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To apportion a complex matrix means to apply a similarity 
so that all entries of the resulting matrix have the same 
magnitude. We initiate the study of apportionment, both 
by unitary matrix similarity and general matrix similarity. 
There are connections between apportionment and classical 
graph decomposition problems, including graceful labellings
of graphs, Hadamard matrices, and equiangular lines, and 
potential applications to instantaneous uniform mixing in 
quantum walks. The connection between apportionment and 
graceful labellings allows the construction of apportionable 
matrices from trees. A generalization of the well-known 
Eigenvalue Interlacing Inequalities using graceful labellings
is also presented. It is shown that every rank one matrix 
can be apportioned by a unitary similarity, but there are 
2 × 2 matrices that cannot be apportioned. A necessary 
condition for a matrix to be apportioned by unitary matrix 
is established. This condition is used to construct a set 
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of matrices with nonzero Lebesgue measure that are not 
apportionable by a unitary matrix.

© 2024 Elsevier Inc. All rights are reserved, including those 
for text and data mining, AI training, and similar 

technologies.

1. Introduction

There has been extensive study of diagonalization of matrices, and finding the Jordan 
canonical form for matrices that are not diagonalizable. Diagonalization can be viewed 
as using a similarity to concentrate the magnitude of all the entries within a small subset 
of entries. Here we study what can be viewed as reversing this process, spreading out the 
magnitudes as uniformly as possible. A square complex matrix is uniform if all entries 
have the same absolute value. Hadamard matrices and discrete Fourier transforms are 
important examples of uniform matrices. Uniform matrices play the role of the target 
(like diagonal matrices) in this process. A square complex matrix is apportionable if it is 
similar (by a specified type of matrix) to a uniform matrix (formal definitions of various 
types of apportionability and other terms are given below). There are interesting con-
nections between apportionability and classical combinatorial problems, such as graceful 
labelling of graphs (see Section 5), construction of equiangular lines (see Section 3), and 
construction of Hadamard matrices (see discussion of these matrices later in this sec-
tion). There are also connections with the relatively new study of instantaneous uniform 
mixing in continuous-time quantum walks. Specifically, the continuous-time quantum 
walk on a simple graph G has the transition operator e−itAG , where AG is the adjacency 
matrix of G, and has instantaneous uniform mixing at time t0 if and only if e−it0AG is 
uniform [1,5].

We index the entries of A = [akj ] ∈ Cn×n from 0 to n − 1. The set of unitary n × n

matrices is denoted by U(n), the set of n × n matrices of determinant one is the special 
linear group and is denoted by SL(n), and the set of invertible n × n matrices is denoted 
by GL(n). Obviously U(n) and SL(n) are subgroups of GL(n), and we will sometimes 
have occasion to consider additional subgroups, such as the set of real orthogonal n × n

matrices, which is denoted by O(n). The max-norm of A is ‖A‖max = max
0≤k,j<n

|akj | and 

the Frobenius norm of A is ‖A‖F =
√

tr (A∗A) =
√ ∑

0≤j,k<n

|akj |2.

Definition 1.1. A complex square matrix A = [akj ] is uniform if there exists a nonnegative 
real number c such that |akj | = c for all k and j. A matrix A ∈ Cn×n is unitarily 
apportionable or U-apportionable if there exists a matrix U ∈ U(n) such that UAU∗

is uniform. In this case, ‖UAU∗‖max is called a unitary apportionment constant and U
is called an apportioning matrix. A matrix A ∈ Cn×n is GL-apportionable or generally 
apportionable if there exists a matrix M ∈ GL(n) such that MAM−1 is uniform. In 



A. Clark et al. / Linear Algebra and its Applications 698 (2024) 295–325 297
this case, ‖MAM−1‖max is called a general apportionment constant and M is called an 
apportioning matrix.

An apportionment constant is usually denoted by κ. If A = [akj ] ∈ Cn×n is uniform, 
then ‖A‖max = |akj | = ‖A‖F

n . Since the Frobenius norm is unitarily invariant, the unitary 
apportionment constant is unique.

We have not defined specially apportionable, because every generally apportionable 
matrix can be apportioned by a matrix in SL(n): If MAM−1 = B, then

(det(M)−1/nM)A(det(M)1/nM−1) = B

and det(M)−1/nM ∈ SL(n). Similarly, we may consider only special unitary matrices 
when studying U-apportionment.

Example 2.4 shows that a matrix may be apportionable but not U-apportionable. Just 
as unitarily apportionable matrices were defined to measure apportionability relative to 
U(n), the apportionability of A can be assessed relative to any subgroup of GL(n).

We first study unitary apportionability and then consider general apportionability. 
Determining whether a matrix is U- or GL-apportionable can be challenging but every 
rank one matrix is U-apportionable and we present an algorithm for finding a unitary 
matrix to apportion a rank one matrix in Section 2. We also show there that a positive 
semidefinite matrix H is U-apportionable if and only if rank H ≤ 1. In Section 3 we 
present a condition on a matrix A ∈ Cn×n that is sufficient to show that A is not U-
apportionable; however, this condition is not necessary. In Section 4 we define a function 
that measures how far away from U-apportionable a matrix is and establish bounds 
on this function. Connections with Rosa’s ρ-labellings of graphs, which include graceful 
labellings, are studied in Section 5. There we show that a loop-graph has a ρ-labelling if 
and only if a specific expansion of its adjacency matrix can be apportioned by a unitary 
matrix of a specific form. In Section 6 we use gracefully labelled loop-graphs to generalize 
the well-known Eigenvalue Interlacing Inequalities. General apportionment is studied in 
Section 7, where it is shown that most pairs of real numbers are not realizable as the 
spectrum of a 2 × 2 apportionable matrix, and Section 8, where the problem of finding 
an apportioning matrix is studied. Section 9 contains concluding remarks. Some of the 
work in Section 5 relies on the Composition Lemma proved in [3], and in Appendix A
we provide a proof of the Recovery Lemma, which is used in [3].

The remainder of this introduction contains additional examples, terminology, and 
notation. We use the notation i for the imaginary unit and we work over the field of 
complex numbers unless otherwise indicated. The n × n identity matrix is denoted by 
In (or I if n is clear), the n × n all zeros matrix is denoted by On (or O) and the n × n

all ones matrix is denoted by Jn (or J). Let Ekj be the n × n matrix with (k, j)-entry 
equal to 1 and all other entries 0 (note that n must be specified when using Ekj). Let Cn

denote the circulant matrix with first row [0, 1, 0, . . . , 0], so Cn is the adjacency matrix 
of a directed cycle spanning all n vertices. Let 1 = [1, . . . , 1]�, ω be a primitive nth 
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Table 1.1
Multiplicities of the eigenvalues ±1, ± i for 
Fn [8].

n 1 −1 − i i

4k k + 1 k k k − 1
4k + 1 k + 1 k k k
4k + 2 k + 1 k + 1 k k
4k + 3 k + 1 k + 1 k + 1 k

root of unity, w = [1, ω, ω2, . . . , ωn−1]�, and Fn = 1√
n

[w0 = 1, w1 = w, w2, . . . , wn−1]
where wj is the entrywise product of j copies of w for j = 2, . . . , n − 1. The matrix Fn

is called a discrete Fourier transform or DFT matrix. Since we index matrix entries by 
0, . . . , n − 1, the (k, j)-entry of Fn is ωkj

√
n

. DFT matrices are very useful for the study 
of apportionment and also provide a nice example of a family of uniform matrices for 
which the eigenvalues are completely known.

Example 1.2. It is known that every eigenvalue of the n × n DFT matrix Fn is one of 
1, −1, i, − i. Furthermore the multiplicities are given in Table 1.1.

A Hadamard matrix is an n × n matrix H with every entry equal to 1 or −1 and 
such that H�H = nIn. A Hadamard matrix of order n is necessarily uniform and every 
eigenvalue has magnitude 

√
n. If there exists an n × n Hadamard matrix, then n = 1, 2

or n ≡ 0 mod 4. It is not known whether there exist Hadamard matrices of all orders 
of the form n = 4k, but it is known that there is a Hadamard matrix for each n = 2k. 
If Hm and Hn are m × m and n × n Hadamard matrices, then Hmn = Hm ⊗ Hn is an 
mn × mn Hadamard matrix, where ⊗ denotes the Kronecker product. Thus, Hadamard 
matrices of order n = 2k can be constructed as in the next example.

Example 1.3. Let H2 =
[

1 1
1 −1

]
and define H2k+1 = H2 ⊗ H2k . For a symmetric 

Hadamard matrix Hn, every eigenvalue is ±√
n. Observe that tr(H2k ) = 0 and H2k

is symmetric, so spec(H2k ) =
{(

−
√

2k
)(2k−1)

,
(√

2k
)(2k−1)

}
. By scaling H2k , any spec-

trum of the form 
{

(−λ)(2k−1)
, λ(2k−1)

}
can be realized by a 2k × 2k uniform matrix.

There is a close connection between the matrix apportionment problem and two classi-
cal graph decomposition problems. One of these problems (graceful labelling) is discussed 
in Section 5. The other problem consists in determining the existence of a decomposition 
of Kn (where n is even) into n − 1 overlapping copies of Kn/2,n/2 such that each edge of 
Kn occurs as an edge in exactly n

2 distinct copies of the given n − 1 copies of Kn/2,n/2. 
This graph decomposition problem is well known to be equivalent to the problem of es-
tablishing the existence of a n ×n Hadamard matrix. Its relation to apportioning follows 
from the observation that a symmetric n × n Hadamard matrix exists if and only if one 
of the n diagonal matrices in the set
2
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⎧⎪⎨⎪⎩diag(−1, . . . , −1︸ ︷︷ ︸
k times

, 1, . . . , 1︸ ︷︷ ︸
n−k times

) : 0 < k ≤ n

2

⎫⎪⎬⎪⎭
is O-apportionable. Thus determining whether or not one of the diagonal matrices above 
is O-apportionable must be at least as hard as establishing the existence of symmetric 
n × n Hadamard matrices.

