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We present a unifying framework that allows us to study the mixed crystalline-electromagnetic responses
of topological semimetals in spatialdimensions up to D ¼ 3 through dimensionalaugmentation and
reduction procedures. We show how this framework illuminates relations between the previously known
topological semimetals and use it to identify a new class of quadrupolar nodal line semimetals for which
we construct a lattice tight-binding Hamiltonian. We further utilize this framework to quantify a variety
of mixed crystalline-electromagneticresponses,including several that have not previously been
explored in existing literature, and show that the corresponding coefficients are universally proportional
to weighted momentum-energy multipole moments of the nodalpoints (or lines) of the semimetal.
We introduce lattice gauge fields that couple to the crystal momentum and describe how tools including
the gradient expansion procedure, dimensional reduction, compactification, and the Kubo formula can
be used to systematically derive these responses and their coefficients.We further substantiate these
findings through analytical physical arguments,microscopic calculations, and explicit numerical
simulations employing tight-binding models.
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I. INTRODUCTION

Topologicalresponses are a key manifestation of elec-
tronic topology in solids. Celebrated examples such as the
integer quantum Hall effect [1–3] and axion electrodynam-
ics [4,5] have paved the way for a broader exploration of
topological response phenomena in insulating systems. As
of now, a wide variety of phenomena thatare directly
determined by the electronic topology have been consid-
ered, including thermal response [6,7], geometric response
[8–24], and electric multipole response [25–27].These
responses are robust features of topological insulators (TIs),
and topological phases, in general, and are often described
by a quantized responsecoefficient, e.g., the integer
Hall conductance [1–3],or the quantized magnetoelectric
polarizability [5,28,29].

Interestingly,certain distinctive features of response of
topological Weyl or Dirac semimetals can be described by
response theories thatare closely analogous to those of
topologically insulating phases,albeit with coefficients

that are determined by the momentum-space and energy
locations of the point or line nodes [30–35]. For point-
node semimetals,the relevant response coefficients are
momentum-energy vectors determined as a sum ofthe
momentum and energy locations of the point nodes
weighted by their chirality (or by their helicity, for
Dirac semimetals),yielding a momentum-energy space
dipole. For example,the low-energy,nodal contribution
to the anomalous Hall effect tensor of a 3D Weyl
semimetalis determined by the momentum components
of this momentum-energy dipole vector.

The quasitopologicalresponse coefficients of topologi-
cal semimetals are not strictly quantized, since they can be
continuously tuned with the nodal momenta. However, the
forms of the responses share many features with topologi-
cal insulators in one lower dimension or,perhaps more
precisely,with weak topological insulators in the same
dimension [36,37]. Indeed, topological semimetalsand
weak topological insulatorsboth require discrete trans-
lation symmetry to be protected, and both are sensitive to
translation defects such as dislocations [38].Interestingly,
the connection to translation symmetry has motivated
recent work which recasts many previously proposed
topological responsesof these systems as couplings
between the electromagnetic gauge field Aμ and gauge
fields for translationsea

μ, where μ runs over spacetime
indices and a runs over the spatial directions in which
translation symmetry exists. This insight has also led to the

*These authors contributed equally to this work.

Published by the American Physical Society under the terms of
the Creative CommonsAttribution 4.0 International license.
Further distribution of this work must maintain attribution to
the author(s) and the published article’s title,journal citation,
and DOI.

PHYSICAL REVIEW X 14, 041060 (2024)

2160-3308=24=14(4)=041060(37) 041060-1 Published by the American Physical Society



development of new response theories that are just begin-
ning to be understood [17–20,24].

Motivated by these previous results and our recent
related work on higher-rank chiral fermions [17,24,39],
here we study the topological responses of 1D, 2D, and 3D
topological semimetalscoupled to electromagnetic and
strain (translation gauge)fields. In addition to the well-
studied dipole case mentioned above, we also study cases
where point nodes have momentum-energy quadrupole or
octupole patterns.Our approach allows us to make clear
connections between a wide variety of response theories
across dimensions and clarifies relationships between many
of the response theorieswe discuss. We find that the
chirality-weighted momentum-energy multipole moments
of the semimetals determine new types of quasitopological
responses to electromagnetic fields and strain. We are able
to explicitly derive many of these responses from Kubo
formula calculations (sometimes combined with dimen-
sional reduction procedures [5]).Using these results,we
explicitly study these families of response theories using
lattice model realizations. We also extend our results to the
responses of nodal line semimetals (NLSMs) and construct
a new type of NLSM with an unusual crossed,cagelike
nodal structure.

Generically,topologicalsemimetals are robustonly in
the presence of both translation and charge conservation
symmetry.As such, we focus here on response theories
built from gauge fields for these two ubiquitous sym-
metries.Recently,there has been considerable interestin
topological semimetals protected by a variety of crystalline
symmetries.Examplesinclude type-I Dirac semimetals
protected by discrete rotation symmetry and exotic semi-
metals with three-, four-, six-, and even eightfold band
crossings protected by nonsymmorphic crystalline sym-
metries [40,41]. Additional internal symmetriesbeyond
charge conservation, such as chiral symmetry, are also often
required to protect the nodal Fermi surfaces in many cases
[42–44]. Combinations of internaland point group sym-
metry can also play a key role, with some examples being
nodal-line topologicalsemimetals carrying Z2 monopole
charge and nodal-surface topological semimetals protected
spacetime inversion symmetry [44–47].In many of these
examples, interesting responses involving these additional
symmetries are likely to occur in addition to what we study
here. Indeed, there has been a wide range of recent work in
2D and 3D studying responses of insulators and semimetals
to gauge fields of discrete rotation symmetry [18,48–52].
While a full discussion of all possible responses is beyond
the scope of our work, our general approach can be applied
to study cases having more complicated symmetry pro-
tection. We comment in the conclusion on possible future
directions for responsetheories involving symmetries
beyond translation and U(1) charge conservation.

Our article is organized as follows. In Sec. II, we provide
an overview of and intuition aboutthe response theories

that are discussed in more detail, and in model contexts, in
later sections.In Sec. III, we derive a family of effective
actions that describe mixed crystalline-electromagnetic
responses in various spatialdimensions.From here, we
proceed in Sec.IV by presenting concrete lattice models
and explicit numericalcalculations thatrealize and dem-
onstrate the mixed responses in D ¼ 1, 2, 3. We conclude
in Sec. V by discussing possible extensions to future work
and potential pathwaysto experimental observation of
some of the described phenomena.

II. OVERVIEW OF RESPONSE THEORIES

The systems we consider in this article all exhibit U(1)
charge conservation and discrete translation symmetry in
at least one spatial direction. In the presence of these
symmetries, we can consider the responses to background
field configurations of the electromagnetic gauge field Aμ
and a collection of translation gauge fields ea

μ. For example,
if the system exhibits translation symmetry in the x
direction, then we can considercoupling the system to
the field ex

μ. Our goal is to study low-energy response
theories of electrons coupled to translation and electro-
magnetic gauge fields.

Since most readersare likely less familiar with the
translation gauge fields ea

μ than the electromagnetic
field Aμ, we briefly review the nature of these fields as
they appear in our work. In a weakly deformed lattice, ea is
given by

ea
j ¼ δa

j −
∂ua

∂xj ; ð1Þ

where the Kronecker δa
j encodes the fixed reference lattice

vectors,ua is the lattice displacement,and ∂ua=∂xj is the
distortion tensor [53].The fields ea

j in Eq. (1) are remi-
niscent of gauge fields (see, e.g., Ref. [54]): From Eq. (1),
we immediately see that line integrals of e describe lattice
dislocations, since

H
ð∂ua=∂xi Þdxi ¼ ba, where ba is the net

Burgers vector of all the dislocations inside the loop [53].
This points to an analogy with the configurations of the
usual electromagnetic field. The analog of magnetic fields
derived from e a

μ essentially encodesconfigurations of
dislocations,each with an amount of flux equal to the
corresponding Burgers vector.Additionally, electric fields
are time-dependent strains. In earlier work, e.g., Ref. [11],
these fields could have been called frame fields, but
crucially the translation gaugefields encode only the
translation or torsional part of the geometric distortion,
whereas the frame fields also carry rotational information.
In keeping with previous literature, here we call the set of
(Abelian) fields eaμ translation “gauge” fields,by analogy
of their relationship to translation “fluxes” (i.e., lattice
defects).This language is convenient because,as we see,
actions describing the response to such lattice fluxes are
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invariant under (vector-charge)gauge transformations of
the ea

μ fields.
A second way in which we use the close analogy

between eaμ and electromagnetic gauge fields is through
the lattice analog of the usual Aharonov-Bohm effect
(holonomy), in which a charged particle encircles a
magnetic flux of the gauge field.In the electromagnetic
case,a charged particle moving around a magnetic flux
generates a U(1)phase factor.For the translation gauge
field, taking a particle around a translation magnetic flux
having Burgers vector ba generates a translation operator
by the displacementba. For particles with a fixed trans-
lation charge, i.e., a fixed momentum, this generates a
momentum-dependent U(1) phase factor. This will lead us
to introduce momentum-dependentPeierls factors when
performing some lattice calculations.To complementthis
discussion,in Appendix A we show more explicitly how
translation symmetry can be “gauged” under a teleparallel
constraint of the underlying system geometry.A very
similar approach has been used to study the effects
of strain on graphene [55–57] and other semimetallic
systems[58–62], where strain can play the role of a
valley-dependent magnetic field.

For our purposes, there are many ways in which ea
μ can

be treated on equal footing with the electromagnetic gauge
field. However, there are some important distinctions. First,
the fields ea

j in Eq. (1) are not true gauge fields. This
becomes important when considering the possible response
actions:While the total charge of a system strictly con-
served, momentum conservation is not similarly inviolable
(see, e.g., Refs. [60–62] for some interesting physical
consequencesof this distinction). Second, responses
involving ea

μ are predicated on the existence of translation
symmetry.Thus, if the response is characterized by a
boundary effect or a response to a flux or defect, we must
be careful to ensure that (at least approximate) translation
symmetry is maintained in order to connect the coefficient
of the responseaction to explicit model calculations.
Indeed, some responsesare not well defined unless
configurations that maintain translation symmetry are used.
This is unlike the electromagnetic response forwhich
U(1) charge symmetry is maintained independently of
the geometry and gauge field configuration.Other impor-
tant distinctions have been discussed in recent literature that
has begun putting the gauging of discrete spatialsym-
metries on firmer ground [49,63,64].One importantdis-
tinction is that the translation gauge fields correspond to a
discrete gauge symmetry ZNa

, where Na is the number of
unit cells in the ath direction. This discreteness can play an
important role in the topological response properties [18],
but we do not focus on this aspect in our work.

Using this framework, our goal is to consider the
low-energy responsesof electrons to the background
electromagneticand translation gauge fields. Given a
translationally invariant Bloch Hamiltonian H, the response

theories we considercan, in principle, be derived from
correlation functions of the electromagnetic current

j μ ¼ e
∂H
∂kμ

ð2Þ

and the crystal momentum current

J μ
a ¼ ℏka

∂H
∂kμ

; ð3Þ

where the former couples to Aμ and the latter to eaμ (see
Appendix A for more details for the latter). Indeed, we take
exactly this approach in Sec. III to derive response actions
for 2D and 3D systems. While our explicit derivations are
important for precisely determining the coefficients of the
response actions we study, it is helpful to first motivate the
overarching structure that connects a large subset of these
response theories. We also note that alternative approaches
to determining some ofthe response actions we discuss
have been proposed in Refs. [18–20], and, where the results
overlap with ours,they agree.

To understand the connectionsbetween the response
theories we study,it is useful to begin by reviewing the
well-known dimensional hierarchy of response theories of
strong topological insulators [5]. We show the general
structure in Fig.1(a), where the response terms are built
solely from the electromagnetic gauge field.Furthermore,
Chern-Simons and θ-term response actions appear in even
and odd spatial dimensions,respectively.There are a
numberof connections between the theories in different
dimensions,and we now review three of them. First, a
Chern-Simonsaction in D spatial dimensionscan be
dimensionally reduced to a θ-term action in (D − 1)
dimensions by compactifying one spatial direction [65,66].
The (D − 1)-dimensional system can also represent a TI if
the value of θ is quantized to be 0; π by a symmetry that
protects the (D − 1)-dimensional topological insulator [5].
Second, one can consider the reverse process where
quantized adiabatic pumping [67] in (D − 1) dimensions
will converta θ-term action to a D-dimensionalChern-
Simons action. Finally, a θ-term action for a (D − 1)-
dimensional topological insulator exhibits a half-quantized
(D − 2)-Chern-Simonsresponse on boundarieswhere θ
jumps by π. These general relationships are summarized in
Fig. 1(a), where each type of relationship is color and
symbol coordinated.

Next, we can considera less familiar set of relation-
ships in Fig. 1(b) between gapped theories with mixed
crystalline-electromagnetic responses arising from effective
actions having both Aμ and eaμ fields. We emphasize that the
precise relationships we refer to in Fig. 1(b) are for gapped
systems where the coefficients of the actions are quantized.
In contrast, for the majority of this article, we focus on the
quasitopological responses of gapless systems which take
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similar forms, but with nonquantized coefficients.
Remarkably, many of the actions we discuss for insulators
can be generalized to the nonquantized case. For semimet-
als, however, the dimensional relationships we point out are
more akin to physical guides than a precise prescription for
deriving matching coefficients in between dimensions.

With this caveatin mind, let us consider the family of
theories in Fig. 1(b). In 0D, we can consider the response
action for a gapped system of electrons, S½A ¼ Q

R
dtA0,

which represents a system with charge Q ¼ eNe, where Ne
is the (integer) number of electrons. If we imagine stacking
these 0D systems in a discrete,translationally invariant
lattice in the x direction, then we generate a line of charges.
Indeed,stacking produces the response for a translation-
invariant line-charge density which is captured by the next
action in the sequence in Fig. 1(b), i.e., Q

R
A ∧ ex ¼

Q
R

dxdtðA0ex
x − Axex

0Þ.In this action, the first term rep-
resents the charge density along the line, while the second
term represents a current generated if the lattice of charges
is moving. The latter consequence becomes manifest in the
weakly distorted lattice limit,since the currentis propor-
tional to the displacement rate: j ∼ ex0 ∼ ð∂ux=∂tÞ.

We can also imagine a reverse process where we are
given a translationally invariantline of charge at integer
filling and cut out a single unit cell. Since the system is
gapped and translation invariant,this results in a move in
the opposite direction in Fig. 1(b), i.e., from A ∧ ex in 1D to
A in 0D with the same integer coefficient Q.We can use
this example to highlight our caveatabout gapped vs
gaplesssystemsmentioned above.That is, while it is
reasonable to have a 1D gapless system with nonquantized
(i.e., noninteger) charge (per unit cell) described by the 1D
action, the cutting procedure does notwork properly at
noninteger filling, since the result will be a 0D point with a
fractional charge.

In comparison to the response sequence for strong TIs,
we see that stacking is the analog of pumping for the
translation gauge field [68].Indeed,while pumping adds
an extra electromagnetic gauge field factor A, stacking adds
an extra translation gauge field eDþ1 , where D þ 1 is the
stacking direction.As a result, given any action in the
strong TI sequence, we can stack copies to get the response
action of a primary weak TI (stacksof codimension-1
strong TIs, e.g., lines stacked into 2D) by adding a wedge

(c) (a) 

(b) 

(d) 

FIG. 1. (a) A dimensionalhierarchy of theories describing responses of strong topologicalinsulators.The theories are related by
dimensional reduction (θ symbol, green arrow) [5], taking the boundary response [ð1=2Þ∂ symbol, purple arrow], or adiabatic pumping
(↻ symbol, red arrow) [67]. (b) A dimensional hierarchy of insulating systems with mixed crystalline-electromagnetic responses. The
theories are related by stacking (layer symbol, dark red arrow) and cutting (scissor symbol, blue arrow). (c) A family tree of dimensional
hierarchies establishing connections between responses of strong TIs and insulators with mixed crystalline-electromagnetic responses.
(d) Illustrations representing the nature of the phases constituting the hierarchy depicted in (c). (i) A single isolated charge. (ii) A line of
charges forming a lattice. (iii) An insulating chain having a quantized charge polarization. (iv) A two-dimensional lattice of charges.
(v) A two-dimensionalweak topologicalinsulator where polarized chains are stacked transverse to their polarization.(vi) A two-
dimensional Chern insulator having chiral edge states indicated by red arrows. (vii) A three-dimensional lattice of charges. (viii) A three-
dimensional lattice built from a two-dimensional array of polarized chains; alternatively, a stack of two-dimensional weak topological
insulators. (ix) A three-dimensional stack of Chern insulators forming a time-reversal-breaking weak topological insulator. (x) A three-
dimensional strong topologicalinsulator with surface Dirac cones.
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product with eDþ1 . We can push the stacking idea further to
generate secondary weak TIs(stacksof codimension-2
strong TIs, e.g., lines stacked into 3D) by a wedge product
with eDþ1 ∧ eDþ2 and so on.

The stacking and cutting procedures are notthe only
relationships between the response theories in Fig.1(b).
Just as in the strong TI sequence, we can find connections
between the boundary properties of some D-dimensional
systems and the bulk response of a (D − 1)-dimensional
system.For example,the 2D response action in Fig.1(b)
represents the response of a stack of Su-Schrieffer-Heeger
(SSH) chains [69],each with a quantized polarization of
e=2. The boundary of such a 2D system is a line of charge
on the edge, albeit with a density of e=2 electrons per unit
cell on the edge line instead of the integer density we would
get by stacking integer-filled 0D points. As such, the
boundary of the 2D A ∧ dex action represents a line charge
described by the action A ∧ ex, but with a half-integer
coefficient.

Now we can combine the dimensionalrelationships in
the sequences of both Figs. 1(a) and 1(b) to make a family
tree of related theories.We show a tree in Fig.1(c) that
includes response actionsin zero, one, two, and three
spatial dimensions. In 0D, we have only an integer electron
charge response that couples to A0. For 1D, we can either
stack charges to form a line of charge (upper branch) or
consider an electrically polarized TI (lower branch) where
the charge is split in half and moved to opposing ends of the
chain while the interior remains neutral(so to speak).In
2D, we can stack line charges to get a plane of charge (top
branch),stack 1D polarized TIs to get a weak TI (middle
branch), or pump charge in a 1D TI to generate a 2D Chern
insulator (bottom branch).

In 3D, the set of responses is richer. We can stack plane
charges to generate a 3D volume of charges (top branch),
stack Chern insulators to get a 3D primary weak TI (second
from bottom branch),or stack 2D weak TIs to geta 3D
secondary weak TI built from 1D polarized wires (second
branch from top).The other well-known possibility is the
magnetoelectric response for a 3D strong TI [5,28] (bottom
branch). Although it is not shown, this theory is related to a
4D quantum Hall system via pumping (3D to 4D) or
dimensional reduction (4D to 3D) [5]. The final option we
consider, which is the middle branch enclosed by a dotted
rectangle, is

R
dA ∧ dea. This response theory has not been

previously studied in detail. This theory is a total derivative
and yields a gapped boundary with an electric polarization
(e.g., a stack of SSH chains on the boundary).This is
reminiscent of an electric quadrupole (higher-order)
response [27,70],and we explore this connection further
in Sec. III E.

