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We present a unifying framework that allows us to study the mixed crystalline-electromagnetic responses
of topological semimetals in spatialdimensions up to D % 3 through dimensionahugmentation and
reduction procedures. We show how this framework illuminates relations between the previously known
topological semimetals and use it to identify a new class of quadrupolar nodal line semimetals for which
we construct a lattice tight-binding Hamiltonian. We further utilize this framework to quantify a variety
of mixed crystalline-electromagneticresponses,including several that have not previously been
explored in existing literature, and show that the corresponding coefficients are universally proportional
to weighted momentum-energy multipole moments of the nodapoints (or lines) of the semimetal.

We introduce lattice gauge fields that couple to the crystal momentum and describe how tools including
the gradient expansion procedure, dimensional reduction, compactification, and the Kubo formula can
be used to systematically derive these responses and their coefficieMé&e further substantiate these
findings through analytical physical arguments, microscopic calculations, and explicit numerical
simulations employing tight-binding models.
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[. INTRODUCTION that are determined by the momentum-space and energy

. . . locations of the point or line nodes [30-35]. For point-
Topologicalresponses are a key manifestation of elec- . e
node semimetals the relevantresponse coefficients are

tronic topology in solids. Celebrated examples such as the .
. . momentum-energy vectors determined as a sum ofhe
integer quantum Hall effect [1-3] and axion electrodynam- . ,
. X momentum and energy locations of the point nodes
ics [4,5] have paved the way for a broader exploration of = . . ) . -
f L : weighted by their chirality (or by their helicity, for

topological response phenomena in insulating systems. As. X o

of now, a wide variety of phenomena thatare directly Irac semimetals),yielding a momentum-energy space

determined by the electronic topology have been consid dipole. For example,the low-energy,nodal contribution
X oY pology X to the anomalous Hall effect tensor of a 3D Weyl
ered, including thermal response [6,7], geometric responsg _ . : .
; ) semimetalis determined by the momentum components
[8-24], and electric multipole response [25-27]. These . .
o f.this momentum-energy dipole vector.
responses are robust features of topological insulators (TIs ) . o .
he quasitopologicatesponse coefficients of topologi-

and topolog!cal phases, in gen_er.al, and are ofte_n descrlb%gl semimetals are not strictly quantized, since they can be
by a quantized responsecoefficient, e.g., the integer : X
continuously tuned with the nodal momenta. However, the

Hall conductance [1-3]or the quantized magnetoelectric forms of the responses share many features with topologi-

polar|zab|l_|ty [5’28’2.9]' T cal insulators in one lower dimension or, perhaps more
Interestingly certain distinctive features of response of . . . . .
precisely,with weak topological insulators in the same

topological Weyl or Dirac semimetals can be described b%limension [36,37]. Indeed, topological semimetalsand
response theories thatre closely analogous to those of weak topological insulators both require discrete trans-

topologically insulating phases, albeit with coefficients lation symmetry to be protected, and both are sensitive to
translation defects such as dislocations [38}erestingly,
the connection to translation symmetry has motivated
"These authors contributed equally to this work. recent work which recasts many previously proposed
topological responsesof these systemsas couplings
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development of new response theories that are just begirthat are discussed in more detail, and in model contexts, in
ning to be understood [17-20,24]. later sectionsln Sec. lll, we derive a family of effective
Motivated by these previous results and our recent actions that describe mixed crystalline-electromagnetic
related work on higher-rank chiral fermions [17,24,39], responses in various spatiatlimensions.From here, we
here we study the topological responses of 1D, 2D, and 3Woceed in SeclV by presenting concrete lattice models
topological semimetalscoupled to electromagnetic and and explicit numericalcalculations thatrealize and dem-
strain (translation gaugefields. In addition to the well- onstrate the mixed responses in D 4 1, 2, 3. We conclude
studied dipole case mentioned above, we also study caséds Sec. V by discussing possible extensions to future work
where point nodes have momentum-energy quadrupole aand potential pathwaysto experimental observation of
octupole patternsOur approach allows us to make clear some of the described phenomena.
connections between a wide variety of response theories
across dimensions and clarifies relationships between many ||, OVERVIEW OF RESPONSE THEORIES
of the response theorieswe discuss. We find that the . i o
chirality-weighted momentum-energy multipole moments The systems we conS|dgr in this article _aII exhibit U“?
of the semimetals determine new types of quasitopologic&'ar9€ conservation and discrete translation symmetry in

responses to electromagnetic fields and strain. We are a gleast one spatial directi_on. In the presence of these
to explicitly derive many of these responses from Kubo symmetries, we can consider the responses to background

formula calculations (sometimes combined with dimen- fi€ld configurations of the electromagnetic gauge field A
sional reduction procedures [5])Using these resultswe ~ @nd a collection of translation gauge fiefis~er example,
explicitly study these families of response theories using if the system exhibits translation symmetry in the x
lattice model realizations. We also extend our results to tirection, then we can considercoupling the system to
responses of nodal line semimetals (NLSMs) and construe field eji. Our goal is to study low-energy response
a new type of NLSM with an unusual crossed cagelike theories of electrons coupled to translation and electro-
nodal structure. magnetic gauge fields.

Generically,topological semimetals are robusbnly in Since most readersare likely less familiar with the
the presence of both translation and charge conservationtranslation gauge fields € than the electromagnetic
symmetry.As such, we focus here on response theories field A, we briefly review the nature of these fields as
built from gauge fields for these two ubiquitous sym-  they appear in our work. In a weakly deformed lattitis, e
metries.Recently there has been considerable interést  given by
topological semimetals protected by a variety of crystalline .
symmetries.Examplesinclude type-lI Dirac semimetals & % F - ai 831b
protected by discrete rotation symmetry and exotic semi- ox '
gg;aslisn;vsltgrt:tfgé;%; n osrllxs;,/ni?ndore;;/riz gsg:;cﬁli?] : 2;2]_ where the Kronecke.rféenpodes the fixed referepc.:e lattice
metries [40,41]. Additional internal symmetriesbeyond ~ Vectors,u® is the lattice displacemenand ow=ox is the
charge conservation, such as chiral symmetry, are also oftitortion tensor [53]. The fields ¢ in Eq. (1) are remi-
required to protect the nodal Fermi surfaces in many caségscent of gauge fields (see, e.g., Ref. [54]): From Eq. (1),
[42-44]. Combinations of internaland point group sym-  we immediately sge that line i_ntegrals of e describe lattice
metry can also play a key role, with some examples beinglislocations, sinceddy,=ox Pdx s b?, where Bis the net
nodal-line topologicalsemimetals carrying Z monopole  Burgers vector of all the dislocations inside the loop [53].
charge and nodal-surface topological semimetals protectddis points to an analogy with the configurations of the
spacetime inversion symmetry [44-47h many of these  usual electromagnetic field. The analog of magnetic fields
examples, interesting responses involving these additionalerived from e essentially encodesconfigurations of
symmetries are likely to occur in addition to what we studgislocations,each with an amount of flux equal to the
here. Indeed, there has been a wide range of recent workciorresponding Burgers vectdkdditionally, electric fields
2D and 3D studying responses of insulators and semimetate time-dependent strains. In earlier work, e.g., Ref. [11],
to gauge fields of discrete rotation symmetry [18,48-52]. these fields could have been called frame fields, but
While a full discussion of all possible responses is beyondrucially the translation gaugefields encode only the
the scope of our work, our general approach can be applitsenslation or torsional part of the geometric distortion,
to study cases having more complicated symmetry pro- whereas the frame fields also carry rotational information.
tection. We comment in the conclusion on possible futureln keeping with previous literature, here we call the set of
directions for responsetheories involving symmetries (Abelian) fields ¢ translation “gauge” fieldspy analogy
beyond translation and U(1) charge conservation. of their relationship to translation “fluxes” (i.e., lattice

Our article is organized as follows. In Sec. Il, we providdefects).This language is convenient becauss, we see,
an overview of and intuition aboutthe response theories actions describing the response to such lattice fluxes are

041060-2



ANOMALOUS CRYSTALLINE-ELECTROMAGNETIC RESPONSES ... PHYS.REV. X 14, 041060 (2024)

invariantunder (vector-chargepauge transformations of theories we considercan, in principle, be derived from

the & fields. correlation functions of the electromagnetic current

A second way in which we use the close analogy
between & and electromagnetic gauge fields is through i eﬁ 52b
the lattice analog of the usual Aharonov-Bohm effect ok,

(holonomy), in which a charged particle encircles a
magnetic flux of the gauge field.In the electromagnetic ~and the crystal momentum current
case,a charged particle moving around a magnetic flux
generates a U(1)phase factorFor the translation gauge JUy hkaﬁ' 53b
field, taking a particle around a translation magnetic flux ok, ’
having Burgers vector b generates a translation operator
by the displacemenb?. For particles with a fixed trans-  Where the former couples to 4 and the latter to ¢ (see
lation charge, i.e., a fixed momentum, this generates a Appendix A for more details for the latter). Indeed, we take
momentum-dependent U(1) phase factor. This will lead ugxactly this approach in Sec. lll to derive response actions
to introduce momentum-dependerReierls factors when for 2D and 3D systems. While our explicit derivations are
performing some lattice calculation§o complementhis  important for precisely determining the coefficients of the
discussionjn Appendix A we show more explicitly how response actions we study, it is helpful to first motivate the
translation symmetry can be “gauged” under a teleparallebverarching structure that connects a large subset of these
constraintof the underlying system geometry.A very response theories. We also note that alternative approaches
similar approach has been used to study the effects to determining some ofthe response actions we discuss
of strain on graphene [55-57] and other semimetallic have been proposed in Refs. [18-20], and, where the results
systems[58-62], where strain can play the role of a  overlap with oursthey agree.
valley-dependent magnetic field. To understand the connectiondetween the response
For our purposes, there are many ways in whighrcan  theories we studyijt is useful to begin by reviewing the
be treated on equal footing with the electromagnetic gaugeell-known dimensional hierarchy of response theories of
field. However, there are some important distinctions. Firstfrong topological insulators[5]. We show the general
the fields ef in Eq. (1) are not true gauge fields. This  structure in Fig.1(a), where the response terms are built
becomes important when considering the possible resporfggely from the electromagnetic gauge fieldurthermore,
actions: While the total charge ofa system strictly con- ~ Chern-Simons and 6-term response actions appear in even
served, momentum conservation is not similarly inviolableand odd spatial dimensions,respectively.There are a
(see, e.g., Refs. [60-62] for some interesting physical nhumberof connections between the theories in different
consequencesof this distinction). Second, responses dimensions,and we now review three of them. First, a
involving € are predicated on the existence of translationChern-Simonsaction in D spatial =~ dimensionscan be
symmetry. Thus, if the response is characterized by a  dimensionally reduced to a 6-term actionin (D - 1)
boundary effect or a response to a flux or defect, we musglimensions by compactifying one spatial direction [65,66].
be careful to ensure that (at least approximate) translatiodd he (D — 1)-dimensional system can also represent a Tl if
symmetry is maintained in order to connect the coefficienthe value of 6 is quantized to be 0; ™ by a symmetry that
of the responseaction to explicit model calculations. protects the (D - 1)-dimensional topological insulator [3].
Indeed, some responsesare not well defined unless Second, one can consider the reverse process where
configurations that maintain translation symmetry are useg@uantized adiabatic pumping [67] in (D - 1) dimensions
This is unlike the electromagnetic response forwhich ~ will converta 8-term action to a D-dimensionalChern-
U(1) charge symmetry is maintained independently of ~ Simons action. Finally, a 8-term action for a (D - 1)-
the geometry and gauge field configuraticdther impor- ~ dimensional topological insulator exhibits a half-quantized
tant distinctions have been discussed in recent literature tfhat- 2)-Chern-Simonsresponse on boundariesvhere 6
has begun putting the gauging of discrete spatialsym-  jumps by 1. These general relationships are summarized in
metries on firmer ground [49,63,64]0One importantdis-  Fig. 1(a), where each type of relationship is color and
tinction is that the translation gauge fields correspond to &ymbol coordinated.
discrete gauge symmetry\Z, where N, is the number of Next, we can considera less familiar set of relation-
unit cells in the ath direction. This discreteness can play @ips in Fig. 1(b) between gapped theories with mixed
important role in the topological response properties [18],crystalline-electromagnetic responses arising from effective
but we do not focus on this aspect in our work. actions having both,fand & fields. We emphasize that the
Using this framework, our goal is to consider the precise relationships we refer to in Fig. 1(b) are for gapped
low-energy responsesof electronsto the background systems where the coefficients of the actions are quantized.
electromagneticand translation gauge fields. Given a In contrast, for the majority of this article, we focus on the
translationally invariant Bloch Hamiltonian H, the responsguasitopological responses of gapless systems which take
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FIG. 1. (a) A dimensionalhierarchy of theories describing responses of strong topologicallators.The theories are related by
dimensional reduction (8 symbol, green arrow) [5], taking the boundary response [61=2Pd symbol, purple arrow], or adiabatic pumping
(U symbol, red arrow) [67]. (b) A dimensional hierarchy of insulating systems with mixed crystalline-electromagnetic responses. The
theories are related by stacking (layer symbol, dark red arrow) and cutting (scissor symbol, blue arrow). (c) A family tree of dimension:
hierarchies establishing connections between responses of strong Tls and insulators with mixed crystalline-electromagnetic response:
(d) lllustrations representing the nature of the phases constituting the hierarchy depicted in (c). (i) A single isolated charge. (ii) A line o
charges forming a lattice. (iii) An insulating chain having a quantized charge polarization. (iv) A two-dimensional lattice of charges.

(v) A two-dimensionalweak topologicalinsulator where polarized chains are stacked transverse to their polarizafighA two-

dimensional Chern insulator having chiral edge states indicated by red arrows. (vii) A three-dimensional lattice of charges. (viii) A three
dimensional lattice built from a two-dimensional array of polarized chains; alternatively, a stack of two-dimensional weak topological
insulators. (ix) A three-dimensional stack of Chern insulators forming a time-reversal-breaking weak topological insulator. (x) A three-
dimensional strong topologicahsulator with surface Dirac cones.

similar forms, but with nonquantized coefficients. We can also imagine a reverse process where we are

Remarkably, many of the actions we discuss for insulatorgiven a translationally invariantine of charge at integer

can be generalized to the nonquantized case. For semimétling and cut out a single unit cell. Since the system is

als, however, the dimensional relationships we point out ayapped and translation invariarihis results in a move in

more akin to physical guides than a precise prescription ftire opposite direction in Fig. 1(b), i.e., from A imelD to

deriving matching coefficients in between dimensions. A in 0D with the same integer coefficient Q/Ve can use
With this caveatin mind, let us consider the family of  this example to highlight our caveatabout gapped vs

theories in Fig. 1(b). In OD, we can consider thg;responsegaplesssystemsmentioned above.That is, while it is

action for a gapped system of electrons, S2A 4ddA,,  reasonable to have a 1D gapless system with nonquantized

which represents a system with charge Q 4 aldere N (i.e., noninteger) charge (per unit cell) described by the 1D

is the (integer) number of electrons. If we imagine stackingction, the cutting procedure does notwork properly at

these OD systems in a discrete,translationally invariant noninteger filling, since the result will be a 0D point with a

lattice in the x direction, then we generate a line of chargd&actional charge.

