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Towards Enhancing Low Vision Usability of Data Charts
on Smartphones
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(a) Low-vision users can swipe up to
access the theme picker, offering
options to change contrast, data point
colors, and axis label font and size.

(b) They can invoke a customization
menu to selectively view data points, tap
"Next" for further choices, and finalize
with "Done."

(c) Using a slide gesture, users navigate their
selections; specific bars can be customized
with individualized color adjustments for
enhanced data interpretation.

Fig. 1: Use scenario for GraphLite: (a) selecting themes, (b) making data choices, and (c) personalizing data appearance.

Abstract—The importance of data charts is self-evident, given their ability to express complex data in a simple format that facilitates
quick and easy comparisons, analysis, and consumption. However, the inherent visual nature of the charts creates barriers for
people with visual impairments to reap the associated benefits to the same extent as their sighted peers. While extant research has
predominantly focused on understanding and addressing these barriers for blind screen reader users, the needs of low-vision screen
magnifier users have been largely overlooked. In an interview study, almost all low-vision participants stated that it was challenging
to interact with data charts on small screen devices such as smartphones and tablets, even though they could technically “see” the
chart content. They ascribed these challenges mainly to the magnification-induced loss of visual context that connected data points
with each other and also with chart annotations, e.g., axis values. In this paper, we present a method that addresses this problem by
automatically transforming charts that are typically non-interactive images into personalizable interactive charts which allow selective
viewing of desired data points and preserve visual context as much as possible under screen enlargement. We evaluated our method
in a usability study with 26 low-vision participants, who all performed a set of representative chart-related tasks under different study
conditions. In the study, we observed that our method significantly improved the usability of charts over both the status quo screen
magnifier and a state-of-the-art space compaction-based solution.

Index Terms—Low vision, Graph usability, Screen magnifier, Graph perception, Accessibility
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1 INTRODUCTION

Data charts have become commonplace online and in academic and
professional settings, given their ability to condense and express com-
plex data in a format that facilitates quick and easy comparisons, trend
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analysis, and consumption [30]. Popular data charts such as bar and
line graphs are used for visualizing stock values, census, product sales,
customer ratings, currency exchange rates, and hospitalization rates.
Given the widespread use of data charts, they must be usable for people
of all abilities, including those with visual impairments. However, data
charts are inherently visual; therefore, there is a need to adapt the charts
to make them usable for people with visual disabilities who rely on
assistive technologies such as screen readers (e.g., JAWS, NVDA) or
screen magnifiers (e.g., ZoomText, Apple Zoom).

While there exist a few works that have studied chart accessibility as
well as proposed solutions to address the chart usability problems for
blind screen reader users [42,53, 68, 81], the visualization needs of low
vision screen magnifier users concerning charts are still an uncharted
research territory. Low vision refers to impairments in one or both
eyes that cannot be rectified with glasses, contact lenses, medication, or
surgery. A salient aspect of low vision condition is poor visual acuity
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(less than 20/70), so people with low vision typically depend on a screen
magnifier to access content via enlargement [16,62]. However, content
enlargement comes with a price — low vision users can only view a
small portion of the chart content at any instant, as screen size is limited,
especially on smartphones. Low vision users have to, therefore, move
their magnifier lens over the content to view the occluded portions,
an activity referred to in the literature as panning. Thus, interaction
with enlarged charts or graphs can be discomforting for low vision
users on smartphones even though they can technically “see” the charts
since they often have to pan to-and-fro between different portions of
the enlarged charts to make data comparisons and comprehend overall
trends in data (e.g., see Figure 2).

To uncover and understand the chart usability issues of low-vision
smartphone users, we conducted an interview study with 14 low-vision
participants with different eye conditions. Despite the heterogeneity
of the participant pool, all participants stated that it was arduous and
tedious to interact with charts on smartphones, mainly due to two
reasons. First, the participants mentioned that they could not easily
associate axis labels with data points (e.g., ‘y’ coordinate value of a bar
in a bar chart). Second, the participants specified that it was mentally
taxing to compare data points, especially if these points were distant
from each other in the chart. A common aspect in both these reasons
specified by the participants was that they could not see the desired
information simultaneously (e.g., axis labels and a bar in a bar graph,
desired subset of data points in a bar graph). Therefore, they had to
memorize individual pieces of information as they moved the magnifier
lens to and fro over different portions of a chart.

To address these chart usability issues on smartphones, we present
GraphLite, a mobile assistive technology that enables low-vision users
to customize charts and seamlessly navigate through different ‘views’
of the chart, showcasing select data points within the magnifier window.
In essence, GraphLite allows screen-magnifier users to use selective
attention to visualize various relevant information in charts, e.g., selec-
tively view desired data points for quick comparison and trend analysis
across various portions of bar and line charts (see Figure 1), thereby
enabling users to perform quick-and-easy visual comparison between
desired data points mentally, and consequently reducing the significant
amount of panning and cognitive effort. Moreover, GraphLite employs
space compaction methods to further improve interaction usability by
decreasing horizontal panning and providing a simple one-finger tap
gesture-based interface to reduce the dependency on the default two or
three-finger zoom-and-pan gestures.

In a user study with 26 low vision participants, we observed that
GraphLite reduced the time to perform representative chart tasks com-
pared to the baseline methods — default screen magnifier and a state-
of-the-art method that converted charts to tables [13]. The subjective
feedback for GraphLite was also significantly more positive than the
baselines. All study participants stated that GraphLite significantly re-
duced their mental burden while interacting with data charts by enabling
them to view desired content within the viewport despite magnification.

In sum, our contributions are: (i) The findings of an interview study
uncovering the interaction challenges that low-vision users face while
interacting with data charts using screen magnifiers; (ii) An assistive
technology application that provides an alternative interactive mode
for charts, enabling users to customize chart data and selectively view
desired data points next to each other; and (iii) The findings of a
user study with 26 low-vision participants evaluating the efficacy of
GraphLite against state-of-the-art solutions.

2 RELATED WORK
2.1 Low Vision Interaction with Smartphones

Extant research concerning smartphone interaction needs and behavior
of people with visual disabilities has predominantly focused on screen
reader users [32,38]. In contrast, prior research on the needs of low
vision screen magnifier users is still in its infancy [15, 73]. Szpiro
et al. [73] conducted a study to understand the interaction behavior
of low-vision screen-magnifier users on touch devices such as smart-
phones. Their study uncovered multiple accessibility and usability
challenges: (i) Many participants struggled to pan back and forth after
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Fig. 2: Low-vision chart interaction using screen magnifier.

content enlargement; (ii) The participants had to remember and make
use of different multiple-finger gestures to use the screen magnifier
accessibility features; and (iii) Uniform content enlargement aspect
of screen magnifiers made it challenging to navigate and understand
the application content. While this research sheds light on general ob-
stacles faced by low-vision users on smartphones, the extent to which
these issues impact low-vision users’ experience with charts remains
unknown, which will be covered in our interview study (Section 3).
Preliminary works exist that propose solutions to improve usability
for low vision screen magnifier users [47,57]. Almost all of these works
have based their solution ideas on the concept of context preservation
after content enlargement, using some form of space compaction [7,31].
While the research mentioned above primarily focused on generic
aspects of low-vision interaction with smartphones and desktops, they
did not directly address the unique low-vision needs associated with
visualizations such as data charts. However, the main ideas, such
as space compaction and context-preservation, are still helpful, and
therefore, we adopted these ideas while designing GraphLite.

