)x3x4 + g(x0, x1, x2) = 0, (8)

which admits an involution τ : [x0, x1, x2, x3, x4] �→ [x0, x1, x2,−x3,−x4] of non-Eckardt
type. Let L := V(x0, x1, x2) and � := V(x3, x4) ∼= P

2. Taking the determinant of the matrix

in Equation (4), one has that D = C ∪ Q is the discriminant curve of the conic fibration

obtained by projecting X from L (compare § 2.2).

It remains to show that the cubic threefold X is smooth, and that the associated

discriminant double cover obtained by projection from L is the cover D̃ → D constructed

above. Assuming X is smooth, the latter assertion is Proposition 2.2. The smoothness of

X will follow from the fact that the cubic C ⊂ P
2 is smooth and the conic Q intersects

C transversely. Similar arguments are made in the proof of [14, Prop. 4.2]. Specifically,

suppose that a = [a0,a1,a2,a3,a4] is a singular point of X, and consider first the case

a �∈ L = V(x0, x1, x2). After a change of coordinates fixing x0, x1, x2, we may assume that

a3 = a4 = 0. Analyzing the partial derivatives of Equation (8), we see that the cubic C

is singular at the point [a0,a1,a2], which is a contradiction. Next, let us consider the

case when the point a lies in the fixed line L. We may assume that a = [0, 0, 0, 1, 0].

A direct calculation using Equation (8) shows that the conic Q is non-reduced, which

is absurd. �

3.2 Injectivity of the Prym map for double covers of genus 1 curves branched in six points

Consider the Prym map Pg,2n : Rg,2n → A(1,...,1,2,...,2)
g−1+n (with 2’s repeated g times); recall

that Rg,2n is the moduli space of double covers of smooth genus g curves branched in
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16124 S. Casalaina-Martin et al.

2n distinct points, and A(1,...,1,2,...,2)
g−1+n is the moduli space of abelian varieties of dimension

g−1+nwith a polarization of type (1, . . . , 1, 2, . . . , 2). In [24], Ikeda studies double covers

of elliptic curves and proves the injectivity of the Prym map P1,2n with n ≥ 3. More

generally, Naranjo and Ortega prove the Prym–Torelli theorem for Pg,2n with g > 0 and

n ≥ 3 in [36].

Theorem 3.3 ([24] Theorem 1.2; [36] Theorem 1.1). If n ≥ 3, then the Prym map P1,2n :

R1,2n → A(1,...,1,2)
n is injective. In particular, P1,6 : R1,6 → A(1,1,2)

3 is injective.

Let us very briefly review the proof of the above theorem following [24] and [36].

Let (P(C̃,C),
) denote the Prym variety for a double cover C̃ → C of a smooth genus 1

curve C branched in 2n distinct points. For any member � ∈ |
|, Ikeda studies the Gauss

map �� (more precisely, the branch locus of the restriction �� |BS|
| of �� to the base

locus BS|
| of |
|), and uses the information to specify a divisor �0 ∈ |
| which allows

him to reconstruct the double cover C̃ → C. Ikeda’s proof is a generalization of the proof

of the Torelli theorem for hyperelliptic curves due to Andreotti (cf. [4]). The approach of

Naranjo and Ortega is different and relies on the description of the base locus of |
| given
in [35] and on a generalized Torelli theorem proved by Martens in [30]. To be specific,

Naranjo and Ortega recover a certain Brill–Noether locus on Pic0(C̃) together with an

involution through a birational model of the base locus BS|
|; by Martens’ generalized

Torelli, the Brill–Noether locus determines the double cover C̃ → C. More generally,

Naranjo and Ortega’s argument can be used to prove the injectivity of the Prym map

Pg,2n with g > 0 and n ≥ 3.

3.3 Proving global Torelli for cubic threefolds with a non-Eckardt type involution

Proof of Theorem 3.1. Let (X1, τ1) and (X2, τ2) be two cubic threefolds with involutions

of non-Eckardt type. We will prove that if the invariant parts of the intermediate

Jacobian are isomorphic to each other JXτ1
1

∼= JXτ2
2 , then (X1, τ1) is projectively equivalent

to (X2, τ2). Recall from Proposition 2.3 that each involution τi fixes pointwise a line

Li ⊂ Ci, such that when projecting Xi from Li we get a double cover πi : C̃i → Ci in R1,6.

