
 1

 1 
 The spatial distribution of coupling between tau and neurodegeneration in amyloid-β 2 

positive mild cognitive impairment 3 
 4 

Belfin Robinson1, Shankar Bhamidi2, and Eran Dayan1,3, for the Alzheimer's Disease 5 
Neuroimaging Initiative 6 

 7 
1Biomedical Research Imaging Center, University of North Carolina at Chapel Hill, Chapel Hill, 8 
North Carolina 27514, USA. 9 
2Department of Statistics and Operations Research, University of North Carolina at Chapel Hill, 10 
Chapel Hill, North Carolina 27599-3260, USA 11 
3Department of Radiology, University of North Carolina at Chapel Hill, Chapel Hill, North 12 
Carolina 27599, USA. 13 
 14 
 15 
Corresponding author 16 
Eran Dayan, 17 
Associate Professor of Radiology, 18 
University of North Carolina at Chapel Hill. 19 
Email: eran_dayan@med.unc.edu 20 
 21 
 22 
Short/running title. 23 
Coupling between tau and neurodegeneration in MCI 24 
 25 
 26 
 27 
Keywords: tau, atrophy, Alzheimer’s disease, multilayer networks 28 
 29 
 30 
 31 
 32 
 33 
 34 
 35 
 36 
 37 
 38 
 39 
 40 
 41 
 42 
 43 
 44 
 45 
 46 

© 2024 published by Elsevier. This manuscript is made available under the Elsevier user license
https://www.elsevier.com/open-access/userlicense/1.0/

Version of Record: https://www.sciencedirect.com/science/article/pii/S0197458024000253
Manuscript_a809c744305fb7c090c5d338d7364d1e



 1

ABSTRACT 1 
 2 
Synergies between amyloid-β (Aβ), tau, and neurodegeneration persist along the Alzheimer’s 3 
disease (AD) continuum. This study aimed to evaluate the extent of spatial coupling between tau 4 
and neurodegeneration (atrophy) and its relation to Aβ positivity in mild cognitive impairment 5 
(MCI). Data from 409 participants were included (95 cognitively normal controls, 158 Aβ 6 
positive (Aβ+) MCI, and 156 Aβ negative (Aβ-) MCI). Florbetapir PET, Flortaucipir PET, and 7 
structural MRI were used as biomarkers for Aβ, tau and atrophy, respectively. Individual 8 
correlation matrices for tau load and atrophy were used to layer a multilayer network, with 9 
separate layers for tau and atrophy. A measure of coupling between corresponding regions of 10 
interest (ROIs) in the tau and atrophy layers was computed, as a function of Aβ positivity. Fewer 11 
than 25% of the ROIs across the brain showed heightened coupling between tau and atrophy in 12 
Aβ+, relative to Aβ- MCI. Coupling strengths in the right rostral middle frontal and right 13 
paracentral gyri, in particular, mediated the association between Aβ burden and cognition in this 14 
sample.  15 
 16 
 17 
INTRODUCTION 18 

Alzheimer’s disease (AD), the most common form of neurodegeneration, has become a key 19 
contemporary public health concern (Nichols et al., 2019. While the cause of this disease is still 20 
unknown, it is believed to develop from the accumulation of the extracellular amyloid-β (Aβ) 21 
peptide and from tangles of hyperphosphorylated tau, which lead to synaptic impairment, 22 
neuronal loss (atrophy), and consequently to cognitive and behavioral decline (Kumar et al., 23 
2015). The leading model as to how these pathological processes bind together is known as the 24 
amyloid cascade hypothesis (Ricciarelli and Fedele, 2017). According to this influential 25 
framework, Aβ pathology initiates alterations in tau which then lead to neurodegeneration and to 26 
the cognitive and behavioral manifestations of AD (Karran et al., 2011).  27 

