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1. Introduction

Inverse eigenvalue problems are interested in the existence of matrices that have pre-
scribed spectral data. Often these matrices have additional restraints. For example, the 
entries of a matrix can be restricted by the adjacencies in an associated graph. In this pa-
per we study an inverse eigenvalue problem in which we are given a pair of integers (k, �)
and are asked to find a real symmetric matrix with nullity k for which a certain principal 
submatrix has nullity �. Before formalizing this problem, we provide some background 
and introduce the required notation.

Let G be a simple graph on n vertices. We label the vertex set V (G) of G with the 
set [n] = {1, . . . , n} so that there is a natural correspondence between vertices of G and 
indices of matrices in S(G), where the set S(G) contains all real symmetric matrices 
A = [ai,j ] such that ai,j �= 0 for i �= j if and only if {i, j} is an edge of G. Note that 
G only governs the off-diagonal entries of matrices in S(G) via its adjacencies, and no 
restrictions are placed on the diagonal entries. An important problem that is closely 
related to the present work is the inverse eigenvalue problem of a graph G (IEP-G), 
which aims to find all possible spectra among matrices in S(G).

One source of inspiration for this paper is the λ, μ problem [5]. This variant of the 
IEP-G studies the interlacing inequalities for a matrix A and its principal submatrix A(i)
obtained by deleting row and column i. In 1974, Hochstadt [13] studied the matrices of 
paths Pn and showed that given some distinct real numbers λ1 < μ1 < λ2 < · · · <

μn−1 < λn, there is at most one matrix A in S(Pn) with nonnegative off-diagonal entries 
such that spec(A) = {λ1, . . . , λn} and spec(A(1)) = {μ1, . . . , μn−1}. In 1976, Gray and 
Wilson [11] and Hald [12] independently gave constructive proofs showing such A always 
exists. Ferguson [10] continued this line of research and studied the spectra of matrices 
associated with cycles S(Cn). Monfared and Shader [17] showed that for each connected 
graph G and a vertex i ∈ V (G), given distinct real numbers λ1 < μ1 < λ2 < · · · <

μn−1 < λn, there exists a matrix A ∈ S(G) such that spec(A) = {λ1, . . . , λn} and 
spec(A(i)) = {μ1, . . . , μn−1}.

Another approach to the IEP-G is through the maximum nullity of a graph. The 
maximum nullity of a graph G, denoted M(G), is the largest nullity amongst all matrices 
in S(G). Since A ∈ S(G) implies A − λI ∈ S(G), the maximum nullity M(G) is also the 
largest multiplicity among all eigenvalues of all matrices in S(G). The maximum nullity 
of a graph has garnered much attention in recent years; see, e.g., [14] and the references 
therein.

In this paper, we combine the idea of interlacing from the λ, μ problem with the 
maximum nullity of a graph. Let i ∈ [n] and let A be an n × n real symmetric matrix. 
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The i-nullity pair of A is the pair (null(A), null(A(i)). By convention, the nullity of a 
matrix of order 0 is considered to be 0. Let G be a graph and i ∈ V (G). We say that G
allows the i-nullity pair (k, �) provided that there is a matrix A ∈ S(G) with the i-nullity 
pair (k, �). Note that the only possible nullity pairs (k, �) are those with |k − �| ≤ 1 by 
the Cauchy interlacing theorem; see, e.g., [7].

Question 1.1. Let G be a graph and i ∈ V (G). Given a pair of nonnegative integers (k, �), 
is there a matrix A ∈ S(G) such that (null(A), null(A(i)) = (k, �)?

Many researchers working on problems related to the IEP-G have had great success 
using “strong properties”. The development of strong properties is due to the pioneering 
work of Y. Colin de Verdière while studying the maximum nullity of a special class of ma-
trices. These ideas ultimately lead to the strong Arnold property (SAP) and many other 
strong properties have since been studied [2,3,6,8,9]. Motivated by this, we introduce the 
strong nullity interlacing property (SNIP).

Throughout the paper, we use O and I for the zero matrix and the identity matrix 
of the appropriate dimensions, respectively. We also use ◦ for the Hadamard (entrywise) 
product of two matrices of the same dimensions.

Definition 1.2. An n ×n matrix A is said to have the i-strong nullity interlacing property
(i-SNIP) if X = O is the only symmetric matrix that satisfies A ◦ X = O, I ◦ X = O

and (AX)(i, :] = O, where (AX)(i, :] is the submatrix of AX obtained by removing the 
i-th row.

The theoretical underpinnings of the SNIP are postponed until Section 6 since they 
closely resemble the development of other strong properties. Our primary application of 
the SNIP is Theorem 1.3, which we will use for the characterization of many graphs that 
allow the nullity pair (k, �) in terms of graph minors.

Recall that the contraction of a graph G along an edge {u, v} is the graph obtained 
from G by identifying u and v and removing any resulting loops and multi-edges. We 
write G − v to denote the graph obtained from G by removing the vertex v. A rooted 
graph is a pair (G, i), where G is a simple graph and i ∈ V (G) is called the root. We 
say that the rooted graph (G, i) is a rooted minor of (H, i) if (G, i) can be obtained 
from (H, i) by a sequence of edge deletions, deletions of isolated vertices v �= i, and edge 
contractions (the newly formed vertex is the root if the contracted edge is incident to i). 
Since we only focus on rooted minors, we may refer to a rooted minor simply as a minor.

We say that the rooted graph (G, i) allows the nullity pair (k, �) (with the SNIP, 
respectively) provided that there is a matrix A ∈ S(G) with the i-nullity pair (k, �)
(with the i-SNIP, respectively). We say that a rooted graph (G, i) is a minimal rooted 
minor (or a minimal minor) for the nullity pair (k, �) if (G, i) allows the nullity pair 
(k, �) with the SNIP and each of its proper minors does not allow the nullity pair (k, �)
with the SNIP.
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Next we state the Minor Monotonicity Theorem for nullity pairs, whose proof will be 
given in Section 6.

Theorem 1.3 (Minor Monotonicity). Let (G, i) be a rooted minor of (H, i). If (G, i) allows 
the nullity pair (k, �) with the SNIP, then (H, i) allows the nullity pair (k, �) with the 
SNIP.

A consequence of this theorem is that a rooted graph (G, i) allows the nullity pair 
(k, �) with the SNIP if and only if (G, i) contains a minimal minor for (k, �) as a minor. 
The importance of this observation cannot be understated as it justifies most of the 
present work.

This paper is organized as follows. In Section 2 we establish basic notation, definitions, 
and background. Then, in Section 3, we investigate the behavior of the SNIP and its 
relation with the strong Arnold property (SAP). In Section 4, we provide many examples 
by establishing the realizable nullity pairs for various families of graphs. Illustrating the 
strength of Theorem 1.3, Section 5 applies the SNIP to characterize the rooted graphs 
(G, i) that allow the i-nullity pairs (k, �) with k < 2 or � < 2. Finally, in Section 6, we 
provide the proofs of the supergraph and decontraction lemmas as well as the proof of 
Theorem 1.3.

2. Preliminaries

All matrices considered in this paper are real matrices. We write Matn(R) and 
Symn(R) for the set of n × n matrices and symmetric matrices, respectively.

Recall that [n] indicates the first n positive integers. Let A be an m × n matrix, 
α ⊆ [m], and β ⊆ [n]. Then A[α, β] is the submatrix of A induced by the rows indexed 
by α and columns indexed by β. The submatrix of A obtained by deleting the rows 
indexed by α and columns indexed by β is denoted by A(α, β). We may also combine 
both notational conventions, for example A(α, β] is the submatrix of A obtained by 
removing the rows indexed by α and keeping columns indexed by β. When α = β, we 
abbreviate our notation to A[α], A[α), A(α], and A(α). When α = {i}, we abbreviate 
A({i}) by A(i). Following the convention in many programming languages, the symbol 
: stands for all indices, e.g., A(i, :] is the submatrix of A obtained by deleting row i.

As noted earlier, if (k, �) is a realizable i-nullity pair of G, then |k − �| ≤ 1. Further, 
there is a matrix A ∈ S(G) with null(A) = k if and only if 0 ≤ k ≤ M(G) by the 
northeast lemma [4]. The following characterization is well-known and straightforward 
to check, see e.g. [1].