To be more precise, the double cover C̃i → Ci is obtained by projecting Xi from Li and

restricting the discriminant pseudo-double cover πi : C̃i ∪ Q̃i → Ci ∪ Qi over the smooth

cubic component Ci. By Theorem 2.5, we have JXτi
i

∼= (P(C̃i,Ci))
∨ as polarized abelian

varieties which implies that P(C̃1,C1) ∼= P(C̃2,C2) (see also [10, Thm. 3.1]). From Theorem

3.3, we know that the two double covers πi : C̃i → Ci are equivalent. By Theorem 3.2,
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Cubic Threefolds with Non-Eckardt type Involution 16125

we can reconstruct (Xi, τi) from the data of the double cover C̃i → Ci branched in

six points. It follows that the cubic threefolds (X1, τ1) and (X2, τ2) are projectively

equivalent. �

3.4 Infinitesimal Torelli for cubic threefolds with an involution of non-Eckardt type

Recall that M is the moduli space of cubic threefolds (X, τ) with an involution of non-

Eckardt type. Let us consider the open subset M0 ⊂ M parametrizing those (X, τ)

satisfying that when projecting X from the unique fixed line L ⊂ X (as in § 2.2), the conic

component Q of the discriminant curve DL is smooth. More concretely, the equation of a

member in the complement M\M0 can be written as Equation (5) with �3(x0, x1, x2) ≡ 0

(i.e. no terms containing x3x4).

Proposition 3.4 (Infinitesimal Torelli for cubic threefolds with a non-Eckardt type

involution). Let P : M → A(1,2,2)
3 be the period map for cubic threefolds with a

non-Eckardt type involution. The differential dP is an isomorphism at every point of

M0 ⊂ M. (As a consequence, P|M0
: M0 → A(1,2,2)

3 is an open embedding.)

Proof. The infinitesimal computation is quite similar to that of [16, §5.1] (see also [15,

§8.1, §8.3]). Specifically, let (X, τ) be a smooth cubic threefold with an involution τ of

non-Eckardt type cut out by F = 0 as in Equation (1). On one side, we have

T(X,τ)M = (R3
F)

τ ,

whereRi
F (i ≥ 0) denotes degree i part of the Jacobian ring of F and the superscript means

taking the τ -invariant subspace. On the other side, we also have

TJXτA(1,2,2)
3 = SymHom(H2,1(X)τ ,H1,2(X)τ ) = SymHom((R1

F)
τ , (R4

F)τ ).

Furthermore, the differential dP(X,τ) of the period map P : M → A(1,2,2)
3 can be identified

with the following map, which is induced by cup product:

(R3
F)τ → SymHom((R1

F)τ , (R4
F)τ ).

Using Macaulay’s theorem to identify R4
F with (R1

F)∨, the differential is

dP(X,τ) : (R3
F)τ → Sym2((R1

F)
τ )∨
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16126 S. Casalaina-Martin et al.

and the codifferential is

dP∗
(X,τ) : H

0(P2
x0,x1,x2 ,O(2)) ∼= Sym2((R1

F)
τ ) → (R2

F)τ .

The kernel of the codifferential dP∗
(X,τ) is J

2
F ∩ Sym2

C[x0, x1, x2], where J2F denotes degree

2 part of the Jacobian ideal. Now we suppose that (X, τ) ∈ M0. Rewrite the equation F

of X in the form of Equation (5)

�1(x0, x1, x2)x
2
3 + �2(x0, x1, x2)x

2
4 + 2�3(x0, x1, x2)x3x4 + g(x0, x1, x2) = 0.

A direct calculation then shows that J2F ∩ Sym2
C[x0, x1, x2] is not trivial if and only if

�1(x0, x1, x2), �2(x0, x1, x2), and �3(x0, x1, x2) have a common zero.However, it is impossible

since otherwise the conic component Q of the discriminant curve DL for the fibration in

conics πL : BlLX → � will be singular. Note also that dimSym2((R1
F)

τ ) = dim(R2
F)

τ = 6.

It follows that the (co)differential of the period map P : M → A(1,2,2)
3 at every point of

M0 ⊂ M is an isomorphism. �

Remark 9. We remark that the (co)differential of the period map P : M → A(1,2,2)
3

has one-dimensional kernel at a point (X, τ) of the divisor M\M0 (note that a quadratic

curve being degenerate is a codimension 1 condition) and hence the infinitesimal Torelli

fails. A similar phenomenon happens for the hyperelliptic locus when considering the

period map for smooth curves of genus greater than 2 (see for instance [12, §1]). We give

the following explanation using [40, §1]. Observe that a member (X, τ) ∈ M\M0 is cut

out by

�1(x0, x1, x2)x
2
3 + �2(x0, x1, x2)x

2
4 + g(x0, x1, x2) = 0

and hence admits extra automorphisms σ : x3 �→ −x3 and σ ′ : x4 �→ −x4 (note that τ =
σ ◦σ ′ = σ ′ ◦σ ). By [40, §1] (see also [12, §1]), the differential dP(X,τ) : T(X,τ)M → TJXτA(1,2,2)