2.2 Accessibility and Usability of Data Charts

A few research studies have focused on improving the user experi-
ence of blind people while interacting with data charts. These so-
lutions include automatic generation of textual alternatives [34,37],
sonification-based interfaces [2,29], alternative tactile and multi-modal
interfaces [20,21], question and answer systems [36, 54], and tabular
representations of charts [13,24].

These solutions for improving interaction with data charts primar-
ily target blind screen-reader users. While low-vision users can also
use these solutions, they are not specifically tailored for low-vision
interaction. Moreover, graphical visual decoding-based issues faced by
low-vision users have yet to be thoroughly explored, and there is no
present solution inherently designed for low-vision users. We address
this gap in this paper by introducing a novel system GraphLite that
strives to improve the usability of charts specifically for low-vision
screen-magnifier users.

2.3 Data Extraction from Charts

Chart reverse-engineering refers to the process of analyzing and decon-
structing a visual chart or graph to understand its underlying data,
structure, and the methods used to create it [59]. Plenty of rule-
based [23,35,59, 66], automated tool-based [12,35,55,56], and deep
learning-based [13,48, 52] extraction techniques currently exist to ex-
tract all necessary information from charts.

While the tool-based approaches are effective for data extraction,
the need for user engagement in automated tools can cause cognitive
overload for low-vision users due to the excessive screen magnifier
interaction with the user interface. On the other hand, rule-based al-
gorithms are not scalable for real-world scenarios and have longer
processing times. Therefore, for GraphLite, we chose an extraction al-
gorithm using deep learning. Specifically, we employed the ChartOCR
method [52], a deep hybrid framework that combines the strengths of
deep learning and rule-based methods for data extraction. ChartOCR
has demonstrated state-of-the-art performance on bar, line, and pie
charts within the custom benchmark dataset ExcelChart400K. This per-
formance surpasses classical rule-based models such as Revision [66],
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and other deep learning-based models such as Vis [13], ResNet+Faster-
RCNN [13, 48], ResNet+Rotation RNN [48], and even commercial
products such as Think Cell [75]. Note that GraphLite is not tied to
ChartOCR per se; any chart data extraction technique can be used in
place of ChartOCR.

2.4 Responsive Visualizations

Responsive visualization design involves creating multiple versions
of data visualization in order to accommodate different screen sizes
and device types [28,39]. A plethora of prior research works have ex-
plored various ways in which visualizations can be adapted for ‘smaller
screens’, primarily focusing on visual elements and structure [18,41,77],
as well as interaction methods [40,43,70].

Hoffswell et al. [28] proposed a system that provides immediate
cross-device previews, enabling designers to see the impact of their
edits across multiple devices in real-time, and supports the propagation
of successful edits to other views, ensuring a cohesive user experience.

While this approach provides chart designers with hands-on experi-
ence in designing multiple responsive versions, it can be tedious and
often requires multiple design iterations. To mitigate these challenges,
automated tools such as MobileVisFixer by Wu et al. [77] have been
proposed. MobileVisFixer utilizes a Markov Decision Process model
to automatically redesign SVG-based visualizations, improving their
readability and usability on smaller screens.

While the ability to automate certain edits, like repositioning leg-
ends, may be widely useful, authors may still need to manually edit
visualizations in ways that are difficult to automate, such as rewriting
text annotations. To address this, Kim et al. [40] developed Dupo, a
‘mixed-initiative authoring tool’ designed to streamline the creation
of responsive visualizations across different screen sizes. The Dupo
interface integrates manual editing tools with automated design sug-
gestions, which allows users to customize designs, manage edit history,
and explore responsive suggestions while also providing additional
controls for fine-tuning and quick edits.

These responsive visualization solutions primarily focus on adapt-
ability for sighted users, ensuring that visualization charts remain in-
formative and legible across various device platforms, such as mobile
and desktop. While low-vision users can benefit from these responsive
visualizations, their needs are not fully addressed. They require addi-
tional forms of responsive visualization tailored to their specific needs.
In this research, we explore various usability issues faced by low-vision
users, formulate design requirements, and build GraphLite to cater to
the unique needs of low-vision users.

3 Low VisSION USABILITY ISSUES WITH DATA CHARTS

We conducted an IRB-approved interview study with 14 low-vision
screen magnifier users to uncover their interaction issues with data
charts on smartphones. We specifically gathered information on partici-
pants’ experiences with data charts, such as their frequency of encoun-
ters, common settings of interaction, and the chart types they usually
engage with in daily life. Examples of seed questions included: What
problems do you face when interpreting data charts?, In what type of
charts do you face the most problems?, and How do you work around
these issues?. The collected interview feedback was then qualitatively
analyzed using an open coding technique [65], where we iteratively
reviewed the user responses and identified key insights, pain points,
and themes that reoccurred in the data.

3.1

In the interviews, 6 participants frequently reported encountering bar
charts, while 5 participants mentioned line charts. These charts were
predominantly observed in news articles (by 5 participants), social
media (by 4 participants), and blogs (by 4 participants). Given their
familiarity and frequent exposure to these charts, participants’ feedback
and responses were tailored around bar and line charts. Therefore, in
this paper, we focus primarily on bar and line charts.

Findings

(a) Associating bar chart data points with corresponding axis labels
under magnified view is arduous. A majority (12) of the participants
stated that it was often tedious and cumbersome to find the label values
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of data points in bar charts and line graphs. This can be explained
as follows: for sighted users, the perceptual effort to associate label
[ with bar b on the primary key axis of graph g is computed as 230
units for the saccadic movement from the bar to the label [19]; 150
units for the discrimination of the label [49]; and 300 units for word
recognition [33]. This cognitive burden is amplified for low-vision
individuals because they have shorter and more frequent saccades and
fixations [76]. However, other considerations also impact the total effort
required, such as the loss of visual context when panning and the issues
arising from high zoom levels. Specifically, a slight misalignment of
the magnification window during panning can cause the disappearance
of contextual information, as noted by (7) participants. They elaborated
that precise navigation of the magnifier lens in a straight line from
the data point to the axes was necessary for accurately estimating the
data point’s values. Any disruption in focus during this process usually
meant restarting the estimation process entirely.

