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of matrices with nonzero Lebesgue measure that are not

apportionable by a unitary matrix.
© 2024 Elsevier Inc. All rights are reserved, including those
for text and data mining, Al training, and similar
technologies.

1. Introduction

There has been extensive study of diagonalization of matrices, and finding the Jordan
canonical form for matrices that are not diagonalizable. Diagonalization can be viewed
as using a similarity to concentrate the magnitude of all the entries within a small subset
of entries. Here we study what can be viewed as reversing this process, spreading out the
magnitudes as uniformly as possible. A square complex matrix is uniform if all entries
have the same absolute value. Hadamard matrices and discrete Fourier transforms are
important examples of uniform matrices. Uniform matrices play the role of the target
(like diagonal matrices) in this process. A square complex matrix is apportionable if it is
similar (by a specified type of matrix) to a uniform matrix (formal definitions of various
types of apportionability and other terms are given below). There are interesting con-
nections between apportionability and classical combinatorial problems, such as graceful
labelling of graphs (see Section 5), construction of equiangular lines (see Section 3), and
construction of Hadamard matrices (see discussion of these matrices later in this sec-
tion). There are also connections with the relatively new study of instantaneous uniform
mixing in continuous-time quantum walks. Specifically, the continuous-time quantum
walk on a simple graph G has the transition operator e~ *4¢ where A is the adjacency
matrix of G, and has instantaneous uniform mixing at time t, if and only if e~*04¢ is
uniform [1,5].

We index the entries of A = [ay;] € C™*™ from 0 to n — 1. The set of unitary n x n
matrices is denoted by U(n), the set of n X n matrices of determinant one is the special
linear group and is denoted by SL(n), and the set of invertible n X n matrices is denoted
by GL(n). Obviously U(n) and SL(n) are subgroups of GL(n), and we will sometimes
have occasion to consider additional subgroups, such as the set of real orthogonal n x n

matrices, which is denoted by O(n). The maz-norm of A is || Al|max = pmax lak;| and
J<
the Frobenius norm of A is ||A|lp = \/tr (A*A \ak]|
0<g k<n

Definition 1.1. A complex square matrix A = [ay;] is uniform if there exists a nonnegative
real number ¢ such that |ag;| = ¢ for all k¥ and j. A matrix A € C™*" is unitarily
apportionable or U-apportionable if there exists a matrix U € U(n) such that UAU*
is uniform. In this case, ||[UAU*||max is called a unitary apportionment constant and U
is called an apportioning matriz. A matrix A € C"*" is GL-apportionable or generally
apportionable if there exists a matrix M € GL(n) such that MAM~! is uniform. In
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this case, | MAM 1| uax is called a general apportionment constant and M is called an
apportioning matrix.

An apportionment constant is usually denoted by x. If A = [ax;] € C"*" is uniform,
LAl

n =
apportionment constant is unique.

then || A|lmax = |ag;| = Since the Frobenius norm is unitarily invariant, the unitary
We have not defined specially apportionable, because every generally apportionable
matrix can be apportioned by a matrix in SL(n): If MAM~! = B, then

(det(M)~Y"M)A(det(M)Y/"M~') = B

and det(M)~Y"M € SL(n). Similarly, we may consider only special unitary matrices
when studying U-apportionment.

Example 2.4 shows that a matrix may be apportionable but not U-apportionable. Just
as unitarily apportionable matrices were defined to measure apportionability relative to
U(n), the apportionability of A can be assessed relative to any subgroup of GL(n).

We first study unitary apportionability and then consider general apportionability.
Determining whether a matrix is U- or GL-apportionable can be challenging but every
rank one matrix is U-apportionable and we present an algorithm for finding a unitary
matrix to apportion a rank one matrix in Section 2. We also show there that a positive
semidefinite matrix H is U-apportionable if and only if rank H < 1. In Section 3 we
present a condition on a matrix A € C™*™ that is sufficient to show that A is not U-
apportionable; however, this condition is not necessary. In Section 4 we define a function
that measures how far away from U-apportionable a matrix is and establish bounds
on this function. Connections with Rosa’s p-labellings of graphs, which include graceful
labellings, are studied in Section 5. There we show that a loop-graph has a p-labelling if
and only if a specific expansion of its adjacency matrix can be apportioned by a unitary
matrix of a specific form. In Section 6 we use gracefully labelled loop-graphs to generalize
the well-known Eigenvalue Interlacing Inequalities. General apportionment is studied in
Section 7, where it is shown that most pairs of real numbers are not realizable as the
spectrum of a 2 x 2 apportionable matrix, and Section 8, where the problem of finding
an apportioning matrix is studied. Section 9 contains concluding remarks. Some of the
work in Section 5 relies on the Composition Lemma proved in [3], and in Appendix A
we provide a proof of the Recovery Lemma, which is used in [3].

The remainder of this introduction contains additional examples, terminology, and
notation. We use the notation i for the imaginary unit and we work over the field of
complex numbers unless otherwise indicated. The n x n identity matrix is denoted by
I, (or I if n is clear), the n x n all zeros matrix is denoted by O,, (or O) and the n X n
all ones matrix is denoted by J, (or J). Let Ej; be the n x n matrix with (k, j)-entry
equal to 1 and all other entries 0 (note that » must be specified when using Ey;). Let C,
denote the circulant matrix with first row [0,1,0,...,0], so C,, is the adjacency matrix
of a directed cycle spanning all n vertices. Let 1 = [1,...,1]T, w be a primitive nth
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Table 1.1
Multiplicities of the eigenvalues 1, %1 for
F, [8].
n 1 -1 —1 i
4k k+1 k k k—1
k+1 k+1 k k k
4k+2 k+1 k+1 k k

4k+3 k4+1 Ek+1 k+1 k

root of unity, w = [1,w,w?,...,w" YT, and F, = %[wo =1,w; =w,wo,...,Wy_1]
where w; is the entrywise product of j copies of w for j = 2,...,n — 1. The matrix Fj,

is called a discrete Fourier transform or DFT matrix. Since we index matrix entries by
o

0,...,n — 1, the (k,j)-entry of F, is % DFT matrices are very useful for the study

of apportionment and also provide a nice example of a family of uniform matrices for

which the eigenvalues are completely known.

Example 1.2. It is known that every eigenvalue of the n x n DFT matrix F, is one of
1,—1, i, — i. Furthermore the multiplicities are given in Table 1.1.

A Hadamard matriz is an n X n matrix H with every entry equal to 1 or —1 and
such that H' H = nl,. A Hadamard matrix of order n is necessarily uniform and every
eigenvalue has magnitude y/n. If there exists an n x n Hadamard matrix, then n = 1,2
or n =0 mod 4. It is not known whether there exist Hadamard matrices of all orders
of the form n = 4k, but it is known that there is a Hadamard matrix for each n = 2*.
If H,, and H, are m x m and n x n Hadamard matrices, then H,,, = H,, ® H, is an
mn X mn Hadamard matrix, where ® denotes the Kronecker product. Thus, Hadamard
matrices of order n = 2 can be constructed as in the next example.

1 1
1 -1
Hadamard matrix H,, every eigenvalue is +/n. Observe that tr(Hyx) = 0 and Hox

@Y @Y
is symmetric, so spec(Hax) = { (—\/ 2’“) , (\/ 2’“) } By scaling Hyr, any spec-

Example 1.3. Let Hy = { } and define Hort1 = Hs ® Hor. For a symmetric

trum of the form {(f/\)(2k71) ,A(Qk_l)} can be realized by a 2* x 2¥ uniform matrix.

There is a close connection between the matrix apportionment problem and two classi-
cal graph decomposition problems. One of these problems (graceful labelling) is discussed
in Section 5. The other problem consists in determining the existence of a decomposition
of K, (where n is even) into n — 1 overlapping copies of K, /5 ,, /2 such that each edge of
K, occurs as an edge in exactly 5 distinct copies of the given n — 1 copies of K, /2 /2.
This graph decomposition problem is well known to be equivalent to the problem of es-
tablishing the existence of a n x n Hadamard matrix. Its relation to apportioning follows
from the observation that a symmetric n x n Hadamard matrix exists if and only if one
of the 5 diagonal matrices in the set
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diag(~1,...,~1,1,...,1):0< k< 2
S———— 2
k times n—k times

is O-apportionable. Thus determining whether or not one of the diagonal matrices above
is O-apportionable must be at least as hard as establishing the existence of symmetric
n X n Hadamard matrices.