Indeed,stacking produces the response for a translation-  In comparison to the response sequence for strong Tls,

invariant line-charge density which is captuged by the nextve see that stacking is the analog of pumping for the

acfion in the sequence in Fig. 1(b), i.e, Q AAe* 1, translation gauge field [68]Indeed,while pumping adds

Q dxdtdAyel — Acg5P. In this action, the first term rep-  an extra electromagnetic gauge field factor A, stacking adds

resents the charge density along the line, while the secor@n extra translation gauge field®®' , where D p 1 is the

term represents a current generated if the lattice of chargétacking direction. As a result, given any action in the

is moving. The latter consequence becomes manifest in thong Tl sequence, we can stack copies to get the response

weakly distorted lattice limit,since the currents propor-  action of a primary weak TI (stacksof codimension-1

tional to the displacement rate: j ~%e~ 0u‘=atP. strong Tls, e.g., lines stacked into 2D) by adding a wedge
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product with BP' . We can push the stacking idea further t@ contribution to the response of various types of metals or
generate secondary weak Tlgstacksof codimension-2 topological semimetals [17-20,24,30-34]. This is because
strong Tls, e.g., lines stacked into 3D) by a wedge produghany semimetals can be generated by translation-invariant
with ePP' A ePP2 and so on. stacking of lower-dimensionatopological phases.Since

The stacking and cutting procedures are nahe only  the momentum R in the stacking direction is conserved,
relationships between the response theories in Fig(b).  one can consider adding up the set of topological response
Just as in the strong Tl sequence, we can find connectiorierms for each gapped k. A semimetal representsa
between the boundary properties of some D-dimensionalscenario where the coefficients of these topological terms
systems and the bulk response of a (D - 1)-dimensional at each R are quantized and have discrete jumps whére k
system.For examplethe 2D response action in Figl(b)  hits a nodal point. For example, the 2D electric polarization
represents the response of a stack of Su-Schrieffer-Heegegsponse of a stack of 1D Tls becomes the response of a 2D
(SSH) chains [69],each with a quantized polarization of Dirac semimetal if the wires forming the stack are coupled
e=2. The boundary of such a 2D system is a line of charggtrongly enough to close the insulating gap [34]In the
on the edge, albeit with a density of e=2 electrons per unipresence of reflection symmetrygach momentum in the
cell on the edge line instead of the integer density we woli@cking direction has a quantized charge polarization that
get by stacking integer-filled OD points. As such, the jumps when the momentum hits a gapless2D Dirac
boundary of the 2D A A deaction represents a line chargepoint. Additionally, the 3D response of a stack of Chern
described by the action A A &, but with a half-integer  insulators becomes the nonquantized anomalous Hall effect
coefficient. responseof a time-reversal-breakingVeyl semimetal

Now we can combine the dimensionaklationships in  where each fixed-k plane thatloes notintersecta Weyl
the sequences of both Figs. 1(a) and 1(b) to make a familyoint carries a quantized Chern numbethat jumps at a
tree of related theoriesWe show a tree in Fig.1(c) that ~ Weyl point [30-33], and so on. While many of these
includes response actiondn zero, one, two, and three  response theories have been discussed in detail before, only
spatial dimensions. In 0D, we have only an integer electrenfew works have highlighted the contributions from the
charge response that couples tg Ror 1D, we can either translation gauge fields [12,17-20,24,71,72As such, a
stack charges to form a line of charge (upper branch) or large fraction of our paper is devoted to both the explicit
consider an electrically polarized Tl (lower branch) wherederivations of the responsecoefficients of the actions
the charge is split in half and moved to opposing ends of thé-ig. 1(c) that have couplings to the translation gauge
chain while the interior remains neutrglso to speak).In  fields (Sec. lll) and to the explicit calculationsof the
2D, we can stack line charges to get a plane of charge (tggysical responsephenomenain representativemodel
branch),stack 1D polarized Tls to get a weak TI (middle systems (SedV).
branch), or pump charge in a 1D Tl to generate a 2D ChernBefore we move on to more explicit derivations, we want
insulator (bottom branch). to motivate three additionalresponse theories we study

In 3D, the set of responses is richer. We can stack plartbat lie outside the family tree in Fig1(c). As mentioned
charges to generate a 3D volume of charges (top branchgbove, a remarkable feature of the response actions of
stack Chern insulators to get a 3D primary weak T (secopdint-node semimetals is thaheir coefficients are deter-
from bottom branch),or stack 2D weak Tls to geta 3D  mined from the energy-momentum locations of the nodal
secondary weak TI built from 1D polarized wires (second points. Indeed, for the relevant response actions in Fig. 1(c),
branch from top).The other well-known possibility is the the coefficients are obtained as a chirality-weighted
magnetoelectric response for a 3D strong Tl [5,28] (bottomomentum dipole momenbf the point nodes (note that
branch). Although it is not shown, this theory is related to Rirac points do not have a chirality; nevertheless, there is a
4D quantum Hall system via pumping (3D to 4D) or  signed quantity that plays the same role). Interestingly,
dimensional reduction (4D to 3D) [5]. The final option we recent work on rank-2 chiral fermions and Weyl semimetals
consider, which is the middle branch enclosed by a dotteavith a chirality-weighted momentum quadrupole moment
rectangle, is dA A de?. This response theory has not beerd17-19,24] has unveiled a new setof response theories.
previously studied in detail. This theory is a total derivativéhis category of theories has actions thatclude factors
and yields a gapped boundary with an electric polarizatio@f more than one translation gauge field of the same type
(e.g., a stack of SSH chains on the boundary).Thisis  (e.g., & A de°, where a % b) and, as such, does not appear
reminiscent of an electric quadrupole (higher-order) in the family tree in Fig. 1(c). This also implies thatthe
response [27,70]and we explore this connection further translation gauge field factors in these response theories
in Sec.lIl E. cannot be obtained by the conventional stacking of lower-

While this discussion has centered on gapped systemsdimensional systems that we discuss above, since stacking
our primary focus is on gapless topologicakemimetals. produces wedge products with distindranslation gauge
Importantly, each of the actions that contains a translatiorfields. We could also construct related higher-dimensional
gauge field in the family tree in Fig. 1(c) can also represetiteories (and lower-dimensionaheories if we consider
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both space and time translational gauge fields) to form an (a) -
additional connected tree of theories, but we leave further
discussion of those extensions to future work.

To give some explicit examples, we show three response 0 ky
theories that follow this pattern in Fig. 2. Figure 2(a) shows
the Fermi surface structure of a 3D time-reversal-invariant
Weyl semimetal having a Weyl-node quadrupole moment.
The response action ofthis system is a mixed response
between electromagnetic and translation gauge fields, and ‘
the inset in the Fermi-surface figure lists which coefficients 1o ks
Qb are nonvanishing. Some details of this response were
discussed in Refs[17,18,24],the former of which con-
nected the response to rank-2 chiral fermions on the surf: O
of the 3D Weyl semimetal Figure 2(b) shows the Fermi m
surface structure of a 2D Dirac semimetal having a Dirac-
node quadrupolestructure. This responserepresentsa O
momentum current responding to a translation gauge field
(e.g., a strain configuration).lts form shares some simi-
jarities with the torsional Hall viscosity [11,71,73-75], @ °| O O QupeAde’
though a precise connection is left to future work. Finally,
in Fig. 2(c), we show the Fermi surface foran unusual QO
nodal line semimetal formed from stacking the Dirac-node Q,n=—0,, £0
quadrupole semimetal in Fig. 2(byVhile one might have -n T vy
naively expected two independent Fermi rings, we instead
find a new type of Fermi-surface structure where the Fermic)
lines join at two crossing cap regions to form a cage.

The symbols on the right-hand side in Fig. 2 indicate the
connections between these theories: (i) The response of the
nodal line structure is just a stacked version ofthe 2D
Dirac-node quadrupole semimetal response from Fig. 2(b),
and (ii) one can heuristically consider the four-node Weyl
response in Fig. 2(a) to be a dimensional extension of the
response in Fig2(b) via pumping.

Qub ea/\A/\deb

=T

[ll. EFFECTIVE RESPONSE ACTIONS

Now that we have described the forms of the various
re_sponse a.lCtlonS _01_‘ interestye spend this sectlon. detgr- FIG. 2. (a) Fermi surfaces of a 3D time-reversal-invariant Weyl
mining their CoeffICI_ents.AII of the response actlons N semimetal with a quadrupole Weyl-node configuration. Red and
Fig. 1(c) that contain only electromagnetic gauge fields pjye colors denote positive and negative Berry curvaturere-
representinsulators, and their coefficients have been  spectively. The associated action has a coefficiemhatrix Qg
studied in detail (e.g., see Ref. [5]). The actions containinghich is symmetric and proportional to the Weyl-node quadru-
translation gauge fields can represent insulators or gapleg®le moment. For this configuration, the coefficiepisad Q,,
systems,and the two can often be distinguished by the  are nonvanishing. (b) Similar to (a) except it is the Fermi surfaces
values of the coefficients. That is, for insulators we expecfor a 2D Dirac semimetal having four Dirac nodes in a quadru-
the coefficients to be quantized in some units (in even  pole pattern.The action is described by a symmetric matrix of
spatialdimensionsthey are quantized in the presence of coefficients Q. (c) The Fermisurface of an unusuatagelike
some symmetry), while for topological semimetalswe nodal I|ne_ sem|metal built fro_m stacking the Dlrac—.n.ode quadru-
expect the coefficients to be a tunable function of the po'.e S?m'm?tal n (b).Th.e action has a set of Coeﬁ'c'en.tsalﬁzc
momentum and energy locations othe nodal points or which is antisymmetric ina gnd b.Heur[stlca!Iy,the aptlon in
. . . (b) can generate the action in (a) by adiabatic pumping or can
lines. Interestlnglly,some of the response coefficients for o orate the action in (c) by stacking.
metals and semimetals can take the same values aIIoweogfor
an insulator, although this would typically require fine-
tuning, or extra symmetry. For example, a 1D system carinsulator, yet the system is still gapless. In such a case, we
have compensating particle and hole Fermirfaces such show that the system has additional response terms that have
that the total filling is an integeras one would find in an  coefficients that are incompatible with a gapped insulator.
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Our focus will be on 2D Dirac, 3D Weyl, and 3D nodal theories that live on the boundary of a higher-dimensional
line semimetals, and, before we begin our derivations, it ifopological insulator or topological semimetal. In the
important to acknowledge a key qualitative difference presenceof gauge fields, the higher-dimensionalbulk
between these types ofopological semimetalsNamely, generates a current inflow to the boundary to compensate
we recall that 2D topological Dirac semimetals and 3D  the anomalous response of the gapless boundary modes.
nodal line semimetals require additional symmetry beyonffrom this perspective, we expect that the effective response
translation symmetrye.g.,composite T | symmetry ora  action of Weyl semimetals in odd spatial dimensions can be
mirror symmetry,to guarantee the localstability of the  obtained by taking the boundary contribution of a higher-
gaplesspoints or lines in momentum space.This is  dimensionalsystem.The purpose of this approach is the
inherently differentfrom the case of Weylsemimetals in  same as applying symmetry-breaking perturbations in even
3D, for which Weyl nodes require only translation sym- spatial dimensions: to regulate possible infrared divergen-
metry for protection against perturbations. Indeed, a Weykes. However, chiral semimetals in odd spatial dimensions
node can be gapped oubnly by bringing another Weyl ~ cannot be gapped out unless translation symmetry is
node of opposite chirality to the same point in the Brillouiroken. Translation symmetry plays a centrable in this
zone.A similar story applies to (semi)metallic systems in Work, so we must take this alternative approach in odd
1D: Each gapless point has a well-defined chirality definegpatial dimensions.There are likely other methods that
as the sign of the Fermi velocity, and a gap can be openegPuld be applied to derive these response actions in their
only after overlapping Fermi points of opposite chiralities.intrinsic spatial dimension, e.g., via the subtle introduction

This distinction in symmetry protection is important for of an auxiliary 8 field, but we choose our procedure since it
the response theories describing Dirac and Weyl semimeteinforces the dimensionatelationships discussed in the
als, as it reflects the well-known structure of anomalies inPrévious section and requires fewer formal tools.
even and odd spatial dimensionBurthermorejt impacts Thus, our strategy for deriving the generdbrm of the
our strategy for deriving the response coefficients for thesgoefficients of mixed crystalline-electromagnetic responses
systems.As an example, the response properties oD 1S to_beg_ln by c.ier|V|r_19 effective response actions in even
Dirac semimetals can be determined straightforwardly froppatial dimensions, i.e., 2D and 4D. We do so by identify-
the Kubo formula if we first apply a symmetry-breaking ing gradient expansion contributions(see Appendix B
perturbation that weakly gaps out the nodes and regulateffr @ brief review) that contain an appropriate effective
any possible infrared divergenceBhe resulting insulator action constructed outof translational(¢") and electro-
response can then be taken to the semimetallic limit if weMagnetic (A) gauge fields.Then, the response of semi-
tune the perturbation to zero. Hence, the effective respongetals in odd spatial dimensions can be obtained by
action for such systems can be obtained by treating the '00king at the boundary of a response theory defined in
system as an insulator and applying the Kubo formula or,0n€ dimension higher.
more generally, a gradient expansion procedure.This
method can be applied to 2D and 4D Dirac semimetals
and, consequently, 3D nodal line semimetals, since they arén this subsection, we derive the coefficients of two 2D
just stacks of 2D Dirac semimetal$.or such semimetals, responseactions that contain translation gauge fields,
we actually have a choice of what symmetry to break, e.gnamely, response action (v) from Fig. 1(c) and the response
inversion or time reversalWhich one we need to break action in Fig. 2(b). We find that the coefficients of these
depends on the nodal configuration and the action we areactions are characterized by the dipole and quadrupole
intending to generateFor example,in the case of a2D  moments of the Berry curvature in the 2D Brillouin zone,
Dirac semimetal with a pair of nodes, breaking time  respectively. When we specialize to 2D Dirac semimetals,
reversalis well studied and generates a quantum Hall  the distribution of Berry curvature is sharply localized as
response via a Chern-Simons termHowever, breaking 1 fluxes  at the Dirac nodes. Hence, the coefficients
inversion symmetry is relatively less studied and generatégcome proportional to the dipole and quadrupole moment
a mixed Chern-Simons response between an electromagof the distribution of Dirac nodes.
netic gauge field and a translationagauge field. This is
corroborated by the facthat the electromagnetic Chern- 1. Dirac-node dipole semimetal
Simons action breaks time reversal, while the mixed Let us start by Considering a gapped T -invariant System
Chern-Simons term with these fields breaksinversion.  having broken | symmetry. Under these conditionsthe
We show that the mixed Chern-Simons term has a well- electromagnetic Chern-Simons terwhich represents the
defined limit as the gap closes and inversion symmetry isHall conductivity, vanishes, and we can consider the mixed
restored,which leads to a nontrivial response action for  |inear response of a momentum currerédsponding to an
the 2D Dirac semimetal. electromagneticfield, or vice versa. Using the Kubo

Alternatively, the response of isolated chiral gapless formula, or applying the gradient expansion procedure
points in 1D and 3D can be determined if they are vieweddascribed in Appendix Bwe find the contribution to the

A. Effective responses of 2D semimetals
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effective action (when the chemicapotentiallies in the  system,the Berry curvature F¥ is distributed smoothly
insulating gap) (see also Ref62]): across the entire 2D BZ.
In the gaplesslimit, however, the Berry curvature

Z Z
dwdPk 53b distribution develops sharp peaks ofveight 1 localized
- 3 . .
Sen7ame  dreiaA, WKUQ“"F@N’ kP;04P 4t the positions of the Dirac points:

where Xo
FXokb %  1x,00k — Rb; 010P

0Gy' 6G, 6Gy' a%1

Q5356w; kb % trGy > kOTO 35p

ok, Ok, ko where a runs over all Dirac nodes at momenta B and

. ¥4 1is an integer indicating the sign of the -Berry

hase around the Fermi surface of the ath Dirac point at a
the coefficient of the €A dA term, we contract @3’5 with  small chemical potential above the node [34]ltimately,

the totally antisymmetric tensor 81=3!¥e This gives the  we find the effective response action of a Dirac-node dipole

and G 0k,P is the single-particle Green function. To extra

coefficient semimetal is given by
Z Z
ghve dwdzk 83bx. .. ePa .
Cqy Va eﬁ mdeu\,pt’:ﬁw, kb o6k Spp Va e e A dA; 011b
of the response action where
z X
D
SE;A Ya Cq e A dA: o7b ch A Xakg 312b

EVA
We note that Eq. (6) is very similar to the response
coefficientof the standard electromagnetic Chern-Simons
term apart from the factor of kin the integrand. As such,
assuming a % x, y, we can use a well-established result t

is the dipole moment of the Dirac nodes.

Note that if the Dirac nodes meet at the zone boundary,
they can be generically gapped even in the presence of T |
evaluate the frequency integral to obtain [76] symm_etry. The resulting insulating phase represents a weak

Tl having P 4 ¥4 G4, where G, are the components ofa

ghvp z 03x . Lr o] z E XY AL reciprocal lattice vector. In this case, the action in Eq. (11)
a2 dwdPkQugdw; kP % BZd kF *0kP; 8P  describes a stack (i.e.a family of lattice lines or planes
corresponding to G) of 1D polarized Tl chains aligned

where PY is the Berry curvature. Hence, we can rewgite cPerpendicularto G,. To see this explicitly, take G, %
as an integral over the BZ by substituting this relationshipd21m=aP and set g% & in Eq. (11) to obtain the action
into Eq. (6) to find zZ 7 Z

z g dx dtdyEy%ng dtdyE,;  613b
2Kk, F Y OKb: o9p x
VA

where N is the number of unit cells in the x direction. This
We havethus, arrived at the result that,ds proportional  action is just N, copies of the usual 8-term action for 1D,
to the ath componentof the dipole moment of the electrically polarized topological insulators (8 Y4 1) parallel
distribution of Berry curvature. This coefficientcan be  to the y direction,stacked along.
nonzero, since it is allowed by broken | and preserved T, We have now derived Eq. (11) as a quasitopological
i.e., FYokb Y —PYd—kb. We also note that is indepen-  contribution to the response of a 2D Dirac semimetal where
dent of the choice of zone centerand shifts of k inthe  the nodes have a dipolar configurationlowever there is
integrand, in general, because the Chern numberHall  another importansubtlety thatwe now point out. Earlier
conductivity) vanishes in the presence of T . work has shown thathe electromagnetic response of 2D

In a gapped T -invariansystem,restoring | symmetry  Dirac semimetalswith both T and | symmetry is an

forces g to vanish, since kb % 0. However, in gapless electric polarization proportional to the Dirac-node dipole
systemsthis need notbe the caseTo see thiswe apply = moment [34].Even more recentlygonnections have been
our resultfrom Eq. (9) to a 2D Dirac semimetalby first ~made between mixed translation-electromagnetic responses
introducing a weak perturbation V. which breaks | and  and the electric polarization [64]Since we have a clear
opens up a small gap, and then taking the limit3/0, in derivation of the response termye can use our results to
which inversion symmetry is restored.Inthe gapped understand the precise connection between the electric

Cy Va

e
o021k B

041060-8



ANOMALOUS CRYSTALLINE-ELECTROMAGNETIC RESPONSES ... PHYS.REV. X 14, 041060 (2024)

polarization and the coefficienf of the & A dA response 2. Dirac-node quadrupole semimetal
action. Using the standard approach of Ref. [26], the Now we move on to discuss the response of quadrupole
polarization in 2D is arrangements o2D Dirac nodes as in Fig. 2(b). If the
Z Chern number and momentum dipole momenj} ¥anish,
P2 v, e i d?khujoy ugi; 314b then our semimetal has a well-defined momentum quadru-
62rb gz ‘ pole moment, which is independent of the choice of zone

center. We now show that such systems are described by the

where A0k Vi ihijoy, uii is the Berry connection. Hence, response action:

we find that the electric polarizationdRs related to g by

an integration by parts (see Appendix C): hQasZ
Spq Va 8 & A deP: 817b
a1 e af 2 Xy E o
P3 Aézﬁba d“kkgF ¥ p 21_rW

From the derivation in the previous section, we anticipate
Y eaBCB b Ewa; 815pb that,in the limit of a Dirac semimetal band structurghe
2m coefficient Qg of this response action is related to the

momentum quadrupole momendf the Dirac nodes. To
confirm this statementgt us consider the linear response
of a momentum currento a translation gauge field for a

! gapped system. From the Kubo formula, or gradient
W% dkoA%0ky; k3 Va TP 016P  expansionwe find a coefficient of the & A deB term:

where we setthe lattice constants equdb unity and the
Wilson loop

z
E%EE_V'P %“;—ﬁgquﬁnﬁégaw; kp:  018P

is an integral of the Berry connection A along the ath
momentum direction at fixed, inversion-invariantrans-
verse momentum &’ 1T atthe boundary of the BZ.