While this discussion has centered on gapped systems,
our primary focus is on gapless topologicalsemimetals.
Importantly, each of the actions that contains a translation
gauge field in the family tree in Fig. 1(c) can also represent

a contribution to the response of various types of metals or
topological semimetals [17–20,24,30–34]. This is because
many semimetals can be generated by translation-invariant
stacking of lower-dimensionaltopological phases.Since
the momentum ka in the stacking direction is conserved,
one can consider adding up the set of topological response
terms for each gapped ka. A semimetal representsa
scenario where the coefficients of these topological terms
at each ka are quantized and have discrete jumps where ka

hits a nodal point. For example, the 2D electric polarization
response of a stack of 1D TIs becomes the response of a 2D
Dirac semimetal if the wires forming the stack are coupled
strongly enough to close the insulating gap [34].In the
presence of reflection symmetry,each momentum in the
stacking direction has a quantized charge polarization that
jumps when the momentum hits a gapless2D Dirac
point. Additionally, the 3D response of a stack of Chern
insulators becomes the nonquantized anomalous Hall effect
responseof a time-reversal-breakingWeyl semimetal
where each fixed-k plane thatdoes not intersecta Weyl
point carries a quantized Chern numberthat jumps at a
Weyl point [30–33], and so on. While many of these
response theories have been discussed in detail before, only
a few works have highlighted the contributions from the
translation gauge fields [12,17–20,24,71,72].As such, a
large fraction of our paper is devoted to both the explicit
derivationsof the responsecoefficients of the actions
in Fig. 1(c) that have couplings to the translation gauge
fields (Sec. III) and to the explicit calculationsof the
physical responsephenomenain representativemodel
systems (Sec.IV).

Before we move on to more explicit derivations, we want
to motivate three additionalresponse theories we study
that lie outside the family tree in Fig.1(c). As mentioned
above,a remarkable feature of the response actions of
point-node semimetals is thattheir coefficients are deter-
mined from the energy-momentum locations of the nodal
points. Indeed, for the relevant response actions in Fig. 1(c),
the coefficients are obtained as a chirality-weighted
momentum dipole momentof the point nodes (note that
Dirac points do not have a chirality; nevertheless, there is a
signed quantity that plays the same role). Interestingly,
recent work on rank-2 chiral fermions and Weyl semimetals
with a chirality-weighted momentum quadrupole moment
[17–19,24] has unveiled a new setof response theories.
This category of theories has actions thatinclude factors
of more than one translation gauge field of the same type
(e.g., ea ∧ deb, where a ¼ b) and, as such, does not appear
in the family tree in Fig. 1(c). This also implies thatthe
translation gauge field factors in these response theories
cannot be obtained by the conventional stacking of lower-
dimensional systems that we discuss above, since stacking
produces wedge products with distincttranslation gauge
fields. We could also construct related higher-dimensional
theories (and lower-dimensionaltheories if we consider
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both space and time translational gauge fields) to form an
additional connected tree of theories, but we leave further
discussion of those extensions to future work.

To give some explicit examples, we show three response
theories that follow this pattern in Fig. 2. Figure 2(a) shows
the Fermi surface structure of a 3D time-reversal-invariant
Weyl semimetal having a Weyl-node quadrupole moment.
The response action ofthis system is a mixed response
between electromagnetic and translation gauge fields, and
the inset in the Fermi-surface figure lists which coefficients
Qab are nonvanishing. Some details of this response were
discussed in Refs.[17,18,24], the former of which con-
nected the response to rank-2 chiral fermions on the surface
of the 3D Weyl semimetal.Figure 2(b) shows the Fermi
surface structure of a 2D Dirac semimetal having a Dirac-
node quadrupolestructure. This responserepresentsa
momentum current responding to a translation gauge field
(e.g., a strain configuration).Its form shares some simi-
larities with the torsional Hall viscosity [11,71,73–75],
though a precise connection is left to future work. Finally,
in Fig. 2(c), we show the Fermi surface for an unusual
nodal line semimetal formed from stacking the Dirac-node
quadrupole semimetal in Fig. 2(b).While one might have
naively expected two independent Fermi rings, we instead
find a new type of Fermi-surface structure where the Fermi
lines join at two crossing cap regions to form a cage.

The symbols on the right-hand side in Fig. 2 indicate the
connections between these theories: (i) The response of the
nodal line structure is just a stacked version of the 2D
Dirac-node quadrupole semimetal response from Fig. 2(b),
and (ii) one can heuristically consider the four-node Weyl
response in Fig. 2(a) to be a dimensional extension of the
response in Fig.2(b) via pumping.

III. EFFECTIVE RESPONSE ACTIONS

Now that we have described the forms of the various
response actions of interest,we spend this section deter-
mining their coefficients.All of the response actions in
Fig. 1(c) that contain only electromagnetic gauge fields
represent insulators, and their coefficients have been
studied in detail (e.g., see Ref. [5]). The actions containing
translation gauge fields can represent insulators or gapless
systems,and the two can often be distinguished by the
values of the coefficients. That is, for insulators we expect
the coefficients to be quantized in some units (in even
spatialdimensions,they are quantized in the presence of
some symmetry),while for topological semimetalswe
expect the coefficients to be a tunable function of the
momentum and energy locations ofthe nodal points or
lines. Interestingly,some of the response coefficients for
metals and semimetals can take the same values allowed for
an insulator,although this would typically require fine-
tuning, or extra symmetry. For example, a 1D system can
have compensating particle and hole Fermisurfaces such
that the total filling is an integer,as one would find in an

insulator, yet the system is still gapless. In such a case, we
show that the system has additional response terms that have
coefficients that are incompatible with a gapped insulator.

(b)

(c)

(a)

FIG. 2. (a) Fermi surfaces of a 3D time-reversal-invariant Weyl
semimetal with a quadrupole Weyl-node configuration. Red and
blue colors denote positive and negative Berry curvature,re-
spectively.The associated action has a coefficientmatrix Qab
which is symmetric and proportional to the Weyl-node quadru-
pole moment. For this configuration, the coefficients Qxx and Qyy
are nonvanishing. (b) Similar to (a) except it is the Fermi surfaces
for a 2D Dirac semimetal having four Dirac nodes in a quadru-
pole pattern.The action is described by a symmetric matrix of
coefficients Qab. (c) The Fermisurface of an unusualcagelike
nodal line semimetal built from stacking the Dirac-node quadru-
pole semimetal in (b).The action has a set of coefficients Bab;c
which is antisymmetric in a and b.Heuristically,the action in
(b) can generate the action in (a) by adiabatic pumping or can
generate the action in (c) by stacking.
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Our focus will be on 2D Dirac, 3D Weyl, and 3D nodal
line semimetals, and, before we begin our derivations, it is
important to acknowledge a key qualitative difference
between these types oftopological semimetals.Namely,
we recall that 2D topological Dirac semimetals and 3D
nodal line semimetals require additional symmetry beyond
translation symmetry,e.g., composite T I symmetry or a
mirror symmetry,to guarantee the localstability of the
gaplesspoints or lines in momentum space.This is
inherently differentfrom the case of Weylsemimetals in
3D, for which Weyl nodes require only translation sym-
metry for protection against perturbations. Indeed, a Weyl
node can be gapped outonly by bringing another Weyl
node of opposite chirality to the same point in the Brillouin
zone.A similar story applies to (semi)metallic systems in
1D: Each gapless point has a well-defined chirality defined
as the sign of the Fermi velocity, and a gap can be opened
only after overlapping Fermi points of opposite chiralities.

This distinction in symmetry protection is important for
the response theories describing Dirac and Weyl semimet-
als, as it reflects the well-known structure of anomalies in
even and odd spatial dimensions.Furthermore,it impacts
our strategy for deriving the response coefficients for these
systems.As an example, the response properties of2D
Dirac semimetals can be determined straightforwardly from
the Kubo formula if we first apply a symmetry-breaking
perturbation that weakly gaps out the nodes and regulates
any possible infrared divergences.The resulting insulator
response can then be taken to the semimetallic limit if we
tune the perturbation to zero. Hence, the effective response
action for such systems can be obtained by treating the
system as an insulator and applying the Kubo formula or,
more generally, a gradient expansion procedure.This
method can be applied to 2D and 4D Dirac semimetals
and, consequently, 3D nodal line semimetals, since they are
just stacks of 2D Dirac semimetals.For such semimetals,
we actually have a choice of what symmetry to break, e.g.,
inversion or time reversal.Which one we need to break
depends on the nodal configuration and the action we are
intending to generate.For example,in the case of a 2D
Dirac semimetal with a pair of nodes, breaking time
reversal is well studied and generates a quantum Hall
response via a Chern-Simons term.However, breaking
inversion symmetry is relatively less studied and generates
a mixed Chern-Simons response between an electromag-
netic gauge field and a translationalgauge field.This is
corroborated by the factthat the electromagnetic Chern-
Simons action breaks time reversal, while the mixed
Chern-Simons term with these fields breaks inversion.
We show that the mixed Chern-Simons term has a well-
defined limit as the gap closes and inversion symmetry is
restored,which leads to a nontrivial response action for
the 2D Dirac semimetal.

Alternatively, the response of isolated chiral gapless
points in 1D and 3D can be determined if they are viewed as

theories that live on the boundary of a higher-dimensional
topological insulator or topological semimetal. In the
presenceof gauge fields, the higher-dimensionalbulk
generates a current inflow to the boundary to compensate
the anomalous response of the gapless boundary modes.
From this perspective, we expect that the effective response
action of Weyl semimetals in odd spatial dimensions can be
obtained by taking the boundary contribution of a higher-
dimensionalsystem.The purpose of this approach is the
same as applying symmetry-breaking perturbations in even
spatial dimensions: to regulate possible infrared divergen-
ces. However, chiral semimetals in odd spatial dimensions
cannot be gapped out unless translation symmetry is
broken.Translation symmetry plays a centralrole in this
work, so we must take this alternative approach in odd
spatial dimensions.There are likely other methods that
could be applied to derive these response actions in their
intrinsic spatial dimension, e.g., via the subtle introduction
of an auxiliary θ field, but we choose our procedure since it
reinforces the dimensionalrelationships discussed in the
previous section and requires fewer formal tools.

Thus,our strategy for deriving the generalform of the
coefficients of mixed crystalline-electromagnetic responses
is to begin by deriving effective response actions in even
spatial dimensions, i.e., 2D and 4D. We do so by identify-
ing gradient expansion contributions(see Appendix B
for a brief review) that contain an appropriate effective
action constructed outof translational(eλ) and electro-
magnetic (A) gauge fields.Then, the response of semi-
metals in odd spatial dimensionscan be obtained by
looking at the boundary of a response theory defined in
one dimension higher.

A. Effective responses of 2D semimetals
In this subsection, we derive the coefficients of two 2D

responseactions that contain translation gauge fields,
namely, response action (v) from Fig. 1(c) and the response
action in Fig. 2(b). We find that the coefficients of these
actions are characterized by the dipole and quadrupole
moments of the Berry curvature in the 2D Brillouin zone,
respectively. When we specialize to 2D Dirac semimetals,
the distribution of Berry curvature is sharply localized as
π fluxes at the Dirac nodes. Hence, the coefficients
become proportional to the dipole and quadrupole moment
of the distribution of Dirac nodes.

1. Dirac-node dipole semimetal
Let us start by considering a gapped T -invariant system

having broken I symmetry. Under these conditions,the
electromagnetic Chern-Simons term,which represents the
Hall conductivity, vanishes, and we can consider the mixed
linear response of a momentum currentresponding to an
electromagneticfield, or vice versa. Using the Kubo
formula, or applying the gradient expansion procedure
described in Appendix B,we find the contribution to the
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effective action (when the chemicalpotential lies in the
insulating gap) (see also Ref.[62]):

Se;A ¼ −e
Z

d3reα
μ∂νAρ

Z
dωd2k
ð2πÞ3

kαΩð3Þ
μνρðω; kÞ; ð4Þ

where

Ωð3Þ
μνρðω; kÞ ¼ trG0

∂G−1
0

∂kμ

∂G0

∂kν

∂G−1
0

∂kρ
ð5Þ

and G0ðkμÞ is the single-particle Green function. To extract
the coefficient of the eα ∧ dA term, we contract Ωð3Þ

μνρ with
the totally antisymmetric tensor ð1=3!Þεμνρ. This gives the
coefficient

cα ¼ e
εμνρ

3!

Z
dωd2k
ð2πÞ3

kαΩð3Þ
μνρðω; kÞ ð6Þ

of the response action

Se;A ¼ cα

Z
eα ∧ dA: ð7Þ

We note that Eq. (6) is very similar to the response
coefficientof the standard electromagnetic Chern-Simons
term apart from the factor of kα in the integrand. As such,
assuming α ¼ x, y, we can use a well-established result to
evaluate the frequency integral to obtain [76]

εμνρ

24π2

Z
dωd2kΩð3Þ

μνρðω; kÞ ¼
1
2π

Z

BZ
d2kF xyðkÞ; ð8Þ

where Fxy is the Berry curvature. Hence, we can rewrite cα
as an integral over the BZ by substituting this relationship
into Eq. (6) to find

cα ¼
e

ð2πÞ2

Z

BZ
d2kkαF xyðkÞ: ð9Þ

We have,thus, arrived at the result that cα is proportional
to the αth component of the dipole moment of the
distribution of Berry curvature. This coefficient can be
nonzero, since it is allowed by broken I and preserved T ,
i.e., FxyðkÞ ¼ −Fxyð−kÞ. We also note that cα is indepen-
dent of the choice of zone center,and shifts of k in the
integrand,in general, because the Chern number(Hall
conductivity) vanishes in the presence of T .

In a gapped T -invariantsystem,restoring I symmetry
forces cα to vanish, since FxyðkÞ ¼ 0. However, in gapless
systems,this need notbe the case.To see this,we apply
our result from Eq. (9) to a 2D Dirac semimetalby first
introducing a weak perturbation VI , which breaks I and
opens up a small gap, and then taking the limit VI → 0, in
which inversion symmetry is restored. In the gapped

system,the Berry curvature Fxy is distributed smoothly
across the entire 2D BZ.

In the gapless limit, however, the Berry curvature
distribution develops sharp peaks ofweight π localized
at the positions of the Dirac points:

F xyðkÞ ¼
XND

a¼1
πχaδðk − kaÞ; ð10Þ

where a runs over all Dirac nodes at momenta ka and
χa ¼ 1 is an integer indicating the sign of the π-Berry
phase around the Fermi surface of the ath Dirac point at a
small chemical potential above the node [34].Ultimately,
we find the effective response action of a Dirac-node dipole
semimetal is given by

SDD ¼
ePα

4π

Z
eα ∧ dA; ð11Þ

where

Pα ¼
XND

a¼1
χaka

α ð12Þ

is the dipole moment of the Dirac nodes.
Note that if the Dirac nodes meet at the zone boundary,

they can be generically gapped even in the presence of T I
symmetry. The resulting insulating phase represents a weak
TI having P α ¼ Gα, where Gα are the components ofa
reciprocal lattice vector. In this case, the action in Eq. (11)
describes a stack (i.e.,a family of lattice lines or planes
corresponding to Ga) of 1D polarized TI chains aligned
perpendicularto G a. To see this explicitly, take Gx ¼
ð2π=axÞ and set eαβ ¼ δα

β in Eq. (11) to obtain the action

e
2

Z
dx
ax

Z
dtdyEy ¼ Nx

e
2

Z
dtdyEy; ð13Þ

where Nx is the number of unit cells in the x direction. This
action is just Nx copies of the usual θ-term action for 1D,
electrically polarized topological insulators (θ ¼ π) parallel
to the y direction,stacked alonĝx.

We have now derived Eq. (11) as a quasitopological
contribution to the response of a 2D Dirac semimetal where
the nodes have a dipolar configuration.However,there is
another importantsubtlety thatwe now point out. Earlier
work has shown thatthe electromagnetic response of 2D
Dirac semimetalswith both T and I symmetry is an
electric polarization proportional to the Dirac-node dipole
moment [34].Even more recently,connections have been
made between mixed translation-electromagnetic responses
and the electric polarization [64].Since we have a clear
derivation of the response term,we can use our results to
understand the precise connection between the electric
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polarization and the coefficient cα of the eα ∧ dA response
action. Using the standard approach of Ref. [26], the
polarization in 2D is

Pα
e ¼

e
ð2πÞ2

i
Z

BZ
d2khukj∂kα

uki; ð14Þ

where AαðkÞ ¼ ihukj∂kα
uki is the Berry connection. Hence,

we find that the electric polarization Pα
e is related to cα by

an integration by parts (see Appendix C):

Pα
e ¼

e
ð2π2Þ

εαβ
Z

d2kkβF xy þ
e
2π

Wα

¼ ϵαβcβ þ
e
2π

Wα; ð15Þ

where we setthe lattice constants equalto unity and the
Wilson loop

Wα ¼
I

dkαA αðkα; kβ ¼ πÞ ð16Þ

is an integral of the Berry connection Aα along the αth
momentum direction ata fixed, inversion-invarianttrans-
verse momentum kβ ¼ π at the boundary of the BZ.

From this explicit relationship, we can immediately draw
some conclusions.First, in the Dirac semimetal limit,
we reproduce the result of Ref. [34] where the polarization
is proportional to the Dirac-node dipole moment:
Pα

e ¼ ½e=2ð2πÞεαβPβ. And second, if we have broken
inversion symmetry (while T is still preserved),we see
that the polarization and the coefficient cα are not quantized
and not equal to each other. This scenario can be found in
inversion-breaking insulators with a Berry curvature dipole
moment. These insulators have a charge polarization,
and they also have a mixed translation-electromagnetic
response.However,we find from this calculation, and
explicit numerical checks, that they are generically inequi-
valent. Ultimately, this boils down to the fact that the
Wilson loop at the boundary of the BZ requires a symmetry
to be quantized,e.g., mirror or inversion.Otherwise,the
Wilson loop gives a contribution that distinguishesthe
polarization and the mixed crystalline-electromagnetic
responses.We leave a detailed discussion ofthis subtle
distinction to future work.

In summary, Eq. (11) captures the generic mixed
crystalline-electromagnetic response of the bulk of a 2D
system with T symmetry. In the limit of a Dirac semimetal,
the coefficientof the response coincides with the electric
polarization of the system. We note that in this limit there
are other nonvanishing response terms, since the system is
gapless,but Eq. (11) represents a distinctcontribution to
the total response ofthe system to electromagnetic and
translation gauge fields.We study an explicit modelwith
this response term in Sec.IVA.