The serial and linear structure of the amyloid cascade hypothesis has, nevertheless, been 28 

challenged in the literature.  In particular, studies suggest that Aβ, tau, and neurodegeneration 29 
(atrophy) could have synergistic effects in AD pathogenesis (Busche and Hyman, 2020). Yet, the 30 
extent of spatial coupling between alterations in AD pathological biomarkers, specifically in 31 
biomarkers for tau and atrophy remains uncertain (LaPoint et al., 2017; Mak et al., 2018; 32 
Sepulcre et al., 2016; Xia et al., 2017). On the one hand, studies have reported large degrees of 33 
spatial overlap throughout the brain between tau burden, as assessed using positron emission 34 
tomography (PET), and magnetic resonance imaging (MRI)-based measures of atrophy in both 35 
cognitively normal controls and individuals with AD (Xia et al., 2017). On the other hand, 36 
studies have found more restricted spatial coupling between tau and atrophy, which may emerge 37 
from heterogeneity in patterns of tau spread (Mohanty et al., 2023). Moreover, the majority of 38 
studies that examined interactions between tau and atrophy were either in normal controls or in 39 
individuals with AD (Digma et al., 2019; Liu et al., 2021). The extent of coupling between these 40 
biomarkers in individuals with MCI and AD pathologic changes, who can be considered as being 41 
at the prodromal stages of AD(Jack et al., 2018),  remains less understood. 42 
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Over the last decade, there has been significant interest and methodology development in the 43 
study of network valued data over the same node set (e.g., regions in the brain), but across 44 
multiple layers (De Domenico, 2017; Kivelä et al., 2014). These methods may help in clarifying 45 
the extent of coupling that exists between tau and atrophy, as they offer additional insight on 46 
complex relationships within and between variables in multiple layers, which may be missed by 47 
studies looking at single-layer covariance. Multilayer networks allow to model and study 48 
complex heterogeneous relationships between entities within a system and variation of these 49 
relationships across layers (Boccaletti et al., 2014; Kivelä et al., 2014). In the context of brain 50 
networks, multilayer network models were used for studying the relationships between brain 51 
structure, function, and dynamics across multiple scales, both in the healthy brain and in AD (Cai 52 
et al., 2020; De Domenico, 2017; Guillon et al., 2019). We reasoned that the extent of spatial 53 
coupling between tau and atrophy could be modeled using multilayer networks, since this 54 
approach can allow to inspect interactions both within and between network layers. 55 

 56 
In the current study, we used a cross-sectional sample of participants with MCI (n=314), as well 57 
as data from cognitively normal (CN) participants (n=95) to reconstruct single-subject multilayer 58 
networks that represent tau and atrophy as separate layers, and the interactions among these two 59 
biomarkers in between layers. More specifically, tau PET and structural MRI (atrophy) data from 60 
70 regions of interest (ROIs) were first extracted from MCI and CN participants. Tau and 61 
atrophy data were then z-score transformed relative to the means and standard deviations from 62 
the entire pool of CN participants. Subsequently, individual-subject covariance matrices were 63 
computed for each participant and used to reconstruct tau and atrophy networks for each 64 
participant after minimally thresholding the edge weights to retain all positive weights in the 65 
networks. The tau and atrophy networks were then modeled as multilayer networks and grouped 66 

according to Aβ positivity. This allowed us to study the interaction between the tau and atrophy 67 

layers at the presence and absence of Aβ positivity.  68 
 69 
 70 
 71 
 72 
 73 
 74 
 75 
 76 
 77 
 78 
 79 
 80 
 81 
 82 
 83 
 84 
 85 
 86 
 87 
 88 
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 89 
 90 
METHODS AND MATERIALS 91 
 92 

-- Figure 1 Here -- 93 
Participants 94 

Data used in this study were obtained from the Alzheimer's Disease Neuroimaging Initiative 95 
(ADNI) dataset (https://ida.loni.usc.edu), including the ADNI-1, ADNI-GO, and ADNI-2 96 
cohorts.  A total of 314 MCI participants who had 18F-florbetapir and 18F-flortaucipir PET data 97 
were included in the study (Table 1). Data from 95 CN participants was additionally used to aid 98 
in the reconstruction of individual-subject graphs/networks for each of the MCI participants. 99 
ADNI’s native inclusion and exclusion criteria were used in both the CN and MCI groups. 100 
Briefly, MCI participants had Mini-Mental State Examination (MMSE) scores ranging from 24 101 
to 30, reported memory-related concerns, exhibited memory decline based on Wechsler Memory 102 
Scale Logical Memory II scores adjusted for education, had a Clinical Dementia Rating (CDR) 103 
score of 0.5, displayed no substantial impairment in other cognitive domains, maintained their 104 
ability to perform activities of daily living, and did not have dementia. CN participants had 105 
MMSE scores ranging from 24 to 30, CDR scores of 0, were free from depression, did not have 106 
MCI, and were not diagnosed with dementia. 107 