From this explicit relationship, we can immediately drawve can use the relationship mentioned in Eq. (8) to
some conclusions.First, in the Dirac semimetal limit, carry out the frequency integra[o obtain the coefficient
we reproduce the result of Ref. [34] where the polarizatiosf Eq. (17):
is proportional to the Dirac-node dipole moment: 7
PS % Y5e=262mP ;. And second, if we have broken 1 ) AL
inversion symmetry (while T is still preserved)we see Qqp 72 T g7 d°kkakgF Okb: 619p
that the polarization and the coefficiepare not quantized

and not equal to each other. This scenario can be found in Tg apply this to the Dirac-node quadrupole semimetal
inversion-breaking insulators with a Berry curvature dipol@hown in Fig. 2(b), we evaluate the response by first
moment. These insulators have a charge polarization,  introducing a symmetry-breaking massterm and then

and they also have a mixed translation-electromagnetic studying the topological response of the resulting gapped
reSponse.HOwever, we find from this CalCUlation, and System_|n this case, the mass term breaks T buthas a
explicit numerical checks, that they are generically inequiyanishing total Chern number. In the example at hand, this
valent. Ultlmately, this boils down to the fact that the can be done by addmg a k-independent term that opens a
Wilson loop at the boundary of the BZ requires a symmetfycal mass of the same sign for each of the four Dirac points
to be quantized.e.g., mirror or inversion. Otherwise,the  in Fig. 2(b). Such a mass term preserves Which in the
Wilson loop gives a contribution that distinguishesthe  gapped system automatically guarantees a vanishing dipole
polarization and the mixed crystalline-electromagnetic momentof the Berry curvature. This, togetherwith the
responseSWe leave a detailed discussion othis subtle Vanishing Chern number, is necessary so that the momen-
distinction to future work. tum quadrupole moment is well defined, independent of the

In summary, Eq. (11) capturesthe generic mixed  choice of zone center. For this scenario, in the limit that the
crystalline-electromagnetic response of the bulk of a 2D perturbative mass goes to zero,

system with T symmetry. In the limit of a Dirac semimetal,

QQB

the coefficientof the response coincides with the electric Xio
polarization of the system. We note that in this limit there Qqp % Xakgkg; 620b
are other nonvanishing response terms, since the system is av1

gaplessput Eq. (11) represents a distinatontribution to

the total response ofthe system to electromagnetic and which is the Dirac-node quadrupole moment. In Sec. IV B,
translation gauge fieldsiVe study an explicit modeWith ~ we explicitly study a model with this Berry curvature
this response term in SedVA. configuration and a resulting nonvanishing Q. We see
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that, while the Dirac-node dipole moment capturesthe Importantly, even though this lattice model does not have
electric polarization (see Appendix Cyhe nodalquadru-  an electromagnetic charge anomalyapéej‘ﬁ bejkP %0,

pole momentcaptures a kind of momentum polarization it does have an axial anomaly:

(see Appendix D) (this time,without the subtlety of the
additional Wilson loop contribution discussed above). For
comparison the surface charge theorem relates the bulk
electric polarization to a boundary charge,and for the

momentum polarization there is a boundary momentum. Taking this point of view, we can reformulate the axial
anomaly in this system as a mixed crystalline-electromagnetic

B. Effective responses of 1D (semi)metals anomaly where an electrllc fielq Eiolates conservation of
the k. momentum current:

Now that we have derived the responses of 2D systems
coupled to electromagnetic and translation gauge fields, we ehkF
use Figs. 1(b) and 2 as guides to generate related responses Opd XV
in 1D and 3D. To get 1D responses,we consider the
boundary response of the 2D systems (this subsection), avidre generally, the anomaly is proportional to the momentum
we stack the 2D responses to get 3D responses of nodal dipgle moment of the Fermi points, which replaces a factor
semimetals (next subsection). We note that in the following 2k: in Eq. (24) (see Appendix E).
discussion we treatranslation as a continuous symmetry  There is a conjugate effect that occurs in an applied strain
(as in Appendix A, as this perspectiveis useful for  field, which can be implemented as a translation electric
obtaining the correctresponse actions from oudiagram  field Ef % 6,5 — 6;€%. Naively,such a nonvanishing field
calculations).One can see Ref.[18], for example,for a  generates violations to the conservation law for the usual
discussion that treats the subtleties associated to having glectromagnetic current according to
discrete translation symmetry.

It is well known that chiral modes in 1D are anomalous;
i.e., charge is not conserved when we apply an electric
field. In 1D lattice models, this anomaly is resolved because
of fermion doubling; i.e., for every right-moving chiral  (again, see Appendix E for a more general expression in
mode, there is a corresponding left-moving mode that  terms of the momentum dipole)However,this equation
compensates the anomaly. While it is true that the electras not quite correct if we have an isolated system with a
magnetic charge anomaly is resolved with such a lattice fixed number of electrons, and, hence, we must be careful
dispersion, the doubled system can still be anomalous in @hen considering time-dependenthanges to ¢ as we
different but related sense if we have translation symmetmyow describe.

(see Ref[18] for a similar discussion). To gain some intuition for Eq. (25), consider increasing

To be specific, in the presence of translation symmetrythe system size by one lattice constant a during a time T
we can consider the momentum current in Eq. (3): by adding an extra site to the system:dxdtEf ¥ a (one
J ¥ Y4 k¥, where j¥ is the particle number currentAt  can also think of threading a dislocation into the hole of a
low energies, current-carrying excitations lie in the vicinityl D periodic system). From the anomaly equation, we
of Fermi points ki'® and carry corresponding particle ~ would find that the amount of charge in the system
currents -gab The total contribution to momentum current changes by éka=1r, as one would expect for adding a unit
from these low-lying modes is cell to a translationally invariant system having a uniform
charge density p ¥4 ek=1.However, there is a subtlety
that we can illustrate by considering a system having a
fixed number of electrons N k"L =1, which we strain
by uniformly increasing the lattice constant. Assuming a

In the simplest case of a nearest-neighbor lattice modeﬁglsfgrgwecsgﬂzrsn,the anomalous conservation law in this
having a single partially filled band, we have two Fermi
points: kF =kER % —ki't, with jk % 8; veprP and okF
il 4 0Q; -vep P, where p is the number density. ap v g ?e;‘ : 026P
Interestingly the momentum current in this scenario is

X
00—t %‘fh : 323b

p— EX: 024p

kF
2,0e'b Ve B 325b
m

X
NESZ78 821p

a

Crucially, we note that if we increase the system size with

J & Y nkFojk - b 022P  fixed particle number,then K decreasesindeed,in the
small deformation limit, the momenta are proportional
which, up to a factor of #kF, is just the axial current. to 8elb, since their finite size quantization depends
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inversely on the system size. Using this result, the by e=2 [34], not e as would be the case for a 1D Fermi

conservation law becomes point in a metal. Hence,for a metal, we expecta result
. twice as large (we see a similar resuiih Sec. Il E when
., € FLLE ., €K ] comparing the boundary response of a 4D system to that of
P Aﬁaéatk bk"aeP A—é G&p 0&P % 0 a 3D Weyl semimetal). Thus, the action for the 1D system is
z

where we use ¢d¢b "' V4 —0&b20,€. ,, €
The outcome that,p % 0 is the result one would expect Sipp % Erpﬂ

by stretching the system uniformly while keeping the

numberof particles fixed. To clarify, at a fixed particle ~ From this form, we can identify P% 6—Au=#; Ak P such

number we know the total charge cannot change; howevehat P,=21r is simply the filling fraction of the 1D metal and

it perhaps seems counterintuitive that the density does nd?;=21 measures the imbalance of left- and right-moving

decrease if we stretch the systenThe reason is thathe  excitations in the system (Ap Yag— p).

quantity p above, which is defined as 6§78Aot a scalar  Introducing a charge current vector

density.Indeed,for generalgeometriesthe scalar charge

e AA: 029p

density would be defined as jm %;Epvpv 1 ;GAK(; Ap=hB: 530b
1) T
1/1 °S 827P we cangecast Eq. (30) in the most familiar form
T W . | 11 .
& oA’ R a

Sip;p 74 dtdxjHA,. Thus, we have now generated the

where the & is essentially playing the role of the deter-  action (ii) from Fig. 1(c). Let us also note thatthe edge

minant of a spatial metric. To calculate the total charge, wiates ofthe Dirac semimetalcan be flat, while the 1D
would then use context we mentioned above has a dispersion. However, the

7 7 key featﬁre1o[1; téoztrz 1(;Ee;sesrfis thaBeZsfmorQeréth is s)wr?pt
_ across the surface or the case)the
Q% dxgp¥ dxp: 028P  fjlling of the states changes in discrete jumps at either the
Fermi points in 1D or the (surface-projected) Dirac points
Indeed, the scalar charge dengitgiecreases as the systemin 2D. It is this change in the filling that is captured by the
is stretched,since é,p « P, which decreasesas the  quantity P, and does notdepend on the dispersion in a
system size increases fiked electron number. crucial way.

The effective response action of the 1D system can be Now that we have this example in mind,we can ask
derived as a boundary effective action of an appropriate 2ihat the analogous 1D boundary system is for the Berry
theory.In fact, we have already seen such a 2D system curvature quadrupole action Eq. (17). We mention that this
when studying the 2D Dirac semimetalith Dirac nodes  bulk response represents a momentum polarization, which
arranged in a dipolar fashion. The bulk response for this 2Bplies that the boundary should have a momentum density
system with a weak inversion-breaking gap is Eq. (11). Aparallel to the edge. Indeed, we expect that such a 1D
mentioned above, this bulk theory implies that the systemsystem will have a vanishing Fermi-poirdipole moment
has an electric polarization. From the surface-charge (i.e., the filling is integer) but a quadrupole moment that is
theorem for polarization, we expect that the boundary willnonvanishing [see Fig3(b)].
have a charge density equathe polarization component From the pointof view of the translation gauge fields,
normal to the boundary. The contribution to the boundarysuch band structures are chiral, since either the right movers

effective action from Eq(11) is or left movers carry larger momentum charge. To see this,
Z consider a 1D Fermi surface with right movers at momenta
S %EP A A K ¢ and left movers atmomenta Q . Let us further

restrict our attention to currents for which the net number
of right movers (and of left movers) is zero, e.g.,
From this, we can extractthe boundary charge density: p.3K-b p ;:8-Kgb % 0. Defining dps % VagdKeb -
P, ¥a 8e=2P3R21P%E where P, is the componentalong PrO-Keb and 8 % 15@Q:-b - p6-Qcb, we see that
the boundary andlds the diagonal translation gauge field the momentum gauge field couples to
component along the boundary that is simply equal to unity
in nondeformed geometries. J Y % Kedpr b Qedp : 031p
While the form of this action is what we expect for a 1D
metal, the coefficientis half the size it should be. The  Thus, we see that, for K # Qg [as in Fig. 3(b)], the
reason is that, on the edge of the 2D Dirac semimetal, thenomentum gauge field couples differently to right-and
momentum-space projections of the bulk Dirac nodes in left- moving density fluctuations. In the extreme limit that
the edge BZ represent points where the edge filling chandas 4 0, the momentum gauge theory is fully chiral.
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moments to future work.

The arguments of this section can be extended to look at
higher moments of the chirality-weighted Fermi momenta,
which are proportional to the ground state expectation
values of higher and higher powers of momenta. To
describe these properties and related response phenomena,
we can introduce gauge field§% - that couple to higher
monomials of momentum,k kyk..... For example,the
fields that couple to zero powers or one power of momen-
tum are the electromagnetic A and translation gauge fields
k.€*, respectively,and we could introduce a coupling
k.kp€° to the setof 1-form gauge fields &°, e.g., k2e*.

We describe the hierarchical anomalies associated to these
gauge fields in Appendix E.

@IE ‘ ‘ / ‘ | energybutwe leave a detailed discussion of such mixed

FIG. 3. (a) One-dimensionaband structure of an ordinary C. Effective responses of 3D nodal line semimetals
metal. The pair of gapless points is marked by the sign of their We can now use our 2D results from Sec. Il A to

respective chiralitieshighlighting the momentum-space dipole te th Ao t f nodal I .
characterizing the response of the system. (b) Band structure oggnera.e € responses awo types of noda |r!e se_ml-
talsin 3D. To generate the two types we imagine

1D metal characterized by a momentum quadrupole moment. THE! ) shat gt
system has an integer (vanishing in this case) charge filling butgfacking either the action in Eq. (11) or the action in
nonzero momentum(c) Band structure of a 1D metalcharac-  EQ. (17). The action resulting from the former has been
terized by a momentum octupole momenThe system has an  discussed in Refs. [19,35]; the second is, to the best of our
integer (vanishingyilling, a vanishing momentumbut a non-  knowledge, new. From our arguments for gapped systems
vanishing expectation value for the square of the momentum. SpeSec. I, we expect that the form of the actions we obtain

Appendix E. from stacking will contain an extra wedge product with the
translation gauge field in the stacking direction. To be
More generally, in a 1D system with a Fermi-point explicit, suppose we are stacking up 2D semimetals (that

are parallel to the xy plane) into the z direction. By stacking
decoupled planes of the responses in either Eq. (11) or (17),
we expect to find

quadrupole [cf.Eq. (20)] Q, Y4 2'121 Va sgnoy, poRE
and fixed electric chargethis chiral coupling leads to an
anomaly in the presence of a nonvanishing translation

L Z
gauge field:
s%Pe g neandA
4118,
hQ
u XX =X
Oud % %FE’;. 032k .
$Qos”
This anomaly implies that if we turn on a translation gauge S Z el de®:
field (e.g., via strain), then we will generate momentum as 81,

shown in Appendix E [77]. i \ i
The response theory describing such a 1D system is respectively, where a; 3 % x, y. The forms of these actions

similar to that describing the chiral boundary of a Chern- Match action (viii) in Fig. 1(c) and the action in Fig. 2(c),
Simons theory. Indeed, if we start from Eq. (17) and deriv&SPectivelyWe note that the stackedecoupled systems
the boundary response (and compensate for a similar facfIP!Y inherit the response coefficient of the 2D system.

of 2 as mentioned above in the momentum-dipole case), w e wan’g to consider more general configurationsof
arrive atan effective action: systems with stacked and coupled planes, perhaps stacked

in severaldirections.As we have seen,if the layers we
Z stack are decoupledhen each layer contributes the same
S _h d2r6Q,, &6 b Q &b 833p amount. This contribution (fes a stack in the z direction) is
4m captured by the integrall=a, €& %4 N,, where N, is the
number of layers. However, if the layers are coupled, then
In this effective action, the momentum quadrupole momerfich fixed-k plane can have a different amount of Dirac-
of the Fermi points Q, encodes the ground state momen-node dipole [P,0k.P] or Dirac-node quadrupole moment
tum density (see Appendix E). The quantity Q,; isthe  [Qqg0kP], respectively. The total coefficient is then deter-
mixed Fermi-point quadrupole moment in momentum andnined by the sum over all values of. IOne can also have
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stacks in any directionnot just the z directionHence,in
this more generic scenaridhe actions become

Z
SDD3 Va eB(,B e AeP AdA 034pb
and
Z
Spas Y4 hBgg,, €A eP A deY; 035b
with coefficients
1 V4
Byg 4———€P9  d3kksF 9 036k
o 7 252mE °
and
1 Z
BGB;V Va WCGBG d3kkvk5F 06; 037b

where F+ is the Berry curvature of the k, plane. These
forms of the coefficients capture scenarioswith more
complicated nodaline geometrieslndeed,as previously

electromagnetic field to be independemf the choice of
origin. Here, the role of the magnetic field distribution is
being played by FPokP, and, for example, the constraint on
the vanishing Chern number eliminates the possibility of
magnetic monopoles (i.eWeyl points).