(b) Visually comparing data points that are far apart in bar/line charts
is too difficult. Many participants (8) mentioned that visually com-
paring data points demanded slow, precise, and concentrated manual
movement of the magnifier lens, which was mentally and visually
tiring. All participants mentioned that making comparisons between
data points that were far apart from each other was extremely diffi-
cult, mainly due to the magnification-induced loss of spatial/visual
relationships between the data points and the increasing difficulty of
comparing non-adjacent data points — a phenomenon known as separa-
tion effect loss [74]. For bar charts, 10 participants stated that attention
predominantly gravitated towards taller bars, sometimes resulting in the
oversight or complete neglect of shorter ones. Additionally, taller bars
often cast a visual “smudge” in the space around them. When the user
tries to identify the height of a tall bar, the smudge on top of the bar is
misinterpreted as part of the bar, causing participants to overestimate
its height. Regarding line charts (9), participants stated that issues like
smudging and blurring persisted, complicating the analysis of trends.
While participants could grasp a general sense of the chart, pinpointing
the precise slope of the lines was arduous.

(c) Need to individually memorize data values for making compar-
isons between data points. One of the strategies mentioned by 6 partic-
ipants to overcome data-comprehension difficulties in a bar/line chart
was to determine and memorize the (axes) values of data points one at
a time and then compare them mentally to comprehend the differences.
Four participants explained that this strategy was always required for
charts with many data points. Two participants even felt that if the
number of data points was high, there was little benefit gained by vi-
sualizing this data as charts since they had to remember and mentally
compare raw values.

The findings from the interview study clearly demonstrate the need
for a tailored solution that addresses the specific challenges faced by
low-vision users when interacting with data charts.

4 GRAPHLITE ARCHITECTURE AND INTERFACE DESIGN
4.1 Design Considerations and Requirements

The design of GraphLite was informed by insights gathered from inter-
views with low-vision users and a review of prior research.

Visual Memory and Selective Focus. When sighted individuals en-
counter visual data, the transfer of information to working memory
from the sensory memory is influenced by two main factors: the dis-
tinct features of the visualization and the viewer’s deliberate focus. The
completion of processing in working memory allows for the storage of
information in long-term memory. The act of selectively focusing on
specific information during the working memory phase is what deter-
mines the content stored in long-term memory. This focused attention is
characterized by an effort to disregard certain stimuli or aspects deemed
irrelevant while concentrating on those considered important [51].
For people with low vision, capturing information in sensory mem-
ory is different; they cannot observe distinct features of the chart due
to impairments that cause smudging or blurring (see section 3.1(b)).
Moreover, their focus is diverted to easily noticeable features, like taller
bars in bar charts, or it might be divided due to the need to separately
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examine different components, such as labels and axis values (see
section 3.1(b)). To supply working memory with accurate informa-
tion, they depend on two methods: (1) visual aids like magnification
tools, which introduce several challenges specifically due to loss of
spatial/visual context (refer section 3.1(a)), and (2) adaptive techniques,
including auditory feedback, such as alternative text or data presented
in table format, which essentially bypasses the visual advantages of
graphical representations. For low-vision users, the information re-
tained in the long-term memory might be detached from the actual
representation of the chart (refer section 3.1(c)).

Optimizing the Locus of Selection. To effectively address the unique
challenges faced by low-vision users in processing visual information,
we focused on creating a design approach that optimizes the “locus of
selection”-—the critical stage at which specific information is chosen
for deeper cognitive processing [45], drawing inferences from “per-
ceptual load theory” principles, which involves breaking down visual
tasks into smaller, manageable segments and integrating multimodal
feedback to substantially improve selective attention [44].

Customizable Visual Attributes for Early/Late Selection. Customiza-
tion options for visual attributes such as color, contrast, font style,
and size are necessary for low-vision users. This initial customiza-
tion serves as an effective cognitive filter for “early selection,” which
involves the screening of sensory input at the onset before detailed
processing [45]. This allows users to minimize visual disturbance from
the very beginning. This is backed by prior research, e.g., by Wurm et
al. [78], who found that although acuity and color are independent of
each other, color improved object recognition for low-vision users and
it also improved the overall interaction experience with faster reaction
times (353ms color advantage [78]).

Moreover, graphical comprehension involves interpolating data in
charts and understanding various underlying relationships within data;
this can also be referred to as “read between data” (i.e., integrating and
interpreting) [64]. While existing solutions for low-vision users gener-
ally “read beyond data” (i.e., generating and predicting), the flavor of
preserving chart semantics is typically lost in the process (refer section
2). To bring back the ability to “read between data” for low-vision
users, GraphLite allows them to selectively view and trim down charts.
Therefore, support should also be provided for “late selection”, which
involves diving deeper after an initial overview [45], e.g., by enabling
selective focus on crucial data points. Furthermore, focusing solely on
specific data points through single selective attention is insufficient for
comprehensive analysis; a multi-attention mechanism plays a critical
role in enhancing interaction with complex visualizations. This can
be achieved via multiple ‘views’ of a single data chart, empowering
users to undertake several rounds of “late selection”. GraphLite was
designed to accommodate the above requirements as explained next.

4.2 GraphLite Overview

Figure 3 presents an architectural schematic illustrating the workflow
of GraphLite prototype. When the user loads a webpage in GraphLite,
it leverages a custom-trained Inception-V3 model [79] to proactively
identify the charts on the webpage as well as their types (e.g., bar chart,
line chart). After recognition, GraphLite automatically extracts all
information (e.g., labels, legends, data values, etc.) from the charts
using an extended ChartOCR model [52]. Next, when the user selects a
data chart with a single tap gesture, GraphLite generates an accessible
proxy interface specifically designed for low-vision users.

A one-finger long-press gesture [5] on the proxy interface automati-
cally opens up selection options, which can used to pick and view only
a few data points of interest. Users can create multiple such ‘views’
if desired, by tapping on the ‘NEXT’ option. When the user finally
selects the ‘DONE’ button, the first view is presented to the user by de-
fault. The user can navigate to the other self-created views using simple
left/right swipe gestures. In addition, the proxy interface also provides
an assortment of customization options to set the color, background,
font, etc., to further improve usability. GraphLite also applies space
compaction while rendering views of charts in the proxy interface to
maximize the utilization of screen space, thereby reducing the user’s
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Fig. 3: Architectural schematic of GraphlLite.

panning effort. The full implementation details, including front-end
and backend components, along with the corresponding code, are all
available on GitHub'.

4.3 Chart Data Extraction

We used the robust ChartOCR method [52], a deep hybrid framework
that takes advantage of both deep learning and rule-based methods for
chart data extraction. We leveraged the CornerNet architecture [46],
incorporating a 104-layer HourGlass network [58] as the backbone
for ChartOCR to efficiently extract key points in bar and line charts,
respectively. For example, the key points for the bar chart are the
top-left and bottom-right corners of each bar. GraphLite then groups
each of the top-left and bottom-right key points sequentially to obtain
bounding boxes of bars. It also computes the height of each bar using
these top-left and bottom-right key points. Similarly, for line charts,
the key points are the pivot points along the lines. GraphLite then uses
a hierarchical clustering algorithm to group these key points into their
respective lines. Once grouped, the key points are correctly associated
with their lines, enabling the reconstruction of the lines on the chart.
GraphLite then leverages the OCR engine AWS-Rekognition (AWS-
Rekognition DetectText API) [4] to extract relevant features from charts
(e.g. title, axis labels, legends, scale, etc.). GraphLite then stores all
the data values and their corresponding x-axis labels, as well as other
relevant features from the chart, in a JSON format.

