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1. Introduction

Inverse eigenvalue problems are interested in the existence of matrices that have pre-
scribed spectral data. Often these matrices have additional restraints. For example, the
entries of a matrix can be restricted by the adjacencies in an associated graph. In this pa-
per we study an inverse eigenvalue problem in which we are given a pair of integers (k, £)
and are asked to find a real symmetric matrix with nullity k£ for which a certain principal
submatrix has nullity ¢. Before formalizing this problem, we provide some background
and introduce the required notation.

Let G be a simple graph on n vertices. We label the vertex set V(G) of G with the
set [n] = {1,...,n} so that there is a natural correspondence between vertices of G and
indices of matrices in S(G), where the set S(G) contains all real symmetric matrices
A = [a; ;] such that a; ; # 0 for ¢ # j if and only if {4, j} is an edge of G. Note that
G only governs the off-diagonal entries of matrices in S(G) via its adjacencies, and no
restrictions are placed on the diagonal entries. An important problem that is closely
related to the present work is the inverse eigenvalue problem of a graph G (IEP-G),
which aims to find all possible spectra among matrices in S(G).

One source of inspiration for this paper is the A,y problem [5]. This variant of the
IEP-G studies the interlacing inequalities for a matrix A and its principal submatrix A(%)
obtained by deleting row and column 4. In 1974, Hochstadt [13] studied the matrices of
paths P, and showed that given some distinct real numbers A\ < p1 < Ao < -+ <
tn—1 < An, there is at most one matrix A in S(P,) with nonnegative off-diagonal entries
such that spec(A4) = {A1,..., A} and spec(A(1)) = {u1,..., ptn—1}. In 1976, Gray and
Wilson [11] and Hald [12] independently gave constructive proofs showing such A always
exists. Ferguson [10] continued this line of research and studied the spectra of matrices
associated with cycles S(Cy,). Monfared and Shader [17] showed that for each connected
graph G and a vertex i € V(G), given distinct real numbers A\; < 3 < A2 < -+ <
Hn—1 < Ap, there exists a matrix A € S(G) such that spec(A) = {A1,...,A,} and
spec(A(i)) = {p1, .- pn—1}-

Another approach to the IEP-G is through the maximum nullity of a graph. The
mazimum nullity of a graph G, denoted M (G), is the largest nullity amongst all matrices
in S(G). Since A € S(G) implies A — AI € §(G), the maximum nullity M (G) is also the
largest multiplicity among all eigenvalues of all matrices in S(G). The maximum nullity
of a graph has garnered much attention in recent years; see, e.g., [14] and the references
therein.

In this paper, we combine the idea of interlacing from the A, p problem with the
maximum nullity of a graph. Let ¢ € [n] and let A be an n x n real symmetric matrix.



A. Abiad et al. / Linear Algebra and its Applications 699 (2024) 539-568 541

The i-nullity pair of A is the pair (null(A),null(A(4)). By convention, the nullity of a
matrix of order 0 is considered to be 0. Let G be a graph and ¢ € V(G). We say that G
allows the i-nullity pair (k,£) provided that there is a matrix A € S(G) with the i-nullity
pair (k,¢). Note that the only possible nullity pairs (k, £) are those with |k — ¢| < 1 by
the Cauchy interlacing theorem; see, e.g., [7].

Question 1.1. Let GG be a graph and i € V(G). Given a pair of nonnegative integers (k, £),
is there a matrix A € S(G) such that (null(A4), null(A(7)) = (k, £)?

Many researchers working on problems related to the IEP-G have had great success
using “strong properties”. The development of strong properties is due to the pioneering
work of Y. Colin de Verdiére while studying the maximum nullity of a special class of ma-
trices. These ideas ultimately lead to the strong Arnold property (SAP) and many other
strong properties have since been studied [2,3,6,8,9]. Motivated by this, we introduce the
strong nullity interlacing property (SNIP).

Throughout the paper, we use O and I for the zero matrix and the identity matrix
of the appropriate dimensions, respectively. We also use o for the Hadamard (entrywise)
product of two matrices of the same dimensions.

Definition 1.2. An n X n matrix A is said to have the i-strong nullity interlacing property
(-SNIP) if X = O is the only symmetric matrix that satisfies Ao X = O, o X = O
and (AX)(i,:] = O, where (AX)(4,:] is the submatrix of AX obtained by removing the
i-th row.

The theoretical underpinnings of the SNIP are postponed until Section 6 since they
closely resemble the development of other strong properties. Our primary application of
the SNIP is Theorem 1.3, which we will use for the characterization of many graphs that
allow the nullity pair (k,£) in terms of graph minors.

Recall that the contraction of a graph G along an edge {u,v} is the graph obtained
from G by identifying u and v and removing any resulting loops and multi-edges. We
write G — v to denote the graph obtained from G by removing the vertex v. A rooted
graph is a pair (G, 1), where G is a simple graph and i € V(G) is called the root. We
say that the rooted graph (G,4) is a rooted minor of (H,i) if (G,i) can be obtained
from (H, 1) by a sequence of edge deletions, deletions of isolated vertices v # 4, and edge
contractions (the newly formed vertex is the root if the contracted edge is incident to 7).
Since we only focus on rooted minors, we may refer to a rooted minor simply as a minor.

We say that the rooted graph (G,i) allows the nullity pair (k,€) (with the SNIP,
respectively) provided that there is a matrix A € S(G) with the é-nullity pair (k,¢)
(with the i-SNIP, respectively). We say that a rooted graph (G, i) is a minimal rooted
minor (or a minimal minor) for the nullity pair (k,¢) if (G,i) allows the nullity pair
(k, £) with the SNIP and each of its proper minors does not allow the nullity pair (k, ¢)
with the SNIP.
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Next we state the Minor Monotonicity Theorem for nullity pairs, whose proof will be
given in Section 6.

Theorem 1.3 (Minor Monotonicity). Let (G, i) be a rooted minor of (H,4). If (G, 1) allows
the nullity pair (k,£) with the SNIP, then (H,i) allows the nullity pair (k,€) with the
SNIP.

A consequence of this theorem is that a rooted graph (G, i) allows the nullity pair
(k,¢) with the SNIP if and only if (G,4) contains a minimal minor for (k,£) as a minor.
The importance of this observation cannot be understated as it justifies most of the
present work.

This paper is organized as follows. In Section 2 we establish basic notation, definitions,
and background. Then, in Section 3, we investigate the behavior of the SNIP and its
relation with the strong Arnold property (SAP). In Section 4, we provide many examples
by establishing the realizable nullity pairs for various families of graphs. Illustrating the
strength of Theorem 1.3, Section 5 applies the SNIP to characterize the rooted graphs
(G, 1) that allow the ¢-nullity pairs (k,¢) with k& < 2 or ¢ < 2. Finally, in Section 6, we
provide the proofs of the supergraph and decontraction lemmas as well as the proof of
Theorem 1.3.

2. Preliminaries

All matrices considered in this paper are real matrices. We write Mat,(R) and
Sym,, (R) for the set of n x n matrices and symmetric matrices, respectively.

Recall that [n] indicates the first n positive integers. Let A be an m X n matrix,
a C [m], and 8 C [n]. Then Alq, f] is the submatrix of A induced by the rows indexed
by a and columns indexed by (. The submatrix of A obtained by deleting the rows
indexed by a and columns indexed by f is denoted by A(«, 3). We may also combine
both notational conventions, for example A(a, ] is the submatrix of A obtained by
removing the rows indexed by « and keeping columns indexed by 8. When o = 3, we
abbreviate our notation to Ala], A[a), A(a], and A(«). When a = {i}, we abbreviate
A({i}) by A(z). Following the convention in many programming languages, the symbol
: stands for all indices, e.g., A(%,:] is the submatrix of A obtained by deleting row i.

