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Abstract

An ordered graph is a graph with a linear ordering on its vertices. The online
Ramsey game for ordered graphs G and H is played on an infinite sequence of
vertices; on each turn, Builder draws an edge between two vertices, and Painter
colors it red or blue. Builder tries to create a red G or a blue H as quickly as
possible, while Painter wants the opposite. The online ordered Ramsey number
ro(G,H) is the number of turns the game lasts with optimal play.

In this paper, we consider the behavior of ro(G,Pn) for fixed G, where Pn is
the monotone ordered path. We prove an O(n log2 n) bound on ro(G,Pn) for all
G and an O(n) bound when G is 3-ichromatic; we partially classify graphs G with
ro(G,Pn) = n + O(1). Many of these results extend to ro(G,Cn), where Cn is an
ordered cycle obtained from Pn by adding one edge.

Mathematics Subject Classifications: 05C55, 05D10, 05C15, 91A46

1 Introduction

The Ramsey number r(G,H) of two graphs G and H is the least n such that any red-blue
edge-coloring of the complete graph Kn contains a red copy of G or a blue copy of H.
Finding bounds on such Ramsey numbers has been an important problem in graph theory
for many years; see [8] for a survey of known bounds on Ramsey numbers.

The online version of the Ramsey problem considers a setting where the red-blue coloring
is not given at once, but is revealed gradually. To consider the worst-case scenario, we
model this setting as a game between two players, Builder and Painter, on an infinitely
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large set of vertices. Again, we pick two graphs G and H. On each turn, Builder draws
an edge between two vertices and Painter colors it red or blue. The game ends when a
red copy of G or a blue copy of H is formed; Builder seeks to minimize the number of
turns, and Painter seeks to maximize it.

The online Ramsey number is the number of rounds in this game, assuming optimal play.
Equivalently, it is the minimum number of edge queries necessary to find a red copy of
G or a blue copy of H in an infinite complete graph, assuming a worst-case scenario for
the outcome of these queries. Online Ramsey numbers are also called online size Ramsey
numbers in the literature, since they track the size (number of edges) used. Introduced
independently by [3] and [13], these numbers have since been studied by many authors
including [1], [4], [5], [6], [9], [10], [12], and [14].

1.1 Ordered graphs

In this paper, we consider online Ramsey numbers of ordered graphs. An ordered graph
is a graph with a linear ordering on its vertices. We think of the vertices of an ordered
graph as being arranged on a horizontal line in order from left to right. Subgraphs of an
ordered graph G inherit the ordering on V (G), and isomorphisms between ordered graphs
must be order-preserving.

From now on, we assume that all graphs are ordered graphs. We will borrow the nota-
tion Pn, Cn, Kn, Kn1,...,nk

to use for ordered graphs, by giving their vertices a standard
ordering:

• The ordered path Pn has n vertices v1 < v2 < · · · < vn and edges vivi+1 for
i = 1, . . . , n− 1.

• The ordered cycle Cn is obtained from Pn by adding the edge v1vn.

• The ordered complete graph Kn has all edges between n vertices v1 < v2 < · · · < vn.
(Here, all orderings of the vertices yield isomorphic ordered graphs.)

• The ordered complete k-partite graph Kn1,n2,...,nk
has k parts with n1, n2, . . . , nk

vertices respectively; for each i, the ni vertices in the ith part are consecutive in the
vertex ordering.

Ramsey problems on ordered graphs are motivated by the Erdős–Szekeres theorem [11].
This result asserts that any sequence of (r − 1)(s− 1) + 1 distinct real numbers contains
either an increasing subsequence of length r or a decreasing subsequence of length s, while
a sequence of length (r − 1)(s− 1) is not enough.

The Erdős–Szekeres theorem has many proofs [18], most of which easily extend to the
stronger result that the ordered Ramsey number of Pr versus Ps is (r − 1)(s − 1) + 1.
Given a sequence of distinct real numbers x1, x2, . . . , xn, we color Kn by coloring vivj red
if xi < xj, and blue if xi > xj. A red Pr or blue Ps in Kn corresponds to an increasing
or decreasing subsequence of the desired length. Not all colorings of Kn originate from a
sequence x1, x2, . . . , xn, but this turns out not to affect the result.
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We will write ro(G,H) for the online Ramsey number for ordered graphs G and H. These
were first studied in the case ro(Pr, Ps) by [2] and [17]. Just as in the case of unordered
graphs, the online Ramsey number is defined by a game played between Builder and
Painter on an infinite set of vertices. Here, we assume that the vertex set is N with the
usual ordering.

It will sometimes be convenient, when describing a strategy for Builder, to assume that
between any two vertices that have already been used, another vertex can be found. This
can be guaranteed even on vertex set N with foresight on Builder’s part: if Builder’s
strategy wins in t turns, then at most 2t distinct vertices are used, so Builder may choose
the ith vertex to be an element of N divisible by 22t−i but not by 22t−i+1. This will be
needed, for example, in the proof of Theorem 2.

The online Ramsey game for ordered graphs is closely related to a sorting problem: given
an infinite sequence x1, x2, . . . of distinct real numbers, how many comparisons are needed
to locate an increasing subsequence of length r or a decreasing subsequence of length s?
However, Painter has more flexibility in coloring edges, since edge colors do not have to
obey transitivity; it is unknown whether the two problems are equivalent.

1.2 Our results

In this paper, we consider online ordered Ramsey numbers of the form ro(G,Pn) for
various ordered graphs G. We are especially interested in how ro(G,Pn) varies with n
when G is fixed.

Theorem 2.1 in [2] gives an upper bound on ro(Pm, Pn) of the form O(mn log2 n). Our
first result is a generalization of this upper bound to ro(G,Pn). Here, let ∆−(G) denote
the maximum left degree of G: the maximum number of edges between any vertex v and
vertices that precede v.

Theorem 1. For any ordered graph G, ro(G,Pn) 6 ∆−(G)|V (G)|n log2 n.

By symmetry, the same bound applies with left degree replaced by right degree.

Note that in Theorem 2.1 of [2], we are free to swap m and n, so for fixed m, when n
is large, it also gives an upper bound of O(mn log2m) which is linear in n. However,
Theorem 1 does not allow the same flexibility. This motivates the question: for which G
is ro(G,Pn) linear in n, when G is fixed?

An interval coloring of an ordered graph G is a proper vertex coloring of G in which
each color class is a set of consecutive vertices: if u,w ∈ V (G) are assigned the same
color, then every vertex v between u and w must also be assigned that color. The interval
chromatic number χi(G) of an ordered graph G is the minimum number of colors in an
interval coloring of G. We say that G is k-ichromatic if χi(G) 6 k.

The interval chromatic number has played a key role in Ramsey and Turán problems for
ordered graphs; see for example [7], [16] and [15]. We are able to prove a linear upper
bound on ro(G,Pn) for any 3-ichromatic G.
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Theorem 2. For any ordered graph G such that χi(G) 6 3, we have ro(G,Pn) =
O(n|V (G)|2 log2 |V (G)|).

It is certainly not the case that the interval chromatic number tells the whole story: for
example, ro(Pk, Pn) = O(n) for any fixed k even though χi(Pk) = k. On the other hand,
we do not have a linear upper bound even on ro(C4, Pn).

When we look at smaller and sparser graphs G, another transition emerges. Let Mk denote
the serial k-edge matching : the ordered graph with E(Mk) = {v1w1, v2w2, . . . , vkwk} and
v1 < w1 < v2 < w2 < · · · < vk < wk.

Theorem 3. For n > 4 and k > 2, ro(Mk, Pn) 6 n+2k−4, and if n > max{3k−3, 2k+1},
then ro(Mk, Pn) = n+ 2k − 4.

On the other hand, we have stronger lower bounds on ro(G,Pn) even in the case of three
two-edge graphs: the path P3, the intersecting matching X, and the 2-pronged claw K1,2

(shown in Figure 1).

(a) The path graph P3.
(b) The intersecting match-
ing X.

(c) The 2-pronged claw K1,2.

Figure 1: The three two-edge graphs of Theorem 4.

Theorem 4. The following bounds hold:

(a) 2n− 2 6 ro(P3, Pn) 6 8
3
n− 10

3
;

(b) 3
2
n− 3

2
< ro(X,Pn) 6 3

2
n+ 2;

(c) ro(K1,2, Pn) = 2n (and by symmetry, ro(K2,1, Pn) = 2n).