3

is equivariant with respect to the action of σ (and also σ ′). Using the identifications in

the proof of Proposition 3.4, it is not difficult to see that TJXτA(1,2,2)
3 is fixed by σ , while

T(X,τ)M splits as the direct sum of the (+1) eigenspace T+
(X,τ)M (which is five-dimensional

and corresponds to infinitesimal deformations inside M\M0) and the (−1) eigenspace

T−
(X,τ)M (which has dimension 1 and represents infinitesimal deformations in the normal

directions). As a result, the (−1) eigenspace T−
(X,τ)M must be contained in the kernel of

dP(X,τ) and therefore the infinitesimal Torelli fails.

D
ow

nloaded from
 https://academ

ic.oup.com
/im

rn/article/2023/18/16104/7190408 by C
olum

bia U
niversity Libraries user on 29 M

arch 2025



Cubic Threefolds with Non-Eckardt type Involution 16127

4 Cubic threefolds with an involution of non-Eckardt type as fibrations in conics II:

invariant lines

In this section, we aim to characterize the intermediate Jacobians JX of general cubic

threefolds X with an involution τ of non-Eckardt type via projections from general

invariant lines l ⊂ X that are not pointwise fixed. Specifically,we project a cubic threefold

(X, τ) with a non-Eckardt type involution from a τ -invariant line l and study the obtained

conic fibration in § 4.1. Among others, we prove that the involution of non-Eckardt

type on X induces an involution on the discriminant quintic curve which is generically

smooth.A different description of the invariant part JXτ and the anti-invariant part JX−τ

for a general (X, τ , l) is then given in § 4.2 using the techniques developed in [34], [20],

and [38]. We conclude by giving an application of our results in the study of the generic

fiber of the Prym map P2,4 : R2,4 → A(1,2,2)
3 in § 4.3. In particular, the discussion in

[36, §4] and [22, §5] will play a crucial role.

4.1 Projecting cubic threefolds with a non-Eckardt type involution from invariant lines

We keep notation as in § 1.1. Let (X, τ) be a smooth cubic threefold with a non-Eckardt

type involution as in Equations (1) and (2)

x0q0(x3, x4) + x1q1(x3, x4) + x2q2(x3, x4) + g(x0, x1, x2) = 0;

τ : [x0, x1, x2, x3, x4] �→ [x0, x1, x2,−x3,−x4].

Let L = V(x0, x1, x2) ⊂ X denote the pointwise fixed line under τ . When studying the

projection of X from L, it is more convenient to rewrite the above equation in the form of

Equation (5)

�1(x0, x1, x2)x
2
3 + �2(x0, x1, x2)x

2
4 + 2�3(x0, x1, x2)x3x4 + g(x0, x1, x2) = 0.

Let C = V(g(x0, x1, x2), x3, x4) ⊂ � = V(x3, x4) ∼= P
2
x0,x1,x2 be the fixed plane section.

By Lemma 1.5, an invariant line l ⊂ X that is different from L intersects both L and

C ⊂ � ∼= P
2
x0,x1,x2 . From the discussion in § 2.2 (see also the proof of Proposition 2.4),

we know that l is contained in a singular fiber of the projection πL : BlLX → � over a

point of the cubic component C of the discriminant curve. In other words, denote the

restriction of the discriminant double cover to C by π : C̃ → C; invariant lines in X

that are not pointwise fixed are then parametrized by C̃ (which is a smooth curve of

genus 4).
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16128 S. Casalaina-Martin et al.

Let l �= L be an invariant line in X. Without loss of generality, we assume that l

is contained in the fiber of πL : BlLX → � ∼= P
2
x0,x1,x2 over [0, 0, 1] ∈ C ⊂ �. Note that the

equation g(x0, x1, x2) of C ⊂ � has no term x32. Also, the quadratic polynomial q2(x3, x4)

in Equation (1) can be factored as q2(x3, x4) = (αx3 + βx4)(γx3 + δx4) with α, β, γ and

δ constants. Consider the fiber of πL : BlLX → � over the point [0, 0, 1] ∈ C ⊂ �. The

equations for the invariant lines l and l′ contained in the fiber are, respectively,

l = V(x0, x1,αx3 + βx4); l′ = V(x0, x1, γx3 + δx4).

Let us set z := αx3 + βx4 and apply the change of coordinates

[x0, x1, x2, x3, x4] �→ [x0, x1, x2, z,x4].

Then the line l = V(x0, x1, z) and the involution τ acts by

τ : [x0, x1, x2, z,x4] �→ [x0, x1, x2,−z,−x4].