As noted earlier, if (k, ¢) is a realizable i-nullity pair of G, then |k — ¢| < 1. Further,
there is a matrix A € S(G) with null(4) = k if and only if 0 < k < M(G) by the
northeast lemma [4]. The following characterization is well-known and straightforward
to check, see e.g. [1].

Remark 2.1. Let A € Sym,,(R) and ¢ € [n]. Without loss of generality i = 1 and so A
has the form

A=l vl (1
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where C' = A(7). Then the relations between null(A) and null(A(7)) are as follows:

1. null(4) + 1 = null(A(¢)) if and only if b ¢ Col(C);

2. null(A) = ull( (1)) if and only if b € Col(C) and a # x " Cx for each x with Cx = b

3. null(A) — 1 = null(A(4)) if and only if b € Col(C) and a = x"Cx for some x with
Cx =b.

For the three cases in Remark 2.1, we say the index (or the corresponding vertex) i
is upper, neutral, and downer, respectively. Note that the deciding factor for an index
to be neutral or downer is the entry a in (1); the remaining diagonal entries are free.
These observations imply the well-known Proposition 2.2 below. We provide a proof for
completeness.

When dimensions have been specified (or they are clear from context), E; ; is the
matrix with (4, j)-entry equal to 1 and all other entries equal to zero. Similarly, let e; be
the i-th standard basis vector of R"”, i.e., the i-th column of the identity matrix I,,.

Proposition 2.2. Let A be an n X n symmetric matriz. Then i is a neutral index if and
only if there is a (unique) value t # 0 such that i is a downer index for A+ tE; ;.

Proof. Suppose, without loss of generality, that 1 is a neutral index for A, and assume
that A has the form in (1). By Remark 2.1 there exists a vector x such that b = Cx.

Then
1| —xT 1 jo"|
o I x| I |
By Sylvester’s law of inertia the nullity of the above matrix equals null(4 + tE; ;).

Moreover, its nullity is greater than null(C) if and only if (a +t) = x " Cx. Thus there is
a unique value ¢ # 0 such that 1 is a downer index of A + tE; ;. The converse follows a

(a+t)—x"Cx ‘ o'
0 | C

(A+tE; ;)

similar argument. O
The above proposition translates nicely in terms of nullity pairs:

Corollary 2.3. Let G be a graph and i € V(G). Then (k, k) is the i-nullity pair for some
matriz in S(G) if and only if (k + 1,k) is the i-nullity pair for some matriz in S(G).

We now turn our attention towards the SNIP. Let A € Sym,,(R) and i € [n] be given.
Observe that the equations

X=X", AoX=0, ToX=0 and (AX)(i,:]=0

are equivalent to a system of linear equations in the entries of X, which means that
the set of solutions forms a subspace of Sym,,(R). For matrix A to have the i-SNIP is
equivalent to this subspace being trivial.
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Example 2.4. Label the vertices of the star K 3 such that some pendent vertex is labeled
i =1 and the center vertex is labeled 4. Let

€ S(K13).

—_—o oo
—OoO oo
_—o oo
O ==

Let X € Sym,(R) and assume Ao X =T o0 X = O. Then

0 =z y O
z 0 =z O
X = y z 0 0Of”
0 0 0O
for some real x,y and z. By direct computation
0 0 0 0
0 0 0 0
AX=1"9 0 0 o0
r+y x+z y+z 0
Now assume that a solution to (AX)(1,:] = O is required. Writing down a column vector

of coeflicients for each of the 12 entries, solving this equation is equivalent to solving the
following system of twelve linear equations in z,y and z:

[z y 2]

o o o
o O O
o o o
o O O
o o o
o O O
o o o
o O O
O =
—_ O
= = O
o O O

=000000000000].

Let ¥ be the coefficient matrix in the above matrix equation. Since ¥ has full row-rank,
X = O is the only solution, and A has the 1-SNIP.

The observant reader may notice that the arguments in Example 2.4 can be success-
fully applied to any matrix in S(K 3) with ¢ = 1. Indeed, columns 9, 10, and 11 of the
resulting coefficient matrix are always independent.

The process used in Example 2.4 to check if a matrix has the SNIP can be generalized
to any matrix by constructing a coefficient matrix in a similar manner to W. Such coeffi-
cient matrices have been used to study other strong properties and are usually referred
to as wverification matrices. While verification matrices are a useful tool, they are not the
focus of this paper. See [3] for more information.
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3. SNIP and SAP

The SNIP has a very similar definition to that of the strong Arnold property. A
symmetric matrix A is said to have the strong Arnold property (SAP) if X = O is the
only symmetric matrix that satisfies the equations Ao X =0, To X =0 and AX = O.

Remark 3.1. If a matrix A has the i-SNIP for some 4, then A has the SAP.

Motivated by this remark, we now investigate connections between the SNIP and the
SAP. It is known that every nonsingular matrix A has the SAP since AX = O implies
X = 0. The following proposition shows that an analogous result also holds for the
SNIP, but by a different argument.

Proposition 3.2. Fvery nonsingular matriz has the i-SNIP for each index i.

Proof. Let A be a symmetric nonsingular matrix and let X be a symmetric matrix.
Suppose that (AX)(i,:] = O. Then the columns of AX all lie in span{e;}. Thus, each
column of X lies in span{A~'e;}. Suppose [o X = O. Since X is symmetric and has rank
at most 1, X = c(A~'e;)T A~1e; for some constant c. However, such a matrix cannot
have zero diagonal unless ¢ = 0. Therefore, X = O and A has the SNIP. O

It is also known that every symmetric matrix A with null(A) = 1 has the SAP [14].
However, this is not true for the SNIP, as we illustrate in the next example.

Example 3.3. Let

0 1 1 0 0 O
A=1|1 0 0| and X=(0 0 1
1 0 0 01 0

Then Ao X =0,Io0oX =0, and (AX)(1,:] = O. Therefore, A has null(A) =1, but A
does not have the 1-SNIP.

While null(A4) = 1 does not guarantee the -SNIP for any index 4, Remark 2.1 can be
used to show that if null(A) = 1 there exists an index ¢ such that A(7) is nonsingular.

Proposition 3.4. Let A € Sym,,(R) and i € [n]. If A(i) is nonsingular, then A has the
i-SNIP.

Proof. Suppose A(i) is nonsingular. Let X be a symmetric matrix that satisfies Ao X =
0, I0X =0, and (AX)(i,:] = O. We may assume ¢ = 1 and that A is of the form in
(1), where C' = A(4) is nonsingular. Then (AX)(4,:] = O is equivalent to

0|y"
y|lY

(b|c] ]2 ny = [Cy |by" +CY | =0, where X =
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Note that the (i,i)-entry of X is 0 since I o X = O. Observe that C'y = 0, which implies
y = 0. Substituting into the equation above gives C'Y = O and hence Y = O. Therefore,
X = O and A has the i-SNIP. O

For symmetric matrices A and B, it is known that A & B has the SAP if and only if
one of A and B has the SAP while the other is nonsingular. As the next result illustrates,
the SNIP possesses a similar property.

Proposition 3.5. Let A € Sym,(R), i € [n], and B € Sym,,(R). Then the direct sum
A ® B has the i-SNIP if and only if A has the i-SNIP and B is nonsingular.