D. Effective responses of 4D semimetals

Our next goal is to determine the coefficients forthe
responseactions of 3D Weyl point-node semimetals.
However, becausethe Weyl nodes in 3D exhibit an
anomaly, the responses are subtle to calculate intrinsically
in 3D. Instead,to accomplish our goalye first carry out
more straightforward calculations of the responses of 4D
semimetals and then return to 3D either by considering the
boundary of a 4D system or by compactifying and
shrinking one dimension of the bulk. Hence, as a step
toward 3D semimetaldn this subsectionwe provide the
derivation for effective response actionsof semimetals
in 4D.

The first action we consider is of the form

z

SVg e ANdANdA; 039p

shown in Ref. [35], the coefficien{Hs determined by the
line nodes that have nonvanishing area when projected intere for our purposesa % X, y, z, w. Collecting all

the o plane. Additionally, for nodal line semimetals with terms inlthe gradient expansion that have this field content,
T | symmetry, the coefficient is proportional to the chargeWe obtain

polarization in the direction normato the af3 plane [35]. Z

We can see this explicitly by integrating Eq. (36) by parts S %f d5reta. A oA

. . . pvMptar
with the same caveats mentioned in Sec. Il A 1 surround- h
ing Eq. (15).

Analogously, the coefficient,B, can represent a kind of
“‘momentum” polarization where the polarization is again
normal to the af plane and the charge that is polarized is\{jpgre
momentum along the y directio¥Ve can see this heuris-
tically by integrating by parts using the derivatives in the
F 92 to find

z dwd*k
X -

3orB 040p

ko Qoopodw; Kb

0Gy' 0Gy 0Gy'" G, Gy

Q%P 3w: kb *
woparOW; KB % trGo ok, ok, ok, ok, ok,

1 z

~—— and Gy0w; kbis the single-particle Green function. To
Bobiy ™~ 252mb 038P 0 gep

determine the coefficientc,, we project this coefficient

onto the totally antisymmetric part,and then, just as in

tEq. (8), we can carry out the frequency integral76] to
Ibstain the simpler expression

d3ka€Pok AT - VKAl P;

where we use the ~ symbol to indicate that there are
boundary terms we have dropped that can be important i
the line nodes span the Brillouin zone. We can see from tﬂ
form that the coefficient for the case when a, B, and y are

z dwd*k e
not all different, e.g., B,,.,, is proportionalto the polari- — et

kaQopodw; kb

zation in the y direction (i.e., normal to the xz plane) 2"2 5

weighted by the momentum in the x dir.ection. 1 1 d4kka€ijkl FiipK- 541b
We note that, for B,g to be well defined, the Chern 16 Bz

numberin each plane must vanish. In addition to this o

constraint, Bg % 0 is a necessary constraint fopBto be ~ Hence.the response coefficient takes the form

well defined. These hierarchicatequirements are analo- 4

gous to the usual requirements for the ordinary (magnetic) ¢, 14— 1 d4kkagijk| Fipk 1, &Py 842b

h 16621b 7 1614’

dipole and (magnetic) quadrupole moments of the
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where we introduce where Qg, is determined by the momentum space octupole
] 7 moment of the 4D Dirac nodes. We leave the discussion of
p 1 d4Kk €. Fil F X 43b octupolar configurations of Dirac and Weyl nodes to future

a %4 16TF gz ik 0 work. We also mention that, similar to 2D, for these

responses to be independenf the choice of BZ origin,
As we see from this calculationsimilar to 2D, the 4D we require that the second Chern number of the 4D system
response theories can be characterized by the distributioyghishes Alternatively, if the second Chern numberis
the quantity g F ! F X across the 4D Brillouin zone. For nonvanishing, then the boundary of the system contains a
our focus, let us consider the case where the 4D system isanvanishing chirality of Weyl nodes. As such, the
semimetalwith a set of isolated Dirac points (linearly = anomalous charge response of the chirdloundary does
dispersing band touching where four bands meet). Withouot allow us to uniquely determine the momentum
symmetry, these Dirac points are locally unstablein  response on the boundary.
momentum space to the opening ofa gap. If we open Before moving on to 3D, let us briefly presentsome
up an infinitesimally small energy gap, the quantity  physical intuition about the response in Eq. (45). Consider
€ F i FK becomes welldefined across the entire BZ, a 4D time-reversal- and inversion-invariant system having
and its distribution takes the following form in the massled¥© Dirac nodes separated in the direction. To simplify
limit: the discussion]et us also assume the system has mirror
symmetry M,. The assumed symmetries imply thatach

b fixed-k, volume can be treated as an independent3D
g FIFX % 16TPX,00k - kP 844b insulator having 3D inversion symmetryand, hence,the
a1 magnetoelectric polarizability othese 3D insulatorsub-

spaces is quantized [5,78,79]. Now, if we sweep through k
If we substitute this into Eq (43), then we |mmed|ate|y S€fhen each bulk 4D Dirac point Crossing Changesthe
that P, becomes the momentum space dipole of the set ofnagnetoelectric polarizability othe fixed-k, volume by
4D Dirac nodes. Let us also comment that, if we integrateg half integer (i.e., changes the related axion angle by ) [5].
Eq. (43) by parts, we see thatcn also be interpreted as aSince the magnetoelectric polarizability jumps between its
set of magnetoelectric polarizabilities [5,28]. Just as in thguantized values as we pass through the two bulk Dirac
case of the polarization of a 2D Dirac semimetal, the  nodes, the kBrillouin zone splits into two intervals: (i) an
integration by parts generates a boundary term that capturgerval with a vanishing magnetoelectric polarizability and
the magnetoelectric polarizability coming from the 3D (ii) an interval with a nonvanishing quantized magneto-
boundaries of the 4D BZ. Hence, the connection betweerelectric polarizability.Indeed,we could have anticipated
the total magnetoelectricpolarizability and the mixed  this result from the form of the action Eq. (45) when a % z;
translation-electromagnetic response is exacily in the  j.e., the action represents stacks of 3D topological insula-
symmetric limit when the boundary term is quantized.  tors that each have a nonvanishing magnetoelectric

In summary, a 4D response of a system characterized pylarizability.

a dipolar distribution of the g F I F ¥ quantity reads

7 E. Effective responses of 3D semimetals
SV &Pq & A dA A dA: 345b From this discussion,v_ve see that,_in the presence of
16174 symmetry the 4D bulk Dirac-node dipole momendeter-

mines the magnetoelectricpolarizability of these 4D
topologicalsemimetals via Eq(45). We wantto connect
this result to 3D semimetals in two ways. First, we consider

Similar to 2D, if the dipolar response vanishesye can
obtain a momentum quadrupole response coefficiefur

the action: the 3D boundary of the 4D system, and then we consider
4 the spatial compactification of one spatial dimension.
S %eQ“ﬁ & A deP A dA; 346b Let us begin by considering the boundary response
1617 action from Eq. (45). For the modelsystem described at

) ) . ) the end of the previous subsection, we know the system has
where Qqg is a symmetric matrix determined bylthe a k,-dependentnagnetoelectric polarizabilityConsider a
momentum space quadrupole momerdf the 4D Dirac  poundary in the fourth spatial direction w. Since the
nodes. Finally, if both the dipolar and quadrupolar magnetoelectric polarizability is changing from inside to
responses vanish, we can consider an octupolar distributigiitside of the boundary,the boundary itselfhas a non-

that gives the response coefficient for the action: vanishing Hall conductivity. For our example system, each
Z fixed-k, slice of this boundary has a Hall conductivity,o
S %hO“BY & A deP A deV: 847p Which is quantized butpossibly vanishing.Additionally,
481F ’ since the bulk 4D Dirac nodes are separated in the k,
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direction,they project to gapless points in the 3D surface we leave a detailed discussion to future work. We can arrive
BZ (on surfaces that have at least one direction at this action using a formal compactification of the action
perpendicular to the z direction) where the Haltonduc- in Eq. (45) [5]. First, we can integrate that action by parts to

tivity discretely jumps by Ag, % de 2=2hb. arrive at

From this phenomenologyij.e., discrete Hall conduc- 7
tivity jJumps as we sweep through K we expectthat the Py A A de® A dA:
boundary response of Eq. (45) captures the same response 16TEA ’

as a Weylsemimetalthat has a nonvanishing momentum _
space dipole moment of the Weyl nodes in the z directionvhere we ignore the boundary term. We now want to
Indeed, the generic boundary contribution from Eq45)  dimensionally reduce the fourth spatial direction w, which

has the form we accomplish by choosing periodic boundary conditions
7 in w and letting the size of the system in this direction
P, shrink toward zero. In this limit, any derivatives with
Swp 4 57 e NdANA; 048P  respectto w are (formally in our  case)dropped [81].
The resulting nonvanishing contribution is
which was proposed by Ref. [33] to describe the response [ Z
of Weyl semimetals, though in the more conventional form &Py dwA, de A dA;

using an axion field and without the translation gauge field. 81P#

Here, Ry, a % X, y, z is the momentum dipole of the Weyl _ _ .

nodes in the ath direction. This action is represented as Where the integraland exterior derivative in the second
(ix) in Fig. 1(c). We note that the coefficient in Eq. (48) is fe_nctor are over only the remaining _fpur spacetime dimen-
twice as large as the actuaboundary term derived from  Sions.We can now make the definition

Eq. (45). This is because, when asses through a single 4

Weyl point, we have g, Agj, Vs Oe 2=hp,where the sur- O= 2119 dwA,, d50p
face the response of the 4D system has jumps of half the h

_size.This is a_nalogo_u_s to the fact that a 1D metal ha§ an t? arrive at action (x) from Fig.1(c):
integer jump in the filling as we pass through a Fermi point,

whereasthe surface of a 2D Dirac semimetalhas a epqz

boundary “filling” that jumps by a half integer as we pass B2 Ode* A dA: 051k
through a gapless point in the surface BZ.

We can repeat this analysis for Eq. (46). The coefficient T jllustrate some of the phenomenology of this action,
of this termis proportional to the momentum space et us assume that P+ 0. Additionally, let us assume that
quadrupole momentof the nodal points. Unfortunately, we maintain time-reversaland inversion symmetry.As
the phenomenology of this term is not as easy to analyzednch, © 1 0; . To begin, we see that the action in Eq. (51)
4D, because it is not generated from a lower-dimensionalis a total derivative if © and,Rire spacetime independent.
system in a clear way [80]By analogy with the previous The resulting pure boundary term is jusproportionalto
case, the bulk 4D Dirac nodes project to a quadrupole of #{& response of a 2D weak Tl (or 2D Dirac semimetal), i.e.,
Weyl nodes on the surface. We can extract the form of thgq. (7). Depending on the symmetry of the surfacehjs
3D action we want by taking the boundary term generategmplies that we expect the surface to be gapped except for
from Eq. (46). Then, accounting for the factor of 2 as in thsossibly isolated Dirac pointsSince the boundary terms

previous casewe arrive at appear as“e\ dA, we expect that surfaces normalXdy)
aQ 7 will harbor a y polarization (x polarization); i.e., the
e o
142 1A deB A A: s49p Polarization is tangent to the surface.
Swa 7 817 Importantly, the sign of the polarization depends on the

interpolation of © between its nontrivial bulk value of

(Note that, since (3 is s¥£nmetric, the related contribution © 14 1 and the trivial vacuum value © % 0 outside the
of the form eQ (s=81F €& A eP A dA vanishes.) This  system. For neighboring surfaces where the effective sign
action is the same as that shown in Fig(a). It produces of the polarization changeswe anticipate hinge charges
a mixed crystalline-electromagnetic response and repre- where surfaces intersecsince the polarizations are con-
sents a rank-2 vector charge response when certain mirroterging or diverging from the hinges. Thus, the response of
symmetries are preserved [17}s response coefficienis  this system is similar to a stack of 2D planes of quadrupole
determined by the momentum space quadrupole momenta$ment having componentaq,, # 0. In this scenario,
the Weyl nodes. coupled quadrupole planes could lead to either a higher-

Finally, we come to the action (x) in Fig.1(c). Let us  order weak topological insulator having a quadrupole
briefly sketch some salient features of this response, whilmoment or a higher-ordertopological semimetal with
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boundary (and possibly bulk) Dirac nodes [82,83]. To makesponse to the electromagnetic field when varied with
further progress,it would be advantageoudo have a  respectto €":
microscopic derivation of the coefficient in Eq. (51)
intrinsically in 3D. Hence, we leave further discussion J v —EP,\B .
of this action to future work. 4r
, e
Jy Va-—
IV. EXPLICIT RESPONSE CALCULATIONS 4
FOR LATTICE MODELS where E; and B; are the components of electric and
Now that we have completed the derivationsof the = magnetic fields,respectively.In the inversion-symmetric
actions in Figs.1(c) and 2,we provide a series of model limit and in the absence of lattice defects and deforma-
examples that manifest these responses.Using these tions, for which the crystalline gauge fields reduce to
models,we can numerically calculate the various charge e[\, Ya q} Eq. (53) simply reproduces the boundary charge
and momentum responses to electromagnetic and trans-and current responses of an ordinary 2D Dirac semimetal
lation gauge fields providing an independenterification  or weak topological insulator, which harbors a nonvanish-
of the coefficients derived in the previous section. Some adfig electric polarization. However, as we mention in
the models and responses we discuss below have appeagsst. IIl A 1 and comment further on below, we do not
elsewhere in the literature, while others have not. We cargxpect the coefficient of this action to match the electric
out this analysis in the same order as the previous sectiopplarization when inversion is strongly broken.
i.e., point-node Dirac semimetals in 2odalline semi- While the electric polarization and magnetization
metals in 3D, and then point-node Weyl semimetals in 3Dresponses ofDirac semimetals were discussed in detail
Calculations for 1D systems are carried out analytically inin Ref. [34], the momentum responses in Eq. (54) and the
Sec. Il B, and additional discussion can be foundin  charge responses to translation fluxes (i.e., dislocations) in

Pyl E; 854b

Appendix E. Eq. (53) are less familiar. Thus, we explicitly calculate
these responses using a minimal tight-binding modeir
A. 2D Dirac-node dipole semimetal and insulator simplicity, we employ a two-band Bloch Hamiltonian that

We begin with the time-reversal-invariant 2D systems €an model both 2D Dirac semimetals and weak topological

discussed in Seclll A that exhibit a mixed crystalline- ~ insulators:
electromagnetic response. Since T is preserved, the usual

Chern-Simons,Hall-effect response of the electromag- HOkP % Y o* b sindk,a,Pd
netic field vanishes. Instead, the response action derived b %m - cosql P - cosda,pc®  355p
in Sec. IVA takes the form of a mutual Chern-Simons
term [64]: When V, % 0, H has both inversion symmetry| % g 2,
4 and (spinless) time-reversalsymmetry, T 7 K. In this
SYeA, v %TPA e A dA: 852p symmetric regime, m can be chosen to produce a semimetal

with Dirac points located at, for example, 6k; kP 4
¥.1=023P; 0, when m % 1. In the semimetal phase, turn-
ing on V| d*, which breaks inversion while preserving T,
generates a mass term that opens a gap at the Dirac points.
The signs of the Berry curvature localized near the

two now-gapped Dirac points are oppositeas shown in

Fig. 4(a), with the sign at a particular point determined by
the sign of the perturbation \{ . Hence,the total Berry
curvature of the occupied band integrated over the entire

Unlike the purely electromagnetic polarization response
action considered in Ref. [34], this formulation of the
low-energy response theory also includes bulk electro-
magnetic responses to the translation gauge fields-or
example, by taking a functional derivative with respect
to A,, we have

e ;
p ~ap A i€ BZ, equivalent to the Chern number, is zero, and, hence, the
_ e Berry curvature dipole is well defined.
* Ef’@@?@ - 0,8'b; To confirm our analytic calculationsof the response
_ e coefficients, we first calculate the momentum density
Y va - ETP@@GQ — Ok 053P  |ocalized around an out-of-plane magnetic flux Qusing

the tight-binding model Eq. (55). In order to determine the
We see that the first equation predicts an electric  k, momentum density in the lattice model, we must
charge density localized on a dislocation in the bulk of  introduce magnetic flux in a fashion thgbreserves trans-
the lattice, which is exactly the phenomenology we expedation symmetry in thex direction. We show the configu-
for a weak topological insulator [38] or a 2D Dirac ration that we employ in Fig. 4(b). This configuration keeps
semimetal. The action (52) also predicts a bulk momentuthe crystal momentumkas a good quantum number and
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The equation of motion of an electron wave packetith
momentum k formed from a single band is

