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Real-world work environments require operators to perform multiple tasks with continual support 
from an automated system. Eye movement is often used as a surrogate measure of operator attention, 
yet conventional summary measures such as percent dwell time do not capture dynamic transitions 
of attention in complex visual workspace. This study analyzed eye movement data collected in a 
controlled a MATB-II task environment using gaze transition entropy analysis. In the study, human 
subjects performed a compensatory tracking task, a system monitoring task, and a communication 
task concurrently. The results indicate that both gaze transition entropy and stationary gaze entropy, 
measures of randomness in eye movements, decrease when the compensatory tracking task required 
more continuous monitoring. The findings imply that gaze transition entropy reflects attention 
allocation of operators performing dynamic operational tasks consistently.

Modern professional environments require visual multi-tasking to support complex human-machine 
interaction in aviation1, driving2,3, healthcare4, military5, and nuclear plant operation6. For example, an operator 
of unmanned aerial vehicle is required to monitor the state of the aircraft while tracking the trajectory of other 
aircrafts in airspace7. In such operational environment, operators are required to perform multiple tasks in 
which operators are supported by automated technology, ever increasing complexity and dynamism of the work 
environment and requiring successful human-automation interaction. The literature indicates that humans can 
be conceptualized as resource-limited information processors8, imposing a tradeoff between task demand and 
performance limits. Multiple concurrent tasks thus complete for the limited attentional resources influencing 
different information-processing stages including sensory processing, perception, working/long-term memory, 
decision making, and action selection/implementation9, resulting in performance losses in human operators.

Previous research supports that eye movements can serve as a proxy to allocation of attentional resources 
in supervisory control tasks2,10. For example, experimental and computational modeling works show that the 
probability that an operator fixates a particular area of interest (AOI) varies as a function of factors that are 
known to drive attention such as saliency11 and expectancy and value12–14 (see Wickens et al.15 for a fuller 
description of the SEEV model). The primary measure of visual attention in these studies is percent dwell time 
(PDT) which refers to the sum of the time that the gaze coordinates fall within an AOI, providing a global 
numerosity measure of eye movement16.

Recent works characterized operator’s attention allocation strategies when performing multiple tasks17,18. 
For example, Sato et al.18 examined whether interruption frequency impacted attention allocation in 
attention-demanding environment. Participants were asked to perform a MATB-II synthetic task comprising 
of a compensatory tracking task, a communication task, and a system monitoring task that was assisted by a 
70%-reliable automated aid. Task load was manipulated by the difficulty of the tracking task while interruption 
frequency was manipulated by the number of auditory commands in the communication task (4 vs. 16 
interruptions). Results indicated that participants attended less toward the system monitoring task under high 
multitasking demand. Additionally, participants attended the communication task more frequently when the 
communication task interrupted more frequently. These results indicated that task load and task interruption 
can account for a shift of attention. A caveat when interpreting these data, though, is that the previous studies 
mainly used PDT as a measure of attentional resources2,17–19, which only captures global gaze distribution 
without considering gaze shift between AOIs. One potential way to capture the nuanced nature of attention 
allocation in multitasking environment is to measure gaze transition entropy.
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Gaze transition entropy analysis
Gaze transition entropy is a measure of randomness in gaze transitions between AOIs indicating gaze dispersion 
and visual exploration within a given task. Gaze transition entropy has been found to have diverse applications 
across domains such as surgical procedures20, flight control21, and driving tasks22. For example, in aviation, 
decreased gaze entropy during solving in-flight emergencies reflects a more focused and consistent visual 
scanning among pilots21. Gaze entropy can be measured by SGE and GTE. SGE measures the uncertainty of 
fixation locations within a given viewing time, reflecting the overall spatial dispersion of gaze that results from 
a given level of scanning efficiency. GTE estimates uncertainty not only in total spatial dispersion but also in 
the sequential pattern of visual scanning capturing the dynamic allocation of attentional resources. GTE was 
designed to statistically compare fixation transitions between AOIs. Since SGE and GTE assess distinct aspects 
of visual scanning, concurrently evaluating both could offer a more comprehensive evaluation of gaze behavior 
and attention allocation23,24. Beyond more conventional eye movement measures, such as percent dwell time 
and areas of interest (AOIs), gaze entropy measures can quantify the spatial and temporal randomness of visual 
scanning. That is, the gaze entropy measures capture more information about the complexity and dynamic 
nature of gaze dispersion across the visual field than the other available measures, better suited for applied tasks 
that require scanning across multiple AOIs for a prolonged period of time. Following previous studies25,26, SGE 
and GTE can be respectively computed using Eqs. (1) and (2).