A complex Hadamard matriz is an n X n matrix H with complex entries of modulus
1 such that HH* = nl. An n X n complex Hadamard matrix is /n U where U € C™*"
is both uniform and unitary. The appropriate scalar multiple of the DFT matrix is a
complex Hadamard matrix. Thus, unlike real Hadamard matrices, complex Hadamard
matrices exist for every order.

We use spec(A) to denote the spectrum of A, i.e., the multiset of n eigenvalues of
A. The spectral radius of A is p(A) = max{|\| : X € spec(A4)}; p can be used when A
is clear. The eigenvalues of a Hermitian matrix H are real and denoted by Apax(H) =
MH) > MH) > > o1(H) = Amin(H) (0 Amax = Ao = A1 > -+ > Apmi = Amin
if H is clear).

Note that ||||max is & vector norm but not a matrix norm. We use several matrix norms
in addition to the Frobenius norm, many of which are defined in terms of the singular
values of A, which we denote by oo(A) > -+ > 7,_1(A). If A is a normal matrix, then
00(A) = p(A) and {o0(A),...,0n_1(A)} = {|A] : X € spec(A)}. For a positive integer p
(or p = 00), the Schatten-p norm of A € C™*™ is

1/p
[Allspy = | D ow(A?]

0<k<n

[Alls1 = D g<r<n ok(A) is called the nuclear norm and denoted by [[All.. ||4]
o0(A) is called the spectral norm and denoted by ||A|2 (because it is the matrix norm

S,00 —

induced by the vector 2-norm). Since the Frobenius norm of A is invariant under multi-
plication of A by a unitary matrix, |A|r = ||4||s,2; note that the Frobenius norm of A
is the vector 2-norm of A viewed as an n*-vector.

2. Rank one matrices are U/-apportionable

The only rank zero matrix in C"*™ is O, and it is uniform. In this section we show
that every rank one matrix is U-apportionable and provide an algorithm for finding a
unitary apportioning matrix and similar uniform matrix. The situation changes dra-
matically when the rank is of two or more. In this section we also show that positive
semidefinite matrices of rank two or more are not U-apportionable. Section 7 provides
examples of spectra that cannot be realized by apportionable matrices.
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Lemma 2.1 and Theorem 2.2 establish that Algorithm 2.1 produces the claimed re-
sults; to assist in making connections between the proofs and the algorithm, we identify
algorithm steps by number within the proofs of Lemma 2.1 and Theorem 2.2.

Recall that for any vectors v, w € C™ with ||v||2 = ||w/||2, there exists a unitary matrix
U such that Uv = w. This can be accomplished, for example, by the Householder matrizx
defined by v and w, I, — ET“:,, where u = v —w (cf. [2]). The (complex) sign function is
sen(z) = iz for all nonzero z € C and sgn(0) = 1. Let e; denote the i-th standard basis
vector.

Lemma 2.1. Let n > 2 and A € C™*". If rank A = 1, then A is unitarily similar to
yeo(aey + Bel ), where |y| =1 and o, 8 € R are nonnegative.

Proof. Suppose that rank A = 1. This implies that spec(A4) = {\, 0=V} where A = tr A
(Step 1 in Algorithm 2.1); A may be nonzero or zero. Furthermore, A = xy* for some
x,y € C™ with x,y # 0 and ||x|]|2 = 1 (Step 2). Let H; be a Householder matrix
such that Hix = ey and let z = H;y (Steps 3 and 4). This implies (z)g = \. Define
2 =1z—)eg,s0 (2)g = 0.If z = 0, then let Hy = I,,. Otherwise, let Hy be the Householder
matrix defined by 2 and sgn(\)||z||ze1 (Step 5). Thus Hez = sgn()\)||z2e1, Haeo = e,
and HyHyy = sgn()\)(|\|eo+||z|2e1). Hence, Ho Hy AH; H = sgn(\)eo(|M\|eo+||2]]2e1) T
has the required form. O

Note that this algorithm is intended to summarize the constructive method of proof.
For accurate implementation in decimal arithmetic, it is important to apply well-known
numerical techniques to minimize errors.

Theorem 2.2. Let A € C™*™. Ifrank A = 1, then A is U-apportionable.

Proof. The claim clearly holds for n = 1, so suppose n > 2. Assume that rank A = 1.
By Lemma 2.1 we may assume that A is of the form vey(aej + Be{ ), where |y| = 1
and o, f € R are nonnegative. Observe that if a = 0 or § = 0, then F,, AF;" is uniform
(Steps 6-13 of Algorithm 2.1). So suppose that « and § are positive real numbers. Since
U-apportionability is invariant under scaling we may assume that v =1 and a = 1.

Let U be a unitary matrix whose first two columns are ug and u;. Then

UAU* = (Ueg (eq + Be] U*) = ug (ug + fuy)*.

Thus UAU* is uniform if and only if uy and ug+ Su; are uniform. If n is even and U is a
unitary matrix whose first two columns are ug = ﬁ]l and u; = ﬁ[ﬁ, —i, 8., =1,
then up and ug + fuy are uniform (Steps 14-17).

Now consider the case where n is odd. Let U be a unitary matrix whose first two

columns are ug = ﬁ]l and

w = [(1 —n)a,a+bi,a—bi,a+bi,...,a—0bi]",
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Algorithm 2.1 Given A € C™*" with rank A = 1, construct uniform matrix B and
unitary matrix V' such that B = VAV*.

1: A =trA.

2: Factor A as A = xy™ where ||x|]2 = 1.

3: Hy =1, — “—“‘x where u = x — ep (assuming x # e, else Hy = I,,).

4: z = Hyy.

5: Hy =1, — “:f“; where 2 = [0,21,...,2n_1] " and @t = 2 — sgn(20)||2||2 €1
(assuming z # 0 and 2z # sgn(zo)||z||2 e1, else Hy = I,).

6: if A = 0 then

7: V =F,HxH;.
8:  (B)r; = VAV = lAllee™
9: end if

10: if A ;é 0 and ||A|lp = | tr A| then
11: V = F,HyH,.
122 B=vAv: = lale
13: end if
14: if XA # 0 and ||A|lp # | tr A| then
15: ug = ﬁﬂ
16: if n is even then
17: ulzﬁ[ﬁ,fﬁ,...,ﬁ,fﬁ]-r.
18: else
19: u; =[(1 —n)a,a+bi,a—bi,a+bi,...,a—bi]" where
_ /B2
_loveEtl and b=+/(n—1)"1 — na2.
(n— 1)v/nB
20: end if
21: Construct a unitary matrix U = [ug, u1, uz, ..., up—1] (e.g., by extending {ug, u;} to a basis and

applying the standard Gram-Schmidt process).
22: V =UHyH;
23: B=VAV"*
24: end if

where b = y/(n —1)"1 —na? and a = (ln Vl \/_B (Steps 14-15 and 18-19). Then it is not
difficult, albeit rather tedious, to verify algebralcally that ug 4+ fu; is uniform, i.e.,

;ﬁ+ﬂ(1”)“‘W‘;ﬁ+ﬂ(a+ (nl)lnaQﬁ)’

’ + B(a+01)].

O

Recall that a matrix H is positive semidefinite (PSD) if and only if H is Hermitian
and A\ > 0 for every eigenvalue A of H. An n x n matrix of the form H = X*X for some
X € C™*"™ ig called a Gram matriz. It is well known that a matrix is a Gram matrix if

and only if it is positive semidefinite. In fact, the least d such that a PSD matrix H can
be expressed as X*X with X € C4*" is the rank of H.

Proposition 2.3. Let H be a PSD matriz. If C is nonsingular and C*HC' is uniform,
then rank H < 1. Furthermore, H is U-apportionable if and only if rank H < 1.

Proof. If H = O then rank H = 0. So assume H # O. Let C be nonsingular and suppose
B = C*HC is uniform. Since H is PSD, B is also PSD and there exists a matrix R such
that B = R*R. Let ry denote column k of R. Since B is uniform, ||ry|l2 = ||r;|l2 and
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lrir;| = ||rgll2|/r;||2 for any row indices k and j. Thus equality holds for the Cauchy-
Schwarz inequality applied to any pair of columns of R. This implies rank R = 1, and
thus rank H = 1.