OB,

®B, viskp %}g—i b ;zéj E; F /okb; 856b
i

where vidkbis the wave packet velocity, EdkPis the
o oy s energy spectrum of the band; is the electric field,and
= vo0s pd P o de=hPEE; F ¥Y&kp is the anomalous velocity. The momen-
& ‘!e“:” e tum current of the occupied states is obtained by adding up
002 /,/" s the contributions 7kv'6kpP in the BZ and contains a term
Pl e arising from the anomalous velocity given by

! 0.02 0.04 0.06 0.08 -16 -15 -14 -13 -12 -11

—®.[h/e] Pz o Z
121 " Jiva-——@lE  d?kk,F Yok, kP

2 e % o21b

e -
o v 4 Y- P 857b

& We can also numerically probe our response equations
0 : . 1.6y . T by studying the charge response to the deformation of the
lattice. To do so, we introduce a translation flux to rows of
plaquettes located near y 74,N4 and y 74 3N =4, analo-

FIG. 4. (a) Plot of the Berry curvature across the 2D Brillouin goys to th? magnetic flux configuratipn we JUSt considered.
zone for the Dirac-node dipole semimetal model (55) for m 4 1T1h's effectively inserts two rows of dislocations such that,

with an added inversion-breaking perturbation with ¥ -0.5.  If one encircles a plaquette containing translation flux, the
We use this model to probe thg knomentum density response. Burgers vector is in the x direction. This effectively creates
For that, we consider a completely periodic system and insert tegposite translational magnetic fields B} % &€ — 0,€
magnetic flux @ thorough two lines of plaquettes such that the penetrating the two rows of plaquettegain, we choose
translationalsymmetry along the X direction is preserved,as  this geometry since it is compatible with translation
shown in (b). (c) shows the k, momentum density localized  symmetry in the x direction. In our lattice model, we insert
around one line of plaquettes penetrated by the magnetic field Bie translation flux by explicitly adding gq;qeralized Peierls’

as a function of magnetic flux. (d) shows the k., momentum . ) :
density as a function of Berry curvature dipole momentP, factors thatare kc dependentj.e., exp Oik dx'g'P such

defined in Eq.(9), which we tune in our modeby varying the  that the colored regions in Fig. 4(b) contain nonvanishing
parameter m between m % 1.0 and m % 116.(e) and (f), we  translation flux. The resulting electron charge density
show analogous calculations for the charge density response tdagalized on the translation magnetic flux has a depend-
translation flux with Burgers vector in the x directionas a  ence on both the Hfield strength and the Berry curvature
function of (e) translation flux at fixed Berry curvature dipole andipole moment P, as shown in Figs.4(e) and 4(f). This
(f) Berry curvature dipole atfixed translation flux. The open  again matches the expectation from our analytic response
circles in (e) represent Burgers vector choices that are not inte@iuations.
mgltiples ofa Iattic_:e gon§tant. The red dashed lines in (c)—(f) are \y/g emphasize that the effective action (53) describes the
guides to the eye indicating a slope of 1. mutual bulk response between the electromagnetic and the
momentum currents in semimetallic and insulating systems

allows us to compute the value of J; as the probability ~ with vanishing Chern number. We show in Sec. Il A 1 that
density of the occupied single particle states weighted byone must be careful when comparing this response to the
their momentum #k. The results of the numericatalcu-  charge polarization. In particular, our numerics show that,
lations are presented in Figs. 4(c) and 4(d), where we stuelyen in the presence of significant inversion breaking, the
how the excess kmomentum density bound to magnetic bulk momentum density response to a magnetic flux tracks
flux behaves as a function of both the magnetic fluxad  the value of the coefficienf &fom Eq. (9) as demonstrated
fixed Berry curvature dipole Pand as a function of Pat  in Fig. 4(d). In contrast, as shown in Sec. Ill A 1, the
fixed ®,. Our numerical results match our analytic calcu- expression for the electric polarizatiokq. (15), contains
lations precisely. an additionalterm that is proportional to the value of a

We can interpret this result by noting that the momentutitilson loop along the boundary of the BZ. This value is not
current in Eq. (54) can be obtained in the semiclassical limitantized when inversion symmetry is brokenand, for
by considering the momentum current carried by electronlarge values of \{ , this contribution becomes significant
wave packets subjecto an anomalous velocity [84,85].  enough that the polarization response clearly deviates from
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the result one would expect from a naive interpretation ofdiscussed above ifwe replace the electromagnetic field
Eq. (53). However, the mutual responsebetween the  with a translation gauge field.
electromagnetic and translation gauge fields described by To illustrate and explicitly confirm the responses numeri-
this action remains valid. This subtlety is not the focus of cally, we use the following two-band square lattice Bloch
our current article, so we leave further discussionsto  Hamiltonian with next-nearest-neighbor hopping terms:
future work.

HOkP 7 \f 0 p sindk.ab sindlabPd

B. 2D Dirac quadrupole semimetal p2m - cos@kb - cosglabao™: 060k

Next, we consider the class of 2D semimetallic phases __ . ) ) )
characterized by the quadrupole momentof the Berry ~ 1his model has an inversion symmetry (i.&,sgmmetry)
curvature introduced in Sec. Il A 2. We know from that is realized trivially on site with | 4 I, mirror symmetry
Sec. Il A 2 that the low-energy effective response action along the k % k, axis, and, when Vy 7% 0, time-reversal
for this system takes the form symmetry T 4 0*K. This model can be tuned to a
7 semimetalphase as wellfor example,setting m %2 1,we
h 5. find four gapless Dirac points located at Ok; kP
S VignQas & Aden 098P gr=2a; Ob and ok; kP % 60; T=2aP.
To confirm the response action is correct, we first need to
This action generates a momentum current response  calculate the Dirac-node quadrupole momeht see that
the Berry curvature quadrupole moment is well defined, we
first note that the choice of @s a mass perturbation forces
P, to vanish.We also need the Chern number to vanish,
which is guaranteed by the mirror symmetryVith these
These currents describe both a bulk momentum polariza-symmetries, the Berry curvature peaks at Dirac points that
tion (e.g., yielding momentum on the boundary whegg Q are related by inversion symmetry have the same sign,
changes) and a bulk energy-momentum response to transrhile the peaks related by mirror symmetry carry opposite
lation gauge fields.We note thatthis response is exactly signs,resulting in a quadrupolar distribution of the Berry
analogousto that of the Dirac-node dipole semimetal curvature, as in Fig. 5(b). Since the Chern number apd P

Jh V- %T Qqpe""90, 65 059p

»
/// 2 ’e/.
~ -2
(]
P 5o o’
-~ ::_, z1 .,
//' i‘di ,0/
e
&
0
T T I T T T 1
2.0 2.5 0.0 0.5 1.0 1.5 20
10,0 B
@
A 10
’ ’ g
",/ 10, ) s
6
// 53 ‘/
-’ B 4 >
b4
2 ygi v
i x10°
T T T 2 4 6 8 10
2.0 2.5 i

19l

FIG. 5. (a) Spectrum of the 2D Dirac-node quadrupole semimetal (60) in a ribbon geometry (y direction open, x direction periodic) for
m %4 1, the T -breaking perturbation set te W4 —0.2, and the energy tilt in Eq. (62) € ¥ 0.1. At half filling, the ground state of the

model is momentum polarized: Occupied states localized near y %4 1, which are indicated by the blue color, carry a positive value of th
kx momentum, while the occupied states near y /h&lve a negative value of. Kb) Berry curvature distribution across the Brillouin

zone for a small gapping perturbation ¥ % —0.2. (¢) The boundary charge distribution as a function ommomentum.(d),(e) k,

momentum bound to a row of dislocations [cf. Fig. 4(b)] as a functiQpaiff@ed B in (d) and as a function of 8t fixed Q. in (e).

(f) Plot of momentum poIarizatior’iﬁXR)btained from computing kmomentum bound to an edge norma}.t¢g) As a consequence of

nonzero €, we see that the velocities of single-particle states in (a) localized on opposite edges have the same sign, while the energy :
k, momentum charges are exampposite.This leads to boundary energy currents as illustrated in (g) as a function gf Q
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both vanish,the quadrupolar distribution is welldefined  since the particle density on the edge at gachhis range
and signals the presence of a well-defined elastic response 1=2. Because states at oppositehave opposite excess
in this model (see also Ref. [75]). The diagonal elements aifd deficit probability density, the total sum is nonvanish-
the Dirac-node quadrupole moment of our model are equadg and depends on Q, as shown in Fig. 5(f). We find
and opposite, Q 7 -Q,,, and the off-diagonal elements that the bulk momentum polarization P{ Va 0hQ,,=81b

are zero. Since the sign of the Berry curvature flux for 2Dmatches the numerically calculated boundary momentum

Dirac points with T | symmetry is ambiguous, we once  density, as expected for a generalized surfacecharge

again treat our system in the insulating regime with nonzef@orem [86]. To further probe the response equations,

V first and then recover the semimetallic case by takingwe subject the Dirac-node quadrupole semimetdb the

the limit V1 - 0. same linear array of dislocations employed in the previous

Using this model, let us first focus on the momentum  gypsection [cf. Fig. 4(b)]. From Eq. (59), we expect to find

polarization response and highlight the difference with thenomentum density localized on dislocationsSince our

2D Dirac-node dlpOle semimetal case from Sec. IVA. If th@eometry preserves translation in th‘ﬂjirection, we can

bulk has a momentum polarization, we expect translationcompute the amounbf k, momentum bound to disloca-

symmetric edges to have a bound momentum density. Wgons, similar to how we computed the amountf charge

first make a generalargumentfor the existence ofthe  pound to dislocations in the previous subsection. We show

boundary momentum and then confirm the results numeriyr resultsin Figs. 5(d) and 5(e), where we first plot

cally for our model. Let us suppose oursystemhasa  momentum density as a function of Q. for fixed trans-

boundary normalto the y direction. We expectsuch a |ation flux B X and then plot momentum density as a

boundary to carry kmomentum if Qy # 0. To show this,  fynction of B} for fixed Q,,. Both results match the

let us make a gauge transformation on the fields in Eq. (5§r)i'alytic value from the response action.

& — efi p 0,\° for some vector functio.ASince there is a  Finally, let us briefly consider a case when the mixed

boundary,the response action is ncgauge invariantand energy_momentum quadrupo|e momen&@ nonvanish-

we find the variation 88 % —0/1Q,,=8TPM&E; — 04&P.  ing. In this scenariothe effective action (58) implies the

Our system has no translation twisting of the boundaries, existence of a bulk orbital momentum magnetization of

e, &Y g % 0, sowe find the variation reducesto

O\S V2 —0nQ,=8TTPMqE — oxeiP. This variation can be MZ % — EQ . 561p

canceled by adding an action of the form Eq. (33). That is, Ky g

we expect to have 1D degrees of freedom on the boundarx ) )

that harbor a nonvanishing-knomentum density captured that manifests as boundary momentum currentsyen in
equilibrium (note we assume}é4 1). To generate a non-

by an effective 1D quadrupole momel@,, that matches e , -
the value of the 2D quadrupole moment. Interestingly, weV@nishing Q, in our model (60), we turn on an additional

note that the coefficientof Eq. (33) is twice that of the ~ Perturbation

variation we need to cancel. Hence, the edge of our system )

has a fractional momentum density; i.e., a 1D system with AHOkP % € sinQRb.y: 062P

the same Q would have twice as much momentum. This o

is analogous to the fractional boundary charge density on@/hen m 7 1.and \t — 0, this induces Q, % —Tre and

finds from the half-quantized electric charge polarization. Qi % €, leading to momentum kmagnetizationM§ 74
We confirm this response numerically by studying the -84=81PQ, and bulk energy magnetization, Mﬁ‘ Ya

model (60) on a lattice in a ribbon geometry that is open irg7=81pbQ, following from Eq. (61). In Fig. 5(g), we

the y direction and periodic in X. Figure 5(a) shows the plot the boundary energy currentresponseAJ ¥ as a

resulting band structurefor which a gap is opened by a  function of Q. We calculate this quantity by summing

nonvanishing \ and the occupied states have two sym- the particle current 81=1P&oHgdkveighted by the energy

metrically positioned sets offlat band statesione inan  gakbof each state.The slope of the plot confirms the

interval having k < 0 and the other in an interval having coefficients predicted in Eq(61).

k. > 0. The occupied boundary states wifh<k0 (red) are

localized near the top (y /4 N,) boundary, while the

occupied boundary states with & 0 (blue) are localized

near the bottom (y % 1) boundary. At half filling, we find ~ Heuristically,we can consider nodaBD semimetals as

that the excess or deficit charge near the boundary deper@iiging from stacks of 2D Dirac-node dipole semimetals.

on k as shown in Fig. 5(c). We see that the states at posiftgthermoresimilar to the 2D case with inversion sym-

and negative kare imbalanced, indicating a nonvanishingmetry the bulk response action

k, momentum density on the edge. Indeed, each state Z

between the Dirac nodes contributes an amount to the total SYeAieB, & Ae'AdA 563b

edge momentum equal tQ Weighted by a factor of 1=2,

C. 3D nodal line dipole semimetal
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4

VER, Adding hopping terms in thez'direction leads to a Bloch

Hamiltonian:

HOkpb Y4 Y o b sindk a, Pd
p 7zm - cosQk,P - cosda, P - cosdla,Pc*:
868p

. . ) .
FIG. 6. (a) Fermiline of a 3D NLSM (68) with\% 0, m %2 12King M ~0and m % 2, we find a single loop of gapless
that is tiled in the energy-momentum space fk k. : Eg by the states located in thg ¥ O plane, described by_the equation
perturbation (70) where we set % 1. The projections of this ~ cosOka,P p cosdja, P % 1.The stack of 2D Dirac-node
curve onto the fk; k,g and fk,; Eg planes give the exact values dipole semimetalsnaturally endows the 3D nodal line
of the B,, and By, coefficients, respectively. (b) A screw system with electric polarization (and/omagnetization).
dislocation characterized by a Burgers vector®'4 a, creates Correspondingly, this model has a single nonzero compo-
an internal boundary carrying a current circulating around the nent of the antisymmetric tensor B defined in Eq.(36),
magnetization vectorM,. Note that the currents’ directionis  \ynhich encodes a charge polarization in they direction.
perpendicularto the Burgers vector and the magnetization From Eq. (66), a nonvanishing B,, also implies a k
vector M,, as predicted by Eq.(71). TRl . . z . X
momentum line density localized on a magnetic flux tube
oriented in theZ direction:

can be interpreted as a charge magnetizatiandlectric J & Va 2eB,e" €B, Y 2eB,,B?; 069p

polarization P: - . . .
similar to a stack of decoupled 2D Dirac semimetallic

layers (in the last equality, we replacg@ 1). This is the

3D analog of the response shown in Figs. 4(c) and 4(d) for
the 2D Dirac semimetal.

where we take functional derivativesof Eq. (63) with We can see an example of a charge response if we tilt the
respect to the magnetic and electric fields, respectively, apgdal line to introduce a nonzero value ¢f &s illustrated

use ¢ % 1. For an unmodified geometrywe recover the  in Fig. 6(a). In our model, we can tilt the node by adding an
results of Ref[35], l.e., extra dispersion

eBy, Ya Mlqa, eB,p Ya Eijk Plégaqb, 064pb

eB, % M2 By, ¥ e PK: 365b AHBKP % € sind&, Phxy 370b

Microscopica”y’ the Coefﬁcientﬁ, where a, b V4 1’ 2, 3, to the Hamiltonian. This term breaks T and induces a net

is proportional to the area of the line nodes thaproject ~mMagnetization M % eB;, setting up the corresponding
onto surfaces normal to the ab plane as illustrated in ~ circulating boundary currents in the system [35].

Fig. 6(a). Now, when B, is nonvanishing, Eq. (67) implies that a
The bulk action also implies a nonvanishing momentun$crew dislocation with Burgers vector hosts a bound
response to electromagnetic fields: electromagnetic currenindeed, if we assume the screw
dislocation is located at 8x; yp % 60; Ob and runs along the z
J ¥ % 2B, £"Poe)0, A, seep  aXis, we find

iz, tzjk 1/ — V4 .
and a conjugate electromagnetic response to translation 7 V4 ~20B,e eféjef % ~28B,b"00xbooyPOT1P
gauge fields: where we use % 1.and V x & % b?50xb50yb.
We can illustrate the origin of this current by considering
j¥ V4 2eB,£"P%)0,€b: 067P  the magnetization M (and associated boundary currents)
induced by B,. A screw dislocation with Burgers vector
To illustrate how these responses manifest in an explicti“z can be constructed by cutting a seam into layers normal
model, we can construct a Hamiltonian for a 3D nodal lindo z and regluing them along the seams with neighboring
dipole semimetal by stacking copies of the 2D Dirac-noddayers above orbelow. When cut, the boundary current
dipole semimetal in Eq. (55) in tkedirection. When there associated to Mappears, and after regluing this current is
is no hopping between the 2D layers, such a system has tenated vertically along the screw-dislocation line, i.e.,
lines of gaplessstatesspanning the BZ alongthe k, along the z direction as shown in Fig(b). The magneti-
direction, located atdk; kP 74 6K; OP (for our model).  zation M, gives rise to a surface bound currerjt, 4 M,
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circulating around thez"axis in each layer.The effective
numberof currentloops winding around the dislocation
line per unit length is equal to the Burgers vectorTihus,
the total current in thez"direction is

iZ V4 —b? , V4 —2eB,b% 372b

which reproduces the resulbbtained from the response
action. Furthermore,we can understand the sign ofthe
current from Fig. 6(b), where we see that the current on the
dislocation has an opposite orientation to the current
generated by M,. Another interesting consequenceof

Eq. (63) is the topological piezoelectric effectdiscussed

in Ref. [62].