Training. We trained ChartOCR [52] for bar and line charts on Nvidia
V100 GPU with 128GB memory per node, where the learning rate was
set to 0.0025, we further decreased the learning rate by a factor of 10
for the last 5000 batches. The overall batch size was set at 27 and the
total step size was set to 450000. For optimization, we made use of
the well-known Adam optimizer [8§0]. We employed an early-stopping
strategy during the model training process to optimize performance and
prevent overfitting.

4.4 Proxy Interface Design

We designed the GraphLite’s proxy interface by adhering to the accessi-
bility guidelines proposed by Alcaraz et al. [1]. As illustrated in Figure
1, we designed the user interface of GraphLite to be navigable with
simple one-finger gestures in contrast to the status-quo two-finger slide
gestures offered by in-built OS accessibility services. To access the
proxy interface, the user simply needs to tap on a chart in the current
webpage. In the proxy interface, the user can execute a simple upward
swipe gesture to invoke the ‘“Theme picker’ to customize the appear-
ance of the chart according to their preferences. A long press-and-hold
gesture on the proxy interface pops up a check box interface with all
the chart’s x-axis labels. To navigate the list of options, the user can
simply swipe down the pop-up interface.

To select any x-axis labels of choice, the user must tap on the corre-
sponding check box. Following a selection, pressing the ‘NEXT" button
triggers the interface to refresh, allowing users to make additional se-
lections as needed. This iterative selection process continues until
the user is satisfied and decides to conclude by pressing the ‘DONE’
button. Upon finalizing their selections, GraphLite integrates a space
compaction algorithm! for both bar and line charts, optimizing element

"https://github.com/accessodu/GraphLite.git
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spacing under magnification. This algorithm adjusts the spacing and
scaling of bars and line segments to maximize screen space usage,
presenting a curated visualization that incorporates only the selections
specified by the user. These customized views can be navigated using
swipe gestures, enabling users to peruse through various chart visu-
alizations that reflect their chosen options via the proxy interface, as
shown in Figure 1.

Moreover, this interface extends its customization capabilities by
allowing users to directly interact with individual data elements, such
as bars in a bar chart or lines in a line chart. After tapping on these ele-
ments, users can invoke the “Theme Picker’ once again to apply distinct
color changes to selected data points. To close the GraphLite proxy
interface, the user can simply tap the blue button on the interface. Note
that GraphLite does not block access to the original chart visualization;
this is by design to ensure that the user always has a backup option
in case of errors, e.g., incorrect data extraction by the GraphLite’s
data extraction algorithm. The implementation and technical details
of GraphLite are provided in the appendix, and a video demonstrating
GraphLite in action and explaining the interaction workflow is available
on GitHub'.

4.5 Implementation details

We implemented GraphLite as an Android mobile browser application
developed using Flutter open source framework [22]. When the user
loads a webpage, GraphLite leverages in-built Dart functions [17] to
extract the DOM of the webpage and send it to the backend server via a
POST request. Beautiful soup [61] Python package was used to extract
all images in the DOM, which were then labeled with positional IDs.
The images were then sent to a custom-trained Inception-V3 model [25].
Following this, images were annotated with flags (True, False) based
on whether they were data charts or not. All chart images were sent to
the ChartOCR [69] to extract data attributes. The respective chart IDs,
flags, and attributes were packaged into a JSON object and sent to the
Flutter module. When the user taps on a chart, the syncfusion flutter
charts [72] package uses the chart data in the JSON object to recreate a
new chart in the proxy interface. Additional functionalities, including
typography adjustments, data point selection via checkboxes, swiping
through various views, and customizing the color of individual data
points, were implemented using Flutter’s built-in features. The flutter
inappwebview package [50] was utilized to integrate web content and
enable interactions with charts within the app. To establish a communi-
cation channel between the Flutter app modules and the backend server
modules, we used the Flask REST API [60].

5 EVALUATION

We conducted an IRB-approved user study with low-vision screen
magnifier users to assess the efficacy of GraphLite. We managed to
recruit 26 low-vision participants (16 female, 10 male) for the study?.
Full participant demographic details are available on GitHub'.

5.1 Design
In a within-subject experimental setup, the participants were asked to
perform representative chart tasks under the following conditions:

» Screen Magnifier (SM) — The participants used the status quo
screen magnification accessibility features to do the tasks.

Tabular Representation (7BL) — The participants could interact
with tabular representations of the charts to do the tasks. This
condition was chosen to represent extant solutions that convert
charts to tables for better accessibility, as seen in example [13].

* GraphLite with only Space Compaction (SC) — The participants
could leverage only the space compaction feature of GraphLite.

e GraphLite with Space Compaction and Configuration (SCC) —
The participants could leverage both space compaction and cus-
tomization (color, contrast, font) features of GraphLite.

2The typical size of low-vision user studies is between 12 to 20. We enrolled
slightly more participants due to the relatively higher number (5) of conditions
in our study.
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* GraphLite with Space Compaction, Configuration and Feature
selection (SCCF) — The participants could leverage all features.

In our study, participants engaged in a series of tasks tailored to
assess their interaction with bar and line charts. For designing the
tasks, we consulted prior work in information visualization [63] that
has introduced various taxonomies categorizing tasks that connect
visualization techniques with user cognitive processes. The insights
from our earlier interview study helped identify the relevant taxonomies
for this study and directly informed our choice of tasks. Specifically,
we found Amar et al.’s taxonomy [3] of low-level tasks to be most
fitting for our study. This taxonomy includes a series of tasks designed
to require minimal reasoning about the data, thereby making it ideal
for our study’s focus. The chosen tasks were:

* Task 1: Pairwise Comparison required participants to compare
predetermined data points.

— The first subtask (SBC) involved comparing a single pair,
such as sales from Wednesday to Saturday.

— The second subtask (MBC) involved comparing multiple
pairs, like sales from Thursday to Saturday, Monday to
Friday, and Tuesday to Sunday.

e Task 2: Selective Filtering focused on data filtration, where
participants identified data entries meeting specific criteria.

— The first subtask (SBF) involved pinpointing days when
sales fell below 1 million.

— The second subtask (MBF) required filtering a range of
sales figures to identify multiple data points, such as finding
days when sales were between 1 and 2 million.

¢ Task 3: Trend Prediction was adapted to emphasize trend predic-
tion (LTP), asking participants to predict sales trends of a product
across the following month based on prior monthly data.

e Task 4: Trend Comparison was introduced, focusing on trend
identification and comparison (LTC). For example, participants
were tasked with identifying the overall trend in stock prices over
a defined range of months and comparing the trend with another
range of months.