2. Dirac-node quadrupole semimetal
Now we move on to discuss the response of quadrupole

arrangements of2D Dirac nodes as in Fig. 2(b). If the
Chern number and momentum dipole moment Pα vanish,
then our semimetal has a well-defined momentum quadru-
pole moment, which is independent of the choice of zone
center. We now show that such systems are described by the
response action:

SDQ ¼
ℏQαβ

8π

Z
eα ∧ deβ: ð17Þ

From the derivation in the previous section, we anticipate
that, in the limit of a Dirac semimetal band structure,the
coefficient Qαβ of this response action is related to the
momentum quadrupole momentof the Dirac nodes. To
confirm this statement,let us consider the linear response
of a momentum currentto a translation gauge field for a
gapped system. From the Kubo formula, or gradient
expansion,we find a coefficient of the eα ∧ deβ term:

Qαβ ≡
1
2

εμνρ

3!

Z
dωd2k
ð2πÞ3

kαkβΩð3Þ
μνρðω; kÞ: ð18Þ

We can use the relationship mentioned in Eq. (8) to
carry out the frequency integralto obtain the coefficient
of Eq. (17):

Qαβ ¼
1
π

Z

BZ
d2kkαkβF xyðkÞ: ð19Þ

To apply this to the Dirac-node quadrupole semimetal
shown in Fig. 2(b), we evaluate the response by first
introducing a symmetry-breaking massterm and then
studying the topological response of the resulting gapped
system.In this case, the mass term breaks T buthas a
vanishing total Chern number. In the example at hand, this
can be done by adding a k-independent term that opens a
local mass of the same sign for each of the four Dirac points
in Fig. 2(b). Such a mass term preserves I ,which in the
gapped system automatically guarantees a vanishing dipole
momentof the Berry curvature.This, togetherwith the
vanishing Chern number, is necessary so that the momen-
tum quadrupole moment is well defined, independent of the
choice of zone center. For this scenario, in the limit that the
perturbative mass goes to zero,

Qαβ ¼
XND

a¼1
χaka

αka
β; ð20Þ

which is the Dirac-node quadrupole moment. In Sec. IV B,
we explicitly study a model with this Berry curvature
configuration and a resulting nonvanishing Qαβ. We see
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that, while the Dirac-node dipole moment capturesthe
electric polarization (see Appendix C),the nodalquadru-
pole momentcaptures a kind of momentum polarization
(see Appendix D) (this time,without the subtlety of the
additional Wilson loop contribution discussed above). For
comparison,the surface charge theorem relates the bulk
electric polarization to a boundary charge,and for the
momentum polarization there is a boundary momentum.

B. Effective responses of 1D (semi)metals
Now that we have derived the responses of 2D systems

coupled to electromagnetic and translation gauge fields, we
use Figs. 1(b) and 2 as guides to generate related responses
in 1D and 3D. To get 1D responses,we consider the
boundary response of the 2D systems (this subsection), and
we stack the 2D responses to get 3D responses of nodal line
semimetals (next subsection). We note that in the following
discussion we treattranslation as a continuous symmetry
(as in Appendix A, as this perspectiveis useful for
obtaining the correctresponse actions from ourdiagram
calculations).One can see Ref.[18], for example,for a
discussion that treats the subtleties associated to having a
discrete translation symmetry.

It is well known that chiral modes in 1D are anomalous;
i.e., charge is not conserved when we apply an electric
field. In 1D lattice models, this anomaly is resolved because
of fermion doubling; i.e., for every right-moving chiral
mode, there is a corresponding left-moving mode that
compensates the anomaly. While it is true that the electro-
magnetic charge anomaly is resolved with such a lattice
dispersion, the doubled system can still be anomalous in a
different but related sense if we have translation symmetry
(see Ref.[18] for a similar discussion).

To be specific, in the presence of translation symmetry,
we can consider the momentum current in Eq. (3):
J μ

x ¼ ℏkxj μ, where jμ is the particle number current.At
low energies, current-carrying excitations lie in the vicinity
of Fermi points kF;α

x and carry corresponding particle
currents jμðαÞ. The total contribution to momentum current
from these low-lying modes is

J μ
x ¼

X

α
ℏkF;α

x j μ
ðαÞ: ð21Þ

In the simplest case of a nearest-neighbor lattice model
having a single,partially filled band,we have two Fermi
points: kF ≡ k F;R

x ¼ −kF;L
x , with j μ

R ¼ ðρR; vFρRÞ and
j μ

L ¼ ðρL ; −vFρLÞ, where ρ is the number density.
Interestingly,the momentum current in this scenario is

J μ
x ¼ ℏkFðjμR − j μ

LÞ; ð22Þ

which, up to a factor of ℏkF , is just the axial current.

Importantly, even though this lattice model does not have
an electromagnetic charge anomaly,∂μðejμL þ ej μ

RÞ ¼ 0,
it does have an axial anomaly:

∂μðjμR − j μ
LÞ ¼

eEx

πℏ
: ð23Þ

Taking this point of view, we can reformulate the axial
anomaly in this system as a mixed crystalline-electromagnetic
anomaly where an electric field Ex violates conservation of
the kx momentum current:

∂μJ μ
x ¼

eℏkF

πℏ
Ex: ð24Þ

More generally, the anomaly is proportional to the momentum
dipole moment of the Fermi points, which replaces a factor
of 2kF in Eq. (24) (see Appendix E).

There is a conjugate effect that occurs in an applied strain
field, which can be implemented as a translation electric
field Ex

x ¼ ∂xex
0 − ∂tex

x. Naively,such a nonvanishing field
generates violations to the conservation law for the usual
electromagnetic current according to

∂μðejμÞ ¼
ekF

π
Ex

x ð25Þ

(again, see Appendix E for a more general expression in
terms of the momentum dipole).However,this equation
is not quite correct if we have an isolated system with a
fixed number of electrons, and, hence, we must be careful
when considering time-dependentchanges to exx as we
now describe.

To gain some intuition for Eq. (25), consider increasing
the system size by one lattice constant a during a time T
by adding an extra site to the system:

R
dxdtEx

x ¼ a (one
can also think of threading a dislocation into the hole of a
1D periodic system). From the anomaly equation, we
would find that the amount of charge in the system
changes by ekFa=π, as one would expect for adding a unit
cell to a translationally invariant system having a uniform
charge density ρ ¼ ekF=π.However, there is a subtlety
that we can illustrate by considering a system having a
fixed number of electrons Ne ¼ kFLx=π, which we strain
by uniformly increasing the lattice constant. Assuming a
uniform system,the anomalous conservation law in this
case becomes

∂tρ ¼ ∂t
ekF

π
ex

x : ð26Þ

Crucially, we note that if we increase the system size with
fixed particle number,then kF decreases.Indeed,in the
small deformation limit, the momenta are proportional
to ðex

xÞ−1, since their finite size quantization depends
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inversely on the system size. Using this result, the
conservation law becomes

∂tρ ¼
e
π

ðexx∂tkF þ k F∂tex
xÞ ¼

ekF

π
ð−∂tex

x þ ∂ tex
xÞ ¼ 0;

where we use ∂tðexxÞ−1 ¼ −ðexxÞ−2∂tex
x.

The outcome that ∂tρ ¼ 0 is the result one would expect
by stretching the system uniformly while keeping the
numberof particles fixed. To clarify, at a fixed particle
number we know the total charge cannot change; however,
it perhaps seems counterintuitive that the density does not
decrease if we stretch the system.The reason is thatthe
quantity ρ above, which is defined as δS=δA0, is not a scalar
density.Indeed,for generalgeometries,the scalar charge
density would be defined as

ρ̄ ¼
1
ex

x

δS
δA0

; ð27Þ

where the exx is essentially playing the role of the deter-
minant of a spatial metric. To calculate the total charge, we
would then use

Q ¼
Z

dxex
xρ̄ ¼

Z
dxρ: ð28Þ

Indeed, the scalar charge densityρ̄ decreases as the system
is stretched,since ∂tρ̄ ∝ ∂tPx which decreasesas the
system size increases atfixed electron number.

The effective response action of the 1D system can be
derived as a boundary effective action of an appropriate 2D
theory.In fact, we have already seen such a 2D system
when studying the 2D Dirac semimetalwith Dirac nodes
arranged in a dipolar fashion. The bulk response for this 2D
system with a weak inversion-breaking gap is Eq. (11). As
mentioned above, this bulk theory implies that the system
has an electric polarization. From the surface-charge
theorem for polarization, we expect that the boundary will
have a charge density equalthe polarization component
normal to the boundary. The contribution to the boundary
effective action from Eq.(11) is

S∂ ¼
e
4π

Pα

Z
eα ∧ A:

From this, we can extract the boundary charge density:
ρ∂ ¼ ðe=2ÞðP∂=2πÞe∂∂, where P∂ is the componentalong
the boundary and e∂

∂ is the diagonal translation gauge field
component along the boundary that is simply equal to unity
in nondeformed geometries.

While the form of this action is what we expect for a 1D
metal, the coefficient is half the size it should be. The
reason is that, on the edge of the 2D Dirac semimetal, the
momentum-space projections of the bulk Dirac nodes in
the edge BZ represent points where the edge filling changes

by e=2 [34], not e as would be the case for a 1D Fermi
point in a metal. Hence,for a metal, we expecta result
twice as large (we see a similar resultin Sec. III E when
comparing the boundary response of a 4D system to that of
a 3D Weyl semimetal). Thus, the action for the 1D system is

S1D;D ¼
e
2π

Pα

Z
eα ∧ A: ð29Þ

From this form, we can identify Pα ¼ ð−Δμ=ℏ; ΔkxÞ such
that Px=2π is simply the filling fraction of the 1D metal and
P t=2π measures the imbalance of left- and right-moving
excitations in the system (Δμ ¼ μR − μL ).

Introducing a charge current vector

j μ ¼
e
2π

εμνPν ¼
e
2π

ðΔkx; Δμ=ℏÞT; ð30Þ

we can recast Eq. (30) in the most familiar form:
S1D;D ¼

R
dtdxj μAμ. Thus, we have now generated the

action (ii) from Fig. 1(c). Let us also note thatthe edge
states of the Dirac semimetalcan be flat, while the 1D
context we mentioned above has a dispersion. However, the
key feature of both cases is thatas momentum is swept
across the 1D BZ (1D surface BZ for the 2D case)the
filling of the states changes in discrete jumps at either the
Fermi points in 1D or the (surface-projected) Dirac points
in 2D. It is this change in the filling that is captured by the
quantity Px and does notdepend on the dispersion in a
crucial way.

Now that we have this example in mind,we can ask
what the analogous 1D boundary system is for the Berry
curvature quadrupole action Eq. (17). We mention that this
bulk response represents a momentum polarization, which
implies that the boundary should have a momentum density
parallel to the edge. Indeed,we expect that such a 1D
system will have a vanishing Fermi-pointdipole moment
(i.e., the filling is integer) but a quadrupole moment that is
nonvanishing [see Fig.3(b)].

From the pointof view of the translation gauge fields,
such band structures are chiral, since either the right movers
or left movers carry larger momentum charge. To see this,
consider a 1D Fermi surface with right movers at momenta
K F and left movers at momenta Q F . Let us further
restrict our attention to currents for which the net number
of right movers (and of left movers) is zero, e.g.,
ρRðKFÞ þ ρRð−KFÞ ¼ 0. Defining δρR ¼ ½ρRðKFÞ −
ρRð−KFÞ and δρL ¼ ½ρLðQFÞ − ρLð−QFÞ, we see that
the momentum gauge field couples to

J μ
x ¼ KFδρR þ Q FδρL : ð31Þ

Thus, we see that, for KF ≠ QF [as in Fig. 3(b)], the
momentum gauge field couples differently to right-and
left- moving density fluctuations. In the extreme limit that
QF ¼ 0, the momentum gauge theory is fully chiral.
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More generally, in a 1D system with a Fermi-point
quadrupole [cf.Eq. (20)] Qxx ¼

P NF
a¼1 ¼ sgnðvFaÞðkðaÞ

x Þ2

and fixed electric charge,this chiral coupling leads to an
anomaly in the presence of a nonvanishing translation
gauge field:

∂μJ μ
x ¼

ℏQ xx
4π

Ex
x: ð32Þ

This anomaly implies that if we turn on a translation gauge
field (e.g., via strain), then we will generate momentum as
shown in Appendix E [77].

The response theory describing such a 1D system is
similar to that describing the chiral boundary of a Chern-
Simons theory. Indeed, if we start from Eq. (17) and derive
the boundary response (and compensate for a similar factor
of 2 as mentioned above in the momentum-dipole case), we
arrive atan effective action:

S ¼ −
ℏ
4π

Z
d2rðQxxex

xex
t þ Q xtex

xet
tÞ: ð33Þ

In this effective action, the momentum quadrupole moment
of the Fermi points Qxx encodes the ground state momen-
tum density (see Appendix E). The quantity Qxt is the
mixed Fermi-point quadrupole moment in momentum and

energy,but we leave a detailed discussion of such mixed
moments to future work.

The arguments of this section can be extended to look at
higher moments of the chirality-weighted Fermi momenta,
which are proportional to the ground state expectation
values of higher and higher powers of momenta.To
describe these properties and related response phenomena,
we can introduce gauge fields eabc… that couple to higher
monomialsof momentum,kakbkc…. For example,the
fields that couple to zero powers or one power of momen-
tum are the electromagnetic A and translation gauge fields
kxex, respectively,and we could introduce a coupling
kakbeab to the setof 1-form gauge fields eab, e.g., k2

xexx.
We describe the hierarchical anomalies associated to these
gauge fields in Appendix E.

C. Effective responses of 3D nodal line semimetals
We can now use our 2D results from Sec. III A to

generate the responses oftwo types of nodal line semi-
metals in 3D. To generate the two types we imagine
stacking either the action in Eq. (11) or the action in
Eq. (17). The action resulting from the former has been
discussed in Refs. [19,35]; the second is, to the best of our
knowledge, new. From our arguments for gapped systems
in Sec. II, we expect that the form of the actions we obtain
from stacking will contain an extra wedge product with the
translation gauge field in the stacking direction. To be
explicit, suppose we are stacking up 2D semimetals (that
are parallel to the xy plane) into the z direction. By stacking
decoupled planes of the responses in either Eq. (11) or (17),
we expect to find

S ¼
ePα

4πaz

Z
ez ∧ eα ∧ dA

or

S ¼
ℏQαβ

8πaz

Z
ez ∧ eα ∧ deβ;

respectively, where α; β ¼ x, y. The forms of these actions
match action (viii) in Fig. 1(c) and the action in Fig. 2(c),
respectively.We note that the stacked,decoupled systems
simply inherit the response coefficient of the 2D system.

We want to consider more generalconfigurationsof
systems with stacked and coupled planes, perhaps stacked
in severaldirections.As we have seen,if the layers we
stack are decoupled,then each layer contributes the same
amount. This contribution (for a stack in the z direction) is
captured by the integral1=az

R
ez ¼ Nz, where Nz is the

number of layers. However, if the layers are coupled, then
each fixed-kz plane can have a different amount of Dirac-
node dipole [PαðkzÞ] or Dirac-node quadrupole moment
[QαβðkzÞ], respectively. The total coefficient is then deter-
mined by the sum over all values of kz. One can also have

(a)

(b)

(c)

FIG. 3. (a) One-dimensionalband structure of an ordinary
metal.The pair of gapless points is marked by the sign of their
respective chiralities,highlighting the momentum-space dipole
characterizing the response of the system. (b) Band structure of a
1D metal characterized by a momentum quadrupole moment. The
system has an integer (vanishing in this case) charge filling but a
nonzero momentum.(c) Band structure of a 1D metalcharac-
terized by a momentum octupole moment.The system has an
integer (vanishing)filling, a vanishing momentum,but a non-
vanishing expectation value for the square of the momentum. See
Appendix E.
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stacks in any direction,not just the z direction.Hence,in
this more generic scenario,the actions become

SDD3 ¼ eBαβ

Z
eα ∧ eβ ∧ dA ð34Þ

and

SDQ3 ¼ ℏBαβ;γ

Z
eα ∧ eβ ∧ deγ; ð35Þ

with coefficients

Bαβ ¼
1

4ð2πÞ3
ϵαβσ

Z
d3kkδF σδ ð36Þ

and

Bαβ;γ ¼
1

6ð2πÞ3
ϵαβσ

Z
d3kkγkδF σδ; ð37Þ

where Fμν is the Berry curvature of the kμkν plane. These
forms of the coefficients capture scenarioswith more
complicated nodalline geometries.Indeed,as previously
shown in Ref. [35], the coefficient Bαβ is determined by the
line nodes that have nonvanishing area when projected into
the αβ plane. Additionally, for nodal line semimetals with
T I symmetry, the coefficient is proportional to the charge
polarization in the direction normalto the αβ plane [35].
We can see this explicitly by integrating Eq. (36) by parts
with the same caveats mentioned in Sec. III A 1 surround-
ing Eq. (15).

Analogously, the coefficient Bαβ;γ can represent a kind of
“momentum” polarization where the polarization is again
normal to the αβ plane and the charge that is polarized is the
momentum along the γ direction.We can see this heuris-
tically by integrating by parts using the derivatives in the
F σδ to find

Bαβ;γ ∼ −
1

2ð2πÞ3

Z
d3kðϵαβσkγA σ − ϵαβγkiA i Þ; ð38Þ

where we use the ∼ symbol to indicate that there are
boundary terms we have dropped that can be important if
the line nodes span the Brillouin zone. We can see from this
form that the coefficient for the case when α, β, and γ are
not all different, e.g., Bxz;x, is proportionalto the polari-
zation in the y direction (i.e., normal to the xz plane)
weighted by the momentum in the x direction.

We note that, for Bαβ to be well defined, the Chern
number in each plane must vanish. In addition to this
constraint, Bαβ ¼ 0 is a necessary constraint for Bαβ;γ to be
well defined.These hierarchicalrequirements are analo-
gous to the usual requirements for the ordinary (magnetic)
dipole and (magnetic) quadrupole moments of the

electromagnetic field to be independentof the choice of
origin. Here,the role of the magnetic field distribution is
being played by FσρðkÞ, and, for example, the constraint on
the vanishing Chern number eliminates the possibility of
magnetic monopoles (i.e.,Weyl points).

D. Effective responses of 4D semimetals
Our next goal is to determine the coefficients forthe

responseactions of 3D Weyl point-node semimetals.
However, becausethe Weyl nodes in 3D exhibit an
anomaly, the responses are subtle to calculate intrinsically
in 3D. Instead,to accomplish our goal,we first carry out
more straightforward calculations of the responses of 4D
semimetals and then return to 3D either by considering the
boundary of a 4D system or by compactifying and
shrinking one dimension of the bulk. Hence,as a step
toward 3D semimetals,in this subsection,we provide the
derivation for effective response actionsof semimetals
in 4D.