Participants with MCI were further divided into Aβ positive (Aβ+) and negative (Aβ-), based on 108 
an established cutoff (Standardized uptake value ratio [SUVR]> 1.11), computed relative to an 109 
inferior cerebellum reference region (Landau et al., 2013b, 2012b). All CN participants were 110 
amyloid and tau negative. All participants provided written informed consent and the procedures 111 
were all approved by the local Intuitional Review Boards.   112 

Imaging data analysis  113 
 114 

Regional florbetapir PET summary data were obtained from ADNI as derived variables 115 
(Landau et al., 2013a, 2012a). In short, T1 weighted native-space images were processed with 116 
FreeSurfer v7.1.1, and a cortical summary region was defined for each subject, based on frontal, 117 

anterior and posterior cingulate, lateral parietal, and lateral temporal ROIs. The T1 images were 118 

coregistred to florbetapir PET scans, which allowed to extract PET data from cortical 119 

ROI. SUVR’s were then calculated for the cortical summary region, based on an inferior 120 
cerebellum reference region. SUVR values from the cortical summary region were then used to 121 

define Aβ burden and positivity. Regional summary data based on flortaucipir PET were also 122 
obtained from ADNI as derived variables. In short, MPRAGE images were parcellated into a set 123 
of 70 ROIs using FreeSurfer v7.1.1 based on the Desikan-Killiany protocol (Desikan et al., 124 
2006). The right and left hippocampi were removed from the analyses, since tau load data in 125 
these regions may be contaminated by off-target binding (e.g. Biel et al., 2022; de Flores et al., 126 
2022). Flortaucipir images were co-registered to the corresponding MPRAGE images to 127 
determine the mean regional flortaucipir uptake within each ROI. SUVRs for each of the 70 128 
ROIs were then calculated, by dividing uptake values by an inferior cerebellar reference region. 129 
Finally, grey matter volumes extracted from the same 70 ROIs using FreeSurfer v7.1.1 were 130 
used as measures of regional atrophy.  131 



 4

 132 
 133 
Network reconstruction  134 

 135 
Regional tau uptake and grey matter volume data from MCI participants were considered for 136 
analysis (Figure 1A). Data from CN participants were further used to aid in the reconstruction of 137 
single-subject networks/graphs for each subject with MCI (Figure 1A). In this procedure, 138 
individual covariance networks in the target group, are reconstructed based on their deviation 139 
from an averaged network based on a group of controls (Yun et al., 2020). First, an averaged 140 
covariance network was reconstructed from a group of CN participants (n=95), separately for tau 141 
and atrophy. Atrophy and tau data from each MCI subject were then normalized via a z-score 142 
transformation using the mean and standard deviation of the CN-based, tau and atrophy networks 143 
(Figure 1B). This allowed for the reconstruction of single covariance matrices (Yun et al., 2020, 144 
2015) for each MCI subject (Figure 1C). The covariance matrix is a nROI × nROI matrix, where 145 
for each index [x,y] we compare the z-scores of the corresponding tau and atrophy ROIs. The 146 
equation is given below:  147 
 148 