Remark 2.1. Let A ∈ Symn(R) and i ∈ [n]. Without loss of generality i = 1 and so A
has the form

A =
[

a b�

b C

]
, (1)



A. Abiad et al. / Linear Algebra and its Applications 699 (2024) 539–568 543
where C = A(i). Then the relations between null(A) and null(A(i)) are as follows:

1. null(A) + 1 = null(A(i)) if and only if b /∈ Col(C);
2. null(A) = null(A(i)) if and only if b ∈ Col(C) and a �= x�Cx for each x with Cx = b;
3. null(A) − 1 = null(A(i)) if and only if b ∈ Col(C) and a = x�Cx for some x with 

Cx = b.

For the three cases in Remark 2.1, we say the index (or the corresponding vertex) i
is upper, neutral, and downer, respectively. Note that the deciding factor for an index 
to be neutral or downer is the entry a in (1); the remaining diagonal entries are free. 
These observations imply the well-known Proposition 2.2 below. We provide a proof for 
completeness.

When dimensions have been specified (or they are clear from context), Ei,j is the 
matrix with (i, j)-entry equal to 1 and all other entries equal to zero. Similarly, let ei be 
the i-th standard basis vector of Rn, i.e., the i-th column of the identity matrix In.

Proposition 2.2. Let A be an n × n symmetric matrix. Then i is a neutral index if and 
only if there is a (unique) value t �= 0 such that i is a downer index for A + tEi,i.

Proof. Suppose, without loss of generality, that 1 is a neutral index for A, and assume 
that A has the form in (1). By Remark 2.1 there exists a vector x such that b = Cx. 
Then [

1 −x�

0 I

]
(A + tEi,i)

[
1 0�

−x I

]
=

[
(a + t) − x�Cx 0�

0 C

]
.

By Sylvester’s law of inertia the nullity of the above matrix equals null(A + tEi,i). 
Moreover, its nullity is greater than null(C) if and only if (a + t) = x�Cx. Thus there is 
a unique value t �= 0 such that 1 is a downer index of A + tEi,i. The converse follows a 
similar argument. �

The above proposition translates nicely in terms of nullity pairs:

Corollary 2.3. Let G be a graph and i ∈ V (G). Then (k, k) is the i-nullity pair for some 
matrix in S(G) if and only if (k + 1, k) is the i-nullity pair for some matrix in S(G).

We now turn our attention towards the SNIP. Let A ∈ Symn(R) and i ∈ [n] be given. 
Observe that the equations

X = X�, A ◦ X = O, I ◦ X = O and (AX)(i, :] = O

are equivalent to a system of linear equations in the entries of X, which means that 
the set of solutions forms a subspace of Symn(R). For matrix A to have the i-SNIP is 
equivalent to this subspace being trivial.
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Example 2.4. Label the vertices of the star K1,3 such that some pendent vertex is labeled 
i = 1 and the center vertex is labeled 4. Let

A =

⎡⎢⎣0 0 0 1
0 0 0 1
0 0 0 1
1 1 1 0

⎤⎥⎦ ∈ S(K1,3).

Let X ∈ Sym4(R) and assume A ◦ X = I ◦ X = O. Then

X =

⎡⎢⎣0 x y 0
x 0 z 0
y z 0 0
0 0 0 0

⎤⎥⎦ ,

for some real x, y and z. By direct computation

AX =

⎡⎢⎣ 0 0 0 0
0 0 0 0
0 0 0 0

x + y x + z y + z 0

⎤⎥⎦ .

Now assume that a solution to (AX)(1, :] = O is required. Writing down a column vector 
of coefficients for each of the 12 entries, solving this equation is equivalent to solving the 
following system of twelve linear equations in x, y and z:

[x y z ]

⎡⎢⎣0 0 0 0 0 0 0 0 1 1 0 0
0 0 0 0 0 0 0 0 1 0 1 0
0 0 0 0 0 0 0 0 0 1 1 0

⎤⎥⎦
=

[
0 0 0 0 0 0 0 0 0 0 0 0

]
.

Let Ψ be the coefficient matrix in the above matrix equation. Since Ψ has full row-rank, 
X = O is the only solution, and A has the 1-SNIP.

The observant reader may notice that the arguments in Example 2.4 can be success-
fully applied to any matrix in S(K1,3) with i = 1. Indeed, columns 9, 10, and 11 of the 
resulting coefficient matrix are always independent.

The process used in Example 2.4 to check if a matrix has the SNIP can be generalized 
to any matrix by constructing a coefficient matrix in a similar manner to Ψ. Such coeffi-
cient matrices have been used to study other strong properties and are usually referred 
to as verification matrices. While verification matrices are a useful tool, they are not the 
focus of this paper. See [3] for more information.
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3. SNIP and SAP

The SNIP has a very similar definition to that of the strong Arnold property. A 
symmetric matrix A is said to have the strong Arnold property (SAP) if X = O is the 
only symmetric matrix that satisfies the equations A ◦ X = O, I ◦ X = O and AX = O.

Remark 3.1. If a matrix A has the i-SNIP for some i, then A has the SAP.

Motivated by this remark, we now investigate connections between the SNIP and the 
SAP. It is known that every nonsingular matrix A has the SAP since AX = O implies 
X = O. The following proposition shows that an analogous result also holds for the 
SNIP, but by a different argument.

Proposition 3.2. Every nonsingular matrix has the i-SNIP for each index i.

Proof. Let A be a symmetric nonsingular matrix and let X be a symmetric matrix. 
Suppose that (AX)(i, :] = O. Then the columns of AX all lie in span{ei}. Thus, each 
column of X lies in span{A−1ei}. Suppose I ◦X = O. Since X is symmetric and has rank 
at most 1, X = c(A−1ei)�A−1ei for some constant c. However, such a matrix cannot 
have zero diagonal unless c = 0. Therefore, X = O and A has the SNIP. �

It is also known that every symmetric matrix A with null(A) = 1 has the SAP [14]. 
However, this is not true for the SNIP, as we illustrate in the next example.

Example 3.3. Let

A =
[0 1 1

1 0 0
1 0 0

]
and X =

[0 0 0
0 0 1
0 1 0

]
.

Then A ◦ X = O, I ◦ X = O, and (AX)(1, :] = O. Therefore, A has null(A) = 1, but A
does not have the 1-SNIP.

While null(A) = 1 does not guarantee the i-SNIP for any index i, Remark 2.1 can be 
used to show that if null(A) = 1 there exists an index i such that A(i) is nonsingular.

Proposition 3.4. Let A ∈ Symn(R) and i ∈ [n]. If A(i) is nonsingular, then A has the 
i-SNIP.

Proof. Suppose A(i) is nonsingular. Let X be a symmetric matrix that satisfies A ◦ X =
O, I ◦ X = O, and (AX)(i, :] = O. We may assume i = 1 and that A is of the form in 
(1), where C = A(i) is nonsingular. Then (AX)(i, :] = O is equivalent to

[
b C

] [
0 y�

y Y

]
=

[
Cy by� + CY

]
= O, where X =

[
0 y�

y Y

]
.
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Note that the (i, i)-entry of X is 0 since I ◦ X = O. Observe that Cy = 0, which implies 
y = 0. Substituting into the equation above gives CY = O and hence Y = O. Therefore, 
X = O and A has the i-SNIP. �

For symmetric matrices A and B, it is known that A ⊕ B has the SAP if and only if 
one of A and B has the SAP while the other is nonsingular. As the next result illustrates, 
the SNIP possesses a similar property.

Proposition 3.5. Let A ∈ Symn(R), i ∈ [n], and B ∈ Symm(R). Then the direct sum 
A ⊕ B has the i-SNIP if and only if A has the i-SNIP and B is nonsingular.

Proof. Let XA ∈ Symn(R), XB ∈ Symm(R) and

X =
[

XA Y �

Y XB

]
.

Suppose that A ◦ XA = In ◦ XA = On and B ◦ XB = Im ◦ XB = Om. Note that these 
equations hold if and only if (A ⊕B) ◦X = I ◦X = O. Also suppose that (AXA)(i, :] = O, 
(AY )(i, :] = O, BY = O and BXB = O. Similarly, this second system of equations holds 
if and only if ((A ⊕ B)X)(i, :] = O since

(A ⊕ B)X =
[

AXA AY �

BY BXB

]
.

Begin by assuming A has the i-SNIP and B is nonsingular. Then (AXA)(i, :] = O

implies XA = O since A has the i-SNIP. Furthermore, BY = O and BXB = O imply 
Y = O and XB = O since B is nonsingular. Therefore, X = O and so A ⊕ B has the 
i-SNIP.

