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There are two types of involutions on a cubic threefold: the Eckardt type (which has
been studied by the first named and the third named authors) and the non-Eckardt
type. Here we study cubic threefolds with a non-Eckardt type involution, whose fixed
locus consists of a line and a cubic curve. Specifically, we consider the period map
sending a cubic threefold with a non-Eckardt type involution to the invariant part of
the intermediate Jacobian. The main result is that the global Torelli Theorem holds for
the period map. To prove the theorem, we project the cubic threefold from the pointwise
fixed line and exhibit the invariant part of the intermediate Jacobian as a Prym variety
of a (pseudo-)double cover of stable curves. The proof relies on a result of Ikeda
and Naranjo-Ortega on the injectivity of the related Prym map. We also describe the
invariant part of the intermediate Jacobian via the projection from a general invariant

line and show that the two descriptions are related by the bigonal construction.

1 Introduction

Moduli spaces of cubic hypersurfaces are a central object of moduli theory, as they are
one of the first examples one can study via a Hodge theoretic period map. Clemens,
Griffiths [13], Mumford [34], and Beauville [8] proved the global Torelli Theorem for

cubic threefolds—mnamely, a cubic threefold is determined up to isomorphism by its
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intermediate Jacobian. Based on the work of Voisin, Hassett, Laza, and Looijenga on
the period map for cubic fourfolds, Allcock, Carlson, and Toledo [3] and Looijenga and
Swierstra [27] have exhibited the moduli space of cubic threefolds as a ball quotient.
More specifically, this is achieved via the (eigen)period map for cubic fourfolds admitting
an automorphism of order 3, which are obtained as triple covers of P* branched along a
cubic threefold. Furthermore, Kudla and Rapoport [25] (see also [42]) have interpreted
the above construction as a certain map of stacks taking values in a moduli stack
of abelian varieties of Picard type; in this way they are also able to describe the
field of definition of the period map. It is worth noting that cubic hypersurfaces with
additional automorphisms are related to other interesting moduli problems, and have
been key ingredients for constructing several new period maps. Besides the moduli
of cubic threefolds [3, 27], examples include moduli of cubic surfaces [2] (via cubic
threefolds with an order 3 automorphism), moduli of cubic threefold pairs [26], and
cubic surface pairs [16] (via cubic fourfolds and cubic threefolds admitting an Eckardt
type involution, respectively). In a different direction, cubic threefolds with extra
symmetry provide examples of unlikely intersections in the intermediate Jacobian
locus [16].

Involutions on cubic fourfolds have been recently studied in [26], [41], and [31] (see
also [29]). In this paper, we focus on cubic threefolds admitting a (biregular) involution—
these have been classified in for instance [23]. In particular, there are two types of
involutions for a cubic threefold; admitting one type is equivalent to having an Eckardt
point. The moduli space of cubic threefolds admitting an Eckardt type involution has
been studied in [16]; the main result is that the period map sending an Eckardt cubic
threefold to the anti-invariant part of the intermediate Jacobian is injective. The purpose
of this paper is to study the analogous situation for the remaining involution.

More concretely, we study the moduli space M of cubic threefolds X c P* with an
involution 7 of non-Eckardt type, whose fixed locus in X consists of a line L and a cubic
curve C. We define JX* to be the invariant part of the intermediate Jacobian JX with
respect to the induced involution 7. The abelian subvariety JX* C JX is of dimension 3

and inherits a polarization of type (1,2, 2), and thus we obtain a period map:

P M — AS

X, 1) — JX.

Our main result is the following global Torelli theorem for P.
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16106 S. Casalaina-Martin et al.

Theorem 0.1 (Global Torelli for cubic three-folds with a non-Eckardt type involution;
Theorem 3.1). The period map P : M — Aél’z’z), which sends a cubic threefold X with a

non-Eckardt type involution 7 to the invariant part JX® C JX, is injective.

We also prove that the infinitesimal Torelli theorem holds for P : M — A§1'2'2>

over an open subset M, C M (this is analogous to the situation for the moduli space of
smooth curves of genus greater than 2, where the infinitesimal Torelli theorem holds for

the non-hyperelliptic locus; see Remark 9).

Proposition 0.2 (Infinitesimal Torelli for cubic threefolds with a non-Eckardt type
involution; Proposition 3.4). Let My C M be the open subset described in § 3.4. The
differential dP of the period map P is an isomorphism at every point of M; C M.
Combining this with Theorem 0.1, P| 4, : My — Ag,z,z) is an open embedding.

The strategy for proving the global Torelli theorem for the period map P is similar
to that in [16]. Specifically, we project (X,t) from the pointwise fixed line L C X to
realize the invariant part JX* C JX as a Prym variety. In particular, we show that JX*
is isomorphic to the dual abelian variety of the Prym variety P(C, C) of a double cover
7 : C — C of a genus 1 curve C branched in six points (see Theorem 2.5). The crucial
element in the proof is the description of Prym varieties for (pseudo-)double covers of

stable curves given in [7]. The associated Prym map (recall that R

9.2n is the moduli space

of double covers of smooth genus g curves branched in 2n distinct points)
. (1,1,2)
Pl,G . RI,G e AS

is known to be injective (cf. [24] or [36]), allowing us to recover x : C — C from JX'. We
then apply the reconstruction result in [9] (see also [14]) to prove Theorem 0.1, noting
that the line bundle £ associated with the double cover 7 allows one to embed C into P?
as a plane cubic (cf. Proposition 2.2).

We also study the fibration in conics obtained via the projection of a (general)
cubic threefold X with a non-Eckardt type involution t from a (general) invariant line
| Cc X. Invariant but not pointwise fixed lines in X are parameterized by the curve C. In
this direction, we prove that the invariant part JX® is isomorphic to the Prym variety
P(D,,D;) associated with a double cover b, : D, — D; of a genus 2 curve D; ramified in
four points (c.f. Theorem 4.4). The main techniques used in the proof are those developed
in [34], [20], and [38] for studying Galois covers of curves with automorphism group the

Klein four group. Letting the invariant line [ vary, one would expect the generic injectivity
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of the natural map from C to the generic fiber of the associated Prym map
. (1,2,2)
7?2,4- . R2'4 — ‘A3 .

However, this is not the case—if two invariant lines [ and I’ form a coplanar pair
(corresponding to a point ¢; ; € C) meeting the pointwise invariant line L, then the double
covers b, : D, — D; and b, : D, — D, are isomorphic. Indeed, we prove the following
result which relates the double covers b, : D, — D (respectively, b, : D, — D;) and
7 : C — C via the bigonal construction (see for example [20]). This allows us to apply

(1,2,2)
3

the argument in [36] or [22] to show that the generic fiber of P, 4 : Ry 4 — A over a

general member JX' € Agl,z,z) is birational to the elliptic curve C (cf. Proposition 4.6).

Proposition 0.3 (Projection from the pointwise fixed line versus projection from a

general invariant line; Proposition 4.5). Notation as above. The towers of double covers
by = 1 1 , b= 1
D,—- D —P; D,—Dy,—P

are both bigonally related to the tower of double covers C - C 2 pl where r: D; — P!
(respectively, 7’ : D, — P!) denotes the map determined by the unique g% of the genus 2
curve D; (respectively, D;) and p : C — P! is the projection map from the point ¢; ; € C.

In particular, b, : D, — D; and b, : D, — D, are isomorphic.

Finally, we note that exhibiting the invariant part JX* as a Prym variety turns
out to be crucial for the ongoing project of the second named author, in applying the
LSV construction (cf. [28] and [39]) to cubic fourfolds with a non-Eckardt type involution.
This is important in the geometric study of involutions of hyper-Kéhler manifolds of
OG10 type (see [32]), particularly those involutions induced from a cubic fourfold. Recall
that the Prym construction of the intermediate Jacobian of a cubic threefold is central
to the work in [28], which associates to a cubic fourfold a hyper-Kdhler manifold of
OG10 type.

We now give an outline of the paper; we work throughout over the complex
numbers C. In § 1, we introduce our objects of interest, namely cubic threefolds X with a
non-Eckardt type involution r. We also investigate lines that are invariant under such an
involution. In § 2, we exhibit such a cubic threefold X as a conic fibration via projection
from the pointwise fixed line L € X and describe the invariant part JX* as a Prym variety.
Using this description, we prove global and infinitesimal Torelli theorems for the period
map P : M — A§1,2,2) in § 3. Finally, we discuss an alternative description for J(X)*,

obtained by projecting X from an invariant line different from L in § 4.
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1 Cubic threefolds with a non-Eckardt type involution

In § 1.1, we introduce cubic threefolds X with a non-Eckardt type involution 7. We then
define a period map P for these cubic threefolds in § 1.2. In order to study the period
map P, we will project X from an invariant line to exhibit the intermediate Jacobian JX

as a Prym variety; we investigate the r-invariant lines that are contained in X in § 1.3.

1.1 Involutions of cubic threefolds

Let X C P™! be a smooth hypersurface of degree d. Denote by Aut(X) the group of
automorphisms of X, and by Lin(X) the subgroup of Aut(X) consisting of automor-
phisms induced by projective transformations of the ambient projective space leaving
X invariant. By [33, Thm. 1 and 2], assuming n > 2,d > 3 we have that Aut(X) = Lin(X),
except in the case n = 2,d = 4. Moreover, Aut(X) is finite (again excluding the case
n = 2,d = 4). As a consequence (and specifying to the case n = d = 3), one can obtain
a complete classification of prime order automorphisms of smooth cubic threefolds (e.g.
[23, Thm. 3.5], see also the references in [29, Rmk. 1.6]). In particular, for involutions we

have the following classification.