In particular, ro(G,Pn) > 3
2
n for any G that contains any of P3, X, K1,2, or K2,1 as a

subgraph. If G does not contain any of P3, K1,2, and K2,1, then G must be a matching
(possibly with isolated vertices, which don’t affect ro(G,Pn)). We say that an ordered
matching M is intersection-free if it also does not contain X.

We conjecture that having one of the two-edge graphs in Theorem 4 as a subgraph is the
only reason why a bound of the form ro(G,Pn) = n+O(1) would not hold.

Conjecture 5. For every intersection-free matching M , there is a constant c such that
ro(M,Pn) 6 n+ c.

We can rephrase Conjecture 5 in terms of a more concrete sequence of Ramsey problems.
Let the St. Ives matching1 Sk be the ordered matching defined recursively as follows. S0

is simply an ordered edge. Sk is constructed from two disjoint consecutive copies of Sk−1

1We named this ordered matching after the town St. Ives from the rhyme “As I was going to St. Ives,”
which, in an early version, first appeared in 1730 in a manuscript by Harley.
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by adding an edge ukvk such that both copies of Sk−1 are to the right of uk and to the
left of vk. A diagram of S2 is shown in Figure 2a.

(a) The St. Ives matching S2. (b) The partial St. Ives matching S′2.

Figure 2: Examples of the St. Ives matching and the partial St. Ives matching

Every intersection-free matching M on k edges is a subgraph of Sk, which can be shown
recursively. If M splits into two matchings M ′, M ′′ where every vertex of M ′ lies before
every vertex of M ′′, we can find M and M ′ within the two different copies of Sk−1 inside
Sk. If M does not split in this way, then it has an edge vw where v is the leftmost vertex
of M and w is the rightmost vertex. Then we can find a copy of M − vw inside one copy
of Sk−1 inside Sk; together with edge ukvk of Sk, it becomes a subgraph isomorphic to
M .

As a result, Conjecture 5 is equivalent to the following statement.

Conjecture 6. For all k > 1, there is a constant ck such that for all n > 1, ro(Sk, Pn) 6
n+ ck.

In partial support of Conjecture 6, we show it for a less general sequence of graphs. First,
let the nested matching Nk be the ordered graph with vertices v1 < · · · < vk < wk < · · · <
w1 and edges v1w1, . . . , vkwk. The partial St. Ives matching S ′k is the ordered matching
obtained from Nk by adding k more consecutive copies of Nk between vertices vk and wk.
A diagram of S ′2 is shown in Figure 2b.

Theorem 7. For all k > 1, there is a constant ck such that for all n > 1, ro(S
′
k, Pn) 6

n+ ck.

In fact, Builder’s strategy in the proof of Theorem 7 can be repeated to extend a path
in two directions, obtaining either a blue Pn or two consecutive copies of S ′k. The graph
consisting of three consecutive copies of S ′k is the simplest matching for which we are
unable to prove that Conjecture 5 holds.

All of the results above are bounds on ro(G,Pn). However, when we replace Pn by the
ordered cycle Cn, the same classification into O(n log2 n) and O(n) upper bounds holds,
due to the following result.

Theorem 8. For any ordered graph G, there is a constant c such that
ro(G,Cn) 6 ro(G,Pm) + c, where m = (n− 1)(|V (G)| − 1) + 1.

All of our bounds are proved by giving deterministic strategies for Builder and Painter.

The remainder of the paper is organized as follows. In Section 2, we prove O(n log2 n)
bounds on ro(G,Pn) and ro(G,Cn) that apply to any ordered graph G: Theorem 1 and
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Theorem 8. In Section 3, we prove Theorem 2, which applies to 3-ichromatic graphs
G, for which we can prove O(n) bounds. In Section 4, we prove the three cases of
Theorem 4, dealing with small graphs for which we can still do no better than O(n).
Finally, in Section 5, we prove Theorem 3 and Theorem 7: two cases in which ro(G,Pn) =
n+O(1).

2 Results for general G

2.1 An O(n log2 n) bound

Proof of Theorem 1. Builder maintains a list of graphs G1, G2, . . . , Gn−1, where:

• Each Gi is a monochromatic red subgraph of the graph built so far.

• Each Gi is isomorphic to an “initial subgraph of G”: the subgraph obtained by
taking the leftmost v(Gi) vertices of G.

• Each vertex of Gi is the rightmost endpoint of a blue Pi.

Initially, every Gi is the null graph (with 0 vertices). Figure 3a shows an example of an in-
termediate stage of Builder’s strategy, with graphs G1, G2, G3, G4 which are all subgraphs
of G = K4.

B

B

B

B

B

B

B

B

B

B

B

B

B

B B B

R R

R

R

R R

R

RG1:

G2:

G3:

G4:

(a) An example of graphs G1, G2, G3, G4

and the required blue paths.

B

B

B

B

B

B

B

B

B

B

B

B

B

B B B

R R

R

R

R R

R

R

R B R

R R

G1:

G2:

G3:

G4:

u

(b) Comparing u to G2 and G3: as G2 < u
and u 6 G3, u can be added to G3.

Figure 3: Builder’s strategy for Theorem 1, where G = K4. The vertical positions of
vertices are only varied for clarity; in fact, the vertices on different blue paths or in
different Gi are not required to be in any particular order relative to each other, or even
to be distinct.

Builder performs many iterations of adding a new vertex to some Gi. The new vertex u
must be to the right of every previously considered vertex.
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Each iteration consists of many steps we’ll call “comparing u to Gi”. To compare u to Gi,
Builder draws all the edges between Gi and u that make Gi∪{u} isomorphic to an initial
subgraph of v(Gi) + 1 vertices of G; an example is shown in Figure 3b. We say that the
result of the comparison is “Gi < u” if one of these edges is blue, and “u 6 Gi” if all of
these edges are red. (The special case where Gi is a null graph may not be immediately
clear; in this case, there are no edges to check, and we always have u 6 Gi.) Note that
each comparison requires drawing at most ∆−(G) edges.

In dlog2 ne comparisons, Builder can find an i such that Gi−1 < u 6 Gi, in which case u
can be added to Gi. (Since Gi−1 < u, u is the leftmost vertex of a blue Pi; since u 6 Gi,
Gi ∪{u} is monochromatic red.) As a special case, if u 6 G1, then u can be added to G1.
As another special case, if Gn−1 < u, then u is the leftmost endpoint of a blue Pn, and
Builder wins immediately.

After (|V (G)| − 1)(n− 1) + 1 iterations, if Builder does not win earlier, then some Gi will
have |V (G)| vertices, and there is a red copy of G.

Thus for any fixed graph G, we have ro(G,Pn) = O(n log2 n).

2.2 Replacing the path by the cycle

In this section, we prove Theorem 8 that ro(G,Cn) may be bounded in terms of ro(G,Pm)
up to a small additive constant. In fact, we can make the following more precise claim.
For all k > 1, there is a constant ck such that if G is any k-vertex ordered graph, then
ro(G,Cn) 6 ro(G,Pkn−n−k+2) + ck.

To prove this theorem, we begin with three claims about steps in Builder’s strategy. There
is a common idea in all three proofs: if Builder draws an edge vw between two vertices of
a blue cycle, and Painter colors it blue, then a shorter blue cycle is created by skipping
all vertices of the original cycle between v and w. We say that such an edge vw has length
` if there are `− 1 vertices of the cycle between v and w.

To force Painter to color such edges blue, Builder may draw a copy of G using vertices
of the cycle. We say that such a copy of G is scaled by ` if there are ` − 1 vertices of
the cycle between any two consecutive vertices of G. Edges in such a copy of G can have
length `, 2`, . . . , (k − 1)`. We will assume that Painter never colors a copy of G entirely
red, because then Builder would win.

Builder may draw multiple scaled copies of G on the same cycle to obtain multiple blue
edges, before skipping any vertices. In such a case, each copy of G is drawn to the right
of all previous copies, so that all of the blue edges (or only some of them) can be used to
skip vertices together.