!"#$% '(")*()"#+ *,-#"$#%*.[0, 2]  =  5

6[(89:;<= ;> ? ! "#$%89:;<= ;> & ! "#$)(]
         (1)               149 

  150 
Higher values in ROIs within these matrices denote high covariance compared to the 151 
corresponding ROIs from the averaged CN-based networks. The matrices generated for tau and 152 
atrophy were structured as single-layer networks/graphs (Figure 1D). The single-layer graphs 153 
were then layered into a two-layered graph with tau and atrophy as separate layers (Figure 1E). 154 
This form of representation allowed us to examine and compare both intra-layer (green colored 155 
edges in Figure 1F), and inter-layer edges (yellow-colored edges in Figure 1F). While the 156 
former type of edges corresponds to covariance for ROIs in the tau and atrophy networks 157 
separately, the latter type of edges, which connect the nodes across layers, allow to examine 158 
interactions between tau and atrophy. Moreover, unlike multiplex networks, where inter-layer 159 
edges connect the same nodes across layers, the multilayer network representation used here also 160 
incorporates inter-layer edges connecting across nodes (grey dotted edges in Figure 1F). The 161 
multilayer networks were generated using R (Version 4.2.1) (Team, 2021), with the igraph 162 
(Version: 1.3.5) and muxviz (Version: 3.1) (De Domenico et al., 2015) libraries.  163 

 164 
Interlayer coupling score. 165 
 166 
A key objective in the current study was to assess the extent of regional/spatial coupling between 167 

tau and atrophy in the presence and absence of Aβ positivity.  To that effect we have computed a 168 
coupling score between the tau and atrophy layers, based on the distance between the layers 169 
(Shimada et al., 2016). As a measure of distance, we used Euclidean distance, as it was 170 
previously used to assess coupling between network node sets (Liu et al., 2022). First, the 171 
partitioned distance between the tau and atrophy layers was calculated. The resulting distance 172 
matrix D was used to calculate the coupling score. The distance between identical ROIs across 173 
layers was defined as (Dr), whereas interlayer edges, connecting different ROIs across the layers 174 
were defined as (Db). The coupling score was computed to measure the relative coupling 175 
between tau and atrophy, as the ratio between a spatially coupled edge and all other non-coupled 176 
edges:  177 
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 178 

Coupling score = 
)< *+6,-().)

)<
      (2) 179 

 180 
Partitioned Euclidian distance was computed using the pdist (Version 1.2.1) library 181 
(https://github.com/jeffwong/pdist) in R (Version 4.2.1). A toy example of the procedure for 182 
calculating coupling scores is illustrated in supplementary Figure 1.  183 
 184 
 185 
Statistical Analysis 186 

 187 
Group differences in demographic data (age, gender, education) were analyzed using t-tests or 188 
chi-squared tests. These analyses were conducted in R, with the packages dgof (v1.4) 189 
( https://CRAN.R-project.org/package=dgof). Group differences in tau load and in atrophy, as 190 
well as in regional coupling between tau and atrophy were based on a non-parametric, 191 
permutation-based analysis of variance, adjusted for age (see Table 1). The resulting p-values 192 
were False Discovery Rate (FDR) corrected across ROIs. These tests were carried out using the 193 
aovperm function, which is part of the permuco (v1.1.1) library 194 
(https://github.com/jaromilfrossard/permuco) in R. Finally, we examined whether the association 195 

between Aβ burden and cognition, assessed with clinical dementia rating sum of boxes (CDR-196 
SB) scores (O’Bryant, 2008), was mediated by the extent of coupling between tau and atrophy. 197 
Similar mediation analyses were carried out wherein regional tau and atrophy scores replaced 198 
coupling scores. Parallel mediation analyses were conducted in Python 3, using the pingouin 199 
package (Version 0.5.3) (https://pingouin-stats.org/). Confidence intervals in the mediation 200 
model were computed using bootstrapping (10,000 steps).  201 
 202 
 203 
RESULTS 204 
 205 
Group demographics  206 
 207 
Our objective was to compare the extent of coupling between tau and atrophy in the presence and 208 

absence of Aβ positivity. To that effect, we divided a total of 314 individuals with MCI into two 209 

groups, Aβ + (n=158) and Aβ - (n=156), based on Aβ PET data and established cutoffs  (Landau 210 

et al., 2013b, 2012b), see Methods and Materials). The Aβ + and Aβ - groups did not show 211 
significant differences in sex (p=0.364) or education (p=0.536) but did differ in age (p= 0.0288) 212 
and CDR-SB scores (p= 4.303e-08) (Table 1). 213 

 214 
Table 1 Characteristics of data used in the study. 215 

Measure Aβ + Aβ - CN 

Age (years) * 71.13 ± 6.96* 70.28 ± 6.71* 70.45 ± 5.75 

Sex 
Female: 81 (51) 
Male: 77 (49) 