Proof. Let X4 € Sym,,(R), Xp € Sym,,(R) and

X4 YT
ol

Suppose that Ao Xy =I,0X4 =0, and Bo Xg = I,, o Xp = O,,,. Note that these
equations hold if and only if (A® B)oX = IoX = O. Also suppose that (AX 4)(z,:] = O,
(AY)(4,:] = O, BY = O and BXp = O. Similarly, this second system of equations holds
if and only if ((A ® B)X)(i,:] = O since

_[AX, AYT
(AEBB)X{BY BXB}
Begin by assuming A has the -SNIP and B is nonsingular. Then (AX4)(i,:] = O

implies X4 = O since A has the i-SNIP. Furthermore, BY = O and BXp = O imply
Y = O and Xp = O since B is nonsingular. Therefore, X = O and so A ® B has the
i-SNIP.

Now assume A @ B has the i-SNIP. We first observe that there exists a nonzero vector
a such that Aa € span({e;}); namely, if A is singular, then choose a as a nonzero vector
in ker(A), and if A is nonsingular, then choose a as the vector such that Aa = e;.
Thus, B is nonsingular, for otherwise there is a nonzero vector b with Bb = 0 such
that X4 = O, Xp = O and Y = ba' would satisfy (A@® B)o X =T o X = O and
((A®B)X)(i,:] = O, contradicting our assumption that A@® B has the i-SNIP. It follows
from the equivalencies established in the first paragraph that A has the «-SNIP. 0O

For the remainder of this section, we provide necessary and sufficient conditions for
the SNIP in terms of the SAP.

Lemma 3.6. Let A be an n x n symmetric matriz and ¢ € [n]. If A has the i-SNIP, then
both A and A(i) have the SAP.

Proof. By definition, if A has the i-SNIP, then A has the SAP.
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To see that A(7) has the SAP, suppose Y is a symmetric matrix such that A(i)oY = O,
IoY =0, and A(i)Y = O. Without loss of generality, suppose ¢ = 1 and let X = [0]®Y.
Then Ao X = O and I o X = O. We may assume A has the form in (1) and compute

[0 2]-5 Bl [ o)

Since A has the i-SNIP, X = O. Therefore, Y = O and A(7) has the SAP. O
The converse of Lemma 3.6 is not true in general.

Example 3.7. By direct computation, for
10
=loo)
both the matrix A and A(1) have the SAP, but A does not have the 1-SNIP.

A simple but useful observation is the following. Since AX and (A + tE; ;)X only
differ in their i-th row, (AX)(4,:] = O if and only if (A + tE;;)X)(i,:] = O. Thus we
have the following useful lemma.

Lemma 3.8. Let A be a symmetric matriz. Then for each t € R, A has the i-SNIP if and
only if A+tE;; has the i-SNIP.

Recall that an index can be either downer, neutral, or upper as defined in Section 2. In
the following, we provide equivalent conditions for the i-SNIP under the assumptions that
i is a downer, neutral, or upper index. The following result shows that counterexamples
for the converse of Lemma 3.6 (as in Example 3.7) can only happen when i is a neutral
index.

Theorem 3.9. Let A € Sym,,(R) and i € [n]. Then the following characterization holds.

(a) Ifi is a downer index, then A has the i-SNIP if and only if A has the SAP.

(b) If i is a neutral index and t is the unique value such that i is a downer index of
A+1tE;;, then A has the i-SNIP if and only if A+ tE;; has the SAP.

(¢) Ifi is an upper index, then A has the i-SNIP if and only if A(i) has the SAP.

Proof. By Lemma 3.6, if A has the -SNIP, then A and A(¢) have the SAP. Moreover,
Lemma 3.8 implies that if A has the -SNIP, then A+tE;; has -SNIP and consequently
the SAP as well. Thus, we have obtained the forward direction in all three cases.

We now prove the backward direction for each of the three cases. Let X € Sym,,(R)
such that Ao X =0, IoX =0, and (AX)(4,:] = O.
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Begin by assuming 4 is a downer index and that A has the SAP. By Remark 2.1 the
i-th row of A is a linear combination of the remaining rows of A. Since (AX)(4,:] = O
the columns of X are orthogonal to the rows of A(4,:] and hence orthogonal to the i-th
row of A. This implies AX = O. Since A has the SAP, X = O and so A has the i-SNIP.

Now assume ¢ is a neutral index and A + tE; ; has the SAP, where ¢ is the unique
value such that i is a downer index of A+ tE; ;. By the previous case, A+ tE;; has the
i-SNIP. Consequently, A has the i-SNIP by Lemma 3.8.

Finally, assume ¢ is an upper index and A(i) has the SAP. Without loss of generality,
we may assume ¢ = 1 and that A is of the form in (1). By Remark 2.1, b is not a
linear combination of the columns of C. This implies that every vector x satisfying
[b C]x =0 has its i-th entry equal to zero. Since

(AX)(i,;] =[b C]X =0,

the i-th row of X is zero and X = [0] @ X (¢). Consequently, A(7)X (i) = O. Now X (i) is
a symmetric matrix such that A(i) o X(i) = O, I o X(i) = O, and A(i)X (i) = O. Since
A(7) has the SAP, X (i) = O and X = [0] ® X (i) = O. Thus A has the -SNIP. O

We conclude this section by observing that Lemma 3.8 and Proposition 2.2 give a
version of Corollary 2.3 that preserves the SNIP.

Corollary 3.10. Let G be a graph and i € V(G). Then (G,14) allows the nullity pair (k, k)
with the SNIP if and only if (G,i) allows the nullity pair (k + 1,k) with the SNIP.

4. Nullity pairs for families of rooted graphs

In this section we study the realizable nullity pairs for various families of rooted
graphs, including the complete graphs K,,, the cycle graphs C},, and the path graphs P,.
It is of particular interest when there exists a realization with the SNIP. For a vertex
transitive graph G, e.g., K,, and C,, we write (G, ) without specifying the vertex i.
Similarly, when the context is clear, we write (G, leaf) if the root is a leaf, i.e., the root is
a vertex of degree 1. We start with two preliminary results that guarantee certain nullity
pairs are realizable with the SNIP for almost every rooted graph.

Proposition 4.1. Let (G,4) be a rooted graph. Then (G,i) allows the nullity pairs (0,0)
and (1,0) with the SNIP.

Proof. Let A € §(G). For A large enough A+ AT has é-nullity pair (0,0). By Corollary 2.3
and Proposition 3.4, both (0,0) and (1,0) are realizable for (G, ¢) with the SNIP. 0O

Proposition 4.2. Let (G,i) be a rooted graph such that i is not an isolated vertex. Then
(G,1) allows the nullity pair (0,1) with the SNIP.
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Proof. Without loss of generality, assume ¢ = 1. We may write G — i as the disjoint
union of Hy and Hs (possibly empty) such that i is adjacent to a vertex in Hy and H;
is connected. Let B; be the Laplacian matrix of H; and, if Hs is nonempty, let Bs be a
nonsingular matrix in S(Hs). Then there exists a matrix A € S(G) of the form

a bl bj
A=|b1 B O |,
by O B;

where b is the appropriately chosen (0, 1)-vector. As H; is connected, the column space
of By consists of all vectors whose entries sum to 0.

Since ¢ is adjacent to some vertex in Hi, by is not in the column space of B;. By
construction, null(A(7)) = 1. Since by ¢ Col(By), Remark 2.1 implies null(4) = 0.
Proposition 3.2 implies A has the -SNIP. O

Since we are primarily interested in connected graphs and every connected graph other
than K allows the nullity pairs (0,0), (1,0) and (0,1) with the SNIP, we shall refer to
these nullity pairs as trivial.

All of the proofs in the remainder of this section rely on known values of the maximum
nullity for specific graphs. We refer the reader to [14, Chapter 2] for a review of this
information.