Proposition 1.1. Let X = V(F) be a smooth cubic threefold in P* that admits an

involution 7. Applying a linear change of coordinates, we can diagonalize 7, so that
7 P* = P4 [xg, ..., x4l > [(=1)%x, ..., (—1)%x,],

with a; € {0,1}. Let a := (ag,...ay), and let D be the dimension of the family of smooth

cubic threefolds that admit the involution 7. Then
1. eithera = (0,0,0,0,1) and t = 7, fixes pointwise a hyperplane section S C X
and a point p € X \ S. We have that D = 7 and

2
F = f(xg,x;,X5,X3) + (X, X1, Xy, X3)X],

where ¢ is a homogeneous linear polynomial, and f is homogeneous of degree
3.

2. ora =(0,0,0,1,1) and v = 7, fixes pointwise a line I C X and a plane cubic
C C X. We have that D = 6 and

F = Xx0q0(x3,%,) + X191 (X3, X4) + X3q5(X3,X4) + (X, X1, X5),

where each g; is a homogeneous quadratic polynomial and g is a homogeneous

cubic polynomial.
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Proof. See [23, Thm. 3.5]. |

Admitting an involution of type r; is equivalent to the existence of an Eckardt
point. Such a cubic is called an Eckardt cubic and has been well studied (see for example
[26] and [16]). In this paper, we will focus on studying involutions of the type t,; we make

the following definition.

Definition 1.2. We call an involution on a smooth cubic threefold of type 7, (as in

Proposition 1.1) an involution of non-Eckardt type.

Throughout, X c P* is a smooth cubic threefold with an involution t of non-

Eckardt type with equation
F =Xqo(X3,Xy) + X1qy (X3, X4) + XG5 (X3, X4) + 9(Xg, X1, X3) = 0, (1)

where each g;(x;,x,) is homogeneous of degree 2 and g(x,, x;,x,) is homogeneous of

degree 3. The involution
T xg, X1, Xy, X5, X,] > (X, X1, X9, —X3, —X,] (2)

fixes two complementary linear subspaces of P* pointwise; the line L := V(x,, X1, X,) and
the plane IT := V(x3,x,). Notice that the line L C X, and the fixed curve C is given by the

intersection X N IT; i.e. C = V(g(xq, X1, X3), X3, X,).

Lemma 1.3. Let (X, t) be a smooth cubic threefold with a non-Eckardt type involution.
Then the fixed curve C C X as above is smooth.

Proof. Suppose that Cis not smooth. Then there exists a = [ag,a;,a,] e CCTT = P2 ,
such that %(a) = 0 fori = 0,1,2. Taking partial derivatives of the Equation (1) shows
that X is singular at the point [a,, a;,a,, 0, 0l. [ |

1.2 The period map for cubic threefolds with a non-Eckardt type involution

Let X be a cubic threefold with the involution t of non-Eckardt type as discussed in
the previous subsection. By abuse of notation, we use t to denote the involution on the
principally polarized intermediate Jacobian JX induced by the involution 7 of X. Define

the invariant part JX* and the anti-invariant part JX 7, respectively, by

JX® :=Im@1 +7); JX 7 :=Im(l —1). (3)
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16110 S. Casalaina-Martin et al.

Note that JX* and JX~* are t-stable complementary abelian subvarieties of JX (cf. [11,
Prop. 13.6.1]).

Lemma 1.4. The abelian subvarieties JX* and JX~* have dimensions 3 and 2, respec-
tively. The principal polarization of JX induces polarizations of type (1,2,2) and (2, 2)
on JX* and JX ¢, respectively.

Proof. The abelian subvarieties JX* and JX * correspond to the symmetric idem-

potents “2” and 157 in Endg(JX), respectively. Using [11, Prop. 5.3.10], we compute

their dimensions by studying the eigenspace decomposition of r on H'?(X) or H*!(X)
for a particular smooth cubic threefold with an involution of non-Eckardt type (e.g.
V(xoX3 + XoX2 + X1 X3 + X,X5 — X3 + X5 + x3)). Identifying the eigenspaces is a standard
computation using Griffiths residues (see for instance [15, Thm. 3.2.10]). The claim on the
polarization types will be proved later in Theorem 2.5 (see also Theorem 4.4). Note that
here the number of 2’s in the polarization types for JX* and JX~* are the same, which

for instance follows from [16, Lem. 1.13]. [ |

Let M be the moduli space of cubic threefolds X with an involution r of non-
Eckardt type constructed using GIT (see for example [41, §2.2]). Let A(31'2'2) be the moduli
space of abelian threefolds with a polarization of type (1,2, 2). Note that dim M = 6 and

dim Agl’z’z) = 6. Define a period map (via Lemma 1.4):

. (1,2,2),
P:M— Ay ;
(X, 1) — JX,

which sends a smooth cubic threefold X with an involution t of non-Eckardt type to the

invariant part JX° of the intermediate Jacobian JX.

1.3 Invariant lines

In order to study the period map P in § 1.2, we will need to understand how the
intermediate Jacobian JX of such a cubic threefold (X, r) decomposes with respect to
the involution t. As in [16], our strategy will be to project X from a r-invariant line to

exhibit JX as the Prym variety of the associated discriminant double cover.

Lemma 1.5. Let X be a smooth cubic threefold with an involution 7 of non-Eckardt type,

cut out by Equation (1). Let I € X be a r-invariant line. Then either [ is pointwise fixed
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by r (i.e. I = L = V(xy,x;,X,)), or I intersects both the fixed line L and the fixed curve
C - V(g(XO’Xl'XZ)’X3’X4) C X.

Proof. We use the notation in § 1.1. The fixed locus of the involution r acting on P*
consists of the line L and the plane IT = V(x3,x,). If v fixes every point of [ C C, then
either [ = L, or [ is a component of C. By Lemma 1.3, the curve C is smooth, and so [l = L.
Otherwise, t fixes two points of [ € X. One of the points needs to be off of the fixed line
L, and hence must be a point of C. Thus [ intersects both L and C. |

Observe that the plane (L,l) spanned by the pointwise fixed line L and an
invariant line [ # L is itself r-invariant and therefore must intersect X along a third
invariant line /. Through projecting X from the pointwise fixed line L C X, we will see in
§ 2.2 (and also the proof of Proposition 2.4) that the t-invariant lines I C X which are not
pointwise fixed are parameterized by a smooth genus 4 curve C which is a double cover
of C. In other words, the fixed locus of t on the Fano surface F(X) of lines consists of a
point corresponding to the pointwise fixed line L and the other curve C parameterizing
other t-invariant lines I: F(X)" = {L} UC.

2 Cubic threefolds with an involution of non-Eckardt type as fibrations in conics I:

pointwise fixed line

In this section, we study the intermediate Jacobians JX of cubic threefolds (X, t) with
an involution of non-Eckardt type via projections from the pointwise fixed lines L C X.
Some basic facts about cubic threefolds as fibrations in conics are first recalled in §
2.1. We then focus on cubic threefolds with a non-Eckardt type involution and study
the fibrations in conics obtained by projecting these cubic threefolds from pointwise
fixed lines in § 2.2. An important observation is that the discriminant quintic curves
split as the union of smooth cubic curves and transverse quadratic curves. Based on the
observation and the results in [7, §0.3], we give a characterization of the invariant and

anti-invariant parts of the intermediate Jacobians in § 2.3.

2.1 Cubic threefolds as fibrations in conics

Let X C P* be a smooth cubic threefold with a line I ¢ X. The linear projection with
center [ expresses X as a conic fibration over a complementary plane P?; indeed, P? also

parametrizes the space of P2-sections of X containing I. The blow up B];P* of the ambient
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projective space along I gives a commutative diagram

Bl X —— BL,P*

Sl

where BlX is the strict transform of X in B];P*, yielding a fibration in conics 7; : B[,X —
P2. The discriminant curve is a plane quintic D ¢ P? which by [7, Prop. 1.2] is stable,
and there is an associated pseudo-double cover (Let D — D be a double cover of stable
curves with the associated covering involution (. We say that D — D is admissible if
the fixed points of ¢ are nodes, and the local branches are not interchanged by ¢ at each
fixed node of D. An admissible double cover D — D is called allowable (see [6, (**), p-
173] and [21, §I.1.3]) if the associated Prym is compact. An allowable double cover D —
D is said to be a pseudo-double cover (cf. [6, (¥), p. 157] and [7, Def. 0.3.1]) if the fixed
points of  are exactly the nodes of D.) 7 : D — D determined by interchanging the
lines in the fiber of 7; over the points of D (cf. [7, Prop. 1.5]). For a projection from a
general line I C X, D is smooth and D — D is connected and étale (see for example
[13, Appendix C]).

Associated with the discriminant double cover 7 : D — D is a rank-1 torsion-free
sheaf 1, which is reflexive, i.e. Hom(np, Op) = np (more precisely, D — D is constructed
as Spec,(Op ® np) — D, where the Op-algebra structure on Op @ 7p is induced by
Hom(np, Op) = np). Letkp := np®Op(1). Then «p is an odd theta characteristic satisfying
Hom(kp, wp) = kp and h%(D, kp) = 1. Note also that «,, (and therefore ) is locally free at
apoint d € D if and only if D — D is étale over d. By [7, §1.6] and [14, Prop. 4.2], the conic
fibration construction gives a one-to-one correspondence between pairs (X, ) consisting
of a smooth cubic threefold X and a line ! C X and pairs (D, k), where D is a stable plane
quintic curve and «p, is a theta characteristic with h%(D,xp) = 1, both up to projective
linear transformations.

