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Towards�Enhancing�Low�Vision�Usability�of�Data�Charts�

on�Smartphones�
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Fig.�1:�Use�scenario�for�GraphLite:�(a)�selecting�themes,�(b)�making�data�choices,�and�(c)�personalizing�data�appearance.�

Abstract—The�importance�of�data�charts�is�self-evident,�given�their�ability�to�express�complex�data�in�a�simple�format�that�facilitates�
quick�and�easy�comparisons,�analysis,�and�consumption.� However,� the�inherent�visual�nature�of�the�charts�creates�barriers�for�
people�with�visual�impairments�to�reap�the�associated�benefits�to�the�same�extent�as�their�sighted�peers.�While�extant�research�has�
predominantly�focused�on�understanding�and�addressing�these�barriers�for�blind�screen�reader�users,�the�needs�of�low-vision�screen�
magnifier�users�have�been�largely�overlooked.�In�an�interview�study,�almost�all�low-vision�participants�stated�that�it�was�challenging�
to�interact�with�data�charts�on�small�screen�devices�such�as�smartphones�and�tablets,�even�though�they�could�technically�“see”�the�
chart�content.�They�ascribed�these�challenges�mainly�to�the�magnification-induced�loss�of�visual�context�that�connected�data�points�
with�each�other�and�also�with�chart�annotations,�e.g.,�axis�values.�In�this�paper,�we�present�a�method�that�addresses�this�problem�by�
automatically�transforming�charts�that�are�typically�non-interactive�images�into�personalizable�interactive�charts�which�allow�selective�
viewing�of�desired�data�points�and�preserve�visual�context�as�much�as�possible�under�screen�enlargement.�We�evaluated�our�method�
in�a�usability�study�with�26�low-vision�participants,�who�all�performed�a�set�of�representative�chart-related�tasks�under�different�study�
conditions.�In�the�study,�we�observed�that�our�method�significantly�improved�the�usability�of�charts�over�both�the�status�quo�screen�
magnifier�and�a�state-of-the-art�space�compaction-based�solution.�

Index Terms—Low�vision,�Graph�usability,�Screen�magnifier,�Graph�perception,�Accessibility�

1 INTRODUCTION analysis,�and�consumption�[30].� Popular�data�charts�such�as�bar�and�
line�graphs�are�used�for�visualizing�stock�values,�census,�product�sales,�Data�charts�have�become�commonplace�online�and�in�academic�and�
customer�ratings,�currency�exchange�rates,�and�hospitalization�rates.�professional�settings,�given�their�ability�to�condense�and�express�com-
Given�the�widespread�use�of�data�charts,�they�must�be�usable�for�people�plex�data�in�a�format�that�facilitates�quick�and�easy�comparisons,�trend�
of�all�abilities,�including�those�with�visual�impairments.�However,�data�
charts�are�inherently�visual;�therefore,�there�is�a�need�to�adapt�the�charts�

•� Yash�Prakash,�Pathan�Aseef�Khan,�Akshay�Kolgar�Nayak,�Sampath� to�make�them�usable�for�people�with�visual�disabilities�who�rely�on�
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sampath,vganjigu@cs.odu.edu� While�there�exist�a�few�works�that�have�studied�chart�accessibility�as�

•� Hae-Na�Lee�is�with�Michigan�State�University.�E-mail:�leehaena@msu.edu.� well�as�proposed�solutions�to�address�the�chart�usability�problems�for
blind�screen�reader�users�[42, 53, 68, 81],�the�visualization�needs�of�low�
vision�screen�magnifier�users�concerning�charts�are�still�an�uncharted�
research�territory.� Low�vision�refers�to�impairments�in�one�or�both�
eyes�that�cannot�be�rectified�with�glasses,�contact�lenses,�medication,�or�
surgery.�A�salient�aspect�of�low�vision�condition�is�poor�visual�acuity�
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(less�than�20/70),�so�people�with�low�vision�typically�depend�on�a�screen�
magnifier�to�access�content�via�enlargement�[16, 62].�However,�content�
enlargement�comes�with�a�price�–�low�vision�users�can�only�view�a�
small�portion�of�the�chart�content�at�any�instant,�as�screen�size�is�limited,�
especially�on�smartphones.�Low�vision�users�have�to,�therefore,�move�
their�magnifier�lens�over�the�content�to�view�the�occluded�portions,�
an�activity�referred�to�in�the�literature�as�panning.� Thus,�interaction�
with�enlarged�charts�or�graphs�can�be�discomforting�for�low�vision�
users�on�smartphones�even�though�they�can�technically�“see”�the�charts�
since�they�often�have�to�pan�to-and-fro�between�different�portions�of�
the�enlarged�charts�to�make�data�comparisons�and�comprehend�overall�
trends�in�data�(e.g.,�see�Figure�2).�

To�uncover�and�understand�the�chart�usability�issues�of�low-vision�
smartphone�users,�we�conducted�an�interview�study�with�14�low-vision�
participants�with�different�eye�conditions.� Despite�the�heterogeneity�
of�the�participant�pool,�all�participants�stated�that�it�was�arduous�and�
tedious� to� interact�with� charts� on� smartphones,� mainly�due� to� two�
reasons.� First,�the�participants�mentioned�that�they�could�not�easily�
associate�axis�labels�with�data�points�(e.g.,�‘y’�coordinate�value�of�a�bar�
in�a�bar�chart).�Second,�the�participants�specified�that�it�was�mentally�
taxing�to�compare�data�points,�especially�if�these�points�were�distant�
from�each�other�in�the�chart.�A�common�aspect�in�both�these�reasons�
specified�by�the�participants�was�that�they�could�not�see�the�desired�
information�simultaneously�(e.g.,�axis�labels�and�a�bar�in�a�bar�graph,�
desired�subset�of�data�points�in�a�bar�graph).� Therefore,�they�had�to�
memorize�individual�pieces�of�information�as�they�moved�the�magnifier�
lens�to�and�fro�over�different�portions�of�a�chart.�

To�address�these�chart�usability�issues�on�smartphones,�we�present�
GraphLite,�a�mobile�assistive�technology�that�enables�low-vision�users�
to�customize�charts�and�seamlessly�navigate�through�different�‘views’�
of�the�chart,�showcasing�select�data�points�within�the�magnifier�window.�
In�essence,�GraphLite�allows�screen-magnifier�users�to�use�selective�
attention�to�visualize�various�relevant�information�in�charts,�e.g.,�selec-
tively�view�desired�data�points�for�quick�comparison�and�trend�analysis�
across�various�portions�of�bar�and�line�charts�(see�Figure�1),�thereby�
enabling�users�to�perform�quick-and-easy�visual�comparison�between�
desired�data�points�mentally,�and�consequently�reducing�the�significant�
amount�of�panning�and�cognitive�effort.�Moreover,�GraphLite�employs�
space�compaction�methods�to�further�improve�interaction�usability�by�
decreasing�horizontal�panning�and�providing�a�simple�one-finger�tap�
gesture-based�interface�to�reduce�the�dependency�on�the�default�two�or�
three-finger�zoom-and-pan�gestures.�

In�a�user�study�with�26�low�vision�participants,�we�observed�that�
GraphLite�reduced�the�time�to�perform�representative�chart�tasks�com-
pared�to�the�baseline�methods�–�default�screen�magnifier�and�a�state-
of-the-art�method�that�converted�charts�to�tables�[13].�The�subjective�
feedback�for�GraphLite�was�also�significantly�more�positive�than�the�
baselines.�All�study�participants�stated�that�GraphLite�significantly�re-
duced�their�mental�burden�while�interacting�with�data�charts�by�enabling�
them�to�view�desired�content�within�the�viewport�despite�magnification.�

In�sum,�our�contributions�are:�(i)�The�findings�of�an�interview�study�
uncovering�the�interaction�challenges�that�low-vision�users�face�while�
interacting�with�data�charts�using�screen�magnifiers;�(ii)�An�assistive�
technology�application�that�provides�an�alternative�interactive�mode�
for�charts,�enabling�users�to�customize�chart�data�and�selectively�view�
desired� data� points� next� to� each� other;� and� (iii)� The� findings� of� a�
user�study�with�26�low-vision�participants�evaluating�the�efficacy�of�
GraphLite�against�state-of-the-art�solutions.�

2 RELATED WORK

2.1 Low Vision Interaction with Smartphones

Extant�research�concerning�smartphone�interaction�needs�and�behavior�
of�people�with�visual�disabilities�has�predominantly�focused�on�screen�
reader�users�[32,�38].� In�contrast,�prior�research�on�the�needs�of�low�
vision�screen�magnifier�users� is�still� in� its� infancy�[15,�73].� Szpiro�
et�al.�[73]�conducted�a�study�to�understand�the�interaction�behavior�
of�low-vision�screen-magnifier�users�on�touch�devices�such�as�smart-
phones.� Their�study�uncovered�multiple�accessibility�and�usability�
challenges:�(i)�Many�participants�struggled�to�pan�back�and�forth�after�

Fig.�2:�Low-vision�chart�interaction�using�screen�magnifier.�

content�enlargement;�(ii)�The�participants�had�to�remember�and�make�
use�of�different�multiple-finger�gestures�to�use�the�screen�magnifier�
accessibility�features;�and�(iii)�Uniform�content�enlargement�aspect�
of�screen�magnifiers�made�it�challenging�to�navigate�and�understand�
the�application�content.�While�this�research�sheds�light�on�general�ob-
stacles�faced�by�low-vision�users�on�smartphones,�the�extent�to�which�
these�issues�impact�low-vision�users’�experience�with�charts�remains�
unknown,�which�will�be�covered�in�our�interview�study�(Section�3).�

Preliminary�works�exist�that�propose�solutions�to�improve�usability�
for�low�vision�screen�magnifier�users�[47,57].�Almost�all�of�these�works�
have�based�their�solution�ideas�on�the�concept�of�context�preservation�
after content enlargement,�using some form of�space�compaction�[7,31].�

While�the�research�mentioned�above�primarily�focused�on�generic�
aspects�of�low-vision�interaction�with�smartphones�and�desktops,�they�
did�not�directly�address�the�unique�low-vision�needs�associated�with�
visualizations� such� as� data� charts.� However,� the� main� ideas,� such�
as�space�compaction�and�context-preservation,�are�still�helpful,�and�
therefore,�we�adopted�these�ideas�while�designing�GraphLite.�

2.2 Accessibility and Usability of Data Charts

A�few�research�studies�have�focused�on�improving�the�user�experi-
ence�of�blind�people�while� interacting�with�data� charts.� These� so-
lutions�include�automatic�generation�of�textual�alternatives�[34,�37],�
sonification-based�interfaces�[2, 29],�alternative�tactile�and�multi-modal�
interfaces�[20, 21],�question�and�answer�systems�[36, 54],�and�tabular�
representations�of�charts�[13, 24].�

These�solutions�for�improving�interaction�with�data�charts�primar-
ily�target�blind�screen-reader�users.� While�low-vision�users�can�also�
use�these�solutions,� they�are�not�specifically�tailored�for�low-vision�
interaction.�Moreover,�graphical�visual�decoding-based�issues�faced�by�
low-vision�users�have�yet�to�be�thoroughly�explored,�and�there�is�no�
present�solution�inherently�designed�for�low-vision�users.�We�address�
this�gap�in�this�paper�by�introducing�a�novel�system�GraphLite�that�
strives�to�improve�the�usability�of�charts�specifically�for�low-vision�
screen-magnifier�users.�

2.3 Data Extraction from Charts

Chart�reverse-engineering�refers�to�the�process�of�analyzing�and�decon-
structing� a�visual� chart� or�graph� to�understand� its� underlying�data,�
structure,� and� the� methods� used� to� create� it� [59].� Plenty� of� rule-
based�[23, 35, 59, 66],�automated�tool-based�[12, 35, 55, 56],�and�deep�
learning-based�[13, 48, 52]�extraction�techniques�currently�exist�to�ex-
tract�all�necessary�information�from�charts.�

While�the�tool-based�approaches�are�effective�for�data�extraction,�
the�need�for�user�engagement�in�automated�tools�can�cause�cognitive�
overload�for�low-vision�users�due�to�the�excessive�screen�magnifier�
interaction�with�the�user�interface.� On�the�other�hand,�rule-based�al-
gorithms�are�not� scalable� for� real-world�scenarios�and�have� longer�
processing�times.�Therefore,�for�GraphLite,�we�chose�an�extraction�al-
gorithm�using�deep�learning.�Specifically,�we�employed�the�ChartOCR�
method�[52],�a�deep�hybrid�framework�that�combines�the�strengths�of�
deep�learning�and�rule-based�methods�for�data�extraction.�ChartOCR�
has�demonstrated�state-of-the-art�performance�on�bar,� line,� and�pie�
charts�within�the�custom�benchmark�dataset�ExcelChart400K.�This�per-
formance�surpasses�classical�rule-based�models�such�as�Revision�[66],�
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and�other�deep�learning-based�models�such�as�Vis�[13],�ResNet+Faster-
RCNN�[13,�48],�ResNet+Rotation�RNN�[48],�and�even�commercial�
products�such�as�Think�Cell�[75].� Note�that�GraphLite�is�not�tied�to�
ChartOCR�per�se;�any�chart�data�extraction�technique�can�be�used�in�
place�of�ChartOCR.�

2.4 Responsive Visualizations

Responsive�visualization�design�involves�creating�multiple�versions�
of�data�visualization�in�order�to�accommodate�different�screen�sizes�
and�device�types�[28, 39].�A�plethora�of�prior�research�works�have�ex-
plored�various�ways�in�which�visualizations�can�be�adapted�for�‘smaller�
screens’,�primarily�focusing�on�visual�elements�and�structure�[18,41,77],�
as�well�as�interaction�methods�[40, 43, 70].�

Hoffswell�et�al.�[28]�proposed�a�system�that�provides�immediate�
cross-device�previews,�enabling�designers�to�see�the�impact�of�their�
edits�across�multiple�devices�in�real-time,�and�supports�the�propagation�
of�successful�edits�to�other�views,�ensuring�a�cohesive�user�experience.�

While�this�approach�provides�chart�designers�with�hands-on�experi-
ence�in�designing�multiple�responsive�versions,�it�can�be�tedious�and�
often�requires�multiple�design�iterations.�To�mitigate�these�challenges,�
automated�tools�such�as�MobileVisFixer�by�Wu�et�al.�[77]�have�been�
proposed.�MobileVisFixer�utilizes�a�Markov�Decision�Process�model�
to�automatically�redesign�SVG-based�visualizations,�improving�their�
readability�and�usability�on�smaller�screens.�

While�the�ability�to�automate�certain�edits,�like�repositioning�leg-
ends,�may�be�widely�useful,�authors�may�still�need�to�manually�edit�
visualizations�in�ways�that�are�difficult�to�automate,�such�as�rewriting�
text�annotations.� To�address�this,�Kim�et�al.�[40]�developed�Dupo,�a�
‘mixed-initiative�authoring�tool’�designed�to�streamline�the�creation�
of�responsive�visualizations�across�different�screen�sizes.� The�Dupo�
interface�integrates�manual�editing�tools�with�automated�design�sug-
gestions,�which�allows�users�to�customize�designs,�manage�edit�history,�
and�explore�responsive�suggestions�while�also�providing�additional�
controls�for�fine-tuning�and�quick�edits.�

These�responsive�visualization�solutions�primarily�focus�on�adapt-
ability�for�sighted�users,�ensuring�that�visualization�charts�remain�in-
formative�and�legible�across�various�device�platforms,�such�as�mobile�
and�desktop.�While�low-vision�users�can�benefit�from�these�responsive�
visualizations,�their�needs�are�not�fully�addressed.�They�require�addi-
tional�forms�of�responsive�visualization�tailored�to�their�specific�needs.�
In�this�research,�we�explore�various�usability�issues�faced�by�low-vision�
users,�formulate�design�requirements,�and�build�GraphLite�to�cater�to�
the�unique�needs�of�low-vision�users.�

3 LOW VISION USABILITY ISSUES WITH DATA CHARTS

We�conducted�an�IRB-approved�interview�study�with�14�low-vision�
screen�magnifier�users�to�uncover�their�interaction�issues�with�data�
charts�on�smartphones.�We�specifically�gathered�information�on�partici-
pants’�experiences�with�data�charts,�such�as�their�frequency�of�encoun-
ters,�common�settings�of�interaction,�and�the�chart�types�they�usually�
engage�with�in�daily�life.�Examples�of�seed�questions�included:�What�
problems�do�you�face�when�interpreting�data�charts?,�In�what�type�of�
charts�do�you�face�the�most�problems?,�and�How�do�you�work�around�
these�issues?.�The�collected�interview�feedback�was�then�qualitatively�
analyzed�using�an�open�coding�technique�[65],�where�we�iteratively�
reviewed�the�user�responses�and�identified�key�insights,�pain�points,�
and�themes�that�reoccurred�in�the�data.�

3.1 Findings

In�the�interviews,�6�participants�frequently�reported�encountering�bar�
charts,�while�5�participants�mentioned�line�charts.�These�charts�were�
predominantly�observed� in�news�articles� (by�5�participants),� social�
media�(by�4�participants),�and�blogs�(by�4�participants).� Given�their�
familiarity�and�frequent�exposure�to�these�charts,�participants’�feedback�
and�responses�were�tailored�around�bar�and�line�charts.�Therefore,�in�
this�paper,�we�focus�primarily�on�bar�and�line�charts.�

(a)�Associating�bar�chart�data�points�with�corresponding�axis�labels�
under�magnified�view�is�arduous.�A�majority�(12)�of�the�participants�
stated�that�it�was�often�tedious�and�cumbersome�to�find�the�label�values�

of�data�points�in�bar�charts�and�line�graphs.� This�can�be�explained�
as�follows:� for�sighted�users,�the�perceptual�effort�to�associate�label�
l�with�bar�b�on�the�primary�key�axis�of�graph�g�is�computed�as�230�
units�for�the�saccadic�movement�from�the�bar�to�the�label�[19];�150�
units�for�the�discrimination�of�the�label�[49];�and�300�units�for�word�
recognition�[33].� This�cognitive�burden�is�amplified�for�low-vision�
individuals�because�they�have�shorter�and�more�frequent�saccades�and�
fixations�[76].�However,�other�considerations�also�impact�the�total�effort�
required,�such�as�the�loss�of�visual�context�when�panning�and�the�issues�
arising�from�high�zoom�levels.�Specifically,�a�slight�misalignment�of�
the�magnification�window�during�panning�can�cause�the�disappearance�
of�contextual�information,�as�noted�by�(7)�participants.�They�elaborated�
that�precise�navigation�of�the�magnifier�lens�in�a�straight�line�from�
the�data�point�to�the�axes�was�necessary�for�accurately�estimating�the�
data�point’s�values.�Any�disruption�in�focus�during�this�process�usually�
meant�restarting�the�estimation�process�entirely.�

(b)�Visually�comparing�data�points�that�are�far�apart�in�bar/line�charts�
is�too�difficult.� Many�participants�(8)�mentioned�that�visually�com-
paring�data�points�demanded�slow,�precise,�and�concentrated�manual�
movement�of� the�magnifier� lens,� which�was�mentally� and�visually�
tiring.�All�participants�mentioned�that�making�comparisons�between�
data�points�that�were�far�apart�from�each�other�was�extremely�diffi-
cult,�mainly�due�to�the�magnification-induced�loss�of�spatial/visual�
relationships�between�the�data�points�and�the�increasing�difficulty�of�
comparing�non-adjacent�data�points�–�a�phenomenon�known�as�separa-
tion�effect�loss�[74].�For�bar�charts,�10�participants�stated�that�attention�
predominantly�gravitated�towards�taller�bars,�sometimes�resulting�in�the�
oversight�or�complete�neglect�of�shorter�ones.�Additionally,�taller�bars�
often�cast�a�visual�“smudge”�in�the�space�around�them.�When�the�user�
tries�to�identify�the�height�of�a�tall�bar,�the�smudge�on�top�of�the�bar�is�
misinterpreted�as�part�of�the�bar,�causing�participants�to�overestimate�
its�height.�Regarding�line�charts�(9),�participants�stated�that�issues�like�
smudging�and�blurring�persisted,�complicating�the�analysis�of�trends.�
While�participants�could�grasp�a�general�sense�of�the�chart,�pinpointing�
the�precise�slope�of�the�lines�was�arduous.�

(c)�Need�to�individually�memorize�data�values�for�making�compar-
isons�between�data�points.�One�of�the�strategies�mentioned�by�6�partic-
ipants�to�overcome�data-comprehension�difficulties�in�a�bar/line�chart�
was�to�determine�and�memorize�the�(axes)�values�of�data�points�one�at�
a�time�and�then�compare�them�mentally�to�comprehend�the�differences.�
Four�participants�explained�that�this�strategy�was�always�required�for�
charts�with�many�data�points.� Two�participants�even�felt�that�if�the�
number�of�data�points�was�high,�there�was�little�benefit�gained�by�vi-
sualizing�this�data�as�charts�since�they�had�to�remember�and�mentally�
compare�raw�values.�

The�findings�from�the�interview�study�clearly�demonstrate�the�need�
for�a�tailored�solution�that�addresses�the�specific�challenges�faced�by�
low-vision�users�when�interacting�with�data�charts.�

4 GRAPHLITE ARCHITECTURE AND INTERFACE DESIGN

4.1 Design Considerations and Requirements

The�design�of�GraphLite�was�informed�by�insights�gathered�from�inter-
views�with�low-vision�users�and�a�review�of�prior�research.�

Visual�Memory�and�Selective�Focus.� When�sighted�individuals�en-
counter�visual�data,�the�transfer�of�information�to�working�memory�
from�the�sensory�memory�is�influenced�by�two�main�factors:� the�dis-
tinct�features�of�the�visualization�and�the�viewer’s�deliberate�focus.�The�
completion�of�processing�in�working�memory�allows�for�the�storage�of�
information�in�long-term�memory.�The�act�of�selectively�focusing�on�
specific�information�during�the�working�memory�phase�is�what�deter-
mines�the�content�stored�in�long-term�memory.�This�focused�attention�is�
characterized�by�an�effort�to�disregard�certain�stimuli�or�aspects�deemed�
irrelevant�while�concentrating�on�those�considered�important�[51].�

For�people�with�low�vision,�capturing�information�in�sensory�mem-
ory�is�different;�they�cannot�observe�distinct�features�of�the�chart�due�
to�impairments�that�cause�smudging�or�blurring�(see�section�3.1(b)).�
Moreover,�their�focus�is�diverted�to�easily�noticeable�features,�like�taller�
bars�in�bar�charts,�or�it�might�be�divided�due�to�the�need�to�separately�

Authorized licensed use limited to: Old Dominion University. Downloaded on March 30,2025 at 00:59:25 UTC from IEEE Xplore.  Restrictions apply. 



IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, VOL. 31, NO. 1, JANUARY 2025856

examine�different� components,� such�as� labels� and�axis�values� (see�
section�3.1(b)).� To�supply�working�memory�with�accurate�informa-
tion,�they�depend�on�two�methods:�(1)�visual�aids�like�magnification�
tools,�which�introduce�several�challenges�specifically�due�to�loss�of�
spatial/visual�context�(refer�section�3.1(a)),�and�(2)�adaptive�techniques,�
including�auditory�feedback,�such�as�alternative�text�or�data�presented�
in�table�format,�which�essentially�bypasses�the�visual�advantages�of�
graphical�representations.� For�low-vision�users,� the�information�re-
tained�in�the�long-term�memory�might�be�detached�from�the�actual�
representation�of�the�chart�(refer�section�3.1(c)).�

Optimizing�the�Locus�of�Selection.�To�effectively�address�the�unique�
challenges�faced�by�low-vision�users�in�processing�visual�information,�
we�focused�on�creating�a�design�approach�that�optimizes�the�“locus�of�
selection”-—the�critical�stage�at�which�specific�information�is�chosen�
for�deeper�cognitive�processing�[45],�drawing�inferences�from�“per-
ceptual�load�theory”�principles,�which�involves�breaking�down�visual�
tasks�into�smaller,�manageable�segments�and�integrating�multimodal�
feedback�to�substantially�improve�selective�attention�[44].�

Customizable�Visual�Attributes�for�Early/Late�Selection.�Customiza-
tion�options� for�visual�attributes� such�as�color,� contrast,� font� style,�
and�size�are�necessary�for�low-vision�users.� This�initial�customiza-
tion�serves�as�an�effective�cognitive�filter�for�“early�selection,”�which�
involves�the�screening�of�sensory�input�at�the�onset�before�detailed�
processing�[45].�This�allows�users�to�minimize�visual�disturbance�from�
the�very�beginning.�This�is�backed�by�prior�research,�e.g.,�by�Wurm�et�
al.�[78],�who�found�that�although�acuity�and�color�are�independent�of�
each�other,�color�improved�object�recognition�for�low-vision�users�and�
it�also�improved�the�overall�interaction�experience�with�faster�reaction�
times�(353ms�color�advantage�[78]).�

Moreover,�graphical�comprehension�involves�interpolating�data�in�
charts�and�understanding�various�underlying�relationships�within�data;�
this�can�also�be�referred�to�as�“read�between�data”�(i.e.,�integrating�and�
interpreting)�[64].�While�existing�solutions�for�low-vision�users�gener-
ally�“read�beyond�data”�(i.e.,�generating�and�predicting),�the�flavor�of�
preserving�chart�semantics�is�typically�lost�in�the�process�(refer�section�
2).� To�bring�back�the�ability�to�“read�between�data”�for�low-vision�
users,�GraphLite�allows�them�to�selectively�view�and�trim�down�charts.�
Therefore,�support�should�also�be�provided�for�“late�selection”,�which�
involves�diving�deeper�after�an�initial�overview�[45],�e.g.,�by�enabling�
selective�focus�on�crucial�data�points.�Furthermore,�focusing�solely�on�
specific�data�points�through�single�selective�attention�is�insufficient�for�
comprehensive�analysis;�a�multi-attention�mechanism�plays�a�critical�
role�in�enhancing�interaction�with�complex�visualizations.� This�can�
be�achieved�via�multiple�‘views’�of�a�single�data�chart,�empowering�
users�to�undertake�several�rounds�of�“late�selection”.�GraphLite�was�
designed�to�accommodate�the�above�requirements�as�explained�next.�

4.2 GraphLite Overview

Figure�3�presents�an�architectural�schematic�illustrating�the�workflow�
of�GraphLite�prototype.�When�the�user�loads�a�webpage�in�GraphLite,�
it�leverages�a�custom-trained�Inception-V3�model�[79]�to�proactively�
identify�the�charts�on�the�webpage�as�well�as�their�types�(e.g.,�bar�chart,�
line�chart).� After� recognition,�GraphLite�automatically�extracts�all�
information�(e.g.,�labels,�legends,�data�values,�etc.)� from�the�charts�
using�an�extended�ChartOCR�model�[52].�Next,�when�the�user�selects�a�
data�chart�with�a�single�tap�gesture,�GraphLite�generates�an�accessible�
proxy�interface�specifically�designed�for�low-vision�users.�

A�one-finger�long-press�gesture�[5]�on�the�proxy�interface�automati-
cally�opens�up�selection�options,�which�can�used�to�pick�and�view�only�
a�few�data�points�of�interest.� Users�can�create�multiple�such�‘views’�
if�desired,�by�tapping�on�the�‘NEXT’�option.� When�the�user�finally�
selects�the�‘DONE’�button,�the�first�view�is�presented�to�the�user�by�de-
fault.�The�user�can�navigate�to�the�other�self-created�views�using�simple�
left/right�swipe�gestures.�In�addition,�the�proxy�interface�also�provides�
an�assortment�of�customization�options�to�set�the�color,�background,�
font,�etc.,�to�further�improve�usability.� GraphLite�also�applies�space�
compaction�while�rendering�views�of�charts�in�the�proxy�interface�to�
maximize�the�utilization�of�screen�space,�thereby�reducing�the�user’s�

Fig.�3:�Architectural�schematic�of�GraphLite.�

panning�effort.� The�full�implementation�details,�including�front-end�
and�backend�components,�along�with�the�corresponding�code,�are�all�
available�on�GitHub1.�

4.3 Chart Data Extraction

We�used�the�robust�ChartOCR�method�[52],�a�deep�hybrid�framework�
that�takes�advantage�of�both�deep�learning�and�rule-based�methods�for�
chart�data�extraction.� We�leveraged�the�CornerNet�architecture�[46],�
incorporating�a�104-layer�HourGlass�network�[58]�as�the�backbone�
for�ChartOCR�to�efficiently�extract�key�points�in�bar�and�line�charts,�
respectively.� For�example,� the�key�points� for� the�bar�chart�are� the�
top-left�and�bottom-right�corners�of�each�bar.�GraphLite�then�groups�
each�of�the�top-left�and�bottom-right�key�points�sequentially�to�obtain�
bounding�boxes�of�bars.�It�also�computes�the�height�of�each�bar�using�
these�top-left�and�bottom-right�key�points.� Similarly,�for�line�charts,�
the�key�points�are�the�pivot�points�along�the�lines.�GraphLite�then�uses�
a�hierarchical�clustering�algorithm�to�group�these�key�points�into�their�
respective�lines.�Once�grouped,�the�key�points�are�correctly�associated�
with�their�lines,�enabling�the�reconstruction�of�the�lines�on�the�chart.�
GraphLite�then�leverages�the�OCR�engine�AWS-Rekognition�(AWS-
Rekognition�DetectText�API)�[4]�to�extract�relevant�features�from�charts�
(e.g.� title,�axis�labels,�legends,�scale,�etc.).� GraphLite�then�stores�all�
the�data�values�and�their�corresponding�x-axis�labels,�as�well�as�other�
relevant�features�from�the�chart,�in�a�JSON�format.�

Training.�We�trained�ChartOCR�[52]�for�bar�and�line�charts�on�Nvidia�
V100�GPU�with�128GB�memory�per�node,�where�the�learning�rate�was�
set�to�0.0025,�we�further�decreased�the�learning�rate�by�a�factor�of�10�
for�the�last�5000�batches.�The�overall�batch�size�was�set�at�27�and�the�
total�step�size�was�set�to�450000.� For�optimization,�we�made�use�of�
the�well-known�Adam�optimizer�[80].�We�employed�an�early-stopping�
strategy�during�the�model�training�process�to�optimize�performance�and�
prevent�overfitting.�

4.4 Proxy Interface Design

We�designed�the�GraphLite’s�proxy�interface�by�adhering�to�the�accessi-
bility�guidelines�proposed�by�Alcaraz�et�al.�[1].�As�illustrated�in�Figure�
1,�we�designed�the�user�interface�of�GraphLite�to�be�navigable�with�
simple�one-finger�gestures�in�contrast�to�the�status-quo�two-finger�slide�
gestures�offered�by�in-built�OS�accessibility�services.� To�access�the�
proxy�interface,�the�user�simply�needs�to�tap�on�a�chart�in�the�current�
webpage.�In�the�proxy�interface,�the�user�can�execute�a�simple�upward�
swipe�gesture�to�invoke�the�‘Theme�picker’�to�customize�the�appear-
ance�of�the�chart�according�to�their�preferences.�A�long�press-and-hold�
gesture�on�the�proxy�interface�pops�up�a�check�box�interface�with�all�
the�chart’s�x-axis�labels.�To�navigate�the�list�of�options,�the�user�can�
simply�swipe�down�the�pop-up�interface.�

To�select�any�x-axis�labels�of�choice,�the�user�must�tap�on�the�corre-
sponding�check�box.�Following�a�selection,�pressing�the�‘NEXT’�button�
triggers�the�interface�to�refresh,�allowing�users�to�make�additional�se-
lections�as�needed.� This� iterative�selection�process�continues�until�
the�user�is�satisfied�and�decides�to�conclude�by�pressing�the�‘DONE’�
button.�Upon�finalizing�their�selections,�GraphLite�integrates�a�space�
compaction�algorithm1� for�both�bar�and�line�charts,�optimizing�element�

1https://github.com/accessodu/GraphLite.git
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spacing�under�magnification.�This�algorithm�adjusts�the�spacing�and�
scaling�of�bars�and� line�segments� to�maximize�screen�space�usage,�
presenting�a�curated�visualization�that�incorporates�only�the�selections�
specified�by�the�user.�These�customized�views�can�be�navigated�using�
swipe�gestures,�enabling�users�to�peruse�through�various�chart�visu-
alizations�that�reflect�their�chosen�options�via�the�proxy�interface,�as�
shown�in�Figure�1.�

Moreover,�this�interface�extends�its�customization�capabilities�by�
allowing�users�to�directly�interact�with�individual�data�elements,�such�
as�bars�in�a�bar�chart�or�lines�in�a�line�chart.�After�tapping�on�these�ele-
ments,�users�can�invoke�the�‘Theme�Picker’�once�again�to�apply�distinct�
color�changes�to�selected�data�points.� To�close�the�GraphLite�proxy�
interface,�the�user�can�simply�tap�the�blue�button�on�the�interface.�Note�
that�GraphLite�does�not�block�access�to�the�original�chart�visualization;�
this�is�by�design�to�ensure�that�the�user�always�has�a�backup�option�
in�case�of�errors,� e.g.,� incorrect�data�extraction�by� the�GraphLite’s�
data�extraction�algorithm.� The�implementation�and�technical�details�
of�GraphLite�are�provided�in�the�appendix,�and�a�video�demonstrating�
GraphLite�in�action�and�explaining�the�interaction�workflow�is�available�
on�GitHub1.�

4.5 Implementation details

We�implemented�GraphLite�as�an�Android�mobile�browser�application�
developed�using�Flutter�open�source�framework�[22].�When�the�user�
loads�a�webpage,�GraphLite�leverages�in-built�Dart�functions�[17]�to�
extract�the�DOM�of�the�webpage�and�send�it�to�the�backend�server�via�a�
POST�request.�Beautiful�soup�[61]�Python�package�was�used�to�extract�
all�images�in�the�DOM,�which�were�then�labeled�with�positional�IDs.�
The�images�were�then�sent�to�a�custom-trained�Inception-V3�model�[25].�
Following�this,�images�were�annotated�with�flags�(True,�False)�based�
on�whether�they�were�data�charts�or�not.�All�chart�images�were�sent�to�
the�ChartOCR�[69]�to�extract�data�attributes.�The�respective�chart�IDs,�
flags,�and�attributes�were�packaged�into�a�JSON�object�and�sent�to�the�
Flutter�module.�When�the�user�taps�on�a�chart,�the�syncfusion�flutter�
charts�[72]�package�uses�the�chart�data�in�the�JSON�object�to�recreate�a�
new�chart�in�the�proxy�interface.�Additional�functionalities,�including�
typography�adjustments,�data�point�selection�via�checkboxes,�swiping�
through�various�views,�and�customizing�the�color�of�individual�data�
points,�were�implemented�using�Flutter’s�built-in�features.�The�flutter�
inappwebview�package�[50]�was�utilized�to�integrate�web�content�and�
enable�interactions�with�charts�within�the�app.�To�establish�a�communi-
cation�channel�between�the�Flutter�app�modules�and�the�backend�server�
modules,�we�used�the�Flask�REST�API�[60].�

5 EVALUATION

We�conducted�an� IRB-approved�user� study�with� low-vision� screen�
magnifier�users�to�assess�the�efficacy�of�GraphLite.� We�managed�to�
recruit�26�low-vision�participants�(16�female,�10�male)�for�the�study2.�
Full�participant�demographic�details�are�available�on�GitHub1.�

5.1 Design

In�a�within-subject�experimental�setup,�the�participants�were�asked�to�
perform�representative�chart�tasks�under�the�following�conditions:�

•� Screen�Magnifier�(SM)�–�The�participants�used�the�status�quo�
screen�magnification�accessibility�features�to�do�the�tasks.�

•� Tabular�Representation�(TBL)�–�The�participants�could�interact�
with�tabular�representations�of�the�charts�to�do�the�tasks.� This�
condition�was�chosen�to�represent�extant�solutions�that�convert�
charts�to�tables�for�better�accessibility,�as�seen�in�example�[13].�

•� GraphLite�with�only�Space�Compaction�(SC)�–�The�participants�
could�leverage�only�the�space�compaction�feature�of�GraphLite.�

•� GraphLite�with�Space�Compaction�and�Configuration�(SCC) –�
The�participants�could�leverage�both�space�compaction�and�cus-
tomization�(color,�contrast,�font)�features�of�GraphLite.�

2The�typical�size�of�low-vision�user�studies�is�between�12�to�20.�We�enrolled�

slightly�more�participants�due�to�the�relatively�higher�number�(5)�of�conditions�

in�our�study.�

•� GraphLite�with�Space�Compaction,�Configuration�and�Feature�
selection�(SCCF)�–�The�participants�could�leverage�all�features.�

In�our�study,�participants�engaged�in�a�series�of�tasks�tailored�to�
assess� their� interaction�with�bar�and�line�charts.� For�designing�the�
tasks,�we�consulted�prior�work�in�information�visualization�[63]�that�
has� introduced� various� taxonomies� categorizing� tasks� that� connect�
visualization�techniques�with�user�cognitive�processes.� The�insights�
from�our�earlier�interview�study�helped�identify�the�relevant�taxonomies�
for�this�study�and�directly�informed�our�choice�of�tasks.�Specifically,�
we�found�Amar�et�al.’s�taxonomy�[3]�of�low-level�tasks�to�be�most�
fitting�for�our�study.�This�taxonomy�includes�a�series�of�tasks�designed�
to�require�minimal�reasoning�about�the�data,�thereby�making�it�ideal�
for�our�study’s�focus.�The�chosen�tasks�were:�

•� Task�1:�Pairwise�Comparison�required�participants�to�compare�
predetermined�data�points.�

–� The�first�subtask�(SBC)�involved�comparing�a�single�pair,�
such�as�sales�from�Wednesday�to�Saturday.�

–� The�second�subtask�(MBC)�involved�comparing�multiple�
pairs,� like�sales�from�Thursday� to�Saturday,�Monday�to�
Friday,�and�Tuesday�to�Sunday.�

•� Task�2:� Selective�Filtering� focused�on�data�filtration,� where�
participants�identified�data�entries�meeting�specific�criteria.�

–� The�first�subtask�(SBF)�involved�pinpointing�days�when�
sales�fell�below�1�million.�

–� The�second�subtask�(MBF)�required�filtering�a�range�of�
sales�figures�to�identify�multiple�data�points,�such�as�finding�
days�when�sales�were�between�1�and�2�million.�

•� Task�3:�Trend�Prediction�was�adapted�to�emphasize�trend�predic-
tion�(LTP),�asking�participants�to�predict�sales�trends�of�a�product�
across�the�following�month�based�on�prior�monthly�data.�

•� Task�4:�Trend�Comparison�was�introduced,�focusing�on�trend�
identification�and�comparison�(LTC).�For�example,�participants�
were�tasked�with�identifying�the�overall�trend�in�stock�prices�over�
a�defined�range�of�months�and�comparing�the�trend�with�another�
range�of�months.�

To�reduce�the�impact�of�confounding�variables�such�as�the�learning�
effect,�we�used�different�bar�and�line�charts�for�the�five�study�condi-
tions,�i.e.,�for�Task�1�and�Task�2,�we�curated�ten�bar�charts,�five�for�
each�task.�We�ensured�that�all�ten�bar�charts�were�similar,�with�each�
chart�containing�20�data�points�(i.e.,�bars)�and�having�identical�initial�
formatting�in�terms�of�color,�contrast,�font,�and�spacing.� For�Task�1,�
we�pre-selected�data�points�such�that�the�first�data�point�was�randomly�
picked�from�the�leftmost�three�data�points�in�the�bar�chart,�and�the�
second�data�point�was�randomly�picked�from�the�rightmost�three�data�
points.�This�selection�strategy�ensured�participants�interacted�with�the�
majority�of�the�chart�data�while�maintaining�a�consistent�separation�
effect�across�tasks,�thereby�mitigating�potential�confounds�as�noted�in�
Talbot�et�al.�[74].� A�similar�approach�was�followed�for�Task�2.� For�
the�line�charts,�we�employed�the�same�methodology�in�chart�creation,�
ensuring�each�chart�contained�20�data�points.�For�Task�3,�participants�
were�required�to�predict�the�trend�following�the�20th�data�point.� In�
Task�4,�we�selected�trends�from�different�parts�of�the�charts�for�com-
parison,�ensuring�that�users�traversed�through�most�of�the�charts.�The�
trends�were�chosen�based�on�identifying�the�best�possible�correlations�
between�line�segments,�thereby�facilitating�a�comprehensive�analysis�
and�interaction�with�the�chart�data.�We�also�ensured�that�the�chart�data�
extraction�was�accurate�for�all�these�graphs.�The�assignment�of�charts�
to�conditions�and�the�ordering�of�conditions�were�counterbalanced�to�
the�best�extent�possible�using�the�Latin�square�method�[8].�

5.2 Procedure

The�user�study�was�conducted�over�a�month�to�accommodate�26�partic-
ipants.�Three�sessions�were�available�each�day�from�Monday�to�Friday,�
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with�each�session�lasting�between�2�to�2.5�hours.�Two�experimenters�
were�available�per�session,�each�accommodating�one�participant.�Par-
ticipants�had�the�flexibility�to�choose�any�of�these�sessions�and�were�
required�to�attend�three�sessions�to�complete�the�study.� The�experi-
menter�began�by�obtaining�formal�consent�from�each�participant�and�
briefly�explaining�the�study’s�goals.�Participants�were�then�introduced�
to� the�TBL�and�GraphLite� interfaces�and� took�part� in�practice� ses-
sions.� In�the�study,�each�subtask—SBC,�MBC,�SBF,�MBF,�LTP,�and�
LTC—was�allotted�10�minutes�completion�time.�After�completing�each�
subtask,�participants�filled�out�the�SUS�and�NASA-TLX�questionnaires�
to�capture�their�usability�and�workload�perceptions.�The�experimenter�
also�noted�user-interaction�behaviors�and�collected�qualitative�feedback�
in�exit�interviews.�All�study�activities�and�data�were�recorded�with�con-
sent,�and�participants�received�an�Amazon�gift�card.�Further�details�on�
the�participant’s�demographics,�apparatus,�methodology,�Charts�used�
in�the�study,�and�the�schedule�of�the�study�are�available�on�GitHub1.�

5.3 Data Analysis

From�the�study�data,�we�computed�the�following�metrics�for�each�study�
condition:�(i)�Task�completion�times,�(ii)�Task�completion�rates,�(iii)�
Task�performance�accuracies,�(iv)�SUS�usability�scores,�and�(v)�NASA-
TLX�workload�scores.� We�then�used�these�metrics� to�compare�the�
different�study�conditions�using�standard�statistical�tests�and�determine�
if�there�was�a�significant�positive�impact�of�GraphLite�on�the�overall�
performance�and�user�experience�of�the�participants.�For�analyzing�the�
subjective�exit-interview�feedback�and�experimenter�notes,�we�adopted�
a�qualitative�analysis�method,�specifically�an�open�coding�technique�
followed�by�axial�coding�[65],�where�we�iteratively�went�over�the�user�
data�and�identified�recurring�observations�and�insights.�

5.4 Abbreviations

For�convenience,�Table�1�lists�all�the�abbreviations�and�placeholders�
that�will�be�used�in�the�rest�of�the�paper�to�present�the�results.�

Table�1:�List�of�Abbreviations�and�Placeholders.�

SM�:�Screen�Magnifier� MBC�:�Multi-bar�Comparison�

TBL�:�Table�of�Content� MBF�:�Multi-bar�Filtering�

SC�:�Space�Compaction� LTC�:�Line�Trend�Comparison�

SCC�:�SC�+�Customization� TLX�|�SUS�:�Usability�Scores�

SCCF�:�SCC�+�Feature�Selection� Task-1�:�Pairwise�Comparison�

SBC�:�Simple�Bar�Comparison� Task-2�:�Selective�Filtering�

SBF�:�Simple�Bar�Filtering� Task-3�:�Trend�Prediction�

LTP�:�Line�Trend�Prediction� Task-4�:�Trend�Comparison�

5.5 Results

5.5.1� Task�Completion�Times�

We�measured�task�completion�time�as�the�time�(in�seconds)�a�participant�
took�to�do�a�task�under�a�given�condition.� If�a�participant�failed�to�
complete�a�task,� then�the�maximum�allotted�time�(i.e.,�10�minutes)�
was�considered�as�the�completion�time.� The�results�are�presented�in�
Figure�4.�Overall,�there�was�a�significant�impact�of�the�study�condition�
on�the�task�completion�times�(Friedman�test,�χ2�

= 74.6,�p�< 0.001).�

Bar�Charts:�Task�1�For�the�SBC�subtask,�we�observed�that�the�SCCF�
condition�had�the�best�performance�(Mean:� 235.1s,�Median:� 239.5s,�
Min:�122s,�Max:�355s)�whereas�the�SM�condition�exhibited�the�poor-
est�performance�(Mean:�531.34s,�Median:�552.3s,�Min:�423.5s,�Max:�
600s)�among�all� the�study�conditions.� Pairwise� tests�between�con-
ditions�showed�that�the�SCCF�condition�yielded�significantly�better�
results�compared�to�all�other�study�conditions�except�the�TBL�condition�
(Post-hoc�Conover’s�test�with�Benjaminyi-Hochberg�FDR�adjustment,�
SCCF�vs.�TBL:�p�= 0.07).�We�also�observed�that�the�TBL�condition�
significantly�outperformed�the�SC�and�SCC�conditions�(TBL�vs.�SC:�
p�= 0.001,�TBL�vs.�SCC:�p�= 0.002).�

Similar�observations�were�made�for� the�MBC�subtask;� however,�
in�contrast� to� the�SBC�subtask,� we�noticed�a�significant�difference�
between�the�SCCF�condition�(Mean:� 326.4s,�Median:� 317.9s,�Min:�

188.7s,�Max:�442.7s)�and�the�TBL�condition�(Mean:�421.7s,�Median:�
429.8s,�Min:�355s,�Max:�535.5s).�

This�observed�trend�suggests�that�as�tasks�grow�in�complexity�with�an�
increased�number�of�comparisons�and�variables,�the�effectiveness�of�the�
TBL�condition�starts�to�diminish,�whereas�the�SCCF�condition�exhibits�
a�noticeable�performance�improvement.�This�observation�highlights�the�
potential�of�the�SCCF�approach�in�handling�complex�analytical�tasks�
within�graphical�data�interpretation,�especially�as�the�demands�of�data�
analysis�become�more�intricate.�

Bar�Charts:�Task�2�For�the�second�task,�average�task�completion�times�
revealed� that�when�participants�were�asked� to�engage�with�smaller�
ranges�of�data� for� selection,� for� example,� if� the�participant�was� to�
identify�stocks�in�the�range�of�3�million�to�5�million�revenue,�a�simple�
filtration�task,�the�SCCF�condition�(Mean:�422s,�Median:�422.6s,�Min:�
341.9s,� Max:� 501s)�and� the�TBL�(Mean:� 446.6s,� Median:� 452.2s,�
Min:�376s,�Max:�512.3s)�condition�showed�nearly�similar�performance.�
However,�as�the�scope�of�the�data�range�for�filtration�expanded,�for�
example,�if�the�participant�was�asked�to�filter�stocks�in�the�range�of�3�
million�to�8�million�revenue,�a�notable�enhancement�in�performance�
under� the�SCCF�condition�(Mean:� 377.6.4s,�Median:� 348.2s,�Min:�
265.7s,�Max:�532s)�was�observed�Vs.�TBL�(Mean:�476.9.4s,�Median:�
489.6s,� Min:� 377.8s,� Max:� 579.8s)� (Post-hoc� Conover’s� test� with�
Benjaminyi-Hochberg�FDR�adjustment,�SCCF�vs.�TBL:�p�< 0.001).�

Summary:�A�closer�inspection�of�the�recorded�data�revealed�that�while�
performing�the�tasks�in�SM,�SC,�and�SCC�conditions,�the�participants�
often�had�either�concentration�lapses�or�accidentally�executed�incorrect�
panning�gestures,�so�they�had�to�repeat�the�process�multiple�times�to�
complete�the�task.�In�the�TBL�and�SCCF�settings,�horizontal�panning�
issues�were�markedly�reduced,�streamlining�the�task�execution�process.�

Nonetheless,�the�TBL�condition�exposed�a�notable�drawback�when�
participants�performed�both�tasks�with�increased�complexity.�Here,�par-
ticipants�faced�difficulties�in�retaining�and�recalling�specific�data�values,�
often�necessitating�backtracking�for�verification.�This�requirement�for�
frequent�memory�recall�and�verification�introduced�additional�cognitive�
load,�leading�to�uncertainty�and�inefficiency�among�participants�as�they�
cross-checked�and�reassured�themselves�of�the�data�points�in�question�
for�both�tasks,�thereby�increasing�overall�completion�times.�

Line�Charts:�Task�3�For�the�third�task,�the�SCCF�condition�demon-
strated�the�shortest�average�completion�times�(Mean:� 243s,�Median:�
267s,� Min:� 166.5s,� Max:� 310s),� outperforming� the� SM� condition,�
which�had�the� longest� times�(Mean:� 528.9.6s,�Median:� 544s,�Min:�
435.5s,�Max:�588s).�Statistical�analysis�revealed�a�significant�advan-
tage� of� the� SCCF� condition� over� all� others,� according� to� post-hoc�
Conover’s�test�with�Benjamini-Hochberg�FDR�adjustment.�

Line�Charts:�Task�4�For�the�fourth�task,�SCCF�maintained�its�superior�
performance�with�the�best�average�task�completion�times,�distinctly�
better�than�the�SM�condition�and�the�others�in�comparative�analysis�
(SCCF�versus�SM:� p�< 0.001,�SCCF�versus�SC:� p�< 0.001,�SCCF�
versus�SCC:�p�< 0.001,�SCCF�versus�TBL:�p�= 0.03).�These�findings�
consistently� indicate� that�SCCF� is� the�most� effective�condition� for�
conducting�trend�analysis.� Additionally,�the�TBL�condition�showed�
improvement�in�the�second�task,�narrowing�the�performance�gap�with�
the�SCCF�condition�compared�to�the�first�task�by�67%.�

Summary:� In�the�SM,�SC,�and�SCC�conditions,�participants�were�
required�to�continuously�track�trends�with�the�aid�of�a�magnifier,�mov-
ing�them�in�a�non-linear�fashion.� Any�deviation�in�the�path�not�only�
increased�the�task�completion�time�but�also�significantly�compromised�
the�accuracy�of�their�analysis.�

The�TBL�condition�naturally�made�it�challenging�for�users�to�discern�
and�predict�trends�due�to�the�increased�cognitive�load.� For�instance,�
predicting�a�trend�over�12�months�necessitated�participants�to�recall�
trends�month�by�month,�mentally�collating�these�values�into�a�cohesive�
trend.�This�process�often�had�to�be�repeated�multiple�times�to�ensure�
accuracy�and�confidence�in�their�judgments.� However,�in�the�SCCF�
condition,�they�could�swiftly�navigate�through�multiple�views�by�buck-
eting�selective�data�points�in�groups�across�12�months.�A�simple�swipe�
gesture�allowed�them�to�observe�trends�without�the�need�to�meticulously�
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Fig.�4:�Task�completion�time�statistics,�in�seconds,�for�all�the�tasks�and�study�conditions.�Note:�For�the�MBF�task,�only�the�TBL�and�SCCF�conditions�
are�included,�as�participants�were�unable�to�complete�this�task�within�the�time�limit�under�the�SM,�SC,�and�SCC�conditions.�

consider�each�underlying�value,�thus�simplifying�predictions.�
Compared�to�the�SCCF�condition,�the�TBL�condition�showed�im-

proved�performance� in� tasks� involving� the� comparison�of�multiple�
trends�rather�than�predicting�trends.�This�improvement�can�be�attributed�
to�the�ability�of�users�in�the�TBL�condition�to�categorize�and�compare�
values�within�specific�ranges�without�needing�to�assess�the�entire�trend�
from�start�to�finish.�However,�for�the�analysis�of�trends�in�line�charts,�
the�SCCF�condition�still�proved�to�be�superior.� This�is�because�it�al-
lowed�for�a�more�streamlined�approach�to�trend�analysis,�enabling�users�
to�focus�on�broader�trend�patterns�rather�than�getting�bogged�down�
by�the�need�to�remember�and�map�each�data�point�individually.�This�
strategic�division�of�attention,�facilitated�by�selective�focus�in�the�SCCF�
condition,�significantly�reduced�the�cognitive�load�of�trend�analysis.�

5.5.2� Task�Completion�Rate�and�Accuracy�

The�overall�task�completion�rate�for�a�condition�was�computed�as�the�
percentage�of�tasks�completed�by�the�participants�in�that�condition.�
Overall,�the�SCCF�and�TBL�study�conditions�had�the�best�completion�
rates�(100%),�whereas�the�baseline�screen�magnifier�(SM)�condition�
had� the� lowest�average�completion� rate(61.5%).� These�differences�
in�completion�rates�between�the�study�conditions�were�found�to�be�
statistically�significant�(Friedman�test3,�χ2�

= 28.68,�p�< 0.001).�
A�closer�analysis�of�experimenter�notes�and�manual�inspection�of�

screen-captured�videos�revealed�that�the�task�completion�failures�were�
mainly�due�to�two�reasons:�(i)�The�participants�were�unable�to�complete�
the�task�within�the�stipulated�time�limit�of�10�minutes,�and�(ii)�The�
participants�complained�about�stress�and�fatigue�while�giving�up�in�the�
middle�of�the�task.�The�latter�reason�was�more�common�in�the�SM�(4�
participants)�and�SC�(3�participants)�conditions.� In�these�conditions,�
the�participants�frequently�mentioned�that�“there�were�too�many�bars”�
and�that�it�was�difficult�to�keep�track�of�and�remember�the�pre-specified�
task�bars�and�their�y-axis�values.� The�completion�rate�was�slightly�
better�in�the�SCC�condition,�where�some�of�the�participants�mentioned�
that�it�was�“easier�on�their�eyes”�after�changing�bar�colors�and�contrast.�
In�the�TBL�and�SCCF�conditions,�all�participants�completed�the�tasks.�

To�evaluate�the�precision�of�participant�responses�across�the�four�
distinct�tasks—comprising�two�for�bar�charts�and�two�for�line�charts,�
we�adopted�specific�accuracy�metrics�tailored�to�the�nature�of�each�task.�
For�bar�charts,�Task�1’s�accuracy�involved�comparing�participants’�data�
point�comparisons�to�actual�values,�while�Task�2�evaluated�the�accuracy�
of�identifying�points�that�fit�given�criteria.�Line�charts�Task�3�measured�
accuracy�by�matching�participants’�trend�predictions�to�real�data.�Task�
4’s�accuracy�was�binary,�based�on�correctly�identifying�and�comparing�
trends.�These�tasks�assessed�participants’�analytical�skills�across�both�
chart�types.�Note:�The�accuracy�was�noted�without�the�inclusion�of�the�
complexity�of�tasks.�

3We�used�this�non-parametric�test�as�the�data�was�not�normally�distributed.�

Bar�Charts:�We�noticed�a�significant�difference�in�the�participants’�
estimation�errors�between�the�different�study�conditions�across�both�
the�tasks�(Friedman�test4,�χ2�

= 52.88,�p�< 0.001),�with�the�TBL�con-
dition�having�the�lowest�average�error�of�4.8%�(and�therefore�the�best�
performance)�for�task�1�comparison�and�nearly�the�same�average�error�
as�SCCF�condition�of�9.7%�for�task�2�filtration�and�the�SM�condition�
had�the�highest�average�error(18.4%�in�Task�1�and�19.3%�in�Task�2)�
for�both�the�tasks.�The�TBL�condition�saw�a�reduction�in�performance�
during�task�2�particularly�when�increasing�the�complexity�of�the�tasks�
as�participants�had�to�pan�through�the�table�multiple�times�and�often�
mixed� the� rows�mainly�due� to�magnification�misalignment.� In� the�
remaining�three�conditions�(SM,�SC,�and�SCC),�we�observed�that�on�
many�occasions,�the�participants�could�not�view�both�the�y-axis�labels�
and�a�taskbar�at�the�same�time�due�to�enlargement,�and�therefore,�they�
had�to�pan�right-to-left�along�a�straight�line�while�mentally�visualizing�
the�bar�height,�to�estimate�the�bar’s�value�or�to�filter�out�bars�within�
a�range.�We�believe�most�errors�were�introduced�during�this�process,�
possibly�due�to�imperfect�horizontal�panning�and/or�slight�lapses�in�
concentration�during�panning.�

Line�Charts:�In�our�examination�of�line�charts�across�various�exper-
imental�setups�and�two�distinct�tasks�centered�on�trend�analysis,�we�
noted�differences�in�estimation�errors�that�deviated�from�those�seen�with�
bar�charts.�The�SCCF�condition�had�the�lowest�average�error�of�7.1%�
(and�therefore�the�best�performance),�and�the�SM�condition�had�the�
highest�average�error�of�21.1%�(worst�performance)�for�the�task.�The�
superior�performance�observed�in�the�SCCF�condition�is�largely�due�to�
participants�adopting�a�strategy�that�involved�grouping�their�selections�
into�particular�value�ranges�for�analysis.�This�approach�allowed�them�
to�quickly�evaluate�the�types�of�trends�by�observing�shifts�in�trends�
across�different�sections�of�the�charts�efficiently.�The�higher�average�
error�observed�in�the�TBL�condition,�as�compared�to�the�SCCF,�can�be�
attributed�to�the�inherent�demands�of�tabular�data�interpretation.�The�
TBL�condition�necessitated�a�sequential�and�meticulous�approach�from�
users�to�extract�information,�leading�to�the�identification�of�only�a�select�
few�trends,�with�many�potentially�relevant�patterns�overlooked.�On�the�
other�hand,�the�SCCF�condition,�by�leveraging�visual�representations,�
offered�a�more�holistic�and�efficient�means�for�trend�analysis.�Visual�
charts�support� the�brain’s�ability� to�process� information�in�parallel,�
allowing�for�a�more�comprehensive�and�effective�recognition�of�trends�
without�overloading�cognitive�capacities.�

In�the�other�conditions�(SM,�SC,�and�SCC),�we�observed�a�pattern�
of�errors�similar� to� those� identified�in�bar�charts.� This�consistency�
suggests� that� the�underlying� factors�contributing� to� inaccuracies� in�
these�conditions�are�not�unique�to�the�type�of�chart�but�rather�indicative�

4We�used�this�non-parametric�test�because�the�raw�data�was�not�normally�

distributed�as�per�Shapiro-Wilk�test.�
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of�broader�challenges�in�data�interpretation�and�analysis�using�screen� 5.5.4� Qualitative�Feedback�
magnifiers�that�affect�both�bar�and�line�charts�similarly.�

5.5.3� Perceived�Usability�and�Task�Workload�

We�used� the� standard�SUS�questionnaire� [9]� to�measure�perceived�
usability.� This�questionnaire�consists�of�10�alternative�positive�and�
negative�Likert�statements�where�the�participant�has�to�provide�a�rating�
between�1�(strongly�disagree)�and�5�(strongly�agree)�for�each�statement.�
The�ratings�from�the�10�statements�are�then�assimilated�based�on�a�
formula�to�generate�an�overall�score�between�0�and�100,�with�higher�
scores�indicating�better�usability.� The�SCCF�received�the�best�SUS�
scores�(Average�=�85.8,�Median�=�86,�Min�=�65,�Max�=�100)�followed�
by�the�TBL�condition�(Average�=�68.7,�Median�=�64,�Min�=�38,�Max�
=�100).�The�SM�condition�received�the�least�SUS�scores�(Average�=�
51.3,�Median�=�53,�Min�=�8,�Max�=�69).�The�differences�in�SUS�scores�
between�the�study�conditions�were�statistically�significant,�according�to�
a�Friedman�test5� (χ2�

= 57.1,�p�< 0.001).�

In�the�exit�interviews,�almost�all�participants�attributed�their�high�
usability�ratings�for�the�SSCF�condition�to�the�selection�criteria�aspect�
of�GraphLite� that� they�believed�saved� them�a� lot�of�panning�effort�
which�otherwise�would�have�been�necessary�to�navigate�and�compare�
data�points�in�charts.�The�participants�also�stated�that�the�configuration�
options�were�extremely�important,�which�explains�the�relatively�higher�
scores�for�the�SCC�condition�compared�to�the�baseline�SM�condition�
(post-hoc�Conover’s�test,�SCC�vs.� SM:�p�= 0.03).� However,�we�did�
not�notice�a�significant�difference�in�usability�ratings�between�the�SC�
and�SCC�conditions�(post-hoc�Conover’s�test,�SC�vs.�SCC:�p�= 0.06).�
This�may�be�due�to�the�fact�that�space�compaction�was�a�background�
passive�feature�of�GraphLite�that�the�users�could�not�explicitly�control�
via�the�interface;�indeed,�a�few�participants�(all�of�whom�need�less�than�
5X�zoom)�mentioned�in�the�exit�interviews�that�they�were�so�focused�
on�customizing�the�charts�that�they�did�not�even�realize�the�presence�
of�automatic�space�compaction.�The�highest�variance�observed�in�the�
TBL�condition�can�be�attributed�to�the�lack�of�a�uniform�consensus�
among�participants:�while�many�found�the�TBL�condition�less�stressful�
and�easier�to�navigate,�others�experienced�difficulty�in�analyzing�trends�
under�the�same�condition.�This�divergence�in�experiences�contributed�
to�the�notable�variability�in�the�data�gathered�from�the�TBL�condition.�

We�administered�the�standard�NASA-TLX�questionnaire�[26]� to�
asses� the� perceived� workload� while� the� participants� did� the� tasks.�
NASA-TLX�also�generates�a�score�between�0�and�100;�however,�un-
like�SUS,�lower�TLX�values�indicate�lesser�workloads�and,�therefore,�
better�performance.� Overall,�we�observed�a�significant�effect�of�the�
study�conditions�on�the�NASA-TLX�scores�(Friedman�test,�χ2�

= 92.32,�
p�< 0.001).�The�GraphLite’s�SCCF�condition�received�the�lowest�(i.e.,�
best)�TLX�scores�(Average�=�22.7,�Median�=�22,�Min�=�14,�Max�=�32)�
condition,�whereas�the�SM�condition�received�the�highest�(i.e.,�worst)�
TLX�scores�(Average�=�70.1,�Median�=�70,�Min�=�57,�Max�=�79).�The�
TLX�scores�for�the�TBL�condition�were�the�second�best�(Average�=�
31.7,�Median�=�31,�Min�=�24,�Max�=�45),�presumably�due�to�the�re-
duced�horizontal�panning�effort�needed�to�complete�the�tasks�compared�
to�that�needed�in�the�SM,�SC,�and�SCC�conditions.�

A�closer�inspection�of�the�ratings�the�participants�gave�to�individual�
subscales�(Mental�Demand,�Physical�Demand,�Temporal�Demand,�Per-
formance,�Effort,�Frustration)�of�the�TLX�questionnaire�revealed�that�
poor�ratings�to�the�Effort,�Mental�Demand,�and�Frustration�subscales�
contributed�the�most�towards�the�higher�workload�scores�in�the�SM,�
Sc,�and�SCC�conditions.� For�the�SCCF�condition,�the�ratings�for�all�
the�sub-scales�were�the�lowest�and,�moreover,�uniform�across�all�the�
subscales.�For�the�TBL�condition,�the�ratings�for�the�Effort�and�Frus-
tration�were�considerably�higher�than�those�for�the�SCCF�condition,�
which�explains�the�significant�difference�in�overall�TLX�scores�between�
SCCF�and�TBL�conditions.�

5We�used�this�test�because�the�data�for�some�of�the�conditions�were�not�

normally�distributed.�

Analysis�of�subjective�feedback�from�participants�in�exit�interviews�
revealed�shared�insights�and�observations�across�multiple�participants.�
A�few�notable�ones�are�presented�next.�

Customization�options�are�essential.�All�participants�explicitly�stated�
that�customization�options�are�essential�for�conveniently�interacting�
with�graphs.�More�than�half�(16)�of�the�participants�mentioned�that�they�
preferred�dark�themes�while�interacting�with�content�and�that�they�often�
experienced�issues�while�interacting�with�images,�including�charts�un-
der�dark�themes.�These�participants�further�explained�that�re-rendering�
charts�in�dark�themes�were�often�not�ideal,�increasing�comprehension�
difficulty.� To�counter�this�issue,�6�of�these�16�participants�also�men-
tioned�that�they�relied�on�OS-level�color�invert�accessibility�features�
as�an�alternative�to�dark�themes.�However,�they�mentioned�this�option�
too�often,�resulting�in�chart�renderings�that�were�not�legible�and�also�
uncomfortable�to�view.�These�participants�stated�that�the�fine-grained�
customization�offered�by�GraphLite�quickly�addressed�this�issue�and�
reduced�eye�strain.�

Need�to�reduce�vertical�panning.� Ten�participants�expressed�a�de-
sire� for� a� feature� that� could� reduce� the� vertical� panning/scrolling�
in� GraphLite.� Four� of� these� participants� suggested� automatic� re-
adjustment�of�unit�dimensions�so� that� the�overall�height�of�a�chart�
is�reduced.�A�couple�of�participants�also�suggested�adding�tooltips�that�
displayed�the�x/y�axis�labels/values�on�demand,�e.g.,�a�tap�on�a�bar.�

Auto-focus�on�important�chart�regions.�Nearly�a�quarter�of�6�of�the�
participants�suggested�providing�some�auto-panning�feature�that�shifted�
focus�to�different�parts�of�a�chart�on�demand,�e.g.,�with�a�gesture.�For�
instance,�P8�wanted�gestures�that�automatically�bring�the�x�or�y�axis�
to�the�forefront�of�the�magnifier�viewport.�Similarly,�P17�wished�that�
GraphLite�had�a�gesture�that�would�automatically�move�the�magnifier�
focus�to�the�top�of�the�current�bar�in�focus.�

Filtering�in�tabular�chart�representations.� More�than�half�(15)�of�
the�participants�indicated�that�the�usability�of�the�TBL�condition�(i.e.,�
a�tabular�representation�of�chart�data)�could�have�been�significantly�
improved�by�providing�a�similar�filtering�feature�as�that�in�the�GraphLite�
SCCF�condition.� These�participants�further�explained�that�filtering�
would�make�tables�a�more�palatable�interface�due�to�reduced�vertical�
panning.�However,�a�few�(4)�participants�did�mention�that�tables�were�
not�a�suitable�representation�to�perceive�“trends”�in�data�quickly;�these�
participants�explained�that�their�cognitive�effort�would�significantly�
increase�with�the�increase�in�the�number�of�data�points�to�be�compared�
for�capturing�trends.�

Following�participant�feedback,�we�integrated�a�tooltip�feature�into�
GraphLite.�We�then�evaluated�this�new�feature,�focusing�on�its�effec-
tiveness�across�bar�and�line�charts.� In�typical�screen�magnification�
(SM)�+�tooltip�scenarios,�we�noted�that�low-vision�users�often�had�to�
randomly�select�bars�in�bar�charts�and�points�in�line�charts�to�understand�
their�corresponding�values.�This�method�proved�challenging,�especially�
with�charts�containing�more�than�10�data�points,�as�participants�tended�
to�forget�which�bars�or�points�they�had�already�checked,�leading�to�
frequent�re-use�of�the�tooltip�feature.�However,�integrating�the�tooltip�
feature�with�GraphLite�greatly�enhanced�the�efficiency�of�this�process.�
Users�could�proactively�choose�the�x-axis�values�they�wanted�to�focus�
on�for�comparison�or�analysis.�Employing�tooltips�in�conjunction�with�
GraphLite,�particularly�after�data�filtration,�significantly�aided�users�in�
maintaining�awareness�of�the�data�points�on�the�charts.� This�combi-
nation�of�tools�effectively�streamlined�the�data�interpretation�process�
for�low-vision�users,�making�it�easier�for�them�to�interact�with�and�
understand�complex�data�visualizations.�

6 DISCUSSION

The�user�study�findings�demonstrated�that�converting�non-interactive�
charts�into�interactive�customizable�charts�significantly�improves�us-
ability�and�graphical�comprehension�for�low�vision�screen�magnifier�
users�on�smartphones.� However,� our�work�was�not�without� limita-
tions�and�the�study�also�illuminated�some�of�the�shortcomings�of�our�
approach,� thereby�exposing�the�avenues�for�future�research.� A�few�
notable�limitations�and�future�work�directions�are�discussed�next.�
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Limitations.� GraphLite�is�dependent�on�ChartOCR�[52]�trained�on�
the�comprehensive�ChartEx�dataset�[11].� This�dataset�encompasses�
a�wide�range�of�bar�(e.g.,�grouped,�stacked,�normalized,�categorical�
vs.� ordinal�dimensions,�horizontal�vs.� vertical,�sorted�vs.� unsorted)�
and�line�chart�variants�(e.g.,�single�series�vs.� multiple�series�values�
in�line�segments),�which�can�be�seamlessly�supported�by�GraphLite�
with�minimal�modifications�to�its�proxy�interface.�However,�GraphLite�
currently�supports�only�simple�bar�and�line�charts,�and�our�evaluation�
was�restricted�to�these�types,�where�data�extraction�was�accurate�to�
both�avoid�confounds�and�make�the�tasks�comparable.�However,�data�
extraction�is�not�always�accurate,�especially�if�the�charts�are�complex�or�
the�quality�of�chart�images�is�not�good.�Therefore,�the�performance�of�
GraphLite�must�be�evaluated�“in�the�wild”�on�arbitrary�charts�where�the�
data�extraction�is�not�100%�accurate.�For�this�purpose,�a�separate�user�
study�is�needed�to�assess�GraphLite�usability.�Furthermore,�given�the�
tremendous�advancements�in�computer�vision�and�image�processing�
techniques�in�recent�years,�we�anticipate�better�chart�data�extraction�
algorithms�will�be�available�in�the�next�few�years.�Given�the�modular�
implementation�of�GraphLite,�we�can�easily�replace�the�current�extrac-
tion�algorithm�with�these�new,�improved�algorithms,�thereby�enhancing�
the�reliability�of�GraphLite.�

Moreover,�GraphLite�transforms�static�charts�into�interactive�charts�
without�considering�the�underlying�label�annotations�present�in�the�
static�chart,�which�may�reduce�the�viewer’s�ability�to�grasp�certain�
intended�takeaways.�To�address�this,�we�integrated�the�tooltip�feature�
within�GraphLite�based�on�qualitative�feedback,�allowing�users�to�see�
the�value�of�data�points�on�the�charts.� However,�GraphLite�does�not�
adapt�to�other�forms�of�annotations,�for�example,�color�annotations,�i.e.,�
if�an�author�uses�specific�colors�for�certain�bars�in�a�bar�chart�to�convey�
a�particular�message,�GraphLite�does�not�retain�those�specific�colors�
when�the�chart�is�re-rendered,�leading�to�a�potential�loss�of�information�
that�the�chart�designer�wants�to�convey.�

Chart�designers,�particularly�those�creating�visualizations�for�dis-
semination�on�news�articles�or�social�media,�could�possibly�face�chal-
lenges�when�adapting�their�static�charts�for�low-vision�users�through�
GraphLite’s�transformations.�These�adaptations�can�be�likened�to�the�re-
sponsive�design�adjustments�made�when�transitioning�charts�from�desk-
top�to�mobile�viewing�environments,�as�discussed�by�Kim�et�al.�[39].�
With�GraphLite’s�features,�such�as�the�integration�of�dynamic�theme�
pickers,�tooltip�enhancements,�and�selectively�view�data�points,�design-
ers�are�equipped�to�tailor�visualizations�for�improved�chart�usability.�
However,�these�transformations�require�subjectively�prioritizing�select�
data�elements�while�potentially�altering�and�completely�missing�others.�
The�challenge�lies�in�maintaining�the�core�message�and�ensuring�that�
key�insights�remain�clear�and�interpretable�for�low-vision�users.�

To�address�this,�we�plan�to�develop�a�novel�algorithm�capable�of�not�
only�extracting�data�points�but�also�identifying�underlying�relationships�
between�data�points�based�on�the�design�choices�made�by�the�designer.�
This�approach�will�highlight�key�elements�and�their�relationships�in�
charts�and�then�present�them�to�low�vision�users.�This�approach�seeks�
to�balance�the�trade-offs�between�preserving�information�richness�and�
enhancing�accessibility�for�low-vision�users.�

Also,�in�the�study,�the�participants�used�the�experimenter-provided�
smartphone�to�do�the�tasks,�not�their�smartphones.�While�we�did�our�
best�to�accommodate�iOS�interaction�gestures�in�our�evaluation�app�
and�conducted�an�extended�practice�session,�it�still�needs�to�replicate�
the�participants’�comfort�while�using�their�phones.�Porting�GraphLite�
to�the�iOS�platform�is�more�of�an�engineering�effort,�and�we�plan�to�
accomplish�this�in�the�near�future.� Subsequent�user�studies�will�be�
conducted�to�further�validate�our�findings�by�letting�participants�do�the�
study�tasks�using�their�smartphones.�

Lastly,�in�our�work,�we�did�not�fully�uncover�the�exact�effects�of�
zooming�and�panning�user�actions�on�the�perceptual�effort�and�chart�
comprehension�of� low-vision�users.� Uncovering� these�correlations�
will�require�a�more�extensive�study,�similar�to�those�in�prior�works�
on�graph�perception�for�sighted�people�[14, 27, 74],�covering�various�
chart-interaction�scenarios.� In�future�work,�we�plan�to�conduct�this�
study�and�build�computational�interaction�models�quantifying�the�chart�
perceptual�effort�of�low-vision�users.�

Enhancing�data�comprehension�with�Details-on-Demand�interac-
tions.� Details-on-demand�(DoD)�interactions�in�data�visualization�
systems�allow�users�to�access�additional�information�about�specific�ele-
ments�as�needed,�keeping�the�main�display�uncluttered.�This�is�typically�
achieved�through�user�actions�like�hovering,�clicking,�or�performing�
gestures�to�display�detailed�data.� Current�DoD�approaches�include�
selection-based�methods�[67, 71],�where�users�select�visual�objects�to�
retrieve�details,�and�zoom-based�methods�[10],�where�visualizations�
transform�to�reveal�more�information.�Future�research�could�explore�
how�these�interactions�reduce�the�need�for�panning�or�auto-focus.�We�
envision�a�controlled�study�that�simulates�all�existing�DoD�features�
to�examine�the�function�of�each�feature�individually,�helping�to�bet-
ter�understand�the�impact�of�each�on�visualization�comprehension�for�
low-vision�users.�

Predictive�magnification�for�chart�interaction.� Prior�work�[6, 7, 57]�
has�shown�that�automating�screen�magnifier�lens�movement�to�salient�
portions�of� the�content�can�significantly� improve�usability� for� low-
vision�users.�Some�of�the�participants�in�the�user�study�also�expressed�a�
desire�for�“automatic�panning”�while�interacting�with�charts�to�reduce�
the�number�of�input�gestures.�One�method�to�devise�an�auto-panning�
algorithm�for�low-vision�chart�interaction�is�by�understanding�the�cor-
responding�data�saliency�(e.g.,�[6]),�i.e.,�the�portions�of�the�chart�that�
low-vision�users�typically�assign�higher�priority�and�attention�com-
pared� to�other�portions.� For� instance,� the�units�and� labels�on�axes�
and�the�top�of�bars�in�a�bar�chart�have�a�higher�saliency�compared�
to�the�empty�whitespace�regions�of�the�chart.� The�full�saliency�heat�
map�can�be�obtained�from�gaze�tracking�studies�[19],�and�this�saliency�
can�be�used�to�automate�panning�between�different�portions�of�a�data�
chart,�e.g.,�automatically�pan�to�the�top�of�a�given�bar�in�a�bar�chart�
based�on�eye�movement.�Devising�such�auto-panning�algorithms�along�
with�corresponding�user�interfaces�can�significantly�improve�low-vision�
interaction�with�data�charts.�

7 CONCLUSION

With�the�increasing�use�of�smartphones�among�people�with�low�vision,�
there�is�a�need�to�address�the�limitations�of�conventional�screen�magni-
fier�accessibility�features:�loss�of�context�and�slow�navigation�time.�This�
paper�addressed�these�limitations�for�a�specific�case�scenario�of�interac-
tion�with�data�charts,�specifically�the�popular�bar�and�line�charts.�An�
interview�study�with�14�low-vision�smartphone�users�revealed�that�they�
frequently�encountered�data�charts�in�their�daily�smartphone�browsing�
activities,�but�they�also�stated�that�the�interaction�with�charts�was�chal-
lenging�due�to�the�magnification-induced�loss�of�visual�relationships,�
e.g.,�between�different�data�points,�and�between�data�points�and�chart�
annotations.� As�an�initial�effort�towards�improving�low-vision�data�
chart�interaction�smartphones,�we�designed�and�developed�GraphLite�-
a�manifestation�of�the�idea�of�automatically�transforming�data�charts�
that�are�usually�non-interactive�images�into�customizable�interactive�
graphs�that�enable�users�to�selectively�view�multiple�data�points�close�to�
each�other,�thereby�preserving�visual�context�as�much�as�possible�under�
screen�enlargement.� In�a�user�study�with�26�low�vision�participants,�
the�GraphLite�was�found�to�significantly�improve�the�usability�of�data�
charts�over�both�the�status�quo�screen�magnifier�and�a�state-of-the-art�
method�while�doing�typical�chart�interaction�tasks.�The�subjective�feed-
back�from�the�participants�also�provided�future�directions�for�further�
improving�GraphLite,�e.g.,�predictive�auto-panning.�

SUPPLEMENTAL MATERIALS

All� supplementary� materials� are� available� on� GitHub� at�https://
github.com/accessodu/GraphLite.git.�These�include:�(1)�Excel�
files�with�data�from�the�user�study,�(2)�Details�on�participant�demograph-
ics,�task�assignments,�and�charts�used�in�the�study,�(3)�Demonstration�
videos�related�to�the�study,�and�(4)�The�GraphLite�codebase.�
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