To reduce the impact of confounding variables such as the learning
effect, we used different bar and line charts for the five study condi-
tions, i.e., for Task 1 and Task 2, we curated ten bar charts, five for
each task. We ensured that all ten bar charts were similar, with each
chart containing 20 data points (i.e., bars) and having identical initial
formatting in terms of color, contrast, font, and spacing. For Task 1,
we pre-selected data points such that the first data point was randomly
picked from the leftmost three data points in the bar chart, and the
second data point was randomly picked from the rightmost three data
points. This selection strategy ensured participants interacted with the
majority of the chart data while maintaining a consistent separation
effect across tasks, thereby mitigating potential confounds as noted in
Talbot et al. [74]. A similar approach was followed for Task 2. For
the line charts, we employed the same methodology in chart creation,
ensuring each chart contained 20 data points. For Task 3, participants
were required to predict the trend following the 20th data point. In
Task 4, we selected trends from different parts of the charts for com-
parison, ensuring that users traversed through most of the charts. The
trends were chosen based on identifying the best possible correlations
between line segments, thereby facilitating a comprehensive analysis
and interaction with the chart data. We also ensured that the chart data
extraction was accurate for all these graphs. The assignment of charts
to conditions and the ordering of conditions were counterbalanced to
the best extent possible using the Latin square method [8].

5.2 Procedure

The user study was conducted over a month to accommodate 26 partic-
ipants. Three sessions were available each day from Monday to Friday,
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with each session lasting between 2 to 2.5 hours. Two experimenters
were available per session, each accommodating one participant. Par-
ticipants had the flexibility to choose any of these sessions and were
required to attend three sessions to complete the study. The experi-
menter began by obtaining formal consent from each participant and
briefly explaining the study’s goals. Participants were then introduced
to the TBL and GraphLite interfaces and took part in practice ses-
sions. In the study, each subtask—SBC, MBC, SBE, MBF, LTP, and
LTC—was allotted 10 minutes completion time. After completing each
subtask, participants filled out the SUS and NASA-TLX questionnaires
to capture their usability and workload perceptions. The experimenter
also noted user-interaction behaviors and collected qualitative feedback
in exit interviews. All study activities and data were recorded with con-
sent, and participants received an Amazon gift card. Further details on
the participant’s demographics, apparatus, methodology, Charts used
in the study, and the schedule of the study are available on GitHub'.

5.3 Data Analysis

From the study data, we computed the following metrics for each study
condition: (i) Task completion times, (ii) Task completion rates, (iii)
Task performance accuracies, (iv) SUS usability scores, and (v) NASA-
TLX workload scores. We then used these metrics to compare the
different study conditions using standard statistical tests and determine
if there was a significant positive impact of GraphLite on the overall
performance and user experience of the participants. For analyzing the
subjective exit-interview feedback and experimenter notes, we adopted
a qualitative analysis method, specifically an open coding technique
followed by axial coding [65], where we iteratively went over the user
data and identified recurring observations and insights.

5.4 Abbreviations

For convenience, Table 1 lists all the abbreviations and placeholders
that will be used in the rest of the paper to present the results.

Table 1: List of Abbreviations and Placeholders.

MBC : Multi-bar Comparison
MBEF : Multi-bar Filtering
LTC : Line Trend Comparison
TLX | SUS : Usability Scores
Task-1 : Pairwise Comparison
Task-2 : Selective Filtering
Task-3 : Trend Prediction
Task-4 : Trend Comparison

SM : Screen Magnifier

TBL : Table of Content

SC : Space Compaction

SCC : SC + Customization
SCCEF : SCC + Feature Selection
SBC : Simple Bar Comparison
SBF : Simple Bar Filtering

LTP : Line Trend Prediction

5.5 Results
5.5.1 Task Completion Times

We measured task completion time as the time (in seconds) a participant
took to do a task under a given condition. If a participant failed to
complete a task, then the maximum allotted time (i.e., 10 minutes)
was considered as the completion time. The results are presented in
Figure 4. Overall, there was a significant impact of the study condition
on the task completion times (Friedman test, xz =74.6, p <0.001).

Bar Charts: Task 1 For the SBC subtask, we observed that the SCCF
condition had the best performance (Mean: 235.1s, Median: 239.5s,
Min: 122s, Max: 355s) whereas the SM condition exhibited the poor-
est performance (Mean: 531.34s, Median: 552.3s, Min: 423.5s, Max:
600s) among all the study conditions. Pairwise tests between con-
ditions showed that the SCCF condition yielded significantly better
results compared to all other study conditions except the TBL condition
(Post-hoc Conover’s test with Benjaminyi-Hochberg FDR adjustment,
SCCF vs. TBL: p = 0.07). We also observed that the TBL condition
significantly outperformed the SC and SCC conditions (TBL vs. SC:
p =0.001, TBL vs. SCC: p = 0.002).

Similar observations were made for the MBC subtask; however,
in contrast to the SBC subtask, we noticed a significant difference
between the SCCF condition (Mean: 326.4s, Median: 317.9s, Min:
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188.7s, Max: 442.7s) and the TBL condition (Mean: 421.7s, Median:
429.8s, Min: 355s, Max: 535.5s).

This observed trend suggests that as tasks grow in complexity with an
increased number of comparisons and variables, the effectiveness of the
TBL condition starts to diminish, whereas the SCCF condition exhibits
a noticeable performance improvement. This observation highlights the
potential of the SCCF approach in handling complex analytical tasks
within graphical data interpretation, especially as the demands of data
analysis become more intricate.

Bar Charts: Task 2 For the second task, average task completion times
revealed that when participants were asked to engage with smaller
ranges of data for selection, for example, if the participant was to
identify stocks in the range of 3 million to 5 million revenue, a simple
filtration task, the SCCF condition (Mean: 422s, Median: 422.6s, Min:
341.9s, Max: 501s) and the TBL (Mean: 446.6s, Median: 452.2s,
Min: 376s, Max: 512.3s) condition showed nearly similar performance.
However, as the scope of the data range for filtration expanded, for
example, if the participant was asked to filter stocks in the range of 3
million to 8 million revenue, a notable enhancement in performance
under the SCCF condition (Mean: 377.6.4s, Median: 348.2s, Min:
265.7s, Max: 532s) was observed Vs. TBL (Mean: 476.9.4s, Median:
489.6s, Min: 377.8s, Max: 579.8s) (Post-hoc Conover’s test with
Benjaminyi-Hochberg FDR adjustment, SCCF vs. TBL: p < 0.001).

Summary: A closer inspection of the recorded data revealed that while
performing the tasks in SM, SC, and SCC conditions, the participants
often had either concentration lapses or accidentally executed incorrect
panning gestures, so they had to repeat the process multiple times to
complete the task. In the TBL and SCCF settings, horizontal panning
issues were markedly reduced, streamlining the task execution process.

Nonetheless, the TBL condition exposed a notable drawback when
participants performed both tasks with increased complexity. Here, par-
ticipants faced difficulties in retaining and recalling specific data values,
often necessitating backtracking for verification. This requirement for
frequent memory recall and verification introduced additional cognitive
load, leading to uncertainty and inefficiency among participants as they
cross-checked and reassured themselves of the data points in question
for both tasks, thereby increasing overall completion times.