The first action we consider is of the form

S ¼ cα

Z
eα ∧ dA ∧ dA; ð39Þ

where for our purposesα ¼ x, y, z, w. Collecting all
terms in the gradient expansion that have this field content,
we obtain

S ¼
e2

ℏ

Z
d5reα

μ∂νAρ∂σAτ

×
Z

dωd4k
ð2πÞ5

kαΩð5Þ
μνρστðω; kÞ; ð40Þ

where

Ωð5Þ
μνρστðω; kÞ ¼ trG0

∂G−1
0

∂kμ

∂G0

∂kν

∂G−1
0

∂kρ

∂G0

∂kσ

∂G−1
0

∂kτ

and G0ðω; kÞis the single-particle Green function. To
determine the coefficientcα, we project this coefficient
onto the totally antisymmetric part,and then, just as in
Eq. (8), we can carry out the frequency integral[76] to
obtain the simpler expression

Z
dωd4k

2π
εμνρστ

5!
kαΩð5Þ

μνρστðω; kÞ

¼
1
16

Z

BZ
d4kkαεijkl F ij F kl : ð41Þ

Hence,the response coefficient takes the form

cα ¼
e2

ℏ
1

16ð2πÞ4

Z

BZ
d4kkαεijkl F ij F kl ¼

e2Pα

16π2ℏ
; ð42Þ
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where we introduce

Pα ¼
1

16π2

Z

BZ
d4kkαεijkl F ij F kl : ð43Þ

As we see from this calculation,similar to 2D, the 4D
response theories can be characterized by the distribution of
the quantity εijkl F ij F kl across the 4D Brillouin zone. For
our focus, let us consider the case where the 4D system is a
semimetalwith a set of isolated Dirac points (linearly
dispersing band touching where four bands meet). Without
symmetry, these Dirac points are locally unstable in
momentum space to the opening ofa gap. If we open
up an infinitesimally small energy gap, the quantity
εijkl F ij F kl becomes welldefined across the entire BZ,
and its distribution takes the following form in the massless
limit:

εijkl F ij F kl ¼
XND

a¼1
16π2χaδðk − kaÞ: ð44Þ

If we substitute this into Eq. (43), then we immediately see
that Pα becomes the momentum space dipole of the set of
4D Dirac nodes. Let us also comment that, if we integrate
Eq. (43) by parts, we see that Pα can also be interpreted as a
set of magnetoelectric polarizabilities [5,28]. Just as in the
case of the polarization of a 2D Dirac semimetal, the
integration by parts generates a boundary term that captures
the magnetoelectric polarizability coming from the 3D
boundaries of the 4D BZ. Hence, the connection between
the total magnetoelectricpolarizability and the mixed
translation-electromagnetic response is exactonly in the
symmetric limit when the boundary term is quantized.

In summary, a 4D response of a system characterized by
a dipolar distribution of the εijkl F ij F kl quantity reads

S ¼
e2Pα

16π2ℏ

Z
eα ∧ dA ∧ dA: ð45Þ

Similar to 2D, if the dipolar response vanishes,we can
obtain a momentum quadrupole response coefficientfor
the action:

S ¼
eQαβ

16π2

Z
eα ∧ deβ ∧ dA; ð46Þ

where Qαβ is a symmetric matrix determined by the
momentum space quadrupole momentof the 4D Dirac
nodes. Finally, if both the dipolar and quadrupolar
responses vanish, we can consider an octupolar distribution
that gives the response coefficient for the action:

S ¼
ℏOαβγ

48π2

Z
eα ∧ deβ ∧ deγ; ð47Þ

where Oαβγ is determined by the momentum space octupole
moment of the 4D Dirac nodes. We leave the discussion of
octupolar configurations of Dirac and Weyl nodes to future
work. We also mention that, similar to 2D, for these
responses to be independentof the choice of BZ origin,
we require that the second Chern number of the 4D system
vanishes.Alternatively, if the second Chern numberis
nonvanishing, then the boundary of the system contains a
nonvanishing chirality of Weyl nodes. As such, the
anomalous charge response of the chiralboundary does
not allow us to uniquely determine the momentum
response on the boundary.

Before moving on to 3D, let us briefly presentsome
physical intuition about the response in Eq. (45). Consider
a 4D time-reversal- and inversion-invariant system having
two Dirac nodes separated in the kz direction. To simplify
the discussion,let us also assume the system has mirror
symmetry Mz. The assumed symmetries imply thateach
fixed-kz volume can be treated as an independent3D
insulator having 3D inversion symmetry,and, hence,the
magnetoelectric polarizability ofthese 3D insulatorsub-
spaces is quantized [5,78,79]. Now, if we sweep through kz,
then each bulk 4D Dirac point crossing changesthe
magnetoelectric polarizability ofthe fixed-kz volume by
a half integer (i.e., changes the related axion angle by π) [5].
Since the magnetoelectric polarizability jumps between its
quantized values as we pass through the two bulk Dirac
nodes, the kz Brillouin zone splits into two intervals: (i) an
interval with a vanishing magnetoelectric polarizability and
(ii) an interval with a nonvanishing quantized magneto-
electric polarizability.Indeed,we could have anticipated
this result from the form of the action Eq. (45) when α ¼ z;
i.e., the action represents stacks of 3D topological insula-
tors that each have a nonvanishing magnetoelectric
polarizability.

E. Effective responses of 3D semimetals
From this discussion,we see that, in the presence of

symmetry,the 4D bulk Dirac-node dipole momentdeter-
mines the magnetoelectricpolarizability of these 4D
topologicalsemimetals via Eq.(45). We wantto connect
this result to 3D semimetals in two ways. First, we consider
the 3D boundary of the 4D system, and then we consider
the spatial compactification of one spatial dimension.

Let us begin by considering the boundary response
action from Eq. (45). For the modelsystem described at
the end of the previous subsection, we know the system has
a kz-dependentmagnetoelectric polarizability.Consider a
boundary in the fourth spatial direction w. Since the
magnetoelectric polarizability is changing from inside to
outside of the boundary,the boundary itself has a non-
vanishing Hall conductivity. For our example system, each
fixed-kz slice of this boundary has a Hall conductivity σxy,
which is quantized butpossibly vanishing.Additionally,
since the bulk 4D Dirac nodes are separated in the kz
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direction,they project to gapless points in the 3D surface
BZ (on surfaces that have at least one direction
perpendicular to the z direction) where the Hallconduc-
tivity discretely jumps by Δσxy ¼ ðe 2=2hÞ.

From this phenomenology,i.e., discrete Hall conduc-
tivity jumps as we sweep through kz, we expectthat the
boundary response of Eq. (45) captures the same response
as a Weylsemimetalthat has a nonvanishing momentum
space dipole moment of the Weyl nodes in the z direction.
Indeed,the generic boundary contribution from Eq.(45)
has the form

SWD ¼
e2Pα

8π2ℏ

Z
eα ∧ dA ∧ A; ð48Þ

which was proposed by Ref. [33] to describe the response
of Weyl semimetals, though in the more conventional form
using an axion field and without the translation gauge field.
Here, Pα, α ¼ x, y, z is the momentum dipole of the Weyl
nodes in the αth direction.This action is represented as
(ix) in Fig. 1(c). We note that the coefficient in Eq. (48) is
twice as large as the actualboundary term derived from
Eq. (45). This is because, when ki passes through a single
Weyl point, we have ϵijk Δσjk ¼ ðe 2=hÞ,where the sur-
face the response of the 4D system has jumps of half the
size.This is analogous to the fact that a 1D metal has an
integer jump in the filling as we pass through a Fermi point,
whereasthe surface of a 2D Dirac semimetal has a
boundary “filling” that jumps by a half integer as we pass
through a gapless point in the surface BZ.

We can repeat this analysis for Eq. (46). The coefficient
of this term is proportional to the momentum space
quadrupole momentof the nodal points. Unfortunately,
the phenomenology of this term is not as easy to analyze in
4D, because it is not generated from a lower-dimensional
system in a clear way [80].By analogy with the previous
case, the bulk 4D Dirac nodes project to a quadrupole of 3D
Weyl nodes on the surface. We can extract the form of the
3D action we want by taking the boundary term generated
from Eq. (46). Then, accounting for the factor of 2 as in the
previous case,we arrive at

SWQ ¼
eQαβ

8π2

Z
eα ∧ deβ ∧ A: ð49Þ

(Note that, since Qαβ is symmetric, the related contribution
of the form eQ αβ=8π2 R

eα ∧ eβ ∧ dA vanishes.) This
action is the same as that shown in Fig.2(a). It produces
a mixed crystalline-electromagnetic response and repre-
sents a rank-2 vector charge response when certain mirror
symmetries are preserved [17].Its response coefficientis
determined by the momentum space quadrupole moment of
the Weyl nodes.

Finally, we come to the action (x) in Fig.1(c). Let us
briefly sketch some salient features of this response, while

we leave a detailed discussion to future work. We can arrive
at this action using a formal compactification of the action
in Eq. (45) [5]. First, we can integrate that action by parts to
arrive at

e2Pα

16π2ℏ

Z
A ∧ deα ∧ dA;

where we ignore the boundary term. We now want to
dimensionally reduce the fourth spatial direction w, which
we accomplish by choosing periodic boundary conditions
in w and letting the size of the system in this direction
shrink toward zero. In this limit, any derivatives with
respectto w are (formally in our case)dropped [81].
The resulting nonvanishing contribution is

e2Pα

8π2ℏ

I
dwAw

Z
deα ∧ dA;

where the integraland exterior derivative in the second
factor are over only the remaining four spacetime dimen-
sions.We can now make the definition

Θ ≡ 2π
e
h

Z
dwAw ð50Þ

to arrive at action (x) from Fig.1(c):

ePα

8π2

Z
Θdeα ∧ dA: ð51Þ

To illustrate some of the phenomenology of this action,
let us assume that Pz ≠ 0. Additionally, let us assume that
we maintain time-reversaland inversion symmetry.As
such, Θ ¼ 0; π. To begin, we see that the action in Eq. (51)
is a total derivative if Θ and Pα are spacetime independent.
The resulting pure boundary term is justproportionalto
the response of a 2D weak TI (or 2D Dirac semimetal), i.e.,
Eq. (7). Depending on the symmetry of the surfaces,this
implies that we expect the surface to be gapped except for
possibly isolated Dirac points.Since the boundary terms
appear as ez ∧ dA, we expect that surfaces normal tox̂ (ŷ)
will harbor a y polarization (x polarization); i.e., the
polarization is tangent to the surface.

Importantly, the sign of the polarization depends on the
interpolation of Θ between its nontrivial bulk value of
Θ ¼ π and the trivial vacuum value Θ ¼ 0 outside the
system. For neighboring surfaces where the effective sign
of the polarization changes,we anticipate hinge charges
where surfaces intersect,since the polarizations are con-
verging or diverging from the hinges. Thus, the response of
this system is similar to a stack of 2D planes of quadrupole
moment having component qxy ≠ 0. In this scenario,
coupled quadrupole planes could lead to either a higher-
order weak topological insulator having a quadrupole
moment or a higher-order topological semimetalwith
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boundary (and possibly bulk) Dirac nodes [82,83]. To make
further progress,it would be advantageousto have a
microscopic derivation of the coefficient in Eq. (51)
intrinsically in 3D. Hence, we leave further discussion
of this action to future work.

IV. EXPLICIT RESPONSE CALCULATIONS
FOR LATTICE MODELS

Now that we have completed the derivationsof the
actions in Figs.1(c) and 2,we provide a series of model
examples that manifest these responses.Using these
models,we can numerically calculate the various charge
and momentum responses to electromagnetic and trans-
lation gauge fields,providing an independentverification
of the coefficients derived in the previous section. Some of
the models and responses we discuss below have appeared
elsewhere in the literature, while others have not. We carry
out this analysis in the same order as the previous section,
i.e., point-node Dirac semimetals in 2D,nodal line semi-
metals in 3D, and then point-node Weyl semimetals in 3D.
Calculations for 1D systems are carried out analytically in
Sec. III B, and additional discussion can be found in
Appendix E.

A. 2D Dirac-node dipole semimetal and insulator
We begin with the time-reversal-invariant 2D systems

discussed in Sec.III A that exhibit a mixed crystalline-
electromagnetic response. Since T is preserved, the usual
Chern-Simons,Hall-effect response of the electromag-
netic field vanishes. Instead, the response action derived
in Sec. IVA takes the form of a mutual Chern-Simons
term [64]:

S½eλν; Aμ ¼
e
4π

Pλ

Z
eλ ∧ dA: ð52Þ

Unlike the purely electromagnetic polarization response
action considered in Ref. [34], this formulation of the
low-energy response theory also includes bulk electro-
magnetic responses to the translation gauge fields.For
example,by taking a functional derivative with respect
to Aμ, we have

ρ ¼ −
e
4π

Pλεij ∂i eλ
j ;

j x ¼
e
4π

Pλð∂teλ
y − ∂yeλ

t Þ;

j y ¼ −
e
4π

Pλð∂teλ
x − ∂xeλ

t Þ: ð53Þ

We see that the first equation predicts an electric
charge density localized on a dislocation in the bulk of
the lattice, which is exactly the phenomenology we expect
for a weak topological insulator [38] or a 2D Dirac
semimetal. The action (52) also predicts a bulk momentum

response to the electromagnetic field when varied with
respectto eμ:

J t
λ ¼ −

e
4π

PλBz;

J i
λ ¼ −

e
4π

Pλεij Ej ; ð54Þ

where Ei and B i are the components of electric and
magnetic fields,respectively.In the inversion-symmetric
limit and in the absence of lattice defects and deforma-
tions, for which the crystalline gauge fields reduce to
eλ

μ ¼ δλ
μ, Eq. (53) simply reproduces the boundary charge

and current responses of an ordinary 2D Dirac semimetal
or weak topological insulator, which harbors a nonvanish-
ing electric polarization. However, as we mention in
Sec. III A 1 and comment further on below, we do not
expect the coefficient of this action to match the electric
polarization when inversion is strongly broken.

While the electric polarization and magnetization
responses ofDirac semimetals were discussed in detail
in Ref. [34], the momentum responses in Eq. (54) and the
charge responses to translation fluxes (i.e., dislocations) in
Eq. (53) are less familiar. Thus, we explicitly calculate
these responses using a minimal tight-binding model.For
simplicity, we employ a two-band Bloch Hamiltonian that
can model both 2D Dirac semimetals and weak topological
insulators:

HðkÞ ¼ VI σx þ sinðkyayÞσy

þ ½m − cosðkxaxÞ − cosðkyayÞσz: ð55Þ

When VI ¼ 0, H has both inversion symmetry,I ¼ σ z,
and (spinless) time-reversalsymmetry,T ¼ K. In this
symmetric regime, m can be chosen to produce a semimetal
with Dirac points located at, for example, ðkx; kyÞ ¼
½π=ð2axÞ; 0, when m ¼ 1. In the semimetal phase, turn-
ing on VI σx, which breaks inversion while preserving T ,
generates a mass term that opens a gap at the Dirac points.
The signs of the Berry curvature localized near the
two now-gapped Dirac points are opposite,as shown in
Fig. 4(a), with the sign at a particular point determined by
the sign of the perturbation VI . Hence,the total Berry
curvature of the occupied band integrated over the entire
BZ, equivalent to the Chern number, is zero, and, hence, the
Berry curvature dipole is well defined.

To confirm our analytic calculationsof the response
coefficients, we first calculate the momentum density
localized around an out-of-plane magnetic flux Φz using
the tight-binding model Eq. (55). In order to determine the
kx momentum density in the lattice model, we must
introduce magnetic flux in a fashion thatpreserves trans-
lation symmetry in thex̂ direction.We show the configu-
ration that we employ in Fig. 4(b). This configuration keeps
the crystal momentum kx as a good quantum number and

HIRSBRUNNER,DUBINKIN, BURNELL, and HUGHES PHYS. REV. X 14, 041060 (2024)

041060-16



allows us to compute the value of Jt
x as the probability

density of the occupied single particle states weighted by
their momentum ℏkx. The results of the numericalcalcu-
lations are presented in Figs. 4(c) and 4(d), where we study
how the excess kx momentum density bound to magnetic
flux behaves as a function of both the magnetic flux Φz at
fixed Berry curvature dipole Px and as a function of Px at
fixed Φx. Our numerical results match our analytic calcu-
lations precisely.

We can interpret this result by noting that the momentum
current in Eq. (54) can be obtained in the semiclassical limit
by considering the momentum current carried by electron
wave packets subjectto an anomalous velocity [84,85].

The equation of motion of an electron wave packetwith
momentum k formed from a single band is

viðkÞ ¼
∂E

ℏ∂ki
þ

e
ℏ
ϵij Ej F xyðkÞ; ð56Þ

where viðkÞ is the wave packet velocity, EðkÞis the
energy spectrum of the band,Ej is the electric field,and
ðe=ℏÞϵij Ej F xyðkÞ is the anomalous velocity. The momen-
tum current of the occupied states is obtained by adding up
the contributions ℏkμvi ðkÞ in the BZ and contains a term
arising from the anomalous velocity given by

J i
λ ¼ −

e
ð2πÞ2

ϵij Ej

Z
d2kkλF xyðkx; kyÞ

¼ −
e
4π

Pλϵij Ej : ð57Þ

We can also numerically probe our response equations
by studying the charge response to the deformation of the
lattice. To do so, we introduce a translation flux to rows of
plaquettes located near y ¼ Ny=4 and y ¼ 3Ny=4, analo-
gous to the magnetic flux configuration we just considered.
This effectively inserts two rows of dislocations such that,
if one encircles a plaquette containing translation flux, the
Burgers vector is in the x direction. This effectively creates
opposite translational magnetic fields Bx

z ¼ ∂xex
y − ∂yex

x
penetrating the two rows of plaquettes.Again, we choose
this geometry since it is compatible with translation
symmetry in the x direction. In our lattice model, we insert
the translation flux by explicitly adding generalized Peierls’
factors thatare kx dependent,i.e., exp ðikx

R
dxi ex

i Þ such
that the colored regions in Fig. 4(b) contain nonvanishing
translation flux. The resulting electron charge density
localized on the translation magnetic flux has a depend-
ence on both the Bxz field strength and the Berry curvature
dipole moment Px as shown in Figs.4(e) and 4(f). This
again matches the expectation from our analytic response
equations.