Now we project X from the invariant line l = V(x0, x1, z) to the complementary

plane P
2
l := V(x2, x4) ∼= P

2
x0,x1,z and study the corresponding fibration in conics

πl : BllX → P
2
l . Specifically, let us rewrite the equation of X as

L1(x0, x1, z)x
2
2 + L2(x0, x1, z)x

2
4 + 2L3(x0, x1, z)x2x4

+ 2Q1(x0, x1, z)x2 + 2Q2(x0, x1, z)x4 + G(x0, x1, z) = 0,
(10)

where Li(x0, x1, z) are linear polynomials, Qj(x0, x1, z) are quadratic forms and

G(x0, x1, z) is homogeneous of degree 3. We can simplify Equation (10) in the following

way.

• Since the equation of X is preserved under τ , both of the terms L1(x0, x1, z)

and L2(x0, x1, z) must have no z term; in other words, L1(x0, x1, z) = L1(x0, x1)

and L2(x0, x1, z) = L2(x0, x1). For the same reason, L3(x0, x1, z) must be linear

in z, i.e. L3(x0, x1, z) = Az for some constant A. Furthermore, when l = l′

(equivalently,π : C̃ → C is ramified at the point corresponding to the invariant

line l), one deduces from the above calculation that A = 0.

• The terms Q1(x0, x1, z)x2 and Q2(x0, x1, z)x4 must be invariant under τ , so

Q1(x0, x1, z) can only contain terms with even powers of z and Q2(x0, x1, z) =
zN(x0, x1) for a linear form N(x0, x1).
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Cubic Threefolds with Non-Eckardt type Involution 16129

• Similarly, the cubic polynomialG(x0, x1, z) has nomonomialswith odd powers

of z.

Thus Equation (10) becomes

L1(x0, x1)x
2
2 + L2(x0, x1)x

2
4 + 2Azx2x4

+ 2Q1(x0, x1, z)x2 + 2zN(x0, x1)x4 + G(x0, x1, z) = 0;
(11)

in particular,Q1(x0, x1, z) and G(x0, x1, z) only contain monomials with even powers of z.

The matrix associated with the fibration in conics πl : BllX → P
2
l

∼= P
2
x0,x1,z is

M =

⎛⎜⎜⎝
L1(x0, x1) Az Q1(x0, x1, z)

Az L2(x0, x1) zN(x0, x1)

Q1(x0, x1, z) zN(x0, x1) G(x0, x1, z)

⎞⎟⎟⎠ , (12)

and the discriminant quintic curve Dl ⊂ P
2
l

∼= P
2
x0,x1,z is cut out by

det(M) = L1(x0, x1)L2(x0, x1)G(x0, x1, z) + 2Az2N(x0, x1)Q1(x0, x1, z)

− L2(x0, x1)Q
2
1(x0, x1, z) − z2L1(x0, x1)N

2(x0, x1) − A2z2G(x0, x1, z) = 0.

The involution τ of non-Eckardt type on X induces an involution on P
2
l

∼= P
2
x0,x1,z,

given by τP2l
: [x0, x1, z] �→ [x0, x1,−z]. Because l ⊂ X is an invariant line, there is an

induced involution on BllX, which we also denote using τ , making πl : BllX → P
2
l

equivariant. Let πl : D̃l → Dl be the discriminant double cover. Note that the equation

of the discriminant curve Dl only contains terms with even powers of z and hence is

preserved by τP2l
. As a result, the restrictions of τ and τP2l

to D̃l and Dl, respectively, induce

involutions

τ : D̃l → D̃l; τDl : Dl → Dl

with respect to which πl : D̃l → Dl is equivariant.

We summarize the discussion above in the following proposition.

Proposition 4.1. Let (X, τ) be a smooth cubic threefold with an involution τ of non-

Eckardt type. Choose an invariant (but not pointwise fixed) line l ⊂ X and project X from

l. Denote the obtained discriminant double cover by πl : D̃l → Dl. Then the non-Eckardt

type involution on X induces involutions τ and τDl on D̃l and Dl, respectively, making

πl : D̃l → Dl equivariant.
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4.2 The intermediate Jacobians of cubic threefolds with a non-Eckardt type involution via

the projections from invariant lines

In what follows, we suppose that (X, τ) is a general cubic threefold admitting a non-

Eckardt type involution. It is not difficult to show that there exists an invariant line

l ⊂ X such that the rank of the matrix M in Equation (12) never drops to 1 (e.g. consider

V(det(M1,1), det(M2,3), det(M3,3)), where Mi,j denotes the (i, j)-minor of M), and therefore

the discriminant curve Dl is smooth and the discriminant double cover πl : D̃l → Dl

is connected and étale. Recall that C̃, viewed as a curve on the Fano surface F(X),

parametrizes τ -invariant lines l that are not pointwise fixed. It follows that C̃ is not a

component of the curve R ⊂ F(X) corresponding to lines of second type (in the sense

of [13, Def. 6.6]) or a component of the curve R′ ⊂ F(X) parametrizing lines residual to

lines of second type. We will call such an invariant line l �= L a general invariant line (in

particular, 〈L, l〉 ∩ X �= L+ 2l and thus the coefficient A �= 0 in Equation (11)).