Line Charts: Task 3 For the third task, the SCCF condition demon-
strated the shortest average completion times (Mean: 243s, Median:
267s, Min: 166.5s, Max: 310s), outperforming the SM condition,
which had the longest times (Mean: 528.9.6s, Median: 544s, Min:
435.5s, Max: 588s). Statistical analysis revealed a significant advan-
tage of the SCCF condition over all others, according to post-hoc
Conover’s test with Benjamini-Hochberg FDR adjustment.

Line Charts: Task 4 For the fourth task, SCCF maintained its superior
performance with the best average task completion times, distinctly
better than the SM condition and the others in comparative analysis
(SCCEF versus SM: p < 0.001, SCCF versus SC: p < 0.001, SCCF
versus SCC: p < 0.001, SCCF versus TBL: p = 0.03). These findings
consistently indicate that SCCF is the most effective condition for
conducting trend analysis. Additionally, the TBL condition showed
improvement in the second task, narrowing the performance gap with
the SCCF condition compared to the first task by 67%.

Summary: In the SM, SC, and SCC conditions, participants were
required to continuously track trends with the aid of a magnifier, mov-
ing them in a non-linear fashion. Any deviation in the path not only
increased the task completion time but also significantly compromised
the accuracy of their analysis.

The TBL condition naturally made it challenging for users to discern
and predict trends due to the increased cognitive load. For instance,
predicting a trend over 12 months necessitated participants to recall
trends month by month, mentally collating these values into a cohesive
trend. This process often had to be repeated multiple times to ensure
accuracy and confidence in their judgments. However, in the SCCF
condition, they could swiftly navigate through multiple views by buck-
eting selective data points in groups across 12 months. A simple swipe
gesture allowed them to observe trends without the need to meticulously
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Fig. 4: Task completion time statistics, in seconds, for all the tasks and study conditions. Note: For the MBF task, only the TBL and SCCF conditions
are included, as participants were unable to complete this task within the time limit under the SM, SC, and SCC conditions.

consider each underlying value, thus simplifying predictions.
Compared to the SCCF condition, the TBL condition showed im-
proved performance in tasks involving the comparison of multiple
trends rather than predicting trends. This improvement can be attributed
to the ability of users in the TBL condition to categorize and compare
values within specific ranges without needing to assess the entire trend
from start to finish. However, for the analysis of trends in line charts,
the SCCF condition still proved to be superior. This is because it al-
lowed for a more streamlined approach to trend analysis, enabling users
to focus on broader trend patterns rather than getting bogged down
by the need to remember and map each data point individually. This
strategic division of attention, facilitated by selective focus in the SCCF
condition, significantly reduced the cognitive load of trend analysis.

5.5.2 Task Completion Rate and Accuracy

The overall task completion rate for a condition was computed as the
percentage of tasks completed by the participants in that condition.
Overall, the SCCF and TBL study conditions had the best completion
rates (100%), whereas the baseline screen magnifier (SM) condition
had the lowest average completion rate(61.5%). These differences
in completion rates between the study conditions were found to be
statistically significant (Friedman test>, y2 = 28.68, p < 0.001).

A closer analysis of experimenter notes and manual inspection of
screen-captured videos revealed that the task completion failures were
mainly due to two reasons: (i) The participants were unable to complete
the task within the stipulated time limit of 10 minutes, and (ii) The
participants complained about stress and fatigue while giving up in the
middle of the task. The latter reason was more common in the SM (4
participants) and SC (3 participants) conditions. In these conditions,
the participants frequently mentioned that “there were too many bars”
and that it was difficult to keep track of and remember the pre-specified
task bars and their y-axis values. The completion rate was slightly
better in the SCC condition, where some of the participants mentioned
that it was “easier on their eyes” after changing bar colors and contrast.
In the TBL and SCCF conditions, all participants completed the tasks.

To evaluate the precision of participant responses across the four
distinct tasks—comprising two for bar charts and two for line charts,
we adopted specific accuracy metrics tailored to the nature of each task.
For bar charts, Task 1’s accuracy involved comparing participants’ data
point comparisons to actual values, while Task 2 evaluated the accuracy
of identifying points that fit given criteria. Line charts Task 3 measured
accuracy by matching participants’ trend predictions to real data. Task
4’s accuracy was binary, based on correctly identifying and comparing
trends. These tasks assessed participants’ analytical skills across both
chart types. Note: The accuracy was noted without the inclusion of the
complexity of tasks.

3We used this non-parametric test as the data was not normally distributed.

Bar Charts: We noticed a significant difference in the participants’
estimation errors between the different study conditions across both
the tasks (Friedman test*, % = 52.88, p < 0.001), with the TBL con-
dition having the lowest average error of 4.8% (and therefore the best
performance) for task 1 comparison and nearly the same average error
as SCCF condition of 9.7% for task 2 filtration and the SM condition
had the highest average error(18.4% in Task 1 and 19.3% in Task 2)
for both the tasks. The TBL condition saw a reduction in performance
during task 2 particularly when increasing the complexity of the tasks
as participants had to pan through the table multiple times and often
mixed the rows mainly due to magnification misalignment. In the
remaining three conditions (SM, SC, and SCC), we observed that on
many occasions, the participants could not view both the y-axis labels
and a taskbar at the same time due to enlargement, and therefore, they
had to pan right-to-left along a straight line while mentally visualizing
the bar height, to estimate the bar’s value or to filter out bars within
arange. We believe most errors were introduced during this process,
possibly due to imperfect horizontal panning and/or slight lapses in
concentration during panning.

Line Charts: In our examination of line charts across various exper-
imental setups and two distinct tasks centered on trend analysis, we
noted differences in estimation errors that deviated from those seen with
bar charts. The SCCF condition had the lowest average error of 7.1%
(and therefore the best performance), and the SM condition had the
highest average error of 21.1% (worst performance) for the task. The
superior performance observed in the SCCF condition is largely due to
participants adopting a strategy that involved grouping their selections
into particular value ranges for analysis. This approach allowed them
to quickly evaluate the types of trends by observing shifts in trends
across different sections of the charts efficiently. The higher average
error observed in the TBL condition, as compared to the SCCF, can be
attributed to the inherent demands of tabular data interpretation. The
TBL condition necessitated a sequential and meticulous approach from
users to extract information, leading to the identification of only a select
few trends, with many potentially relevant patterns overlooked. On the
other hand, the SCCF condition, by leveraging visual representations,
offered a more holistic and efficient means for trend analysis. Visual
charts support the brain’s ability to process information in parallel,
allowing for a more comprehensive and effective recognition of trends
without overloading cognitive capacities.

