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Abstract—The human gaze provides informative cues on hu-
man behavior during interactions in multi-user environments.
However, capturing this gaze information using traditional eye
trackers often requires complex and costly experimental setups.
Furthermore, conventional eye-tracking algorithms are catered
for single-user scenarios and cannot be used for multi-user envi-
ronments. We propose Multi-Eyes, a commodity webcam-based
solution offering scalability and cost-efficiency while leveraging
the advancements in deep learning for capturing multi-user
gaze. Multi-Eyes propose a three-step multi-user eye tracking
framework that (1) detects gaze subjects, (2) estimates gaze, and
(3) maps gaze-to-screen with a scalable, memory, and parameter-
efficient disentangled gaze estimation model. We evaluate the
gaze estimation model using two publicly available datasets and
the framework’s utility through a joint-attention case study. Our
proposed architecture achieves the lowest gaze error of 4.33,
while the case study demonstrates the feasibility of the Multi-Eyes
for multi-user interactions and joint attention with comparable
results to the state-of-the-art.

Index Terms—Eye Tracking, Multi-user, Deep Learning, Joint
Attention

I. INTRODUCTION

The gaze provides insight into human behavior ranging

from human-computer interaction [1], behavioral sciences [2],

and various other domains [3]. User interactions often happen

in collaborative environments though many studies in eye

tracking fail to capture collaborative behaviors primarily due

to studies being conducted in isolation. This can be attributed

to a couple of factors. First, even though eye trackers can

accurately capture the gaze of a single user, they cannot

capture the gaze information of more than one participant

simultaneously. Second, conventional eye-tracking algorithms

that leverage a single user for multi-user eye-tracking fail

to scale due to the requirement of a dedicated device per

participant, compounding the complexity and cost of the

experimental setup.

Eye tracking using commodity hardware (i.e., web camera)

provides a cost-efficient alternative to the limitations posed by

conventional eye trackers. Recent advancements in computer

vision have been steering a plethora of recent developments

in appearance-based gaze estimations [4], [5], [6]. Combined

with large-scale datasets[5], [7], these allow models with im-

proved feature extraction and accuracy. Despite being concep-

tually and technologically promising, these approaches depend

on the computational capacity of the platform[8]. Therefore

consistent performance requires scalable models balancing the

complexity and capacity.

While commodity hardware may offer a cost-effective op-

tion for multi-user eye-tracking, scalable and efficient models

for appearance-based eye-tracking still need to be developed.

This particularly plays a vital role in multi-user environments

where computation demand grows proportional to the number

of users. Our study investigates how to leverage recent ad-

vancements to develop a low-cost appearance-based multi-

user eye-tracking system using deep learning techniques.

Our contributions are three-fold;

1) We introduce a family of scalable gaze models;

2) We use these models to design a multi-user eye-tracking

methodology using low-cost commodity hardware;

3) We demonstrate the feasibility and utility of our ap-

proach using a case study on joint attention and evaluate

experimental results.

II. RELATED WORK

In this section, we review related literature on gaze estima-

tion techniques followed by multi-user eye tracking.

A. Gaze Estimation

Gaze estimation methodologies are broadly classified as

model-based or appearance-based methods[9], [6], [10].

Model-based approaches use landmarks to find ocular or facial

features and employ a geometric model of the eye [11], [12] or

face [13], [14] to estimate the gaze direction. These methods

rely heavily on correctly identifying landmarks such as pupil

center [11], [15]. For this purpose, these methods use other[11]

or incorporate additional [10] modalities, such as infrared

lighting [10].