The above construction can also be described in coordinates. We may assume
that I ¢ P* is cut out by x, = x; = x, = 0. Since I C X, the equation of X is of

the form

2 2
by (Xg, X1, X0)X3 + Lo (X, X1, X)) X5 + 205(Xg, X1, X9)X3Xy

+ 2q (Xq, X1, X)) X3 + 2G5 (X, X1, X9)Xs + C(Xg, X, X9) =0,

GZ0Z YOJBI\ 6Z UO JoSN saLeiqi ASISAIUN eIquiniod Aq 80¥06 1 2/y0L9L/81/EZ0Z/2101E/UIWI/WO0d"dNO"0ILISPED.//:SARY WO PAPEOUMOQ



Cubic Threefolds with Non-Eckardt type Involution 16113

where ¢;, g; and ¢ are homogeneous polynomials of degree 1, 2, and 3, respectively. Let M

be the matrix

b1 (Xg, X1,Xy)  L3(Xg, X1,X9)  qy(Xg,X7,X5)

M = | l3(xg,X1,%X5) Lo(Xg, X1, X5)  qp(Xp, X1,%5) | - (4)

q1 (X, X1,X3)  Go(Xg, X1, Xy)  C(Xp, X1, X5)

Then the discriminant quintic curve D C V(x3,x,) = P? for the conic fibration r; : BLX —
P? is cut out by the discriminant of M: D = V(det(M)). In particular, a point d € D is a
smooth point if and only if the corank of M at d is 1 (note that because X is smooth the
corank of M is at most 2). Moreover, following [9, Prop. 4.2] and [14, Thm. 4.1] the theta

characteristic «;, admits a short exact sequence
M
0— O]P;Z(_Z)@z D OPZ(_B) — OPZ (_1)692 D O]pz — Kp — 0.

(Indeed, the smooth cubic threefold X and the line I ¢ X can be recovered from the
above minimal resolution of «, up to projective linear transformations, cf. [14, Prop. 4.2].)
When the plane discriminant quintic D is smooth and the discriminant double cover
7 : D — D is connected and étale, the theta characteristic «j, corresponds to the divisor
J (€1¢, — €% = 0) (which is the unique effective divisor such that twice of the divisor is
the divisor (¢,¢, — ¢2 = 0) on D), and the étale double cover D — D is associated with the
2-torsion line bundle np = kp(—1).

Denote the Prym variety of the discriminant pseudo-double cover 7 : D — D by
P(ﬁ,D), which is defined as

P(D, D) := (ker(Nm,, : J(D) — J(D)))°

(cf. [34, §3] and [6, §3]). For later use, let us give an explicit description of P(D, D) following
[7,80.3l.Set ¥ : N(D) — D (respectively, v : N(D) — D) to be the normalization of D
(respectively, D). Denote by =’ : N(D) — N(D) the induced double cover. By [6, Prop.
3.5], there exists an isogeny »* : P(D,D) — P(N(D),N(D)). More precisely, denote by
O®;w ) the principal polarization on J(N(D)) and consider the restriction of ® I D))
to P(N(D), N(D)):

Opw @) nD)) = OrdylPav®) D))

By [6, Thm. 3.7], ©py(5)n(p)) induces twice of a principal polarization E on P(D,D):

~sn—1 ~ — =
(") Opw(B),n(D)y) =alg 2E-
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16114 S. Casalaina-Martin et al.
In other words, the isogeny above is an isogeny of polarized abelian varieties:
7* : (P(D, D), 2E) — (P(N(D), N(D)), ®pyB)nD))-
From [11, Prop. 12.1.3], we deduce that
(PW (D), ND))", Opwd)nmy)”) = JW D)) /7T (D)), O

where ©" denotes the dual polarization (Here we are using the dual polarization defined
in [10, Thm. 2.1] (see also [16, Rmk. 1.14]) which is slightly different from the one used in
[11, 814.4]. In particular, for a polarization of type (d;,d,, ... ,dg) the dual polarization
has type (g—z, %, e, d—f).). As a result, we get the dual isogeny of polarized abelian

varieties
@)Y : JIN(D))/7n"*J(D),®") — (P(D,D)", (2E)") = (P(D, D), E).

For a pseudo-double cover, the kernel of (7*)" has been described in [7, §0.3] (see also [1,
p- 761). Specifically, let H' C Pic(N(D)) be the subgroup generated by (’)N@) (s — s'), where
s,s' € N(D) with ¥(s) = ¥(s'). Set H to be the image of H;, := H' N J(N(D)) in the quotient
J(N(E))/n’*J(N(D)). Then H is the kernel of the isogeny of polarized abelian varieties

0— H — JND)) /"7 "2 PD,D) - 0.

By [13, Appendix C] and [7, Thm. 2.1], the conic fibration construction r; : BLX —
P2 induces a canonical isomorphism of principally polarized abelian varieties
JX = P(D, D)

between the intermediate Jacobian JX of the smooth cubic threefold X and the Prym

variety P(D, D) of the discriminant double cover D — D.

2.2 Projecting cubic threefolds with a non-Eckardt type involution from the pointwise fixed

lines

Let (X, 7) be a smooth cubic threefold with a non-Eckardt type involution as in § 1.1. Let
L C X be the pointwise fixed line under 7 (see Lemma 1.5). We can rewrite the equation

of X in Equation (1) as
€1 (X, X1, X9)X5 + €y (Xg, X1, Xp) X5 + 205(Xg, X1, X)X3X, + (X, X1, X5) = O, (5)

where ¢;(xy, x;,x,) are linear forms, and g(x,, x;,Xx,) is homogeneous of degree 3. As

in § 2.1 we project X from the fixed line L = V(xy, x;,x,) to the complementary plane

GZ0Z YOJBI\ 6Z UO JoSN saLeiqi ASISAIUN eIquiniod Aq 80¥06 1 2/y0L9L/81/EZ0Z/2101E/UIWI/WO0d"dNO"0ILISPED.//:SARY WO PAPEOUMOQ



Cubic Threefolds with Non-Eckardt type Involution 16115

M= V(xg, x,) = P2

%o.x1 %, @0d obtain a fibration in conics 7y, : Bl;X — II. The plane

discriminant quintic D; C IT has equation det M = 0 where the matrix M is

1 (Xg, X1, Xy)  £3(Xg, X1, X5) 0
M= | ly(xg,X;,Xy) {5(Xg, X1, X5) 0 . (6)
0 0 9(Xg, X1, X5)

We are ready to see that D; is nodal and consists of the following components: a smooth

plane cubic
C:=V(g(xg, x1,X,),X3,%X,) CTI,
and a (possibly degenerate) plane conic
Q =V (xq, X1, X9)ls (X, X1, X5) — Z%(XO,XI,XZ),X3,X4) c II.
Note that C = X N 11 is the pointwise fixed curve by the involution r in § 1.1.

Lemma 2.1. Let (X, ) be a smooth cubic threefold with a non-Eckardt type involution
as above, and let 7; : Bl; X — II be the projection from the fixed line L C X. Then the
discriminant curve D; is a union of a cubic curve € and a conic curve Q. Moreover, the

cubic component C is smooth, and C meets the conic component Q transversely.

Proof. The claim that C is smooth has been verified in Lemma 1.3. It is shown in [7,

Prop. 1.2] that D; is at worst nodal, and therefore C and Q meet transversally. |

Denote by 7; : D, — D; = C U Q the discriminant double cover of the fibration
in conics 7; : Bl; X — TII. Note that 7; : D, — D; is branched at the intersection points
C N Q. Let us also observe that ﬁL = CUQ, where C (respectively, Q) is a double cover of
the smooth cubic C (respectively, the conic Q) ramified in the intersection points C N Q.
We now restrict the discriminant double cover n; : D, = CUQ — D; = CUQ to C and
focus on the obtained double cover 77|z : C — C (if no confusion is likely to be caused
we will simply write 7 instead of n;|z). Specifically, we describe the quadruple (C, 8, L, s)
corresponding to 7 : C — C,where B is the branch divisor, £ is the associated line bundle
on C satisfying £L%2 = O,(8), and s is a section of O,(8) vanishing on 8. For 7 : C — C,
clearly one has 8 = CN Q and s = ¢, (xy, X, X5) {5 (X, X1, X5) — €3(Xo, X, X5). It remains to

determine the associated line bundle L.

GZ0Z YOJBI\ 6Z UO JoSN saLeiqi ASISAIUN eIquiniod Aq 80¥06 1 2/y0L9L/81/EZ0Z/2101E/UIWI/WO0d"dNO"0ILISPED.//:SARY WO PAPEOUMOQ



16116 S. Casalaina-Martin et al.

Proposition 2.2. The double cover 7 : C — C obtained by restricting the discriminant
double cover r; : D, — D; to the smooth cubic component C is associated with the line
bundle £ = O,(1).

Proof. We may assume that the conic Q is smooth (note that this is the case for a
general cubic threefold with a non-Eckardt type involution; a similar argument applies
to the case when Q has rank 2). As in § 2.1, set np, to be the rank-1 torsion-free
sheaf which is associated with the discriminant double cover D, — D, and satisfies
Hom(np,, Op) = np, - Let kp, = np, ® Op, (1) be the theta characteristic on D;. By a result

of Beauville (see [9, Prop. 4.2] and [14, Thm. 4.1]), there exists a short exact sequence
0 — 0p2(=2)%2 @ Op2(—=3) B 0p2(—1)®2 @ Opa — i, — 0,

where P? denotes the plane IT = V(x3,x,) = P2 and M is the matrix in Equation (6).

0,X1,X2
Restricting the above exact sequence to the smooth cubic component C, one gets
the following sequence which coincides with the closed subscheme sequence for

C=V(g) c P%

0 — Op2(=3) 2 Opz — (kp, |¢)/torsion — O.

~

As a consequence, we get (kp [¢)/torsion = O. Similarly, from [9, Prop. 4.2] one
deduces that (kp, |g)/torsion is 6, = Og(—pt). Since np, = «p, ® Op (1), we have
that (np,|¢)/torsion = O, (—1) and that (np, |g)/torsion = 6,(—1). Since my, : f)L — D; is
associated with the rank-1 reflexive sheaf np , it holds that 7;, 05 = Op, @ np, (also

compare [18, Prop. 2.5]). Pulling back to C, one gets
7,0 = (nL*Of,L|C)/torsion = O¢ @ (np, |¢)/torsion.