	
Hs(x) =−

n∑
i

Pi log2 Pi � (1)

	
Ht(x) =−

n∑
i

Pi

n∑
j

Pij log2 Pij � (2)

where pi is the observed (simple) probability of viewing the ith AOI, pij  is the conditional probability of 
transitioning from the ith to the jth AOI. Ht indicates the predictability of gaze transitions; a high Ht 
(∀ij|pij→0.5) implies low predictability, whereas a low Ht (∀ij|pij→{0, 1}) implies high predictability. See 27 for 
a good discussion on the Gaze Transtition Entropy and details of the calculations.

Previous work examined gaze entropy in an attention-demanding environment28. Ayala et al.28 examined the 
effect of task difficulty on gaze entropy in a simulated flight environment whereby the landing task involved 
a strong wind (i.e., difficult condition) or a weak wind (i.e., easy condition). Results showed that participants 
exhibited low GTE and SGE scores under the difficult condition, indicating that participants’ gaze behavior 
became less random and more predictable when the task demanded more sensorimotor control. Yet, none of the 
prior work examined whether task interruption influences gaze entropy in an attention-demanding environment.

Current study
The present paper applies gaze transition entropy analysis to an operator’s eye data to provide additional 
insights into the allocation of attentional resources in multitasking environments. Specifically, the present study 
reanalyzed Sato et al.’s18 eye movement data to explore how gaze transition entropy (GTE) and stationary gaze 
entropy (SGE) manifest in the attention-demanding environment. We hypothesized that participants would 
exhibit lower GTE and SGE scores when the central tracking task demanded more attention28 or when the 
frequency of the auditory interruption was higher.

Results
Data of one participant were excluded from Sato et al.’s18 study because the error rate in the system monitoring 
task was above the threshold (i.e., 50%).

Gaze entropy
The present study analyzed gaze transition entropy and stationary gaze entropy. Figure 1 presents gaze transition 
probability matrices between Difficulty conditions and between Communication Frequency conditions. Figure 
2 presents GTE between Difficulty and Communication Frequency conditions. Figure 3 presents SGE between 
Difficulty and Communication Frequency conditions.

Gaze transition probability
As shown in Fig. 1a, b, data presented decisive evidence that participants were more likely to transition their 
gaze away from the tracking task under the Easy condition than the Difficult condition [F(1, 37) = 67.72, BF10 
= 1.79× 107, η2G = 0.22]. Also, there was decisive evidence that participants were more likely to transition their 
gaze from the system monitoring task to the communication task under the Easy condition than the Difficult 
condition [F(1, 37) = 20.82, BF10 = 665.12, η2G = 0.13]. However, the likelihood that participants transitioned 
their gaze away from the system monitoring task did not substantially differ between Difficulty conditions [F(1, 
37) = 0.04, BF10 = 1/4.13, η2G < 0.01]. Additionally, gaze transition probability from the communication task 
to the tracking task did not substantially differ between Easy condition and Difficult condition [F(1, 37) = 0.01, 
BF10 = 1/4.39, η2G < 0.01]. In Fig. 1c, d, there was substantial evidence that participants were more likely to 
transition their gaze away from the communication task under the High communication frequency condition 
than the Low communication frequency condition [F(1, 37) = 9.13, BF10 = 5.96, η2G = 0.12]. For the remaining 
cell values, there were no evidence on whether gaze transition probabilities differed between conditions of 
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Difficulty and Communication Frequency [1/2.63 < BF10 < 1.13]. Furthermore, there was no evidence for and 
against the interaction effect on all transition patterns [1/2.93 < BF10 < 1/1.56].

Gaze transition entropy
Data gave decisive evidence that participants exhibited greater GTE under the Easy condition than the Difficult 
condition [M = 0.23 vs. 0.19; F(1, 37) = 53.63, BF10 = 9.88× 105, η2G = 0.19]. Additionally, data indicate 

Fig. 2.  Gaze transition entropy between Difficulty (a) and Communication Frequency (b) conditions. Error 
bars represent 95% confidence intervals.