Claim 9. For all ε > 0, if n is sufficiently large, then starting from a blue ordered cycle
with length between (1 + 2ε)n and kn, Builder can force either a blue ordered cycle with
length between (1 + ε)n and (1 + 2ε)n or a red G in O(1) steps.
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Proof. Suppose that there is a blue C(1+ε)n+t for some t > εn. Builder draws a copy of
G scaled by

⌊
t

k−1

⌋
on the cycle, obtaining a blue edge of length at least

⌊
t

k−1

⌋
and at

most t. Builder uses this edge to obtain a cycle with length at least (1 + ε)n and at most
(1+ε)n+t−

⌊
t

k−1

⌋
. For sufficiently large n, this upper bound is at most (1+ε)n+(1− 1

k
)t.

After repeating this procedure up to j times, Builder obtains a cycle with length at least
(1 + ε)n and at most (1 + ε)n+ (1− 1

k
)jt. For j > log2(k/ε)

log2(k/(k−1))
, the length of this cycle is

guaranteed to be in the range we want.

Claim 10. If n is sufficiently large, then starting from a blue ordered cycle with length
between (1 + 1

2k2
)n and (1 + 1

k2
)n, Builder can force either a blue Cn+t with k3 6 t 6

k3 + 2(k − 1)! or a red G in O(1) steps.

Proof. Let the given blue cycle have length Cn+k3+`.

We assume that n > 2k5 + 2k2(k− 1)!, so that ` > (k− 1)!. This means that Builder can
draw copies of G scaled by b`/(k − 1)!c on the cycle. Builder draws k! such copies of G;
each one occupies fewer than k`/(k − 1)! vertices, for at most k2` < n vertices.

For some j 6 k − 1, at least (k − 1)! of these copies of G give blue edges of length
jb`/(k − 1)!c. Builder uses (k − 1)!/j of these edges to shorten the cycle, removing
(k−1)!
j

(jb`/(k − 1)!c − 1) = (k − 1)!b`/(k − 1)!c − (k − 1)!/j vertices total: between ` and

`− 2(k − 1)!.

The result is a cycle of length between n+ k3 and n+ k3 + 2(k − 1)!.

Claim 11. If n is sufficiently large, then starting from a blue Cn+t with n/k > t > k3,
Builder can force either a blue Cn or a red G in O(t) steps.

Proof. Builder begins by drawing kt copies of G scaled by 1 (that is, using consecutive
vertices of Cn+t). For some j < k, at least t of these copies give an edge of length j; let
E1 be a set of t such edges. Before using any of these edges, Builder continues by drawing
k copies of G scaled by j − 1. Each of these gives an edge whose length is a multiple of
j − 1; let E2 be the set of all k of these edges.

Each edge in E2 can be used to decrease the length of the cycle by i(j − 1)− 1 for some
1 6 i 6 k − 1; this is at most k2, and one less than a multiple of j − 1. Builder uses
enough edges from E2 to shorten the cycle to length Cn+t′ where t′ ≡ 0 (mod j−1); since
t > k3, t′ > 0. Finally, Builder uses t′/(j − 1) of the edges from E1 to shorten the cycle
to length exactly n.

Proof of Theorem 8. In cases where n is not large enough to apply Claim 9, Claim 10,
or Claim 11, then n is bounded by a function of k, and we can handle all such cases by
choosing ck large enough.
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Otherwise, Builder first uses the ro(G,Pnk−n−k+2) strategy to force either a red G (and
win) or a blue Pnk−n−k+2, whose vertices we will label 0, 1, 2, . . . , (k − 1)(n − 1). Then,
Builder draws G at vertices 0, n− 1, 2(n− 1), . . . , (k − 1)(n− 1).

If all edges of this copy of G are red, then Builder immediately wins. Otherwise, there is
a blue edge between vertices i(n− 1) and j(n− 1) for some i < j.

If j = i + 1, then there is a blue Cn and Builder also immediately wins. Otherwise, one
of the other edges drawn in the second step is red, and there is a blue cycle with at least
2n− 1 and at most kn− n− k + 2 vertices.

In this case:

1. Builder executes the strategy of Claim 9, taking ε = 1
2k2

, obtaining a blue ordered
cycle with length between (1 + 2

k2
)n and (1 + 1

k2
)n.

2. Builder executes the strategy of Claim 10, obtaining a blue ordered cycle with length
between n+ k3 and n+ k3 + 2(k − 1)!.

3. Builder executes the strategy of Claim 11; since 2(k − 1)! = O(1), this also takes
O(1) steps.

This procedure ends with either a blue Cn or a red G.

Remark: We make no effort to optimize the constant ck in this proof. The length of
Pnk−n−k+2 can also be improved in some cases; this exact length is only required in the
first step of the proof of the theorem. In particular, if G is 2-ichromatic, then a path of
length n + k3 + k is enough. Builder can draw G using the first and last vertices of the
path, such that all its edges have length at least n+k3, and then skip directly to applying
Claim 11.

3 Results for 3-ichromatic graphs

The results in the previous section bound ro(G,Pn) for general ordered graphs G. In this
section, we show improved bounds when G is 3-ichromatic. Equivalently, G is a subgraph
of Ka,b,c, an ordered complete tripartite graph.

Lemma 12. For all a, b, c, d > 1 and n > a+ b+ c+ 2d, suppose G is a subgraph of Ka,b,c

with |E(G)| = m. Then

ro(G,Pn) 6 n · 2

d
· (m+ ro(G,Pa+b+c+2d)).

Proof. For convenience, let R = ro(G,Pa+b+c+2d); we will eventually use Theorem 1 to
bound R. To keep track of Builder’s progress, we say that the graph built so far is in
state (x, y) when it contains a blue Px followed by a blue Py, where min{x, y} > a+ c.
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At the beginning of the game, Builder takes R moves to create either a red G (and win)
or a blue Pa+b+c+2d; then, Builder takes R more moves to do this again to the right of the
previous Pa+b+c+2d. This results in state (a+ b+ c+ 2d, a+ b+ c+ 2d).

In state (x, y), Builder first takes R moves to create either a red G (and win) or a blue
Pa+b+c+2d between the blue Px and the blue Py. Then, define sets A,B,C as follows:

• A: the last a vertices of the blue Px.

• B: vertices 1 + c+ d through b+ c+ d of the blue Pa+b+c+2d.

• C: the first c vertices of the blue Py.

See Figure 4 for an illustration of this definition.

Px Pa+b+c+2d Py

A B C

B B B B B B B B B B B B

Figure 4: An illustration of the definition of the sets A,B, and C where a = b = 2 and
c = d = 1.

Builder takes m moves to draw a copy of G on vertex set A ∪B ∪C; all edges of G have
their endpoints in two different sets.

If all these edges are red, Builder wins. If there is a blue edge between A and B, it can
be used to replace the blue Px by a blue path with at least x + d + 2 vertices, resulting
in the state (x + d + 2, y). If there is a blue edge between B and C, it can be used to
replace the blue Py by a blue path with at least y + d + 2 vertices, resulting in the state
(x, y + d+ 2).

Finally, if there is a blue edge between A and C, it can be used to combine the two blue
paths into a single path with at least x + y − a − c + 2 vertices. Then, Builder takes R
more moves to create either a red copy of G (and win) or a blue Pa+b+c+2d to the right of
this single path. This results in the state (x + y − a− c + 2, a + b + c + 2d). (Note that
x+ y − a− c+ 2 > a+ c, the minimum length we required.)

Altogether, one of two things has happened:

• In R + m moves from state (x, y), Builder obtains a state (x′, y′) with x′ + y′ =
x+ y + d+ 2.

• In 2R + m moves from state (x, y), Builder obtains a state (x′, y′) with x′ + y′ =
x+ y + b+ 2d+ 2.

As the game goes on, the sum x+y increases at a rate of at least d every R+m moves, and
the first 2R moves yield a state (x, y) with x+ y > 4d. To reach a state with x+ y > 2n,
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it takes at most 2n
d
−2 repetitions of R+m moves; allowing for a final sequence of 2R+m

moves to finish, at most 2n
d
· (R +m) moves are required.

Therefore after Builder’s strategy is followed for 2n
d
· (R+m) moves, x+ y is at least 2n,

which means that either the blue Px or the blue Py contains the Pn we want. This results
in a victory for Builder.