If rank H < 1, then H is U-apportionable by Theorem 2.2. Now suppose that H is
U-apportionable, so there exists a unitary matrix U such that U* HU is uniform. Then
rank H <1. O

The next example shows that a PSD matrix H with rank H = 2 may be GL-
apportionable, demonstrating the existence of a matrix that is apportionable but not
U-apportionable.

Example 2.4. Observe that

1 1 -1 1 1 1 000 1 0 1
A=|11 1 1 |=|-1-10 010 -1 -1-1
-1-11 0 —-1-1 002 11 0
0 00
is a uniform matrix with distinct nonnegative eigenvalues, H = |0 1 0] is PSD, and
0 0 2

rank H = 2.

It is interesting to note that while the previous example shows that {1, 2,0} is realiz-
able as the spectrum of a uniform matrix, Theorem 7.6 implies {1, 2} is not realizable.

3. Necessary condition for U{-apportionability

In this section we establish a necessary condition on |c| for a translation A + ¢l to
be U-apportionable. This condition is used to show that for a given n > 2, a positive
fraction of n X n matrices are not U/-apportionable.

Theorem 3.1. Let n > 2, A = [ag;] € C"™", and ¢ € C. Suppose A + cl,, is U-
apportionable. Then

n—1 2
|C| < Z |akk| Zk:o |akk‘ + ||"4||12J
n n(n—1)

Proof. Let B = A — Ao I,. Since A + cl,, is U-apportionable, the U-apportionment
constant for A + cI,, is

n—1

D lagk + ¢ + || BIIR.
k=0

_J[A+clllp  ||[Aol, +cl+ Bl _ 1
n n
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Since A + ¢l is U-apportionable, there exists a unitary matrix U such that U(A + cI)U*
is uniform. Observe that U(A+cl)U* = UAU* +cl. Thus | (UAU™),; | = s for all k # j.
So

n—1

Al = [UATU*|[E 2 D> > [(TAU®),; 1> = n(n — 1)x’
k=0 j#k

Replacing [|Al|2 and k2 and rearranging yields the following.

n—1 n—l n—1
S lawl? + 18I > " (Z |akk+c|2+||B|%>.
k=0 k=0
n—1 n—1
jarel® + S1BJ2 > "L S (g — Je)?
ALk n F = n [057% C
k=0 k=0

n—1 n—1 n—1
1
(z sl + e 25 akk|c|) |
k=0 k=0 k=0

n—1 —
1 1
ﬁZ|akk|2+E||BH12~“ > (n—1)|cf* - ( Z|akk> |c].
k=0 0
oAn —1) =2 1
0> (n— 1) - (g m) el = 214
n 0 n

Since n > 2, we can apply the quadratic formula to obtain

n—1 2 2
|C| < Z |Cbkkl Zk:o |akk| + HAHF O
n n(n—1)

Note that it follows from Theorem 7.4 below that translation also does not preserve
GL-apportionability.
An equivalent form of Theorem 3.1,

de, || >

Spo lawk — ¢
n

n—1 2

— A —cl||?

+ M + M implies A is not U-apportionable,
n n(n—1)

(3.1)

gives a condition that can be used to show a matrix is not U/-apportionable. We apply this
to show that it is not the case that almost all nxn matrices are U-apportionable. Consider
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the complex vector space C™*™ of n x n matrices with max-norm (or equivalently, cn’
with co-norm where a matrix represented by the vector of its entries). Define the region
T,={AeCm":|A- %InHmax < i}

Proposition 3.2. For n > 2, no matriz in T;, is U-apportionable.

Proof. For ¢ = %,

n—1 n—1 2
> ko laxk — ¢ > ko laxk — ¢ |A = cl||}
k=0 TR T +
n(n—1)

! 4 n(n —1)
I IR
=17\16 " 16(n—-1) 16 "1

The result now follows by applying condition (3.1). O

Remark 3.3. Since T;, has nonzero Lebesgue measure and is scalable, it is not the case
that almost all n X n matrices are U-apportionable.

Although (3.1) is a sufficient condition, it is not a necessary condition, as we can
see by examining a connection between U-apportionability and equiangular lines. The
unit vectors Xo,...,xq—1 € C” are equiangular with angle 6 if |xx;| = cos(d) for all
0 <i<j<d-1;note that x;*x; =1 for j =0,...,d — 1. Given B € C™" with unit
length columns, consider determining the existence of a unitary matrix U whose right
action on B results in (unit length) equiangular columns (with angle ). Note that for
any ¢ € C, U*(B*B + cI,)U = (BU)*(BU) + cI,,. Thus BU has equiangular columns
with angle 6 if and only if [ ((BU)*(BU)),; | = cos(¢) and ((BU)*(BU)),; = 1 if and
only if

U* (B*B — I, + cos(0)I,) U is uniform

So the matrix B*B + (cos(#) — 1) I, is U-apportionable if and only if there exists a
unitary matrix U such that the columns of BU are equiangular with angle 6.

Observe that B* B—1I has zeros on the diagonal and ||B*B—1I||g = |[U(B*B—1I)U]||r for
any unitary matrix U. So if B*B — I is U-apportionable, the U-apportionment constant
is Kk = % and we are trying to apportion A = B*B + (k — 1)I. However, we
cannot use Theorem 3.1 to show this is not U-apportionable, because we see that for any
ceC:
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n n n(n—1)

—1 -1 2
Sico lawx — e (zz_o axk —c|> LAz

(n—1)

> |k —c|+ |k —c|]? + K2

> (el = k) + 5= ||

2
:|,€_C+\/|,€_C|2+M
n

It is well known that there is a limit to the number of equiangular lines in a given
dimension d. In the case d = 2, no set of 4 lines is equiangular. Thus for any 2 x 4

matrix B, A= B*B + (4/ % — 1)1 is not U-apportionable, but no c satisfies the
hypothesis of (3.1).

Question 3.4. Can we efficiently certify that a matrixz is not U-apportionable?
4. Measure of closeness to uniformity

In this section we define a function that measures how far away from U-apportionable
a matrix is and establish bounds on this function.

Definition 4.1. For A € C™*", define

w(A) = inf |JUAU"| max-
Ueld(n)

The unitary apportionment gap of an arbitrary matrix A € C™*" is |u(A) — 1Al

n

Observe that A is U-apportionable if and only if u(A) = % and the unitary appor-
tionment gap is zero. Note that in defining the unitary apportionment gap, we are using
the fact that the unitary apportionment constant is unique.

Remark 4.2. Since the set of n x n unitary matrices is compact, the infimum is actually
the minimum:

u(A) = min ||UAU"||max-
Ueld(n)

Next we establish bounds on ||[UAU*||max and thus on u(A). Recall that the nuclear
norm of A is ||All. = >°}_; ok(A) and the spectral norm of A is ||A]|2 = 0¢(A) (where
o1 (A) is the kth singular value of A).
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Proposition 4.3. Let A = [a,;] € C"*". Then

[Allr

The lower bound is realized by a uniform matrixz unitarily similar to A if A is U-
apportionable. The upper bound is realized by a diagonal matrix unitarily similar to A
when A is normal.

Proof. Tt is known that for any matrix A € C™*", || A|lmax < || 4|2 (e.g., this is immediate
from [6, Theorem 5.6.2(d)]). Thus ||[UAU*||lmax < ||[UAU*||2 = ||A||2. For any matrix

B e C™" ||B|lr < \/rﬂ (maxy, ; |bkj|)2 = n||Bl|max With equality if and only if B is
uniform. Thus ||Al|lr < n||UAU*||max since |[UAU*||r = ||Al|r for any unitary matrix U.
The last two statements are now immediate. O

Proposition 4.4. Let A = [a;;] € C"*". Then

JAlle _
n

u(A) < [ A2 (4.1)

and % = u(A) if and only if A is U-apportionable. If A is normal, then u(A) <
All bounds are sharp.

Proof. Equation (4.1) is immediate from Proposition 4.3, where it is also shown that
equality in the first inequality requires A to be U-apportionable.