A complex Hadamard matrix is an n × n matrix H with complex entries of modulus 
1 such that HH∗ = nI. An n × n complex Hadamard matrix is 

√
n U where U ∈ Cn×n

is both uniform and unitary. The appropriate scalar multiple of the DFT matrix is a 
complex Hadamard matrix. Thus, unlike real Hadamard matrices, complex Hadamard 
matrices exist for every order.

We use spec(A) to denote the spectrum of A, i.e., the multiset of n eigenvalues of 
A. The spectral radius of A is ρ(A) = max{|λ| : λ ∈ spec(A)}; ρ can be used when A
is clear. The eigenvalues of a Hermitian matrix H are real and denoted by λmax(H) =
λ0(H) ≥ λ1(H) ≥ · · · ≥ λn−1(H) = λmin(H) (or λmax = λ0 ≥ λ1 ≥ · · · ≥ λn−1 = λmin

if H is clear).
Note that ‖ ·‖max is a vector norm but not a matrix norm. We use several matrix norms 

in addition to the Frobenius norm, many of which are defined in terms of the singular 
values of A, which we denote by σ0(A) ≥ · · · ≥ σn−1(A). If A is a normal matrix, then 
σ0(A) = ρ(A) and {σ0(A), . . . , σn−1(A)} = {|λ| : λ ∈ spec(A)}. For a positive integer p
(or p = ∞), the Schatten-p norm of A ∈ Cn×n is

‖A‖S,p =

⎛⎝ ∑
0≤k<n

σk(A)p

⎞⎠1/p

;

‖A‖S,1 =
∑

0≤k<n σk(A) is called the nuclear norm and denoted by ‖A‖∗. ‖A‖S,∞ =
σ0(A) is called the spectral norm and denoted by ‖A‖2 (because it is the matrix norm 
induced by the vector 2-norm). Since the Frobenius norm of A is invariant under multi-
plication of A by a unitary matrix, ‖A‖F = ‖A‖S,2; note that the Frobenius norm of A
is the vector 2-norm of A viewed as an n2-vector.

2. Rank one matrices are U -apportionable

The only rank zero matrix in Cn×n is On, and it is uniform. In this section we show 
that every rank one matrix is U-apportionable and provide an algorithm for finding a 
unitary apportioning matrix and similar uniform matrix. The situation changes dra-
matically when the rank is of two or more. In this section we also show that positive 
semidefinite matrices of rank two or more are not U-apportionable. Section 7 provides 
examples of spectra that cannot be realized by apportionable matrices.
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Lemma 2.1 and Theorem 2.2 establish that Algorithm 2.1 produces the claimed re-
sults; to assist in making connections between the proofs and the algorithm, we identify 
algorithm steps by number within the proofs of Lemma 2.1 and Theorem 2.2.

Recall that for any vectors v, w ∈ Cn with ‖v‖2 = ‖w‖2, there exists a unitary matrix 
U such that Uv = w. This can be accomplished, for example, by the Householder matrix 
defined by v and w, In − uu∗

u∗v , where u = v − w (cf. [2]). The (complex) sign function is 
sgn(z) = z

|z| for all nonzero z ∈ C and sgn(0) = 1. Let ei denote the i-th standard basis 
vector.

Lemma 2.1. Let n ≥ 2 and A ∈ Cn×n. If rank A = 1, then A is unitarily similar to 
γe0(αe�

0 + βe�
1 ), where |γ| = 1 and α, β ∈ R are nonnegative.

Proof. Suppose that rank A = 1. This implies that spec(A) = {λ, 0(n−1)} where λ = tr A

(Step 1 in Algorithm 2.1); λ may be nonzero or zero. Furthermore, A = xy∗ for some 
x, y ∈ Cn with x, y 
= 0 and ‖x‖2 = 1 (Step 2). Let H1 be a Householder matrix 
such that H1x = e0 and let z = H1y (Steps 3 and 4). This implies (z)0 = λ. Define 
ẑ = z −λe0, so (ẑ)0 = 0. If ẑ = 0, then let H2 = In. Otherwise, let H2 be the Householder 
matrix defined by ẑ and sgn(λ)‖ẑ‖2e1 (Step 5). Thus H2ẑ = sgn(λ)‖ẑ‖2e1, H2e0 = e0, 
and H2H1y = sgn(λ)(|λ|e0 +‖ẑ‖2e1). Hence, H2H1AH∗

1 H∗
2 = sgn(λ)e0(|λ|e0 +‖ẑ‖2e1)�

has the required form. �
Note that this algorithm is intended to summarize the constructive method of proof. 

For accurate implementation in decimal arithmetic, it is important to apply well-known 
numerical techniques to minimize errors.

Theorem 2.2. Let A ∈ Cn×n. If rank A = 1, then A is U-apportionable.

Proof. The claim clearly holds for n = 1, so suppose n ≥ 2. Assume that rank A = 1. 
By Lemma 2.1 we may assume that A is of the form γe0(αe�

0 + βe�
1 ), where |γ| = 1

and α, β ∈ R are nonnegative. Observe that if α = 0 or β = 0, then FnAF ∗
n is uniform 

(Steps 6-13 of Algorithm 2.1). So suppose that α and β are positive real numbers. Since 
U-apportionability is invariant under scaling we may assume that γ = 1 and α = 1.

Let U be a unitary matrix whose first two columns are u0 and u1. Then

UAU∗ = (Ue0 (e�
0 + βe�

1 )U∗) = u0 (u0 + βu1)∗.

Thus UAU∗ is uniform if and only if u0 and u0 +βu1 are uniform. If n is even and U is a 
unitary matrix whose first two columns are u0 = 1√

n
1 and u1 = 1√

n
[ i, − i, i, . . . , − i]�, 

then u0 and u0 + βu1 are uniform (Steps 14-17).
Now consider the case where n is odd. Let U be a unitary matrix whose first two 

columns are u0 = 1√
n
1 and

u1 = [(1 − n)a, a + b i, a − b i, a + b i, . . . , a − b i]�,
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Algorithm 2.1 Given A ∈ Cn×n with rank A = 1, construct uniform matrix B and 
unitary matrix V such that B = V AV ∗.

1: λ = tr A.
2: Factor A as A = xy∗ where ‖x‖2 = 1.
3: H1 = In − uu

∗

u
∗

x
where u = x − e0 (assuming x �= e0, else H1 = In).

4: z = H1y.
5: H2 = In − ûû

∗

û
∗

ẑ
where ẑ = [0, z1, . . . , zn−1]� and û = ẑ − sgn(z0)‖ẑ‖2 e1

(assuming ẑ �= 0 and ẑ �= sgn(z0)‖ẑ‖2 e1, else H2 = In).
6: if λ = 0 then
7: V = FnH2H1.
8: (B)kj = V AV ∗ = ‖A‖F ω−j

n .
9: end if

10: if λ �= 0 and ‖A‖F = | tr A| then
11: V = FnH2H1.
12: B = V AV ∗ = ‖A‖F

n Jn.
13: end if
14: if λ �= 0 and ‖A‖F �= | tr A| then
15: u0 = 1√

n
1.

16: if n is even then
17: u1 = 1√

n
[ i, − i, . . . , i, − i]�.

18: else
19: u1 = [(1 − n)a, a + b i, a − b i, a + b i, . . . , a − b i]� where

a =
1 −

√
β2 + 1

(n − 1)
√

nβ
and b =

√
(n − 1)−1 − na2.

20: end if
21: Construct a unitary matrix U = [u0, u1, u2, . . . , un−1] (e.g., by extending {u0, u1} to a basis and

applying the standard Gram-Schmidt process).
22: V = UH2H1
23: B = V AV ∗

24: end if

where b =
√

(n − 1)−1 − na2 and a = 1−
√

β2+1
(n−1)

√
nβ

(Steps 14-15 and 18-19). Then it is not 
difficult, albeit rather tedious, to verify algebraically that u0 + βu1 is uniform, i.e.,

∣∣∣∣ 1√
n

+ β(1 − n)a
∣∣∣∣ =

√
β2 + 1

n
=
∣∣∣∣ 1√

n
+ β

(
a +

√
(n − 1)−1 − na2 i

)∣∣∣∣
=
∣∣∣∣ 1√

n
+ β(a + b i)

∣∣∣∣ . �
Recall that a matrix H is positive semidefinite (PSD) if and only if H is Hermitian 

and λ ≥ 0 for every eigenvalue λ of H. An n × n matrix of the form H = X∗X for some 
X ∈ Cm×n is called a Gram matrix. It is well known that a matrix is a Gram matrix if 
and only if it is positive semidefinite. In fact, the least d such that a PSD matrix H can 
be expressed as X∗X with X ∈ Cd×n is the rank of H.

Proposition 2.3. Let H be a PSD matrix. If C is nonsingular and C∗HC is uniform, 
then rank H ≤ 1. Furthermore, H is U-apportionable if and only if rank H ≤ 1.