Suppose that (X, τ , l) is general as above. We wish to study the intermediate

Jacobian JX via the Prym variety P(D̃l,Dl). The key observation is that the covering curve

D̃l admits two commuting involutions: the involution τ in Proposition 4.1 induced from

the non-Eckardt type involution on X, and the covering involution ι = ιl associated with

πl : D̃l → Dl. In other words, the automorphism group Aut(D̃l) contains the Klein four

group 〈τ , ι〉. This allows us to apply the techniques that go back to [34], and explored in

more depth in [20] and [38], to decompose P(D̃l,Dl). In particular, we follow closely the

analogous case for Eckardt cubic threefolds as discussed in [16, §7.1].

We will take the quotient of D̃l by an element g of the Klein four group 〈τ , ι〉 ⊂
Aut(D̃l); let us denote the quotient curve by

Dg := D̃l/〈g〉,

noting that Dι = Dl. Also set Dl := Dl/τDl .

Proposition 4.2. We have the following commutative diagram.
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Moreover,

1. The map aτ is a double covering map ramified in four points, the map aτ ι is a

double cover branched in eight points,whereas themap aι is the discriminant

double covering map πl which is étale.

2. The map bτ is a double covering map ramified in four points, the map bτ ι is a

double cover branched in two points, and bι is a ramified double cover with

six branch points.

3. The curves are all smooth and their genera are as follows: g(D̃l) = 11, g(Dτ ) =
5, g(Dτ ι) = 4, g(Dl) = 6 and g(Dl) = 2.

Proof. We choose coordinates and project a general cubic threefold (X, τ) admitting

an involution of non-Eckardt type from a general invariant line l ⊂ X as in § 4.1. In

particular, the equations of X and the discriminant quintic Dl ⊂ P
2
x0,x1,z are given in

Equations (11) and (12), respectively. Note that Dl is smooth and the discriminant double

cover πl : D̃l → Dl is connected and étale. Also, the involution τDl : [x0, x1, z] �→ [x0, x1,−z]
fixes six points on Dl: the point [0, 0, 1] and the five intersection points of Dl and the line

z = 0 which satisfy the equation z = L2(x0, x1)(L1(x0, x1)G(x0, x1, z) − Q2
1(x0, x1, z)) = 0

and are distinct since (X, τ , l) is general. The six pairs of lines in the fibers of

πl : BllX → P
2
x0,x1,z that lie over the fixed points on Dl correspond to the ramification

points of aτ : D̃l → Dτ and aτ ι : D̃l → Dτ ι, depending onwhether they are fixed or switched

by τ . By a straightforward computation, one verifies that the four lines corresponding

to the preimages of the points [0, 0, 1] and V(z,L2(x0, x1)) under π : D̃l → Dl are fixed

by τ , while the remaining eight lines are interchanged pairwise by τ . For example,

the lines lying over [0, 0, 1] ∈ Dl are the pointwise fixed line L and another invariant

line l′ �= l. The remainder of the assertions follow directly from Riemann–Hurwitz and

[38, Thm. 3.2]. �

Applying [38, Thm. 3.2] (see also [16, Prop. 7.12]), we obtain the following

description of the invariant part P(D̃l,Dl)
τ := Im(1 + τ) and anti-invariant part

P(D̃l,Dl)
−τ := Im(1 − τ) for the induced involution τ on P(D̃l,Dl).

Proposition 4.3 ([38] Theorem 3.2). Notation as in Proposition 4.2. Consider the Prym

variety P(D̃l,Dl) which is principally polarized. There is an isogeny of polarized abelian

varieties

φl : P(Dτ ,Dl) × P(Dτ ι,Dl) → P(D̃l,Dl), (y1, y2) �→ a∗
τ (y1) + a∗

τ ι(y2)
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with ker(φl) ∼= (Z/2Z)4, where a∗
τ and a∗

τ ι denote the pull-back maps between the

appropriate Jacobians. Moreover, with respect to the action of τ on P(D̃l,Dl), the isogeny

φl induces isomorphisms of polarized abelian varieties

P(D̃l,Dl)
τ ∼= P(Dτ ,Dl); P(D̃l,Dl)

−τ ∼= P(Dτ ι,Dl).