 

Fig. 1.  Gaze transition probability matrices reflecting the transition of each source AOI (1 = tracking task, 
2 = system monitoring task, 3 = communication task) to destination AOI (1= tracking task, 2 = system 
monitoring task, 3 = communication task). Values in matrices (a) and (b) indicate gaze transition probabilities 
in Difficult and Easy conditions, respectively. Values in matrices (c) and (d) indicate gaze transition 
probabilities in the High and Low Communication Load conditions, respectively.
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substantial evidence that GTE was higher in the High communication frequency condition compared to the 
Low communication frequency condition [M = 0.22 vs. 0.19; F(1, 37) = 9.08, BF10 = 8.64, η2G = 0.17]. However, 
results showed no substantial evidence for the two-way interaction effect between Difficulty and Communication 
Frequency on GTE [F(1, 37) = 3.36, BF10 = 1.04, η2G = 0.01].

Stationary gaze entropy
Data indicate decisive evidence that participants exhibited greater SGE under the Easy condition than the 
Difficult condition [M = 0.72 vs. 0.58; F(1, 37) = 73.94, BF10 = 2.79× 107, η2G = 0.21]. Data showed very strong 
evidence that participants exhibited higher SGE in the High communication frequency condition than those in 
the Low communication frequency condition [M = 0.72 vs. 0.58; F(1, 37) = 11.44, BF10 = 17.50, η2G = 0.21]. The 
interaction effect was not substantial [F(1, 37) = 3.19, BF10 = 0.97, η2G = 0.01].

Discussion
This study examined how task load and interruption frequency affected the allocation of attentional resources 
measured via novel numerosity measure of eye movements, GTE and SGE, in a multitasking environment. 
Previous experiments used PDT as a measure of attentional resources17,18,29, which may not necessarily 
capture dynamic transitions between AOIs in such a multitasking operational environment. For example, a 
simple analysis of PDT cannot diagnose whether operators’ eye movement patterns became more random or 
predictable in response to an elevated level of task load. As such, we applied gaze transition entropy analyses to 
Sato et al.’s18 data.

Corroborating with the original analysis of Sato et al.17, the results of SGE showed participants’ fixations 
during each experimental session were more concentrated and predictable under the Difficult than the Easy 
condition. This further lends support to the conclusion of Sato et al.18 that operators attended behaviors of the 
automation more systematically while mostly focusing on the tracking task with greater difficulty. Moreover, 
GTE analysis showed their eye movements transitioned across AOIs more predictably in the Difficult condition 
where the tracking task required more frequent manual correction than in the Easy condition. These data 
imply that operators change their scanning strategies by restricting both spatial dispersion and dynamic shift of 
attention when their task load increases.

More interestingly, the analyses revealed that participants’ eye movements became more random in the High 
than Low communication frequency condition. More specifically, SGE was greater when participants were asked 
to respond to 16 interruptions than 4 interruptions while performing the other two concurrent tasks, suggesting 
more spatial dispersion of fixations in the High communication frequency condition. There are at least two 
possible accounts. First, participants showed greater entropy because they made fixations more frequently to 
the display for the communication task in response to the interruptions in the High than Low communication 
frequency condition. That is, SGE might have increased simply because participants reactively moved their eyes 
to perform the required task when needed. Second, participants’ SGE increased because participants proactively 
scanned the display for the communication task in anticipation of the possible onset of auditory stimuli for the 
communication task. It is unlikely that only 12 communication trials of 30 seconds each will substantially affect 
a more global measure of spatial dispersion of fixations over an experimental trial of 20 minutes. Instead, it is 
likely that participants adopted a strategy to broadly scan the three tasks with some emphasis to the display for 
the communication task when they experienced the communication task interrupted them frequently. Partly 
supporting this view, GTE was also greater in the high than low interruption frequency condition. This reflects 
that participants’ eyes transitioned between AOIs in a less predictable manner. If the first account above is 
correct, then we should observe GTE lower in the high than low interruption frequency condition, because the 
shift of fixations to the communication task in response to the auditory stimuli is highly predictable and less 
frequent. Instead, the current data accords with a view that participants checked the communication task more 
frequently when more interruptions occurred.