Now assume A is normal and recall F}, is the DFT. Since A is normal, there exists
a unitary matrix V such that V*AV = diag(A1, ..., \,) where spec(4) = {A1,..., A\ }.
The singular values of A are the absolute values of the eigenvalues of A because A is
normal, so

(F,V*AVE?) | = ‘Z—Ak\/_‘_ Z|w"k||A lwik| = Zak ”A”

il* . The upper bounds are equality when A is the identity matrix, which

Thus u(4) <
is normal. O

: sy LAl
Question 4.5. Is upper bound on u(A) < ||All2 sharp for any A with *=1= < ||Al|2?
5. Graph labellings and U/-apportionment
One of the inspirations for writing this paper is a connection between apportionment

and graph labellings introduced by Rosa in [10]. Rosa demonstrated that some of these
labellings produce cyclic decompositions of the complete graph. We show that these



A. Clark et al. / Linear Algebra and its Applications 698 (2024) 295-325 307

cyclic decompositions can naturally be described as an apportionment problem using a
reasonable choice of unitary matrix and adjacency matrices.

We first provide the necessary background information. The term graph will always
refer to a simple graph G, i.e., G does not have any loops or multi-edges. A loop-graph
& is a graph that allows loops but not multi-edges. We will always label the vertices of
a graph on n vertices with the set {0,...,n — 1}. The adjacency matrix of a graph G or
loop-graph & is denoted Ag or Ag, respectively. The edge set of a graph G or loop-graph
& is denoted by Fg or Eg.

We denote the complete graph on n vertices by K,,. The complete loop-graph &, is
the loop-graph obtained from K, by adding a loop to each vertex. Define ¢ : V(K,,) —
V(K,) to be the graph isomorphism that maps ¢ — ¢ + 1 mod n. Note that ¢ is also
a graph isomorphism of &,. Recall that C, denotes the n x n (cyclic) permutation
matrix corresponding to ¢, i.e., C,€; = €;41 mod n- LThe length of an edge {3, j} in &, is
min{|i — j|,n — |i — j|}. Observe that ¢ does not change the length of an edge and when

n—1
5 -

Given a loop-graph &, a &-decomposition of K, isaset A = {Bq,..., &} of subgraphs

n is odd, R, consists of n edges of length i for i =0, ...,

of K, such that each &; is isomorphic to & and the edge sets of the loop-graphs in A
partition the edge set of f,. The &-decomposition A is cyclic if ¢(&;) = B(;11) mod n
for each &;. Let & be a loop-graph with m edges. An injective function f : V(&) —
{0,...,2m — 2} is a p-labelling of & provided

{min{|f(u) —f)], 2m+1—|f(u) — f()|}: {u,v} € E(QS)} ={0,...,m—1}.

Thus a p-labelling is an embedding from & to Kam — 1 such that the image of & has
exactly one edge of length i for i = 0,...,m —1 (an embedding of & in &' is an injective
mapping of vertices that maps edges of & to edges of &').

The definitions in the preceding two paragraphs were originally given for simple
graphs. We have modified the original definitions to fit the setting of loop-graphs. This
small change simplifies the connection to apportionment. The following theorem is a
loop-graph version of Theorem 7 in [10].

Theorem 5.1. [10] Let & be a loop-graph with m edges, consisting of m — 1 non-loop
edges and one loop. Then there exists a cyclic &-decomposition of the complete loop-
graph Rom—1 if and only if & has a p-labelling.

Let & be a loop-graph with n vertices, n — 1 non-loop edges and one loop edge.
Let f : V(&) — V(R2,-1) be an embedding and define & to be the loop-graph with
vertex set {0,...,2n — 1} and edge set f(Fe). In the special case that f(i) = ¢ for all
i, the (2n — 1) x (2n — 1) adjacency matrix of & would be Ag ® O. In the more general
setting, a permutation similarity corresponds to a relabelling of vertices, so there exists
a permutation matrix P such that the adjacency matrix of & is A = P(As @ O)PT.
Observe that there exists a cyclic &-decomposition of Kg,,_; if and only if
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Z anflAC;nifl = Jop-1. (51)

0<i<2n—1

This observation can be thought of as a matrix version of Theorem 5.1. With some minor
modifications, we can directly connect these ideas to apportionment.

Let w denote a primitive (2n — 1)-th root of unity and let w = [1,w,w?,...,w?" 2] T
(for convenience we may assume w is the second column of \/271——1F2n,1). Define
U, € CCn=1*x(n=1)% {4 he the (2n — 1) x (2n — 1) block matrix whose (4, j)-block is
the (2n — 1) x (2n — 1) matrix

Cny ding(w)’

Un(i, ) = s—r for0<ij<2n-1 (5.2)

Observe that the (i, k)-block of U, U} is
2n—2

(ULU) (i k) = > Un (i, 5)Un (k. 5)*
§=0

1 2n—2 ) _ _ . )
=51 Z 3, diag (1,w“k,w2(“k), e ,w(2”’2)(“k)) Csyl .
3=0

If ¢ = k, then diag (1,wi*k,w2(i*k),...,w(2”’2)(i*k)) = Is,—1, and so (U,U}) (i,i) =
Ignfl. If 4 # k, then

2n—2

(UU) (i, k) = > diag (wj<z'—k)7w(j+1><i—k)7“_’w(zn—2)(i—k)7 17._.w(j—1))(i—k)>
7=0
= OQn—l-

Thus U, is unitary. Using U,, we define the following matrix representation of the sym-
metric group So,_1 on 2n — 1 elements:

Uy = {Un(I2n—1 ® P)U} : Pisa (2n — 1) x (2n — 1) permutation matrix} .

Note that i, is a subgroup of the unitary group U((2n — 1)2). Define the cyclic blowup
matriz of ® to be the (2n — 1)? x (2n — 1)? Hermitian matrix

He = Up(I2n-1 ® (As © O, —1))U;,.
With these definitions in hand, we are now ready for the main result of this section.

Theorem 5.2. Let & be a loop-graph with n — 1 edges and one loop. Then & has a
p-labelling if and only if Hg is W, -apportionable. In this case, the U-apportionment
constant of Hg is k= (2n —1)71.
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Proof. Assume that & has a p-labelling f : V(®) — V(R2,—1). Let P be the permutation
matrix such that the (2n — 1) x (2n — 1) adjacency matrix of the image of & under f is
A = P(As ® O)P*. Let Q = U, (I2n—1 ® P)U;:. Note that Q € &l,. Direct calculation
gives

QH®Q* = Un(I2n—1 ® A)U;:

and so the (i, k)-block of QHgsQ* is

2n—2 2n—2

. o 1 ; . i A s k]
> UG AUk ) = 5= Y O3, ding(w)' Adiag(w) *Cp. 0.
=0 =0

Since ® has n — 1 non-loop edges and one loop, Theorem 5.1 implies that each term in
this sum has disjoint support if and only if f is a p-labelling. This holds if and only if
the (i, k)-block of QHgQ* is uniform with apportionment constant (2n — 1)~ since the
zero-nonzero pattern of each term in this sum matches that of the corresponding term
in (5.1). O

Rosa also introduced other labellings in [10], in particular graceful labellings. Similar
versions of Theorem 5.2 can be made for each these labellings since they all imply the
existence of p-labellings. A graceful labelling of an n-vertex graph is a p-labelling where
the previously mentioned injective function f : V(&) — {0,...,2n — 2} is such that its
image is Z,, := {0,...,n — 1}. In a graceful labelling, the subset of vertices being acted
upon by the permutation group is reduced from 2n — 1 to n, thereby further reducing
the apportioning unitary subgroup from a representation of S3,_1 as

Uy :={Up(I2p—1 @ P)U} : Pisa (2n — 1) x (2n — 1) permutation matrix}
to a representation of S, as
s ={U, (Isn-1 @ (P& I,_1)) U} : Pis an x n permutation matrix} .

In a directed graph or digraph T' = (V, E), the edge set E is a set of ordered pairs (4, j)
with ¢,j € V. Thus a digraph allows loops (arcs of the form (,7)) and allows both (i, )
and (j,7) when i # j, but not multiple identical arcs between a pair of vertices. To an
arbitrary function f : Z, — Z,, we associate a functional directed graph, denoted by I,
whose vertex set and arc set are respectively

V(y)=2Zpn, E[@y):={(f3G):i€Zy}.