Now assume A ⊕B has the i-SNIP. We first observe that there exists a nonzero vector 
a such that Aa ∈ span({ei}); namely, if A is singular, then choose a as a nonzero vector 
in ker(A), and if A is nonsingular, then choose a as the vector such that Aa = ei. 
Thus, B is nonsingular, for otherwise there is a nonzero vector b with Bb = 0 such 
that XA = O, XB = O and Y = ba� would satisfy (A ⊕ B) ◦ X = I ◦ X = O and 
((A ⊕B)X)(i, :] = O, contradicting our assumption that A ⊕B has the i-SNIP. It follows 
from the equivalencies established in the first paragraph that A has the i-SNIP. �

For the remainder of this section, we provide necessary and sufficient conditions for 
the SNIP in terms of the SAP.

Lemma 3.6. Let A be an n × n symmetric matrix and i ∈ [n]. If A has the i-SNIP, then 
both A and A(i) have the SAP.

Proof. By definition, if A has the i-SNIP, then A has the SAP.
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To see that A(i) has the SAP, suppose Y is a symmetric matrix such that A(i) ◦Y = O, 
I ◦Y = O, and A(i)Y = O. Without loss of generality, suppose i = 1 and let X = [0]⊕Y . 
Then A ◦ X = O and I ◦ X = O. We may assume A has the form in (1) and compute

AX =
[

0 b�Y
0 CY

]
=

[
0 b�Y
0 A(i)Y

]
=

[
0 b�Y
0 O

]
.

Since A has the i-SNIP, X = O. Therefore, Y = O and A(i) has the SAP. �
The converse of Lemma 3.6 is not true in general.

Example 3.7. By direct computation, for

A =
[

1 0
0 0

]
,

both the matrix A and A(1) have the SAP, but A does not have the 1-SNIP.

A simple but useful observation is the following. Since AX and (A + tEi,i)X only 
differ in their i-th row, (AX)(i, :] = O if and only if ((A + tEi,i)X)(i, :] = O. Thus we 
have the following useful lemma.

Lemma 3.8. Let A be a symmetric matrix. Then for each t ∈ R, A has the i-SNIP if and 
only if A + tEi,i has the i-SNIP.

Recall that an index can be either downer, neutral, or upper as defined in Section 2. In 
the following, we provide equivalent conditions for the i-SNIP under the assumptions that 
i is a downer, neutral, or upper index. The following result shows that counterexamples 
for the converse of Lemma 3.6 (as in Example 3.7) can only happen when i is a neutral 
index.

Theorem 3.9. Let A ∈ Symn(R) and i ∈ [n]. Then the following characterization holds.

(a) If i is a downer index, then A has the i-SNIP if and only if A has the SAP.
(b) If i is a neutral index and t is the unique value such that i is a downer index of 

A + tEi,i, then A has the i-SNIP if and only if A + tEi,i has the SAP.
(c) If i is an upper index, then A has the i-SNIP if and only if A(i) has the SAP.

Proof. By Lemma 3.6, if A has the i-SNIP, then A and A(i) have the SAP. Moreover, 
Lemma 3.8 implies that if A has the i-SNIP, then A + tEi,i has i-SNIP and consequently 
the SAP as well. Thus, we have obtained the forward direction in all three cases.

We now prove the backward direction for each of the three cases. Let X ∈ Symn(R)
such that A ◦ X = O, I ◦ X = O, and (AX)(i, :] = O.
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Begin by assuming i is a downer index and that A has the SAP. By Remark 2.1 the 
i-th row of A is a linear combination of the remaining rows of A. Since (AX)(i, :] = O

the columns of X are orthogonal to the rows of A(i, :] and hence orthogonal to the i-th 
row of A. This implies AX = O. Since A has the SAP, X = O and so A has the i-SNIP.

Now assume i is a neutral index and A + tEi,i has the SAP, where t is the unique 
value such that i is a downer index of A + tEi,i. By the previous case, A + tEi,i has the 
i-SNIP. Consequently, A has the i-SNIP by Lemma 3.8.

Finally, assume i is an upper index and A(i) has the SAP. Without loss of generality, 
we may assume i = 1 and that A is of the form in (1). By Remark 2.1, b is not a 
linear combination of the columns of C. This implies that every vector x satisfying 
[b C ] x = 0 has its i-th entry equal to zero. Since

(AX)(i, :] = [b C ] X = O,

the i-th row of X is zero and X = [0] ⊕ X(i). Consequently, A(i)X(i) = O. Now X(i) is 
a symmetric matrix such that A(i) ◦ X(i) = O, I ◦ X(i) = O, and A(i)X(i) = O. Since 
A(i) has the SAP, X(i) = O and X = [0] ⊕ X(i) = O. Thus A has the i-SNIP. �

We conclude this section by observing that Lemma 3.8 and Proposition 2.2 give a 
version of Corollary 2.3 that preserves the SNIP.

Corollary 3.10. Let G be a graph and i ∈ V (G). Then (G, i) allows the nullity pair (k, k)
with the SNIP if and only if (G, i) allows the nullity pair (k + 1, k) with the SNIP.

4. Nullity pairs for families of rooted graphs

In this section we study the realizable nullity pairs for various families of rooted 
graphs, including the complete graphs Kn, the cycle graphs Cn, and the path graphs Pn. 
It is of particular interest when there exists a realization with the SNIP. For a vertex 
transitive graph G, e.g., Kn and Cn, we write (G, i) without specifying the vertex i. 
Similarly, when the context is clear, we write (G, leaf) if the root is a leaf, i.e., the root is 
a vertex of degree 1. We start with two preliminary results that guarantee certain nullity 
pairs are realizable with the SNIP for almost every rooted graph.

Proposition 4.1. Let (G, i) be a rooted graph. Then (G, i) allows the nullity pairs (0, 0)
and (1, 0) with the SNIP.

Proof. Let A ∈ S(G). For λ large enough A +λI has i-nullity pair (0, 0). By Corollary 2.3
and Proposition 3.4, both (0, 0) and (1, 0) are realizable for (G, i) with the SNIP. �
Proposition 4.2. Let (G, i) be a rooted graph such that i is not an isolated vertex. Then 
(G, i) allows the nullity pair (0, 1) with the SNIP.
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Proof. Without loss of generality, assume i = 1. We may write G − i as the disjoint 
union of H1 and H2 (possibly empty) such that i is adjacent to a vertex in H1 and H1
is connected. Let B1 be the Laplacian matrix of H1 and, if H2 is nonempty, let B2 be a 
nonsingular matrix in S(H2). Then there exists a matrix A ∈ S(G) of the form

A =
[

a b�
1 b�

2
b1 B1 O
b2 O B2

]
,

where b1 is the appropriately chosen (0, 1)-vector. As H1 is connected, the column space 
of B1 consists of all vectors whose entries sum to 0.

Since i is adjacent to some vertex in H1, b1 is not in the column space of B1. By 
construction, null(A(i)) = 1. Since b1 /∈ Col(B1), Remark 2.1 implies null(A) = 0. 
Proposition 3.2 implies A has the i-SNIP. �

Since we are primarily interested in connected graphs and every connected graph other 
than K1 allows the nullity pairs (0, 0), (1, 0) and (0, 1) with the SNIP, we shall refer to 
these nullity pairs as trivial.

All of the proofs in the remainder of this section rely on known values of the maximum 
nullity for specific graphs. We refer the reader to [14, Chapter 2] for a review of this 
information.

Proposition 4.3. Let n ≥ 2 and k, � ≥ 0 be integers. Then (Kn, i) allows the nullity pair 
(k, �) with the SNIP if and only if |k − �| ≤ 1 and � ≤ n − 2, or (k, �) = (0, 1). Moreover, 
every matrix A ∈ S(Kn) has the i-SNIP.

Proof. Without loss of generality, we may assume i = 1. By Propositions 4.1 and 4.2, 
(Kn, i) allows (0, 0), (1, 0) and (0, 1) with the SNIP. Since M(K2) = 1, the only remaining 
possibility for n = 2 is the nullity pair (1, 1). However, (1, 1) not realizable for any root 
since Corollary 2.3 would imply (2, 1) is realizable, violating M(K2) = 1. This proves 
the case of n = 2, so assume n ≥ 3.