The isomorphism on the left arises as follows. The pull-back and push-forward functors
induce a natural morphism 7;, 0z | — 7,.(Op, |z) = 7,Og. Since 7,0 is a rank-2 vector
bundle, the morphism factors through the quotient by the torsion sub-sheaf, and then a
local computation at the nodes shows the morphism is an isomorphism. Now, because
(np,|¢)/torsion = Oy (—1), the line bundle £ determining the double cover 7 : C — Cis
then ((nDL|C)/torsion)V = O0p(1). |

Remark 7. We give the following characterizations of the rank-1 torsion-free reflexive
sheaf np, . Without loss of generality, we assume the conic component Q of the discrimi-

nant quintic D; is smooth.
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1. Letv:C]]Q — D, = CU Q be the normalization map. Denote the preimages
of the six intersection points d;,...,dg € CN Q on C (respectively, Q) by
Cy,....Cq (respectively, qy,...,qg). Note that np is not locally free at the
intersection points C N Q. Pulling back np, via the normalization map v
gives a line bundle £’ (denote the corresponding geometric line bundle by
L) on C[] Q together with gluing maps along fibers aq; = 0 : Ly, — Ly,
which are all zero for 1 < i < 6. Equivalently, we could also describe
np, using the data (£” = L'(¥;¢; — %;9)),2qc; = 0 : Ly, — L7) (again
L” denotes the geometric line bundle corresponding to £”). From the proof

~

of Proposition 2.2, we deduce that L'|; = (np,|¢)/torsion = Og(—1) and
L"|q = (np,lg)/torsion = 6,5(-1). In other words, np, corresponds to the
data (Lo = O¢(=1),Lo(2;q;) = 65(2),0¢q; = 0), or equivalently, to the
data (Lo(Zic) = Oc(1),Lg = 0g(=1),aqc; = 0). In particular, it holds that
np, = Hom(np,, Op).

2. Alternatively, we describe the rank-1 torsion-free sheaf 5, using line
bundles over a semistable model of D; = C U Q. Specifically, set T :=
PLojDLSym'nDL. Note that np, is not locally free at the nodes C N Q. Then
T is a semistable curve obtained by replacing every intersection point
d; e CNQwith 1 < i < 6 by a smooth rational component E; which meets
the component C at c; and the component Q at g;. Moreover, T admits a
natural map st : T — D; contracting the exceptional components E, ..., E.
Letting £ be the tautological invertible sheaf on T which has total degree O,
we have that st, & = np, and &|g, = O (1). From (p, |¢)/torsion = Og(-1) and
(np, lg)/torsion = 6,(—1), one gets that & = O(—1) and &|, = 05(—1). Now
sety : £92 — Oy to be the homomorphism which vanishes on the exceptional
components Ej,...,Eg and coincides with (§]0)®? = Oq(-%;c;) < O on
C and (§|0)®2 = 0y(—%;q;) — Oy on Q. Then (T,&,y) is a Prym curve
in the sense of [5, Def. 1] (see also [17]). Moreover, under the isomorphism
between the moduli space ITr;r of non-trivial genus g Prym curves and the
moduli space R, of admissible double covers of stable curves of genus
g described in [5, Prop. 5], the Prym curve (T,&,y) corresponds to the

admissible discriminant double cover D; — D;.
We summarize the discussion in the below proposition.

Proposition 2.3. Let (X,7) be a smooth cubic threefold with an involution t of non-

Eckardt type, and set L C X to be the pointwise fixed line. Then the discriminant plane
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quintic D; for the projection 7; : Bl; — IT = P? is the union D; = CUQ of a smooth plane
cubic C and a transverse conic Q. Moreover, the restriction of the discriminant double
cover 7, : D, — D; to the cubic component C is a double cover 7 : C — C branched in the

six intersection points C N Q and associated with the line bundle O,(1).

2.3 The intermediate Jacobians of cubic threefolds with a non-Eckardt type involution via

the projections from the pointwise fixed line

Let (X,t) be a smooth cubic threefold with an involution of non-Eckardt type as in
Equations (1) and (2). Consider as in the previous subsection the conic fibration n; :
BLLX — II = V(xg,Xx4) = ]P’)ZQ)IXI,X2 obtained by projecting X from the unique pointwise
fixed line L c X. Denote the discriminant double cover by 7; : D, — D;, where D; = CUQ
and D, = CUQ. Also let 7 : C — C be the restriction of 7; to C. Since L is fixed,
there exists an involution on Bl; X induced by t, which further induces an involution
on D; commuting with 7; : D; — D,. By abuse of notation, we still denote by z the
involution on D, (and also the involution on the Prym variety P(D;, D;)) induced by the
non-Eckardt type involution on X. Define the invariant part P(D;,D;)" := Im(1 4 7) and
the anti-invariant part P(EL,DL)*’ := Im(1 — 7). As recalled in § 2.1, the intermediate
Jacobian JX is canonically isomorphic to the Prym variety P(D;,D;). We now give an
explicit description of P(ﬁL,DL) following [7, §0.3] which allows us to study the induced
involution ¢ on JX = P(Dy, D;).

Letv:C[]@ — CUQandv:C][Q — CUAQ be the normalizations of D, = CUQ
and D; = CU Q, respectively. Let

Ty EH Q— CH Q
be the double cover induced by the discriminant double cover ; : CUQ — CU Q. Denote
the ramification points of C — C (respectively, @ — Q) by Cy,...Cq € C (respectively,
Gy,---Gg € Q). Note that v(¢;) =v(g;) fori =1,...6. Following [7, §0.3] (see also § 2.1), we
set H' to be the subgroup of Pic(E’]_[ Q) generated by O(c; —q;) for 1 <1 < 6.Let H denote
the image of H, := H' NJ(C]] Q) in the quotient abelian variety

JC|Ja/zric]]a = (J©)/x*I©) x JQ).

By [7, Exer. 0.3.5], H consists of 2-torsion elements and is isomorphic to (Z/2Z)%.

Furthermore, H is the kernel of the isogeny of polarized abelian varieties

¢ = ()" JC]JQ/rrIcCc]]@ = J(©€)/x*I(C)) x J(Q) - P(Dy, Dy).
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More precisely, P(ﬁL,DL) admits the principal polarization defined in [6, Thm. 3.7].
Following [11, Prop. 12.1.3], J(C[] Q)/7;*J(C]] Q) is dual to P(C][Q,C[] Q) = P(C,C) x
P(Q,Q), and the dual polarization on it corresponds to the product of the following
polarizations on J(E)/n*J(C) and on J(Q): J(Z’)/n*J(C) is the dual abelian variety (See for
instance [11, Prop. 12.1.3]. Let us also recall the following. Let = : C — C be a connected
double cover of smooth curves branched in 2r points. Then the principal polarization on
J(C) induces a polarization on the Prym variety P(C, C) which is of type (1,...,1,2,...,2)
with 1's repeated max{0, r— 1} times. As the dual abelian variety, J(C)/7*J(C) is equipped
with a dual polarization of type (1,...,1,2,...,2) with 2's repeated max{0,r — 1} times
(compare [10, §2]).) to P(C, C) and therefore comes with a dual polarization, and J(Q) is

equipped with twice of the canonical principal polarization.

Proposition 2.4. Notation as above. There exists an isogeny of polarized abelian

varieties

¢ : (J(©/x*J(0) x J(Q) - P(Dy, Dy)

with kernel H = (Z/27)*. Moreover, with respect to the action r on P(EL,DL) induced by
the non-Eckardt type involution on X, the isogeny induces isomorphisms of polarized

abelian varieties
P(D;,D;)" = J(C)/n*J(C); P(D;,D;)~" =J(Q).

Proof. The proof is quite similar to that of [16, Prop. 3.10]. The existence of the isogeny
¢ and the description of the kernel H is the content of [7, Prop. 0.3.3] (see also § 2.1).
It suffices to prove the assertion regarding the invariant and anti-invariant abelian
subvarieties P(1~7L,DL)T and P(EL,DL)*’.

Let . = ¢; be the covering involution associated with the double cover 7, : D, =
CUQ — D; = CUQ. Consider the involution r : CUQ — CUQ induced by the non-Eckardt
type involution on X. We claim that the action of 7 on C is trivial, while the action on Q
coincides with «. Recall that the curve D; = C U Q parametrizes the residual lines to L
Take a

point x € I1, and consider the plane it corresponds to, namely, the span (L, x) C P*. Since

in a degenerate fiber of the conic fibration 7; : BLX — II = V(x3,x,) = ]P)?sz,Xl,XZ'
both L and x € IT are fixed by 7 : [xy, x;, X5, X3, X,] — [xq,X;, Xy, —X5, —x,], the plane (L, x)
is invariant under 7. Assume now that x is a point on C or Q but not both (otherwise, the
claim clearly holds). Then the P2-section (L, x) N X is three distinct lines, L UM U M’. The

lines M, M’ correspond to distinct points on C U Q. The involution r either interchanges
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M and M’, or it leaves both fixed. In other words, t either acts as the identity on a point
of C U Q, or by the covering involution «. The curve C C P2 parametrizes pairs of lines
such that each line is invariant under the involution of non-Eckardt type on X (Lemma
1.5), and so the points of C are fixed by the action of 7. The lines M, M’ parametrized
by x € Q C P? are not preserved and hence must be interchanged by the involution of
non-Eckardt type on X; thus t acts by the covering involution ¢ on Q as claimed.

It follows that the isogeny ¢ is equivariant with respect to the involution o :=
(1,1) on the product (J(C)/7*J(C)) x J(Q). Since Im(1 + 1) = (7;|5)*J(Q) = 0 on J(Q),
the invariant part Im(1 4+ o) = (J(C)/7*J(C)) x {0}. Similarly, the anti-invariant part
Im(1 — o) = {0} x J(Q). We then deduce that ¢ induces isogenies

(J(C)/m*J(C)) x {0} — P(D;,D;)%; {0} x J(Q) — P(Dy,D;)",

which are isogenies of polarized abelian varieties since ¢ preserves the polarizations. It
is not difficult to show that H N ((J(C)/7*J(C)) x {0}) = H N ({0} x J(Q)) = {(0,0)} using
the description of the kernel H given earlier in this subsection. As a result, the above

isogenies are isomorphisms which completes the proof of the proposition. |
Putting the above discussion together, we obtain the following theorem.