Of course not every digraph arises from a function, i.e., not every digraph is functional,
but the mapping f — I'y is injective. A digraph I" can be mapped to its underlying simple
graph G that has the edge {7, j} exactly when T" has one or both of the arcs (7,7) and



310 A. Clark et al. / Linear Algebra and its Applications 698 (2024) 295-325

(j,7) and @ # j. Similarly, I can be mapped to its underlying loop-graph & that has the
edge {i,j} exactly when I' has one or both of the arcs (¢,j) and (j,7). When I'y is a
functional digraph, we denote the underlying simple graph and loop-graph by G and
& ¢, respectively.

We define the sets of contracting functions and non-increasing functions as follows.

Con(n) :={h: Z,, = Z,, such that h(0) =0 and h(s) < ¢ for i # 0} .
NIF(n) := {f : Z, — Z,, such that f (i) <4, Vi € Zy,}.

Note that Con(n) C NIF(n). Observe that while in general the mapping of a functional
digraph to its underlying loop-graph is not injective, with the restriction that f € NIF(n)
the mapping I'y — &/ is injective, so there is a unique association of & and I'y.

In Proposition 5.3 we show that NIF(n) is in one-to-one correspondence with the
set of gracefully labelled loop-graphs on n vertices by associating each f € NIF(n)
with the loop-graph having edges {f(i) +n—1—14, f(i)} for i = 0,...,n — 2 and loop
{f(n—=1), f(n—1)}. Note that {f(i)+n—1—14, f(i)} is never a loop for i = 0,...,n—2.

Proposition 5.3. The set of gracefully labelled loop-graphs on n vertices are in one-to-one
correspondence with NIF(n).

Proof. Each f € NIF(n) is defined by the set of ordered pairs {(¢, f(¢)) : ¢ =0,...,n—1}.
Observe that the map sending (i, f(¢)) to the multiset {f(i) +n—1—1, f(¢)} is bijective
since it is represented by

11n-1 i f@)+n—1—i
01 0 f@) | = f ()
00 1 1 1

Thus the mapping which sends f € NIF(n) to the loop-graph having edges {n — 1 +
f@) =i, f(i)} fori =0,...,n—2and loop {f(n—1), f(n — 1)} is bijective. O

If the loop graph &¢ is gracefully labelled, it follows that the blowup construction H
is uniform and thus the Hermitian matrix I5,_1® (A, & On—1) is 4, -apportionable. We
now establish a result which shows that the spectra of U-apportionable matrices varies
quite widely. It was recently shown in [9] for large n that every n-vertex functional tree
admits a p-labelling. It is known that the spectra of trees are many and varied [4,7].
Consequently, there must be a wide ranging family of spectra of matrices devised from
our blowup construction of trees that are U/-apportionable, albeit with many repeated
eigenvalues and additional zero eigenvalues. We can also invoke the stronger result from
[3] that every tree admits a graceful labelling. We show that for all f : Z, — Z,
subject to the iterative fixed point condition |f(”_1) (Zn)‘ = 1, the matrix Isp_1 ®
(diag (A@f) @ On,1) is U-apportionable (where Ag, is an ordering of the spectrum of
A@f )
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Observe that any loop-tree can be relabelled to be the loop graph of a function in
Con(n). We have restated the next lemma from [3] in the language of loop-graphs (this
is permitted because for f € Con(n) the mapping I'y — & is injective).

Lemma 5.4 (Composition Lemma). [3] Let f € Con(n) be such that the length of

the path whose endpoints in &¢ are 0 and n — 1 is equal to the diameter of &y

and the set f~Y({f(n—1)}) consists of consecutive integers including n — 1, i.e.,

TP{fn=D) ={n-1,n-2...n—|f*({f(n—=1})|}. If g € Con(n) is defined
from f by

L r®a e T {f (e -1

g (Z) - )

f (@) otherwise

then
712355}{’71'977_1 (i) —i| i € Zn}| Si-réaé}iH’ﬂfW_l (i) —i| i€ Zn}|.

Theorem 5.5. If f : Z,, — Z,, subject to the iterative fixed point condition ‘f(”_l) (Zn)‘ =
1, then

A=15,1® (Aqs(f) S On—l)
is U-apportionable.

Proof. By hypothesis, there is a permutation 7 € S, such that 7! fr € Con(n). Starting
from any member of Con(n), if we repeatedly perform the local iteration described
in the statement of the Composition Lemma 5.4, the resulting sequence of functions
converges to the identically zero function whose loop-graph (a star with zero at the
centre) is gracefully labelled. The composition lemma asserts that the local iteration
transformation never increases the maximum number of induced edge labels. Therefore
the loop-graph of all members of the said sequence have graceful loop-graphs. Thus, for
all functions f € Con(n) we have

n:7rrré?:|{|7rf7r_1 (z)—z‘ :iEZn}’.

Consider the map that associates with an arbitrary f € Con(n) the (2n — 1)% x (2n — 1)
cyclic blowup matrix

Hy = Un (Ian1 @ (As() @ Ona)) Uy

By Theorem 5.2 there exists a unitary matrix in the subgroup !, which apportions
Hf. O
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When symmetry is removed, the situation is very different. For our next result, con-
sider the map which associates with an arbitrary function f : Z, — Z, a matrix of size
(2n —1)% x (2n —1)* as follows:

f — Tf =U, (12n—1 ® (Af ©® O”_l)) U:;’

where Ay € {0, 1}""" denotes the adjacency matrix of the functional directed graph I' ¥
of f with entries given by

1 ifj=f(i) .
Ap). . = , V0<i4,j<n.
( f)m { 0 otherwise J

This matrix construction results in a non-Hermitian matrix unless f is an involution.
Observe that the subset of matrices {T : f : Z,, — Z,} yields a matrix representation
of the transformation monoid of functions from Z,, to Z, prescribed by the antihomo-
morphism identity

T Ty =T4oyp, forall f,g: 2, = Z,

(because the adjacency matrix of a digraph acts on the right to identify the adjacencies
of a vertex).

Definition 5.6. For A € C™*", define

W(A) = inf VAU

The i, -apportionment gap of an arbitrary matrix A € C™*" is |u(A4) — % .

Remark 5.7. Since the set i, is compact, the infimum is actually the minimum:

w(A) = min [TAU* ||max.
Uesl,

Theorem 5.8. If f € Con(n), then Ty is not i,-apportionable. Furthermore, the
Uy -apportionment gap for every Ty is

Tsllp 1 2n—-1)n

u(Tf)i(Zn—l)z T -1 (2n-1)

Proof. By Theorem 5.2, the matrix

Up (Izn—1® (A € 0y,-1)) U + U, (I2n—1 ® ((Af - Eo,o)—r @ On—l)) U,
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is $l,-apportionable with apportion constant (2n — 1)71. For any V € i, the set of
indices of the nonzero entries of each (2n —1) x (2n — 1) block indexed by (i,7) of
VT;V* are identical (except possibly for some zeros created by cancellation). Because
V' has at its core a permutation, this set of indices is disjoint from the set of indices of
the non-zero entries in the corresponding (2n — 1) x (2n — 1) block indexed by (4, j) of

VU (F2n-1 @ ((As = Eoo) " ® Onn ) ) UV
This implies that
VIV o (VU (Bonr @ ((Af = Eoo) © 00 ) ) UiV*) = Opgirye (5:3)
where o denotes the entrywise product. Therefore the action on T by similarity trans-

formation mediated by members of 4l,, can not result in a uniform matrix. We conclude
that T is not i,,-apportionable as claimed. This also implies u(Ty) = (2n — 1)"" and

wry - il 1 J/@u—Tn

2n—172 2n—-1  (2n-1)7?
As a corollary of Theorem 5.8, for all f, g lying in the semigroup Con(n) the following
property holds: u (T,) = u (T%).

Remark 5.9. Observe that the three matrix summands

Inp—1® (Eo,0® On-1), Ion—1 @ (Ay — Ep0) ® Opn-1)

and Ip,—1 ® <(Af - Eo,o)—r @ Onfl)

are pair-wise orthogonal when viewed as members the standard (vector) inner-product
space of matrices and remain so after any unitary similarity transform.