FIG. 7. Fermi lines of the model (74) with m % 2 and
V1 - 0_. Resolving this structure as a pair of loops with fixed
) ] ) orientation, we can project them onto thk,lor k k, surfaces to
In Sec.1ll C, we derive the effective response action  getermine the momentum polarization. The colored regions of the
Z projected nodes indicate flat drumhead states that would appear
1A a in open boundary conditions on one boundary (red) or the
SUAMB o € neTnde opposing boundary (blue)By looking at the relative positions
of the two areas bounded by the projected loops in the surface
for the nodal line quadrupole semimetal.The response BZ, we see that one surface hasone sign of the k, or k,

D. 3D nodal line quadrupole semimetal

action implies the energy-momentum currents momentum, and the other surface has the other. For example, for
the kk, surface BZ, the projections indicate a dipole moment of
J K A 2By~ Bna_Ap@vpceUapeg; 873p ks« momentum polarized along the y direction captured by the

response coefficient By,. Inset: cagelike nodal Fermi surface in

where we use thaB,is antisymmetric under exchange ofthe model (74) with E- % 0.2.

the first two indices.

In analogy with the 2D Dirac-node dipole and Dirac-  two-dimensionalplanes,then we arrive at the following
node quadrupole semimetalsie expectthat mostof the  Bloch Hamiltonian:
responses from the Dirac noddine dipole semimetalin
Sec. IV C can be translated to describe some of the  Hakb 14 Vo*p sindkab singlabd
responsesof this action if we replace charge currents \ )
and densities with momentum currents and densitiets,. p 7zm — cos@ab — cosqb - cosdk,Po*:  874P
Indeed,we show in Eq.(38) that,when A and n are both _ _ '
spatial indices, B implies a momentum polarization in a For a wide range of parametershis modelhas a pair of
direction perpendicular to A and n and carrying momenturi©dal line loops that form a cage structure as shown in
parallel to A. By analogy, the mixed temporal-spatial ~ Figs. 2 and 7 with m % 2 andr\% 0. In general, the local
components B; describe a momentum magnetization in 9aplessness othe nodal loops can be protected by the
the ith direction carrying momentum in the jth direction. ProductTI. The cage structure created by the joined,
The momentum magnetization is furtheresponsible for ~ intersecting loops can be split apart by, for example,
generating bound currents on screw dislocations; i.e., ~Preaking mirror symmetry along the k % k, axis while
the momentum magnetization hascirculating boundary ~ Preserving T | . However, even in this case, the nodal loops
momentum currents and a momentum current along scre@ill produce a nonvanishing contribution to the response
dislocations similar to the charge bound currents on  coefficient Bg,,. Hence, the response is more general than
dislocations shown in SedV C. the specific cagelike nodatonfiguration.Calculating the

To be more explicit, we can illustrate the momentum response coefficierfor the action in the limit V; - 0_,
polarization in a model by showing the analog of the  we find that B, ¥4 =B, By, ¥4 —B,,, are nonvanish-
surface charge theorem; i.e., momentum polarization yieldgy, as shown in Fig.7.
surface momentum densities. To obtain a Hamiltonian for Using this model, we can illustrate the origin of the
the nodal line quadrupole semimetal, we begin by stackingoundary momentum resulting from the bulk momentum
2D Dirac-node quadrupolesemimetals[see Fig. 5(b)]  polarization. The discussion is analogous to the calculation
along the z direction. When the planes are completely  of the boundary momentum of the 2D Dirac-node quadru-
decoupled, this construction produces a set of four straigipole semimetal in Sec. IV Bindeed, the analogy is clear,
Fermi lines stretching in the, kdirection. If we couple the since the cage nodal structure is just arising from a family
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of 2D Dirac-node quadrupolesparametrized by k. To  with this magnitude. Since each interface carries an opposite
specify an unambiguous momentum polarizatiorg turn  sign of the momentum density,if we glue them back
on a smallT -breaking perturbation V. After doing this,  together,there will be no momentum at the interface.
and as shown in Fig.7, we see thatthe two nodalloop  Now, for y > 0 let us perturb away from the background
segments that lie in the k' 0 plane (one for k>0 and  translation gauge field configuration to g 4 1 b €p8§,
one for k < 0) carry the same Berry flux in thedirection  where € 72 8¢; 0; €b is a small deformation. The momen-
(red arrows in Fig. 7). Similarly, the two loop segments intum density response to leading order this
the k, ¥4 0 plane carry the same Berry flux (blue arrows),
which is opposite to that carried by the K4 0 segments. J 2V 21B,,. /o~ 2650yb - ®DoyP; o76p
Consequently, the loop segment in thel/k 0, k, > 0 half
plane must connect with a loop segment in,tf¢ & plane ~ which we see is localized at the interface y 7 0.
in order to form a closed nodal loop with a consistent We can interpret this response by noting that changing e
helicity or flux sign. or & effectively changes the area of one side of the interface

To clarify the consequences of this nodal configuration(y > 0) relative to the other (y < 0). Since the total k,
let us consider the,k, plane in Fig. 7. We can calculate a momentum on both sides of the interface should be
Berry-Zak phase [25] in the k direction parametrized by unchanged by this deformation (we maintain translation
ok ; kb, and for our model we find a Berry phase of symmetry in x during the process), then increasing the area
magnitude T inside the projected nodal region in thék  fory > 0 must lower the momentum densityndeed,the
plane. When Y is turned on, the signs of the 1 Berry-Zak surface k, momentum density on y surfaces must be
phases are no longer ambiguous and are opposite for thenversely proportionalto L , and L. Finally, since we
projected areas &k, > 0 and k, < 0. If we calculate the are considering kmomentum density, the quantization of
total polarization in the y direction when summed over allwhich depends onil!, J ¢ actually depends onE, hence
k. and k,, it vanishes. However, the polarization weightedthe difference between the coefficients of € and €*
by the k. momentum is nonzero. The occupied drumheadin Eq. (76).
surface statesin the k ,k, surface BZ [see Fig. 7 and
cf. Figs. 5(a)-5(c)] have an imbalancgdnkomentum but,
when combined with the bulk charge densityyvanishing ] i ]
charge [cf. Fig. 5(c)]. This is a reflection of the surface ~ The electromagnetic and geometric response ¢ifme-
charge theorem fora vanishing charge polarization and réversal-breaking 3D Weyl semimetals have been discussed
nonvanishing momentum polarization.We numerically ~ €xtensively in the literature [12,13,15-21,23,33,34,71,72,87-
calculate the magnitude of the bound surface momentum?7]- Here, we focus on a few particular consequences of the
finding it to be in agreement with the value predicted by twaixed crystalline-electromagnetic response and the matching
response action, 2/4B... We see from this picture that, to between the response field theory and microscopic lattice
have a nonzero response B.,,, we want two oppositely model calqulationg. Recall tha’g thg response actio_n fora 3D
oriented nodal loops with identical, nonvanishing areas Veyl semimetalwith a nonvanishing Weyl-node dipole
when projected in the,k, plane but positioned so that the moment R is
sums of all kinside each nodal loop are different from each Z
other; e.g.,in our model,_they are opposite values_. _ S%GAJ 1 &’P) & A A A dA: 577b

As an additional explicit example of a nonvanishing 81Ph

responseallowed in our model, we can consider the
momentum density This response implies the following bulk electromagnetic and

momentum currents:

E. 3D Weyl-node dipole semimetal

J 0 Y4 2hB, % 02¢0, € — e P 875pb 2p 2p
M1 A cuvpg, A cuvpo, .
generated by a geometric deformatidio. generate a non- Thepe mg“ P%ei0pAs 8%8“ PAOpes O78P
vanishing responségt us consider an xz-planar interface.
Since we mustpreserve translation symmetry along x to
calculate kmomentum, and we want to preserve translation
in z for conveniencewe have the following terms:

Py
81PA

In the presence of dislocations the translationalflux is
J V4 2hB,,,02&0,65 — 2€20,6; — €x0,€ b e%o,&b: nonvanishingand, hence, the bulk electromagnetic current
is anomalous:

J N Ve = ePIA A 379p

If we cut the system aly %4 0, both sides of the interface
carry a surface kmomentum density .+ ¥ 24B 4 . P, _

; ’ Oy Va — ——€MVOPS &l0,A,: 080P
since the system has g kmomentum polarization alorig W rn €100
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This reflects the facthatthe action Eq.(77) is not gauge
invariantin the presence of dislocations.Indeed,in our
explicit tight-binding model calculationsbelow, we find

the spectrum on a single screw dislocation line contains a

pair of chiral modes of the same chirality [one near each bulk
Weyl-node momentum as shown in Fig. 9(b)]. These modes
are responsible for the anomalous current on dislocation Iine%,

as was first described by Ref. [38].
To verify the electromagnetic response to the applied
crystalline gauge field, we consider a simple two-band

model of a 3D Weyl semimetal with a pair of gapless nodes

HOkP % sindla,Pd b sindk a, Pd
p 22 — m - cosQ,P - cos@fa P - cosdla,Po*:

The Weyl node with the positive chirality x ¥4 p1 is located

at k %4 Yearccosd—mb; 0; nd the node with x %4 —1
is at k % Y2~ arccosd—mb; 0; The Weyl-node dipole
moment, therefore, has only one nonzero component
P, Y4 2 arccosé—mkand the resulting response action is

ep -

s2r  dTeRAGA:  681P

SYbeA, %

Let us first considerthe responsearising from the
constant background translation fields € %1 and
g “a b*=L,, which describe a twist such that a particle
traversing the lattice in the y direction translate$ inythe
x direction. We note thatsuch a configuration is volume

(@)

00
o 00
~ —

e
il
-
-
s
b
X[
R
y Z
(c) le—2
e
44 &
R > 8 -7
§' et R
ﬁ\ &* 2_ ,,/‘/
/‘,
0+ . . -
0 2 g o2
Ao

preserving, singe detdeb % 1, where the matrix e has matrix

elements ¢ % . When b5 % 0, the response action is

ep -
812

direte oA A

Using the relatior|$dxe§ Y4 Ly, we find an anomalous Hall
effectin the yz plane such thato,, % 6é=hboRL =21b,
which is the standard result[32,33]. Now, if we turn
on b*, we still have the same ¢, but we also have the
additional term

e’P,
81Ph

z
d4re}e’PIA, BA:

Because of the different index on the € symbahis term
represents an anomalous Hadffectin the xz plane with
g, V4 68=hb&Rb,=2TTPWe can find a simple interpreta-
tion for this effect: When we turn on e}, the minimal
coupling ky — k; k, =k p k€ shifts the bulk Weyl
nodes,6P ,=2;0;0p - 2R=2;P ,b,=02L,P; 0. Hence,

FIG. 8. (a) The three panels show numerically calculated Fermi
arcs in (left) the surface BZ with undeformed geomet(yight)

the surface BZ with e § nonvanishing,and (center) the arcs
localized at the interface formed by gluing the two sides of

the interface togetherMhe colored circles in the firstand third
panels representhe surface BZ projections ofthe bulk Weyl

nodes on either side of the interface. The color is a guide to show
the connectivity or orientation of the Fermi arcs, not the chirality
of the bulk nodes. On both sides of the interface, the bulk nodes
have the same chirality, but, since they are effectively projected
onto surfaceshaving opposite normal vectors, they generate
Fermi arcs having opposite chirality. (b) lllustrations of (left) the
undeformed geometry and (right) the deformed geometry jvith e
nonvanishing. (c) The numerically calculated current localized at
the interface between undeformed and deformed geometries as a
function of the chemicapotentialshift A,.

transformations othe Weyl-node dipole R - €! Pj. We
show an explicit example of this in the first and third surface-
BZ panels in Fig. 8(a), where the bulk nodes and their
connected Fermi arcs are rotated in the deformed geometry

an effective F, 74 0Pb,=L, P is generated when the Weyl relative to the undeformed geometryWe note thatif the

momenta are shearedIndeed, we expect that, at least

deformation is not volume preservingthen we must be

for uniform, traceless translation gauge field deformationszareful when considering what is held fixed while volume is

the response phenomenaan be simply interpreted as

changing in order to interpret the resulting phenomena.

041060-23



HIRSBRUNNER,DUBINKIN, BURNELL, and HUGHES PHYS.REV.X 14, 041060 (2024)

In addition to these cases of fixed background translatiéior our model and geometrythe contributions to the
fields, let us consider varying those fields in space. We areurrent that are linear in the deformations 8fagise from
interested in the electromagnetic response to applied trartee Fermiarcs stretching between 6K; 0 - 0K;JiReand
lational magnetic fields B % € 6, €. Since the nodes in  8-K; Ob » 6-K; —K¢b. Each of these arcs has a fixed
our model are separated in k, we considergeometries value k, 2 K, and each arc has an opposite Fermi
where the Burgers vector of the translation magnetic fieldvelocity. Hence,
also points along the x directiorB} + 0.

First, let us consider a system containing a domain wall X 1 : Kej K- Kej
as a function of z, such that at z % 0 the figjaneps from JX 74 eve K, l&bmﬁ beveoK; k"bﬁnﬁ
0 to h=L,. For z < 0 we have bulk Weyl nodes that project ., €PyeA _
onto the z surface at 8P,=2; 0b, while for z > 0 the bulk A2y, S9nO¢P;

Weyl nodes have been transformed and siat 2P ,=2;

P «b,=82L,b. We show the numerically calculated Fermiwhere K§=21 counts the density of states on the Fermi arc

arcs for our undeformed and deformed models in the left in the k, direction,sgndy P is sign of the velocity on the

and right surface BZ panelstespectivelyin Fig. 8(a). k, ¥ pK arc, and B, % 2K? is the undeformed value. This
Now let us glue the z < 0 and z > 0 sides to each otherresult matches the prediction from the response theory and

to make a domain-wallinterface.We schematically illus- matches the numerical results in Fig(c) [98].

trate the interface geometry in Fig. 8(b). Since the normal We can also study a system with a pair of screw

vector on each side of the interface is opposite, we expediislocation lines.We explicitly insert two screw disloca-

the Fermiarcs for z < 0 to have the opposite chirality to tions at positions dy;zP V4 8M,0P and dy;zP % §3M, Ob,

their corresponding arcs for z > 0. Indeed, as shown in theunning parallel to thg axis with Burgers vectorg b p1

center surface BZ panel in Fig. 8(a), the Fermi arcs on bashd ¥ % -1, respectively. In Fig. 9(a), we show the energy

sides can hybridize because of their opposite chiralities aggectrum of a Weyl semimetal with Weyl nodes on the k

form new arcs in the 2D subsystem of the interface. Thesexis with periodic boundary conditions and no dislocations.

new Fermi arcs encode the fact that the Hall conductivity In Fig. 9(b), we show the spectrum ofthe same system

Oy, is varying at this interface. These effects are all  after two screw dislocations are inserted as described

manifestations of the fact that the Weyl-node dipole momabbve. The blue and red coloration indicates on which

P; is changing at the interface, and, hence, we expect Fedisiocation the states are localizedle see that near each

arcs to be trapped generically at the interfaces of this typ&Veyl point the right-moving modes are on the red dis-

We note that a similar strain geometry, and the corresporidiagion, while the left-moving modes are on the blue

Weyl-node configurationyas discussed in Ref61]. dislocation, as described by Eq. (78). Hence, each dis-
From Eq. (78), we see thatapplying a uniform, non-  location has a net chirality.

vanishing Ato the system described above should generateTo test the response equation, we apply a nonvanishing

a charge current in the x direction. We can see the A, and numerically calculate the charge density localized

microscopic origin of this current as follows. If we increasen a single dislocation.We can carry outa microscopic

A, each linearly dispersing point on the Fermi arc has ancalculation of the charge bound to a dislocation as a

excess charge density dndkb V4 ‘geAmhjve Okbj, where  function of A,. Let us assume a nodal configuration with

veOkPp is the Fermi velocity at the Fermi arc located at k im positive node at k 72 822; 0; Ob and a negative node at

the surface BZ.Hence,the contribution to the currenbf  8—-P,=2; 0; OPIn the presence of a dislocation having

such a point on the Fermi arc is j *0kb 2 ex0kPdndkP. Burgers vector b*, each k/k, plane seesan effective

(a) 10 1 S7 7/ (b) 10 TR s
= 2 N g
0.5 A \ 0.5 - ‘/
< 00 < 7
= gz 0 .
—0.5 1 /"’
~1.0 +4 \ 0 += : :
i 0.0 05 1.0
Ax le—4

FIG. 9. (a) The bulk spectrum of a Weyl semimetal with two nodes or &xésk(b) The spectrum of the same Weyl semimetal with
periodic boundary conditions and two screw dislocations with opposite Burgers vectors threaded along the x direction. Red and blue
coloration indicates on which dislocation the chiral modes are localifgth dislocation has a net positive (red) or negative (blue)
chirality. (¢) Numericalcalculation of the charge density bound to a screw dislocation gsshtuned.
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magnetic flux ®ok,p ¥ dbk,=2Tb® where @, ¥4 h=e.
Hence, each k k, plane having a nonvanishing Chern
number contributes to the charge as

kb"

eL z
X 1 .
— - C("Slg(bﬁdkx V4 0;

1
AQ Va o

082pb
where COkPp is the Chern number of each kk, plane
parametrized by k. If we turn on a nonvanishing A
(ky — kx p 6e=nPA) and recalculate the bound charge,
we find

L, z 6P, =2P-de=hBAK, b

AQjp a—== dk
Ia 7 21 _sp, =ob-e=ipA 21T g
e?P,b*L
Ya— XA =}
A arth " 083

This result is exactly what is found in our numerics shown

in Fig. 9(c). Both of these resultsmatch the analytic
prediction in Eq.(78) after including an extra factor of 2

Without any geometric deformations, the semimetal phase
of our model with a Weyl-node quadrupole has two nodes
of one chirality at k 72 6K; 0; OP and two of the opposite
chirality at 80; K; Op. Thus,the gapped?2D kyk, planes
parametrized by khave a nonvanishing Chern number C
for -K <k 4 < 0 and a nonvanishing Chern number -C for
0 <k, <K, where C% 1. Similar statementscan be
made about the,k, planes. Without loss of generality, let
us choose the nodes on thekis to have positive chirality
such thatQ,, > 0 and C %4 p1. For our model, this also
implies that Qy, < 0 and the nonvanishing k,k, Chern
number planes have a negative Chern number for<0

and positive Chern number fof k 0. For example, in our
model, we can generate a configuration with this structure
usingm % -2,t %4 1.