Female:72 (46) 
Male: 84 (54) 

Female:51 (54) 
Male: 44 (46) 

Education (years) 16.34 ± 2.60 16.52 ± 2.65 16.84 ± 2.56 

CDR-SB 2.99±3.84* 0.997±2.19* 0.268±1.01 

 216 
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Values are given as mean ± standard deviation or percentages (%); * denotes significant group difference (p<0.05); Aβ- amyloid-β 217 
 218 

Tau load and atrophy levels in Aβ + and Aβ - participants 219 
 220 

We first examined group difference between Aβ + and Aβ - participants in tau load and in 221 

atrophy. Mean levels of tau load (Figure 2A) were significantly higher in Aβ + relative to Aβ - 222 
participants, when adjusting for age t (191.2) = -7.6655, (p<0.001). Similarly, mean levels of 223 

atrophy (Figure 2B) were significantly higher (i.e., regional volumes were lower) in Aβ + 224 

relative to Aβ - participants, when adjusting for age t (308.75) = 3.1251, (p=0.009). In both 225 
comparisons, significant differences were retained when outlier values were removed.  226 
 227 
 228 
Coupling between tau and atrophy 229 
 230 
We next examined the regional coupling between tau and atrophy, and the extent to which it 231 

differed as a function of Aβ positivity. Taking advantage of the multilayer representation of tau 232 
and atrophy as separate layers composed of identical nodes (ROIs), we computed a coupling 233 
score between tau and atrophy, based on the Euclidean distance between the layers (Figure 2C). 234 
The coupling score denoted the ratio between each spatially coupled edge and all other non-235 
coupled edges in the multilayer network (Supplementary Figure 1; see Methods and Materials). 236 

The Aβ+ group showed significantly greater coupling compared to the Aβ- group (FDR 237 
corrected) (Figure 2D, with coupling scores in each group separately shown in Supplementary 238 
Figure 2) in lateral and superior temporal, insular, parietal and frontal ROIs, predominately 239 
lateralized to the right (Supplementary Table 1). Altogether, only 24.2% of the ROIs showed 240 
stronger coupling between tau and atrophy in the Aβ+ group, relative to the Aβ- group.  241 
 242 

-- Figure 2 Here -- 243 
 244 

Mediational link between Aβ burden cognition and tau-atrophy coupling  245 
 246 

Our results so far reveal differential levels of coupling between tau and atrophy when comparing 247 

Aβ+ and Aβ- participants. Next, we examined whether the extent of coupling and its relationship 248 

with Aβ burden also relates to participants’ cognitive status. First, the association between 249 
coupling (considering ROIs where coupling scores were found to be significant) and CDR-SB 250 

scores, used here as a measure of cognitive status, was significant in both Aβ + (β=0.165, 251 

p=0.039), and Aβ - (β=0.199, p=0.013) participants (Supplementary Figure 3). Next, 252 

considering Aβ as a continuous variable, we tested whether the association between Aβ burden 253 
and global cognition, assessed with CDR-SB scores corrected for age, were mediated by the 254 
extent of coupling between tau and atrophy. This was achieved by fitting the data with a parallel 255 
mediation model. We found that coupling in the right rostral middle frontal (p = 0.005) and right 256 

paracentral (p = 0.0288) ROIs significantly mediated the association between Aβ burden and 257 
CDR-SB scores (Figure 3). Similar models wherein regional tau and atrophy (tested separately) 258 
were included in the model as potential mediators, instead of coupling scores, did not yield any 259 
significant indirect effects.  260 