We emphasize that the effective action (53) describes the
mutual bulk response between the electromagnetic and the
momentum currents in semimetallic and insulating systems
with vanishing Chern number. We show in Sec. III A 1 that
one must be careful when comparing this response to the
charge polarization. In particular, our numerics show that,
even in the presence of significant inversion breaking, the
bulk momentum density response to a magnetic flux tracks
the value of the coefficient cα from Eq. (9) as demonstrated
in Fig. 4(d). In contrast, as shown in Sec. III A 1, the
expression for the electric polarization,Eq. (15), contains
an additional term that is proportional to the value of a
Wilson loop along the boundary of the BZ. This value is not
quantized when inversion symmetry is broken,and, for
large values of VI , this contribution becomes significant
enough that the polarization response clearly deviates from

FIG. 4. (a) Plot of the Berry curvature across the 2D Brillouin
zone for the Dirac-node dipole semimetal model (55) for m ¼ 1.1
with an added inversion-breaking perturbation with VI ¼ −0.5.
We use this model to probe the kx momentum density response.
For that, we consider a completely periodic system and insert the
magnetic flux Φz thorough two lines of plaquettes such that the
translationalsymmetry along the x̂ direction is preserved, as
shown in (b). (c) shows the kx momentum density localized
around one line of plaquettes penetrated by the magnetic field Bz
as a function of magnetic flux. (d) shows the kx momentum
density as a function of Berry curvature dipole moment Px
defined in Eq.(9), which we tune in our modelby varying the
parameter m between m ¼ 1.0 and m ¼ 1.5.In (e) and (f), we
show analogous calculations for the charge density response to a
translation flux with Burgers vector in the x direction as a
function of (e) translation flux at fixed Berry curvature dipole and
(f) Berry curvature dipole at fixed translation flux. The open
circles in (e) represent Burgers vector choices that are not integer
multiples of a lattice constant. The red dashed lines in (c)–(f) are
guides to the eye indicating a slope of 1.
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the result one would expect from a naive interpretation of
Eq. (53). However, the mutual responsebetween the
electromagnetic and translation gauge fields described by
this action remains valid. This subtlety is not the focus of
our current article, so we leave further discussionsto
future work.

B. 2D Dirac quadrupole semimetal
Next, we consider the class of 2D semimetallic phases

characterized by the quadrupole momentof the Berry
curvature introduced in Sec. III A 2. We know from
Sec.III A 2 that the low-energy effective response action
for this system takes the form

S ¼
ℏ
8π

Qαβ

Z
eα ∧ deβ: ð58Þ

This action generates a momentum current response

J μ
α ¼ −

ℏ
4π

Qαβεμνσ∂νe
β
σ: ð59Þ

These currents describe both a bulk momentum polariza-
tion (e.g., yielding momentum on the boundary where Qαβ
changes) and a bulk energy-momentum response to trans-
lation gauge fields.We note thatthis response is exactly
analogousto that of the Dirac-node dipole semimetal

discussed above ifwe replace the electromagnetic field
with a translation gauge field.

To illustrate and explicitly confirm the responses numeri-
cally, we use the following two-band square lattice Bloch
Hamiltonian with next-nearest-neighbor hopping terms:

HðkÞ ¼ VT σx þ sinðkxaÞ sinðkyaÞσy

þ½m − cosðkxaÞ − cosðkyaÞσz: ð60Þ

This model has an inversion symmetry (i.e., Cz
2 symmetry)

that is realized trivially on site with I ¼ I, mirror symmetry
along the kx ¼ ky axis, and,when VT ¼ 0, time-reversal
symmetry T ¼ σzK. This model can be tuned to a
semimetalphase as well;for example,setting m ¼ 1,we
find four gapless Dirac points located at ðkx; kyÞ ¼
ðπ=2a; 0Þ and ðkx; kyÞ ¼ ð0; π=2aÞ.

To confirm the response action is correct, we first need to
calculate the Dirac-node quadrupole moment.To see that
the Berry curvature quadrupole moment is well defined, we
first note that the choice of VT as a mass perturbation forces
Pα to vanish.We also need the Chern number to vanish,
which is guaranteed by the mirror symmetry.With these
symmetries, the Berry curvature peaks at Dirac points that
are related by inversion symmetry have the same sign,
while the peaks related by mirror symmetry carry opposite
signs,resulting in a quadrupolar distribution of the Berry
curvature, as in Fig. 5(b). Since the Chern number and Pα

FIG. 5. (a) Spectrum of the 2D Dirac-node quadrupole semimetal (60) in a ribbon geometry (y direction open, x direction periodic) for
m ¼ 1, the T -breaking perturbation set to VT ¼ −0.2, and the energy tilt in Eq. (62) ϵ ¼ 0.1. At half filling, the ground state of the
model is momentum polarized: Occupied states localized near y ¼ 1, which are indicated by the blue color, carry a positive value of the
kx momentum, while the occupied states near y ¼ Ny have a negative value of kx. (b) Berry curvature distribution across the Brillouin
zone for a small gapping perturbation VT ¼ −0.2. (c) The boundary charge distribution as a function ofmomentum.(d),(e) kx
momentum bound to a row of dislocations [cf. Fig. 4(b)] as a function of Qxx at fixed Bx

z in (d) and as a function of Bx
z at fixed Qxx in (e).

(f) Plot of momentum polarization Py
kx

obtained from computing kx-momentum bound to an edge normal toŷ. (g) As a consequence of
nonzero ϵ, we see that the velocities of single-particle states in (a) localized on opposite edges have the same sign, while the energy and
kx momentum charges are exactopposite.This leads to boundary energy currents as illustrated in (g) as a function of Qtt .
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both vanish,the quadrupolar distribution is welldefined
and signals the presence of a well-defined elastic response
in this model (see also Ref. [75]). The diagonal elements of
the Dirac-node quadrupole moment of our model are equal
and opposite, Qxx ¼ −Qyy, and the off-diagonal elements
are zero. Since the sign of the Berry curvature flux for 2D
Dirac points with T I symmetry is ambiguous, we once
again treat our system in the insulating regime with nonzero
VT first and then recover the semimetallic case by taking
the limit VT → 0.

Using this model, let us first focus on the momentum
polarization response and highlight the difference with the
2D Dirac-node dipole semimetal case from Sec. IVA. If the
bulk has a momentum polarization, we expect translation-
symmetric edges to have a bound momentum density. We
first make a general argumentfor the existence of the
boundary momentum and then confirm the results numeri-
cally for our model. Let us suppose oursystem has a
boundary normalto the y direction. We expect such a
boundary to carry kx momentum if Qxx ≠ 0. To show this,
let us make a gauge transformation on the fields in Eq. (58):
ea

μ → ea
μ þ ∂ μλa for some vector function λa. Since there is a

boundary,the response action is notgauge invariant,and
we find the variation δλS ¼ −ðℏQab=8πÞλað∂0eb

x − ∂xeb
0Þ.

Our system has no translation twisting of the boundaries,
i.e., ey

x ¼ ex
y ¼ 0, so we find the variation reduces to

δλS ¼ −ðℏQxx=8πÞλxð∂0ex
x − ∂xex

0Þ.This variation can be
canceled by adding an action of the form Eq. (33). That is,
we expect to have 1D degrees of freedom on the boundary
that harbor a nonvanishing kx-momentum density captured
by an effective 1D quadrupole momentQxx that matches
the value of the 2D quadrupole moment. Interestingly, we
note that the coefficientof Eq. (33) is twice that of the
variation we need to cancel. Hence, the edge of our system
has a fractional momentum density; i.e., a 1D system with
the same Qxx would have twice as much momentum. This
is analogous to the fractional boundary charge density one
finds from the half-quantized electric charge polarization.

We confirm this response numerically by studying the
model (60) on a lattice in a ribbon geometry that is open in
the ŷ direction and periodic in x̂. Figure 5(a) shows the
resulting band structure,for which a gap is opened by a
nonvanishing VT and the occupied states have two sym-
metrically positioned sets offlat band states:one in an
interval having kx < 0 and the other in an interval having
kx > 0. The occupied boundary states with kx < 0 (red) are
localized near the top (y ¼ Ny) boundary, while the
occupied boundary states with kx > 0 (blue) are localized
near the bottom (y ¼ 1) boundary. At half filling, we find
that the excess or deficit charge near the boundary depends
on kx as shown in Fig. 5(c). We see that the states at positive
and negative kx are imbalanced, indicating a nonvanishing
kx momentum density on the edge. Indeed, each state
between the Dirac nodes contributes an amount to the total
edge momentum equal to kx weighted by a factor of 1=2,

since the particle density on the edge at each kx in this range
is 1=2. Because states at opposite kx have opposite excess
and deficit probability density, the total sum is nonvanish-
ing and depends on Qxx as shown in Fig. 5(f). We find
that the bulk momentum polarization Py

kx
¼ ðℏQxx=8πÞ

matches the numerically calculated boundary momentum
density, as expected for a generalized surfacecharge
theorem [86]. To further probe the response equations,
we subject the Dirac-node quadrupole semimetalto the
same linear array of dislocations employed in the previous
subsection [cf. Fig. 4(b)]. From Eq. (59), we expect to find
momentum density localized on dislocations.Since our
geometry preserves translation in thêx direction, we can
compute the amountof kx momentum bound to disloca-
tions, similar to how we computed the amountof charge
bound to dislocations in the previous subsection. We show
our results in Figs. 5(d) and 5(e), where we first plot
momentum density as a function of Qxx for fixed trans-
lation flux B x

z and then plot momentum density as a
function of Bx

z for fixed Q xx. Both results match the
analytic value from the response action.

Finally, let us briefly consider a case when the mixed
energy-momentum quadrupole moment Qta is nonvanish-
ing. In this scenario,the effective action (58) implies the
existence of a bulk orbital momentum magnetization of

Mz
kμ

¼ −
ℏ
8π

Qtμ; ð61Þ

that manifests as boundary momentum currents,even in
equilibrium (note we assume et

t ¼ 1). To generate a non-
vanishing Qtμ in our model (60), we turn on an additional
perturbation

ΔHðkÞ ¼ ϵ sinðkxÞI2×2: ð62Þ

When m ¼ 1 and VT → 0 − , this induces Qtx ¼ −πϵ and
Qtt ¼ ϵ2, leading to momentum kx magnetization,Mz

kx
¼

−ðℏ=8πÞQtx, and bulk energy magnetization, Mz
kt

¼
−ðℏ=8πÞQtt , following from Eq. (61). In Fig. 5(g), we
plot the boundary energy current responseΔJ x

t as a
function of Qtt . We calculate this quantity by summing
the particle current ð1=ℏÞð∂H=∂kxÞ weighted by the energy
ϵðkÞof each state.The slope of the plot confirms the
coefficients predicted in Eq.(61).

C. 3D nodal line dipole semimetal
Heuristically,we can consider nodal3D semimetals as

arising from stacks of 2D Dirac-node dipole semimetals.
Furthermore,similar to the 2D case,with inversion sym-
metry the bulk response action

S½eλ; A ¼ eBμν

Z
eμ ∧ eν ∧ dA ð63Þ
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can be interpreted as a charge magnetization Mi and electric
polarization Pi

e:

eBta ¼ Mi ea
i ; eBab ¼ εijk Pk

eea
i eb

j ; ð64Þ

where we take functional derivativesof Eq. (63) with
respect to the magnetic and electric fields, respectively, and
use ett ¼ 1. For an unmodified geometry,we recover the
results of Ref.[35], i.e.,

eBta ¼ Ma; eBab ¼ εabkPk
e: ð65Þ

Microscopically, the coefficient Bab, where a, b ¼ 1, 2, 3,
is proportional to the area of the line nodes thatproject
onto surfaces normal to the ab plane as illustrated in
Fig. 6(a).

The bulk action also implies a nonvanishing momentum
response to electromagnetic fields:

J μ
λ ¼ 2eBληεμνρσeη

ν∂ρAσ ð66Þ

and a conjugate electromagnetic response to translation
gauge fields:

j μ ¼ 2eBληεμνρσeλ
ν∂ρeη

σ: ð67Þ

To illustrate how these responses manifest in an explicit
model, we can construct a Hamiltonian for a 3D nodal line
dipole semimetal by stacking copies of the 2D Dirac-node
dipole semimetal in Eq. (55) in the ˆz direction. When there
is no hopping between the 2D layers, such a system has two
lines of gaplessstatesspanning the BZ along the kz
direction, located at ðkx; kyÞ ¼ ðK; 0Þ (for our model).

Adding hopping terms in the ˆz direction leads to a Bloch
Hamiltonian:

HðkÞ ¼ VI σx þ sinðkyayÞσy

þ ½m − cosðkxaxÞ − cosðkyayÞ − cosðkzazÞσz:

ð68Þ

Taking VI → 0 and m ¼ 2, we find a single loop of gapless
states located in the ky ¼ 0 plane, described by the equation
cosðkxaxÞ þ cosðkzazÞ ¼ 1.The stack of 2D Dirac-node
dipole semimetalsnaturally endows the 3D nodal line
system with electric polarization (and/ormagnetization).
Correspondingly, this model has a single nonzero compo-
nentof the antisymmetric tensor Bxz defined in Eq.(36),
which encodes a charge polarization in theŷ direction.
From Eq. (66), a nonvanishing Bxz also implies a k x
momentum line density localized on a magnetic flux tube
oriented in the ẑ direction:

J t
x ¼ 2eBxzεtzij ez

zBz ¼ 2eBxzBz; ð69Þ

similar to a stack of decoupled 2D Dirac semimetallic
layers (in the last equality, we replace ez

z ¼ 1). This is the
3D analog of the response shown in Figs. 4(c) and 4(d) for
the 2D Dirac semimetal.

We can see an example of a charge response if we tilt the
nodal line to introduce a nonzero value of Btz as illustrated
in Fig. 6(a). In our model, we can tilt the node by adding an
extra dispersion

ΔHðkÞ ¼ ϵ sinðkxaxÞI2×2 ð70Þ

to the Hamiltonian. This term breaks T and induces a net
magnetization Mz ¼ eBtz, setting up the corresponding
circulating boundary currents in the system [35].

Now, when Btz is nonvanishing, Eq. (67) implies that a
screw dislocation with Burgers vector bzẑ hosts a bound
electromagnetic current.Indeed,if we assume the screw
dislocation is located at ðx; yÞ ¼ ð0; 0Þ and runs along the z
axis, we find

j z ¼ −2eBtzεtzjk et
t∂j ez

k ¼ −2eBtzbzδðxÞδðyÞ;ð71Þ

where we use ett ¼ 1 and ∇ × ez ¼ bzδðxÞδðyÞ.
We can illustrate the origin of this current by considering

the magnetization Mz (and associated boundary currents)
induced by Btz. A screw dislocation with Burgers vector
bzẑ can be constructed by cutting a seam into layers normal
to ẑ and regluing them along the seams with neighboring
layers above orbelow. When cut, the boundary current
associated to Mz appears, and after regluing this current is
routed vertically along the screw-dislocation line, i.e.,
along the z direction as shown in Fig.6(b). The magneti-
zation Mz gives rise to a surface bound currentj ∂ ¼ Mz

FIG. 6. (a) Fermi line of a 3D NLSM (68) with VI ¼ 0, m ¼ 2
that is tiled in the energy-momentum space fkz; kx; Eg by the
perturbation (70) where we setϵ ¼ 1. The projections of this
curve onto the fkx; kzg and fkz; Eg planes give the exact values
of the Bxz and B tz coefficients, respectively. (b) A screw
dislocation characterized by a Burgers vector bz ¼ az creates
an internal boundary carrying a current circulating around the
magnetization vectorMz. Note that the currents’ direction is
perpendicular to the Burgers vector and the magnetization
vector Mz, as predicted by Eq.(71).
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circulating around the ˆz axis in each layer.The effective
numberof current loops winding around the dislocation
line per unit length is equal to the Burgers vector bz. Thus,
the total current in the ˆz direction is

j z ¼ −bzj ∂ ¼ −2eBtzbz; ð72Þ

which reproduces the resultobtained from the response
action. Furthermore,we can understand the sign of the
current from Fig. 6(b), where we see that the current on the
dislocation has an opposite orientation to the current
generated by Mz. Another interesting consequenceof
Eq. (63) is the topological piezoelectric effectdiscussed
in Ref. [62].

D. 3D nodal line quadrupole semimetal
In Sec. III C, we derive the effective response action

S½eλ ¼ ℏB λη;α

Z
eλ ∧ eη ∧ deα

for the nodal line quadrupole semimetal.The response
action implies the energy-momentum currents

J μ
λ ¼ 2ℏðBλη;α − Bηα;λÞεμνρσeη

ν∂ρeα
σ; ð73Þ

where we use that Bλη;α is antisymmetric under exchange of
the first two indices.

In analogy with the 2D Dirac-node dipole and Dirac-
node quadrupole semimetals,we expectthat most of the
responses from the Dirac nodalline dipole semimetalin
Sec. IV C can be translated to describe some of the
responsesof this action if we replace charge currents
and densities with momentum currents and densities,etc.
Indeed,we show in Eq.(38) that,when λ and η are both
spatial indices, Bλη;λ implies a momentum polarization in a
direction perpendicular to λ and η and carrying momentum
parallel to λ. By analogy, the mixed temporal-spatial
components Bit;j describe a momentum magnetization in
the ith direction carrying momentum in the jth direction.
The momentum magnetization is furtherresponsible for
generating bound currentson screw dislocations; i.e.,
the momentum magnetization hascirculating boundary
momentum currents and a momentum current along screw
dislocations similar to the charge bound currents on
dislocations shown in Sec.IV C.

To be more explicit, we can illustrate the momentum
polarization in a model by showing the analog of the
surface charge theorem; i.e., momentum polarization yields
surface momentum densities. To obtain a Hamiltonian for
the nodal line quadrupole semimetal, we begin by stacking
2D Dirac-node quadrupolesemimetals[see Fig. 5(b)]
along the ẑ direction. When the planes are completely
decoupled, this construction produces a set of four straight
Fermi lines stretching in the kz direction. If we couple the

two-dimensionalplanes,then we arrive at the following
Bloch Hamiltonian:

HðkÞ ¼ VT σx þ sinðkxaÞ sinðkyaÞσy

þ ½m − cosðkxaÞ − cosðkyaÞ − cosðkzazÞσz: ð74Þ

For a wide range of parameters,this modelhas a pair of
nodal line loops that form a cage structure as shown in
Figs. 2 and 7 with m ¼ 2 and VT ¼ 0. In general, the local
gaplessness ofthe nodal loops can be protected by the
product T I . The cage structure created by the joined,
intersecting loops can be split apart by, for example,
breaking mirror symmetry along the kx ¼ ky axis while
preserving T I . However, even in this case, the nodal loops
still produce a nonvanishing contribution to the response
coefficient Bαβ;γ. Hence, the response is more general than
the specific cagelike nodalconfiguration.Calculating the
response coefficientfor the action in the limit VT → 0 − ,
we find that Bxz;x ¼ −Bzx;x, Byz;y ¼ −Byz;y are nonvanish-
ing, as shown in Fig.7.