Proof. If H = O then rank H = 0. So assume H 
= O. Let C be nonsingular and suppose 
B = C∗HC is uniform. Since H is PSD, B is also PSD and there exists a matrix R such 
that B = R∗R. Let rk denote column k of R. Since B is uniform, ‖rk‖2 = ‖rj‖2 and 
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|r∗
krj | = ‖rk‖2‖rj‖2 for any row indices k and j. Thus equality holds for the Cauchy-

Schwarz inequality applied to any pair of columns of R. This implies rank R = 1, and 
thus rank H = 1.

If rank H ≤ 1, then H is U-apportionable by Theorem 2.2. Now suppose that H is 
U-apportionable, so there exists a unitary matrix U such that U∗HU is uniform. Then 
rank H ≤ 1. �

The next example shows that a PSD matrix H with rank H = 2 may be GL-
apportionable, demonstrating the existence of a matrix that is apportionable but not 
U-apportionable.

Example 2.4. Observe that

A =

⎡⎢⎣ 1 1 −1
1 1 1

−1 −1 1

⎤⎥⎦ =

⎡⎢⎣ 1 1 1
−1 −1 0
0 −1 −1

⎤⎥⎦
⎡⎢⎣ 0 0 0

0 1 0
0 0 2

⎤⎥⎦
⎡⎢⎣ 1 0 1

−1 −1 −1
1 1 0

⎤⎥⎦

is a uniform matrix with distinct nonnegative eigenvalues, H =
[0 0 0

0 1 0
0 0 2

]
is PSD, and 

rank H = 2.

It is interesting to note that while the previous example shows that {1, 2, 0} is realiz-
able as the spectrum of a uniform matrix, Theorem 7.6 implies {1, 2} is not realizable.

3. Necessary condition for U -apportionability

In this section we establish a necessary condition on |c| for a translation A + cI to 
be U-apportionable. This condition is used to show that for a given n ≥ 2, a positive 
fraction of n × n matrices are not U-apportionable.

Theorem 3.1. Let n ≥ 2, A = [akj ] ∈ Cn×n, and c ∈ C. Suppose A + cIn is U-
apportionable. Then

|c| ≤
∑n−1

k=0 |akk|
n

+

√√√√(∑n−1
k=0 |akk|

n

)2

+ ‖A‖2
F

n(n − 1)

Proof. Let B = A − A ◦ In. Since A + cIn is U-apportionable, the U-apportionment 
constant for A + cIn is

κ = ‖A + cI‖F

n
= ‖A ◦ In + cI + B‖F

n
= 1

n

√√√√n−1∑
|akk + c|2 + ‖B‖2

F.

k=0
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Since A + cI is U-apportionable, there exists a unitary matrix U such that U(A + cI)U∗

is uniform. Observe that U(A +cI)U∗ = UAU∗ +cI. Thus | (UAU∗)kj | = κ for all k 
= j. 
So

‖A‖2
F = ‖UAU∗‖2

F ≥
n−1∑
k=0

∑
j �=k

| (UAU∗)kj |2 = n(n − 1)κ2.

Replacing ‖A‖2
F and κ2 and rearranging yields the following.

n−1∑
k=0

|akk|2 + ‖B‖2
F ≥ n − 1

n

(
n−1∑
k=0

|akk + c|2 + ‖B‖2
F

)
.

n−1∑
k=0

|akk|2 + 1
n

‖B‖2
F ≥ n − 1

n

n−1∑
k=0

(|akk| − |c|)2

= n − 1
n

(
n−1∑
k=0

|akk|2 +
n−1∑
k=0

|c|2 − 2
n−1∑
k=0

|akk||c|
)

.

1
n

n−1∑
k=0

|akk|2 + 1
n

‖B‖2
F ≥ (n − 1)|c|2 −

(
2(n − 1)

n

n−1∑
k=0

|akk|
)

|c|.

0 ≥ (n − 1)|c|2 −
(

2(n − 1)
n

n−1∑
k=0

|akk|
)

|c| − 1
n

‖A‖F.

Since n ≥ 2, we can apply the quadratic formula to obtain

|c| ≤
∑n−1

k=0 |akk|
n

+

√√√√(∑n−1
k=0 |akk|

n

)2

+ ‖A‖2
F

n(n − 1) . �

Note that it follows from Theorem 7.4 below that translation also does not preserve 
GL-apportionability.

An equivalent form of Theorem 3.1,

∃c, |c| >

∑n−1
k=0 |akk − c|

n

+

√√√√(∑n−1
k=0 |akk − c|

n

)2

+ ‖A − cI‖2
F

n(n − 1) implies A is not U-apportionable,

(3.1)

gives a condition that can be used to show a matrix is not U-apportionable. We apply this 
to show that it is not the case that almost all n ×n matrices are U-apportionable. Consider 
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the complex vector space Cn×n of n × n matrices with max-norm (or equivalently, Cn2

with ∞-norm where a matrix represented by the vector of its entries). Define the region 
Tn = {A ∈ Cn×n : ‖A − 3

4In‖max ≤ 1
4}.

Proposition 3.2. For n ≥ 2, no matrix in Tn is U-apportionable.

Proof. For c = 3
4 ,

∑n−1
k=0 |akk − c|

n
+

√√√√(∑n−1
k=0 |akk − c|

n

)2

+ ‖A − cI‖2
F

n(n − 1)

≤ 1
4 +

√(
1
4

)2

+
n
(1

4
)2 + n(n − 1)

(1
4
)2

n(n − 1)

≤ 1
4 +

√
1
16 + 1

16(n − 1) + 1
16 <

3
4 .

The result now follows by applying condition (3.1). �
Remark 3.3. Since Tn has nonzero Lebesgue measure and is scalable, it is not the case 
that almost all n × n matrices are U-apportionable.

Although (3.1) is a sufficient condition, it is not a necessary condition, as we can 
see by examining a connection between U-apportionability and equiangular lines. The 
unit vectors x0, . . . , xd−1 ∈ Cn are equiangular with angle θ if |x∗

i xj | = cos(θ) for all 
0 ≤ i < j ≤ d − 1; note that xj

∗ xj = 1 for j = 0, . . . , d − 1. Given B ∈ Cd×n with unit 
length columns, consider determining the existence of a unitary matrix U whose right 
action on B results in (unit length) equiangular columns (with angle θ). Note that for 
any c ∈ C, U∗(B∗B + cIn)U = (BU)∗(BU) + cIn. Thus BU has equiangular columns 
with angle θ if and only if | ((BU)∗(BU))ij | = cos(θ) and ((BU)∗(BU))jj = 1 if and 
only if

U∗ (B∗B − In + cos(θ)In) U is uniform

So the matrix B∗B + (cos(θ) − 1) In is U-apportionable if and only if there exists a 
unitary matrix U such that the columns of BU are equiangular with angle θ.

Observe that B∗B−I has zeros on the diagonal and ‖B∗B−I‖F = ‖U(B∗B−I)U‖F for 
any unitary matrix U . So if B∗B − I is U-apportionable, the U-apportionment constant 
is κ =

√
‖B∗B−I‖2

F
n(n−1) and we are trying to apportion A = B∗B + (κ − 1)I. However, we 

cannot use Theorem 3.1 to show this is not U-apportionable, because we see that for any 
c ∈ C:
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∑n−1
k=0 |akk − c|

n
+

√√√√(∑n−1
k=0 |akk − c|

n

)2

+
‖A − cI‖2

F
n(n − 1)

= |κ − c| +

√
|κ − c|2 +

‖A − cI‖2
F

n(n − 1)

≥ |κ − c| +
√

|κ − c|2 + κ2

≥ (|c| − κ) + κ = |c|

It is well known that there is a limit to the number of equiangular lines in a given 
dimension d. In the case d = 2, no set of 4 lines is equiangular. Thus for any 2 × 4
matrix B, A = B∗B + (

√
‖B∗B−I‖2

F
n(n−1) − 1)I is not U-apportionable, but no c satisfies the 

hypothesis of (3.1).

Question 3.4. Can we efficiently certify that a matrix is not U-apportionable?

4. Measure of closeness to uniformity

In this section we define a function that measures how far away from U-apportionable 
a matrix is and establish bounds on this function.

Definition 4.1. For A ∈ Cn×n, define

u(A) = inf
U∈U(n)

‖UAU∗‖max.

The unitary apportionment gap of an arbitrary matrix A ∈ Cn×n is 
∣∣∣u(A) − ‖A‖F

n

∣∣∣
Observe that A is U-apportionable if and only if u(A) = ‖A‖F

n and the unitary appor-
tionment gap is zero. Note that in defining the unitary apportionment gap, we are using 
the fact that the unitary apportionment constant is unique.

Remark 4.2. Since the set of n × n unitary matrices is compact, the infimum is actually
the minimum:

u(A) = min
U∈U(n)

‖UAU∗‖max.

Next we establish bounds on ‖UAU∗‖max and thus on u(A). Recall that the nuclear 
norm of A is ‖A‖∗ =

∑n
k=1 σk(A) and the spectral norm of A is ‖A‖2 = σ0(A) (where 

σk(A) is the kth singular value of A).
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Proposition 4.3. Let A = [aij ] ∈ Cn×n. Then

‖A‖F

n
≤ ‖UAU∗‖max ≤ ‖A‖2

The lower bound is realized by a uniform matrix unitarily similar to A if A is U-
apportionable. The upper bound is realized by a diagonal matrix unitarily similar to A
when A is normal.