Suppose that (Kn, i) allows the nullity pair (k, �) with the SNIP. As always, |k−�| ≤ 1. 
Since M(Kn − i) = n − 2 it follows that � ≤ n − 2.

Observe that every matrix A ∈ S(Kn) has the i-SNIP since A ◦X = O and I ◦X = O

imply X = O. Thus, to establish the remaining direction, it suffices to exhibit matrices 
with the desired i-nullity pairs. For 1 ≤ m ≤ n − 2 let Bm,n ∈ S(Kn−1) be the matrix 
obtained from the adjacency matrix of Kn−1 by adding 1 to the first m + 1 diagonal 
entries. Observe that null(Bm,n) = m and Bm,n1 is entrywise positive, where 1 is the 
all-ones vector. Let

B̂m,n =
[

1�Bm,n1 (Bm,n1)�

Bm,n1 Bm,n

]
.

By construction, the matrix B̂m,n ∈ S(Kn) and null(B̂m,n) = m + 1.
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Now suppose |k − �| ≤ 1 and 1 ≤ � ≤ n − 2. Then k ∈ {� − 1, �, � + 1}. Since B̂�,n has 
i-nullity pair (� +1, �), Corollary 2.3 implies (Kn, i) allows (� +1, �) and (�, �). It remains 
to show that (� − 1, �) is realizable. Observe that

y =
[

1
−1

]
∈ ker(B̂�−1,n−1)

and that y does not contain any zero entries. Thus[
0 y�

y B̂�−1,n−1

]
is in S(Kn) and has i-nullity pair (� − 1, �), as required. �
Proposition 4.4. Let n ≥ 3. Then the nontrivial nullity pairs allowed by (Cn, i) with the 
SNIP are precisely (1, 1) and (2, 1). Moreover, every matrix in S(Cn) has the i-SNIP.

Proof. Observe that Cn − i = Pn−1. Since M(Cn) = 2 and M(Pn−1) = 1, there exists a 
matrix in S(Cn) with i-nullity pair (2, 1). Thus, (Cn, i) allows (2, 1), and by Corollary 2.3, 
(Cn, i) allows (1, 1). Note that the only possible remaining nullity pairs are trivial. Since 
every matrix in S(Cn) and S(Pn−1) has the SAP [16, Theorem 2.6], every matrix in 
S(Cn) has the i-SNIP by Theorem 3.9. �
Proposition 4.5. Let n ≥ 2. Then (Pn, leaf) allows the nullity pair (k, �) if and only if 
(k, �) is trivial. For i ∈ V (Pn) that is not a leaf, the only nontrivial nullity pair allowed 
by (Pn, i) is (1, 2). Moreover, a matrix in S(Pn) has the i-SNIP for any index i if and 
only if its i-nullity pair is trivial.

Proof. Since M(Pn) = 1, we only need to consider nullity pairs (k, �) with k ≤ 1 and 
|k − �| ≤ 1. We can eliminate (1, 1) for any root since Corollary 2.3 would imply (2, 1) is 
realizable. This leaves (1, 2) as the only possible nontrivial nullity pair for any root.

Suppose that i ∈ V (Pn) is a leaf. Then M(Pn − i) = M(Pn−1) = 1 and so (Pn, leaf)
does not allow (1, 2).

Suppose that i ∈ V (Pn) is not a leaf. Then M(Pn − i) = 2 and so (Pn, i) allows (1, 2). 
Moreover, every matrix in S(Pn − i) with nullity 2 has the form B = B1 ⊕ B2 such 
that null(B1) = null(B2) = 1. By [2, Lemma 3.1], B does not have the SAP and each 
A ∈ S(Pn) with A(i) = B does not have the i-SNIP by Theorem 3.9.

Moreover, by Propositions 4.1 and 4.2, a matrix in S(Pn) has the i-SNIP for any index 
i if and only if its i-nullity pair is trivial. �

A vertex in the star graph K1,n is either a leaf or the center vertex. We write 
(K1,n, center) if the center vertex is the root. In the next section, Theorem 5.12 charac-
terizes when a rooted tree allows a nullity pair with the SNIP. As such, Proposition 4.6
only determines the nullity pairs realizable by rooted stars.
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Proposition 4.6. Let n ≥ 3. The nontrivial nullity pairs allowed by (K1,n, center) are 
precisely the pairs (� − 1, �) with 2 ≤ � ≤ n. The nontrivial nullity pairs allowed by 
(K1,n, leaf) are precisely the pairs (�, �) and (� + 1, �) with 1 ≤ � ≤ n − 2.

Proof. Let A = [aij ] ∈ S(K1,n) and assume that 1 is the central vertex. Let t be the 
number of zero diagonal entries of A(1). Observe that if t > 0, then null(A) = t − 1 (and 
if t = 0, then null(A) ∈ {0, 1}).

Since null(A(1)) = t, the nontrivial nullity pairs allowed by (K1,n, center) are precisely 
the pairs (� − 1, �) with 2 ≤ � ≤ n.

Let i ∈ V (K1,n) be a leaf and suppose 2 ≤ t ≤ n. Observe that null(A(i)) = t − 1
if aii �= 0 and null(A(i)) = t − 2 if aii = 0. Thus the nontrivial nullity pairs allowed by 
(K1,n, leaf) are precisely the pairs (�, �) and (� + 1, �) with 1 ≤ � ≤ n − 2. �
5. Minimal minors

Having introduced the SNIP and established the necessary tools, we are ready to 
showcase the potential of the Minor Monotonicity Theorem (Theorem 1.3). In particular, 
we determine the set of minimal minors for nullity pairs (k, �) with the SNIP when k ≤ 1
or � ≤ 1. Observe that it suffices to only consider the connected case when classifying 
minimal minors. Indeed, by Proposition 3.5, for any disconnected rooted graph (G, i), 
the component H that contains i give a connected minor (H, i) that allows (k, �) with the 
SNIP. Therefore, every minimal minor for a given nullity pair is connected. Moreover, 
according to the celebrated Robertson–Seymour Theorem (graph minor theorem) [18], 
the set of minimal minors is finite for each (k, �).

Remark 5.1. By Proposition 4.1, the only minimal minor for nullity pairs (0, 0) and (1, 0)
is (K1, i). Similarly, Proposition 4.2 implies that the only minimal minor for the nullity 
pair (0, 1) is (K2, i).

5.1. Nullity pairs (1, 1), (2, 1)

The minimal minors for (1, 1) and (2, 1) are identical by Corollary 2.3 and Lemma 3.8. 
That being said, they are a bit more complicated than the trivial nullities established in 
Remark 5.1.

A vertex with degree at least 3 is called a high-degree vertex. A generalized star is a 
tree with exactly one high-degree vertex, and the unique high-degree vertex is called its 
center. The following lemma can be quickly proved using the Parter–Wiener theorem, 
see [15,19,20].

Lemma 5.2. Let G be a generalized star. Then (G, center) does not allow the nullity pair 
(2, 1).
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i

Paw

i

S(2, 1, 1)

Fig. 1. The minimal minors for the nullity pair (1, 2) with the SNIP.

Proof. Suppose A ∈ S(G) satisfies null(A) = 2 and let i be the center vertex of G. By the 
Parter–Wiener theorem, the vertex i is the Parter vertex, meaning null(A(i)) = 3. �
Theorem 5.3. Let (G, i) be a connected rooted graph. Then the following are equivalent.

(a) (G, i) allows the nullity pair (2, 1) with the SNIP.
(b) (G, i) allows the nullity pair (2, 1).
(c) (G, i) contains (K3, i) or (K1,3, leaf) as a minor.
(d) G is not a path, and (G, i) is not a generalized star with the root i at its center.

Proof. By Proposition 4.3 and Example 2.4, both (K3, i) and (K1,3, leaf) allow the nullity 
pair (2, 1) with the SNIP. By the Minor Monotonicity Theorem, every rooted graph that 
contains (K3, i) or (K1,3, leaf) as a minor allows (2, 1) with the SNIP. This proves (c) 
implies (a). Also, note (a) implies (b) by definition.