Proof of Theorem 2. To deduce Theorem 2 from Lemma 12, first set d = a+b+c
2

; then

ro(G,Pn) 6
4n

a+ b+ c
(m+ ro(G,P2a+2b+2c)) 6

8n

a+ b+ c
· ro(G,P2a+2b+2c)

where the second inequality holds because ro(G,P2a+2b+2c) must certainly be at least m =
|E(G)|. By Theorem 1, ro(G,P2a+2b+2c) 6 ∆−(G)|V (G)|(2a+ 2b+ 2c) log2(2a+ 2b+ 2c).
Recalling that |V (G)| = a+ b+ c, we obtain

ro(G,Pn) 6 16n∆−(G)|V (G)| log2(2|V (G)|),

which is O(n|V (G)|2 log2 |V (G)|).

4 Small graphs vs Pn

In this section, we prove Theorem 4, giving us bounds on ro(G,Pn) when G is one of three
small “bad” graphs: the path P3, the intersecting matching X, and the 2-pronged claw
K1,2.

4.1 The first bad graph: P3

To prove a lower bound on ro(P3, Pn), we give a strategy for Painter in Lemma 13. The
upper bound in Lemma 14 is a result of a strategy for Builder.

Lemma 13. For all n > 1, ro(P3, Pn) > 2n− 2.

Proof. Let Painter use the following strategy: color an edge red if this does not create a
red P3, blue otherwise.

Each blue edge that appears in the graph must therefore be adjacent to a red edge. We
call a blue edge vw with v < w left-forced if v has a red edge from a preceding vertex, and
right-forced if w has a red edge to a following vertex. (A diagram demonstrating some
left-forced and right-forced edges of a blue P6 is shown in Figure 5.) In either case, we say
that the red edge forces vw. Each blue edge must be either left-forced or right-forced, or
else it could have been colored red. It’s possible that a blue edge is both left-forced and
right-forced.

Suppose that the game continues until a blue Pn is created. Let uv, vw with u < v < w
be two consecutive edges of that path. Then it is impossible for uv to be right-forced and
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B B B B B

R R

R
R

R

Left-forced Right-forced

Figure 5: An example of left-forced and right-forced edges in the proof of Lemma 13.

vw to be left-forced; in that case, v would have a red edge both from a preceding vertex
and to a following vertex, and a red P3 would already have existed.

Therefore, the blue Pn must consist of a segment (possibly empty) of left-forced edges,
followed by a segment (possibly empty) of right-forced edges.

Each left-forced edge is forced by a red edge to its first endpoint from a preceding vertex,
and these edges are all different (because their second endpoint is different). Each right-
forced edge is forced by a red edge from its second endpoint to a following vertex, and
these edges are all different (because their first endpoint is different). The red edges
forcing the left-forced edges must be different from the red edges forcing the right-forced
edges, because each of the former edges ends to the left of where each of the latter edges
begins.

Therefore the n− 1 blue edges of the blue Pn are forced by n− 1 distinct red edges, and
there must be at least 2(n− 1) edges total.

Lemma 14. For all n > 2, ro(P3, Pn) 6 8
3
n− 10

3
.

For this proof, we define the claw strategy for Builder to be the following. At all times,
Builder keeps track of a k-vertex blue path, and ` vertices which are the right endpoints
of a red edge: we call these leftover vertices. The strategy may start with k = 1 and ` = 0
by picking any vertex to be the single vertex of a blue P1.

On each step of the claw strategy, Builder draws an edge from the rightmost vertex of the
blue path to the leftmost vertex Builder is not yet tracking. If it is blue, then the blue
path is extended; if it is red, then there is an additional leftover vertex. As a result, after
s steps, k + ` > s + 1. (Conversely, it takes at most k0 + `0 − 2 steps to guarantee that
either k > k0 or that ` > `0.) One possible result of several steps of the claw strategy is
shown in Figure 6.

R
R

R R
R

B B

B
B

L L L L L

Figure 6: One possible outcome of the claw strategy after 9 steps, resulting in a 5-vertex
blue path and 5 leftover vertices (marked with an L).

The claw strategy may be performed in reverse: extending a path from the left, and
obtaining leftover vertices which are the left endpoints of a red edge.

the electronic journal of combinatorics 31(4) (2024), #P4.79 12



Proof of Lemma 14. The first phase of Builder’s strategy follows the claw strategy for
n− 1 steps, creating a blue path of length k and n− k leftover vertices, where 1 6 k 6 n.
The value of k is under Painter’s control.

The second phase of Builder’s strategy follows the claw strategy in reverse, skipping ahead
far enough that all vertices used in the second phase are to the right of all vertices used
in the first phase. It lasts for a variable number of steps, depending on k:

• When k > n+1
3

, the second phase lasts n − 2 steps, creating either a blue k-vertex
path or n− k leftover vertices.

• When k 6 n
3
, the second phase lasts 2k − 2 steps, creating either a blue k-vertex

path or k leftover vertices.

The final phase of Builder’s strategy depends on the outcome of the second phase.

Case 1: k > n+1
3

and a blue k-vertex path is created in the second phase. In this
case, Builder’s last n − k moves extend this path through all the leftover vertices of the
first phase. If Painter colors any of these edges red, a red P3 is formed; otherwise, a blue
Pn is formed. The total number of steps is (n−1)+(n−2)+(n−k) = 3n−k−3 6 8n−10

3
.

Case 2: k 6 n
3

and a blue k-vertex path is created in the second phase. Builder’s
follow-up is the same as in case 1. The total number of steps is (n−1)+(2k−2)+(n−k) =
2n+ k − 3 6 7n−9

3
.

Case 3: k > n+1
3

and n − k leftover vertices are created in the second phase.
In this case, Builder’s last n− k moves extend the blue k-vertex path from the first phase
through the leftover vertices of the second phase. If Painter colors any of these edges
red, a red P3 is formed; otherwise, a blue Pn is formed. The total number of steps is
(n− 1) + (n− 2) + (n− k) = 3n− k − 3 6 8n−10

3
.

Case 4: k 6 n
3

and k leftover vertices are created in the second phase. In this
case, Builder’s last n− 1 moves build a path through the leftover vertices of both phases:
n vertices total. If any of these edges are red, a red P3 is formed; otherwise, a blue Pn is
formed. The total number of steps is (n− 1) + (2k − 2) + (n− 1) 6 8n−12

3
.

In all cases, Builder wins in at most 8
3
n− 10

3
steps.

4.2 The second bad graph: X

Lemma 15. We have
3(n− 1)

2
6 ro(X,Pn) 6

3

2
n+ 2.

Proof. To prove the lower bound, assume Painter follows the strategy of coloring each
edge red unless a red copy of X is created. Builder wins the game when Painter creates a
blue copy of Pn. Each edge of this blue path must intersect a red edge, and each red edge
can intersect at most two of the blue path edges. Therefore, there must be a total of at
least n− 1 blue edges and n−1

2
red edges when Builder wins, giving ro(X,Pn) > 3(n−1)

2
.
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For the upper bound, we present a strategy for Builder. For convenience, we define
a special step in Builder’s strategy called lacing. Suppose that the graph built so far
contains vertices

a1 < · · · < ak < b1 < c1 < d1 < · · · < d`

with a blue copy of Pk through a1, . . . , ak, a red edge b1c1, and a blue copy of P` through
d1, . . . , d`. To lace the blue paths together through b1c1, Builder begins by playing edges
b2c2, b3c3, and so on with bi−1 < bi < ci < ci−1. Builder stops after playing bmcm if either
bmcm is blue, or if k + (2m− 1) + ` > n.

If bmcm is blue, Builder plays the edges of an ordered path from ak to bm through m− 2
additional vertices interleaving b1, . . . , bm−1, and an ordered path from cm to d1 through
m − 2 additional vertices interleaving cm−1, . . . , c1. If any of these edges are red, a red
copy of X is created; otherwise, a blue copy of Pk+2m−2+` is created. In this case, lacing
the paths together took 3m− 3 moves.

If bmcm is red, Builder instead plays the edges of an ordered path from ak to d1 through
2m− 1 additional vertices interleaving b1, . . . , bm, cm, . . . c1. If any of these edges are red,
a red copy of X is created; otherwise, a blue copy of Pk+(2m−1)+` is created. In either
case, Builder wins; in this case, lacing the paths together took 3m− 1 moves.