Proof. It is known that for any matrix A ∈ Cn×n, ‖A‖max ≤ ‖A‖2 (e.g., this is immediate 
from [6, Theorem 5.6.2(d)]). Thus ‖UAU∗‖max ≤ ‖UAU∗‖2 = ‖A‖2. For any matrix 

B ∈ Cn×n, ‖B‖F ≤
√

n2 (maxk,j |bkj |)2 = n‖B‖max with equality if and only if B is 
uniform. Thus ‖A‖F ≤ n‖UAU∗‖max since ‖UAU∗‖F = ‖A‖F for any unitary matrix U . 
The last two statements are now immediate. �
Proposition 4.4. Let A = [aij ] ∈ Cn×n. Then

‖A‖F

n
≤ u(A) ≤ ‖A‖2 (4.1)

and ‖A‖F
n = u(A) if and only if A is U-apportionable. If A is normal, then u(A) ≤ ‖A‖∗

n . 
All bounds are sharp.

Proof. Equation (4.1) is immediate from Proposition 4.3, where it is also shown that 
equality in the first inequality requires A to be U-apportionable.

Now assume A is normal and recall Fn is the DFT. Since A is normal, there exists 
a unitary matrix V such that V ∗AV = diag(λ1, . . . , λn) where spec(A) = {λ1, . . . , λn}. 
The singular values of A are the absolute values of the eigenvalues of A because A is 
normal, so

∣∣(FnV ∗AV F ∗
n)�j

∣∣ =
∣∣∣∑

k

ω�k

√
n

λk
ωkj

√
n

∣∣∣ ≤ 1
n

∑
k

|ω�k||λk||ωjk| = 1
n

∑
k

σk = ‖A‖∗
n

.

Thus u(A) ≤ ‖A‖∗
n . The upper bounds are equality when A is the identity matrix, which 

is normal. �
Question 4.5. Is upper bound on u(A) ≤ ‖A‖2 sharp for any A with ‖A‖∗

n < ‖A‖2?

5. Graph labellings and U -apportionment

One of the inspirations for writing this paper is a connection between apportionment 
and graph labellings introduced by Rosa in [10]. Rosa demonstrated that some of these 
labellings produce cyclic decompositions of the complete graph. We show that these 
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cyclic decompositions can naturally be described as an apportionment problem using a 
reasonable choice of unitary matrix and adjacency matrices.

We first provide the necessary background information. The term graph will always 
refer to a simple graph G, i.e., G does not have any loops or multi-edges. A loop-graph
G is a graph that allows loops but not multi-edges. We will always label the vertices of 
a graph on n vertices with the set {0, . . . , n − 1}. The adjacency matrix of a graph G or 
loop-graph G is denoted AG or AG, respectively. The edge set of a graph G or loop-graph 
G is denoted by EG or EG.

We denote the complete graph on n vertices by Kn. The complete loop-graph Kn is 
the loop-graph obtained from Kn by adding a loop to each vertex. Define φ : V (Kn) →
V (Kn) to be the graph isomorphism that maps i �→ i + 1 mod n. Note that φ is also 
a graph isomorphism of Kn. Recall that Cn denotes the n × n (cyclic) permutation 
matrix corresponding to φ, i.e., Cnei = ei+1 mod n. The length of an edge {i, j} in Kn is 
min{|i − j|, n − |i − j|}. Observe that φ does not change the length of an edge and when 
n is odd, Kn consists of n edges of length i for i = 0, . . . , n−1

2 .
Given a loop-graph G, a G-decomposition of Kn is a set Δ = {G1, . . . , Gt} of subgraphs 

of Kn such that each Gi is isomorphic to G and the edge sets of the loop-graphs in Δ
partition the edge set of Kn. The G-decomposition Δ is cyclic if φ(Gi) = G(i+1) mod n

for each Gi. Let G be a loop-graph with m edges. An injective function f : V (G) →
{0, . . . , 2m − 2} is a ρ-labelling of G provided

{
min{|f(u) − f(v)|, 2m + 1 − |f(u) − f(v)|} : {u, v} ∈ E(G)

}
= {0, . . . , m − 1}.

Thus a ρ-labelling is an embedding from G to K2m − 1 such that the image of G has 
exactly one edge of length i for i = 0, . . . , m − 1 (an embedding of G in G′ is an injective 
mapping of vertices that maps edges of G to edges of G′).

The definitions in the preceding two paragraphs were originally given for simple 
graphs. We have modified the original definitions to fit the setting of loop-graphs. This 
small change simplifies the connection to apportionment. The following theorem is a 
loop-graph version of Theorem 7 in [10].

Theorem 5.1. [10] Let G be a loop-graph with m edges, consisting of m − 1 non-loop 
edges and one loop. Then there exists a cyclic G-decomposition of the complete loop-
graph K2m−1 if and only if G has a ρ-labelling.

Let G be a loop-graph with n vertices, n − 1 non-loop edges and one loop edge. 
Let f : V (G) → V (K2n−1) be an embedding and define Ĝ to be the loop-graph with 
vertex set {0, . . . , 2n − 1} and edge set f(EG). In the special case that f(i) = i for all 
i, the (2n − 1) × (2n − 1) adjacency matrix of Ĝ would be AG ⊕ O. In the more general 
setting, a permutation similarity corresponds to a relabelling of vertices, so there exists 
a permutation matrix P such that the adjacency matrix of Ĝ is A = P (AG ⊕ O)P T . 
Observe that there exists a cyclic G-decomposition of K2n−1 if and only if
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∑
0≤i<2n−1

Ci
2n−1AC−i

2n−1 = J2n−1. (5.1)

This observation can be thought of as a matrix version of Theorem 5.1. With some minor 
modifications, we can directly connect these ideas to apportionment.

Let ω denote a primitive (2n − 1)-th root of unity and let w = [1, ω, ω2, . . . , ω2n−2]�
(for convenience we may assume w is the second column of 

√
2n − 1 F2n−1). Define 

Un ∈ C(2n−1)2×(2n−1)2 to be the (2n − 1) × (2n − 1) block matrix whose (i, j)-block is 
the (2n − 1) × (2n − 1) matrix

Un(i, j) =
Cj

2n−1 diag(w)i

√
2n − 1

, for 0 ≤ i, j < 2n − 1. (5.2)

Observe that the (i, k)-block of UnU∗
n is

(UnU∗
n) (i, k) =

2n−2∑
j=0

Un(i, j)Un(k, j)∗

= 1
2n − 1

2n−2∑
j=0

Cj
2n−1 diag

(
1, ωi−k, ω2(i−k), . . . , ω(2n−2)(i−k)

)
C−j

2n−1.

If i = k, then diag
(
1, ωi−k, ω2(i−k), . . . , ω(2n−2)(i−k)) = I2n−1, and so (UnU∗

n) (i, i) =
I2n−1. If i 
= k, then

(UnU∗
n) (i, k) =

2n−2∑
j=0

diag
(

ωj(i−k), ω(j+1)(i−k), . . . , ω(2n−2)(i−k), 1, . . . ω(j−1))(i−k)
)

= O2n−1.

Thus Un is unitary. Using Un we define the following matrix representation of the sym-
metric group S2n−1 on 2n − 1 elements:

Un := {Un(I2n−1 ⊗ P )U∗
n : P is a (2n − 1) × (2n − 1) permutation matrix} .

Note that Un is a subgroup of the unitary group U((2n − 1)2). Define the cyclic blowup 
matrix of G to be the (2n − 1)2 × (2n − 1)2 Hermitian matrix

HG = Un(I2n−1 ⊗ (AG ⊕ On−1))U∗
n.

With these definitions in hand, we are now ready for the main result of this section.

Theorem 5.2. Let G be a loop-graph with n − 1 edges and one loop. Then G has a 
ρ-labelling if and only if HG is Un-apportionable. In this case, the U-apportionment 
constant of HG is κ = (2n − 1)−1.
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Proof. Assume that G has a ρ-labelling f : V (G) → V (K2n−1). Let P be the permutation 
matrix such that the (2n − 1) × (2n − 1) adjacency matrix of the image of G under f is 
A = P (AG ⊕ O)P ∗. Let Q = Un(I2n−1 ⊗ P )U∗

n. Note that Q ∈ Un. Direct calculation 
gives

QHGQ∗ = Un(I2n−1 ⊗ A)U∗
n

and so the (i, k)-block of QHGQ∗ is

2n−2∑
j=0

U(i, j)AU(k, j)∗ = 1
2n − 1

2n−2∑
j=0

Cj
2n−1 diag(w)iA diag(w)−kC−j

2n−1.

Since G has n − 1 non-loop edges and one loop, Theorem 5.1 implies that each term in 
this sum has disjoint support if and only if f is a ρ-labelling. This holds if and only if 
the (i, k)-block of QHGQ∗ is uniform with apportionment constant (2n − 1)−1 since the 
zero-nonzero pattern of each term in this sum matches that of the corresponding term 
in (5.1). �

Rosa also introduced other labellings in [10], in particular graceful labellings. Similar 
versions of Theorem 5.2 can be made for each these labellings since they all imply the 
existence of ρ-labellings. A graceful labelling of an n-vertex graph is a ρ-labelling where 
the previously mentioned injective function f : V (G) → {0, . . . , 2n − 2} is such that its 
image is Zn := {0, . . . , n − 1}. In a graceful labelling, the subset of vertices being acted 
upon by the permutation group is reduced from 2n − 1 to n, thereby further reducing 
the apportioning unitary subgroup from a representation of S2n−1 as

Un := {Un(I2n−1 ⊗ P )U∗
n : P is a (2n − 1) × (2n − 1) permutation matrix}

to a representation of Sn as

U′
n := {Un (I2n−1 ⊗ (P ⊕ In−1)) U∗

n : P is a n × n permutation matrix} .