1. Response to flux and dislocation lines

We begin by studying the momentum density bound to
magnetic flux and charge density bound to dislocations.

which takes into account the bulk and boundary inflow to These two responses, some aspects of which are described

the boundary [73,99-101].

F. 3D Weyl-node quadrupole semimetal
Finally, we discuss some aspectsof the crystalline

in Ref. [17] (see also Refs. [18,24]), are the most straight-
forward, because they are essentially bulk responses and do
not generateanomalouscurrents;i.e., the rhs of the
anomalous conservation laws above vanish@sr model

response of 3D Weyl semimetals with gapless Weyl nodesas Q, ¥4 —Q,, * 0, and the responses generated by these
forming a quadrupole pattern.Some of these responses two coefficients give two separate sets ofterms in the

were recently discussed in Ref§17,18,24],and here we

response action. Hence, for simplicity, we consider only the

consider some of the responses in more microscopic detdl,, responses for now.

and compare directly with lattice model calculations.
Recall from Seclll E the response action

Y4
quB

SWQ%STIZ e AdeP AA:

The bulk linear response implied by Eq49) is

J 8 S%s“VPOQGBeEapAG - %s“Vp"QGBAﬁP% 384b

iU v - siﬁeuvpoaaﬁegapeg: 385b

Let us first microscopically calculate the expected
response to inserting a magnetic flux or a screw dislocation
and compare with the response theory.First, consider
inserting a thin magnetic flux line along the x direction
having flux ® localized at,say,dy; zb 4 60; OFhis flux
generates a Halleffect from each of the nontrivial k/k,
Chern planes.The total charge bound to the flux line
vanishes pecause there are equaind opposite contribu-
tions from k < 0 and k, > 0. However, threading the flux
builds up a nonvanishing kmomentum, since planes with
opposite kK momentum have opposite Chern number. The
total momentum (spatiaintegral of momentum density)

We also note that both of these currents can be anomalogéiven to the flux line by the Hall effect at each k,

when subjected to certain gauge field configurations:
0,0 ¥ va - — emeaq o0 oA 386D
ue a4 Teo aptu= CpMas

0¥ Yo = g €7 g0, 100 887

Now let us consider severalifferentphenomena asso-
ciated to these response equations in the context of a latt|Ce

model introduced in Ref[17]:

HOkP 74 sin ksin k™ b sin k'Y

p 72m p tdcos, i cos k, p cos kPI*:  688P

momentum is

z
L K2L
AP, - 2o T cokpk v 2 %

b
21 o @, 089

where the Chern number CgR is the piecewise-constant
function across the kBZ described above and g4 h=e

is the quantum of magneticflux. Using the fact that
w /4 2K? and dividing by the volume, we find the
momentum density

eQyy
817

J O 390p
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This is the same result coming from the first term in
Eq. (84) when ¢ V4 1.

Next, let us calculate the charge response to inserting
dislocations.Considera screw dislocation with Burgers
vector componentb* associated to a translation gauge
field configuration B = 0 € — 0,€; V4 b*d0yPd0zF.rom
Egs. (84) and (85),we see thatboth the momentum and

which matches Eq. (84) and our numerical calculations in
Figs. 10(c) and 10(d). For the numerics, we insert a pair of
screw dislocations with Burgers vectors‘'tisa a , in the
presence of a constant background gauge potentidh&
resulting k. momentum density of the ground state as a
function of the y and z lattice coordinates is shown in

Fig. 10(c). Furthermore, the dependence of this momentum

charge currents have responses to dislocations, and we fitetisity on Areproduces the expected response coefficient,
calculate the charge response. Heuristically, the dislocatias shown in Fig.10(d).
is like a U(1) gauge flux that couples to momentum instead

of electric charge, so the dislocation couples,tm&men-
tum because ithas a nonvanishing h Hence,each kk,
plane having a nonvanishing Chern number(and non-
vanishing k,) generatesa Hall response,but with a
magnitude proportional to itg kharge. Indeed, each plane
sees an effective flux OOk Y4 dkb*=2PP. Hence,the
total charge bound to the dislocation is

el z
21

KDy
21

_eb,Q,y
817

T
dk, 391p

=TT

AQ 4 Cok b 7 Ly:

This matches Eq. (85), again after settiffg/e 1 (see also
Refs.[17,18,24]).
Now we consider the momentum response to a dis-

2. Response of a deformed interface

Next, let us consider an interface between an unde-
formed geometry and a geometry having a nonvanishing
background ¢ and € as shown in Fig. 11(b). To be
explicit, let the interface between the two geometries
occur as a function of z atz % 0. On the surface of the
undeformed systemwe numerically calculate the char-
acteristic (rank-2) Fermi arc structure as shown in the left
surface-BZ panel in Fig. 11(a). For our deformed geom-
etry, we show the modified bulk Weyl-node quadrupole
and Fermi arcs whenjgV g * 0 in the right surface-BZ
panelin Fig. 11(a).

From these figureswe see that the Weyl-node quadru-

RPp . . ‘e
location, i.e., a momentum density bound to the dislocatid¥fle moment (§b on the deformed side is modified from

when A, is nonvanishing [this comesfrom the second
term in Eq. (84)]. First, we can compute the amounbf
momentum bound to a dislocation whep’A 0 by adding
the contributions of each Chern plane:
4

L, 7, kb
1/ =X X MX
g 21 _ndkx 21

Z
L K

Y4 0:

AP, Cok biik,
z

Ya

0
dk, k2
0 K

092p

We note that this calculation is similar to E¢91) except
with an additionalfactor of the “momentum charge” ik
in the integrand. Now if we turn on an A , such that
k, - k4 b 6e=hPA, we can repeat the calculation to find

_ L.b.i < K-deA=nb ~eAc=h
APy, %23 K2 - dk k2
—eA = -K-3eA,=/b
el b,2K?
Va _—X41)'(F A
The final resultyields
JO% - eaxT?zAx B 93P

the quadrupole momenthl';'D on the undeformed side.
Explicitly, we can compute

aLk

QR 38BQ2"h 2626/Q%Pp 3e/BQSLR
QY4 &QSTb eXeg/Q)y"b 0e) b ek PGy

QXY 06BQ%"b 2626/ Qyy b 08BQY" 394p

i.e., Q?Rp% angtqu. For our model and geometry, we can
make the simplifications g% 1 % &, & % &, Q%" % 0,
and G4 2K2 % —QS&D. Substituting these relations into

Eq. (94) yields

QSRPY —QSRPY 2K2 141 - P 395p

and Q??p% 0. Alternatively,we can see this resultfrom
the locations of the deformed Weyl nodes which sit at
OK; Ke; OB, 6-K; —Kej; OB, 0Kd; K; 0P, and 6-Kg;
-K; Ob. (where the subscripts encode the chirality for
our choice of model parameters).

Since the Weyl-node quadrupole moments on the two
sides of the interface are different, we expect gluing the two
sides together to leave behind a signature at the interface.
Indeed, from the middle surface-BZ panel in Fig. 11(a), we
see gapless Fermarcs that remain at the interface and
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Azlh/eag]

FIG. 10. (a) The bulk spectrum of a Weyl semimetal with two nodes of one chirality on thaexis and two nodes of the opposite

chirality on the k axis. (b) The spectrum of the same Weyl semimetal with periodic boundary conditions and two screw dislocations
with opposite Burgers vectors threaded along the x direction. Red and blue coloration indicates on which dislocation the chiral modes
are localized. Each dislocation has a no net chirality, and the Weyl nodes on, tagiskdo not form chiral modegc) The spatially

resolved k momentum density response of a Weyl-node quadrupole semimetal to a pair of screw dislocations with opposite Burgers
vectors h Y% a , located at 8y; zb % 742680 10Pa, with the background gauge field A 2.5 x 10%4=ea, and Q, ¥ TP=624b.

(d) Numerically calculated dependence of thertomentum density localized on a screw dislocation with Burgers vegtigr bas a

function of the background gauge field,Ausing the same modeds in (c).

stretch between the unmodified and modified projected current that are linear in the deformations 8fagise from
locations of the bulk Weyl nodes. From Egs. (84) and (85)he Fermiarcs stretching between 6K; 0b - 6K;Jkeand

we see there should be responses 0-K; OP - 0-K; -K¢gp. Each of these arcs has a fixed
. e v e value k, 2 K, and each arc has an opposite Fermi
I3V 5 Quholegs Iy - mnyAoﬁzQ\éi velocity. Hence,
0., € _ 180 o . Ke K
10 % 55 0Qu€0,8) ~ Q0,8 Y5 0.8 J 3 Y KV £BK; KpBn b 76-KPVe6-K; kybén%
where in the last equality we substitute in the relations that eQSkbd}Ao

are specific to our model and interface geometry, which we % = sgndyb;
state above. 4
We confirm the momentum and charge responses
numerically, in particular, the J ¥ responseshown in
Fig. 11(c), and we also provide microscopic analytic :
arguments hereThe momentum currents both follow the Kx 74 pK arc, and the undeformed3d ¥ 2K2. This result
same logicso let us consider only & for now. From the matchesthe prediction from the responsetheory and
center surface-BZ panelin Fig. 11(a), we see remnant Matches the numerical results in Fid1(c).
Fermi arcs. If we increase A, each linearly dispersing The calculation of the charge densitptjthe interface is
point on the Fermi arc has an excess chargedensity ~ simpler,since itcomes from the bulk response to a trans-
dndkb Y4 VaeA2Thjve Okbj, where ve8kb is the Fermi  lation magnetic field. At the interface, there is a nonvanish-
velocity at the Fermiarc located atk in the surface BZ.  ing B} % —6,€ and B} % &,€}. Since the kk, planes and
Hence, the contribution to the k, momentum currenbof  k.k, planes have nonvanishing Chern numbers, they yield a
such a point on the Fermi arc idkp V4 ik ve kPOndkb. density response similar to what we find on the dislocation
For our modeland geometrythe contributions to the & line in Eq. (91). Eachy ktate sees an effective magnetic flux

where Kg=21r counts the density of states on the Fermi arc
in the k, direction,sgndy P is sign of the velocity on the
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(@) / / / where the leading factors of 2 in the first line accouforr
% identical contributions from the intervaEk/s-K; 0, and in
ke o,' the last equation we use Q, 74 —Q,, and L,b* 7 L, bY
) A/T o479 % % °--¥§I~__O since & % €. This final result matches E¢85).
y
o 0 V. CONCLUSION

, </ — In this article, we have presented a framework of explicit
- connections between a wide-ranging family of topological
b N response theories from 0D to 3DUsing this framework,
£ we have shown how the coefficients forthese response
theories, most of which are well known in insulators, can be
obtained for topological semimetals. This has allowed us to
provide careful derivations and characterizations of mixed
crystalline-electromagnetic responses of semimetallic and
insulating systems in various spatiaimensions Finally,
bx( we have provided an extensive seff microscopic lattice
Al calculations and numerical confirmations affirming that our
y z predicted field theory responses do indeed arise in tight
binding lattice models. With the advent of topological
(c) — quantum chemistry [102-107],thousandsof crystalline
37 _-® topological insulators and semimetals have been identified,
e but many open questions persist about how to probe their
2 IR topological featuresThis work provides insight into how
. the topology in some of these materials may be probed
Pie and characterized, i.e., by combining geometric and strain
e distortions and electromagnetic responses.
e There is a growing body of work studying the mixed
crystalline-electromagnetic responses of Weghmimetals
0 1 o) with dipole and quadrupole arrangementsof nodes
A() [12,13,15-21,23,24,72,88-92,94-97that indicate a
broad interest in these topicQur work serves two major
FIG. 11. (a) The three panels show numerically calculated  purposes in the contextf this previous literature{i) We
Fgrmi arcs in (left) the surface BZ of the undeformgd geometryidentified several aspects of mixed crystalline-
(right) the surface BZ of the deformed geometry withand &  g|ectromagnetic responses that have not yet been addressed
are nonvanishingand (center) the BZ of the interface formed in earlier work, and (i) we synthesized aspectsf the

gluing the deformed and undeformed geometries togetHeee T s o
the caption in Fig. 8 for comments about the color guides on tthIStmg literature to present a unified description of these

open circles representing the surface BZ projections of the bull{esF)onSesm terms  of the_ momentum-spacenulltipole
Weyl nodes. (b) lllustrations of (left) undeformed and (righty moments of the nodatonfigurations and to provide new

deformed geometries. (c) The numerically calculated momentuffituition in previously studied responses. While prior
current localized at interface between deformed and undeformédork has examined the mixed crystalline-electromagnetic
geometries as a function of the chemicabtential shiftA,. response of two-dimensional Dirac-node dipole semimetals
[34,64], we have advanced this understanding by identify-
dok b Y4 -8kb*=2mb@, and similaﬂy for each k, state ing a Wilson loop correction the response coefficient that
Dok b % dfpY=2mb@, where b % dy€lj,5o and bY % raises a subtle question about the connection between the

dxdlj,. are the Burgers vectors obtained when integratlﬂé?rge polarization and the mixed-crystalline-electromag-

. S o . ic response Additionally, the Dirac-node quadrupole
across the entire periodic y and x directionsgspectively. ; . . :
Hencethe total charge at the interface is semimetal has not been previously discusseaking our

work the first study of its properties and mixed crystalline-
26l - K k. b~ 2eLyZ K k,bY electromagnetic responseBurthermore,our model of a
X X

LU ) A} _ P Y- Y Y T

AAVLV VLT

AQ Vi - or dkxﬁ “orr Y o nodal line quadrupole semimetaland its corresponding
e 0 0 response theory are new to the literature as well.
Ya —50-Qub*L, b Q,bYL P The results of this work point in many possible directions
81° for future work. First, finding experimentalrealizations
Vi - Qb Ly . of the proposed topologicalresponsesn solid state or

4’ metamaterial systems is an exciting prospect. Rank-2 chiral
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fermions, which have an anomaly compensated by the No. NSF PHY-1748958 to the Kavli Institute for
bulk response of a Weyl quadrupole semimetal [17], werelheoreticalPhysics.F. J. B.is supported by NSF DMR-
realized in a recent experimenton non-Hermitian topo- 2313858. T. L. H. and M. R. H. thank ARO MURI
electric circuit metamaterials [39].In that platform, the = W911NF2020166 for support.

mixed crystalline-electromagneticesponsegeneratesa

momentum-resolved non-Hermitian skin effedhat was APPENDIX A: TRANSLATION GAUGE FIELDS
observed in the experiment.Topoelectric circuits,along DERIVED FROM THE TELEPARALLEL
with other metamaterialsand solid state platforms, are PRESCRIPTION

promising arenas in which the many mixed crystalline-
electromagnetic responses we discuss in this paper could b this appendix,we provide a derivation of the trans-
realized.Some of us are also working on extending the lation gauge field e} and its coupling prescription that
nodal, higher-multipole responses to interacting systems follow directly from gauging the translationalsymmetry
and nonequilibrium systems wheré the latter,one can ~ group, which can be done in a similar fashion to gauging
have mixed energy-momentum multipole moments. the ordinary electromagnetic U(1) symmetrfonsider a
Studying the leading nodaldipole moments has already translation transformation
led to a rich set of phenomenaand the higher moments
provide a large hierarchy of phenomenathat can be rM—>rtpa¥; 0A1P
explored in current experiments. .