See Figure 7 for an example of Builder lacing together two blue paths P3 and P4 using a
red edge.

a1 a2 a3 b1 c1 d1 d2 d3 d4
B B B B BR

(a) State before Builder laces the blue paths a1, a2, a3 and d1, d2, d3, d4 together through the red
edge b1c1.

a1 a2 a3 b1 b2 b3 c3 c2 c1 d1 d2 d3 d4
B B B B B

R

R

BB B B B

(b) One possibility for how Builder laces the paths together to create a blue P11.

a1 a2 a3 b1 b2 b3 c3 c2 c1 d1 d2 d3 d4
B B B B B

R

R

RB B B B B B

(c) The other possibility for how Builder laces the paths together to create a blue P12.

Figure 7: An example of the lacing strategy Builder uses in the proof of Lemma 15

Builder’s overall strategy maintains a blue path v1, . . . , vk, which is extended by lacing;
before any moves have been made, Builder can take k = 1 by choosing an arbitrary vertex
v1. Builder extends this path in two phases.

In the first phase, fix n additional vertices w1, . . . , wn appearing after vk in reverse order:
vk < wn < · · · < w2 < w1. Builder plays the following edges of the ordered path through
these n vertices:
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1. Edge w3w2. If this edge is red, the first phase ends (leading to case 1 below).

2. Edge w4w3. If this edge is red, Builder plays w2w1 and then, regardless of its color,
the first phase ends (leading to case 2 or case 3 below).

3. Edges w5w4, w6w5, and so on, ending the first phase either once one of these edges
is red (also leading to case 2 below) or once a blue path on at least n−k+1 vertices
is created (leading to case 4 below).

Builder’s strategy in the second phase depends on the result of the first phase.

Case 1. w3w2 is red. In this case, choose vertices vk+1 and vk+2 such that w3 < vk+1 <
w2 < vk+2; Builder plays edges vkvk+1 and vk+1vk+2. If either edge is red, a red copy of
X is created; otherwise, Builder extends the blue path to k + 2 vertices.

Case 2. The edges played in the first phase form an ordered path on ` + 2 vertices, for
2 6 ` 6 n− k− 1, in which the first edge is red and all other edges are blue. In this case,
Builder laces the blue path on v1, . . . , vk to the last ` vertices of this path through the red
edge.

Case 3. w4w3 and w2w1 are both red. In this case, choose an arbitrary vertex x such
that w3 < x < w2, and an arbitrary vertex y such that w1 < y. Builder laces the blue
path on v1, . . . , vk to x through w4w3. If this blue path still has fewer than n vertices,
Builder laces it to y through w2w1.

Case 4. The edges played in the first phase form an ordered path on t > n−k+1 vertices
wt+1, . . . , w2. In this case, Builder plays edges vk−1wt+1 and vkwt. If both of these edges
are red, a red copy of X is created, and Builder wins. Otherwise, a blue path through all
but one of the vertices v1, . . . , vk and wt+1, . . . , w2 is created, with at least k + t− 1 > n
vertices, so Builder still wins.

Now we analyze the number of moves required for Builder to win using this strategy. To
begin with, while the blue path v1, . . . , vk still has fewer than n vertices, at most 3

2
(k− 1)

edges have been played, which we prove by induction. Only 0 = 3
2
(1 − 1) moves are

required to reach k − 1. The number of vertices added to the path varies by case. If we
ignore the lacing steps (which add a variable number of vertices), then:

• In case 1, 2 vertices are added, and 3 = 3
2
(2) edges are played.

• In case 2, ` vertices are added, and `+ 1 6 3
2
` edges are played.

• In case 3, 2 vertices (x and y) are added, and 3 = 3
2
(2) edges are played.

• Case 4 can be ignored for now, since it always ends in a win for Builder.

Additionally, each lacing step that does not result in a win for Builder adds 2m−2 vertices
to the blue path in 3m − 3 = 3

2
(2m − 2) moves. Altogether, we confirm that every time

Builder extends the path to a length k but does not win, at most 3
2
(k − 1) moves have

been made.
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A constant term is added at the end, when the path reaches or exceeds n steps. A general
reason for this is that in such a case, lacing two paths together may add 2m− 1 vertices
to the path at the cost of 3m − 1 = 3

2
(2m − 1) + 1

2
moves: adding a one-time cost of 1

2
.

The constant term also depends on the case:

• In case 1, the efficiency does not change, but the final path might have up to n+ 1
vertices, since 2 vertices are added at once, at most 3

2
n moves have been made.

• In case 2, when lacing the two paths together adds 2m− 1 vertices to the length in
3m − 1 moves, this may also result in a path on n + 1 vertices; together with the
one-time cost of 1

2
, at most 3

2
n+ 1

2
moves have been made.

• In case 3, if Builder wins after lacing y to the path, the analysis is the same as for
case 2. However, Builder may also win after lacing x to the path; in that case, the
3 edges played before lacing only contributed one vertex (x) for an additional cost
of 3

2
; st most 3

2
n+ 2 moves have been made.

• In case 4, Builder adds t− 1 vertices to the path in t+ 1 moves; at minimum, t > 3,
since the added vertices include w4, w3, w2, so t + 1 6 3

2
t − 1

2
. Therefore the final

path of length k+ t−1 is created in at most 3
2
(k−1+ t)− 1

2
moves. If t = n−k+1,

this is 3
2
n− 1

2
moves, and in most cases, Builder stops as soon as t reaches n−k+ 1.

However, t is always at least 3, even if k = n− 1, so Builder might instead create a
path of length n+ 1 in 3

2
(n+ 1)− 1

2
or 3

2
n+ 1 moves.

All in all, we can guarantee that when Builder wins, at most 3
2
n + 2 moves have been

made.

4.3 The third bad graph: K1,2

The graph K1,2 is unique among the bad graphs of Theorem 4 in that we can determine
the exact value of ro(K1,2, Pn). In fact, we can find ro(K1,k, Pn) exactly for all k.

Lemma 16. For all n, k > 1, ro(K1,k, Pn) = k(n− 1).

Proof. For the lower bound, Painter’s strategy is to color every edge red, except if a red
copy of K1,k is created. Builder wins the game when a blue copy of Pn is created. Let
vw be an edge of this path, with v < w; in order for Painter to color vw blue, there must
have been a red copy of K1,k−1 whose leftmost vertex is v. In total, there are n − 1 red
copies of K1,k−1, all with distinct edges. (Figure 8a shows an example with n = 4 and
k = 4.) Together with the n− 1 blue edges of Pn, there are at least k(n− 1) edges total.

For the upper bound, Builder will successively build a blue path P ; initially, P consists of
a single arbitrary vertex. When P = v1v2 . . . vs for some s > 1, Builder chooses vertices
w1, . . . , wk to the right of vs and plays the k edges {vsw1, vsw2, . . . , vswk}. If all k edges
are red, a red copy of K1,k is created and Builder wins. If vswi is blue for some i, then P
can be extended to v1v2 . . . vswi. (Figure 8b shows an example of the second possibility,
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with s = 5 and k = 4.) Every k moves, Builder is able to extend P by one more vertex;
thus Builder wins in k(n− 1) moves.

v1 v2 v3 v4

B B
B

R

RR

R

R

R

R

R

R

(a) An example of the structure that must exist to force Painter to color the path v1v2v3v4 blue.

v1 v2 v3 v4 v5 w1 w2 w3 w4
B B B B

R
R

B
R

(b) Builder extends a blue P5 to a blue P6 via edge v5w3.

Figure 8: Diagrams for the proof of Lemma 16, in the case k = 4

5 Results for matchings

5.1 Serial matchings

In this section, we analyze the online Ramsey number ro(Mk, Pn), where Mk is the serial
k-edge matching. This case is notable for two reasons. First, Mk is the instance we see
of graphs G such that ro(G,Pn) = n + O(1) as n → ∞. Second, we will be able to find
ro(Mk, Pn) exactly, when n is sufficiently large compared to k.

We will prove Theorem 3 in two steps. We begin with the upper bound on ro(Mk, Pn),
which is a strategy for Builder.

Lemma 17. If n > 4 and k > 2, then ro(Mk, Pn) 6 n+ 2k − 4.

Proof. In this proof, we assume that Builder takes care to space out vertices so that it is
always possible to play a vertex between any two existing vertices.