In a directed graph or digraph Γ = (V, E), the edge set E is a set of ordered pairs (i, j)
with i, j ∈ V . Thus a digraph allows loops (arcs of the form (i, i)) and allows both (i, j)
and (j, i) when i 
= j, but not multiple identical arcs between a pair of vertices. To an 
arbitrary function f : Zn → Zn we associate a functional directed graph, denoted by Γf , 
whose vertex set and arc set are respectively

V (Γf ) := Zn, E (Γf ) := {(i, f (i)) : i ∈ Zn} .

Of course not every digraph arises from a function, i.e., not every digraph is functional, 
but the mapping f → Γf is injective. A digraph Γ can be mapped to its underlying simple 
graph G that has the edge {i, j} exactly when Γ has one or both of the arcs (i, j) and 
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(j, i) and i 
= j. Similarly, Γ can be mapped to its underlying loop-graph G that has the 
edge {i, j} exactly when Γ has one or both of the arcs (i, j) and (j, i). When Γf is a 
functional digraph, we denote the underlying simple graph and loop-graph by Gf and 
Gf , respectively.

We define the sets of contracting functions and non-increasing functions as follows.

Con(n) := {h : Zn → Zn such that h(0) = 0 and h(i) < i for i 
= 0} .

NIF(n) := {f : Zn → Zn such that f (i) ≤ i, ∀ i ∈ Zn} .

Note that Con(n) ⊂ NIF(n). Observe that while in general the mapping of a functional 
digraph to its underlying loop-graph is not injective, with the restriction that f ∈ NIF(n)
the mapping Γf → Gf is injective, so there is a unique association of Gf and Γf .

In Proposition 5.3 we show that NIF(n) is in one-to-one correspondence with the 
set of gracefully labelled loop-graphs on n vertices by associating each f ∈ NIF(n)
with the loop-graph having edges {f(i) + n − 1 − i, f(i)} for i = 0, . . . , n − 2 and loop 
{f(n − 1), f(n − 1)}. Note that {f(i) + n − 1 − i, f(i)} is never a loop for i = 0, . . . , n − 2.

Proposition 5.3. The set of gracefully labelled loop-graphs on n vertices are in one-to-one 
correspondence with NIF(n).

Proof. Each f ∈ NIF(n) is defined by the set of ordered pairs {(i, f(i)) : i = 0, . . . , n −1}. 
Observe that the map sending (i, f(i)) to the multiset {f(i) + n − 1 − i, f(i)} is bijective 
since it is represented by⎛⎜⎝−1 1 n − 1

0 1 0
0 0 1

⎞⎟⎠
⎛⎜⎝ i

f (i)
1

⎞⎟⎠ =

⎛⎜⎝ f (i) + n − 1 − i

f (i)
1

⎞⎟⎠ .

Thus the mapping which sends f ∈ NIF(n) to the loop-graph having edges {n − 1 +
f(i) − i, f(i)} for i = 0, . . . , n − 2 and loop {f(n − 1), f(n − 1)} is bijective. �

If the loop graph Gf is gracefully labelled, it follows that the blowup construction Hf

is uniform and thus the Hermitian matrix I2n−1⊗
(
AGf

⊕ On−1
)

is U′
n-apportionable. We 

now establish a result which shows that the spectra of U-apportionable matrices varies 
quite widely. It was recently shown in [9] for large n that every n-vertex functional tree 
admits a ρ-labelling. It is known that the spectra of trees are many and varied [4,7]. 
Consequently, there must be a wide ranging family of spectra of matrices devised from 
our blowup construction of trees that are U-apportionable, albeit with many repeated 
eigenvalues and additional zero eigenvalues. We can also invoke the stronger result from 
[3] that every tree admits a graceful labelling. We show that for all f : Zn → Zn

subject to the iterative fixed point condition 
∣∣f (n−1) (Zn)

∣∣ = 1, the matrix I2n−1 ⊗(
diag

(
ΛGf

)
⊕ On−1

)
is U-apportionable (where ΛGf

is an ordering of the spectrum of 
AGf

).
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Observe that any loop-tree can be relabelled to be the loop graph of a function in 
Con(n). We have restated the next lemma from [3] in the language of loop-graphs (this 
is permitted because for f ∈ Con(n) the mapping Γf → Gf is injective).

Lemma 5.4 (Composition Lemma). [3] Let f ∈ Con(n) be such that the length of 
the path whose endpoints in Gf are 0 and n − 1 is equal to the diameter of Gf

and the set f−1 ({f (n − 1)}) consists of consecutive integers including n − 1, i.e., 
f−1 ({f (n − 1)}) =

{
n − 1, n − 2, ..., n −

∣∣f−1 ({f (n − 1)})
∣∣}. If g ∈ Con(n) is defined 

from f by

g (i) =
{

f (2) (i) if i ∈ f−1 ({f (n − 1)})
f (i) otherwise

,

then

max
π∈Sn

∣∣{∣∣πgπ−1 (i) − i
∣∣ : i ∈ Zn

}∣∣ ≤ max
π∈Sn

∣∣{∣∣πfπ−1 (i) − i
∣∣ : i ∈ Zn

}∣∣ .
Theorem 5.5. If f : Zn → Zn subject to the iterative fixed point condition 

∣∣f (n−1) (Zn)
∣∣ =

1, then

A = I2n−1 ⊗
(
AG(f) ⊕ On−1

)
is U-apportionable.

Proof. By hypothesis, there is a permutation π ∈ Sn such that π−1fπ ∈ Con(n). Starting 
from any member of Con(n), if we repeatedly perform the local iteration described 
in the statement of the Composition Lemma 5.4, the resulting sequence of functions 
converges to the identically zero function whose loop-graph (a star with zero at the 
centre) is gracefully labelled. The composition lemma asserts that the local iteration 
transformation never increases the maximum number of induced edge labels. Therefore 
the loop-graph of all members of the said sequence have graceful loop-graphs. Thus, for 
all functions f ∈ Con(n) we have

n = max
π∈Sn

∣∣{∣∣πfπ−1 (i) − i
∣∣ : i ∈ Zn

}∣∣ .
Consider the map that associates with an arbitrary f ∈ Con(n) the (2n − 1)2 ×(2n − 1)2

cyclic blowup matrix

Hf = Un

(
I2n−1 ⊗

(
AG(f) ⊕ On−1

))
U∗

n.

By Theorem 5.2 there exists a unitary matrix in the subgroup U′
n which apportions 

Hf . �
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When symmetry is removed, the situation is very different. For our next result, con-
sider the map which associates with an arbitrary function f : Zn → Zn a matrix of size 
(2n − 1)2 × (2n − 1)2 as follows:

f �→ Tf = Un (I2n−1 ⊗ (Af ⊕ On−1)) U∗
n,

where Af ∈ {0, 1}n×n denotes the adjacency matrix of the functional directed graph Γf

of f with entries given by

(Af )i,j =
{

1 if j = f (i)
0 otherwise

, ∀ 0 ≤ i, j < n.

This matrix construction results in a non-Hermitian matrix unless f is an involution. 
Observe that the subset of matrices {Tf : f : Zn → Zn} yields a matrix representation 
of the transformation monoid of functions from Zn to Zn prescribed by the antihomo-
morphism identity

Tf Tg = Tg◦f , for all f, g : Zn → Zn

(because the adjacency matrix of a digraph acts on the right to identify the adjacencies 
of a vertex).

Definition 5.6. For A ∈ Cn×n, define

u(A) = inf
U∈Un

‖UAU∗‖max.

The Un-apportionment gap of an arbitrary matrix A ∈ Cn×n is 
∣∣∣u(A) − ‖A‖F

n

∣∣∣.
Remark 5.7. Since the set Un is compact, the infimum is actually the minimum:

u(A) = min
U∈Un

‖UAU∗‖max.

Theorem 5.8. If f ∈ Con(n), then Tf is not Un-apportionable. Furthermore, the 
Un-apportionment gap for every Tf is

u(Tf ) − ‖Tf ‖F

(2n − 1)2 = 1
2n − 1 −

√
(2n − 1) n

(2n − 1)2 .

Proof. By Theorem 5.2, the matrix

Un (I2n−1 ⊗ (Af ⊕ On−1)) U∗
n + Un

(
I2n−1 ⊗

(
(Af − E0,0)� ⊕ On−1

))
U∗

n
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is Un-apportionable with apportion constant (2n − 1)−1. For any V ∈ Un, the set of 
indices of the nonzero entries of each (2n − 1) × (2n − 1) block indexed by (i, j) of 
V Tf V ∗ are identical (except possibly for some zeros created by cancellation). Because 
V has at its core a permutation, this set of indices is disjoint from the set of indices of 
the non-zero entries in the corresponding (2n − 1) × (2n − 1) block indexed by (i, j) of

V Un

(
I2n−1 ⊗

(
(Af − E0,0)� ⊕ On−1

))
U∗

nV ∗.

This implies that

(V Tf V ∗) ◦
(

V Un

(
I2n−1 ⊗

(
(Af − E0,0)� ⊕ On−1

))
U∗

nV ∗
)

= O(2n−1)2 (5.3)

where ◦ denotes the entrywise product. Therefore the action on Tf by similarity trans-
formation mediated by members of Un can not result in a uniform matrix. We conclude 
that Tf is not Un-apportionable as claimed. This also implies u(Tf ) = (2n − 1)−1 and

u(Tf ) − ‖Tf ‖F

(2n − 1)2 = 1
2n − 1 −

√
(2n − 1) n

(2n − 1)2 . �

As a corollary of Theorem 5.8, for all f, g lying in the semigroup Con(n) the following 
property holds: u (Tg) = u (Tf ).