Putting it together, we obtain the following theorem.

Theorem 4.4 (Intermediate Jacobian via projecting from a general invariant line). Let

(X, τ) be a general cubic threefold with an involution τ of non-Eckardt type, and choose

a general invariant line l ⊂ X. Project X from l and denote the discriminant double cover

by πl : D̃l → Dl, and keep notation as in Proposition 4.2. There is an isogeny of polarized

abelian varieties

φl : P(Dτ ,Dl) × P(Dτ ι,Dl) → JX

with kerφ ∼= (Z/2Z)4. Moreover, with respect to the action of τ on the principally

polarized intermediate Jacobian JX, the isogeny φl induces isomorphisms of polarized

abelian varieties

JXτ ∼= P(Dτ ,Dl); JX−τ ∼= P(Dτ ι,Dl).

Proof. The proof is identical to that of Theorem 2.5, and follows from

Proposition 4.3. �

4.3 The generic fiber of the Prym map for double covers of genus 2 curves ramified in four

points

Consider the Prym map P2,4 : R2,4 → A(1,2,2)
3 , where R2,4 is the moduli space of double

covers of smooth genus 2 curves branched in four distinct points, and A(1,2,2)
3 denotes

the moduli space of abelian threefolds with a polarization of type (1, 2, 2). From [36,

Thm. 1.2] or [22, Thm. 5.2], we know that the generic fiber of P2,4 is birational to an

elliptic curve. By Theorem 3.1 and Proposition 3.4, a general member of A(1,2,2)
3 can be

realized as the invariant part JXτ for a general cubic threefold X with an involution τ of

non-Eckardt type. The goal of this subsection is to give a more concrete description of

the generic fiber P−1
2,4(JXτ ).

Let us keep notation as in § 2.2 and § 4.1. Similarly as in [16, §5], we make

the following observation. Let us project a general cubic threefold (X, τ) with a
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Cubic Threefolds with Non-Eckardt type Involution 16133

non-Eckardt type involution from a general invariant line l �= L. The quotient bτ : Dτ → Dl

of the discriminant double cover for the projection πl : BllX → P
2
l (see Proposition 4.2)

is contained in the fiber P−1
2,4(JXτ ) because of Theorem 4.4. We now show that for

τ -invariant lines l and l′ contained in the same fiber of πL : BlLX → � (in other words,

there exists a plane P ⊂ P
4 with X ∩ P = L ∪ l ∪ l′) the quotient discriminant double

covers bτ : Dτ → Dl and b′
τ : D′

τ → Dl′ are isomorphic and hence correspond to the same

element in R2,4. Our main tools are the bigonal and tetragonal constructions; recall that

the bigonal construction is also the key ingredient for proving [36, Thm. 1.2] and [22,

Thm. 5.2]. We refer the reader to [20, §2] (see also [22, §1]) for the description of the

bigonal and tetragonal constructions.

Proposition 4.5. Notation as above. Let l and l′ be general τ -invariant lines in X that

are contained in the same fiber of πL : BlLX → �. Consider the projections of X from

the pointwise fixed line L ⊂ X (as in § 2.2) and from the invariant lines l, l′ ⊂ X (see §

4.1). Denote the discriminant double covers by πL : C̃ ∪ Q̃ → C ∪ Q, πl : D̃l → Dl and

πl′ : D̃l′ → Dl′ , respectively. Also let π : C̃ → C be the restriction of πL to the smooth cubic

component, and set bτ : Dτ → Dl (respectively, b
′
τ : D′

τ → Dl′ ) to be the quotient of πl

(respectively, πl′ ) by the involution induced from τ (cf. Proposition 4.2).

1. The union of lines l ∪ l′ corresponds to a point cl∪l′ ∈ C ⊂ � and hence

determines a degree 4 map p = pl∪l′ : C ∪ Q → P
1 given by OC∪Q(1)(−cl∪l′)

(i.e. projecting C ∪ Q from cl∪l′ ∈ C to a complementary line in �). Similarly,

Dl (respectively, Dl′ ) admits a map q = qL∪l′ : Dl → P
1 (respectively, q′ = qL∪l :

Dl′ → P
1) of degree 4. Then

C̃ ∪ Q̃
πL→ C ∪Q

p→ P
1; D̃l

πl→ Dl
q→ P

1; D̃l′
πl′→ Dl′

q′
→ P

1

are tetragonally related (in other words, the tetragonal construction of one

produces the other two).