6. Application of gracefully labelled graphs to spectral inequalities

In this section we generalize the well-known Eigenvalue Interlacing Inequalities (in-
volving deletion of one or more rows and columns) to a new eigenvalue interlacing
inequality involving matrices obtained by zeroing the entries associated with edges of
a gracefully labelled loop-graph. Of course there are complications for interlacing when
zeroing entries is done instead of deletion even with a star (replacing deletion of row and
column j by zeroing row and column j). Our results describe how a combination of n
permutations of n — 1 edge zeroings in a dense arbitrarily weighted undirected graph give
an interlacing bound, and the proof uses the original Eigenvalue Interlacing Inequality.
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Definition 6.1. Let & be a loop-graph and recall that Ag denotes its adjacency matrix.
Recall that C,, denotes the nxn cyclic shift matrix. For n > 3 and any matrix M € C™*",
define
M = Mo ((Co)* (Jn = Ag 0 (Ju + 1)) (Ca) ")
and denote spec(My) = {Ak,0,-- s Aen—1}-
We illustrate this definition in the next example.
Example 6.2. Let & be the gracefully labelled loop-graph with edge set

E(Qj) = {{072}7 {073}7 {1a2}a {2a2}}

i.e., ® is a path on 4 vertices with path order 3,0,2,1 and a loop at 2. Then

0011 0011
0010 0010
A = A n In: )

® 1110 | Aectntln) 1120
1000 1000

11 00

11 01

- (Aeotrty= |10 01

01 11

Observe that if we take

Moo M™Mo1 1Mo2 03
Mio M11 Mi12 M3

M = ,
Moo Ma1 Moz M23
M30 M31 M32 M33
then
Moo Mol 0 0 Moo 0 mo2 mo3
M mig M11 0 mi3 M — 0 —mi1 mi2 O
0= ) 1= ’
0 0 —ma mos mog Moy Moz 0
0 m31 m32 m33 m3o 0 0 ms3
—mgo mpr 0 0 moo 0 me2  mo3
mio mir 0 ma3 0 mi1 mi2 0
My = , Mz =

0 0 ma ma3 Moo M21 M22 0

0 m31 m32 mss3 m3zg 0 0 —mga3
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Observe that

2moo 2mo1 2mez 2mo3
2mig 2mq1 2mig 2m

Mo + My + Ma + M3 = 10 Y - Pl = (4-2)M. (6.1)
2mgo 2mao1 2mag 2meg

2ma3o 2m31 2m3a 2mas

We note that with M}, as defined in Definition 6.1, the property illustrated in (6.1)
is true in general (provided & is gracefully labelled). The effects of the permutation
similarity (Cn)k described in the proof can be observed in Example 6.2.

Proposition 6.3. Let & be a gracefully labelled loop-graph of order n > 4 and let My, be
as defined in Definition 6.1. Then

(n=2)M= > M.

0<k<n

Proof. Consider the effect of the permutation similarity (C,)*: For M = [my],
((C’n)k M (Cn)_k) - =m;_pj—k (with arithmetic done modulo n). Because & is grace-
fully labelled, the lej — 1 zeros above the diagonal in My will land in each off-diagonal
position exactly once as k ranges over 0,...,n — 1, and similarly for the zeros below the
diagonal. Thus Zz;é (Mg);; = (n—2)m;;. For the diagonal, observe that & has a unique
loop, so Ag has exactly one nonzero diagonal entry mye. The effect of the cyclic per-
mutation is that this one nonzero entry, which transforms via J, — ( Ag o (J, + I,,))
from positive to negative, hits every index once. Thus for each j = 0,...,n — 1,
nso (M) ;5 = (n—1)my; —my; = (n—2)mj;. O

Definition 6.4. For M), and Ay, as defined in Definition 6.1, order the multiset {A; :
t=20,...,n—1,k =0,...,n — 1} in nonincreasing order and denote these values by
0;,7=0,...,n% — 1, so that

{0;,j=0,....n° =1} ={\s:t=0,....,n—1Lk=0,...,n—1}
and 9026‘12"'29,#,1.

Recall that all gracefully labelled loop graphs can be constructed from nonincreasing
functions (Proposition 5.3).

Theorem 6.5. Let & be a gracefully labelled loop-graph of order n > 4, let M be ann X n
Hermitian matriz, and let 0; be as defined in Definition 6.4. For { =0,...,n —1,

n n
Ort(n2—n) < Ae(M) < —

0,.
n—2 ¢
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Proof. Since M is Hermitian, each M} is a Hermitian matrix. Thus by the Spectral
Theorem, each matrix My admits a spectral decomposition of the form

M, = Uy diag (Ax) Uy, (6.2)

where Uy, is a real unitary matrix, Ay = (Ago0,-.., Men—1) and spec(My) = {Xgo,-- -,
)\k,nfl} C R. Thus

)= 32 (O Vee) (Vier @);,) (63)

0<t<n

From Proposition 6.3,

(U) Uy).
Z Z ( k“\/ ng)‘k,t> <\/ n2)\k,t( )j’t>,V0§i7j<n-
0<k<n 0<t<n n- n- Vi

(6.4)
Reversing the process used to go from (6.2) to (6.3), we view the entry-wise equahty in

(6.4) as expressing the product of three matrices. The first matrix is n x n? matrix U
defined as follows: The i-th row of U is obtained by concatenating row i of the n matrices

U for k=0,...,n — 1. The second matrix is the n? x n? diagonal matrix
n—1 n
A= di —Ar .
B (750

Finally the third matrix is the Hermitian adjoint of the first matrix U. Observe that the

rows of U are orthonormal. By extending the rows of U to an orthonormal basis for R™’

and applying Gram-Schmidt, we can expand U to a unitary matrix U of size n? x n2.

Then M is the {0,...,n — 1} principal submatrix of the n? x n? matrix UAU*, i.e

bl

« | M B
UAU - |:B071* B171:|
for some matrices By 1 and Bj 1. Then by the Eigenvalue Interlacing Theorem [11, The-
orem 8.10],
M BO 1 M BO 1
Merozon) (| e 205 <he@n)y <A (| o0
+(n?—n) ( Bj, By ) o (M) < X ( B, Biy

for £ =1,...,n. Observe that

n
n—2

M By,
Bjy Bia

Hg:Ag(A):/\g<

).D



A. Clark et al. / Linear Algebra and its Applications 698 (2024) 295-325 317

7. Spectra and Jordan canonical forms of GL-apportionable matrices

We now shift focus from unitary apportionability to general apportionability. In this
section we study the question of what multisets of n complex numbers can and cannot
be realized as spectra or Jordan canonical forms of uniform n x n matrices. Being the
spectrum or Jordan canonical form of an apportionable matrix is equivalent to being the
spectrum or Jordan canonical form of a uniform matrix since similarity by matrices in
GL(n) is allowed for GL-apportionability. We begin with some elementary observations
and then focus on the case of 2 x 2 matrices.

For every A\ € C, there is a uniform matrix B € C™*"™ with rank B = 1 and spec(B) =
{A,0,...,0} by Theorem 2.2. We can scale the spectrum of a uniform matrix: If A =
spec(B) for a uniform matrix B, then for b € C, bA = spec(bB) and bB is uniform.

Kronecker products can be used to construct bigger uniform matrices from smaller
uniform matrices, and thus expand the set of spectra that we are able to realize with
uniform matrices. For two multisets S = {sg,...,sp—1} and T = {to,...,tm—1}, define
ST ={sytj:k=0,...,n—1,j=0,...,m—1}.

Remark 7.1. Suppose B,, and B,, are uniform n x n and m x m matrices, with spectra
A, and A,,. Then B,, ® B,, is uniform. From known properties of Kronecker products
[11, Theorem 4.8], spec(B,, ® By,) = AnA,,. By using B,, = F, (recall that F,, denotes
the n x n DFT matrix) and B,, as any uniform matrix with spectrum A, we conclude
that if A is the spectrum of a uniform matrix, then so is U}’:ij A where w is a primitive
nth root of unity.