Theorem 2.5 (Intermediate Jacobian via projecting from the pointwise fixed line). Let
(X,7) be a smooth cubic threefold with an involution 7 of non-Eckardt type fixing
pointwise a line L C X. Let JX be the intermediate Jacobian which is principally
polarized. Projecting X from L, we obtain a fibration in conics 7; : Bl,X — IT = P2, Let
n; : D, = CUQ — D; = CUQ be the discriminant double cover, where C is a smooth cubic
and Q is a conic intersecting C transversely. We identify J(C)/7*J(C) as the dual abelian
variety to P(C, C) with the dual polarization. We also equip the Jacobian J(Q) with twice
of the canonical principal polarization. Then there exists an isogeny of polarized abelian

varieties
¢ : (J(©/n*J(C)) x J(Q) — JX

with ker¢ = (Z/2Z)*. Moreover, with respect to the action of r on JX, the isogeny ¢

induces isomorphisms of polarized abelian varieties

JXT = J(C)/n*J(C); JX T = J(Q).
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Proof. Sincethe intermediate Jacobian JX is canonically isomorphic to the Prym variety
P(f)L, D;), and the involutions are both induced from the non-Eckardt type involution on

X, the theorem follows from Proposition 2.4. [ |

3 Global Torelli for cubic threefolds with an involution of non-Eckardt type

Let M be the moduli space of cubic threefolds with a non-Eckardt type involution, and
set Ag_l’z'z) to be the moduli space of abelian threefolds with a polarization of type (1, 2, 2).
Recall that we have defined in § 1.2 the following period map:

P:M— Aél’z’z);

X, 1) — JXT,

which sends a smooth cubic threefold X with a non-Eckardt type involution z to the
invariant part JX* of the intermediate Jacobian. The goal of this section is to prove the

following global Torelli theorem for P.

Theorem 3.1 (Global Torelli for cubic threefolds with a non-Eckardt type involution).
The period map P : M — Aél’z'z) for smooth cubic threefolds with a non-Eckardt type

involution is injective.

Let us briefly outline the strategy. Let (X, t) be a smooth cubic threefold with
an involution of non-Eckardt type. We have shown in § 2.2 that projecting X from the
unique pointwise fixed line L C X (as in Lemma 1.5) determines a double cover 7 : C — C
which is the restriction of the discriminant double cover 7; : D, = CUQ — D, = CUQ
to the smooth cubic component C. Equivalently, the fibration in conics n; : Bl X — P?
gives a quadruple (C, 8, £, s) consisting of the branch divisor 8 = C N Q, the line bundle
L = O;(1) (see Proposition 2.2) associated with the double cover and a section s =
€1 (Xg, X1, X2) 05 (X, X1, X5) — €3 (Xg, X1, X,) (see Equation (5)) of O(B) vanishing on g = CNQ.
Conversely, we will prove in § 3.1 that (X,t) can be reconstructed (up to projective
equivalence) from the double cover = : C — C, or equivalently, from the quadruple
(C, B, L, s). Note that here we can also view C as a smooth genus 1 curve whose embedding
into P? as a smooth cubic curve is given by the linear system |£| = |Oc(1)| (such that
the branch divisor g8 lies on a quadratic curve Q). In particular, our reconstruction of
the cubic threefold (X, t) with a non-Eckardt type involution can be thought of as a
degenerate case of [7, §1.6] and [14, Prop. 4.2]. The other key ingredient, which we will
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recall in § 3.2, is the injectivity of the Prym map P, 5 : Ry g — Agl’l'z) for double covers
of smooth genus 1 curves ramified in six distinct points due to Ikeda [24] and Naranjo
and Ortega [36]. The proof of Theorem 3.1 will be completed in § 3.3 using Theorem 2.5

and the above results. The infinitesimal Torelli theorem will be discussed in § 3.4.

3.1 Reconstructing cubic threefolds with a non-Eckardt type involution

We keep notation as in § 2.2. From [7, §1.6] and [14, Prop. 4.2] (see also § 2.1), we know
that the data of a smooth cubic threefold together with a line determine the data of a
stable plane quintic curve and an odd theta characteristic (up to projective equivalence),
and vice versa. We have a similar result for cubic threefolds with a non-Eckardt type

involution.

Theorem 3.2 (Reconstructing a cubic threefold with a non-Eckardt type involution from
a ramified double cover of a genus 1 curve). Given a double cover C — C of a smooth
genus 1 curve C branched in six distinct points, one can associate a smooth cubic
threefold (X, r) with an involution of non-Eckardt type, such that C — C is obtained by
projecting X from the unique pointwise fixed line L C X (i.e. we restrict the discriminant

double cover of the conic fibration 7} : Bl; X — IT = P? to the smooth cubic component).

Proof. The first observation is that a double cover C — C of a smooth genus 1 curve C
branched in six distinct points determines an admissible double cover D — D of a nodal
plane quintic D containing C as a component. More precisely, the data of a double cover
C — C of a smooth genus 1 curve C ramified in six distinct points can be described
equivalently as a quadruple (C, 8, £, s), where 8 is the branch divisor on C consisting of
six distinct points, £ is a line bundle on C with £®% = Oc(B), and s is a section of O, (B)
vanishing on . We claim that the data of such a quadruple (C, 8, L, s) are equivalent
to the data of a pair (C ¢ P?,Q c P?) recording the embedding of a smooth cubic C
and a transverse conic Q in P?. Indeed, the line bundle £ is very ample (since deg £ >
2g(C) + 1), and hence defines an embedding C < P? of C as a plane cubic, such that
Op2(1)|¢ = L. From the identification HO(P?, Op2(2)) — HO(C, Op2(2)|) = HO(C, O4(B)),
we see that there is a unique conic Q in the plane so that Q N C = B. Since B consists
of six distinct points, Q is reduced. In summary, we let D := C U Q which is a nodal
plane quintic, and set D — D to be the unique double cover branched at the nodes of D,
such that the restriction to C is the cover C — C (note that, since Q is rational, only one

irreducible double cover of it exists, branched at C N Q).
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If we knew that the cover D — D were odd, then [7, §1.6] (see also [14, Prop. 4.2])
would provide a smooth cubic threefold X and a line L C X so that projection from L
gave the discriminant cover D — D. However, we would still need to show that X was a
cubic threefold with non-Eckardt type involution, and that L was the unique pointwise
fixed line.

For this reason, we instead construct directly the smooth cubic threefold X with
anon-Eckardt type involution 7 so that projection from the pointwise fixed line gives the

desired cover. To begin, since the rank of Q is 2 or 3, it is given by

Z 1} ’ Z ’ ’
det( 1(X X1, %) £3(xg, X, Xz)) -0

ly(Xg, X1, Xy)  £y(Xg, X7, X5)

for some choice of coordinates on P2 and some linear forms £;(xg,x,,X%,). Let

g(xy,%1,%,) = 0 be the equation for C. Take X to be the cubic threefold in P* given by
1 (Xg, X1, X0)X5 + £y (Xg, X1, Xp) X5 + 2€5(Xg, X, Xp)X3X, + g(Xg, X1, X5) = 0, (8)

which admits an involution v : [xg, X;, Xy, X3, X4] — [x,Xx;,X,, —X5, —X,] of non-Eckardt
type. Let L := V(x, X;,X,) and IT := V(x3,x,) = P2, Taking the determinant of the matrix
in Equation (4), one has that D = C U Q is the discriminant curve of the conic fibration
obtained by projecting X from L (compare § 2.2).

It remains to show that the cubic threefold X is smooth, and that the associated
discriminant double cover obtained by projection from L is the cover D — D constructed
above. Assuming X is smooth, the latter assertion is Proposition 2.2. The smoothness of
X will follow from the fact that the cubic C c P? is smooth and the conic Q intersects
C transversely. Similar arguments are made in the proof of [14, Prop. 4.2]. Specifically,
suppose that a = [ay, a,,a,,a3,a,] is a singular point of X, and consider first the case
a ¢ L = V(xy,x;,X,). After a change of coordinates fixing x,, x;, x,, we may assume that
a; = a, = 0. Analyzing the partial derivatives of Equation (8), we see that the cubic C
is singular at the point [a, a,, a,], which is a contradiction. Next, let us consider the
case when the point a lies in the fixed line L. We may assume that a = [0,0,0,1,0l.
A direct calculation using Equation (8) shows that the conic Q is non-reduced, which
is absurd. |

3.2 Injectivity of the Prym map for double covers of genus 1 curves branched in six points

Consider the Prym map Py o, : Rgoy — A;l_"i'j’ff'“"

that R, ,, is the moduli space of double covers of smooth genus g curves branched in

2 (with 2's repeated g times); recall
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1,2,
1+n

g—1+n with a polarization of type (1,...,1,2,...,2).In [24], Tkeda studies double covers

2n distinct points, and A;lj 2 is the moduli space of abelian varieties of dimension
of elliptic curves and proves the injectivity of the Prym map P, ,, with n > 3. More
generally, Naranjo and Ortega prove the Prym-Torelli theorem for P, ,, with g > 0 and
n > 3 in [36].

Theorem 3.3 ([24] Theorem 1.2; [36] Theorem 1.1). If n > 3, then the Prym map Plon :

11,2 s s o o . 11,2) s s o .
Rion — AL1? s injective. In particular, Pig:Rip— Ag 12) is injective.

Let us very briefly review the proof of the above theorem following [24] and [36].
Let (P(E‘, C), E) denote the Prym variety for a double cover C — C of a smooth genus 1
curve C branched in 2n distinct points. For any member ¥ € |E|, Ikeda studies the Gauss
map Yy, (more precisely, the branch locus of the restriction Wy|pg g of Wy to the base
locus BS|E| of |E]), and uses the information to specify a divisor X, € |E| which allows
him to reconstruct the double cover C — C.Ikeda's proof is a generalization of the proof
of the Torelli theorem for hyperelliptic curves due to Andreotti (cf. [4]). The approach of
Naranjo and Ortega is different and relies on the description of the base locus of |E| given
in [35] and on a generalized Torelli theorem proved by Martens in [30]. To be specific,
Naranjo and Ortega recover a certain Brill-Noether locus on Pic®(C) together with an
involution through a birational model of the base locus BS|E|; by Martens’ generalized
Torelli, the Brill-Noether locus determines the double cover C — C. More generally,
Naranjo and Ortega’s argument can be used to prove the injectivity of the Prym map

P

9.2n with g > 0and n > 3.