Proposition 4.3. Let n > 2 and k, £ > 0 be integers. Then (K,,1) allows the nullity pair
(k, £) with the SNIP if and only if |k —£€] <1 and £ <n—2, or (k,£) = (0,1). Moreover,
every matriz A € S(K,,) has the i-SNIP.

Proof. Without loss of generality, we may assume 7 = 1. By Propositions 4.1 and 4.2,
(Ky, 1) allows (0,0), (1,0) and (0, 1) with the SNIP. Since M (K3) = 1, the only remaining
possibility for n = 2 is the nullity pair (1,1). However, (1,1) not realizable for any root
since Corollary 2.3 would imply (2,1) is realizable, violating M (K53) = 1. This proves
the case of n = 2, so assume n > 3.

Suppose that (K, 1) allows the nullity pair (k, £) with the SNIP. As always, |k—¢| < 1.
Since M (K, —i) = n — 2 it follows that £ < n — 2.

Observe that every matrix A € S(K,) has the -SNIP since Ao X = O and o X = O
imply X = O. Thus, to establish the remaining direction, it suffices to exhibit matrices
with the desired i-nullity pairs. For 1 < m <n — 2 let B, ,, € S(K,—1) be the matrix
obtained from the adjacency matrix of K,,_; by adding 1 to the first m 4+ 1 diagonal
entries. Observe that null(B,, ) = m and B,, ,1 is entrywise positive, where 1 is the
all-ones vector. Let

B _ 1"Bunl (Bpal)'
mon Bm,n]- Bm,n

By construction, the matrix Em,n € S(K,,) and null(gm,n) =m+1.



550 A. Abiad et al. / Linear Algebra and its Applications 699 (2024) 539-568

Now suppose |k —¢| <land 1 <¢<n—2. Then ke {{—1,¢¢+1}. Since f?gm has
i-nullity pair (£41,¢), Corollary 2.3 implies (K, %) allows (£+1,£) and (¢, ). It remains
to show that (¢ — 1,¢) is realizable. Observe that

1 ~
y = |:1:| € ker(Bg_l,n_l)

and that y does not contain any zero entries. Thus

v sl
Yy Bi_1n-1
is in S(K,) and has i-nullity pair (¢ — 1, /), as required. O

Proposition 4.4. Let n > 3. Then the nontrivial nullity pairs allowed by (C,,, ) with the
SNIP are precisely (1,1) and (2,1). Moreover, every matriz in S(Cy,) has the i-SNIP.

Proof. Observe that C,, —i = P,,_;. Since M(C,,) =2 and M (P,,_1) = 1, there exists a
matrix in §(C),) with é-nullity pair (2,1). Thus, (C,, i) allows (2, 1), and by Corollary 2.3,
(Ch, 1) allows (1, 1). Note that the only possible remaining nullity pairs are trivial. Since
every matrix in S(C,) and S(P,—1) has the SAP [16, Theorem 2.6], every matrix in
S(Cy) has the -SNIP by Theorem 3.9. O

Proposition 4.5. Let n > 2. Then (P,, leaf) allows the nullity pair (k,£) if and only if
(k, 0) is trivial. Fori € V(P,) that is not a leaf, the only nontrivial nullity pair allowed
by (Pn,1) is (1,2). Moreover, a matriz in S(P,) has the i-SNIP for any index i if and
only if its i-nullity pair is trivial.

Proof. Since M(P,) = 1, we only need to consider nullity pairs (k,¢) with £ < 1 and
|k —¢] < 1. We can eliminate (1,1) for any root since Corollary 2.3 would imply (2,1) is
realizable. This leaves (1,2) as the only possible nontrivial nullity pair for any root.

Suppose that i € V(P,) is a leaf. Then M (P, — i) = M(P,—1) = 1 and so (P,, leaf)
does not allow (1,2).

Suppose that i € V(P,) is not a leaf. Then M (P, —i) = 2 and so (P, %) allows (1, 2).
Moreover, every matrix in S(P, — i) with nullity 2 has the form B = B; & By such
that null(By) = null(Bz) = 1. By [2, Lemma 3.1], B does not have the SAP and each
A € §(P,) with A(i) = B does not have the -SNIP by Theorem 3.9.

Moreover, by Propositions 4.1 and 4.2, a matrix in S(P,,) has the -SNIP for any index
1 if and only if its é-nullity pair is trivial. O

A vertex in the star graph Kj , is either a leaf or the center vertex. We write
(K1, center) if the center vertex is the root. In the next section, Theorem 5.12 charac-
terizes when a rooted tree allows a nullity pair with the SNIP. As such, Proposition 4.6
only determines the nullity pairs realizable by rooted stars.



A. Abiad et al. / Linear Algebra and its Applications 699 (2024) 539-568 551

Proposition 4.6. Let n > 3. The nontrivial nullity pairs allowed by (Ki,, center) are
precisely the pairs (¢ — 1,0) with 2 < ¢ < n. The nontrivial nullity pairs allowed by
(K1,n, leaf) are precisely the pairs (¢,€) and (€ + 1,0) with 1 < £ <n—2.

Proof. Let A = [a;;] € S(K,,) and assume that 1 is the central vertex. Let ¢ be the
number of zero diagonal entries of A(1). Observe that if ¢ > 0, then null(A) =¢—1 (and
if t = 0, then null(A4) € {0,1}).

Since null(A(1)) = t, the nontrivial nullity pairs allowed by (K1 ,,, center) are precisely
the pairs (¢ — 1,¢) with 2 < ¢ <mn.

Let i € V(K1 ,) be a leaf and suppose 2 < ¢t < n. Observe that null(A(7)) =t —1
if a;; # 0 and null(A(i)) = t — 2 if a;; = 0. Thus the nontrivial nullity pairs allowed by
(K1, leaf) are precisely the pairs (¢,£) and (¢ +1,¢) with1 <¢<n—-2. O

5. Minimal minors

Having introduced the SNIP and established the necessary tools, we are ready to
showcase the potential of the Minor Monotonicity Theorem (Theorem 1.3). In particular,
we determine the set of minimal minors for nullity pairs (k, ¢) with the SNIP when k£ <1
or £ < 1. Observe that it suffices to only consider the connected case when classifying
minimal minors. Indeed, by Proposition 3.5, for any disconnected rooted graph (G, 1),
the component H that contains i give a connected minor (H, ) that allows (k, £) with the
SNIP. Therefore, every minimal minor for a given nullity pair is connected. Moreover,
according to the celebrated Robertson—Seymour Theorem (graph minor theorem) [18],
the set of minimal minors is finite for each (k, ¢).

Remark 5.1. By Proposition 4.1, the only minimal minor for nullity pairs (0,0) and (1, 0)
is (K1,4). Similarly, Proposition 4.2 implies that the only minimal minor for the nullity
pair (0,1) is (K2,1).

5.1. Nullity pairs (1,1), (2,1)

The minimal minors for (1, 1) and (2, 1) are identical by Corollary 2.3 and Lemma 3.8.
That being said, they are a bit more complicated than the trivial nullities established in
Remark 5.1.

A vertex with degree at least 3 is called a high-degree vertex. A generalized star is a
tree with exactly one high-degree vertex, and the unique high-degree vertex is called its
center. The following lemma can be quickly proved using the Parter—Wiener theorem,
see [15,19,20].

Lemma 5.2. Let G be a generalized star. Then (G, center) does not allow the nullity pair
(2,1).
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Paw S(27171)

Fig. 1. The minimal minors for the nullity pair (1,2) with the SNIP.