Fig. 3.  Stationary gaze entropy between Difficulty (a) and Communication Frequency (b) conditions. Error 
bars represent 95% confidence intervals.
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Why did the communication frequency manipulation increase gaze entropy while the task load manipulation 
decreased it? A possible account is that the communication task required task switching while the tracking task 
did not. Because the communication task arose in a more discrete manner, their attention is likely to temporarily 
shift to the communication task when the auditory stimuli were presented while suspending an ongoing task 
(the tracking or system monitoring task). According to the Strategic Task Overload Model (STOM)30, the 
probability of a task being switched to is a function of four parameters. Priority is an overall importance of 
the task and is analogous to the value parameter in SEEV. Difficulty refers to the mental workload that the task 
imposes and is analogous to the effort parameter in SEEV. Salience is a relative perceptual distinctiveness that 
attracts one’s attention in a bottom-up manner and the same in SEEV. Finally, interest is the attractiveness of a 
task-irrelevant to the formal task requirement and is absent in SEEV. The current communication task received 
an equal priority compared to the other two tasks and the difficulty level is relatively higher because the task 
requires both visual and auditory modalities and careful interpretation of noisy auditory messages. The task is 
more salient because the auditory stimuli arrive unpredictably and occur less frequently than the other tracking 
and system monitoring tasks. It is likely that the communication task attracts their attention more heavily from 
the other two tasks, potentially changing overall task priority or interest parameters giving a lasting effect on 
overall visual scanning strategies.

Results highlight that gaze entropy analysis, using SGE and GTE, provides a new window into attentional 
resource allocation in a multitasking workspace. SGE and GTE provide summary statistics of spatial dispersion 
and predictability of attentional shifts across AOIs, providing a novel and useful measure of resource allocation. 
These calculation algorithms are grounded in Information Theory and are relatively easily implemented. In 
practice, automation designers may incorporate gaze entropy analysis to reveal the underlying attentional 
strategies of the users and infer their cognitive state based on eye movement patterns.

Methods
Sato et al.18 recruited forty undergraduate students (29 females and 11 males; M = 20.03 years, SD = 2.72 years) 
from the community of Old Dominion University, Virginia. Participants had normal or corrected-to-normal 
vision and normal color perception. Participants received course credit for participation.

We applied GTE and SGE analyses to the data of Sato and his colleagues18. In their task, participants were 
asked to perform three concurrent tasks in the Multi-Attribute Task Battery (MATB-II31)—the compensatory 
tracking task, system monitoring task, and communication task. In the tracking task, participants used a joystick 
to keep the moving circular target within the dotted square. The frequency of force function of the target’s 
random movement was manipulated to generate the high load condition (0.12 Hz) and the low load condition 
(0.06 Hz) similar to Karpinsky et al.’s29 study. In the system monitoring task, participants were asked to monitor 
four vertical gauges. Within each vertical gauge, the yellow pointer fluctuated between the center of the vertical 
gauge. When the pointer hits either the top or bottom extremity, representing system malfunction, participants 
were instructed to correct the yellow pointer by pressing one of the four keys (F1–F4) relative to the four vertical 
gauges. The system monitoring task was supported by an automated signaling system with 70% reliability. The 
signaling system issued a green light above the four vertical gauges when all the engines are in normal state 
and a red light when abnormal. When the signaling system issued a warning, participants were instructed 
to respond by turning off the red light (press F6) and turning on the green light (press F5). The reliability of 
the signaling system was controlled based on the correct response (Hit) and false alarm (FA) events. In a Hit 
event, the signaling system correctly detects system malfunction. In an FA event, the signaling system issues a 
warning even though there is no system malfunction. All blocks comprised of 28 Hit events and 12 FA events 
that occurred at random time intervals. In the communication task, participants used a mouse to change the 
frequency of a relevant radio according to an auditory message.

Sato et al.18 used a 2 × 2 design with Communication Frequency (High vs. Low) as a between-subject 
factor and Difficulty (Easy vs. Difficult) as a within-subject factor. Each participant completed two 20-minute 
experimental trials performing the tracking and system monitoring task while processing either 4 or 16 auditory 
messages in the low and high communication frequency conditions, respectively.

Eye movement data were reanalyzed to calculate GTE and SGE using Eye Tracking Metrics Calculator in 
Python32. GTE indicates the extent to which gaze transition is uncertain with a higher value indicating an 
unpredictable fixation pattern, while SGE indicates the extent to which gaze transitions are spatially distributed 
with a higher value indicating equal distribution of fixation across AOIs. Following Sato et al.18, the present 
study defined AOIs relative to the size of each task. AOIs are defined in Fig. 4. We employed default Bayesian 
analysis with Bayes factor as a measure of evidence33, denoted as BF10. Bayes factors were interpreted according 
to Jeffreys34.

All methods were carried out in accordance with relevant guidelines and regulations. All experimental 
protocols were approved by the College of Sciences Institutional Review Board at Old Dominion University, and 
informed consent was obtained from all participants.
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Data availability
The datasets used and/or analysed during the current study available from the corresponding author on reason
able request.
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