Proposition 7.2. Let B be a uniform n x n matriz. Then there is a uniform matriz with
spectrum spec(B) U {0("=D™)Y for any positive integer r.

Proof. Let Ey o be the r x r matrix with (0, 0)-entry equal to 1 and all other entries 0.
Consider B’ = Eg9 ® B = B & O(,_1,. Then spec(B’) = spec(B) U {0("=Y™)}. Define
U = F,. ® I,, and observe that U is unitary. Furthermore,

UB'U* = (F, ®1,)(Ewp ® B)(F®1,) = (F.EnF)® B=J.® B

is uniform. O

Since extending the spectrum with blocks of zeros preserves apportionability, it is
natural to ask whether we can add just one zero and preserve apportionability.

Question 7.3. If B is uniform, is spec(B) U {0} the spectrum of a uniform matriz?

Next we study the question of what multisets of 2 complex numbers cannot be realized
as spectra of uniform 2 x 2 matrices, and thus of apportionable matrices. Very few real
spectra are realizable by uniform matrices.
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Theorem 7.4. For any n > 2, the spectrum {0(")} can be realized by a nonzero uniform
matriz. For any nonzero A € C, the spectrum {)\(2)} cannot be realized by a uniform
matriz.

Proof. Since rank Fy; = 1 where Ep 1 is n xn, Theorem 2.2 shows {0(™)} can be realized
as the spectrum of a nonzero uniform matrix.

Suppose that B € C2*2 is a uniform matrix with spectrum {\(?)}. We show that
A = 0. There exists a matrix M such that M ~'BM is in Jordan canonical form. Since
B is uniform and MMM ' = M, if the Jordan canonical form of B is Als, then

A = 0. So assume the Jordan canonical form of B is Al + N where N = [8 (1)}

Then M (Ao + N)M~! = Xy + MNM~!. Without loss of generality, det M=1 and

M= {‘Z’ 1&@4. Then

_ 2 _ 2
BM()\IngN)Ml[)\ O}+{ v x}—{ S R ]

0 A -2 xz —z xz+ A
is uniform, so |z| = |z|. If x = 0, then A = 0, so assume x # 0. Now uniformity implies
lzz + A = | — 22 + A = |2?| = |2z|]. Let § = 2z. Then |zz + A2 = 56 + 0X + A6 + A,

| =22+ A2 =80 — 0N — A6 + A\, and |xz|? = 66. Thus 60X + A6 = 0. So 80 = 65 + A,
which implies A =0. O

The next result is established by computation.

Lemma 7.5. Let c € C, D = diag(1,¢) and M = [i 1_&/3,2} Then

- 1| 1+(1-0yz —(1=c)zy
B=MDM™ = {(1—0)(1+yz)§ c—(l—c)yz]'

Theorem 7.6. For a real number r, the spectrum {1,7} can be realized by a uniform
matriz if and only if r =0 orr = —1.

Proof. The spectra {1,0} and {1, —1} are realized by 3.J> and %Hg, respectively (recall
H, is a 2 x 2 Hadamard matrix).

The eigenvalues of a uniform 2 x 2 matrix are distinct unless both are zero by
Theorem 7.4. Let r € R and D = diag(l,r). Assume D is apportionable. Then

we may assume the apportioning matrix M has the form in Lemma 7.5, so B =
(lljr()l(l_fg;yzii r_—(l(l_—Tgﬂa):gz] is uniform. Let yz = a + bi with a,b € R. Com-

pare the absolute values of the (0,0) and (1, 1) entries of B:

N4+ (1-=r)a+bl)|=|r—(1—7r)a+bi)|
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1+ (1 =r)a)+ ((1=r)b)i|=|(r—(1—7r)a)+ ((1—7r)b)i|
14+ (1—=r)al=|r—(1-ral

Thus 1+(1—r)a=r—(1—r)aor —(1+(1—r)a) = r—(1—r)a. Since —(1+(1—r)a) =
r — (1 — r)a implies r = —1 and we have seen that r = —1 can be realized, assume
1+ (1 —=7r)a=r—(1-r)a. Thus a = —1. Since B is uniform, the absolute value of
product of the off-diagonal entries equals the absolute value of product of the diagonal
entries. Since 1+yz = —¥z, the product of the off diagonal entries is —(1—7)?yz(1+yz) =
(1 —7r)?lyz|? = (1 —r)%(5 + b%). The square of the absolute value of each entry must be
L+ (L= )yl = 14 (1 =) (=5 +bD)P = [+ (1—r)bi| = B52 4 (1—r)22 Thus

(1- r)z(% fory = Oy
1-r? _ (1+r)?
4 4
0=r.

Thus the uniformity of B impliesr =—1orr=0. O

It is immediate from the previous theorem that two nonzero eigenvalues of a 2 x 2
uniform matrix may or may not have the same magnitude. This is also illustrated in the
next two examples.

Example 7.7. For B = } {11-:11]“1 —11+—|—ﬁ11}, spec(B) = {1, i}.

1
of A are 1.69244 + 0.3181481 and —0.19244 + 0.547877 1.

1 1
Example 7.8. For A = [ 1431 ] , the (approximate) decimal values of the eigenvalues
2

8. Finding an apportioning matrix M and constant

In this section we discuss how to find GL-apportioning matrices. We begin with a
simple 2 x 2 example that illustrates a matrix can have infinitely many GL-apportionment
constants each of which can be obtained from infinitely many apportioning matrices.

20

Example 8.1. Let A =
00

] and let M = lw x] be nonsingular (so wz # xy). Then
y z

MAM-! — 2 wz —wWr
Cwz—xy | yz —ay |
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Thus the matrix M AM ! is uniform if and only if |z| = |z| and |w| = |y|. Observe that
|wz — zy| < 2|wz| and so each apportionment constant for A must be at least 1. Let
a,0 € R such that a # 0 and 0 < 6 < 27, and let

a a !
aa—lezﬂ :

Then M is nonsingular and apportions A with apportionment constant x = |sin (§) ]_1.

M =

Notice that x = 1 for § = 7, and that x can be made arbitrarily large for a sufficiently
small choice of 6. Thus [1,00) is the set of apportionment constants for A.

Example 8.1 utilizes ad hoc methods to solve for apportioning matrices of a small
and curated matrix. It may seem rather hopeless to find apportioning matrices in a
more general setting. The search for apportioning matrices can be simplified with the
following proposition. Let vec(A) denote the vectorization of the matrix A. Recall that
o denotes the entrywise product.

Proposition 8.2. Let A € C"*™ and M € GL(n). Let v = vec ((MAM’l) o (MAM*1)>
and let F be the n? xn? DFT matriz. Then M apportions A if and only if F'v € span(ey).

Proof. Suppose that M apportions A and let x be the apportioning constant for M.
Then (MAM~Y) o (MAM~1) = %] and so F'v = nk’ey.

Now suppose that F'v € span(eg). Then v = ¢l for some ¢ € R (by construction
v e an) and hence (MAM 1) o (MAM~-1) = cJ. Thus MAM~! is uniform and so M

apportions A. 0O

Proposition 8.2 can be used to solve for apportioning matrices by generating a system
of n? — 1 equations in the entries of M. Note that F can be replaced with any unitary
matrix whose first row is a multiple of 1.

We revisit Example 8.1 to illustrate how to apply Proposition 8.2.

Example 8.3. Let A and M be the same as in Example 8.1. We may assume, without
loss of generality, that det(M) = wz — zy = 2. Then

(MAM™Y) o (MAM-1) = [IWIQ waP]

lyz|* |ayl?
By Proposition 8.2

lwz|® + ilyz|* — |wz|* — izy> =0,
lwzl? = yz|* + lwa|® — |zyl* =0,

wal* — ilyz” — |wal? + ilay* = 0.
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This system of equations can be reduced to |z| = |z| and |w| = |y|.

Remark 8.4. Suppose that A € C™*™ is U-apportionable. Then the entries of a unitary
matrix U that apportions A can be determined by Proposition 8.2 along with the system
of equations resulting from UU* = I.

Note that A° ' means the entrywise inverse of a matrix A because o is the entrywise
product.

Theorem 8.5. Let A € C™ ™ be nonzero and apportionable with an apportionment con-
stant k > 0. Then there exists an M € GL(n) such that

—1

A=r2 M (W) M.