Using this model, we can illustrate the origin of the
boundary momentum resulting from the bulk momentum
polarization. The discussion is analogous to the calculation
of the boundary momentum of the 2D Dirac-node quadru-
pole semimetal in Sec. IV B.Indeed, the analogy is clear,
since the cage nodal structure is just arising from a family

FIG. 7. Fermi lines of the model (74) with m ¼ 2 and
VT → 0 − . Resolving this structure as a pair of loops with fixed
orientation, we can project them onto the kxkz or kykz surfaces to
determine the momentum polarization. The colored regions of the
projected nodes indicate flat drumhead states that would appear
in open boundary conditions on one boundary (red) or the
opposing boundary (blue).By looking at the relative positions
of the two areas bounded by the projected loops in the surface
BZ, we see that one surface has one sign of the kx or ky
momentum, and the other surface has the other. For example, for
the kxkz surface BZ, the projections indicate a dipole moment of
kx momentum polarized along the y direction captured by the
response coefficient Bzx;x. Inset: cagelike nodal Fermi surface in
the model (74) with EF ¼ 0.2.
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of 2D Dirac-node quadrupolesparametrized by kz. To
specify an unambiguous momentum polarization,we turn
on a smallT -breaking perturbation VT . After doing this,
and as shown in Fig.7, we see thatthe two nodal loop
segments that lie in the ky ¼ 0 plane (one for kx > 0 and
one for kx < 0) carry the same Berry flux in the kz direction
(red arrows in Fig. 7). Similarly, the two loop segments in
the kx ¼ 0 plane carry the same Berry flux (blue arrows),
which is opposite to that carried by the ky ¼ 0 segments.
Consequently, the loop segment in the ky ¼ 0, kx > 0 half
plane must connect with a loop segment in the kx ¼ 0 plane
in order to form a closed nodal loop with a consistent
helicity or flux sign.

To clarify the consequences of this nodal configuration,
let us consider the kxkz plane in Fig. 7. We can calculate a
Berry-Zak phase [25] in the ky direction parametrized by
ðkx; kzÞ, and for our model we find a Berry phase of
magnitude π inside the projected nodal region in the kxkz
plane. When VT is turned on, the signs of the π Berry-Zak
phases are no longer ambiguous and are opposite for the
projected areas atkx > 0 and kx < 0. If we calculate the
total polarization in the y direction when summed over all
kx and kz, it vanishes. However, the polarization weighted
by the kx momentum is nonzero. The occupied drumhead
surface statesin the k xkz surface BZ [see Fig. 7 and
cf. Figs. 5(a)–5(c)] have an imbalanced kx momentum but,
when combined with the bulk charge density,a vanishing
charge [cf. Fig. 5(c)]. This is a reflection of the surface
charge theorem fora vanishing charge polarization and
nonvanishing momentum polarization.We numerically
calculate the magnitude of the bound surface momentum,
finding it to be in agreement with the value predicted by the
response action, 2ℏBxz;x. We see from this picture that, to
have a nonzero response Bxz;x, we want two oppositely
oriented nodal loops with identical, nonvanishing areas
when projected in the kxkz plane but positioned so that the
sums of all kx inside each nodal loop are different from each
other; e.g.,in our model, they are opposite values.

As an additional explicit example of a nonvanishing
responseallowed in our model, we can consider the
momentum density

J 0
x ¼ 2ℏBxz;xϵijk ð2ezi ∂j ex

k − ex
i ∂j ez

kÞ ð75Þ

generated by a geometric deformation.To generate a non-
vanishing response,let us consider an xz-planar interface.
Since we mustpreserve translation symmetry along x to
calculate kx momentum, and we want to preserve translation
in z for convenience,we have the following terms:

J 0
x ¼ 2ℏBxz;xð2ezx∂yex

z − 2ez
z∂yex

x − ex
x∂yez

z þ ex
z∂yez

xÞ:

If we cut the system aty ¼ 0, both sides of the interface
carry a surface kx-momentum density J0x;surf ¼ 2ℏB xz;x,
since the system has a kx momentum polarization alonĝy

with this magnitude. Since each interface carries an opposite
sign of the momentum density,if we glue them back
together,there will be no momentum at the interface.
Now, for y > 0 let us perturb away from the background
translation gauge field configuration to eai ¼ ð1 þ ϵaÞδai ,
where ϵa ¼ ðϵx; 0; ϵzÞ is a small deformation. The momen-
tum density response to leading order in ϵa is

J 0
x ¼ 2ℏBxz;x½−2ϵxδðyÞ − ϵzδðyÞ; ð76Þ

which we see is localized at the interface y ¼ 0.
We can interpret this response by noting that changing ex

x
or ezz effectively changes the area of one side of the interface
(y > 0) relative to the other (y < 0). Since the total kx
momentum on both sides of the interface should be
unchanged by this deformation (we maintain translation
symmetry in x during the process), then increasing the area
for y > 0 must lower the momentum density.Indeed,the
surface kx momentum density on ŷ surfaces must be
inversely proportionalto L x and L z. Finally, since we
are considering kx-momentum density, the quantization of
which depends on L−1

x , J 0
x actually depends on L−2

x , hence
the difference between the coefficients of ϵx and ϵz

in Eq. (76).

E. 3D Weyl-node dipole semimetal
The electromagnetic and geometric response oftime-

reversal-breaking 3D Weyl semimetals have been discussed
extensively in the literature [12,13,15–21,23,33,34,71,72,87–
97]. Here, we focus on a few particular consequences of the
mixed crystalline-electromagnetic response and the matching
between the response field theory and microscopic lattice
model calculations. Recall that the response action for a 3D
Weyl semimetalwith a nonvanishing Weyl-node dipole
moment Pλ is

S½eλν; Aμ ¼
e2Pλ

8π2ℏ

Z
eλ ∧ A ∧ dA: ð77Þ

This response implies the following bulk electromagnetic and
momentum currents:

j μ ¼ −
e2Pλ

4π2ℏ
εμνρσeλ

ν∂ρAσ þ
e2Pλ

8π2ℏ
εμνρσAν∂ρeλ

σ; ð78Þ

J μ
λ ¼

e2Pλ

8π2ℏ
ϵμνρσAν∂ρAσ: ð79Þ

In the presence of dislocations,the translationalflux is
nonvanishing,and, hence, the bulk electromagnetic current
is anomalous:

∂μj μ ¼ −
e2Pλ

8π2ℏ
εμνσρ∂μeλ

ν∂σAρ: ð80Þ
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This reflects the factthat the action Eq.(77) is not gauge
invariant in the presence of dislocations.Indeed,in our
explicit tight-binding model calculationsbelow, we find
the spectrum on a single screw dislocation line contains a
pair of chiral modes of the same chirality [one near each bulk
Weyl-node momentum as shown in Fig. 9(b)]. These modes
are responsible for the anomalous current on dislocation lines,
as was first described by Ref. [38].

To verify the electromagnetic response to the applied
crystalline gauge field, we consider a simple two-band
model of a 3D Weyl semimetal with a pair of gapless nodes:

HðkÞ ¼ sinðkzazÞσx þ sinðkyayÞσy

þ ½2 − m − cosðkxaxÞ − cosðkyayÞ − cosðkzazÞσz:

The Weyl node with the positive chirality χ ¼ þ1 is located
at k ¼ ½arccosð−mÞ; 0; 0,and the node with χ ¼ −1
is at k ¼ ½− arccosð−mÞ; 0; 0.The Weyl-node dipole
moment, therefore, has only one nonzero component
Px ¼ 2 arccosð−mÞ,and the resulting response action is

S½eλν; Aμ ¼
e2Px

8π2ℏ

Z
d4rϵμνρσex

μAν∂ρAσ: ð81Þ

Let us first consider the responsearising from the
constant background translation fields ex

x ¼ 1 and
ex

y ¼ bx=Ly, which describe a twist such that a particle
traversing the lattice in the y direction translates by bx in the
x direction. We note thatsuch a configuration is volume
preserving, since detðeÞ ¼ 1, where the matrix e has matrix
elements eij ¼ ej

i . When bx ¼ 0, the response action is

e2Px

8π2ℏ

Z
d4rex

xϵxνρσAν∂ρAσ:

Using the relation
R

dxex
x ¼ Lx, we find an anomalous Hall

effect in the yz plane such thatσyz ¼ ðe2=hÞðPxLx=2πÞ,
which is the standard result [32,33]. Now, if we turn
on bx, we still have the same σyz, but we also have the
additional term

e2Px

8π2ℏ

Z
d4rex

yϵyνρσAν∂ρAσ:

Because of the different index on the ϵ symbol,this term
represents an anomalous Halleffect in the xz plane with
σzx ¼ ðe2=hÞðPxbx=2πÞ.We can find a simple interpreta-
tion for this effect: When we turn on e x

y, the minimal
coupling kx → k x; ky → k y þ k xex

y shifts the bulk Weyl
nodes,ðP x=2;0;0Þ → ½Px=2;P xbx=ð2LyÞ; 0. Hence,
an effective Py ¼ ðPxbx=LyÞ is generated when the Weyl
momenta are sheared.Indeed, we expect that, at least
for uniform, traceless translation gauge field deformations,
the response phenomenacan be simply interpreted as

transformations ofthe Weyl-node dipole Pi → e j
i P j . We

show an explicit example of this in the first and third surface-
BZ panels in Fig. 8(a), where the bulk nodes and their
connected Fermi arcs are rotated in the deformed geometry
relative to the undeformed geometry.We note thatif the
deformation is not volume preserving,then we must be
careful when considering what is held fixed while volume is
changing in order to interpret the resulting phenomena.

(a)

(b)

(c)

FIG. 8. (a) The three panels show numerically calculated Fermi
arcs in (left) the surface BZ with undeformed geometry,(right)
the surface BZ with e x

y nonvanishing,and (center) the arcs
localized at the interface formed by gluing the two sides of
the interface together.The colored circles in the firstand third
panels representthe surface BZ projections of the bulk Weyl
nodes on either side of the interface. The color is a guide to show
the connectivity or orientation of the Fermi arcs, not the chirality
of the bulk nodes. On both sides of the interface, the bulk nodes
have the same chirality, but, since they are effectively projected
onto surfaceshaving opposite normal vectors, they generate
Fermi arcs having opposite chirality. (b) Illustrations of (left) the
undeformed geometry and (right) the deformed geometry with ex

y
nonvanishing. (c) The numerically calculated current localized at
the interface between undeformed and deformed geometries as a
function of the chemicalpotentialshift A0.
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In addition to these cases of fixed background translation
fields, let us consider varying those fields in space. We are
interested in the electromagnetic response to applied trans-
lational magnetic fields Bai ¼ ϵijk ∂j ea

k. Since the nodes in
our model are separated in kx, we consider geometries
where the Burgers vector of the translation magnetic field
also points along the x direction,Bx

i ≠ 0.
First, let us consider a system containing a domain wall

as a function of z, such that at z ¼ 0 the field ex
y jumps from

0 to bx=Ly. For z < 0 we have bulk Weyl nodes that project
onto the z surface at ðPx=2; 0Þ, while for z > 0 the bulk
Weyl nodes have been transformed and sitat ½P x=2;
P xbx=ð2LyÞ. We show the numerically calculated Fermi
arcs for our undeformed and deformed models in the left
and right surface BZ panels,respectively,in Fig. 8(a).

Now let us glue the z < 0 and z > 0 sides to each other
to make a domain-wallinterface.We schematically illus-
trate the interface geometry in Fig. 8(b). Since the normal
vector on each side of the interface is opposite, we expect
the Fermiarcs for z < 0 to have the opposite chirality to
their corresponding arcs for z > 0. Indeed, as shown in the
center surface BZ panel in Fig. 8(a), the Fermi arcs on both
sides can hybridize because of their opposite chiralities and
form new arcs in the 2D subsystem of the interface. These
new Fermi arcs encode the fact that the Hall conductivity
σxz is varying at this interface. These effects are all
manifestations of the fact that the Weyl-node dipole moment
P i is changing at the interface, and, hence, we expect Fermi
arcs to be trapped generically at the interfaces of this type.
We note that a similar strain geometry, and the corresponding
Weyl-node configuration,was discussed in Ref.[61].

From Eq. (78), we see thatapplying a uniform, non-
vanishing A0 to the system described above should generate
a charge current in the x direction. We can see the
microscopic origin of this current as follows. If we increase
A0, each linearly dispersing point on the Fermi arc has an
excess charge density δnðkÞ ¼ ½eA0=2πℏjvFðkÞj, where
vFðkÞ is the Fermi velocity at the Fermi arc located at k in
the surface BZ.Hence,the contribution to the currentof
such a point on the Fermi arc is j xðkÞ ¼ evFðkÞδnðkÞ.

For our model and geometry,the contributions to the jx
current that are linear in the deformations of ea

i arise from
the Fermiarcs stretching between ðK; 0Þ → ðK; Kex

yÞ and
ð−K; 0Þ → ð−K; −KexyÞ. Each of these arcs has a fixed
value kx ¼ K, and each arc has an opposite Fermi
velocity.Hence,

j x ¼ evFðK; kyÞδn
Kex

y

2π
þ ev Fð−K; kyÞδn

Kex
y

2π

¼
e2Pxex

yA0

4π2ℏ
sgnðvFÞ;

where Kexy=2π counts the density of states on the Fermi arc
in the ky direction,sgnðvFÞ is sign of the velocity on the
kx ¼ þK arc, and Px ¼ 2K2 is the undeformed value. This
result matches the prediction from the response theory and
matches the numerical results in Fig.8(c) [98].

We can also study a system with a pair of screw
dislocation lines.We explicitly insert two screw disloca-
tions at positions ðy;zÞ ¼ ðNy=4;0Þ and ðy;zÞ ¼ ð3Ny=4; 0Þ,
running parallel to thêx axis with Burgers vectors bx ¼ þ1
and bx ¼ −1, respectively. In Fig. 9(a), we show the energy
spectrum of a Weyl semimetal with Weyl nodes on the kx
axis with periodic boundary conditions and no dislocations.
In Fig. 9(b), we show the spectrum ofthe same system
after two screw dislocations are inserted as described
above.The blue and red coloration indicates on which
dislocation the states are localized.We see that near each
Weyl point the right-moving modes are on the red dis-
location, while the left-moving modes are on the blue
dislocation,as described by Eq. (78). Hence,each dis-
location has a net chirality.

To test the response equation, we apply a nonvanishing
Ax and numerically calculate the charge density localized
on a single dislocation.We can carry outa microscopic
calculation of the charge bound to a dislocation as a
function of Ax. Let us assume a nodal configuration with
a positive node at k ¼ ðPx=2; 0; 0Þ and a negative node at
ð−Px=2; 0; 0Þ.In the presence of a dislocation having
Burgers vector bx, each kykz plane sees an effective

(a) (b) (c)

FIG. 9. (a) The bulk spectrum of a Weyl semimetal with two nodes on the kx axis. (b) The spectrum of the same Weyl semimetal with
periodic boundary conditions and two screw dislocations with opposite Burgers vectors threaded along the x direction. Red and blue
coloration indicates on which dislocation the chiral modes are localized.Each dislocation has a net positive (red) or negative (blue)
chirality. (c) Numericalcalculation of the charge density bound to a screw dislocation as Ax is tuned.
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magnetic flux ΦðkxÞ ¼ ðbxkx=2πÞΦ0, where Φ0 ¼ h=e.
Hence, each kykz plane having a nonvanishing Chern
number contributes to the charge as

ΔQ ¼
eLx

2π

Z

BZ
CðkxÞ

kxbx

2π
dkx ¼ 0; ð82Þ

where CðkxÞ is the Chern number of each kykz plane
parametrized by kx. If we turn on a nonvanishing A x
(kx → k x þ ðe=ℏÞAx) and recalculate the bound charge,
we find

ΔQjAx
¼ −

Lx

2π

Z
ðPx=2Þ−ðe=ℏÞAx

−ðPx=2Þ−ðe=ℏÞAx

kxbx

2π
dkx

¼
e2PxbxLx

4π2ℏ
Ax: ð83Þ

This result is exactly what is found in our numerics shown
in Fig. 9(c). Both of these resultsmatch the analytic
prediction in Eq.(78) after including an extra factor of 2
which takes into account the bulk and boundary inflow to
the boundary [73,99–101].

F. 3D Weyl-node quadrupole semimetal
Finally, we discuss some aspectsof the crystalline

response of 3D Weyl semimetals with gapless Weyl nodes
forming a quadrupole pattern.Some of these responses
were recently discussed in Refs.[17,18,24],and here we
consider some of the responses in more microscopic detail
and compare directly with lattice model calculations.

Recall from Sec.III E the response action

SWQ ¼
eQαβ

8π2

Z
eα ∧ deβ ∧ A:

The bulk linear response implied by Eq.(49) is

J μ
α ¼

e
8π2 εμνρσQαβe

β
ν∂ρAσ −

e
4π2 εμνρσQαβAν∂ρeβ

σ; ð84Þ

j μ ¼ −
e

8π2 ϵ
μνρσQαβeα

ν∂ρeβ
σ: ð85Þ

We also note that both of these currents can be anomalous
when subjected to certain gauge field configurations:

∂μJ μ
α ¼ −

e
8π2 εμνρσQαβ∂μeβ

ν∂ρAσ; ð86Þ

∂μj μ ¼ −
e

8π2 ϵ
μνρσQαβ∂μeα

ν∂ρeβ
σ: ð87Þ

Now let us consider severaldifferentphenomena asso-
ciated to these response equations in the context of a lattice
model introduced in Ref.[17]:

HðkÞ ¼ sin kx sin kyΓx þ sin kzΓy

þ ½m þ tðcos kx þ cos ky þ cos kzÞΓz: ð88Þ

Without any geometric deformations, the semimetal phase
of our model with a Weyl-node quadrupole has two nodes
of one chirality at k ¼ ðK; 0; 0Þ and two of the opposite
chirality at ð0; K; 0Þ. Thus, the gapped,2D kykz planes
parametrized by kx have a nonvanishing Chern number C
for −K < k x < 0 and a nonvanishing Chern number −C for
0 < k x < K, where C ¼ 1. Similar statementscan be
made about the kxkz planes. Without loss of generality, let
us choose the nodes on the kx axis to have positive chirality
such thatQxx > 0 and C ¼ þ1. For our model,this also
implies that Qyy < 0 and the nonvanishing kxkz Chern
number planes have a negative Chern number for ky < 0
and positive Chern number for ky > 0. For example, in our
model, we can generate a configuration with this structure
using m ¼ −2,t ¼ 1.

1. Response to flux and dislocation lines
We begin by studying the momentum density bound to

magnetic flux and charge density bound to dislocations.
These two responses, some aspects of which are described
in Ref. [17] (see also Refs. [18,24]), are the most straight-
forward, because they are essentially bulk responses and do
not generateanomalouscurrents; i.e., the rhs of the
anomalous conservation laws above vanishes.Our model
has Qxx ¼ −Qyy ≠ 0, and the responses generated by these
two coefficients give two separate sets of terms in the
response action. Hence, for simplicity, we consider only the
Qxx responses for now.