In the other conditions (SM, SC, and SCC), we observed a pattern
of errors similar to those identified in bar charts. This consistency
suggests that the underlying factors contributing to inaccuracies in
these conditions are not unique to the type of chart but rather indicative

4We used this non-parametric test because the raw data was not normally
distributed as per Shapiro-Wilk test.
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of broader challenges in data interpretation and analysis using screen
magnifiers that affect both bar and line charts similarly.

5.5.8 Perceived Usability and Task Workload

We used the standard SUS questionnaire [9] to measure perceived
usability. This questionnaire consists of 10 alternative positive and
negative Likert statements where the participant has to provide a rating
between 1 (strongly disagree) and 5 (strongly agree) for each statement.
The ratings from the 10 statements are then assimilated based on a
formula to generate an overall score between 0 and 100, with higher
scores indicating better usability. The SCCF received the best SUS
scores (Average = 85.8, Median = 86, Min = 65, Max = 100) followed
by the TBL condition (Average = 68.7, Median = 64, Min = 38, Max
= 100). The SM condition received the least SUS scores (Average =
51.3, Median = 53, Min = 8, Max = 69). The differences in SUS scores
between the study conditions were statistically significant, according to
a Friedman test’ (x2 = 57.1, p < 0.001).

In the exit interviews, almost all participants attributed their high
usability ratings for the SSCF condition to the selection criteria aspect
of GraphLite that they believed saved them a lot of panning effort
which otherwise would have been necessary to navigate and compare
data points in charts. The participants also stated that the configuration
options were extremely important, which explains the relatively higher
scores for the SCC condition compared to the baseline SM condition
(post-hoc Conover’s test, SCC vs. SM: p = 0.03). However, we did
not notice a significant difference in usability ratings between the SC
and SCC conditions (post-hoc Conover’s test, SC vs. SCC: p = 0.06).
This may be due to the fact that space compaction was a background
passive feature of GraphLite that the users could not explicitly control
via the interface; indeed, a few participants (all of whom need less than
5X zoom) mentioned in the exit interviews that they were so focused
on customizing the charts that they did not even realize the presence
of automatic space compaction. The highest variance observed in the
TBL condition can be attributed to the lack of a uniform consensus
among participants: while many found the TBL condition less stressful
and easier to navigate, others experienced difficulty in analyzing trends
under the same condition. This divergence in experiences contributed
to the notable variability in the data gathered from the TBL condition.

We administered the standard NASA-TLX questionnaire [26] to
asses the perceived workload while the participants did the tasks.
NASA-TLX also generates a score between 0 and 100; however, un-
like SUS, lower TLX values indicate lesser workloads and, therefore,
better performance. Overall, we observed a significant effect of the
study conditions on the NASA-TLX scores (Friedman test, x> = 92.32,
p < 0.001). The GraphLite’s SCCF condition received the lowest (i.e.,
best) TLX scores (Average = 22.7, Median = 22, Min = 14, Max = 32)
condition, whereas the SM condition received the highest (i.e., worst)
TLX scores (Average = 70.1, Median = 70, Min = 57, Max = 79). The
TLX scores for the TBL condition were the second best (Average =
31.7, Median = 31, Min = 24, Max = 45), presumably due to the re-
duced horizontal panning effort needed to complete the tasks compared
to that needed in the SM, SC, and SCC conditions.

A closer inspection of the ratings the participants gave to individual
subscales (Mental Demand, Physical Demand, Temporal Demand, Per-
formance, Effort, Frustration) of the TLX questionnaire revealed that
poor ratings to the Effort, Mental Demand, and Frustration subscales
contributed the most towards the higher workload scores in the SM,
Sc, and SCC conditions. For the SCCF condition, the ratings for all
the sub-scales were the lowest and, moreover, uniform across all the
subscales. For the TBL condition, the ratings for the Effort and Frus-
tration were considerably higher than those for the SCCF condition,
which explains the significant difference in overall TLX scores between
SCCF and TBL conditions.

SWe used this test because the data for some of the conditions were not
normally distributed.
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5.5.4 Qualitative Feedback

Analysis of subjective feedback from participants in exit interviews
revealed shared insights and observations across multiple participants.
A few notable ones are presented next.

Customization options are essential. All participants explicitly stated
that customization options are essential for conveniently interacting
with graphs. More than half (16) of the participants mentioned that they
preferred dark themes while interacting with content and that they often
experienced issues while interacting with images, including charts un-
der dark themes. These participants further explained that re-rendering
charts in dark themes were often not ideal, increasing comprehension
difficulty. To counter this issue, 6 of these 16 participants also men-
tioned that they relied on OS-level color invert accessibility features
as an alternative to dark themes. However, they mentioned this option
too often, resulting in chart renderings that were not legible and also
uncomfortable to view. These participants stated that the fine-grained
customization offered by GraphLite quickly addressed this issue and
reduced eye strain.

Need to reduce vertical panning. Ten participants expressed a de-
sire for a feature that could reduce the vertical panning/scrolling
in GraphLite. Four of these participants suggested automatic re-
adjustment of unit dimensions so that the overall height of a chart
is reduced. A couple of participants also suggested adding tooltips that
displayed the x/y axis labels/values on demand, e.g., a tap on a bar.
Auto-focus on important chart regions. Nearly a quarter of 6 of the
participants suggested providing some auto-panning feature that shifted
focus to different parts of a chart on demand, e.g., with a gesture. For
instance, P8 wanted gestures that automatically bring the x or y axis
to the forefront of the magnifier viewport. Similarly, P17 wished that
GraphLite had a gesture that would automatically move the magnifier
focus to the top of the current bar in focus.

Filtering in tabular chart representations. More than half (15) of
the participants indicated that the usability of the TBL condition (i.e.,
a tabular representation of chart data) could have been significantly
improved by providing a similar filtering feature as that in the GraphLite
SCCEF condition. These participants further explained that filtering
would make tables a more palatable interface due to reduced vertical
panning. However, a few (4) participants did mention that tables were
not a suitable representation to perceive “trends” in data quickly; these
participants explained that their cognitive effort would significantly
increase with the increase in the number of data points to be compared
for capturing trends.

Following participant feedback, we integrated a tooltip feature into
GraphLite. We then evaluated this new feature, focusing on its effec-
tiveness across bar and line charts. In typical screen magnification
(SM) + tooltip scenarios, we noted that low-vision users often had to
randomly select bars in bar charts and points in line charts to understand
their corresponding values. This method proved challenging, especially
with charts containing more than 10 data points, as participants tended
to forget which bars or points they had already checked, leading to
frequent re-use of the tooltip feature. However, integrating the tooltip
feature with GraphLite greatly enhanced the efficiency of this process.
Users could proactively choose the x-axis values they wanted to focus
on for comparison or analysis. Employing tooltips in conjunction with
GraphLite, particularly after data filtration, significantly aided users in
maintaining awareness of the data points on the charts. This combi-
nation of tools effectively streamlined the data interpretation process
for low-vision users, making it easier for them to interact with and
understand complex data visualizations.