3.3 Proving global Torelli for cubic threefolds with a non-Eckardt type involution

Proof of Theorem 3.1. Let (X;, 7;) and (X;, t,) be two cubic threefolds with involutions
of non-Eckardt type. We will prove that if the invariant parts of the intermediate
Jacobian are isomorphic to each other JX7' = JX,?, then (X;, 7;) is projectively equivalent
to (X,, 1y). Recall from Proposition 2.3 that each involution t; fixes pointwise a line
L; C C;, such that when projecting X; from L; we get a double cover 7; : C; — C; in Rie-
To be more precise, the double cover Z’i — C; is obtained by projecting X; from L; and
restricting the discriminant pseudo-double cover 7; : C; U Q; — C; U Q; over the smooth
cubic component C;. By Theorem 2.5, we have JXiTi = (P(E‘i,Ci))V as polarized abelian
varieties which implies that P(C,, C;) = P(C,, C,) (see also [10, Thm. 3.1]). From Theorem

3.3, we know that the two double covers x; : C; — C; are equivalent. By Theorem 3.2,
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we can reconstruct (X;,t;) from the data of the double cover C; — C; branched in
six points. It follows that the cubic threefolds (X;,t;) and (X,,t,) are projectively

equivalent. |

3.4 Infinitesimal Torelli for cubic threefolds with an involution of non-Eckardt type

Recall that M is the moduli space of cubic threefolds (X, t) with an involution of non-
Eckardt type. Let us consider the open subset M; C M parametrizing those (X, )
satisfying that when projecting X from the unique fixed line L C X (as in § 2.2), the conic
component Q of the discriminant curve D; is smooth. More concretely, the equation of a
member in the complement M\ M, can be written as Equation (5) with £5(xy, x;,x,) =0

(i.e. no terms containing x;x,).

Proposition 3.4 (Infinitesimal Torelli for cubic threefolds with a non-Eckardt type
involution). Let P : M — Agl,z,z) be the period map for cubic threefolds with a
non-Eckardt type involution. The differential dP is an isomorphism at every point of

(1,2,2)
3

M,y C M. (As a consequence, Py, : Mg — A is an open embedding.)

Proof. The infinitesimal computation is quite similar to that of [16, §5.1] (see also [15,
§8.1, §8.3]). Specifically, let (X, t) be a smooth cubic threefold with an involution t of

non-Eckardt type cut out by F = 0 as in Equation (1). On one side, we have
3
T(X,r)M = (RF)T,

where R}', (i > 0) denotes degree i part of the Jacobian ring of F and the superscript means

taking the r-invariant subspace. On the other side, we also have

(1,2,2)
3

Ty A = SymHom(H*!(X)", H?(X)") = SymHom((R})", (R})").

(1,2,2)
3

Furthermore, the differential dPy ., of the period map P : M — A can be identified

with the following map, which is induced by cup product:
(R3)" — SymHom((Rp)®, (RE)").
Using Macaulay’s theorem to identify Ré, with (R},)V, the differential is

APy . : (RPT — Sym*(Rp))Y
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and the codifferential is

dPl . : HO(P?

X0,X1,X2"

0(2)) = Sym?((R})") — (R2)".

The kernel of the codifferential dP&,r)

2 part of the Jacobian ideal. Now we suppose that (X, ) € M,. Rewrite the equation F

is J2 N Sym?Clx,, x,, x,], where J2 denotes degree
of X in the form of Equation (5)
el(X(),Xl,Xz)X% + EZ(X(),Xl,Xz)Xi + 204(Xq, X1, X5)X3X, + (X, X1, X5) = 0.

A direct calculation then shows that JZ N Sym?Clx,, x;, x,] is not trivial if and only if
£, (Xg, X1, X5), €5 (X, X1, Xp),and €5 (X, X, , X,) have a common zero. However, it is impossible
since otherwise the conic component Q of the discriminant curve D; for the fibration in
conics 7; : Bl; X — I will be singular. Note also that dim Sym?((R})?) = dim(R2)® = 6.
It follows that the (co)differential of the period map P : M — A§1,2,2)
M, C M is an isomorphism. [ ]

at every point of

Remark 9. We remark that the (co)differential of the period map P : M — A§1,2,2)

has one-dimensional kernel at a point (X, t) of the divisor M\ M, (note that a quadratic
curve being degenerate is a codimension 1 condition) and hence the infinitesimal Torelli
fails. A similar phenomenon happens for the hyperelliptic locus when considering the
period map for smooth curves of genus greater than 2 (see for instance [12, §1]). We give
the following explanation using [40, §1]. Observe that a member (X, 7) € M\M, is cut
out by

€4 (Xg, X1, X9)X5 + £y (Xg, X1, X0) X5 + g(Xg, X1, X5) = O

and hence admits extra automorphisms o : x3 > —x5 and ¢’ : x, — —Xx, (note that r =
000’ = 0’00). By [40, §1] (see also [12, §1]), the differential dPy ,, : Ty, M — Tyye AS >
is equivariant with respect to the action of o (and also ¢’). Using the identifications in
the proof of Proposition 3.4, it is not difficult to see that Ty A(31,2,2) is fixed by o, while
T(x )M splits as the direct sum of the (+1) eigenspace T&T)M (which is five-dimensional
and corresponds to infinitesimal deformations inside M\ M) and the (—1) eigenspace
T(;f,f)
directions). As a result, the (—1) eigenspace Tx

M (which has dimension 1 and represents infinitesimal deformations in the normal

T)M must be contained in the kernel of

dPx . and therefore the infinitesimal Torelli fails.

GZ0Z YOJBI\ 6Z UO JoSN saLeiqi ASISAIUN eIquiniod Aq 80¥06 1 2/y0L9L/81/EZ0Z/2101E/UIWI/WO0d"dNO"0ILISPED.//:SARY WO PAPEOUMOQ



Cubic Threefolds with Non-Eckardt type Involution 16127

4 Cubic threefolds with an involution of non-Eckardt type as fibrations in conics II:

invariant lines

In this section, we aim to characterize the intermediate Jacobians JX of general cubic
threefolds X with an involution t of non-Eckardt type via projections from general
invariant lines [ C X that are not pointwise fixed. Specifically, we project a cubic threefold
(X, 7) with a non-Eckardt type involution from a t-invariant line l and study the obtained
conic fibration in § 4.1. Among others, we prove that the involution of non-Eckardt
type on X induces an involution on the discriminant quintic curve which is generically
smooth. A different description of the invariant part JX* and the anti-invariant part JX—°
for a general (X, t,l) is then given in § 4.2 using the techniques developed in [34], [20],
and [38]. We conclude by giving an application of our results in the study of the generic
fiber of the Prym map P, : Ryp4 — Ag,z,z)
[36, 84] and [22, §5] will play a crucial role.

in § 4.3. In particular, the discussion in

4.1 Projecting cubic threefolds with a non-Eckardt type involution from invariant lines

We keep notation as in § 1.1. Let (X, 7) be a smooth cubic threefold with a non-Eckardt

type involution as in Equations (1) and (2)

X0qo(X3,Xy) + X1qy (X3, Xy) + X5q5(X3,X,) + g(Xg, X1, X5) = 0;

T [Xg, X1, Xy, X3, X4] = [Xg, X, Xy, —X3, —X,].

Let L = V(xy,X,,X,) C X denote the pointwise fixed line under r. When studying the
projection of X from L, it is more convenient to rewrite the above equation in the form of

Equation (5)
El(X(),Xl,Xz)Xg + 52(X0,X1,X2)XZ + 205(Xq, X1, X9)X3X, + g(Xg, X1, X5) = 0.

Let C = V(g(xq,X;,Xy),X3,Xy) C Il = V(x3,x,) = P2 .  be the fixed plane section.
By Lemma 1.5, an invariant line I ¢ X that is different from L intersects both L and

C c Il = P?

%o.x1,xp- From the discussion in § 2.2 (see also the proof of Proposition 2.4),

we know that [ is contained in a singular fiber of the projection 7; : B, X — II over a
point of the cubic component C of the discriminant curve. In other words, denote the
restriction of the discriminant double cover to C by 7 : C — C; invariant lines in X
that are not pointwise fixed are then parametrized by C (which is a smooth curve of

genus 4).

GZ0Z YOJBI\ 6Z UO JoSN saLeiqi ASISAIUN eIquiniod Aq 80¥06 1 2/y0L9L/81/EZ0Z/2101E/UIWI/WO0d"dNO"0ILISPED.//:SARY WO PAPEOUMOQ



16128 S. Casalaina-Martin et al.

Let I # L be an invariant line in X. Without loss of generality, we assume that [
is contained in the fiber of 7; : Bl X — 1 = P)zfo,xmz over [0,0,1] € C C I1. Note that the
equation g(xy, x;,x,) of C C II has no term x3. Also, the quadratic polynomial g, (x3, X,)
in Equation (1) can be factored as q,(x3,x,) = (ax3 + Bx,)(yx3 + 8x,) with «, B, y and
8 constants. Consider the fiber of n; : Bl;X — TII over the point [0,0,1] € C C II. The

equations for the invariant lines [/ and I’ contained in the fiber are, respectively,
l=V(xg x;,0x3+ Bx,); U= V(xg, X1, vX3 + 86x4).
Let us set z := ax3 + fx, and apply the change of coordinates
[xg, X1, X5, X3, X,] = (X, X1, X5, 2, X,].
Then the line [ = V(xy, x;, z) and the involution r acts by
T X%, X1, X5, 2,X,] > %9, X1, X5, —2, —X4].