Other extensions of this work include the considerationwhich is generatedby correspondingoperatorsP, Va
of additional crystalline gauge fields as was done in, e.g.,—i%0 ,. Under such an infinitesimalranslation,the wave
Refs. [18_,48—51 ,108]. Two importa_mt classes of crystallingunction changes by dy Y ia “dsp=h|3L|J. Promoting the
symmetries that have not yet received such a treatment atgnsformation to a local one, a* — aérb,we find that
nonsymmorphic and orientation nonpreserving crystallinee derivative of y does not transform covariantly anymore:
symmetriespoth of which can protectexotic topological

semimetals [41,109]. It is conceivable that gauge fields for h33A Wb Vi iddrbad Wb b P,wa,a"érb:  3A2P
these two classes ofcrystalline symmetries can be con- ! !

structed and used to probe the quasitopological responseg/e can compensate the second term by introducing an
of semimetals protected by these symmetries. We leave @éﬁjitionalgauge potentiaB!! that obeys the gauge trans-

avenue to future work. _ . formation rules BY - BY - 6,a"drb. This allows us to
Itis also quite interesting to consider responses arisingyafine a covariant derivative:

from internal symmetries such as spacetime inversion and

chiral symmetry, which protect many unconventional D.w Y iBY&P =hbuw: 8A3b
topologicalsemimetals [42-47,110]Spacetime inversion WA AW b IBY, W

is antiunitary,so it is unclearif agauge fieldcanbe  Now it s straightforward to check that the covariant
constructed for it, though it is likely that systems protecteqqrivative transforms as expected:

by this symmetry would be sensitive to defects of the

unitary inversion part of the symmetry and, of course, to the 1KSEDL.WP i iddt: xPDEP.w b 8A4D
defects of translation symmetrZhiral symmetry is com- Db 7  XPRP, P

monly associated with a sublattice degree of freedom in \ya can reexpress the partialerivative in Eq. (A3) as a
the UV, while in the IR it can often be connected to a momentum operator to write down:

configuration of valleys (or nodal regions). In these

scenarios, one can imagine defects of the chiral symmetry D % idP =k 8A5b
arising from a valley-resolved gauge field,strain, or an Y e

intrasite field that couples differently to different sublatti- | 1 ore 4 & p B! is a translation gauge field that inherits
ces. Calculations involving these gauge fields may vyield its gauge transformations from the gauge potentidt B
physically meaningful results; however, chiral symmetry is

at bestapproximate in nonsuperconducting systerasd, S el - o a'erb: S8A6b
hence,observables tied to these calculations are likely to & ey = 0yatorb:

have significantquantitative differences ifconsidered in

experiment. APPENDIX B: GRADIENT EXPANSION

ACKNOWLEDGMENTS In th|§ appendix,we do a qwcl.( review of_the gradient

expansion procedureAs we are interested in responses

We thank Lei Gioia and Barry Bradlyn for helpful  involving both electromagneticand translation gauge
conversationsT. L. H. acknowledgessupport by Grant  fields, we need to consider how the electron wave vector
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gets shifted in the presence of spatially varying gauge fields of the lastequation contains ordinary products of G
A,0rP and gérb Va §b Bﬁérb (see Appendix A): and % that are subsequently integrated over the phase space.
For example,in d spacetime dimensionsye get for the

e Y TroGZb term in the Oth order of the Moyal product
k, > kyp %Auérb b kB)orp: oB1b expansion
F I field btai imple f f th z d’k oG;"
or small gauge fields, we can obtain a simple form of the d A 0 .
resulting single-particle Green’sfunctions performing a d°r 321h A P kB tr GO ; OB7P

) ok,
Taylor expansion:

where “tr” denotes the ordinary trace over orbital and spin

degrees of freedom.
GyOkb' -G Lok Y4 g; K,b gApérbpkABﬁérb g

e, 3G N APPENDIX C: ELECTRIC POLARIZATION
=Go OkPy AOIP PrABOES, ~OkP P AS A BERRY CURVATURE DIPOLE

] Go Let us consider the expression for the polarization of a
=G OkPp A WOrbbkyeidrP—k, —>-8kPp:  op system with a single filled band:

Z
oB2b eQ e
PL 1 [ 2khuyj [ iP; 1b
Aéz E)I BZd WOk, Ui = 3om I%,l oC
We then follow the standard procedureto derive the
effective action: where Q is the area of the unitcell. We rewrite the last
integral denoted asP as a first moment of the Berry
i 1 curvature, P %4 ihg. uyjoy Ui — ihdy uyjo, uii. Consider
I—S%Iog@ % log DetGA? e 4 t'tx .kJ k, Uk k, Ukl Ok, Uk
2 Zo DetG; e following quantity:
z
= Trlog 8l p GZb; oB3p
¥ @ FYa-i d?kk,F Y
where z * Z
Ya d2kkxha<xukj6k Uki - dzkkxh(?( Ukjakxuki;
G BZ Y BZ y
> —A orb p kehorp - k ° ékb b : 06B4b oC2b
) ) where we assume PV to be smooth and integrable in
Expanding the trace of logarithmwe get the Brillouin zone spanning k, € ¥2—Tr=g T=gP and
) k, € 2—11=g Tr=gb.Clearly, the integrand jumps in value
's=Tr log 81 p GZP at the k 7 =g boundary of the Brillouin zone, and so we
h treat the k, direction as open.Integrating by parts with
~ Tr6Gyzb _% TraGEGozh respect toIK we find
4T
b %TréQ)ZGOZGOZb - oBsp F Y -i— dkAYOk % T=g; kP
X
The rhs of this equation is a sum of integrals over the entire = ___ dzkéhlﬂjakyuki = hg udu,ib
phase spacend the products under function&taces are VA z
convolutions. Therefore, we need to use the Moyal product - dzkathjakxakyuki b d2kkxha(x6kyukjuki;
formula, expanding each g term as BZ BZ
oC3p
[
Gox2 =Go2 p QfG 029p 0B6P  \vhere AMBKP %4 iy, Ui is the Berry connection. The

first term is proportional to a Wilson loop Y8k, ¥4 =g b
where « is the Moyal productoperator and f-; -g are the along the k, ¥4 m=g line. It is easy to recognize that
Poisson brackets for théand k variables [111-113]. The the second term is twice the integral of interest-2P.
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Integrating the third and fourth terms by parts with respect. ,, i 2LL2E Xy
to k,, we find Fri-s , dKhF i
1 1
Z Yoz d%KKZhQ Ujd Ui — 5 d?kkZha Uyjdy U
2 gz Y 2 g7 Y

- d2kkxéhuj6kx6kyuki - h@kxﬁkyukjukib
57 sD2p
Ya  d?kkOhQ Uyjdy Uk = i Ujoy ugiP
B XK oIl Tk where we once again assumeF ¥ to be smooth and
integrable in the Brillouin zone spanned by k, e

1/ —i 2 1/ _F-
A dKkF YO -F 6c4ab Ve—T1=g T=gP and k, € Y2-1=g m=gb. Treating the k,
direction of the BZ as open, we integrate by parts with
Summing up,we find respect to k to find
Fl—i4TWy-2P-F z
ax FYa- d2ka6hq4jakyuki = héy ugjuiib
v 1%2
PYa-F—i ?VVV; - = d%kk2huoy Ok Uy
X 2 fz X y
1
and the polarization istherefore given by b > dzkkiha(xakyukjuki: oD3pb
BZ
eQ z
P Ve - d?kkF % Note the absence of the Wilson loop contribution we find in
6211"&’ BZ

the previous sectionwhich is a result of the symmetric
b et dk, A8k, V4 T=g; k/b: aCs5p  nature of the functionZk We see again that the first term is
2m twice the integral of interest —2Q. Integrating the third and
fourth terms by parts with respect to k we find
Performing a similar calculation fo§,Rve find the general
formula z
7 d2kk)2<6hl|{j6kxakyuki - h@kxﬁkyukjukib
) . 57
el d?kk F b ea;W": oC6b 1 _ . . .
b Yoo d2kk28h@ U.jox Ukl — hdy Uyjoy uyib
2 5 L7 o
In the case when the system has inversion symmethg Y — ! d2kK2F Y% 4 ! d2kk2F %Y 1 —F: a8D4b
Wilson loop taken along a high-symmetry line satisfies 2 2
Widk Y m=ab % -Wok % m=ab and Wk % 0b %
—W‘élg Y 0b for i + j, and we find that the nonquantized Summing up,we find
part of the polarization is accounted forentirely by the

NI —

' e
PI 1
0 % 21

Berry curvature’s dipole moment. F1%-2Q-F
Y oD5b
APPENDIX D: MOMENTUM POLARIZATION AS Q% -F;

A BERRY CURVATURE QUADRUPOLE

Let us considerthe following expression for the k, ~ and we find the polarization to be
momentum polarization in thg direction of a 2D system

. ) . z
with a single filled band:
g Pl Y _ 9 d?kk2F *v: oD6b
Z o x 8Tl2 BZ
P! Y i d?kkhyjoy Ui = ——iQ; 6D1P
o2 g Y 62mpb Performing a similar calculation fof Rwe find the general

o ) relation
which is just a natural extension of the analogous expres-
sion for the charge polarization. We can rewrite the integral z
denoted as Q as a second moment of the Berry curvature, Pﬁy Va ar? dzkng Xy oD7p

BZ

as we now showConsider the following quantity:
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APPENDIX E: RESPONSES FOR 1D SYSTEMS

We now want to considera family of anomalous

In this appendixwe discuss responses of isolated one-€Sponses to various gauge fields in 1D metald/e have
dimensional metals having a fixed number of electrons Nalready considered some of these anomalies in 38,
For the cases we consider, the Fermi surface consists of @3d We go into more detail in this appendix. To proceed, we
even integer number Nof Fermi points having chiralities introduce a family of gauge fields efes®; &P, ... Each
Xa V4 sgnw, where y is the Fermi velocity of the ath Fermi ©f thesefields couplesto charges that are powers of

point. From the fermioB doubling theorem [114], the tota

chirality vanishes:x 7 2121 Xa /4 0. We wish to define

three more quantities besides x that characterize 1D met

Py  ¥ak&® OE1P
VA
X

Qu %  X0K%8; dE2b
EVAL
X

Opx % ¥aOKZB: 3E3P

avl

These three quantities representthe momentum space
dipole, quadrupole,and octupole moments of the Fermi
points, respectively [see Figs.3(a)-3(c)]. We could go
beyond the octupole moment to any higher momertiyt
for brevity we stop at this order. Importantly, these
momentum moments are related to the ground state
properties of the metal.The total charge is proportional
to the dipole moment:

eL

1
QAZTT

Py; OE4P

the total momentum hafd is proportional to the quadru-
pole moment:

1AL

Pu ¥ 55 Qu SE5P

the total momentum squared hd%4ki is proportional to
the octupole moment:

1h2L
o 74 32w OE6

| momentum.The field e we identify with the family of

electromagnetic gauge field one-forms de=#PA as it couples

gl)szero powers of momentum. The fiéldsehe translation

gauge field we have extensively discussedd it couples
linearly to momentum k,. In general, the fields e®fv--¢
couple to the momentum chargeskykgk,...k;. Since
we consider momentum-space moments only up to the
octupole momentO,,,, we consider gauge fields only
up to e,

Using these gauge fields, we can consider the following
set of actions:

z

S, %% d2rAA; 3E7P
. Z
Sp Y dUPOFA - AP 3E8D
0t 1
So Vg drQu Heie b eOdA - 8¥AP; BEOP
n2% 1
SoYhn- 070, Z046 - &P b QA 6 AP

0E10P

These actions capture two important phenomena associated
to each of the momentum moments: (i) the connection to
the associated ground state quantitg., Q, Py, and Py,

and (ii) the shift in Q, P, Py, and P, when an electric

field is turned on. As a first example let us consider $.

We can calculate the electromagnetic charge density and
current to find p ¥ 6&=hPA and j* ¥ d&x=hPA. If we

use these results to calculate the conservation law, we find

v % SXe,

which is just the usual U(1) anomaly of a chiral fermion.

and so on for higher moments. From this, we see that eagthe fact that x % 0 for any lattice model has two immediate

of higher and higher powers of momentum,starting at
zeroth order where the charge is proportional to the
momentum dipole. There are two important caveats to
note: (i) In order for the nth moment and its associated
physical quantity to be independenbf the origin of the

for lattice systems, and (ii) the momentum dipole moment
P, is well defined and independentof the choice of
momentum space originJustas for conventionaklectric
or magnetic multipole moments, in order for the nth
moment to be well defined, all of the lower moments must

BZ, all lower moments must vanish, and (i) these results yanish. As such, the action Sy is well defined only if

. dab
hold only up to constants independentf the set of k 2o

which result from contributions from filled bands.

X va Py V4 0. Similarly, for $ to be well defined, we must
have x 4 B, V4 Qu v 0.
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Now let us considereach of the remaining actions
in turn. We begin with Sp. As mentioned in Sec.lll B,

Unlike the previous case, when we turn on a nonvanishing
A, the dipole P, does not change.Hence,we find the

P, is related [34] to the charge density of a 1D metal via @homalous conservation law

p Va —0e=2TPE and the momentum density via
J 9 v de=2mPRA,. Assuming that our system is trans-

lation invariant, let us consider stretching our system via a

time-dependeng&. During this processthe total number
of electronscannot change. Working from the charge
density,we find

e

6p Y = 5 GOPEP: 3E11P

Naively, we are just changinfy Bowever, if we stretch the

system at fixed particle number, the Fermi momenta cha

inversely. Indeed, we havg’q V2 —6P,=€bge;. Inserting
this into Eq. (E11), we find

op Ve —2% —e§:€ate§ bP.a& %0  OE12b
Using this equationwe find
Z Z

dt dxap %0

AQ Y4 0E13P

as we expect for a fixed number of electrons.

eP
oyd A 21: E,: O0E17P

Moving on, let us discuss the actiog.S o have a well-
defined quadrupole momer®,,, we need P, ¥4 0. This
scenario can happen nontrivially in systemswith more
than one occupied band near the Fermi level, as shown in
Fig. 3(b). As long as any perturbations we apply keep x and
P, fixed to zero, then the phenomena associated tar@
physically meaningful.From this action, we can derive
three separate conservation laws:

nge
0 Vi~ 0,0Q,EXP: SE18b
21
ad 0 % a6q, e BE19P
41
e
0 9 Y = - B08QAP; BE20b

where the quantitieg,Pand B in Eqs.4ES5) and (E6) are
determined by P dxJ $and By, % dxJ %. The first
and third equations generate a kind of mixed anomaly,
so let us discuss those first.For fixed electron number,

To be self-contained, let us reiterate our argument fronve know that dip must vanish, which implies that
the main text. At a fixed particle number, we know the tot8lQu ¥4 ~0Qu=€"Pgg*. Thus, the first equation is simply
charge cannot change. Intuitively, we might expect that tHeP 74 0. For the third equation since changing 4 while
density should decrease if we stretch the system. Howev&€eping X 74 B 7 0 does not change Q, we have
the quantity p above, which is defined as 8Sz88 not a
scalardensity. For generalgeometriesthe scalarcharge 0l S V4 eQu E,:

0E21b
density would be defined as 2m

This implies that if we insert flux into the system, then the
momentum quadrupole moment changes; iteg expect-

ation value of the momentum squared in the resulting
excited state changes while the total charge and momentum
remain fixed.

Returning to the middle equation, we consider the change
in momentum as we stretch the system. Crucially, we use the
relationship 6,Q,x 2 —20Q,=€bge} (heuristically, this
comes from the factthat quadratic powers of momentum
Indeed, the scalar charge dengitsiecreases as the systemare proportional to#). Inserting this in Eq. (E19), we find
is stretched,since 6,p = 8;P,, which decreasesas the
system size increases fiked electron number. 0.d 01 - &a &p

Next, we can see thatanotherconsequence oé non- X 2m
vanishing P, is a mixed crystalline-electromagnetic
anomaly.To illustrate this, let us consider the change in
momentum density in an applied electric field generated
a change in A. We find

57,158,

; 3E14p
& 6hy

To calculate the total chargeye would then use

4 Z

Q% dxe&p¥% dxp: dE15b

hQ
41T

hQux - .
417 A&

Gtef(%—

We can interpret the first contribution in the middle section
l%; the above equation as coming from the changein

the Fermi points Eipinduced by changingjie The second
contribution arises from the existence o& nonvanishing
ground state momentum density when the length athe
system is changed\ote that,while the coefficientof the

e

6§ Yho

8P AP 3E16b
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final result is the same magnitude as Eq. (E19), the sign imoments anomalously andhence,invalidate the higher
oppositeThe full conservation law becomes moments. We expect that under the assumptions of vanish-
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h . .
N U 4QT>;X Ex: SE22b the physical responses described above.
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