Proof. Suppose A € S(G) satisfies null(A) = 2 and let ¢ be the center vertex of G. By the
Parter—Wiener theorem, the vertex 4 is the Parter vertex, meaning null(A(7)) =3. O

Theorem 5.3. Let (G, i) be a connected rooted graph. Then the following are equivalent.

Proof. By Proposition 4.3 and Example 2.4, both (K3, ) and (K7 3, leaf) allow the nullity
pair (2,1) with the SNIP. By the Minor Monotonicity Theorem, every rooted graph that
contains (K3,i) or (K 3,leaf) as a minor allows (2,1) with the SNIP. This proves (c)
implies (a). Also, note (a) implies (b) by definition.

Now suppose (G, ) does not contain (K3,4) or (K7 3,leaf) as a minor. If G contains a
cycle C, then contracting a shortest path from i to C' (which exists since G is connected)
and contracting C' to K3 results in a minor (K3,4). Therefore, G is a tree. Assume that
G has a high-degree vertex j # i. Contract edges on the path connecting i to j until 4 is
adjacent to j. Observe that the resulting rooted graph contains (K7 3, leaf) as an induced
rooted subgraph. Therefore, (K7 3,leaf) is a minor of (G, ). This is a contradiction and
so G can have at most one high-degree vertex. If G has one high-degree vertex, then G
is a generalized star and i has to be its center. If G has no high-degree vertex, then G
is a path. Furthermore, neither a rooted path (rooted at any vertex) nor a generalized
star rooted at its center contains (K3, ) or (K7 3,leaf) as a minor. Thus, (c) and (d) are
equivalent.

To complete the proof, we show (b) implies (d) via contraposition. If G is a path,
then (G,14) does not allow (2,1) for any root ¢ since the maximum nullity of a path is
1. If G is a generalized star with ¢ its center, then (G, %) does not allow (2,1) as well by
Lemma 5.2. O

5.2. Nullity pair (1,2)

As we shall soon see, the minimal minors for the nullity pair (1,2) with the SNIP are
the two rooted graphs shown in Fig. 1.
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Fig. 2. An example of yam graph.

If unspecified we shall always assume the roots of (Paw,i) and (5(2,1,1),¢) are as
indicated in Fig. 1. The next example verifies that these rooted graphs allow the nullity
pair (1,2) with the SNIP.

Example 5.4. Let

01000
(1)}(1)(1) 1000 1
A1=0111 and AQZOOO()l
011 000 0 1
01110

Observe that Ay € S(Paw) and Ay € §(S(2,1,1)). By direct computation, both A; and
As have 1-nullity pair (1,2). Also, A;(1) and A2(1) have the SAP, so A; and As have
the 1-SNIP by Theorem 3.9. Therefore, both (Paw, 1) and (S(2,1,1), 1) allow the nullity
pair (1,2) with the SNIP.

We will show that the absence of (Paw,i) and (S(2,1,1),¢) minors results in a yam
graph (see Fig. 2).

Definition 5.5. A yam graph is a connected rooted graph (G, ) such that

e cach component of G — i is either a generalized star or a path,
o 7 is only adjacent to the center of each component of G — ¢ that is a generalized star.

In order to characterize the minimal minors for the nullity pair (1,2) we require the
following two lemmas.
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Lemma 5.6. Let (G, i) be a generalized star with the root i at its center. If B € S(G) has
nullity at least 2, then each vector in ker(B) has its i-th coordinate equal to 0.

Proof. Assume B € S(G) has nullity at least 2. By the Parter—Wiener theorem, the
vertex i is upper. By Remark 2.1, the i-th column of B is not a linear combination of
the other columns. Let x € ker(B). Since Bx is a linear combination of the columns of
B, the i-th entry of x is zero. O

Lemma 5.7. A yam graph does not allow (1,2) with the SNIP.

Proof. Let (G,) be a yam graph. Suppose A € S(G) has the -SNIP and ¢-nullity pair
(1,2). Without loss of generality, ¢ = 1 and A(¢) is the direct sum of matrices By, ..., By,
each of which corresponds to a component of G —i. So, A has the form

a bl - bl
by B

A= .
b, B

By Theorem 3.9, A(i) has the SAP with null(A(7)) = 2. By [2, Lemma 3.1], we may
assume null(By) = 2 and Bs,..., By are nonsingular. Since the maximum nullity of a
path is 1, the graph of B is a generalized star; let j denote its center. By Lemma 5.6,
each vector x in ker(Bj) has its j-th entry zero. Padding each such x with zeros results
in a null vector of A since the only nonzero entry in by is the j-th entry. Therefore,
null(A) > 2, which is a contradiction. O

We are now ready to state the main result of this section.

Theorem 5.8. Let (G,i) be a connected rooted graph. Then the following are equivalent.
(a) (G
(b) (@
(¢c) G is not a yam graph.

,1) allows the nullity pair (1,2) with the SNIP.
,1) contains (Paw,i) or (S(2,1,1),4) as a minor, as shown in Fig. 1.

Proof. By Example 5.4, both (Paw, i) and (S(2,1,1),4) are rooted graphs that allow the
nullity pair (1,2) with the SNIP. Therefore, by the Minor Monotonicity Theorem, every
connected (G, ) that contains (Paw, ) or (5(2,1,1),%) as a minor allows (1,2) with the
SNIP. Thus (b) implies (a). By Lemma 5.7, a yam graph does not allow (1,2) with the
SNIP, which shows (a) implies (c).

To complete the proof, we now show that (c¢) implies (b). Assume (G,i) does not
contain (Paw,d) or (S(2,1,1),7) as a minor. Observe that if G contains a cycle, then ¢
lies on that cycle, otherwise (Paw, ) is a minor of (G, ). As a result, G —i is a forest. If a
component of G — i contains a high-degree vertex j (with respect to G — i) such that i is
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not adjacent to j, then (G, ) contains (S(2,1,1),4) as a minor, a contradiction. Suppose
that a component H of G —i has two high-degree vertices u and v (with respect to G—1).
Then, by the preceding argument, u and v are adjacent to <. Since H is connected, there
exists a path of length at least 2 from ¢ to u or v. Thus, (G, %) contains (S5(2,1,1),4) as a
minor, a contradiction. Consequently, a component of G — i is either a generalized star
or a path; when it is a generalized star, i is only adjacent to its center. So, by definition,
(G,4) is a yam graph. O

With the help of the SNIP, we are able to characterize all connected rooted graphs
that allow (1,2).

Proposition 5.9. Fvery rooted graph (G, i), where i is a cut-vertez, allows the nullity pair
(1,2).

Proof. Let (G,4) be a rooted graph, where i is a cut vertex. Then G — i contains at
least two components H; and Hs. We may therefore write G — ¢ as the disjoint union
of Hy, Hy and Hs, where Hj is possibly empty or disconnected. Let Ly and Ly be the
Laplacian matrices of Hy and Hs, respectively. Let E € S(H3) be nonsingular. Without
loss of generality ¢ = 1 and

a bl b] bl
b Iy

bs E

where a = 1, and by, bs and bg are the appropriately chosen (0, 1)-vectors. Observe that
null(A(7)) = 2. Since 7 is a cut vertex, (b1, 1) # 0. Since ker(L;) = span({1}), by is not
in the column space of Lj. Therefore, by Remark 2.1, i is a upper index, and so A has
t-nullity pair (1,2). O

Lemma 5.10. Let (G,i) be a yam graph. Then (G, 1) allows the nullity pair (1,2) if and
only if G — i has two or more components.

Proof. Suppose G — i has two or more components. Then i is a cut-vertex and by
Proposition 5.9, (G, 1) allows (1,2).