 7

 261 
-- Figure 3 Here -- 262 

 263 
DISCUSSION 264 
 265 
The objective of the current study was to estimate the extent of spatial coupling between tau and 266 

atrophy biomarkers in individuals with MCI, study the role of Aβ burden in this coupling, and 267 
examine the relationship between coupling and cognitive dysfunction. Overall, stronger coupling 268 

between tau and atrophy was observed in Aβ+ as compared to Aβ- individuals with MCI. 269 
Differences in coupling between these two groups varied spatially and were observed in less than 270 
25% of the ROIs considered for analysis. Finally, our results reveal that coupling between tau 271 
and atrophy in right rostral middle frontal and right paracentral gyri mediated the association 272 

between Aβ burden and cognitive dysfunction. 273 
 274 
Our results show that fewer than 25% of the ROIs across the brain showed significant coupling 275 

between tau and atrophy, as a function of Aβ positivity. Previous research on the extent of 276 
coupling between tau and atrophy has yielded inconsistent results. Namely, substantial spatial 277 
overlap between PET-based tau burden and MRI-based atrophy measures has been reported in 278 
both cognitively normal controls and individuals with AD (Xia et al., 2017). Conversely, a 279 
smaller degree of spatial association between tau and atrophy was found in other studies 280 
(Mohanty et al., 2023). Our novel approach for assessing overlap between tau and atrophy 281 
suggests that the coupling among the two is more restricted than that observed when using other 282 
analytical techniques.  283 
 284 
Asymmetry in tau burden (Lu et al., 2023) and in atrophy (Jahanshahi et al., 2023) is a consistent 285 
finding in studies in aging and dementia. Asymmetry in tau burden contributes significantly to 286 
accelerated memory decline, and to the heterogeneity observed in AD (Lu et al., 2023). 287 
Similarly, asymmetric atrophy, not restricted to the left or right hemisphere, was found in a large 288 
meta-analysis of studies of aging and multiple neurodegenerative diseases (Minkova et al., 289 
2017). In the current study, we observed significant coupling between tau and atrophy, as a 290 

function of Aβ positivity, primarily in the right hemisphere. Associations have been reported 291 
between both tau (Ossenkoppele et al., 2019) and atrophy (Chang et al., 2018) covariance 292 
networks, and intrinsic functional connectivity in the brain. Our findings of right hemispheric 293 
dominance in coupling are thus in line with reports on abnormal rightward dominance in whole 294 
brain functional connectivity among MCI and AD participants (Liu et al., 2018). Whether the 295 
spatial extent of coupling between tau and atrophy also relates to patterns of connectivity in 296 
large-scale functional networks remains to be more specifically determined in future research.    297 
 298 

When comparing Aβ+ and Aβ- participants with MCI significant coupling between tau and 299 
atrophy was observed in lateral and inferior temporal, insular, superior parietal and frontal ROIs. 300 
Consistent with these findings, associations between tau burden and cortical atrophy in AD and 301 
MCI were reported in inferior temporal, parietal, and frontal regions (Timmers et al., 2019). 302 
Atrophy in lateral temporal and to a lesser extent parietal and frontal regions was found to allow 303 
for the subtyping of participants with MCI into subgroups, showing distinct clinical phenotypes 304 
(Kwak et al., 2021). Regions such as the inferior and middle temporal cortices are also key 305 
regions of tau accumulation in MCI and AD (Maass et al., 2017). Increased tau burden in the 306 
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inferior temporal lobe in AD is associated with greater impact on activities of daily living 307 
(Halawa et al., 2019), while tau burden in frontal cortex predicts longitudinal decline in 308 
executive function (Pereira et al., 2020). We should note that our choice to remove the 309 
hippocampus from the analysis, motivated by its off-target tau PET binding (See Methods and 310 
Materials), likely impacted our ability to detect coupling in additional regions impacted early in 311 
along the AD continuum. Thus, while the current results mostly highlight coupling in higher-312 
order cortical regions, the extent of coupling in entorhinal and limbic regions should be further 313 
evaluated with suitable methods.  314 
 315 
 316 