Remark 5.9. Observe that the three matrix summands

I2n−1 ⊗ (E0,0 ⊕ On−1) , I2n−1 ⊗ ((Af − E0,0) ⊕ On−1)

and I2n−1 ⊗
(

(Af − E0,0)� ⊕ On−1

)
are pair-wise orthogonal when viewed as members the standard (vector) inner-product 
space of matrices and remain so after any unitary similarity transform.

6. Application of gracefully labelled graphs to spectral inequalities

In this section we generalize the well-known Eigenvalue Interlacing Inequalities (in-
volving deletion of one or more rows and columns) to a new eigenvalue interlacing 
inequality involving matrices obtained by zeroing the entries associated with edges of 
a gracefully labelled loop-graph. Of course there are complications for interlacing when 
zeroing entries is done instead of deletion even with a star (replacing deletion of row and 
column j by zeroing row and column j). Our results describe how a combination of n
permutations of n −1 edge zeroings in a dense arbitrarily weighted undirected graph give 
an interlacing bound, and the proof uses the original Eigenvalue Interlacing Inequality.
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Definition 6.1. Let G be a loop-graph and recall that AG denotes its adjacency matrix. 
Recall that Cn denotes the n ×n cyclic shift matrix. For n ≥ 3 and any matrix M ∈ Cn×n, 
define

Mk = M ◦
(

(Cn)k (Jn − AG ◦ (Jn + In)) (Cn)−k
)

and denote spec(Mk) = {λk,0, . . . , λk,n−1}.

We illustrate this definition in the next example.

Example 6.2. Let G be the gracefully labelled loop-graph with edge set

E (G) = {{0, 2}, {0, 3}, {1, 2}, {2, 2}}

i.e., G is a path on 4 vertices with path order 3,0,2,1 and a loop at 2. Then

AG =

⎛⎜⎜⎜⎝
0 0 1 1
0 0 1 0
1 1 1 0
1 0 0 0

⎞⎟⎟⎟⎠ , AG ◦ (Jn + In) =

⎛⎜⎜⎜⎝
0 0 1 1
0 0 1 0
1 1 2 0
1 0 0 0

⎞⎟⎟⎟⎠ ,

Jn − ( AG ◦ (Jn + In)) =

⎛⎜⎜⎜⎝
1 1 0 0
1 1 0 1
0 0 −1 1
0 1 1 1

⎞⎟⎟⎟⎠
Observe that if we take

M =

⎛⎜⎜⎜⎝
m00 m01 m02 m03
m10 m11 m12 m13
m20 m21 m22 m23
m30 m31 m32 m33

⎞⎟⎟⎟⎠ ,

then

M0 =

⎛⎜⎜⎜⎝
m00 m01 0 0
m10 m11 0 m13

0 0 −m22 m23
0 m31 m32 m33

⎞⎟⎟⎟⎠ , M1 =

⎛⎜⎜⎜⎝
m00 0 m02 m03

0 −m11 m12 0
m20 m21 m22 0
m30 0 0 m33

⎞⎟⎟⎟⎠ ,

M2 =

⎛⎜⎜⎜⎝
−m00 m01 0 0

m10 m11 0 m13
0 0 m22 m23
0 m m m

⎞⎟⎟⎟⎠ , M3 =

⎛⎜⎜⎜⎝
m00 0 m02 m03

0 m11 m12 0
m20 m21 m22 0
m 0 0 −m

⎞⎟⎟⎟⎠ .
31 32 33 30 33
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Observe that

M0 + M1 + M2 + M3 =

⎛⎜⎜⎜⎝
2m00 2m01 2m02 2m03
2m10 2m11 2m12 2m13
2m20 2m21 2m22 2m23
2m30 2m31 2m32 2m33

⎞⎟⎟⎟⎠ = (4 − 2)M. (6.1)

We note that with Mk as defined in Definition 6.1, the property illustrated in (6.1)
is true in general (provided G is gracefully labelled). The effects of the permutation 
similarity (Cn)k described in the proof can be observed in Example 6.2.

Proposition 6.3. Let G be a gracefully labelled loop-graph of order n ≥ 4 and let Mk be 
as defined in Definition 6.1. Then

(n − 2) M =
∑

0≤k<n

Mk.

Proof. Consider the effect of the permutation similarity (Cn)k: For M = [mij ], (
(Cn)k

M (Cn)−k
)

ij
= mi−k,j−k (with arithmetic done modulo n). Because G is grace-

fully labelled, the n − 1 zeros above the diagonal in M0 will land in each off-diagonal 
position exactly once as k ranges over 0, . . . , n − 1, and similarly for the zeros below the 
diagonal. Thus 

∑n−1
k=0 (Mk)ij = (n −2)mij . For the diagonal, observe that G has a unique 

loop, so AG has exactly one nonzero diagonal entry m��. The effect of the cyclic per-
mutation is that this one nonzero entry, which transforms via Jn − ( AG ◦ (Jn + In))
from positive to negative, hits every index once. Thus for each j = 0, . . . , n − 1, ∑n−1

k=0 (Mk)jj = (n − 1)mjj − mjj = (n − 2)mjj . �
Definition 6.4. For Mk and λk,t as defined in Definition 6.1, order the multiset {λk,t :
t = 0, . . . , n − 1, k = 0, . . . , n − 1} in nonincreasing order and denote these values by 
θj , j = 0, . . . , n2 − 1, so that

{θj , j = 0, . . . , n2 − 1} = {λk,t : t = 0, . . . , n − 1, k = 0, . . . , n − 1}

and θ0 ≥ θ1 ≥ · · · ≥ θn2−1.

Recall that all gracefully labelled loop graphs can be constructed from nonincreasing 
functions (Proposition 5.3).

Theorem 6.5. Let G be a gracefully labelled loop-graph of order n ≥ 4, let M be an n × n

Hermitian matrix, and let θj be as defined in Definition 6.4. For 
 = 0, . . . , n − 1,

n
θ�+(n2−n) ≤ λ�(M) ≤ n

θ�.

n − 2 n − 2
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Proof. Since M is Hermitian, each Mk is a Hermitian matrix. Thus by the Spectral 
Theorem, each matrix Mk admits a spectral decomposition of the form

Mk = Uk diag (Λk) U∗
k , (6.2)

where Uk is a real unitary matrix, Λk = (λk,0, . . . , λk,n−1) and spec(Mk) = {λk,0, . . . ,

λk,n−1} ⊂ R. Thus

(Mk)ij =
∑

0≤t<n

(
(Uk)i,t

√
λk,t

)(√
λk,t

(
Uk

)
j,t

)
. (6.3)

From Proposition 6.3,

mij =
∑

0≤k<n

∑
0≤t<n

( (Uk)i,t√
n

√
n

n − 2 λk,t

) (√
n

n − 2 λk,t

(
Uk

)
j,t√

n

)
, ∀ 0 ≤ i, j < n.

(6.4)
Reversing the process used to go from (6.2) to (6.3), we view the entry-wise equality in 
(6.4) as expressing the product of three matrices. The first matrix is n × n2 matrix Û
defined as follows: The i-th row of Û is obtained by concatenating row i of the n matrices 
Uk for k = 0, . . . , n − 1. The second matrix is the n2 × n2 diagonal matrix

Λ =
n−1⊕
k=0

diag
(

n

n − 2Λk

)
.

Finally the third matrix is the Hermitian adjoint of the first matrix Û . Observe that the 
rows of Û are orthonormal. By extending the rows of Û to an orthonormal basis for Rn2

and applying Gram-Schmidt, we can expand Û to a unitary matrix U of size n2 × n2.
Then M is the {0, . . . , n − 1} principal submatrix of the n2 × n2 matrix UΛU∗, i.e.,

UΛU∗ =
[

M B0,1
B0,1

∗ B1,1

]
for some matrices B0,1 and B1,1. Then by the Eigenvalue Interlacing Theorem [11, The-
orem 8.10],

λ�+(n2−n)

([
M B0,1

B∗
0,1 B1,1

])
≤ λ� (M) ≤ λ�

([
M B0,1

B∗
0,1 B1,1

])

for 
 = 1, . . . , n. Observe that

n

n − 2θ� = λ� (Λ) = λ�

([
M B0,1

B∗ B1,1

])
. �
0,1
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7. Spectra and Jordan canonical forms of GL-apportionable matrices

We now shift focus from unitary apportionability to general apportionability. In this 
section we study the question of what multisets of n complex numbers can and cannot 
be realized as spectra or Jordan canonical forms of uniform n × n matrices. Being the 
spectrum or Jordan canonical form of an apportionable matrix is equivalent to being the 
spectrum or Jordan canonical form of a uniform matrix since similarity by matrices in 
GL(n) is allowed for GL-apportionability. We begin with some elementary observations 
and then focus on the case of 2 × 2 matrices.

For every λ ∈ C, there is a uniform matrix B ∈ Cn×n with rank B = 1 and spec(B) =
{λ, 0, . . . , 0} by Theorem 2.2. We can scale the spectrum of a uniform matrix: If Λ =
spec(B) for a uniform matrix B, then for b ∈ C, bΛ = spec(bB) and bB is uniform.