2. Consider the degree 2 map obtained as the restriction of p = pl∪l′ : C∪Q → P
1

to the smooth cubic curve C and still use p to denote it. Note that Dl and Dl′

are smooth of genus 2 and hence admit degree 2 maps to P
1 defined by the

canonical linear systems (which are the unique g12’s on Dl and Dl′ ). Then the

bigonal construction takes both

Dτ

bτ→ Dl
r→ P

1; D′
τ

b′
τ→ Dl′

r′→ P
1
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16134 S. Casalaina-Martin et al.

to

C̃
π→ C

p→ P
1.

In particular, bτ : Dτ → Dl and b′
τ : D′

τ → Dl′ are isomorphic.

Proof. The first claim is the content of [20, Ex. 2.15(4)] which we now recall using the

notation therein. To apply the tetragonal construction to D̃l
πl→ Dl

q→ P
1, we consider the

following commutative diagram:

where the superscript (n) denotes the n-th symmetric product, the bottom horizontal

arrow is defined by sending a point y ∈ P
1 to the fiber q−1(y), and q∗D̃l is the fiber

product which is a curve in D̃(4)

l . As discussed in [20, §2.1], the covering involution

associated with πl : D̃l → Dl induces an involution ιl on q∗D̃l. Denote the orientation

double cover of D̃l
πl→ Dl

q→ P
1 by P̃

1 → P
1 (cf. [20, §2.2]). Then the map q∗D̃l

16:1→ P
1

factors as

q∗D̃l
2:1−→ q∗D̃l/ιl

4:1−→ P̃
1 2:1−→ P

1.

Moreover, the orientation double cover P̃
1 → P

1 is trivial; the curves q∗D̃l, q∗D̃l/ιl and

P̃
1 are thus reducible and we obtain the other two towers associated with the tower

D̃l
πl→ Dl

q→ P
1 via the tetragonal construction (see [20, §2.5] for more details).

Going back to our case, we need to construct injections C̃ ∪ Q̃ ↪→ q∗D̃l and D̃l′ ↪→
q∗D̃l. Geometrically, there exists a plane P ⊂ P

4 with X ∩ P = L ∪ l ∪ l′ as l and l′ are
contained in the same fiber of πL : BlLX → �. Consider the conic fibration πl : BllX → P

2
l .

The plane P corresponds to a point dL∪l′ ∈ Dl ⊂ P
2
l . Projecting the discriminant quintic

Dl from dL∪l′ , one gets the degree 4 map q : Dl → P
1. Let us now fix a general point

y ∈ P
1 ⊂ P

2
l . Pulling back the line 〈dL∪l′ , y〉 ⊂ P

2
l joining dL∪l′ and y via πl : BllX → P

2
l , we

obtain a hyperplane Hy ⊂ P
4 which intersects X along a smooth cubic surface X ∩ Hy.

Note that the lines L, l and l′ are contained in X ∩ Hy. From the configuration of the 27

lines on a smooth cubic surface, we deduce that besides L ∪ l′ there are four other pairs

of coplanar lines m(i)
y ∪ n(i)

y (for 1 ≤ i ≤ 4) on X ∩ Hy meeting l which corresponds to the
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fiber q−1(y) ∈ D(4)

l . Now we choose a line on X ∩ Hy meeting L which is different from

l or l′; such a line is parametrized by a point of C̃ ∪ Q̃. Observe that this line intersects

four of the eight linesm(1)
y ,n(1)

y , . . . ,m(4)
y ,n(4)

y , one in each of the four coplanar pairs, and

hence defines an element of q∗D̃l. Letting y vary and using continuity, we obtain a map

C̃∪ Q̃ → q∗D̃l which is clearly injective. The definition of D̃l′ ↪→ q∗D̃l is similar. (Note also

that the local pictures of this tetragonal construction are given in [20, 2.14(3)].)

Let us now move to the proof of the second assertion. Following [20, §2.3], we

recall that the bigonal construction associates with the tower of double covers Dτ

bτ→
Dl

r→ P
1 another tower of double covers r∗Dτ → r∗Dτ /ιτ → P

1, where r∗Dτ is defined via

the following fiber product diagram (where the bottom horizontal arrow is defined by

sending y ∈ P
1 to r−1(y) ∈ D

(2)

l ):

and ιτ denotes the involution on r∗Dτ induced by the covering involution of bτ : Dτ → Dl.