Let us first microscopically calculate the expected
response to inserting a magnetic flux or a screw dislocation
and compare with the response theory.First, consider
inserting a thin magnetic flux line along the x direction
having flux Φ localized at,say,ðy; zÞ ¼ ð0; 0Þ.This flux
generates a Halleffect from each of the nontrivial kykz
Chern planes.The total charge bound to the flux line
vanishes,because there are equaland opposite contribu-
tions from kx < 0 and kx > 0. However, threading the flux
builds up a nonvanishing kx momentum, since planes with
opposite kx momentum have opposite Chern number. The
total momentum (spatialintegral of momentum density)
driven to the flux line by the Hall effect at each kx
momentum is

ΔPx ¼ −
Φ
Φ0

Lx

2π

Z
π

−π
dkxCðkxÞℏkx ¼

Φ
Φ0

ℏK 2Lx

2π
; ð89Þ

where the Chern number CðkxÞ is the piecewise-constant
function across the kx BZ described above and Φ0 ¼ h=e
is the quantum of magnetic flux. Using the fact that
Qxx ¼ 2K2 and dividing by the volume, we find the
momentum density

J 0
x ¼

eQxx

8π2 Bx: ð90Þ
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This is the same result coming from the first term in
Eq. (84) when exx ¼ 1.

Next, let us calculate the charge response to inserting
dislocations.Considera screw dislocation with Burgers
vector componentbx associated to a translation gauge
field configuration Bx

x ≡ ∂ yex
z − ∂zex

y ¼ bxδðyÞδðzÞ.From
Eqs. (84) and (85),we see thatboth the momentum and
charge currents have responses to dislocations, and we first
calculate the charge response. Heuristically, the dislocation
is like a U(1) gauge flux that couples to momentum instead
of electric charge, so the dislocation couples to kx momen-
tum because ithas a nonvanishing bx. Hence,each kykz
plane having a nonvanishing Chern number(and non-
vanishing kx) generatesa Hall response,but with a
magnitude proportional to its kx charge. Indeed, each plane
sees an effective flux ΦðkxÞ ¼ ðkxbx=2πÞΦ0. Hence,the
total charge bound to the dislocation is

ΔQ ¼
eLx

2π

Z
π

−π
dkx

kxbx

2π
CðkxÞ ¼ −

ebxQxx

8π2 Lx: ð91Þ

This matches Eq. (85), again after setting ex
x ¼ 1 (see also

Refs.[17,18,24]).
Now we consider the momentum response to a dis-

location, i.e., a momentum density bound to the dislocation
when Ax is nonvanishing [thiscomesfrom the second
term in Eq. (84)]. First, we can compute the amountof
momentum bound to a dislocation when Ax ¼ 0 by adding
the contributions of each Chern plane:

ΔPx ¼
Lx

2π

Z
π

−π
dkx

kxbx

2π
CðkxÞℏkx

¼
Lxbxℏ
4π2

Z
K

0
dkxk2

x −
Z

0

−K
dkxk2

x

¼ 0: ð92Þ

We note that this calculation is similar to Eq.(91) except
with an additionalfactor of the “momentum charge” ℏkx
in the integrand. Now if we turn on an A x such that
kx → k x þ ðe=ℏÞAx, we can repeat the calculation to find

ΔPxjAx
¼

Lxbxℏ
4π2

Z
K−ðeAx=ℏÞ

−eAx=ℏ
dkxk2

x −
Z

−eAx=ℏ

−K−ðeAx=ℏÞ
dkxk2

x

¼ −
eLxbx2K2

4π2 Ax:

The final resultyields

J 0
x ¼ −

eQxxAx

4π2 Bx
x; ð93Þ

which matches Eq. (84) and our numerical calculations in
Figs. 10(c) and 10(d). For the numerics, we insert a pair of
screw dislocations with Burgers vectors bx ¼ a x in the
presence of a constant background gauge potential Ax. The
resulting kx momentum density of the ground state as a
function of the y and z lattice coordinates is shown in
Fig. 10(c). Furthermore, the dependence of this momentum
density on Ax reproduces the expected response coefficient,
as shown in Fig.10(d).

2. Response of a deformed interface
Next, let us consider an interface between an unde-

formed geometry and a geometry having a nonvanishing
background eyx and ex

y as shown in Fig. 11(b). To be
explicit, let the interface between the two geometries
occur as a function of z at z ¼ 0. On the surface of the
undeformed system,we numerically calculate the char-
acteristic (rank-2) Fermi arc structure as shown in the left
surface-BZ panel in Fig. 11(a). For our deformed geom-
etry, we show the modified bulk Weyl-node quadrupole
and Fermi arcs when eyx ¼ ex

y ≠ 0 in the right surface-BZ
panel in Fig. 11(a).

From these figures,we see that the Weyl-node quadru-
pole moment QðRÞ

ab on the deformed side is modified from
the quadrupole momentQðLÞ

ab on the undeformed side.
Explicitly, we can compute

QðRÞ
xx ¼ ðexxÞ2QðLÞ

xx þ 2ex
xe

y
xQðLÞ

xy þ ðey
xÞ2QðLÞ

yy ;

QðRÞ
xy ¼ ex

xex
yQ

ðLÞ
xx þ ey

xey
yQðLÞ

yy þ ðex
xe

y
y þ ey

xex
yÞQðLÞ

xy ;

QðRÞ
yy ¼ ðexyÞ2QðLÞ

xx þ 2ex
ye

y
yQðLÞ

xy þ ðey
yÞ2QðLÞ

yy ; ð94Þ

i.e., QðRÞ
ij ¼ ea

i QðLÞ
ab eb

j . For our model and geometry, we can
make the simplifications exx ¼ 1 ¼ eyy, ey

x ¼ ex
y, QðLÞ

xy ¼ 0,
and QðLÞ

xx ¼ 2K2 ¼ −QðLÞ
yy . Substituting these relations into

Eq. (94) yields

QðRÞ
xx ¼ −QðRÞ

yy ¼ 2K2½1 − ðey
xÞ2 ð95Þ

and QðRÞ
xy ¼ 0. Alternatively,we can see this resultfrom

the locations of the deformed Weyl nodes which sit at
ðK; Kexy; 0Þþ , ð−K; −Kex

y; 0Þþ , ðKey
x; K; 0Þ− , and ð−Key

x;
−K; 0Þ− (where the subscripts  encode the chirality for
our choice of model parameters).

Since the Weyl-node quadrupole moments on the two
sides of the interface are different, we expect gluing the two
sides together to leave behind a signature at the interface.
Indeed, from the middle surface-BZ panel in Fig. 11(a), we
see gapless Fermiarcs that remain at the interface and
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stretch between the unmodified and modified projected
locations of the bulk Weyl nodes. From Eqs. (84) and (85),
we see there should be responses

J x
x ¼ −

e
4π2 QxxA0∂zex

y; J y
y ¼ −

e
4π2 QyyA0∂ze

y
x;

j 0 ¼
e

8π2 ðQxxex
x∂zex

y − Qyye
y
y∂ze

y
xÞ ¼

eQxx

4π2 ∂ze
y
x;

where in the last equality we substitute in the relations that
are specific to our model and interface geometry, which we
state above.

We confirm the momentum and charge responses
numerically, in particular, the J x

x responseshown in
Fig. 11(c), and we also provide microscopic analytic
arguments here.The momentum currents both follow the
same logic,so let us consider only Jxx for now. From the
center surface-BZ panelin Fig. 11(a), we see remnant
Fermi arcs. If we increase A0, each linearly dispersing
point on the Fermi arc has an excess charge density
δnðkÞ ¼ ½eA0=2πℏjvFðkÞj, where vFðkÞ is the Fermi
velocity at the Fermiarc located atk in the surface BZ.
Hence,the contribution to the kx momentum currentof
such a point on the Fermi arc is Jx

xðkÞ ¼ ℏkxvFðkÞδnðkÞ.
For our modeland geometry,the contributions to the Jx

x

current that are linear in the deformations of ea
i arise from

the Fermiarcs stretching between ðK; 0Þ → ðK; Kex
yÞ and

ð−K; 0Þ → ð−K; −KexyÞ. Each of these arcs has a fixed
value kx ¼ K, and each arc has an opposite Fermi
velocity.Hence,

J x
x ¼ ℏKv FðK; kyÞδn

Kex
y

2π
þ ℏð−KÞvFð−K; kyÞδn

Kex
y

2π

¼
eQðLÞ

xx ex
yA0

4π2 sgnðvFÞ;

where Kexy=2π counts the density of states on the Fermi arc
in the ky direction,sgnðvFÞ is sign of the velocity on the
kx ¼ þK arc, and the undeformed QðLÞ

xx ¼ 2K2. This result
matchesthe prediction from the responsetheory and
matches the numerical results in Fig.11(c).

The calculation of the charge density j0 at the interface is
simpler,since it comes from the bulk response to a trans-
lation magnetic field. At the interface, there is a nonvanish-
ing Bx

x ¼ −∂zex
y and By

y ¼ ∂ze
y
x. Since the kykz planes and

kxkz planes have nonvanishing Chern numbers, they yield a
density response similar to what we find on the dislocation
line in Eq. (91). Each kx state sees an effective magnetic flux

(a) (b)

(c) (d)

FIG. 10. (a) The bulk spectrum of a Weyl semimetal with two nodes of one chirality on the kx axis and two nodes of the opposite
chirality on the ky axis. (b) The spectrum of the same Weyl semimetal with periodic boundary conditions and two screw dislocations
with opposite Burgers vectors threaded along the x direction. Red and blue coloration indicates on which dislocation the chiral modes
are localized. Each dislocation has a no net chirality, and the Weyl nodes on the ky axis do not form chiral modes.(c) The spatially
resolved kx momentum density response of a Weyl-node quadrupole semimetal to a pair of screw dislocations with opposite Burgers
vectors bx ¼ a x located at ðy; zÞ ¼ ½20ay; ð20  10Þaz with the background gauge field Ax ¼ 2.5 × 10−4ℏ=eax and Qxx ¼ π2=ð2a2xÞ.
(d) Numerically calculated dependence of the kx momentum density localized on a screw dislocation with Burgers vector bx ¼ 1 as a
function of the background gauge field Ax, using the same modelas in (c).
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ΦðkxÞ ¼ −ðkxbx=2πÞΦ0, and similarly for each ky state
ΦðkyÞ ¼ ðkyby=2πÞΦ0, where bx ¼

R
dyex

yjz>0 and by ¼R
dxey

xjz>0 are the Burgers vectors obtained when integrating
across the entire periodic y and x directions,respectively.
Hence,the total charge at the interface is

ΔQ ¼ −
2eLx

2π

Z
K

0
dkx

kxbx

2π
þ

2eLy

2π

Z
K

0
dky

kyby

2π

¼
e

8π2 ð−QxxbxLx þ Q yybyLyÞ

¼ −
eQxxbxLx

4π2 ;

where the leading factors of 2 in the first line accountfor
identical contributions from the interval kx ∈ ½−K; 0, and in
the last equation we use Qxx ¼ −Qyy and Lxbx ¼ Lyby

since eyx ¼ ex
y. This final result matches Eq.(85).

V. CONCLUSION

In this article, we have presented a framework of explicit
connections between a wide-ranging family of topological
response theories from 0D to 3D.Using this framework,
we have shown how the coefficients for these response
theories, most of which are well known in insulators, can be
obtained for topological semimetals. This has allowed us to
provide careful derivations and characterizations of mixed
crystalline-electromagnetic responses of semimetallic and
insulating systems in various spatialdimensions.Finally,
we have provided an extensive setof microscopic lattice
calculations and numerical confirmations affirming that our
predicted field theory responses do indeed arise in tight
binding lattice models. With the advent of topological
quantum chemistry [102–107],thousandsof crystalline
topological insulators and semimetals have been identified,
but many open questions persist about how to probe their
topological features.This work provides insight into how
the topology in some of these materials may be probed
and characterized, i.e., by combining geometric and strain
distortions and electromagnetic responses.

There is a growing body of work studying the mixed
crystalline-electromagnetic responses of Weylsemimetals
with dipole and quadrupole arrangementsof nodes
[12,13,15–21,23,24,72,88–92,94–97]that indicate a
broad interest in these topics.Our work serves two major
purposes in the contextof this previous literature:(i) We
identified several aspects of mixed crystalline-
electromagnetic responses that have not yet been addressed
in earlier work, and (ii) we synthesized aspectsof the
existing literature to present a unified description of these
responsesin terms of the momentum-spacemultipole
moments of the nodalconfigurations and to provide new
intuition in previously studied responses. While prior
work has examined the mixed crystalline-electromagnetic
response of two-dimensional Dirac-node dipole semimetals
[34,64], we have advanced this understanding by identify-
ing a Wilson loop correction the response coefficient that
raises a subtle question about the connection between the
charge polarization and the mixed-crystalline-electromag-
netic response.Additionally, the Dirac-node quadrupole
semimetal has not been previously discussed,making our
work the first study of its properties and mixed crystalline-
electromagnetic responses.Furthermore,our model of a
nodal line quadrupole semimetaland its corresponding
response theory are new to the literature as well.

The results of this work point in many possible directions
for future work. First, finding experimental realizations
of the proposed topologicalresponsesin solid state or
metamaterial systems is an exciting prospect. Rank-2 chiral

(a)

(b)

(c)

FIG. 11. (a) The three panels show numerically calculated
Fermi arcs in (left) the surface BZ of the undeformed geometry,
(right) the surface BZ of the deformed geometry with ex

y and eyx
are nonvanishing,and (center) the BZ of the interface formed
gluing the deformed and undeformed geometries together.See
the caption in Fig. 8 for comments about the color guides on the
open circles representing the surface BZ projections of the bulk
Weyl nodes.(b) Illustrations of (left) undeformed and (right)
deformed geometries. (c) The numerically calculated momentum
current localized at interface between deformed and undeformed
geometries as a function of the chemicalpotential shiftA0.
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fermions, which have an anomaly compensated by the
bulk response of a Weyl quadrupole semimetal [17], were
realized in a recent experimenton non-Hermitian topo-
electric circuit metamaterials [39].In that platform, the
mixed crystalline-electromagneticresponsegeneratesa
momentum-resolved non-Hermitian skin effectthat was
observed in the experiment.Topoelectric circuits,along
with other metamaterialsand solid state platforms, are
promising arenas in which the many mixed crystalline-
electromagnetic responses we discuss in this paper could be
realized.Some of us are also working on extending the
nodal, higher-multipole responses to interacting systems
and nonequilibrium systems where,in the latter, one can
have mixed energy-momentum multipole moments.
Studying the leading nodaldipole moments has already
led to a rich set of phenomena,and the higher moments
provide a large hierarchy of phenomenathat can be
explored in current experiments.

Other extensions of this work include the consideration
of additional crystalline gauge fields as was done in, e.g.,
Refs. [18,48–51,108]. Two important classes of crystalline
symmetries that have not yet received such a treatment are
nonsymmorphic and orientation nonpreserving crystalline
symmetries,both of which can protectexotic topological
semimetals [41,109]. It is conceivable that gauge fields for
these two classes ofcrystalline symmetries can be con-
structed and used to probe the quasitopological responses
of semimetals protected by these symmetries. We leave this
avenue to future work.

It is also quite interesting to consider responses arising
from internal symmetries such as spacetime inversion and
chiral symmetry, which protect many unconventional
topologicalsemimetals [42–47,110].Spacetime inversion
is antiunitary,so it is unclear if a gauge field can be
constructed for it, though it is likely that systems protected
by this symmetry would be sensitive to defects of the
unitary inversion part of the symmetry and, of course, to the
defects of translation symmetry.Chiral symmetry is com-
monly associated with a sublattice degree of freedom in
the UV, while in the IR it can often be connected to a
configuration of valleys (or nodal regions). In these
scenarios, one can imagine defects of the chiral symmetry
arising from a valley-resolved gauge field,strain, or an
intrasite field that couples differently to different sublatti-
ces.Calculations involving these gauge fields may yield
physically meaningful results; however, chiral symmetry is
at bestapproximate in nonsuperconducting systems,and,
hence,observables tied to these calculations are likely to
have significantquantitative differences ifconsidered in
experiment.
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APPENDIX A: TRANSLATION GAUGE FIELDS
DERIVED FROM THE TELEPARALLEL

PRESCRIPTION

In this appendix,we provide a derivation of the trans-
lation gauge field eμ

ν and its coupling prescription that
follow directly from gauging the translationalsymmetry
group, which can be done in a similar fashion to gauging
the ordinary electromagnetic U(1) symmetry.Consider a
translation transformation

rμ → r μ þ a μ; ðA1Þ

which is generatedby correspondingoperators P̂μ ¼
−iℏ∂ μ. Under such an infinitesimaltranslation,the wave
function changes by δψ ¼ ia μðP̂μ=ℏÞψ. Promoting the
transformation to a local one, aμ → a μðrÞ,we find that
the derivative of ψ does not transform covariantly anymore:

ℏδð∂νψÞ ¼ iaμðrÞ∂νðP̂μψÞ þ iP̂μψ∂νaμðrÞ: ðA2Þ

We can compensate the second term by introducing an
additionalgauge potentialBμ

ν that obeys the gauge trans-
formation rules Bμ

ν → B μ
ν − ∂νaμðrÞ. This allows us to

define a covariant derivative:

Dνψ ¼ ∂νψ þ iB μ
νðP̂μ=ℏÞψ: ðA3Þ

Now it is straightforward to check that the covariant
derivative transforms as expected:

ℏδðDνψÞ ¼ iaμðt; xÞDνðP̂μψ Þ: ðA4Þ

We can reexpress the partialderivative in Eq. (A3) as a
momentum operator to write down:

Dνψ ¼ ieμ
νP̂μ=ℏ; ðA5Þ

where eμν ¼ δμ
ν þ B μ

ν is a translation gauge field that inherits
its gauge transformations from the gauge potential Bμ

ν:

eμ
ν → eμ

ν − ∂νaμðrÞ: ðA6Þ

APPENDIX B: GRADIENT EXPANSION

In this appendix,we do a quick review of the gradient
expansion procedure.As we are interested in responses
involving both electromagneticand translation gauge
fields, we need to consider how the electron wave vector
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gets shifted in the presence of spatially varying gauge fields
AμðrÞ and eλμðrÞ ¼ δλμ þ B λ

μðrÞ (see Appendix A):

kμ → k μ þ
e
ℏ

AμðrÞ þ kλBλ
μðrÞ: ðB1Þ

For small gauge fields, we can obtain a simple form of the
resulting single-particle Green’sfunctions performing a
Taylor expansion:

G0ðkÞ−1 →G −1
ABðk;rÞ ¼ G−1

0 kμþ
e
ℏ

AμðrÞþkλBλ
μðrÞ

≈G −1
0 ðkÞþ

e
ℏ

AμðrÞ
∂G−1

0
∂kμ

þk λBλ
μðrÞ

∂G−1
0

∂kμ
ðkÞ þ 

≈G −1
0 ðkÞþ

e
ℏ

AμðrÞþkλeλ
μðrÞ−kμ

∂G−1
0

∂kμ
ðkÞ þ :

ðB2Þ

We then follow the standard procedureto derive the
effective action:

i
ℏ

S ¼ log
ZAB

Z0
¼ log

DetG−1
AB

DetG−1
0

≈ Tr log ðI þ G0ΣÞ; ðB3Þ

where

Σ ¼
e
ℏ

AμðrÞ þ kλeλ
μðrÞ − kμ

∂G−1
0

∂kμ
ðkÞ þ    : ðB4Þ

Expanding the trace of logarithm,we get

i
ℏ

S ≈ Tr log ðI þ G0ΣÞ

≈ TrðG0ΣÞ −
1
2

TrðG0ΣG0ΣÞ

þ
1
3

TrðG0ΣG0ΣG0ΣÞ −    : ðB5Þ

The rhs of this equation is a sum of integrals over the entire
phase space,and the products under functionaltraces are
convolutions. Therefore, we need to use the Moyal product
formula,expanding each G0Σ term as

G0⋆Σ ≈ G 0Σ þ
i
2

fG 0; Σg þ    ; ðB6Þ

where ⋆ is the Moyal productoperator and f·; ·g are the
Poisson brackets for the rμ and kμ variables [111–113]. The

rhs of the lastequation contains ordinary products of G0
and Σ that are subsequently integrated over the phase space.
For example,in d spacetime dimensions,we get for the
TrðG0ΣÞ term in the 0th order of the Moyal product
expansion

Z
ddr

ddk
ð2πÞd

e
ℏ

Aμ þ k λBλ
μ tr G0

∂G−1
0

∂kμ
; ðB7Þ

where “tr” denotes the ordinary trace over orbital and spin
degrees of freedom.