Kronecker products can be used to construct bigger uniform matrices from smaller 
uniform matrices, and thus expand the set of spectra that we are able to realize with 
uniform matrices. For two multisets S = {s0, . . . , sn−1} and T = {t0, . . . , tm−1}, define 
ST = {sktj : k = 0, . . . , n − 1, j = 0, . . . , m − 1}.

Remark 7.1. Suppose Bn and Bm are uniform n × n and m × m matrices, with spectra 
Λn and Λm. Then Bn ⊗ Bm is uniform. From known properties of Kronecker products 
[11, Theorem 4.8], spec(Bn ⊗ Bm) = ΛnΛm. By using Bn = Fn (recall that Fn denotes 
the n × n DFT matrix) and Bm as any uniform matrix with spectrum Λ, we conclude 
that if Λ is the spectrum of a uniform matrix, then so is ∪n

j=1ωjΛ where ω is a primitive 
nth root of unity.

Proposition 7.2. Let B be a uniform n × n matrix. Then there is a uniform matrix with 
spectrum spec(B) ∪ {0((r−1)n)} for any positive integer r.

Proof. Let E0,0 be the r × r matrix with (0, 0)-entry equal to 1 and all other entries 0. 
Consider B′ = E00 ⊗ B = B ⊕ O(r−1)n. Then spec(B′) = spec(B) ∪ {0((r−1)n)}. Define 
U = Fr ⊗ In and observe that U is unitary. Furthermore,

UB′U∗ = (Fr ⊗ In)(E00 ⊗ B)(F ∗
r ⊗ In) = (FrE00F ∗

r ) ⊗ B = Jr ⊗ B

is uniform. �
Since extending the spectrum with blocks of zeros preserves apportionability, it is 

natural to ask whether we can add just one zero and preserve apportionability.

Question 7.3. If B is uniform, is spec(B) ∪ {0} the spectrum of a uniform matrix?

Next we study the question of what multisets of 2 complex numbers cannot be realized 
as spectra of uniform 2 × 2 matrices, and thus of apportionable matrices. Very few real 
spectra are realizable by uniform matrices.
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Theorem 7.4. For any n ≥ 2, the spectrum {0(n)} can be realized by a nonzero uniform 
matrix. For any nonzero λ ∈ C, the spectrum {λ(2)} cannot be realized by a uniform 
matrix.

Proof. Since rank E0,1 = 1 where E0,1 is n ×n, Theorem 2.2 shows {0(n)} can be realized 
as the spectrum of a nonzero uniform matrix.

Suppose that B ∈ C2×2 is a uniform matrix with spectrum {λ(2)}. We show that 
λ = 0. There exists a matrix M such that M−1BM is in Jordan canonical form. Since 
B is uniform and MλI2M−1 = λI2, if the Jordan canonical form of B is λI2, then 

λ = 0. So assume the Jordan canonical form of B is λI2 + N where N =
[

0 1
0 0

]
. 

Then M (λI2 + N) M−1 = λI2 + MNM−1. Without loss of generality, det M=1 and 

M =
[

x y
z 1+yz

x

]
. Then

B = M (λI2 + N) M−1 =
[

λ 0
0 λ

]
+
[

−xz x2

−z2 xz

]
=
[

−xz + λ x2

−z2 xz + λ

]
is uniform, so |x| = |z|. If x = 0, then λ = 0, so assume x 
= 0. Now uniformity implies 
|xz + λ| = | − xz + λ| = |x2| = |xz|. Let δ = xz. Then |xz + λ|2 = δδ + δλ + λδ + λλ, 
| − xz + λ|2 = δδ − δλ − λδ + λλ, and |xz|2 = δδ. Thus δλ + λδ = 0. So δδ = δδ + λλ, 
which implies λ = 0. �

The next result is established by computation.

Lemma 7.5. Let c ∈ C, D = diag(1, c) and M =
[

x y
z 1+yz

x

]
Then

B = MDM−1 =
[

1 + (1 − c)yz −(1 − c)xy
(1 − c)(1 + yz) z

x c − (1 − c)yz

]
.

Theorem 7.6. For a real number r, the spectrum {1, r} can be realized by a uniform 
matrix if and only if r = 0 or r = −1.

Proof. The spectra {1, 0} and {1, −1} are realized by 1
2J2 and 1√

2H2, respectively (recall 
H2 is a 2 × 2 Hadamard matrix).

The eigenvalues of a uniform 2 × 2 matrix are distinct unless both are zero by 
Theorem 7.4. Let r ∈ R and D = diag(1, r). Assume D is apportionable. Then 
we may assume the apportioning matrix M has the form in Lemma 7.5, so B =[

1 + (1 − r)yz −(1 − r)xy
(1 − r)(1 + yz) z

x r − (1 − r)yz

]
is uniform. Let yz = a + b i with a, b ∈ R. Com-

pare the absolute values of the (0, 0) and (1, 1) entries of B:

|1 + (1 − r)(a + b i)| = |r − (1 − r)(a + b i)|.
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|(1 + (1 − r)a) + ((1 − r)b) i| = |(r − (1 − r)a) + ((1 − r)b) i|.

|1 + (1 − r)a| = |r − (1 − r)a|.

Thus 1 +(1 −r)a = r−(1 −r)a or −(1 +(1 −r)a) = r−(1 −r)a. Since −(1 +(1 −r)a) =
r − (1 − r)a implies r = −1 and we have seen that r = −1 can be realized, assume 
1 + (1 − r)a = r − (1 − r)a. Thus a = −1

2 . Since B is uniform, the absolute value of 
product of the off-diagonal entries equals the absolute value of product of the diagonal 
entries. Since 1 +yz = −yz, the product of the off diagonal entries is −(1 −r)2yz(1 +yz) =
(1 − r)2|yz|2 = (1 − r)2( 1

4 + b2). The square of the absolute value of each entry must be 

|1 + (1 − r)yz|2 = |1 + (1 − r)(−1
2 + b i)|2 = |1+r

2 + (1 − r)b i| = (1+r)2

4 + (1 − r)2b2. Thus

(1 − r)2(1
4 + b2) = (1 + r)2

4 + (1 − r)2b2

(1 − r)2

4 = (1 + r)2

4
0 = r.

Thus the uniformity of B implies r = −1 or r = 0. �
It is immediate from the previous theorem that two nonzero eigenvalues of a 2 × 2

uniform matrix may or may not have the same magnitude. This is also illustrated in the 
next two examples.

Example 7.7. For B = 1
2

[
1 + i −1 + i

−1 + i 1 + i

]
, spec(B) = {1, i}.

Example 7.8. For A =
[1 1

1 1+
√

3 i
2

]
, the (approximate) decimal values of the eigenvalues 

of A are 1.69244 + 0.318148 i and −0.19244 + 0.547877 i.

8. Finding an apportioning matrix M and constant κ

In this section we discuss how to find GL-apportioning matrices. We begin with a 
simple 2 ×2 example that illustrates a matrix can have infinitely many GL-apportionment 
constants each of which can be obtained from infinitely many apportioning matrices.

Example 8.1. Let A =
[

2 0
0 0

]
and let M =

[
w x

y z

]
be nonsingular (so wz 
= xy). Then

MAM−1 = 2
wz − xy

[
wz −wx

yz −xy

]
.
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Thus the matrix MAM−1 is uniform if and only if |x| = |z| and |w| = |y|. Observe that 
|wz − xy| ≤ 2|wz| and so each apportionment constant for A must be at least 1. Let 
a, θ ∈ R such that a 
= 0 and 0 < θ < 2π, and let

M =
[

a a−1

a a−1eiθ

]
.

Then M is nonsingular and apportions A with apportionment constant κ =
∣∣ sin ( θ

2
)∣∣−1. 

Notice that κ = 1 for θ = π, and that κ can be made arbitrarily large for a sufficiently 
small choice of θ. Thus [1, ∞) is the set of apportionment constants for A.

Example 8.1 utilizes ad hoc methods to solve for apportioning matrices of a small 
and curated matrix. It may seem rather hopeless to find apportioning matrices in a 
more general setting. The search for apportioning matrices can be simplified with the 
following proposition. Let vec(A) denote the vectorization of the matrix A. Recall that 
◦ denotes the entrywise product.

Proposition 8.2. Let A ∈ Cn×n and M ∈ GL(n). Let v = vec
(

(MAM−1) ◦ (MAM−1)
)

and let F be the n2×n2 DFT matrix. Then M apportions A if and only if Fv ∈ span(e0).

Proof. Suppose that M apportions A and let κ be the apportioning constant for M . 
Then (MAM−1) ◦ (MAM−1) = κ2J and so Fv = nκ2e0.

Now suppose that Fv ∈ span(e0). Then v = c1 for some c ∈ R (by construction 
v ∈ Rn2) and hence (MAM−1) ◦ (MAM−1) = cJ . Thus MAM−1 is uniform and so M
apportions A. �

Proposition 8.2 can be used to solve for apportioning matrices by generating a system 
of n2 − 1 equations in the entries of M . Note that F can be replaced with any unitary 
matrix whose first row is a multiple of 1.

We revisit Example 8.1 to illustrate how to apply Proposition 8.2.

Example 8.3. Let A and M be the same as in Example 8.1. We may assume, without 
loss of generality, that det(M) = wz − xy = 2. Then

(MAM−1) ◦ (MAM−1) =
[

|wz|2 |wx|2
|yz|2 |xy|2

]
.