Suppose G —i has at most one component. If G —i is the empty graph, then (G, ¢) does
not allow (1,2). So assume that G — i has exactly one component. If the component is a
path, then it does not allow (1,2) since the maximum nullity of a path is 1. Otherwise
the component is a generalized star. Let A € S(G). Just as in the proof of Lemma 5.7,
Lemma 5.6 implies that if null(A(7)) = 2, then null(A) > 2. Thus (G, ) does not allow
the nullity pair (1,2). O

The following theorem is now immediate from Theorem 5.8 and Lemma 5.10
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Theorem 5.11. Let G be a connected graph with vertez i. Then (G,1) allows the nullity
pair (1,2) if and only if (G,i) is not a yam graph such that G — i has at most one
component.

5.3. Rooted trees

The parameter £(G), introduced and studied in [2], is defined as the maximum nullity
among matrices in S(G) with the SAP. By [2, Theorem 3.7], {(T") = 2 for every tree T'
that is not a path and [2, Theorem 3.2] implies £(T — 4) < 2. These facts, along with
various results from this paper, allow us to characterize the nullity pairs that are allowed
by rooted trees with the SNIP.

Theorem 5.12. Let T be a tree on n > 2 vertices such that T # P, and let i € V(T). If
(T,4) allows (k,£) with the SNIP, then k <1 or £ < 1. The rooted tree (T, ) allows (2,1)
and (1,1) with the SNIP if and only if T has a high-degree vertex v # i. The rooted tree
(T,4) allows (1,2) with the SNIP if and only if T contains a high-degree vertex v # i
such that v is not adjacent to i.

Proof. Suppose that (7',7) allows (k,¢) with the SNIP. Recall Lemma 3.6 states that if
a symmetric matrix A has the SNIP, then A and A(7) have the SAP. Thus £(T") = 2 and
(T —4) <2imply k < 2 and ¢ < 2. Further, (T,4) does not allow (2,2) with the SNIP
as Corollary 3.10 would imply (7T',4) allows (3,2) with the SNIP. Thus, k¥ <1 or ¢ < 1.

Suppose that (T',7) allows (2,1) and (1,1) with the SNIP. Since T is not a path, either
T contains a high-degree vertex v # i or T' is a generalized star with central vertex i.
Lemma 5.2 implies that if T is a generalized star with central vertex i, then T" does not
allow the nullity pair (2, 1). To prove the converse, suppose that T contains a high-degree
vertex v # i. Then (T,¢) contains (K7 3,leaf) as minor. Since (K7 3,leaf) allows (2,1)
with the SNIP, Theorem 1.3 implies (7,4) allows the nullity pair (2,1) with the SNIP.

By Theorem 5.8, (T,4) allows (1,2) with the SNIP if and only if (S(2,1,1),) is a
rooted minor of (7',4). This occur if and only if T' contains a vertex v # i of degree at
least 3 such that v is not adjacent to . O

6. Developing the SNIP and its consequences

In Section 5 we saw the power of the Minor Monotonicity Theorem. Here we provide
the theoretical background of this theorem and other applications of the SNIP. Let G
be a graph with vertex ¢ and let A € S(G). We begin by considering two types of
perturbations of A obtained by group actions.

Let SYY(G) be the topological closure of S(G), i.e., all symmetric matrices whose i, j-
entry is zero whenever {i,j} ¢ E(G) and 7 # j. Note that the entries of a matrix in
S(G) that correspond to an edge are allowed to be zero. The set S¢(G) is a subspace



A. Abiad et al. / Linear Algebra and its Applications 699 (2024) 539-568 557

QTAQ

same pattern A+ B

same ¢-nullity pair
/

Fig. 3. Illustration of the two perturbations on A.

of the vector space Sym,, (R) and, in particular, is an additive group. Observe that any
perturbation of A € S(G) that takes the form

A— A+ B

for B € S¢(G) and B sufficiently small preserves the pattern of A, i.e., A+ B € S(G).
We also consider the subgroup of the general linear group given by:

GLY(R) := {Q € Mat,(R) : det(Q) # 0, Q[i,i) =0"}.

For example, when 7 = 1, the matrices in GLS) (R) are of the form

Q= [ q1,1 o’ ]
Q(L,1] Q1)
where g11 # 0 and Q(1) is nonsingular. By direct computation, we have (QT AQ)(i) =

Qi) TA()Q(i) for Q € GLY(R). Thus, any perturbation of A € Sym, (R) that takes
the form

A QTAQ

for Q € GLS )(R) preserves the i-nullity pair of A.

We consider the orbits of A under the additive group action and the multiplicative
group action in a small neighborhood of A. These can be viewed as geometric objects
in the space Sym,,(R), as depicted in Fig. 3. Study the tangent spaces of these orbits
naturally leads to the SNIP. More details about these techniques and related properties
can be found in [14].

Definition 6.1. Let U and W be finite dimensional vector spaces over R. Let F' be a
differentiable function from a domain of U containing ug € U to W. Then the derivative
of F at ug is the linear operator F' defined by

F.d:hmF(uo-l-td)—F(uo)

t—0 t
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for each vector d € U.

This definition is equivalent to the classical total derivative, but gives a convenient
notation for dealing with derivatives in multiple variables within matrix spaces.

Example 6.2. Let G be a graph on n vertices, A € S(G), and ¢ € V(G). Let F be the
function

F(B,Q) =Q"AQ + B, (2)

defined for B € SY(G) near O and Q € GLY¥(R) near I, and choose perturbation
matrices AB € §%(G) and AQ € Mat,,(R) with AQ[i,i) = 0". By direct computation,
we have

F(O +tAB, I +tAQ) — F(O,1)

lim

t—0 t
i (I+tAQ)TA(I +tAQ)+tAB— A
T 150 t

= lim AQTA+ AAQ +tAQTAAQ + AB
= AQ"A+ AAQ + AB.
The derivative of F' at (O, I) is thus the linear operator defined by
F-(AB,AQ)=AQ"A + AAQ + AB. (3)

This function can be specialized to a function of either argument by fixing the other:
fixing @ gives a map F that takes B to QT AQ + B, and fixing B gives a map Fg that
takes Q to QT AQ + B. Note that Fiz and FQ satisfy

Fp-AB = AB,
Fo-AQ =AQTA+ AAQ.

This agrees with the chain rule
F-(AB,AQ) = Fg-AB+ Fg - AQ.

Example 6.3. Let A be the all-ones matrix in S(K>) and ¢ = 1. Consider the function F'
from Equation (2). Then we may write

Q:[Z 2] ande[z g]

Thus,
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2 2
T x4 2zy+y +a xz4yz+b
Q AQ+B{ xz+yz+b 224+c '

Viewing F' as a function sending the six variables z,y, z, a, b, ¢ to the three independent
entries in the symmetric matrix, we obtain that the total derivative of this map at
(z,y,2) = (1,0,1) and (a,b,c) = (0,0,0) is

2z 4+ 2y 2z 42y 0 1 00 22 0100
z z z+y 0 1 0j=(1 1 1 0 1 0].
0 02001

0 0 2z 0 0 1

Note that this is the matrix representation of F by reading AQ with the basis
{E11,E21,E>2} and AB with the basis {E1 1, E1,2+ E2 1, E2 2 }. Therefore, considering
the derivative F' as a linear operator avoids the hassle of choosing the basis.

The following proposition considers the tangent spaces and the normal spaces. Here
we use the inner product of matrices (4, B) = § tr(B" A) for symmetric matrices. Note
that the scalar % does not change the orthogonality, but it has the benefit of giving
|Ei; + Ej;|| =1 when ¢ # j.