APPENDIX C: ELECTRIC POLARIZATION
AS A BERRY CURVATURE DIPOLE

Let us consider the expression for the polarization of a
2D system with a single filled band:

Py
e ¼

eΩ
ð2πÞ2

i
Z

BZ
d2khukj∂ky

uki ≡
eΩ

ð2πÞ2
iP; ðC1Þ

where Ω is the area of the unit cell. We rewrite the last
integral denoted asP as a first moment of the Berry
curvature, Fxy ¼ ih∂kx

ukj∂ky
uki − ih∂ky

ukj∂kx
uki. Consider

the following quantity:

F ¼ −i
Z

BZ
d2kkxF xy

¼
Z

BZ
d2kkxh∂kx

ukj∂ky
uki −

Z

BZ
d2kkxh∂ky

ukj∂kx
uki;

ðC2Þ

where we assume Fxy to be smooth and integrable in
the Brillouin zone spanning kx ∈ ½−π=ax; π=axÞ and
ky ∈ ½−π=ay; π=ayÞ.Clearly,the integrand jumps in value
at the kx ¼ π=ax boundary of the Brillouin zone, and so we
treat the kx direction as open.Integrating by parts with
respect to kx we find

F ¼ −i
4π
ax

I
dkyA yðkx ¼ π=ax; kyÞ

−
Z

BZ
d2kðhukj∂ky

uki − h∂ky
ukjukiÞ

−
Z

BZ
d2kkxhukj∂kx

∂ky
uki þ

Z

BZ
d2kkxh∂kx

∂ky
ukjuki;

ðC3Þ

where AμðkÞ ¼ ihukj∂kμ
uki is the Berry connection. The

first term is proportional to a Wilson loop Wyðkx ¼ π=axÞ
along the k x ¼ π=ax line. It is easy to recognize that
the second term is twice the integral of interest −2P.
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Integrating the third and fourth terms by parts with respect
to ky, we find

−
Z

BZ
d2kkxðhukj∂kx

∂ky
uki − h∂kx

∂ky
ukjukiÞ

¼
Z

BZ
d2kkxðh∂ky

ukj∂kx
uki − h∂kx

ukj∂ky
ukiÞ

¼ −i
Z

d2kkxF yx ¼ −F: ðC4Þ

Summing up,we find

F ¼ −i 4π
ax

Wy − 2P − F

⇓
P ¼ −F − i 2π

ax
Wy;

and the polarization is,therefore,given by

Py
e ¼ −

eΩ
ð2πÞ2

Z

BZ
d2kkxF xy

þ
eay

2π

I
dkyA yðkx ¼ π=ax; kyÞ: ðC5Þ

Performing a similar calculation for Px
e, we find the general

formula

Pi
e ¼

eΩ
ð2πÞ2

εij
Z

d2kkj F xy þ ea i Wi : ðC6Þ

In the case when the system has inversion symmetry,the
Wilson loop taken along a high-symmetry line satisfies
Wi ðkj ¼ π=aj Þ ¼ −Wi ðkj ¼ π=aj Þ and Wi ðkj ¼ 0Þ ¼
−W i ðkj ¼ 0Þ for i ≠ j, and we find that the nonquantized
part of the polarization is accounted forentirely by the
Berry curvature’s dipole moment.

APPENDIX D: MOMENTUM POLARIZATION AS
A BERRY CURVATURE QUADRUPOLE

Let us consider the following expression for the kx
momentum polarization in thêy direction of a 2D system
with a single filled band:

Py
kx

¼
Ω

ð2πÞ2
i
Z

BZ
d2kkxhukj∂ky

uki ≡
Ω

ð2πÞ2
iQ; ðD1Þ

which is just a natural extension of the analogous expres-
sion for the charge polarization. We can rewrite the integral
denoted as Q as a second moment of the Berry curvature,
as we now show.Consider the following quantity:

F ¼ −
i
2

Z

BZ
d2kk2

xF xy

¼
1
2

Z

BZ
d2kk2

xh∂kx
ukj∂ky

uki −
1
2

Z

BZ
d2kk2

xh∂ky
ukj∂kx

uki;

ðD2Þ

where we once again assumeF xy to be smooth and
integrable in the Brillouin zone spanned by kx ∈
½−π=ax; π=axÞ and ky ∈ ½−π=ay; π=ayÞ. Treating the kx
direction of the BZ as open, we integrate by parts with
respect to kx to find

F ¼ −
Z

BZ
d2kkxðhukj∂ky

uki − h∂ky
ukjukiÞ

−
1
2

Z

BZ
d2kk2

xhukj∂kx
∂ky

uki

þ
1
2

Z

BZ
d2kk2

xh∂kx
∂ky

ukjuki: ðD3Þ

Note the absence of the Wilson loop contribution we find in
the previous section,which is a result of the symmetric
nature of the function k2

x. We see again that the first term is
twice the integral of interest −2Q. Integrating the third and
fourth terms by parts with respect to ky, we find

−
1
2

Z

BZ
d2kk2

xðhukj∂kx
∂ky

uki − h∂kx
∂ky

ukjukiÞ

¼
1
2

Z

BZ
d2kk2

xðh∂ky
ukj∂kx

uki − h∂kx
ukj∂ky

ukiÞ

¼ −
i
2

Z
d2kk2

xF yx ¼
i
2

Z
d2kk2

xF xy ¼ −F: ðD4Þ

Summing up,we find

F ¼ −2Q − F
⇓

Q ¼ −F;
ðD5Þ

and we find the polarization to be

Py
kx

¼ −
Ω

8π2

Z

BZ
d2kk2

xF xy: ðD6Þ

Performing a similar calculation for Px
ky

, we find the general
relation

Px
ky

¼
Ω

8π2

Z

BZ
d2kk2

yF xy: ðD7Þ
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APPENDIX E: RESPONSES FOR 1D SYSTEMS

In this appendix,we discuss responses of isolated one-
dimensional metals having a fixed number of electrons Ne.
For the cases we consider, the Fermi surface consists of an
even integer number NF of Fermi points having chiralities
χa ¼ sgnva, where va is the Fermi velocity of the ath Fermi
point. From the fermion doubling theorem [114], the total
chirality vanishes:χ ¼

P NF
a¼1 χa ¼ 0. We wish to define

three more quantities besides χ that characterize 1D metals:

Px ¼
XNF

a¼1
χakðaÞ

Fx ; ðE1Þ

Qxx ¼
XNF

a¼1
χaðkðaÞ

Fx Þ2; ðE2Þ

Oxxx ¼
XNF

a¼1
χaðkðaÞ

Fx Þ3: ðE3Þ

These three quantities representthe momentum space
dipole, quadrupole,and octupole moments of the Fermi
points, respectively [see Figs.3(a)–3(c)]. We could go
beyond the octupole moment to any higher moment,but
for brevity we stop at this order. Importantly, these
momentum moments are related to the ground state
properties of the metal.The total charge is proportional
to the dipole moment:

Q ¼
eL
2π

Px; ðE4Þ

the total momentum hℏkxi is proportional to the quadru-
pole moment:

Px ¼
1
2

ℏL
2π

Qxx; ðE5Þ

the total momentum squared hðℏkxÞ2i is proportional to
the octupole moment:

Pxx ¼
1
3

ℏ2L
2π

Oxxx; ðE6Þ

and so on for higher moments. From this, we see that each
of the momentum-space moments determines the density
of higher and higher powers of momentum,starting at
zeroth order where the charge is proportional to the
momentum dipole.There are two important caveats to
note: (i) In order for the nth moment and its associated
physical quantity to be independentof the origin of the
BZ, all lower moments must vanish, and (ii) these results
hold only up to constants independentof the set of kðaÞ

Fx
which result from contributions from filled bands.

We now want to consider a family of anomalous
responses to various gauge fields in 1D metals.We have
already considered some of these anomalies in Sec.III B,
and we go into more detail in this appendix. To proceed, we
introduce a family of gauge fields e; eα; eαβ; eαβγ; …. Each
of these fields couples to charges that are powers of
momentum.The field e we identify with the family of
electromagnetic gauge field one-forms ðe=ℏÞA as it couples
to zero powers of momentum. The field eα is the translation
gauge field we have extensively discussed,and it couples
linearly to momentum kα. In general, the fields eαβγ…ζ

couple to the momentum charges kαkβkγ…kζ. Since
we consider momentum-space moments only up to the
octupole momentOxxx, we consider gauge fields only
up to eαβγ.

Using these gauge fields, we can consider the following
set of actions:

Sχ ¼
e2χ
2πℏ

Z
d2rA0Ax; ðE7Þ

SP ¼
e
2π

Z
d2rP xðex0Ax − ex

xA0Þ; ðE8Þ

SQ ¼
ℏ
2π

Z
d2rQ xx

1
2

ex
0ex

x þ eðexx
0 Ax − exx

x A0Þ ; ðE9Þ

SO ¼
ℏ2

2π

Z
d2rO xxx

1
3

ðex0exx
x − ex

xexx
0 Þ þ eðexxx

0 Ax − exxx
x A0Þ :

ðE10Þ

These actions capture two important phenomena associated
to each of the momentum moments: (i) the connection to
the associated ground state quantity,i.e., Q, Px, and Pxx,
and (ii) the shift in Q, Px, Pxx, and Pxxx when an electric
field is turned on. As a first example,let us consider Sχ.
We can calculate the electromagnetic charge density and
current to find ρ ¼ ðe2χ=hÞAx and jx ¼ ðe2χ=hÞA0. If we
use these results to calculate the conservation law, we find

∂μj μ ¼
e2χ
h

Ex;

which is just the usual U(1) anomaly of a chiral fermion.
The fact that χ ¼ 0 for any lattice model has two immediate
consequences: (i) The U(1) charge anomaly above vanishes
for lattice systems, and (ii) the momentum dipole moment
Px is well defined and independentof the choice of
momentum space origin.Justas for conventionalelectric
or magnetic multipole moments, in order for the nth
moment to be well defined, all of the lower moments must
vanish. As such, the action SQ is well defined only if
χ ¼ Px ¼ 0. Similarly, for SO to be well defined, we must
have χ ¼ Px ¼ Qxx ¼ 0.
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Now let us consider each of the remaining actions
in turn. We begin with SP . As mentioned in Sec.III B,
Px is related [34] to the charge density of a 1D metal via
ρ ¼ −ðe=2πÞPxex

x and the momentum density via
J 0

x ¼ ðe=2πÞPxAx. Assuming that our system is trans-
lation invariant, let us consider stretching our system via a
time-dependentex

x. During this process,the total number
of electronscannot change.Working from the charge
density,we find

∂tρ ¼ −
e
2π

∂tðPxex
xÞ: ðE11Þ

Naively, we are just changing ex
x; however, if we stretch the

system at fixed particle number, the Fermi momenta change
inversely. Indeed, we have ∂tPx ¼ −ðPx=ex

xÞ∂tex
x. Inserting

this into Eq. (E11),we find

∂tρ ¼ −
e
2π

−ex
x

Px

ex
x

∂tex
x þ P x∂tex

x ¼ 0: ðE12Þ

Using this equation,we find

ΔQ ¼
Z

dt
Z

dx∂tρ ¼ 0 ðE13Þ

as we expect for a fixed number of electrons.
To be self-contained, let us reiterate our argument from

the main text. At a fixed particle number, we know the total
charge cannot change. Intuitively, we might expect that the
density should decrease if we stretch the system. However,
the quantity ρ above, which is defined as δS=δA0, is not a
scalardensity.For generalgeometries,the scalarcharge
density would be defined as

ρ̄ ¼
1
ex

x

δS
δA0

: ðE14Þ

To calculate the total charge,we would then use

Q ¼
Z

dxex
xρ̄ ¼

Z
dxρ: ðE15Þ

Indeed, the scalar charge densityρ̄ decreases as the system
is stretched,since ∂tρ̄ ∝ ∂tPx, which decreasesas the
system size increases atfixed electron number.

Next, we can see thatanotherconsequence ofa non-
vanishing Px is a mixed crystalline-electromagnetic
anomaly.To illustrate this, let us consider the change in
momentum density in an applied electric field generated by
a change in Ax. We find

∂tJ x
0 ¼

e
2π

∂tðPxAxÞ: ðE16Þ

Unlike the previous case, when we turn on a nonvanishing
Ax the dipole Px does not change.Hence,we find the
anomalous conservation law

∂μJ μ
x ¼

ePx

2π
Ex: ðE17Þ

Moving on, let us discuss the action SQ. To have a well-
defined quadrupole momentQxx, we need Px ¼ 0. This
scenario can happen nontrivially in systemswith more
than one occupied band near the Fermi level, as shown in
Fig. 3(b). As long as any perturbations we apply keep χ and
Px fixed to zero, then the phenomena associated to Qxx are
physically meaningful.From this action, we can derive
three separate conservation laws:

∂tρ ¼
e
2π

∂tðQxxexx
x Þ; ðE18Þ

∂tJ 0
x ¼

ℏ
4π

∂tðQxxex
xÞ; ðE19Þ

∂tJ 0
xx ¼ −

e
2π

∂tðQxxAxÞ; ðE20Þ

where the quantities Px and Pxx in Eqs. (E5) and (E6) are
determined by Px ¼

R
dxJ 0

x and Pxx ¼
R

dxJ 0
xx. The first

and third equations generate a kind ofmixed anomaly,
so let us discuss those first.For fixed electron number,
we know that ∂tρ must vanish, which implies that
∂tQxx ¼ −ðQxx=exx

x Þ∂texx
x . Thus, the first equation is simply

∂tρ ¼ 0. For the third equation,since changing Ax while
keeping χ ¼ Px ¼ 0 does not change Qxx, we have

∂μJ μ
xx ¼

eQxx

2π
Ex: ðE21Þ

This implies that if we insert flux into the system, then the
momentum quadrupole moment changes; i.e.,the expect-
ation value of the momentum squared in the resulting
excited state changes while the total charge and momentum
remain fixed.

Returning to the middle equation, we consider the change
in momentum as we stretch the system. Crucially, we use the
relationship ∂tQxx ¼ −2ðQxx=ex

xÞ∂tex
x (heuristically, this

comes from the factthat quadratic powers of momentum
are proportional to L−2). Inserting this in Eq. (E19), we find

∂tJ 0
x ¼ −

ℏQ xx

2π
∂tex

x þ
ℏQ xx

4π
∂tex

x ¼ −
ℏQ xx

4π
∂tex

x:

We can interpret the first contribution in the middle section
of the above equation as coming from the changein
the Fermi points kðaÞ

Fx induced by changing ex
x. The second

contribution arises from the existence ofa nonvanishing
ground state momentum density when the length ofthe
system is changed.Note that,while the coefficientof the
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final result is the same magnitude as Eq. (E19), the sign is
opposite.The full conservation law becomes

∂μJ μ
x ¼

ℏQ xx

4π
Ex

x: ðE22Þ

Finally, if we have a scenario where χ, Px, and Qxx are
all vanishing and remain vanishing after applying any
gauge fields, then the phenomenaassociated to Oxxx
become physically relevant.Such a scenario can existin
a 1D metal where four bands appear at the Fermi surface
[see Fig. 3(c)]. Just as above, let us consider the con-
servation laws we can derive from SO:

∂tρ ¼ −
eℏ2

2π
∂tðOxxxexxx

x Þ; ðE23Þ

∂tJ 0
x ¼

ℏ2

6π
∂tðOxxxexx

x Þ; ðE24Þ

∂tJ 0
xx ¼ −

ℏ2

6π
∂tðOxxxex

xÞ; ðE25Þ

∂tJ 0
xxx ¼

eℏ2

2π
∂tðOxxxAxÞ: ðE26Þ

We can use identical arguments as above to determine
that ∂tOxxx ¼ −ðOxxx=exxx

x Þ∂texxx
x so that the total charge

remains fixed. Under a change of Ax we have ∂tOxxx ¼ 0,
and under a change in ex

x we can determine that
∂tOxxx ¼ −3ðOxxx=ex

xÞ∂tex
x. Using these relationships,we

can reduce three of the conservation laws to find

∂μj μ ¼ 0; ðE27Þ

∂μJ μ
xx ¼ −

ℏ2Oxxx

3π
Ex

x; ðE28Þ

∂μJ μ
xxx ¼ −

eℏ2Oxxx

2π
Ex: ðE29Þ

To get the final conservation law, we need to determine how
Oxxx changes when exx

x changes. From counting powers of
length, we find ∂tOxxx ¼ − 3

2 ðOxxx=exx
x Þ∂texx

x . Inserting this
into the conservation law for ρx generates

∂μJ μ
x ¼

ℏ2Oxxx

12π
Exx

x : ðE30Þ

In summary,while the anomalous responses we have
written in this section are formally correct, it is impossible
to uniquely determine the coefficients Px, Qxx, or Oxxx
unless all lower moments vanish (starting with the chirality
χ). Additionally, even if the lower moments are initially
vanishing, turning on gauge fields may generate these

moments anomalously and,hence,invalidate the higher
moments. We expect that under the assumptions of vanish-
ing lower moments that the highest moment will generate
the physical responses described above.
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