Proof. Since A is apportionable with apportionment constant x, there exists an M €
GL(n) such that B = M AM ™! is uniform and K = || B||max- Observe that Bo B = k2.J.

Since B has no zero entries, A = k2 M~ 1B° M as claimed. O

Question 8.6. When A € C™*"™ is not apportionable how do we find and certify the matriz
M that achieves the infimum, infycqrin) HMAM 1H

max

9. Concluding remarks

We have included open questions throughout when relevant to the material discussed.
In this section we list some additional open questions.

We begin with questions related to how ‘common’ apportionable matrices are. For
context, recall that set of matrices that cannot be diagonalized is of measure zero (be-
cause an eigenvalue must be repeated). What about apportionability? It was shown
in Proposition 3.2 that the set of matrices that are not U-apportionable has positive
measure.

Question 9.1. Is the set of U-apportionable matrices of measure zero or positive measure?

Question 9.2. Is the set of matrices that are not GL-apportionable of measure zero or
positive measure? Is the set of GL-apportionable matrices of measure zero or positive
measure?

There are numerous ways to measure closeness to apportionability. Section 4 contains
results about one such measure for U-apportionability, u(A) = mingcy(n) [|UAU*||max-
Here we mention other possibilities.



322 A. Clark et al. / Linear Algebra and its Applications 698 (2024) 295-325

Definition 9.3. For A € C™*™ with no zero entries, define the uniformity ratio to be
ur(A) = %, if there are both zero and nonzero entries in A, then ur(A4) = oco.
ij

Define the unitary apportionability ratio of A # O to be

uar(A) = Ueigf(n) ur(UAU™).

Let A € C™*™ and A # O. Observe that A is U-apportionable if and only if uar(A) =
1. A unitary matrix U obtained from a random n x n matrix via orthonormalization of
the columns will have the property that U AU* has no zero entries and thus ur(A) < co.
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Appendix A. Recovery lemma

The Composition Lemma, which is proved in [3], is applied in Section 5. It relies on
the Recovery Lemma. Here we provide a proof of the Recovery Lemma.

Remark A.l1. Let f : Z,, — Z, be a function. Recall that the functional digraph I'y
associated with F' has V (I'y) = Z,, and E (I'y) = {(4, f (¢)) : ¢ € Z,,}. Each vertex in
I’y has out degree one. A fixed point of f corresponds to a loop in I'y. Note that f can
be determined from I'y (but not always from the underlying simple graph Gy). If G is
connected, then f has at most one fixed point, because n — 1 non-loop arcs are needed.
If Gy is connected and f has a fixed point, then I'y does not have any cycles except the
loop at the fixed point. If f has a fixed point and G is connected, then the fixed point
and the edges of Gy uniquely determine f and I'y: Let u be the unique fixed point and
let initially define X = {u}; X is the set of vertices = for which f(x) is determined. If v
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3 2 1 0
Gir= @ @ ® ®

Fig. A.1. The graph Gy.

3 2 1 0

Iy = ® { L 4 .Q

Fig. A.2. The graph I'y.

is a neighbour of z € X, then f(v) = x and the arc is (v, z), since each vertex of I'y has
out degree one. So now X := N[X]. Repeat this neighbourhood step until X = Z,.

Definition A.2. For a function f : Z,, — Z,,, define the edge-labelling polynomial of f to
be

Py (%0, -+ Tn1) = H ((fff(j) - %‘)2 = (2r6) — f”i)2) ’

0<i<j<n

We illustrate why this is called the edge-labelling polynomial in the next example.

Example A.3. Let f : Z4 — Z4 and suppose that G = P, as depicted in Fig. A.1.
Assume 0 is the unique fixed point of f. Then f(0) =0and f(i) =i—1for 0 <i < 3.
The functional directed graph I'y is shown in Fig. A.2 above.
In order to determine py note that f(0) =0, and so (zy;) — ;)% — (Ty0) — 20)* =
(z4(j) — ;)% for j > 0. Thus

py(wo, 21,22, 23) = H (@) — 25)° = (@) — 20)°)
0<i<j<4

4
[T =) | (21 = 22)* = (w0 — 21)%)
j=1

X ((wg — 1‘3)2 — (.’Eo — $1)2) ((xg — 1‘3)2 — ($1 — 1‘2)2)

Observation A.4. The edge-labelling polynomial ps (zo,...,Tn—1) is not identically zero
if and only if f has at most one fized point and I'y has no 2-cycles.

The next result gives an algorithm for recovering G ¢ from py when p; is not identically
zero and [ has a fixed point.

Lemma A.5 (Recovery Lemma). Suppose the edge-labelling polynomial py (zo, ..., Tn—1)
is defined from some function f : Z, — Z, and ps is not identically zero. It can be
determined from py whether or not f has a (necessarily unique) fized point. If f has
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a fized point, then Gy can be determined from py. If f has a fized point and Gy is
connected, then f and I'y can be determined from py and the fized point. Let S denote
the set of functions f : Z, — Z, such that f has a unique fized point 0 and Gy is
connected. The function from S to Q [xo,- - ,zn—1] that assigns py to f is injective.

Proof. We show that each factor in a factorization of p; is a quadrinomial (a linear
combination of exactly four distinct variables), a trinomial (a linear combination of
exactly three distinct variables), or a binomial (a linear combination of exactly two
distinct variables), and analyze how each can occur.

We factor

(s = 20)" = (@s) = 20)") = (205) = 25 + @5 — 1) (@5) = 25 = wp3) + )

A factor x p(j)—x;—2 f(;y+x; OF Tp(j)—T;+T ;) —x; has the form a+b—c—d; it is a quadri-
nomial with a, b, ¢, d distinct if and only if [{a, b, ¢, d}| = 4, i.e., |[{z (), zj, 25y, xi }| = 4.
In this case both x ;) — x; — xf;) + x; and xy(j) — z; + T ;) — T; are quadrinomials.

The expression a + b — ¢ — d collapses to a binomial if |{a,b} N {c,d}| = 1 (note
that [{a,b} N {c,d}| = 2 is impossible since p; is not identically zero). Notice that
a+b—c—d occurs in two forms in py: {a,b} = {zs¢), 25} {c,d} = {xj,2:} or
{a,b} = {xs(;),xi},{c,d} = {xj,74¢)}. First consider the case that f has a (unique)
fixed point u. Then for each j # u we obtain two copies of the binomial f (x;) — z; from
+ ((f () — x;)° = (f (24) — xu)2> =+ (f (x;) — ;) with + if j > u and — otherwise.

Now assume neither ¢ nor j is a fixed point. A binomial-trinomial pair of factors arises
from (z5(j) = 2 + 1) = @) (@) — 85 = xp) + @) when {a,b} = {z5(), 240},
{¢,d} = {zj,2;}, and j = f(i) or i = f(j). Without loss of generality, we choose
j = f(i). This produces

£ (@ (ray) — i) (@rerey) + T — 2250)) -

Similarly, a binomial-trinomial pair of factors arises when {a,b} = {z;), 2}, {c,d} =
{xj, 2}, which implies f (i) = f (j). Setting ¢ < j, this produces

(2zf() — x5 — 33) (5 — 5) .

We have now described all possible ways binomial factors can occur in py. Further-
more, a trinomial factor of ps can only occur in a binomial-trinomial pair. Observe that in
each binomial-trinomial pair, the trinomial has the form +(2r — s —t) and the associated
binomial is of the form (s — t).

We now take a given polynomial py that is not identically zero, with no information
about f except that f : Z,, — Z, is a function. Define h (xq, ..., 2,—1) to be the product
of all the binomials that occur in binomial-trinomial pairs. That is, s — t is a factor of h
if and only if 2r — s — ¢ is a factor of py for some r. Now define
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Dy (2170, ce 7$n—1)
Loyeooy Lp— =
q( 05 s4n 1) h(fvo,u-,an) )

which is a polynomial. Then ¢ has no binomial factors if and only if f does not have a
fixed point. Otherwise, ¢ has 2(n — 1) binomial factors, which occur in pairs: (zx — 2¢)?.
Then E(Gy) = {kl : (zx — x4)? is a factor of ¢}. The remaining two statements now
follow from knowing G by Remark A.1. O
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