To keep track of Builder’s progress, we say that the graph built so far is in state (x, y) if
it contains a blue Px followed by a red My, and we assign state (x, y) the weight x + 2y.
(An example is shown in Figure 9a.) The empty graph is in state (1, 0) with weight 1,
because a blue P1 is just a vertex. A graph with no red Mk or blue Pn must be in a state
with weight at most n− 1 + 2(k − 1) = n+ 2k − 3.

In state (x, y), let v1, v2, . . . , vx be the vertices of the blue Px in order, and let w be a
vertex to the right of vx and to the left of the red My. Suppose Builder plays the edge
vxw. Then:

• If vxw is blue, the graph now contains a blue Px+1 (the path v1v2 . . . vxw) followed
by a red My, so it is in state (x+ 1, y). (An example is shown in Figure 9b.)
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v1 v2 v3 v4 v5
B B B B R R R

(a) State (5, 3) with weight 11.

v1 v2 v3 v4 v5 w
B B B B R R R

B

(b) Edge v5w is blue, resulting in state (6, 3) with weight 12.

v1 v2 v3 v4 v5 w
B B B R R R

R

(c) Edge v5w is red, resulting in state (4, 4) with weight 12.

v0 v1 v2 v3 v4 v5
R B B B B R R

(d) State (1, 5, 2), also with weight 11.

Figure 9: Diagrams for the proof of Lemma 17

• If vxw is red, the graph now contains a blue Px−1 (the path v1v2 . . . vx−1) followed by
a red My+1 (edge vxw together with the previous My), so it is in state (x− 1, y+ 1).
(An example is shown in Figure 9c; the dashed edge is the edge vx−1vx, which is no
longer part of the blue path tracked by Builder.)

In both cases, the new state of the graph has weight x + 2y + 1: it increases by 1. This
argument alone proves ro(Mk, Pn) 6 n+ 2k − 3: after n+ 2k − 3 repetitions of the move
above from state (1, 0), Builder reaches a state (x, y) with weight n + 2k − 2, so either
x > n or y > k.

To improve this bound by 1, we refine the strategy. We say that the graph is in state
(1, x, y) if there is a path P1+x whose first edge is red and all other edges are blue, followed
by a red My; we assign this state weight x+2y+2. (An example is shown in Figure 9d.) It
remains the case that when the graph is in a state (1, x, y) with weight at least n+2k−2,
it contains a red Mk or a blue Pn.

From state (1, x, y) with x > 1, Builder can follow the strategy above to obtain state
(1, x + 1, y) or (1, x − 1, y + 1) in one move, increasing the weight by 1. State (1, 1, y)
carries the same information as state (1, y + 1) and has the same weight, so if the graph
reaches such a state, we switch to treating it as state (1, y + 1).

Builder begins with an “opening,” laying down a path starting at a vertex and going
left, until the first time Painter colors an edge of this path red. Either Builder wins in
n− 1 < n+ 2k− 4 steps, or else achieves state (1, x, 0) in x steps, which has weight x+ 2.
From here, Builder can follow the strategy above to increase weight by at least 1 with
every step. In n + 2k − 4 steps, a state with weight n + 2k − 2 is reached, guaranteeing
that Builder wins.
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For sufficiently large n, Painter has a simple counter-strategy: Painter colors every edge
blue unless this would create a blue Pn. In the lemma that follows, we prove that this
strategy avoids losing in fewer than n+ 2k− 4 moves when n > max{3k− 3, 2k+ 1} and
k > 2, completing the proof of Theorem 3.

Lemma 18. If k > 2 and n > max{3k − 3, 2k + 1}, then ro(Mk, Pn) > n+ 2k − 4.

Proof. When Painter colors every edge blue unless this would create a blue Pn, the end
state of the game is an ordered graph G with k red edges forming a red Mk. (We may
assume that Builder does not play any other edges that Painter would color red.) We will
show that G must contain at least n+ 2k − 4 edges.

As a consequence of Painter’s strategy, G does not contain a blue Pn. Moreover, every
red edge e ∈ E(G) must be part of a Pn in G in which e is the only red edge. (Otherwise,
Painter would have colored e blue.) It follows that if vw is a red edge, then there is no
blue v−w path in G: otherwise, replacing vw by the blue v−w path would create a path
of length at least n in G with no red edges.

Define a path P ∗ as follows.

1. If there is a Pn+1 in G in which the first and last edges are red, and all others are
blue, let P ∗ be this Pn+1.

2. Otherwise, if there is a Pn in G in which the first or last edge is red, and all others
are blue, let P ∗ be this Pn. (Note that in this case, the other end of P ∗ is not
incident to a red edge, or else we would be in the first case.)

3. Otherwise, choose any edge e, and let P ∗ be a Pn in G in which e is the only red
edge.

In all cases, P ∗ contains n− 2 blue edges and either 1 or 2 red edges.

We call every vertex of P ∗ that is not incident on a red edge of P ∗ an anchor. Furthermore,
we assign a direction (“left” or “right”) to each anchor by the following algorithm:

1. If an anchor is the rightmost vertex of a blue Pn−k in G, label it a left anchor.

2. If an anchor is the leftmost vertex of a blue Pn−k in G, label it a right anchor. No
anchor will fall in both categories: this would imply the existence of a blue P2n−2k−1,
which contains a blue Pn.

3. At this point, if there is a left anchor to the left of a right anchor, the corresponding
paths are disjoint and have 2(n− k − 1) blue edges; together with the k red edges,
we get 2n− k − 1, which is at least n+ 2k − 4 when n > 3k − 3.

Assign directions to the other anchors arbitrarily so that this rule continues to hold:
no left anchor is to the left of a right anchor.
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Claim 19. Let vw be a red edge which is not part of P ∗, but which has an endpoint on
P ∗. Then:

(i) Exactly one of v or w is an anchor.

(ii) If v is an anchor, then w is the left endpoint of a blue edge.

(iii) Symmetrically, if w is an anchor, then v is the right endpoint of a blue edge.

Proof. Suppose for contradiction that v and w are both anchors. If they are on the same
blue segment of P ∗, then there is a blue v−w path, which we ruled out earlier. If they are
on different blue segments of P ∗, then the red edge of P ∗ between them is nested between
the endpoints of the red edge vw, which violates our assumption that the red edges form
an Mk. This proves (i).

We only prove (ii), since (iii) is its mirror image. Suppose v is an anchor. We know that
there is a copy of Pn in G in which vw is the only red edge. That copy of Pn includes a
blue edge satisfying (ii), unless vw is its last edge. In this case, v is the rightmost endpoint
of a blue Pn−1. This shows that G contains a Pn in which the last edge is red, and all
others are blue; therefore the path P ∗ is also chosen to contain a blue Pn−1, extended on
one or both sides by a red edge.

If v is rightmost vertex of P ∗, we would have included edge vw as part of P ∗; a contra-
diction. But in all other cases, v is the left endpoint of a blue edge of P ∗, and we obtain
a blue Pn; another contradiction. Therefore v cannot be the rightmost endpoint of a blue
Pn−1, and (ii) follows.

To prove the lemma, it suffices to show that in G − P ∗, there are at least as many blue
edges as red edges. When P ∗ has n − 2 blue edges and 1 red edge, this would give us
k− 1 red edges and at least k− 1 blue edges in G−P ∗, for a total of at least n+ 2k− 3.
When P ∗ has n − 2 blue edges and 2 red edges, this would give us k − 2 red edges and
at least k − 2 blue edges in G− P ∗, for a total of at least n + 2k − 4. To prove this, we
will consider the connected components of G − P ∗, and show that each one has at least
as many blue edges as red edges.

Let C be a connected component of G − P ∗ with j red edges. If C has 2j + 1 or more
vertices, then it must have at least 2j edges, and we are done. Therefore, assume that C
has only 2j vertices: the endpoints of the j red edges of C.

If a vertex v of C is incident to any edges not in C, those edges are in P ∗, and therefore
v must be a vertex of P ∗. Since all vertices of C are incident to a red edge in C, v cannot
be incident to any red edge in P ∗; therefore v is only incident to blue edges in P ∗, so it
must be an anchor.