Now suppose (G, i) does not contain (K3, i) or (K1,3, leaf) as a minor. If G contains a 
cycle C, then contracting a shortest path from i to C (which exists since G is connected) 
and contracting C to K3 results in a minor (K3, i). Therefore, G is a tree. Assume that 
G has a high-degree vertex j �= i. Contract edges on the path connecting i to j until i is 
adjacent to j. Observe that the resulting rooted graph contains (K1,3, leaf) as an induced 
rooted subgraph. Therefore, (K1,3, leaf) is a minor of (G, i). This is a contradiction and 
so G can have at most one high-degree vertex. If G has one high-degree vertex, then G
is a generalized star and i has to be its center. If G has no high-degree vertex, then G
is a path. Furthermore, neither a rooted path (rooted at any vertex) nor a generalized 
star rooted at its center contains (K3, i) or (K1,3, leaf) as a minor. Thus, (c) and (d) are 
equivalent.

To complete the proof, we show (b) implies (d) via contraposition. If G is a path, 
then (G, i) does not allow (2, 1) for any root i since the maximum nullity of a path is 
1. If G is a generalized star with i its center, then (G, i) does not allow (2, 1) as well by 
Lemma 5.2. �

5.2. Nullity pair (1, 2)

As we shall soon see, the minimal minors for the nullity pair (1, 2) with the SNIP are 
the two rooted graphs shown in Fig. 1.
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root

Fig. 2. An example of yam graph.

If unspecified we shall always assume the roots of (Paw, i) and (S(2, 1, 1), i) are as 
indicated in Fig. 1. The next example verifies that these rooted graphs allow the nullity 
pair (1, 2) with the SNIP.

Example 5.4. Let

A1 =

⎡⎢⎣0 1 0 0
1 1 1 1
0 1 1 1
0 1 1 1

⎤⎥⎦ and A2 =

⎡⎢⎢⎢⎣
0 1 0 0 0
1 0 0 0 1
0 0 0 0 1
0 0 0 0 1
0 1 1 1 0

⎤⎥⎥⎥⎦ .

Observe that A1 ∈ S(Paw) and A2 ∈ S(S(2, 1, 1)). By direct computation, both A1 and 
A2 have 1-nullity pair (1, 2). Also, A1(1) and A2(1) have the SAP, so A1 and A2 have 
the 1-SNIP by Theorem 3.9. Therefore, both (Paw, 1) and (S(2, 1, 1), 1) allow the nullity 
pair (1, 2) with the SNIP.

We will show that the absence of (Paw, i) and (S(2, 1, 1), i) minors results in a yam 
graph (see Fig. 2).

Definition 5.5. A yam graph is a connected rooted graph (G, i) such that

• each component of G − i is either a generalized star or a path,
• i is only adjacent to the center of each component of G − i that is a generalized star.

In order to characterize the minimal minors for the nullity pair (1, 2) we require the 
following two lemmas.
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Lemma 5.6. Let (G, i) be a generalized star with the root i at its center. If B ∈ S(G) has 
nullity at least 2, then each vector in ker(B) has its i-th coordinate equal to 0.

Proof. Assume B ∈ S(G) has nullity at least 2. By the Parter–Wiener theorem, the 
vertex i is upper. By Remark 2.1, the i-th column of B is not a linear combination of 
the other columns. Let x ∈ ker(B). Since Bx is a linear combination of the columns of 
B, the i-th entry of x is zero. �
Lemma 5.7. A yam graph does not allow (1, 2) with the SNIP.

Proof. Let (G, i) be a yam graph. Suppose A ∈ S(G) has the i-SNIP and i-nullity pair 
(1, 2). Without loss of generality, i = 1 and A(i) is the direct sum of matrices B1, . . . , Bh, 
each of which corresponds to a component of G − i. So, A has the form

A =

⎡⎢⎢⎣
a b�

1 · · · b�
h

b1 B1
...

. . .
bh Bh

⎤⎥⎥⎦ .

By Theorem 3.9, A(i) has the SAP with null(A(i)) = 2. By [2, Lemma 3.1], we may 
assume null(B1) = 2 and B2, . . . , Bh are nonsingular. Since the maximum nullity of a 
path is 1, the graph of B1 is a generalized star; let j denote its center. By Lemma 5.6, 
each vector x in ker(B1) has its j-th entry zero. Padding each such x with zeros results 
in a null vector of A since the only nonzero entry in b1 is the j-th entry. Therefore, 
null(A) ≥ 2, which is a contradiction. �

We are now ready to state the main result of this section.

Theorem 5.8. Let (G, i) be a connected rooted graph. Then the following are equivalent.

(a) (G, i) allows the nullity pair (1, 2) with the SNIP.
(b) (G, i) contains (Paw, i) or (S(2, 1, 1), i) as a minor, as shown in Fig. 1.
(c) G is not a yam graph.

Proof. By Example 5.4, both (Paw, i) and (S(2, 1, 1), i) are rooted graphs that allow the 
nullity pair (1, 2) with the SNIP. Therefore, by the Minor Monotonicity Theorem, every 
connected (G, i) that contains (Paw, i) or (S(2, 1, 1), i) as a minor allows (1, 2) with the 
SNIP. Thus (b) implies (a). By Lemma 5.7, a yam graph does not allow (1, 2) with the 
SNIP, which shows (a) implies (c).

To complete the proof, we now show that (c) implies (b). Assume (G, i) does not 
contain (Paw, i) or (S(2, 1, 1), i) as a minor. Observe that if G contains a cycle, then i
lies on that cycle, otherwise (Paw, i) is a minor of (G, i). As a result, G − i is a forest. If a 
component of G − i contains a high-degree vertex j (with respect to G − i) such that i is 
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not adjacent to j, then (G, i) contains (S(2, 1, 1), i) as a minor, a contradiction. Suppose 
that a component H of G −i has two high-degree vertices u and v (with respect to G −i). 
Then, by the preceding argument, u and v are adjacent to i. Since H is connected, there 
exists a path of length at least 2 from i to u or v. Thus, (G, i) contains (S(2, 1, 1), i) as a 
minor, a contradiction. Consequently, a component of G − i is either a generalized star 
or a path; when it is a generalized star, i is only adjacent to its center. So, by definition, 
(G, i) is a yam graph. �

With the help of the SNIP, we are able to characterize all connected rooted graphs 
that allow (1, 2).

Proposition 5.9. Every rooted graph (G, i), where i is a cut-vertex, allows the nullity pair 
(1, 2).

Proof. Let (G, i) be a rooted graph, where i is a cut vertex. Then G − i contains at 
least two components H1 and H2. We may therefore write G − i as the disjoint union 
of H1, H2 and H3, where H3 is possibly empty or disconnected. Let L1 and L2 be the 
Laplacian matrices of H1 and H2, respectively. Let E ∈ S(H3) be nonsingular. Without 
loss of generality i = 1 and

A =

⎡⎢⎣ a b�
1 b�

2 b�
3

b1 L1
b2 L2
b3 E

⎤⎥⎦ ,

where a = 1, and b1, b2 and b3 are the appropriately chosen (0, 1)-vectors. Observe that 
null(A(i)) = 2. Since i is a cut vertex, 〈b1, 1〉 �= 0. Since ker(L1) = span({1}), b1 is not 
in the column space of L1. Therefore, by Remark 2.1, i is a upper index, and so A has 
i-nullity pair (1, 2). �
Lemma 5.10. Let (G, i) be a yam graph. Then (G, i) allows the nullity pair (1, 2) if and 
only if G − i has two or more components.

Proof. Suppose G − i has two or more components. Then i is a cut-vertex and by 
Proposition 5.9, (G, i) allows (1, 2).

Suppose G −i has at most one component. If G −i is the empty graph, then (G, i) does 
not allow (1, 2). So assume that G − i has exactly one component. If the component is a 
path, then it does not allow (1, 2) since the maximum nullity of a path is 1. Otherwise 
the component is a generalized star. Let A ∈ S(G). Just as in the proof of Lemma 5.7, 
Lemma 5.6 implies that if null(A(i)) = 2, then null(A) ≥ 2. Thus (G, i) does not allow 
the nullity pair (1, 2). �

The following theorem is now immediate from Theorem 5.8 and Lemma 5.10
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Theorem 5.11. Let G be a connected graph with vertex i. Then (G, i) allows the nullity 
pair (1, 2) if and only if (G, i) is not a yam graph such that G − i has at most one 
component.

5.3. Rooted trees

The parameter ξ(G), introduced and studied in [2], is defined as the maximum nullity 
among matrices in S(G) with the SAP. By [2, Theorem 3.7], ξ(T ) = 2 for every tree T
that is not a path and [2, Theorem 3.2] implies ξ(T − i) ≤ 2. These facts, along with 
various results from this paper, allow us to characterize the nullity pairs that are allowed 
by rooted trees with the SNIP.