Now we project X from the invariant line [ = V(x,, x;,2) to the complementary
plane P? = V(xyx,) = P)Z(O,Xl,z and study the corresponding fibration in conics

m; : BLX — P2, Specifically, let us rewrite the equation of X as

L, (XO,XI,Z)X% +L, (XO,Xl,z)Xﬁ + 2L4(Xq, X1, Z2)XyX,
(10)
+20Q,(Xg, X1, 2)Xy + 2045 (X, X1, 2)X4 + G(Xy, X1,2) =0,

where L;(xy,x;,z) are linear polynomials, Q;j(xq,x,,2) are quadratic forms and
G(xy,x;,2) is homogeneous of degree 3. We can simplify Equation (10) in the following

way.

e Since the equation of X is preserved under 7, both of the terms L, (xy, x;, 2)
and L, (x,, x;,z) must have no z term; in other words, L, (x, X1, 2) = L, (xg, X;)
and L,(xy,x;,2) = Ly(xy, x;). For the same reason, Ly(x,, Xx;, z) must be linear
in z, i.e. Ly(xy,x;,2) = Az for some constant A. Furthermore, when [ = [
(equivalently, 7 : C — Cis ramified at the point corresponding to the invariant
line 1), one deduces from the above calculation that A = 0.

e The terms Q,(xq, X;,2)Xx, and Q,(xy, X;,2)X, must be invariant under t, so
Q, (xg,x;,z) can only contain terms with even powers of z and Q,(xy, x;,2) =

zN(xy, x;) for a linear form N(x,, x;).
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e Similarly, the cubic polynomial G(xy, X;, z) has no monomials with odd powers

of z.

Thus Equation (10) becomes
L, (xg, %, )X% + Ly(Xg, X, )X‘% + 2AzZxy%,
(11)
+2Q (xg, X1, 2)Xy + 2ZN (X, X1)X4 + G(Xy,X1,2) = 0;

in particular, Q, (xy, X;, 2) and G(x, x;, ) only contain monomials with even powers of z.

The matrix associated with the fibration in conics m; : Bl,X — P? =PZ s
L, (xg,x7) Az Q, (xq,x1,2)
M= Az Ly(xy,%1) zN(xg,%x7) | (12)

Q,(x¢,x1,2) zN(xy,%x;) G(xg,%,,2)

and the discriminant quintic curve D, C P? = P  ,, , is cut out by

det(M) = L, (xy, X)L, (%o, X;)G(xy, X1, 2) + 2AZZN(XO,X1)01(X0,X1,Z)

— Ly (xq, X,) Q3 (xg, X, 2) — Z°Ly (Xg, X,)N?(xg, X,) — A%Z*G(xy, X;,2) = O.

The involution t of non-Eckardt type on X induces an involution on P? = PZ . ,,
given by TPIZ i [xg,x,,2] — [x5,x;,—2]. Because | C X is an invariant line, there is an
induced involution on BLX, which we also denote using t, making m; : BLX — P?
equivariant. Let 7; : D; — D; be the discriminant double cover. Note that the equation
of the discriminant curve D; only contains terms with even powers of z and hence is
preserved by Tp2. As aresult, the restrictions of r and Tp2 tO D, and D;, respectively, induce

involutions
T El_)ﬁl' 'L'Dl Dl—)Dl

with respect to which x; : D, — D, is equivariant.

We summarize the discussion above in the following proposition.

Proposition 4.1. Let (X,7) be a smooth cubic threefold with an involution t of non-
Eckardt type. Choose an invariant (but not pointwise fixed) line I C X and project X from
l. Denote the obtained discriminant double cover by x; : D, — Dj. Then the non-Eckardt
type involution on X induces involutions r and 7, on 151 and D;, respectively, making

7, : D, — D, equivariant.
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4.2 The intermediate Jacobians of cubic threefolds with a non-Eckardt type involution via

the projections from invariant lines

In what follows, we suppose that (X, t) is a general cubic threefold admitting a non-
Eckardt type involution. It is not difficult to show that there exists an invariant line
I C X such that the rank of the matrix M in Equation (12) never drops to 1 (e.g. consider
V(det(M, ;), det(M, 3), det(Mj 3)), where M; denotes the (i,j)-minor of M), and therefore
the discriminant curve D; is smooth and the discriminant double cover =; : D, — D,
is connected and étale. Recall that Z’, viewed as a curve on the Fano surface F(X),
parametrizes t-invariant lines [ that are not pointwise fixed. It follows that C is not a
component of the curve R C F(X) corresponding to lines of second type (in the sense
of [13, Def. 6.6]) or a component of the curve R’ C F(X) parametrizing lines residual to
lines of second type. We will call such an invariant line I # L a general invariant line (in
particular, (L,I) N X # L + 2l and thus the coefficient A # 0 in Equation (11)).

Suppose that (X, t,l) is general as above. We wish to study the intermediate
Jacobian JX via the Prym variety P(f)l, D;). The key observation is that the covering curve
D, admits two commuting involutions: the involution t in Proposition 4.1 induced from
the non-Eckardt type involution on X, and the covering involution : = (; associated with
m, : D; — D,. In other words, the automorphism group Aut(D;) contains the Klein four
group (t,t). This allows us to apply the techniques that go back to [34], and explored in
more depth in [20] and [38], to decompose P(ﬁl,Dl). In particular, we follow closely the
analogous case for Eckardt cubic threefolds as discussed in [16, §7.1].

We will take the quotient of f)l by an element g of the Klein four group (z,:) C
Aut(ﬁl); let us denote the quotient curve by

noting that D, = D;. Also set D; := D;/tp, .
Proposition 4.2. We have the following commutative diagram.

D,
La/l*l

a

D D

Np A
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Moreover,

1. The map a, is a double covering map ramified in four points, the map a,, is a
double cover branched in eight points, whereas the map q, is the discriminant
double covering map n; which is étale.

2. The map b, is a double covering map ramified in four points, the map b,, is a
double cover branched in two points, and b, is a ramified double cover with
six branch points.

3. The curves are all smooth and their genera are as follows: g(1~)l) =11,9(D,) =
5,9(D;) =4,9(D) = 6 and g(D)) = 2.

Proof. We choose coordinates and project a general cubic threefold (X, t) admitting
an involution of non-Eckardt type from a general invariant line l ¢ X as in § 4.1. In
particular, the equations of X and the discriminant quintic D; C PZ , , are given in
Equations (11) and (12), respectively. Note that D, is smooth and the discriminant double
cover 7, : D; — D, is connected and étale. Also, the involution Tp, * [Xg. X1, 2] = (x4, %1, —Z]
fixes six points on D;: the point [0, 0, 1] and the five intersection points of D; and the line
z = 0 which satisfy the equation z = Ly(xq, x;) (L (X, X;)G(Xq, X1, 2) — Q%(XO,Xl,Z)) =0
and are distinct since (X,t,l) is general. The six pairs of lines in the fibers of
7 @ BLX — P)zfo,xl,z that lie over the fixed points on D; correspond to the ramification
pointsofa, : D; — D, and a,, : D, — D,,, depending on whether they are fixed or switched
by t. By a straightforward computation, one verifies that the four lines corresponding
to the preimages of the points [0, 0, 1] and V(z, L,(x,, x;)) under « : El — D are fixed
by 7, while the remaining eight lines are interchanged pairwise by t. For example,
the lines lying over [0,0,1] € D; are the pointwise fixed line L and another invariant
line I’ # I. The remainder of the assertions follow directly from Riemann-Hurwitz and

[38, Thm. 3.2]. ]

Applying [38, Thm. 3.2] (see also [16, Prop. 7.12]), we obtain the following
description of the invariant part P(ﬁl,Dl)f := Im(1 + t) and anti-invariant part
P(ﬁl,Dl)_f :=Im(1 — 1) for the induced involution t on P(ﬁl,Dl).

Proposition 4.3 ([38] Theorem 3.2). Notation as in Proposition 4.2. Consider the Prym
variety P(ﬁl,Dl) which is principally polarized. There is an isogeny of polarized abelian

varieties

¢;: P(D,, D)) x P(D,,, D)) — P(D;, D), (y1,V5) > a(yy) +ak,(v)
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with ker(¢) = (Z/27)*, where a’ and a? denote the pull-back maps between the
appropriate Jacobians. Moreover, with respect to the action of r on P(ﬁl,Dl), the isogeny

¢; induces isomorphisms of polarized abelian varieties

P(D,, D))" = P(D,,D)); P(D; D)~ =P(D,, D).

T

Putting it together, we obtain the following theorem.

Theorem 4.4 (Intermediate Jacobian via projecting from a general invariant line). Let
(X, 7) be a general cubic threefold with an involution t of non-Eckardt type, and choose
a general invariant line [ C X. Project X from [ and denote the discriminant double cover
by 7; : D, — D;, and keep notation as in Proposition 4.2. There is an isogeny of polarized
abelian varieties

¢,: P(D,, D)) x P(D,,, D)) — JX

T
with ker¢ = (Z/2Z)*. Moreover, with respect to the action of r on the principally
polarized intermediate Jacobian JX, the isogeny ¢; induces isomorphisms of polarized
abelian varieties

JX* = P(D,,D)); JX * =P(D,, D).
Proof. The proof is identical to that of Theorem 2.5, and follows from

Proposition 4.3. u

4.3 The generic fiber of the Prym map for double covers of genus 2 curves ramified in four

points

Consider the Prym map P, , : Ry 4 — Aél'z’Z)

, where R, , is the moduli space of double
covers of smooth genus 2 curves branched in four distinct points, and Ag,z,z) denotes
the moduli space of abelian threefolds with a polarization of type (1, 2,2). From [36,
Thm. 1.2] or [22, Thm. 5.2], we know that the generic fiber of P,, is birational to an

1,2,2
g")canbe

elliptic curve. By Theorem 3.1 and Proposition 3.4, a general member of A
realized as the invariant part JX* for a general cubic threefold X with an involution t of
non-Eckardt type. The goal of this subsection is to give a more concrete description of
the generic fiber P, i JX).