6 DiscussION

The user study findings demonstrated that converting non-interactive
charts into interactive customizable charts significantly improves us-
ability and graphical comprehension for low vision screen magnifier
users on smartphones. However, our work was not without limita-
tions and the study also illuminated some of the shortcomings of our
approach, thereby exposing the avenues for future research. A few
notable limitations and future work directions are discussed next.
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Limitations. GraphLite is dependent on ChartOCR [52] trained on
the comprehensive ChartEx dataset [11]. This dataset encompasses
a wide range of bar (e.g., grouped, stacked, normalized, categorical
vs. ordinal dimensions, horizontal vs. vertical, sorted vs. unsorted)
and line chart variants (e.g., single series vs. multiple series values
in line segments), which can be seamlessly supported by GraphLite
with minimal modifications to its proxy interface. However, GraphLite
currently supports only simple bar and line charts, and our evaluation
was restricted to these types, where data extraction was accurate to
both avoid confounds and make the tasks comparable. However, data
extraction is not always accurate, especially if the charts are complex or
the quality of chart images is not good. Therefore, the performance of
GraphLite must be evaluated “in the wild” on arbitrary charts where the
data extraction is not 100% accurate. For this purpose, a separate user
study is needed to assess GraphLite usability. Furthermore, given the
tremendous advancements in computer vision and image processing
techniques in recent years, we anticipate better chart data extraction
algorithms will be available in the next few years. Given the modular
implementation of GraphLite, we can easily replace the current extrac-
tion algorithm with these new, improved algorithms, thereby enhancing
the reliability of GraphLite.

Moreover, GraphLite transforms static charts into interactive charts
without considering the underlying label annotations present in the
static chart, which may reduce the viewer’s ability to grasp certain
intended takeaways. To address this, we integrated the tooltip feature
within GraphLite based on qualitative feedback, allowing users to see
the value of data points on the charts. However, GraphLite does not
adapt to other forms of annotations, for example, color annotations, i.e.,
if an author uses specific colors for certain bars in a bar chart to convey
a particular message, GraphLite does not retain those specific colors
when the chart is re-rendered, leading to a potential loss of information
that the chart designer wants to convey.

Chart designers, particularly those creating visualizations for dis-
semination on news articles or social media, could possibly face chal-
lenges when adapting their static charts for low-vision users through
GraphLite’s transformations. These adaptations can be likened to the re-
sponsive design adjustments made when transitioning charts from desk-
top to mobile viewing environments, as discussed by Kim et al. [39].
With GraphLite’s features, such as the integration of dynamic theme
pickers, tooltip enhancements, and selectively view data points, design-
ers are equipped to tailor visualizations for improved chart usability.
However, these transformations require subjectively prioritizing select
data elements while potentially altering and completely missing others.
The challenge lies in maintaining the core message and ensuring that
key insights remain clear and interpretable for low-vision users.

To address this, we plan to develop a novel algorithm capable of not
only extracting data points but also identifying underlying relationships
between data points based on the design choices made by the designer.
This approach will highlight key elements and their relationships in
charts and then present them to low vision users. This approach seeks
to balance the trade-offs between preserving information richness and
enhancing accessibility for low-vision users.

Also, in the study, the participants used the experimenter-provided
smartphone to do the tasks, not their smartphones. While we did our
best to accommodate iOS interaction gestures in our evaluation app
and conducted an extended practice session, it still needs to replicate
the participants’ comfort while using their phones. Porting GraphLite
to the i0S platform is more of an engineering effort, and we plan to
accomplish this in the near future. Subsequent user studies will be
conducted to further validate our findings by letting participants do the
study tasks using their smartphones.

Lastly, in our work, we did not fully uncover the exact effects of
zooming and panning user actions on the perceptual effort and chart
comprehension of low-vision users. Uncovering these correlations
will require a more extensive study, similar to those in prior works
on graph perception for sighted people [14,27,74], covering various
chart-interaction scenarios. In future work, we plan to conduct this
study and build computational interaction models quantifying the chart
perceptual effort of low-vision users.

Enhancing data comprehension with Details-on-Demand interac-
tions. Details-on-demand (DoD) interactions in data visualization
systems allow users to access additional information about specific ele-
ments as needed, keeping the main display uncluttered. This is typically
achieved through user actions like hovering, clicking, or performing
gestures to display detailed data. Current DoD approaches include
selection-based methods [67,71], where users select visual objects to
retrieve details, and zoom-based methods [10], where visualizations
transform to reveal more information. Future research could explore
how these interactions reduce the need for panning or auto-focus. We
envision a controlled study that simulates all existing DoD features
to examine the function of each feature individually, helping to bet-
ter understand the impact of each on visualization comprehension for
low-vision users.

Predictive magnification for chart interaction. Prior work [6,7,57]
has shown that automating screen magnifier lens movement to salient
portions of the content can significantly improve usability for low-
vision users. Some of the participants in the user study also expressed a
desire for “automatic panning” while interacting with charts to reduce
the number of input gestures. One method to devise an auto-panning
algorithm for low-vision chart interaction is by understanding the cor-
responding data saliency (e.g., [6]), i.e., the portions of the chart that
low-vision users typically assign higher priority and attention com-
pared to other portions. For instance, the units and labels on axes
and the top of bars in a bar chart have a higher saliency compared
to the empty whitespace regions of the chart. The full saliency heat
map can be obtained from gaze tracking studies [19], and this saliency
can be used to automate panning between different portions of a data
chart, e.g., automatically pan to the top of a given bar in a bar chart
based on eye movement. Devising such auto-panning algorithms along
with corresponding user interfaces can significantly improve low-vision
interaction with data charts.

7 CONCLUSION

With the increasing use of smartphones among people with low vision,
there is a need to address the limitations of conventional screen magni-
fier accessibility features: loss of context and slow navigation time. This
paper addressed these limitations for a specific case scenario of interac-
tion with data charts, specifically the popular bar and line charts. An
interview study with 14 low-vision smartphone users revealed that they
frequently encountered data charts in their daily smartphone browsing
activities, but they also stated that the interaction with charts was chal-
lenging due to the magnification-induced loss of visual relationships,
e.g., between different data points, and between data points and chart
annotations. As an initial effort towards improving low-vision data
chart interaction smartphones, we designed and developed GraphLite -
a manifestation of the idea of automatically transforming data charts
that are usually non-interactive images into customizable interactive
graphs that enable users to selectively view multiple data points close to
each other, thereby preserving visual context as much as possible under
screen enlargement. In a user study with 26 low vision participants,
the GraphLite was found to significantly improve the usability of data
charts over both the status quo screen magnifier and a state-of-the-art
method while doing typical chart interaction tasks. The subjective feed-
back from the participants also provided future directions for further
improving GraphLite, e.g., predictive auto-panning.

SUPPLEMENTAL MATERIALS

All supplementary materials are available on GitHub at https://
github.com/accessodu/GraphLite.git. These include: (1) Excel
files with data from the user study, (2) Details on participant demograph-
ics, task assignments, and charts used in the study, (3) Demonstration
videos related to the study, and (4) The GraphLite codebase.
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