Theorem 5.12. Let T be a tree on n ≥ 2 vertices such that T �= Pn and let i ∈ V (T ). If 
(T, i) allows (k, �) with the SNIP, then k ≤ 1 or � ≤ 1. The rooted tree (T, i) allows (2, 1)
and (1, 1) with the SNIP if and only if T has a high-degree vertex v �= i. The rooted tree 
(T, i) allows (1, 2) with the SNIP if and only if T contains a high-degree vertex v �= i

such that v is not adjacent to i.

Proof. Suppose that (T, i) allows (k, �) with the SNIP. Recall Lemma 3.6 states that if 
a symmetric matrix A has the SNIP, then A and A(i) have the SAP. Thus ξ(T ) = 2 and 
ξ(T − i) ≤ 2 imply k ≤ 2 and � ≤ 2. Further, (T, i) does not allow (2, 2) with the SNIP 
as Corollary 3.10 would imply (T, i) allows (3, 2) with the SNIP. Thus, k ≤ 1 or � ≤ 1.

Suppose that (T, i) allows (2, 1) and (1, 1) with the SNIP. Since T is not a path, either 
T contains a high-degree vertex v �= i or T is a generalized star with central vertex i. 
Lemma 5.2 implies that if T is a generalized star with central vertex i, then T does not 
allow the nullity pair (2, 1). To prove the converse, suppose that T contains a high-degree 
vertex v �= i. Then (T, i) contains (K1,3, leaf) as minor. Since (K1,3, leaf) allows (2, 1)
with the SNIP, Theorem 1.3 implies (T, i) allows the nullity pair (2, 1) with the SNIP.

By Theorem 5.8, (T, i) allows (1, 2) with the SNIP if and only if (S(2, 1, 1), i) is a 
rooted minor of (T, i). This occur if and only if T contains a vertex v �= i of degree at 
least 3 such that v is not adjacent to i. �
6. Developing the SNIP and its consequences

In Section 5 we saw the power of the Minor Monotonicity Theorem. Here we provide 
the theoretical background of this theorem and other applications of the SNIP. Let G
be a graph with vertex i and let A ∈ S(G). We begin by considering two types of 
perturbations of A obtained by group actions.

Let Scl(G) be the topological closure of S(G), i.e., all symmetric matrices whose i, j-
entry is zero whenever {i, j} /∈ E(G) and i �= j. Note that the entries of a matrix in 
Scl(G) that correspond to an edge are allowed to be zero. The set Scl(G) is a subspace 
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same pattern

same i-nullity pair

A
A + B

Q�AQ

Fig. 3. Illustration of the two perturbations on A.

of the vector space Symn(R) and, in particular, is an additive group. Observe that any 
perturbation of A ∈ S(G) that takes the form

A �→ A + B

for B ∈ Scl(G) and B sufficiently small preserves the pattern of A, i.e., A + B ∈ S(G).
We also consider the subgroup of the general linear group given by:

GL(i)
n (R) := {Q ∈ Matn(R) : det(Q) �= 0, Q[i, i) = 0�}.

For example, when i = 1, the matrices in GL(i)
n (R) are of the form

Q =
[

q1,1 0�

Q(1, 1] Q(1)

]
where q1,1 �= 0 and Q(1) is nonsingular. By direct computation, we have (Q�AQ)(i) =
Q(i)�A(i)Q(i) for Q ∈ GL(i)

n (R). Thus, any perturbation of A ∈ Symn(R) that takes 
the form

A �→ Q�AQ

for Q ∈ GL(i)
n (R) preserves the i-nullity pair of A.

We consider the orbits of A under the additive group action and the multiplicative 
group action in a small neighborhood of A. These can be viewed as geometric objects 
in the space Symn(R), as depicted in Fig. 3. Study the tangent spaces of these orbits 
naturally leads to the SNIP. More details about these techniques and related properties 
can be found in [14].

Definition 6.1. Let U and W be finite dimensional vector spaces over R. Let F be a 
differentiable function from a domain of U containing u0 ∈ U to W . Then the derivative
of F at u0 is the linear operator Ḟ defined by

Ḟ · d = lim F (u0 + td) − F (u0)

t→0 t
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for each vector d ∈ U .

This definition is equivalent to the classical total derivative, but gives a convenient 
notation for dealing with derivatives in multiple variables within matrix spaces.

Example 6.2. Let G be a graph on n vertices, A ∈ S(G), and i ∈ V (G). Let F be the 
function

F (B, Q) = Q�AQ + B, (2)

defined for B ∈ Scl(G) near O and Q ∈ GL(i)
n (R) near I, and choose perturbation 

matrices ΔB ∈ Scl(G) and ΔQ ∈ Matn(R) with ΔQ[i, i) = 0�. By direct computation, 
we have

lim
t→0

F (O + tΔB, I + tΔQ) − F (O, I)
t

= lim
t→0

(I + tΔQ)�A(I + tΔQ) + tΔB − A

t

= lim
t→0

ΔQ�A + AΔQ + tΔQ�AΔQ + ΔB

= ΔQ�A + AΔQ + ΔB.

The derivative of F at (O, I) is thus the linear operator defined by

Ḟ · (ΔB, ΔQ) = ΔQ�A + AΔQ + ΔB. (3)

This function can be specialized to a function of either argument by fixing the other: 
fixing Q gives a map FB that takes B to Q�AQ + B, and fixing B gives a map FQ that 
takes Q to Q�AQ + B. Note that ḞB and ḞQ satisfy

ḞB · ΔB = ΔB,

ḞQ · ΔQ = ΔQ�A + AΔQ.

This agrees with the chain rule

Ḟ · (ΔB, ΔQ) = ḞB · ΔB + ḞQ · ΔQ.

Example 6.3. Let A be the all-ones matrix in S(K2) and i = 1. Consider the function F
from Equation (2). Then we may write

Q =
[

x 0
y z

]
and B =

[
a b
b c

]
.

Thus,
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Q�AQ + B =
[

x2 + 2xy + y2 + a xz + yz + b
xz + yz + b z2 + c

]
.

Viewing F as a function sending the six variables x, y, z, a, b, c to the three independent 
entries in the symmetric matrix, we obtain that the total derivative of this map at 
(x, y, z) = (1, 0, 1) and (a, b, c) = (0, 0, 0) is[2x + 2y 2x + 2y 0 1 0 0

z z x + y 0 1 0
0 0 2z 0 0 1

]
=

[2 2 0 1 0 0
1 1 1 0 1 0
0 0 2 0 0 1

]
.

Note that this is the matrix representation of Ḟ by reading ΔQ with the basis 
{E1,1, E2,1, E2,2} and ΔB with the basis {E1,1, E1,2 +E2,1, E2,2}. Therefore, considering 
the derivative Ḟ as a linear operator avoids the hassle of choosing the basis.

The following proposition considers the tangent spaces and the normal spaces. Here 
we use the inner product of matrices 〈A, B〉 = 1

2 tr(B�A) for symmetric matrices. Note 
that the scalar 1

2 does not change the orthogonality, but it has the benefit of giving 
‖Ei,j + Ej,i‖ = 1 when i �= j.

Proposition 6.4. Let G be a graph on n vertices, A ∈ S(G), and i ∈ V (G). Let F be 
defined as in Equation (2), and let ḞB, ḞQ be the partial derivatives at B = O and 
Q = I. Then the following hold:

(a) range(ḞB) = Scl(G).
(b) range(ḞQ) = {L�A + AL : L ∈ Matn(R), L[i, i) = 0�}.
(c) range(ḞB)⊥ = {X ∈ Symn(R) : A ◦ X = O, I ◦ X = O}.
(d) range(ḞQ)⊥ = {X ∈ Symn(R) : (AX)[i, i] = 0, (AX)(i, :] = O}.

Proof. Note that every matrix in GL(i)
n (R) near I can be written as I + L for some 

L ∈ Matn(R) with L[i, i) = 0�. The ranges of ḞB and ḞQ are straightforward from 
Example 6.2.

For Scl(G), since the diagonal entries and the entries corresponding to an edge are 
free, the orthogonal complement of Scl(G) has free entries on non-edges.