Proposition 6.4. Let G be a graph on n vertices, A € S(G), and i € V(G). Let F be
defined as in Equation (2), and let Fg, FQ be the partial derivatives at B = O and
Q = 1. Then the following hold:

Proof. Note that every matrix in GL{" (R) near I can be written as I + L for some
L € Mat,(R) with L[i,i) = 0'. The ranges of Fz and Fg are straightforward from
Example 6.2.

For S°(@), since the diagonal entries and the entries corresponding to an edge are
free, the orthogonal complement of S(G) has free entries on non-edges.

Next we consider the range(Fp), which contains all symmetric matrices X such that
(X,LA+ AL) = 0 for all L € Mat,,(R) with L[i,i) = 0. By direct computation, we
have

2(X,LTA+ AL) = tr(ALX) + tr(L " AX)
tr(XL"A) +tr(L"T AX)
tr(LT AX) + tr(LTAX)
4(AX,L),

which is zero only for all such L when (AX)[i,i] =0 and (AX)(4,:]=0. O
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With the above set up, now we are ready to justify the definition of the SNIP.

Proposition 6.5. Let G be a graph on n vertices, A € S(G), and i € V(G). Let F be
defined as in Equation (2) and let F, Fp, FQ be the derivative and the partial derivatives
at B=0 and Q = I. Then the following are equivalent:

A has the i-SNIP.
F s surjectwe

(a)
(b) . .
(c) range(F) = range(FB) + range(Fgp) = Sym,, (R).
(d) range(Fp)* Nrange(Fp)*- = {O}.

Proof. From Equation (3) we know
F-(AB,AQ) = Fp-AB+ Fg - AQ.

Hence range(F) = range(Fg) + range(Fy), so statements (b) and (c) are equivalent by
definition. The equivalence between statements (¢) and (d) follow from basic linear al-
gebra facts about subspaces and their orthogonal complements. Finally, we show that
statements (d) and (a) are equivalent. Observing range(F)* and range(F)* in Propo-
sition 6.4, we notice that Ao X = O and I o X = O already implies (AX)[é,i] = 0, so
the intersection of these two subspaces is

{X €eSym,(R): Ac X =0, IoX =0,(4X)(i,:] = O}.
Therefore, the intersection is trivial if and only if A has the -SNIP. O

When the orbits of A under B and @ (see Fig. 3) are locally manifolds, we say that
an intersection at A is a transversal intersection when it satisfies the property that the
span of the tangent spaces of those manifolds at A is the entire ambient space. However,
we note that the proofs in this paper do not require the orbits to be manifolds.

Now that we have the basic background on the SNIP, we move our attention to the
inverse function theorem, which will be the key ingredient in the proofs of the Minor
Monotonicity (Theorem 1.3). Note that the inverse function theorem is often stated
for maps with bijective derivatives. Here we include a surjective version of the inverse
function theorem; see, e.g., [14].

Theorem 6.6 (Inverse Function Theorem). Let U and W be finite-dimensional vector
spaces over R. Let F be a smooth function from an open subset of U to W with
F(ug) = wq. If the derivative F at ug is surjective, then there is an open subset W' C W
containing wo and a smooth function T : W' — U such that T(wg) = ug and FoT is
the identity map on W'.
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\

QTAQ

M =F(B',Q" A'=F(0,Q)

same pattern A+ B

same ¢-nullity pair
/

Fig. 4. Illustration of the proof of Lemma 6.7.

6.1. Supergraph lemma

This section will be devoted to establishing the (extended) supergraph lemma. We
start by proving the following basic version of the supergraph lemma.

Lemma 6.7 (Supergraph lemma). Let G be a spanning subgraph of H and i € V(G).
Suppose A € S(G) has the i-SNIP. Then there is a matriz A’ € S(H) such that A and
A’ have the same i-nullity pair, A" has the i-SNIP, and A’ can be chosen arbitrarily close
to A.

We will use the function F' as in Equation (2). As we will see in the proof, the SNIP
and the inverse function theorem will guarantee the existence of B’ and @’ such that
M = F(B',Q") forany M € S(H) sufficiently close to A. Thus, the matrix A’ = F(O, Q")
is the desired matrix with the same i-nullity pair as A and with the correct pattern. The
proof is illustrated in Fig. 4.

Proof of Lemma 6.7. Let F be as defined in Equation (2) and let F' be its derivative
at B =0 and Q = I. Since A has the -SNIP, F is surjective by Proposition 6.5. By
Theorem 6.6, for each matrix M € Sym,, (R) close enough to A, there are matrices B’
and Q' such that F(B’,Q’) = M. Since G is a spanning subgraph of H, we may change
the entries corresponding to E(H) \ E(G) in A into small nonzero values to obtain a
matrix M € S(H). Although M might not have the same i-nullity pair, the matrix
A" = F(O,Q’) satisfies A’ = (Q")TAQ' and A’ = M — B’. When B’ and @’ are small
perturbations, A’ has the same pattern as M, i.e., A’ € S(H), and A’ has the same
i-nullity pair as A.

Finally we claim A’ has the -SNIP. According to Propositions 6.4 and 6.5, A has the
i-SNIP implies that

{LTA+ AL : L € Mat,(R), L[i,i) =0"} +S?(G) = Sym,, (R).

With a small perturbation A’ = (Q') T AQ’, we have
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{LTA"+ A'L: L € Mat,(R), L[i,i) = 0"} + S%(G) = Sym,,(R).
Since §°(G) C S°(H), this leads to

{LTA"+ A'L : L € Mat,(R), L[i,i) = 0"} + S (H) = Sym,, (R),
which certifies the --SNIP of A’ again by Propositions 6.4 and 6.5. O

Remark 6.8. In the proof of Lemma 6.7, since A" and A are congruent matrices, they
share the same inertia.

Lemma 6.9 (Extended supergraph lemma). Let G be a subgraph of H and i € V(G).
Suppose A € S(G) has the i-SNIP. Then there is a matric A" € S(H) such that A and
A’ have the same i-nullity pair, and A’ has the i-SNIP.

Proof. Let h = |V (H)|—|V(G)|. Let A be a matrix in S(G) with the i-SNIP. Then A® 1},
is a matrix with the same i-nullity pair as A with the -SNIP by Proposition 3.5. By
applying the supergraph lemma (Lemma 6.7) to the graphs G U K}, (where K}, denotes
the complement of K}) and H using the matrix A® I}, € S(GUK},), we obtain a matrix
A’ with the i-SNIP and the same ¢-nullity pair as both A ® I, and A. O

6.2. Decontraction lemma

This section is devoted to proving the following decontraction lemma.

Lemma 6.10 (Decontraction lemma). Let G be a graph that is obtained from H by con-
traction along the edge {u,v} such that v and v have disjoint neighborhoods. Suppose
A € 8(G) has the i-SNIP. Then there is a matriz A’ € S(H) such that A and A" have
the same i-nullity pair, and A’ has the i-SNIP. If i € V(G) is the new vertex obtained
through the contraction of {u,v}, then i € V(H) can be designated as either u or v.

Suppose u and v have some common neighbors in H. For each of the common neigh-
bors, we may remove either the edge joining u or the edge joining v to obtain a new
graph H'. Thus, H' is a spanning subgraph of H, and the contraction of H' on {u, v} is
still G. We may apply the supergraph lemma (Lemma 6.7) to properly perturb a matrix
from S(H') into S(H). Therefore, for Lemma 6.10, it is enough to consider the case from
G to H', that is, when the neighborhoods of u and v are disjoint. As we will see shortly,
this condition allows us to write a matrix A € S(G) into the form of Equation (4), which
makes the argument easier.