By Proposition 8.2

|wz|2 + i|yz|2 − |wx|2 − i|xy|2 = 0,

|wz|2 − |yz|2 + |wx|2 − |xy|2 = 0,

|wz|2 − i|yz|2 − |wx|2 + i|xy|2 = 0.
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This system of equations can be reduced to |x| = |z| and |w| = |y|.

Remark 8.4. Suppose that A ∈ Cn×n is U-apportionable. Then the entries of a unitary 
matrix U that apportions A can be determined by Proposition 8.2 along with the system 
of equations resulting from UU∗ = I.

Note that A◦−1 means the entrywise inverse of a matrix A because ◦ is the entrywise 
product.

Theorem 8.5. Let A ∈ Cn×n be nonzero and apportionable with an apportionment con-
stant κ ≥ 0. Then there exists an M ∈ GL(n) such that

A = κ2 M−1
(

MAM−1
)◦−1

M.

Proof. Since A is apportionable with apportionment constant κ, there exists an M ∈
GL(n) such that B = MAM−1 is uniform and κ = ‖B‖max. Observe that B ◦ B = κ2J . 
Since B has no zero entries, A = κ2 M−1 B

◦−1

M , as claimed. �
Question 8.6. When A ∈ Cn×n is not apportionable how do we find and certify the matrix 
M that achieves the infimum, infM∈GL(n)

∥∥MAM−1
∥∥

max?

9. Concluding remarks

We have included open questions throughout when relevant to the material discussed. 
In this section we list some additional open questions.

We begin with questions related to how ‘common’ apportionable matrices are. For 
context, recall that set of matrices that cannot be diagonalized is of measure zero (be-
cause an eigenvalue must be repeated). What about apportionability? It was shown 
in Proposition 3.2 that the set of matrices that are not U-apportionable has positive 
measure.

Question 9.1. Is the set of U-apportionable matrices of measure zero or positive measure?

Question 9.2. Is the set of matrices that are not GL-apportionable of measure zero or 
positive measure? Is the set of GL-apportionable matrices of measure zero or positive 
measure?

There are numerous ways to measure closeness to apportionability. Section 4 contains 
results about one such measure for U-apportionability, u(A) = minU∈U(n) ‖UAU∗‖max. 
Here we mention other possibilities.
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Definition 9.3. For A ∈ Cn×n with no zero entries, define the uniformity ratio to be 
ur(A) = max{|aij |}

min{|aij |} ; if there are both zero and nonzero entries in A, then ur(A) = ∞. 
Define the unitary apportionability ratio of A 
= O to be

uar(A) = inf
U∈U(n)

ur(UAU∗).

Let A ∈ Cn×n and A 
= O. Observe that A is U-apportionable if and only if uar(A) =
1. A unitary matrix U obtained from a random n × n matrix via orthonormalization of 
the columns will have the property that UAU∗ has no zero entries and thus ur(A) < ∞.
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Appendix A. Recovery lemma

The Composition Lemma, which is proved in [3], is applied in Section 5. It relies on 
the Recovery Lemma. Here we provide a proof of the Recovery Lemma.

Remark A.1. Let f : Zn → Zn be a function. Recall that the functional digraph Γf

associated with F has V (Γf ) = Zn and E (Γf ) = {(i, f (i)) : i ∈ Zn}. Each vertex in 
Γf has out degree one. A fixed point of f corresponds to a loop in Γf . Note that f can 
be determined from Γf (but not always from the underlying simple graph Gf ). If Gf is 
connected, then f has at most one fixed point, because n − 1 non-loop arcs are needed. 
If Gf is connected and f has a fixed point, then Γf does not have any cycles except the 
loop at the fixed point. If f has a fixed point and Gf is connected, then the fixed point 
and the edges of Gf uniquely determine f and Γf : Let u be the unique fixed point and 
let initially define X = {u}; X is the set of vertices x for which f(x) is determined. If v
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3 2 1 0

Gf =

Fig. A.1. The graph Gf .

3 2 1 0

Γf =

Fig. A.2. The graph Γf .

is a neighbour of x ∈ X, then f(v) = x and the arc is (v, x), since each vertex of Γf has 
out degree one. So now X := N [X]. Repeat this neighbourhood step until X = Zn.

Definition A.2. For a function f : Zn → Zn, define the edge-labelling polynomial of f to 
be

pf (x0, . . . , xn−1) =
∏

0≤i<j<n

((
xf(j) − xj

)2 −
(
xf(i) − xi

)2
)

,

We illustrate why this is called the edge-labelling polynomial in the next example.

Example A.3. Let f : Z4 → Z4 and suppose that Gf = P4 as depicted in Fig. A.1.
Assume 0 is the unique fixed point of f . Then f(0) = 0 and f(i) = i − 1 for 0 < i ≤ 3. 

The functional directed graph Γf is shown in Fig. A.2 above.
In order to determine pf note that f(0) = 0, and so (xf(j) − xj)2 − (xf(0) − x0)2 =

(xf(j) − xj)2 for j > 0. Thus

pf (x0, x1, x2, x3) =
∏

0≤i<j<4

(
(xf(j) − xj)2 − (xf(i) − xi)2)

=

⎛⎝ 4∏
j=1

(xj−1 − xj)2

⎞⎠(
(x1 − x2)2 − (x0 − x1)2)

×
(
(x2 − x3)2 − (x0 − x1)2) ((x2 − x3)2 − (x1 − x2)2)

Observation A.4. The edge-labelling polynomial pf (x0, . . . , xn−1) is not identically zero 
if and only if f has at most one fixed point and Γf has no 2-cycles.

The next result gives an algorithm for recovering Gf from pf when pf is not identically 
zero and f has a fixed point.

Lemma A.5 (Recovery Lemma). Suppose the edge-labelling polynomial pf (x0, . . . , xn−1)
is defined from some function f : Zn → Zn and pf is not identically zero. It can be 
determined from pf whether or not f has a (necessarily unique) fixed point. If f has 
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a fixed point, then Gf can be determined from pf . If f has a fixed point and Gf is 
connected, then f and Γf can be determined from pf and the fixed point. Let S denote 
the set of functions f : Zn → Zn such that f has a unique fixed point 0 and Gf is 
connected. The function from S to Q [x0, · · · , xn−1] that assigns pf to f is injective.

Proof. We show that each factor in a factorization of pf is a quadrinomial (a linear 
combination of exactly four distinct variables), a trinomial (a linear combination of 
exactly three distinct variables), or a binomial (a linear combination of exactly two 
distinct variables), and analyze how each can occur.

We factor((
xf(j) − xj

)2 −
(
xf(i) − xi

)2
)

=
(
xf(j) − xj + xf(i) − xi

) (
xf(j) − xj − xf(i) + xi

)
A factor xf(j)−xj−xf(i)+xi or xf(j)−xj+xf(i)−xi has the form a +b −c −d; it is a quadri-
nomial with a, b, c, d distinct if and only if |{a, b, c, d}| = 4, i.e., 

∣∣{xf(j), xj , xf(i), xi

}∣∣ = 4. 
In this case both xf(j) − xj − xf(i) + xi and xf(j) − xj + xf(i) − xi are quadrinomials.

The expression a + b − c − d collapses to a binomial if |{a, b} ∩ {c, d}| = 1 (note 
that |{a, b} ∩ {c, d}| = 2 is impossible since pf is not identically zero). Notice that 
a + b − c − d occurs in two forms in pf : {a, b} = {xf(j), xf(i)}, {c, d} = {xj , xi} or 
{a, b} = {xf(j), xi}, {c, d} = {xj , xf(i)}. First consider the case that f has a (unique) 
fixed point u. Then for each j 
= u we obtain two copies of the binomial f (xj) − xj from 

± 
(

(f (xj) − xj)2 − (f (xu) − xu)2
)

= ± (f (xj) − xj)2 with + if j > u and − otherwise.
Now assume neither i nor j is a fixed point. A binomial-trinomial pair of factors arises 

from 
(
xf(j) − xj + xf(i) − xi

) (
xf(j) − xj − xf(i) + xi

)
when {a, b} = {xf(j), xf(i)},

{c, d} = {xj , xi}, and j = f(i) or i = f(j). Without loss of generality, we choose 
j = f(i). This produces

±
(
xf(f(i)) − xi

) (
xf(f(i)) + xi − 2xf(i)

)
.

Similarly, a binomial-trinomial pair of factors arises when {a, b} = {xf(j), xi}, {c, d} =
{xj , xf(i)}, which implies f (i) = f (j). Setting i < j, this produces

(
2xf(j) − xj − xi

)
(xi − xj) .

We have now described all possible ways binomial factors can occur in pf . Further-
more, a trinomial factor of pf can only occur in a binomial-trinomial pair. Observe that in 
each binomial-trinomial pair, the trinomial has the form ±(2r −s − t) and the associated 
binomial is of the form (s − t).

We now take a given polynomial pf that is not identically zero, with no information 
about f except that f : Zn → Zn is a function. Define h (x0, . . . , xn−1) to be the product 
of all the binomials that occur in binomial-trinomial pairs. That is, s − t is a factor of h
if and only if 2r − s − t is a factor of pf for some r. Now define
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q (x0, . . . , xn−1) = pf (x0, . . . , xn−1)
h (x0, . . . , xn−1) ,

which is a polynomial. Then q has no binomial factors if and only if f does not have a 
fixed point. Otherwise, q has 2(n − 1) binomial factors, which occur in pairs: (xk − x�)2. 
Then E(Gf ) = {k
 : (xk − x�)2 is a factor of q}. The remaining two statements now 
follow from knowing Gf by Remark A.1. �
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