We classify each red edge of C as

• strong, if its right endpoint is a right anchor, or if its left endpoint is a left anchor.
Let j1 be the number of strong edges in C.
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x1 x2 x3 x4 x5 x6 x7 x8
· · ·

y1 y2 y3 y4

R

R

R

B

B

R B B B B B B B

Right anchors

Figure 10: Part of path P ∗ with vertices x1, x2, x3, . . . and part of a component C of
G− P ∗; edge y1x4 is strong, edge y2y3 is weak, and edge x6y4 is weird.

• weak, if neither of its endpoints is an anchor. Let j2 be the number of weak edges
in C.

• weird, if its right endpoint is a left anchor, or if its left endpoint is a right anchor.
Let j3 be the number of weird edges in C.

By Claim 19(i), every red edge in C has at most one anchor; therefore every red edge
in C is exactly one of strong, weak, or weird, and j1 + j2 + j3 = j. Examples of this
classification are shown in Figure 10.

To help prove that there are j blue edges in C, we will build up a subgraph C ′ of C.
First, we add all vertices of C which are anchors to C ′. There are exactly j1 + j3 of these:
exactly one endpoint of every strong or weird edge is an anchor, neither endpoint of a
weak edge is an anchor, and there are no vertices in C which are not an endpoint of one
of its red edges.

Second, we consider the weak edges of C. Every weak edge must be part of a Pn in which
it is the only red edge; if this Pn is entirely contained in C, then C has n − 2 > k > j
blue edges, and we are done. Otherwise, the blue Pn must leave C; therefore, there is a
blue path in C from the weak edge to an anchor. We add this blue path, as well as the
weak edge itself, to C ′.

Third, we consider the weird edges of C. Let vw be a weird edge; without loss of generality,
w is a left anchor. There must be a Pn containing vw where it is the other blue edge;
this decomposes into a blue Pa whose rightmost vertex is v, and a blue Pb whose leftmost
endpoint is w, with a+ b = n. Because w is not a right anchor, b < n− k, and therefore
a > k. However, a blue path in C can only contain one endpoint from each of the j 6 k−1
red edges, so we can have no more than a Pk−1 entirely contained in C. Therefore the
blue Pa must leave C: there is a blue path in C from v to an anchor. We add this blue
path (but not the red edge vw) to C ′. Note that both v and w are now in C ′; v as part
of this blue path, and w as an anchor. The case where v is a right anchor is treated
symmetrically.

Now, C ′ is finalized. Both endpoints of every weak or weird edge of C are in C ′, contribut-
ing 2j2 + 2j3 vertices. Let i > 0 be the number of non-anchor endpoints of strong edges
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included in C ′; since all j1 anchor endpoints of strong edges are included, C ′ contains
i + j1 + 2j2 + 2j3 vertices. There are at most j1 + j3 connected components in C ′: we
started with the j1 + j3 anchors of C, and then added only paths containing at least one
of these anchors. Therefore C ′ has at least (i + j1 + 2j2 + 2j3)− (j1 + j3) = i + 2j2 + j3
edges. Only j2 edges of C ′ (the weak edges) are red, so C ′ has i+ j2 + j3 blue edges.

There are j1 − i non-anchor vertices of strong edges which are not included in C ′. By
Claim 19(ii) and (iii), each of these must be incident on a blue edge in C (but not in
C ′). Moreover, since (in G, and therefore also in C) no left anchor is to the left of a
right anchor, these edges consist of some number of blue edges going left from a red edge,
followed by some number of blue edges going right from a red edge. Therefore these j1− i
non-anchor vertices must have j1 − i additional blue edges.

The total number of blue edges is at least (i + j2 + j3) + (j1 − i) = j1 + j2 + j3 = j.
Therefore C contains at least j blue edges, which was what we wanted.

The lower bound n > max{3k − 3, 2k + 1} might not be optimal. However, Painter’s
strategy of coloring every edge blue when this does not lose the game assumes that n is
large compared to k; when n < k, Builder can exploit it.

When n < k and Painter is known to follow this strategy, Builder begins by play-
ing two copies of Pn−1: one on vertices 10, 20, 30, . . . , 10n − 10 and one on vertices
15, 25, 35, . . . , 10n − 5. Because no blue Pn is created, Painter colors all 2n − 4 edges
blue. However, now Builder can play edges

{9, 10}, {14, 15}, {20, 25}, . . . , {10n−20, 10n−15}, {10n−10, 10n−9}, {10n−5, 10n−4}

and Painter must color each of these red, creating an Mn+1 in just 3n−3 moves total: this is
n+2(n+1)−5. Builder can then play edges {10n−20, 10(n+i)} and {10(n+i), 10(n+i)+5}
for i = 1, . . . , k−n−1. Painter colors the first edge blue and the second edge red for each
i, increasing the red matching from Mn+1 to Mk in 2(k − n− 1) more moves: n+ 2k − 5
moves total. An example where n = 4 and k = 6 is illustrated in Figure 11.

This argument partially justifies the need for a lower bound on n in Theorem 3, though
it is possible that Painter has a more refined strategy that does not require it.

9 10 14 15 20 25 30 31 35 36 40 45
R R R R R R

B
B B

B

B

Figure 11: Builder’s exploit of Painter’s strategy when n = 4 and k = 6. Edges (10, 20),
(20, 30), (15, 25), (25, 35) are played first, then edges (9, 10), (14, 15), (20, 25), (30, 31),
(35, 36), then edge (20, 40) and edge (40, 45).
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5.2 The partial St. Ives matching

Recall that the partial St. Ives matching S ′k is obtained from a nested k-edge matching
by adding k more consecutive nested k-edge matchings inside it. In this final section of
the paper, we prove Theorem 7 that for all k there is a constant ck such that ro(S

′
k, Pn) 6

n+ ck. Throughout this proof, we write r(n1, n2) for the Ramsey number of two cliques,
r(Kn1 , Kn2); note that this is the same as ro(Kn1 , Kn2), since all vertex orderings of a
clique are isomorphic as ordered graphs.

For 0 6 b 6 (k + 1)k, we define a family of b-edge subgraphs of S ′k called S ′k[b]. When
b 6 2k, the family S ′k[b] includes only one graph: a nested matching of size b, whose
inmost edge is denoted by eb. When b > 2k, the family S ′k[b] includes all ordered graphs
consisting of one nested matching of size k and d b

k
e−1 further nested matchings inside it.

These d b
k
e − 1 matchings are consecutive and disjoint; b b

k
c − 1 of them have size k and, if

k - b, one of them has size b mod k. If k | b, we denote the set of inmost edges of the b
k
−1

many matchings of size k by Eb. If k - b, we denote the inmost edge of the matching of
size b mod k by eb and set Eb := {eb}.

Note that when b > 2k, the family S ′k[b] includes multiple ordered graphs, since we do
not specify the location of the nested matching of smaller size.

For a > (k + 1)3, we say we are in state (a, 0) if there exists a blue Pa.

For b ∈ [(k + 1)2] \ {2k, 3k, . . . , k2} and a > (k + 1)3 − bk, we say that we are in state
(a, b) if there exists a blue Pa and a red S ∈ S ′k[b] where the last (k + 1)3 − bk vertices of
the blue path are between the two endpoints of the edge eb.

For b ∈ {2k, 3k, . . . , k2} and a > (k+ 1)3− bk, we say that we are in state (a, b, 0) if there
exists a blue Pa and a red S ∈ S ′k[b] where the last (k+ 1)3− bk vertices of the blue path
are between the two endpoints of some edge eb ∈ Eb.

For b ∈ {2k, 3k, . . . , k2} and a > (k+ 1)3− bk, we say that we are in state (a, b, 1) if there
exists a blue Pa and a red S ∈ S ′k[b] where the last (k+ 1)3− bk vertices of the blue path
are all between the endpoints of the most inside edge of the outside nested matching, and
also either before or after all of the inside copies of the red nested matchings in S, or
between two consecutive copies of nested matchings in S.

We will show that either in one move we increase the first coordinate of our states by 1
or in a constant number of moves the second coordinate by 1 while the first coordinate
only decreases by at most a constant. Builder wins when a state (n′, b), (n′, b, 0), (n′, b, 1)
for some n′ > n and b > 0 or a state (a, (k + 1)k) for some a > 0 is reached.

Let va be the last vertex in the blue Pa of the current state we are in.