Throughout this subsection, we will assume that G has n vertices, u =n, v =n+1,
and n is the new vertex obtained by contracting {u,v}. Note that i can be any vertex
in [n]. Without loss of generality, we may assume ¢ # v. Let & = Ng(u) \ {v} and
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B = Npg(v)\ {u}. By partitioning [n] as ([n — 1]\ (a U B)), o, 8, and {n}, we may write
a matrix A € §(G) as

: (4)

ST O

where we adopt the convention that? indicates a number that may or may not be zero,
and * indicates a nonzero number. The proof involves two steps (first obtain A and
secondly obtain A’, see Fig. 5).

The first step is to perturb the intersection point A; := A @ [1] into a matrix

_ o .
A({n,n+1}) a o0

A= b b (5)
0" al b" |7 0
o7 o' sbT |0 x|

with the same ¢-nullity pair.
The second step is to apply symmetric row and column operations to A in order to

obtain
_ o o]
A(fn,n+ 1)) a o
A =FTAE = 0 db|, (6)
0" al 0" |7
o’ o' bl [+ x|
where
1 0
E=L,o| 4 .|
-1
Note that E € GLS)H(R) as i # v, and hence A’ and A have the same i-nullity pair.

Fig. 5 shows their relations as well as an overview of the proof.

The first step to obtaining A is very similar to the argument used for the supergraph
lemma (Lemma 6.7), except that here we will use a new perturbation function, which
we denote by F. Let G; = G UK, be a spanning subgraph of H. Then A; € S(Gy). For
each B € §(G1) and each real number 0, define Bs as the matrix obtained from B by
adding 0B[n, 8] to B[n + 1, 8] and B[, n] to B[S,n + 1]. Thus, the set
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A'=ETAE

QRTAQ

same pattern AW B
Ar

same ¢-nullity pair
/

Fig. 5. Illustration of the proof of Lemma 6.10.

SUG1,0) :={Bs : B SYG)}

is a subspace with the same dimension as S¢(G1). Now we fix a vertex w € 3, and for
each C' € Sym,, | (R) we define

CWB:=C+ Bg,

where 0 = Cgf[:lwﬁu] is a ratio defined by C. Note that C' & B is well-defined for each C
nearby A, and for C' € S(G1), C' W B is simply C + B. Now let F' be the perturbation

function

F(B,Q)=(QTAQ)wB (7)

defined on B € §°'(G1) nearby O and Q € GLS}FI(R) nearby I. Since F'(B,I) = A, + B,
the calculation of the derivative of I is almost the same as that of F in Equation (2),
and its connection to the SNIP is the same. Thus we have the following remark.

Note that F(B,I) = F(B,I) when we fix Q = I as the 6 for A, € S(Gy) is 0.
Similarly, F(O,Q) = F(O,Q) when we fix B = O. Therefore, the partial derivatives of
F and F are the same at (B, Q) = (O, 1).

Remark 6.11. Let F' be the perturbation function defined in Equation (7), and let F be
its derivative at (B,Q) = (O,I). Then A; has the -SNIP if and only if F is surjective.

Now we are ready to formalize the aforementioned arguments.
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Lemma 6.12. Let G be a graph on n vertices, i € V(G), 8 C Ng(n), and G; = GU K.
Suppose A € S(G) has the i-SNIP. Then there is a matriz A € S (G1,0) of the form
(5) such that Ay = A®[1] and A have the same i-nullity pair, A has the property

{LTA+ AL : L € Mat,11(R), L[i,i) = 0"} + S%(G1,0) = Sym,,,; (R),
and A can be chosen arbitrarily close to Ay with & > 0.

Proof. The argument is essentially the same as the proof of Lemma 6.7. Since A has
the i-SNIP, from Proposition 3.5 it follows that A; = A @ [1] also has the ¢-SNIP. Let
F be the perturbation function defined in Equation (7), and let F be its derivative at
B = O and Q = I. Thus, F is surjective by Remark 6.11. By Theorem 6.6, for each
matrix M € Sym,,(R) close enough to Aj, there are matrices B and Q such that
F(B,0) = M.

Now we claim that for any small § > 0, the desired A exists. Let § > 0 be given. Choose
the matrix M as the matrix obtained from A; by adding 6A;[n, 8] to Ai[n + 1, ] and
§A1[B,n] to A1[B,n + 1]. That is, M = (A;)s. By the previous discussion, there are
matrices B and Q such that F(B,Q) = M. Although M need not have the same i-
nullity pair as A;, the matrix A = F(O, Q) satisfies A = QT A1Q and A = M — Bs. The
facts M € S(G1,6) and Bs € S (G4, ) imply A € S (G1,4). Since B and Q are small
perturbations of O and I, respectively, A has the form (5) with b nowhere zero, and A
has the same i-nullity pair as Aj;.

According to Propositions 6.4 and 6.5, A; has the -SNIP implies that

{LTA; + A1 L : L € Mat,,+1(R), L[i,i) =0} +S%(G1) = Sym,, ., (R).

With the continuous changes from A; to A = QT A;Q and from S(G;) = S (G1,0) to
S(Gy, ), we have

{LTA+ AL : L € Mat,,+1(R), L[i,i) = 0"} + S%(G1,6) = Sym,,,; (R).
This completes the proof. O
The choice of the perturbation function F' successfully makes the two rows of A[{n,n+
1}, 8] parallel and makes A possess a condition similar to the i-SNIP, which will be
transformed into ¢-SNIP later. Now the proof of Lemma 6.10 is just one step away.
Proof of Lemma 6.10. Let A be the matrix guaranteed by Lemma 6.12 and

1 0
E=IL.&| ]
-1




566 A. Abiad et al. / Linear Algebra and its Applications 699 (2024) 539-568

Then for A sufficiently close to A, the matrix A’ = ET AE has the form (6). Since A
can be chosen arbitrarily close to A;, we have A’ € S(H). Since E € GLgL(R), the
matrices A’, A, and A; have the same é-nullity pair.

Finally, C — ETCE is a linear bijection from Sym,, ,;(R) to Sym,,_(R) as well as a
bijection on the space

L:={L € Mat,1(R), L[i,i)=0"}.
By applying this bijection to each term in
{LTA+ AL : L € L} + 8%(G1,0) = Sym,, ., (R),
we know that the span of
{(ETLT(E") A+ AE7'LE: L € £} and S°(H)

is Sym,, ., (R). Additionally, since L — E~'LE is a linear bijection from L to itself, we
get

{LTA+AL:LeL}+S8YH)=Sym,,,(R),
implying A’ has the -SNIP. 0O

Combining the extended supergraph lemma (Lemma 6.9) and the decontraction
lemma (Lemma 6.10), we obtain the desired minor monotonicity result.

Theorem 1.3 (Minor Monotonicity). Let (G,1) be a rooted minor of (H,4). If (G, 1) allows
the nullity pair (k,?) with the SNIP, then (H,i) allows the nullity pair (k,€) with the
SNIP.

Proof. The definition of minor allows three operations: deleting an edge, deleting a ver-
tex, and contracting an edge. To delete a vertex, one may delete all edge incident to it
and then delete the isolated vertex. To contract an edge {u, v}, one may delete an edge
from {u,w} or {v, w} for any common neighbor w of v and v and then contract the edge
{u,v}. Therefore, the definition can be refined as deleting an edge, deleting an isolated
vertex, and contracting an edge whose endpoints have disjoint neighborhoods. These
three operations are handled by the supergraph lemma (Lemma 6.7), the extended su-
pergraph lemma (Lemma 6.9), and the decontraction lemma (Lemma 6.10), respectively.
Thus, the minor monotonicity therefore follows. O
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