Next we consider the range(ḞQ), which contains all symmetric matrices X such that 
〈X, LA + AL〉 = 0 for all L ∈ Matn(R) with L[i, i) = 0�. By direct computation, we 
have

2
〈
X, L�A + AL

〉
= tr(ALX) + tr(L�AX)

= tr(XL�A) + tr(L�AX)

= tr(L�AX) + tr(L�AX)

= 4 〈AX, L〉 ,

which is zero only for all such L when (AX)[i, i] = 0 and (AX)(i, :] = O. �
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With the above set up, now we are ready to justify the definition of the SNIP.

Proposition 6.5. Let G be a graph on n vertices, A ∈ S(G), and i ∈ V (G). Let F be 
defined as in Equation (2) and let Ḟ , ḞB, ḞQ be the derivative and the partial derivatives 
at B = O and Q = I. Then the following are equivalent:

(a) A has the i-SNIP.
(b) Ḟ is surjective.
(c) range(Ḟ ) = range(ḞB) + range(ḞQ) = Symn(R).
(d) range(ḞB)⊥ ∩ range(ḞQ)⊥ = {O}.

Proof. From Equation (3) we know

Ḟ · (ΔB, ΔQ) = ḞB · ΔB + ḞQ · ΔQ.

Hence range(Ḟ ) = range(ḞB) + range(ḞQ), so statements (b) and (c) are equivalent by 
definition. The equivalence between statements (c) and (d) follow from basic linear al-
gebra facts about subspaces and their orthogonal complements. Finally, we show that 
statements (d) and (a) are equivalent. Observing range(ḞB)⊥ and range(ḞQ)⊥ in Propo-
sition 6.4, we notice that A ◦ X = O and I ◦ X = O already implies (AX)[i, i] = 0, so 
the intersection of these two subspaces is

{X ∈ Symn(R) : A ◦ X = O, I ◦ X = O, (AX)(i, :] = O}.

Therefore, the intersection is trivial if and only if A has the i-SNIP. �
When the orbits of A under B and Q (see Fig. 3) are locally manifolds, we say that 

an intersection at A is a transversal intersection when it satisfies the property that the 
span of the tangent spaces of those manifolds at A is the entire ambient space. However, 
we note that the proofs in this paper do not require the orbits to be manifolds.

Now that we have the basic background on the SNIP, we move our attention to the 
inverse function theorem, which will be the key ingredient in the proofs of the Minor 
Monotonicity (Theorem 1.3). Note that the inverse function theorem is often stated 
for maps with bijective derivatives. Here we include a surjective version of the inverse 
function theorem; see, e.g., [14].

Theorem 6.6 (Inverse Function Theorem). Let U and W be finite-dimensional vector 
spaces over R. Let F be a smooth function from an open subset of U to W with 
F (u0) = w0. If the derivative Ḟ at u0 is surjective, then there is an open subset W ′ ⊆ W

containing w0 and a smooth function T : W ′ → U such that T (w0) = u0 and F ◦ T is 
the identity map on W ′.
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same pattern

same i-nullity pair

A
A + B

Q�AQ

A′ = F (O, Q′)M = F (B′, Q′)

Fig. 4. Illustration of the proof of Lemma 6.7.

6.1. Supergraph lemma

This section will be devoted to establishing the (extended) supergraph lemma. We 
start by proving the following basic version of the supergraph lemma.

Lemma 6.7 (Supergraph lemma). Let G be a spanning subgraph of H and i ∈ V (G). 
Suppose A ∈ S(G) has the i-SNIP. Then there is a matrix A′ ∈ S(H) such that A and 
A′ have the same i-nullity pair, A′ has the i-SNIP, and A′ can be chosen arbitrarily close 
to A.

We will use the function F as in Equation (2). As we will see in the proof, the SNIP 
and the inverse function theorem will guarantee the existence of B′ and Q′ such that 
M = F (B′, Q′) for any M ∈ S(H) sufficiently close to A. Thus, the matrix A′ = F (O, Q′)
is the desired matrix with the same i-nullity pair as A and with the correct pattern. The 
proof is illustrated in Fig. 4.

Proof of Lemma 6.7. Let F be as defined in Equation (2) and let Ḟ be its derivative 
at B = O and Q = I. Since A has the i-SNIP, Ḟ is surjective by Proposition 6.5. By 
Theorem 6.6, for each matrix M ∈ Symn(R) close enough to A, there are matrices B′

and Q′ such that F (B′, Q′) = M . Since G is a spanning subgraph of H, we may change 
the entries corresponding to E(H) \ E(G) in A into small nonzero values to obtain a 
matrix M ∈ S(H). Although M might not have the same i-nullity pair, the matrix 
A′ = F (O, Q′) satisfies A′ = (Q′)�AQ′ and A′ = M − B′. When B′ and Q′ are small 
perturbations, A′ has the same pattern as M , i.e., A′ ∈ S(H), and A′ has the same 
i-nullity pair as A.

Finally we claim A′ has the i-SNIP. According to Propositions 6.4 and 6.5, A has the 
i-SNIP implies that

{L�A + AL : L ∈ Matn(R), L[i, i) = 0�} + Scl(G) = Symn(R).

With a small perturbation A′ = (Q′)�AQ′, we have
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{L�A′ + A′L : L ∈ Matn(R), L[i, i) = 0�} + Scl(G) = Symn(R).

Since Scl(G) ⊆ Scl(H), this leads to

{L�A′ + A′L : L ∈ Matn(R), L[i, i) = 0�} + Scl(H) = Symn(R),

which certifies the i-SNIP of A′ again by Propositions 6.4 and 6.5. �
Remark 6.8. In the proof of Lemma 6.7, since A′ and A are congruent matrices, they 
share the same inertia.

Lemma 6.9 (Extended supergraph lemma). Let G be a subgraph of H and i ∈ V (G). 
Suppose A ∈ S(G) has the i-SNIP. Then there is a matrix A′ ∈ S(H) such that A and 
A′ have the same i-nullity pair, and A′ has the i-SNIP.

Proof. Let h = |V (H)| −|V (G)|. Let A be a matrix in S(G) with the i-SNIP. Then A ⊕Ih

is a matrix with the same i-nullity pair as A with the i-SNIP by Proposition 3.5. By 
applying the supergraph lemma (Lemma 6.7) to the graphs G ∪̇ Kh (where Kh denotes 
the complement of Kh) and H using the matrix A ⊕ Ih ∈ S(G ∪̇Kh), we obtain a matrix 
A′ with the i-SNIP and the same i-nullity pair as both A ⊕ Ih and A. �
6.2. Decontraction lemma

This section is devoted to proving the following decontraction lemma.

Lemma 6.10 (Decontraction lemma). Let G be a graph that is obtained from H by con-
traction along the edge {u, v} such that u and v have disjoint neighborhoods. Suppose 
A ∈ S(G) has the i-SNIP. Then there is a matrix A′ ∈ S(H) such that A and A′ have 
the same i-nullity pair, and A′ has the i-SNIP. If i ∈ V (G) is the new vertex obtained 
through the contraction of {u, v}, then i ∈ V (H) can be designated as either u or v.

Suppose u and v have some common neighbors in H. For each of the common neigh-
bors, we may remove either the edge joining u or the edge joining v to obtain a new 
graph H ′. Thus, H ′ is a spanning subgraph of H, and the contraction of H ′ on {u, v} is 
still G. We may apply the supergraph lemma (Lemma 6.7) to properly perturb a matrix 
from S(H ′) into S(H). Therefore, for Lemma 6.10, it is enough to consider the case from 
G to H ′, that is, when the neighborhoods of u and v are disjoint. As we will see shortly, 
this condition allows us to write a matrix A ∈ S(G) into the form of Equation (4), which 
makes the argument easier.

Throughout this subsection, we will assume that G has n vertices, u = n, v = n + 1, 
and n is the new vertex obtained by contracting {u, v}. Note that i can be any vertex 
in [n]. Without loss of generality, we may assume i �= v. Let α = NH(u) \ {v} and 
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β = NH(v) \ {u}. By partitioning [n] as ([n − 1] \ (α ∪ β)), α, β, and {n}, we may write 
a matrix A ∈ S(G) as

A =

⎡⎢⎢⎢⎢⎣
0

A(n) a
b

0� a� b� ?

⎤⎥⎥⎥⎥⎦ , (4)

where we adopt the convention that? indicates a number that may or may not be zero, 
and ∗ indicates a nonzero number. The proof involves two steps (first obtain Ã and 
secondly obtain A′, see Fig. 5).