Claim 20. There exists ck > 0 such that Builder can reach state ((k + 1)3, 0) in at most
ck moves.

Proof. Builder simply plays all edges of a clique of size r((k + 1)3, 2(k + 1)2) which is a
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constant depending only on k. Then either there exists a red clique of size 2(k+ 1)2, and
therefore in particular a red S ∈ S ′k, or a blue clique of size (k + 1)3, and therefore in
particular a blue P(k+1)3 .

Claim 21. There exists ck > 0 such that the following holds.

• If we are in state (a, b) with a > (k+1)3−bk and b 6∈ {2k−1, 2k, 3k−1, 3k, . . . , k2−
1, k2} we reach state (a+ 1, b) in 1 move or (a′, b+ 1) in at most ck moves for some
a′ > a.

• If we are in state (a, b) with a > (k+1)3− bk and b ∈ {2k−1, 3k−1, . . . , k2−1} we
reach state (a+ 1, b) in 1 move or (a′, b+ 1, 0) in at most ck moves for some a′ > a.

• If we are in state (a, b, 1) with a > (k + 1)3 − bk and b ∈ {2k, 3k, . . . , k2} we reach
state (a+ 1, b, 1) in 1 move or (a′, b+ 1) in at most ck moves for some a′ > a.

Proof. Assume we are in the state (a, b) with a > (k + 1)3 − bk and b 6∈ {2k, 3k, . . . , k2},
or the state (a, b, 1) with a > (k+ 1)3− bk and b ∈ {2k, 3k, . . . , k2}. We start by defining
an interval [ub, wb] in which all new edges for the following rounds will be played.

If b > 1, there exists a blue Pa and a red S ∈ S ′k[b] satisfying the properties of state (a, b)
or (a, b, 1) we start in. We denote by ub the first vertex to the left of the last (k + 1)3

vertices of Pa which is incident to the red S. Further, we define wb to be the first vertex
to the right of the last vertex of Pa which is incident to the red S.

If b = 0, there exists a blue Pa. Denote by ub the vertex one to the left of the (k+ 1)3 last
vertex in Pa, and denote by wb an arbitrary vertex to the right of the last vertex in Pa.

Recall that va is the last vertex in the blue Pa and note that ub < va < wb. In this case
Builder plays an edge from va to a vertex w such that ub < va < w < wb.

First, assume vaw is painted blue. If if b 6∈ {2k, 3k, . . . , k2} we reached state (a + 1, b)
and if b ∈ {2k, 3k, . . . , k2} we reached state (a + 1, b, 1) in 1 move. Next, assume vaw is
painted red. Builder plays all edges of a clique of size r((k + 1)3, 2(k + 1)2) where all the
vertices of this clique are between va and w. Then either there exists a red clique of size
2(k + 1)2 or a blue clique of size (k + 1)3 and therefore in a particular a blue P(k+1)3 . In
the first case, Builder created a red S ′k and therefore wins in a total of at most a + ck
moves for some constant ck > 0.

Now assume Builder created a blue path of length (k + 1)3. Let z′ be the first vertex in
this blue path of length (k + 1)3 and z be the ((k + 1)3 − bk)-last vertex in the blue Pa.
Now, Builder plays the edge zz′.

• If zz′ is painted blue, Builder has created a blue path of length a′ = a− ((k+ 1)3−
bk)+(k+1)3 > a and a red S ′k[b+1] (with vaw being the new red edge eb+1 ∈ Eb+1)
where the last (k+1)3 vertices of the blue path are between the two endpoints of the
edge eb+1. Therefore, if b 6∈ {2k − 1, 3k − 1, . . . , k2 − 1} we reached state (a′, b+ 1)
and if b ∈ {2k − 1, 3k − 1, . . . , k2 − 1} we reached state (a′, b + 1, 0) for a′ > a in
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a constant number of moves. See Figure 12 for an illustration in the case the edge
zz′ is painted blue.

• If zz′ is painted red, there is a blue path of length a and a red S ′k[b+ 1] (with edge
eb+1 ∈ Eb+1 being the edge zz′) where the last (k+ 1)3− bk−1 > (k+ 1)3− (b+ 1)k
vertices of the blue Pa are between the two endpoints of the edge eb+1 = zz′.
Thus, if b 6∈ {2k − 1, 3k − 1, . . . , k2 − 1} we reached state (a, b + 1) and if b ∈
{2k − 1, 3k − 1, . . . , k2 − 1} we reached state (a, b + 1, 0) in a constant number of
moves. See See Figure 13 for an illustration in the case the edge zz′ is painted
red.

ub z va z′ w wb
B

B

B B B B B B

B

B B

R

R

Figure 12: The situation on the board when zz′ is colored blue. The edges contributing
to the new state are in bold.

ub z va z′ w wb
B

B

B B B B B B

R

B B

R

R

Figure 13: The situation on the board when zz′ is colored red. The edges contributing to
the new state are in bold.

Claim 22. There exists ck > 0 such that the following holds. If we are in state (a, b, 0)
with a > (k + 1)3 − bk and b ∈ {2k, 3k, . . . k2}, we reach state (a′, b, 1) for a′ > a − k in
at most ck moves.

Proof. Since we are in state (a, b, 0) there exists a blue Pa and a red S ∈ S ′k[b] where the
last (k + 1)3 − bk vertices of the blue path are between the two endpoints of some red
edge eb ∈ Eb. Let ua be the rightmost vertex incident to the red nested matching of size
k containing eb, and let ub be the leftmost vertex, after ua, which is incident to a vertex
of S.

Builder plays all edges of a clique of size r((k + 1)3 + k, 2(k + 1)2) between ua and ub.
Then either Builder created a red K2(k+1)2 or a blue path of length (k + 1)3 + k. In the
first case, Builder created a red S ′k and therefore wins in a total of at most a+ ck moves
for some constant ck > 0.
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Now assume Builder created a blue path of length (k + 1)3 + k.

Denote by c′1, c
′
2, . . . , c

′
k the k first vertices of this blue path and ck, ck−1, . . . , c1 the last k

vertices of the blue Pa (from left to right). Builder now plays the edges c1c
′
1, c2c

′
2, . . . , ckc

′
k.

Note that these k edges form a nested k-edge matching.

• If one of those k edges is painted blue, we obtain a blue path of length a′ where
a′ > a such that the last (k + 1)3 vertices of this blue path are between ua and ub.
We have reached state (a′, b, 1) in at most ck moves for some constant ck > 0. See
Figure 14 for an illustration in this case.

• If all of those k edges are painted red, we obtain a copy S of some S ′k[b] and a
blue Pa′ for a′ = a − k with all vertices appearing before the newly created nested
matching of size k. Moreover, the last (k+1)3− bk−k = (k+1)3− (b+1)k vertices
of the blue P ′a are all between the endpoints of the most inside edge of the outside
nested matching, and also either before or after all of the inside copies of the red
nested matchings in S, or between two consecutive copies of nested matchings in S.
Thus, we have reached state (a′, b, 1) in at most ck moves for some constant ck > 0.
See Figure 15 for an illustration in this case.

The proof of Theorem 7 follows by combining Claims 20, 21 and 22.

c3 c2 c1 ua c′1 c′2 c′3
ub

B
B

B B
B B B B

R

R

R

B B B B

B

R

Figure 14: The situation on the board when one of the edges c1c
′
1, c2c

′
2, . . . , ckc

′
k is colored

blue (for k = 3). The edges contributing to the new state are in bold. Depending on the
situation on the board, the red edge leaving ub might go to a vertex to the left or right of
all of the displayed vertices.

c3 c2 c1 ua c′1 c′2 c′3
ub

B
B

B B
B B B B

R

R
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B B B B

R
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R

Figure 15: The situation on the board when all of the edges c1c
′
1, c2c

′
2, . . . , ckc

′
k are colored

red (for k = 3). The edges contributing to the new state are in bold. Depending on the
situation on the board, the red edge leaving ub might go to a vertex to the left or right of
all of the displayed vertices.
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Erdős is eighty, Vol. 1, Bolyai Soc. Math. Stud., pages 51–78. János Bolyai Math.
Soc., Budapest, 1993.

[4] M. Bednarska-Bzdega. Off-diagonal online size Ramsey numbers for paths. European
J. Combin., 118:Paper No. 103873, 2024.
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