The proof of the second claim is similar to that of the first one, but we need to take

the non-Eckardt type involution into consideration. Specifically, we project X from the

τ -invariant line l to P
2
l which is also τ -invariant and admits an involution τP2l

. Note that

the point dL∪l′ ⊂ P
2
l corresponding to the plane P = 〈L, l, l′〉 is fixed by τP2l

. Note also that

the discriminant double cover πl : D̃l → Dl is equivariant with respect to the involutions

τ on D̃l and τDl on Dl (cf. Proposition 4.1); the double cover bτ : Dτ → Dl is obtained

as the quotient of πl by the involutions. Now let us project Dl from dL∪l′ to an invariant

complementary line P
1 ⊂ P

2
l and fix a general point y ∈ P

1. Again let Hy ⊂ P
4 be the

τ -invariant hyperplane corresponding to the line 〈dL∪l′ , y〉 ⊂ P
2
l . The key observation is

that the smooth cubic surface X ∩ Hy admits an involution τy whose fix locus consists

of a line and three distinct points (e.g. [19, §9.5.1]). To verify this, we choose coordinates

as in § 4.1, noting that dL∪l′ = [0, 0, 1] ∈ P
2
l

∼= P
2
x0,x1,z. We then suppose that y = [a0,a1, 0]

and plug a0x1 = a1x0 into Equation (5). As in the proof of the first assertion, letm(i)
y ∪n(i)

y

(with 1 ≤ i ≤ 4) denote the four coplanar pairs of lines on X ∩ Hy meeting l which are

different from L ∪ l′. It is not difficult to see that these four pairs of lines are related by

the involution τDl on Dl and hence give an element of D
(2)

l . Without loss of generality, we

assume that τ(m(1)
y ) = m(3)

y (respectively, τ(n(1)
y ) = n(3)

y ) and τ(m(2)
y ) = m(4)

y (respectively,

τ(n(2)
y ) = n(4)

y ).Now choose a τy-invariant line on X∩Hy meeting the pointwise fixed line L;

D
ow

nloaded from
 https://academ

ic.oup.com
/im

rn/article/2023/18/16104/7190408 by C
olum

bia U
niversity Libraries user on 29 M

arch 2025



16136 S. Casalaina-Martin et al.

there are four such lines besides l and l′ all of which are parameterized by points on C̃.

This τy-invariant line intersects two of the four lines m(1)
y ,n(1)

y ,m(2)
y ,n(2)

y , one in each of

the two coplanar pairs. Similarly as in [20, Ex. 2.15(4)],we get an element in r∗Dτ and thus

define an injection C̃ ↪→ r∗Dτ . Since (X, τ , l) is general, r∗Dτ is smooth and irreducible (i.e.

the situation in [20, p. 69 (v)] does not happen) and therefore C̃ = r∗Dτ . Summing it up,

Dτ

bτ→ Dl
r→ P

1 and C̃
π→ C

p→ P
1 are related by the bigonal construction.

Similarly, D′
τ

b′
τ→ Dl′

r′→ P
1 and C̃

π→ C
p→ P

1 are also related by the bigonal

construction, noting that l′ is contained in the same fiber of πL : BlLX → � as l and

that the bigonal structure p = pl∪l′ : C → P
1 on C is determined by l ∪ l′. Since the

bigonal construction is symmetric (cf. [20, Lem. 2.7]), bτ : Dτ → Dl and b′
τ : D′

τ → Dl′ are

isomorphic. �

As a consequence of [37, §3] and Proposition 4.5, the Prym varieties P(C̃,C) and

P(Dτ ,Dl) are dual to each other; this matches our results in Theorems 2.5 and 4.4. We

conclude the discussion using the following proposition.

Proposition 4.6. Consider the Prym map P2,4 : R2,4 → A(1,2,2)
3 . A general member A ∈

A(1,2,2)
3 can be realized as the invariant part JXτ of the intermediate Jacobian of a general

cubic threefold (X, τ) with a non-Eckardt type involution. Furthermore, set C ⊂ X to be

the pointwise fixed plane section as in Lemma 1.3; note that C is smooth and of genus 1.

Then the generic fiber of P2,4 : R2,4 → A(1,2,2)
3 over JXτ ∈ A(1,2,2)

3 is birational to C.

Proof. The first assertion is a corollary of Theorem 3.1 and Proposition 3.4. The second

claim follows from Proposition 4.5 and the argument in the proof of [36, Thm. 1.2] or [22,

Thm. 5.2]. Specifically, notation remains the same as in § 2.2 and § 4.1. From Theorem

4.4, we know that the invariant part JXτ is isomorphic to the Prym variety P(Dτ ,Dl),

where l ⊂ X is a general invariant line and bτ : Dτ → Dl is the quotient discriminant

double cover (see Proposition 4.2). As argued in the proof of [36, Thm. 1.2] or [22, Thm.

5.2], the generic fiber of the Prym map P2,4 : R2,4 → A(1,2,2)
3 over P(Dτ ,Dl) is birational

to Pic2(E) ∼= E, where E is an elliptic curve obtained via the bigonal construction for

Dτ

bτ→ Dl → P
1. By Proposition 4.5, we have that E ∼= C which completes the proof. �
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