The first step is to perturb the intersection point A1 := A ⊕ [1] into a matrix

Ã =

⎡⎢⎢⎢⎢⎢⎢⎢⎣

0 0
Ã({n, n + 1}) ã 0

b̃ δb̃
0� ã� b̃� ? 0
0� 0� δb̃� 0 ∗

⎤⎥⎥⎥⎥⎥⎥⎥⎦
(5)

with the same i-nullity pair.
The second step is to apply symmetric row and column operations to Ã in order to 

obtain

A′ = E�ÃE =

⎡⎢⎢⎢⎢⎢⎢⎢⎣

0 0
Ã({n, n + 1}) ã 0

0 δb̃
0� ã� 0� ? ∗
0� 0� δb̃� ∗ ∗

⎤⎥⎥⎥⎥⎥⎥⎥⎦
, (6)

where

E = In−1 ⊕
[

1 0
−1

δ 1

]
.

Note that E ∈ GL(i)
n+1(R) as i �= v, and hence A′ and Ã have the same i-nullity pair. 

Fig. 5 shows their relations as well as an overview of the proof.
The first step to obtaining Ã is very similar to the argument used for the supergraph 

lemma (Lemma 6.7), except that here we will use a new perturbation function, which 
we denote by F̃ . Let G1 = G ∪̇ K1 be a spanning subgraph of H. Then A1 ∈ S(G1). For 
each B ∈ S(G1) and each real number δ, define Bδ as the matrix obtained from B by 
adding δB[n, β] to B[n + 1, β] and δB[β, n] to B[β, n + 1]. Thus, the set
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same pattern

same i-nullity pair

A1
A1 � B

Q�A1Q

Ã = F̃ (O, Q̃)
M = F̃ (B̃, Q̃)

A′ = E�ÃE

Fig. 5. Illustration of the proof of Lemma 6.10.

Scl(G1, δ) := {Bδ : B ∈ Scl(G1)}

is a subspace with the same dimension as Scl(G1). Now we fix a vertex w ∈ β, and for 
each C ∈ Symn+1(R) we define

C � B := C + Bδ,

where δ = C[n+1,w]
C[n,w] is a ratio defined by C. Note that C � B is well-defined for each C

nearby A1, and for C ∈ S(G1), C � B is simply C + B. Now let F̃ be the perturbation 
function

F̃ (B, Q) = (Q�A1Q) � B (7)

defined on B ∈ Scl(G1) nearby O and Q ∈ GL(i)
n+1(R) nearby I. Since F̃ (B, I) = A1 +B, 

the calculation of the derivative of F̃ is almost the same as that of F in Equation (2), 
and its connection to the SNIP is the same. Thus we have the following remark.

Note that F̃ (B, I) = F (B, I) when we fix Q = I as the δ for A1 ∈ S(G1) is 0. 
Similarly, F̃ (O, Q) = F (O, Q) when we fix B = O. Therefore, the partial derivatives of 
F̃ and F are the same at (B, Q) = (O, I).

Remark 6.11. Let F̃ be the perturbation function defined in Equation (7), and let ˙̃F be 
its derivative at (B, Q) = (O, I). Then A1 has the i-SNIP if and only if ˙̃F is surjective.

Now we are ready to formalize the aforementioned arguments.
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Lemma 6.12. Let G be a graph on n vertices, i ∈ V (G), β ⊆ NG(n), and G1 = G ∪̇ K1. 
Suppose A ∈ S(G) has the i-SNIP. Then there is a matrix Ã ∈ Scl(G1, δ) of the form 
(5) such that A1 = A ⊕ [1] and Ã have the same i-nullity pair, Ã has the property

{L�Ã + ÃL : L ∈ Matn+1(R), L[i, i) = 0�} + Scl(G1, δ) = Symn+1(R),

and Ã can be chosen arbitrarily close to A1 with δ > 0.

Proof. The argument is essentially the same as the proof of Lemma 6.7. Since A has 
the i-SNIP, from Proposition 3.5 it follows that A1 = A ⊕ [1] also has the i-SNIP. Let 
F̃ be the perturbation function defined in Equation (7), and let ˙̃F be its derivative at 
B = O and Q = I. Thus, ˙̃F is surjective by Remark 6.11. By Theorem 6.6, for each 
matrix M ∈ Symn+1(R) close enough to A1, there are matrices B̃ and Q̃ such that 
F̃ (B̃, Q̃) = M .

Now we claim that for any small δ > 0, the desired Ã exists. Let δ > 0 be given. Choose 
the matrix M as the matrix obtained from A1 by adding δA1[n, β] to A1[n + 1, β] and 
δA1[β, n] to A1[β, n + 1]. That is, M = (A1)δ. By the previous discussion, there are 
matrices B̃ and Q̃ such that F̃ (B̃, Q̃) = M . Although M need not have the same i-
nullity pair as A1, the matrix Ã = F̃ (O, Q̃) satisfies Ã = Q̃�A1Q̃ and Ã = M − B̃δ. The 
facts M ∈ Scl(G1, δ) and B̃δ ∈ Scl(G1, δ) imply Ã ∈ Scl(G1, δ). Since B̃ and Q̃ are small 
perturbations of O and I, respectively, Ã has the form (5) with b nowhere zero, and Ã
has the same i-nullity pair as A1.

According to Propositions 6.4 and 6.5, A1 has the i-SNIP implies that

{L�A1 + A1L : L ∈ Matn+1(R), L[i, i) = 0�} + Scl(G1) = Symn+1(R).

With the continuous changes from A1 to Ã = Q̃�A1Q̃ and from Scl(G1) = Scl(G1, 0) to 
Scl(G1, δ), we have

{L�Ã + ÃL : L ∈ Matn+1(R), L[i, i) = 0�} + Scl(G1, δ) = Symn+1(R).

This completes the proof. �
The choice of the perturbation function F̃ successfully makes the two rows of Ã[{n, n +

1}, β] parallel and makes Ã possess a condition similar to the i-SNIP, which will be 
transformed into i-SNIP later. Now the proof of Lemma 6.10 is just one step away.

Proof of Lemma 6.10. Let Ã be the matrix guaranteed by Lemma 6.12 and

E = In−1 ⊕
[

1 0
−1 1

]
.

δ
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Then for Ã sufficiently close to A1, the matrix A′ = E�ÃE has the form (6). Since Ã
can be chosen arbitrarily close to A1, we have A′ ∈ S(H). Since E ∈ GL(i)

n+1(R), the 
matrices A′, Ã, and A1 have the same i-nullity pair.

Finally, C �→ E�CE is a linear bijection from Symn+1(R) to Symn+1(R) as well as a 
bijection on the space

L := {L ∈ Matn+1(R), L[i, i) = 0�}.

By applying this bijection to each term in

{L�Ã + ÃL : L ∈ L} + Scl(G1, δ) = Symn+1(R),

we know that the span of

{E�L�(E�)−1A′ + A′E−1LE : L ∈ L} and Scl(H)

is Symn+1(R). Additionally, since L �→ E−1LE is a linear bijection from L to itself, we 
get

{L�A′ + A′L : L ∈ L} + Scl(H) = Symn+1(R),

implying A′ has the i-SNIP. �
Combining the extended supergraph lemma (Lemma 6.9) and the decontraction 

lemma (Lemma 6.10), we obtain the desired minor monotonicity result.

Theorem 1.3 (Minor Monotonicity). Let (G, i) be a rooted minor of (H, i). If (G, i) allows 
the nullity pair (k, �) with the SNIP, then (H, i) allows the nullity pair (k, �) with the 
SNIP.

Proof. The definition of minor allows three operations: deleting an edge, deleting a ver-
tex, and contracting an edge. To delete a vertex, one may delete all edge incident to it 
and then delete the isolated vertex. To contract an edge {u, v}, one may delete an edge 
from {u, w} or {v, w} for any common neighbor w of u and v and then contract the edge 
{u, v}. Therefore, the definition can be refined as deleting an edge, deleting an isolated 
vertex, and contracting an edge whose endpoints have disjoint neighborhoods. These 
three operations are handled by the supergraph lemma (Lemma 6.7), the extended su-
pergraph lemma (Lemma 6.9), and the decontraction lemma (Lemma 6.10), respectively. 
Thus, the minor monotonicity therefore follows. �
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