We report that the association between Aβ burden and global cognition, as captured by CDR-SB 317 
scores, is mediated by the extent of tau-atrophy coupling in right rostral middle frontal and right 318 

paracentral cortices. The rostral middle frontal gyrus shows heightened tau deposition in Aβ 319 
positive individuals (Young et al., 2021). Morphometric properties of this region were also 320 
reported to correlate with executive function performance in both MCI and healthy aged-321 
matched controls (Chang et al., 2010). Similarly, right paracentral cortical atrophy is higher in 322 
individuals with MCI who progress to AD, relative to those who remain stable over time 323 
(Julkunen et al., 2009). This region also shows cortical thinning in AD, relative to controls (Yang 324 
et al., 2019). Altogether, our findings join these earlier observations in highlighting the 325 
contribution of pathology in the middle frontal and paracentral regions to cognitive dysfunction 326 
in MCI.  327 
 328 
In the current study we queried the extent of coupling between tau and atrophy by modeling 329 
multimodal neuroimaging data as a multilayer network. Multilayer networks can aid in modeling 330 
complex interactions that occur among biological (or non-biological) processes that operate at 331 
differing spatial and temporal scales (Robitaille et al., 2021). This approach may thus properly 332 
capture the heterogeneity often observed in biological systems which may result from the diverse 333 
interactions of the system’s various substrates (Hammoud and Kramer, 2020).  Here, the 334 
multilayer representation allowed us to compare coupled versus non-coupled interactions among 335 
2 distinct biological processes characteristic of the AD continuum.  Future work can focus on 336 
other processes and mechanisms which can be quantified in multilayer networks, such as 337 
changes in modularity (Taylor et al., 2017; Wilson et al., 2017) redundancy (Radicchi and 338 
Bianconi, 2017), and robustness (Kumar and Singh, 2020; Liu et al., 2020), known to be strongly 339 
impacted by aging and dementia (Contreras et al., 2019; Langella et al., 2021; Sadiq et al., 2021; 340 
Song et al., 2014; Stanford et al., 2022). Moreover, studies utilizing longitudinal data will be 341 
required to better delineate changes that occur in the coupling between tau and atrophy along the 342 
AD continuum. 343 
 344 
Summary 345 
 346 
In summary, we report that significant coupling between tau and atrophy was observed in fewer 347 
than 25% of the ROIs considered here for analysis. Yet, the extent of coupling between tau and 348 

atrophy in rostral middle frontal and paracentral regions mediated the association between Aβ 349 
burden and cognition, highlighting the potential significance of this measure in the clinical 350 
presentation of AD dementia. 351 
 352 
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  605 
 606 

Figure Legends 607 
 608 

Figure 1: Modeling framework. (A.) Participants’ (MCI, CN) tau standardized uptake value 609 
ratios (SUVRs) were calculated in 70 regions of interest (ROIs) (B.) Volumetric measures from 610 
the same ROIs were used as measures of atrophy. Data was Z-score transformed using means 611 
and standard-deviations (SD) from controls (Value – Mean [CN]/ SD[CN]) (C.) Individual-612 
subject structural covariance matrices were reconstructed for tau and atrophy (D.) Covariance 613 
matrices for tau and atrophy were then modeled as single layer networks for each individual 614 
participant. (E.) Multilayer networks with tau and atrophy serving as single layers were 615 

reconstructed and labeled according to Aβ positivity. (F.) Inter-layer (yellow), Intra-layer (green) 616 
and cross-layer (grey-dotted) edges in a multilayer network. MCI – Mild Cognitive Impairment, 617 
CN – cognitively normal controls. 618 

Figure 2: Coupling between tau and atrophy. (A.) The Aβ+ group showed greater tau uptake 619 

than the Aβ- group averaged across all ROIs. (B.) The Aβ+ group also showed higher atrophy 620 

levels when compared to the Aβ- group across all ROIs. (C.) Calculation of coupling scores 621 
computed to measure the relative coupling between tau and atrophy, was based on the Euclidean 622 
distance between layers (distance matrix D) and denotes the ratio between a spatially coupled 623 
edge Dr (red) and all other non-coupled edges Db (black). (D.) ROIs that showed significantly 624 

higher coupling in the Aβ+ group, as compared to the Aβ- group (FDR corrected). 625 

Figure 3: Mediational link between Aβ  burden, coupling between tau and atrophy and global 626 

cognition. The association between Aβ  burden, considered as a continuous variable, and global 627 
cognition (CDR-SB:  Clinical Dementia Rating Scale–Sum of Boxes) was mediated by coupling 628 
between tau and atrophy in the right rostral middle frontal (p<0.05) and right paracentral 629 
(p<0.05) cortices. Direct, indirect (mediation) and direct effects are shown.  630 
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