Let us keep notation as in § 2.2 and § 4.1. Similarly as in [16, §5], we make

the following observation. Let us project a general cubic threefold (X,7r) with a
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non-Eckardt type involution from a general invariant linel # L. The quotient b, : D, — D
of the discriminant double cover for the projection ; : Bl,X — P? (see Proposition 4.2)
is contained in the fiber szi(JXf) because of Theorem 4.4. We now show that for
r-invariant lines [ and I’ contained in the same fiber of n; : Bl; X — II (in other words,
there exists a plane P ¢ P* with X NP = LUl U) the quotient discriminant double
covers b, : D, — D;and b.. : D, — D, are isomorphic and hence correspond to the same
element in R, ,. Our main tools are the bigonal and tetragonal constructions; recall that
the bigonal construction is also the key ingredient for proving [36, Thm. 1.2] and [22,
Thm. 5.2]. We refer the reader to [20, §2] (see also [22, §1]) for the description of the

bigonal and tetragonal constructions.

Proposition 4.5. Notation as above. Let [ and I’ be general r-invariant lines in X that
are contained in the same fiber of n; : Bl;X — II. Consider the projections of X from
the pointwise fixed line L C X (as in § 2.2) and from the invariant lines [,I' C X (see §
4.1). Denote the discriminant double covers by 7, : CUQ — CUQ, r; : D; — D, and
ny : Dy — Dy, respectively. Also let 7 : C — C be the restriction of 7; to the smooth cubic
component, and set b, : D, — D (respectively, b, : D. — D;) to be the quotient of 7,

(respectively, 7y) by the involution induced from t (cf. Proposition 4.2).

1. The union of lines [ U corresponds to a point ¢;; € € C II and hence
determines a degree 4 map p = p;; : CUQ — P! given by O o(1)(—c )
(i.e. projecting C U Q from c; ; € C to a complementary line in I1). Similarly,
D (respectively, D)) admits a map q = q;,; : D; — P! (respectively, ¢ = qp; :
Dy — P1) of degree 4. Then

cuaZcualdr; p,2p4p; b, %, AP

are tetragonally related (in other words, the tetragonal construction of one
produces the other two).

2. Consider the degree 2 map obtained as the restriction of p = p; ; : CUQ — P!
to the smooth cubic curve C and still use p to denote it. Note that D; and D,
are smooth of genus 2 and hence admit degree 2 maps to P! defined by the
canonical linear systems (which are the unique g3's on D; and D;). Then the

bigonal construction takes both

by = r by — 7
D, =3 D, P; D, 3D, > P!
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to
chchpl
In particular, b, : D, — D; and b, : D, — D, are isomorphic.

Proof. The first claim is the content of [20, Ex. 2.15(4)] which we now recall using the
notation therein. To apply the tetragonal construction to f)l i1 D, 4 P!, we consider the

following commutative diagram:

=~ .4
Q*Dl — Dl /

. 4/
J{lG.l l ;

P! «— D;¥

where the superscript ™ denotes the n-th symmetric product, the bottom horizontal
arrow is defined by sending a point y € P! to the fiber g~!(y), and q*ﬁl is the fiber
product which is a curve in 5;4). As discussed in [20, §2.1], the covering involution
associated with 7; : D; — D, induces an involution ¢, on g,D;. Denote the orientation
double cover of D, % D, % P! by B! — P! (cf. [20, §2.2]). Then the map q,D, & opt

factors as
~ 21 =~ 4:1 ~1 2:1
q.D; — q.D;/y — P! =5 pl,

Moreover, the orientation double cover P! — P! is trivial; the curves q,D;, q,D;/t, and
P! are thus reducible and we obtain the other two towers associated with the tower
D, it D, < P! via the tetragonal construction (see [20, §2.5] for more details).

Going back to our case, we need to construct injections CU Q <> q*f)l and f)l, <
q,D;. Geometrically, there exists a plane P ¢ P* with XN P = LUIU as l and I are
contained in the same fiber of 7 : BI.X — TII. Consider the conic fibration r; : BLX — P2,
The plane P corresponds to a point dy ; € D; C P2 Projecting the discriminant quintic
D, from d; ;, one gets the degree 4 map q : D; — P!. Let us now fix a general point
y € P! C PZ. Pulling back the line (d;, ;,y) C P? joining d; ; and y via 7; : BLX — P?, we
obtain a hyperplane H, C P* which intersects X along a smooth cubic surface X N H,.
Note that the lines L, I and !’ are contained in X N Hy. From the configuration of the 27
lines on a smooth cubic surface, we deduce that besides L U !’ there are four other pairs

of coplanar lines m;i) U ng) (for 1 < i < 4) on X N H, meeting [ which corresponds to the
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fiber g7 (y) € D§4). Now we choose a line on X N H, meeting L which is different from
lor 7; such a line is parametrized by a point of C U Q. Observe that this line intersects
four of the eight lines m§,1), n}l), e, m}(,4), n§,4), one in each of the four coplanar pairs, and
hence defines an element of g, D,. Letting y vary and using continuity, we obtain a map
CuUQ — q,D, which is clearly injective. The definition of D, < gD, is similar. (Note also
that the local pictures of this tetragonal construction are given in [20, 2.14(3)].)

Let us now move to the proof of the second assertion. Following [20, §2.3], we
recall that the bigonal construction associates with the tower of double covers D, Lid
D, - P! another tower of double covers r,D, — r,D, /i, — P!, where r,D, is defined via
the following fiber product diagram (where the bottom horizontal arrow is defined by

sending y e P! tor1(y) 51(2)):

r.D —— D%

b b

Pl — - 5}

and ¢, denotes the involution on r, D, induced by the covering involution of b, : D, — D;.
The proof of the second claim is similar to that of the first one, but we need to take
the non-Eckardt type involution into consideration. Specifically, we project X from the
t-invariant line [ to ]P’l2 which is also r-invariant and admits an involution Tp2. Note that
the point d; y C ]P’l2 corresponding to the plane P = (L,[,l') is fixed by Tp2- Note also that
the discriminant double cover x; : D; — D is equivariant with respect to the involutions
r on D; and tp, on Dy (cf. Proposition 4.1); the double cover b, : D, — D, is obtained
as the quotient of 7; by the involutions. Now let us project D; from d; ; to an invariant
complementary line P! C P and fix a general point y € P'. Again let H, C P* be the
T-invariant hyperplane corresponding to the line (d; ;,y) C ]P’lz. The key observation is
that the smooth cubic surface X N H, admits an involution 7, whose fix locus consists
of a line and three distinct points (e.g. [19, §9.5.1]). To verify this, we choose coordinates
as in § 4.1, noting that d; ; = [0,0,1] € IPlz ~ P?ro,XLZ' We then suppose that y = [ag, a;,0]
and plug qyx; = a,x; into Equation (5). As in the proof of the first assertion, let m;i) U n;i)
(with 1 < i < 4) denote the four coplanar pairs of lines on X N H, meeting [ which are
different from L U7'. It is not difficult to see that these four pairs of lines are related by
the involution 7j, on D; and hence give an element of 51(2). Without loss of generality, we

assume that t(m§,1)) = m§,3) (respectively, r(n§,1)) = n§,3)) and t(m§,2)) = m§,4)

r(n§,2)) = n§,4)). Now choose a ty—invariant line on XﬁHY meeting the pointwise fixed line L;

(respectively,
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there are four such lines besides [ and I’ all of which are parameterized by points on C.
This ry—invariant line intersects two of the four lines m§,1), n§,1), m§,2), n;z), one in each of
the two coplanar pairs. Similarly as in [20, Ex. 2.15(4)], we get an element in r,D_ and thus
define an injection C < r.D,.Since (X, t,l) is general, r D, is smooth and irreducible (i.e.
the situation in [20, p. 69 (v)] does not happen) and therefore C = r.D.. Summing it up,
D, Lid D, 5> P! and € 5 ¢ & P! are related by the bigonal construction.

Similarly, D/, b D, L Pland ¢ 5 ¢ & P! are also related by the bigonal
construction, noting that I’ is contained in the same fiber of 7; : B;X — Il as l and
that the bigonal structure p = p;; : C — P! on C is determined by [ U !'. Since the
bigonal construction is symmetric (cf. [20, Lem. 2.7]), b, : D, — D; and b, : D, — Dy are

isomorphic. |

As a consequence of [37, §3] and Proposition 4.5, the Prym varieties P(E’, C) and
P(Dr,ﬁl) are dual to each other; this matches our results in Theorems 2.5 and 4.4. We

conclude the discussion using the following proposition.

Proposition 4.6. Consider the Prym map P, 4 : Ry 4 — Ag,z,z)‘ A general member A €
Ag,z,z) can be realized as the invariant part JX* of the intermediate Jacobian of a general
cubic threefold (X, ) with a non-Eckardt type involution. Furthermore, set C C X to be
the pointwise fixed plane section as in Lemma 1.3; note that C is smooth and of genus 1.

Then the generic fiber of P, 4 : Ry 4 — A§1,2,2) over JX' e Aél'z'z) is birational to C.

Proof. The first assertion is a corollary of Theorem 3.1 and Proposition 3.4. The second
claim follows from Proposition 4.5 and the argument in the proof of [36, Thm. 1.2] or [22,
Thm. 5.2]. Specifically, notation remains the same as in § 2.2 and § 4.1. From Theorem
4.4, we know that the invariant part JX® is isomorphic to the Prym variety P(D,, D)),
where [ C X is a general invariant line and b, : D, — D; is the quotient discriminant
double cover (see Proposition 4.2). As argued in the proof of [36, Thm. 1.2] or [22, Thm.
5.2], the generic fiber of the Prym map P, 4 : Ry, — Aél’z’z) over P(D,,D)) is birational
to Pic?(E) = E, where E is an elliptic curve obtained via the bigonal construction for

by —= - ~ .
D, = D; — Pl. By Proposition 4.5, we have that E = C which completes the proof. |
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