In contrast, appearance-based approaches utilize images

to estimate the gaze directions using either ocular[6], [16]

or facial images[17], [4], [18], forming a mapping func-

tion between the image and the gaze directions [9]. This

eliminates the requirement of intermediate computation of

facial landmarks. Based on the technique employed, these

approaches can be further classified into conventional or deep

learning approaches [10]. Conventional appearance-based ap-

proaches utilize image processing techniques (e.g., histogram

equalization[19]) combined with machine learning models

(e.g., support vector machines[20], linear regression [16], [21],

or neural networks [19]) to estimate the gaze. Despite the

simplicity of the approach, these models are often constrained

by the capacity of the feature extractor and the complexity of

the gaze estimation model.
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Instead of relying on generic features or dimensionality

reduction techniques, deep learning methods approach this

problem by detecting features and mapping them to the gaze

estimation[10]. Recent studies in deep learning gaze estimation

have shown Convolutional Neural Networks (CNNs) to be an

excellent candidate for appearance-based gaze estimation[22],

[23]. In order to achieve improved accuracy, CNNs typically

scale up by adding more layers [24], which can often lead to

bulkier, deeper CNN models. Despite the performance gain,

these models tend to be computationally expensive due to their

complexity.

Despite the popularity of deep learning-based models in

general computer vision applications, the wide adoption of

mobile devices has led to the development of computation-

ally efficient CNNs. Mobile-oriented CNN models such as

MobileNet[25] and ShuffleNet[26] attempt to address the

issue through computationally efficient layers. However, the

scaling of these models in resource-rich environments remains

arbitrary and often limited to one of the three dimensions:

resolution, depth, and width. As a result, despite the efficiency

of resource-constrained environments, they fail to exploit

the benefits of resource-rich environments due to a lack of

systematic scaling. In contrast, EfficientNets[27] are a class

of CNNs built around the principles of systematic scaling. As

a result, an application developed utilizing EfficientNets can

scale per the device’s capabilities.

B. Multi-user Eye-tracking

Despite the wide adoption of eye tracking for single-user

experiments [28], the concept of multi-user eye tracking re-

mains relatively less explored across existing domains. Studies

that use multi-user eye tracking are of two main types: time-

sharing and space-sharing [10]. The time-sharing approaches

[29] combine the gaze information of multiple users spanning

non-overlapping time windows. In comparison, space-sharing

approaches [30], [31], [32] estimate the gazes of multiple users

concurrently [10].

The first challenge for the space-sharing approach is the

lack of specialized hardware for the purpose. Even though eye

trackers excel in estimating gaze for single-user studies, they

cannot be directly used for space-sharing setups as they cannot

track more than one person. A straightforward approach to

overcome the issue is to use a dedicated device per participant

[33], [31]. Despite the simplicity, the solution can lead to

multiple issues. There can be interferences among the eye

trackers, leading to incorrect data, which can be mediated by

imposing strict restrictions on the movement of the users in the

setup. However, the setup will not scale well for large-scale

experiments, driving the cost of the experimental setup.

III. METHODOLOGY

A. Gaze Model

Intuitively we can identify a face image patch to comprise

two feature forms: gaze-defining, such as ocular region fea-

tures, and non-gaze-defining features, such as skin complex-

ion. We extend the idea to low-dimensional representations

of the image, which we model using standard autoencoders.

A standard autoencoder comprises an encoder that transforms

the data into a low-dimensional latent representation and a

decoder that uses the representation to reconstruct the input.

During training, an autoencoder learns an entangled repre-

sentation without modification, meaning we cannot classify

each dimension between two feature types. To overcome the

entanglement, we introduce an architectural modification to

the auto-encoders and form the disentangled gaze models.

Our model architecture (see Figure 1) uses an encoder that

transforms a given image into an encoded representation as

E : x → e and a decoder D : e → x̃ that reconstructs an ap-

proximation of the original input such that x ≈ x̃ = D(E(x)).
In order to disentangle the representation, we consider the

latent space to comprise two feature forms, gaze-defining

encodings (eg) and non-gaze-defining encodings (ef ) such that

E(x) = {ef (x); eg(x)}. For enforcing the disentanglement to

the model, we introduce an additional decoder - Gaze decoder

G : eg → g, which decodes gaze-defining encodings into

the target gaze descriptor (e.g., gaze angles, gaze positions,

or gaze categories). For a latent representation generated by

the encoder to be of N ∈ N elements, we define a hyper-

parameter κ ∈ [0, N ]- the number of elements allocated for

the gaze-dependent features in the latent space, termed as

disentanglement of our model. Therefore, the dimensionalities

of eg and ef becomes κ and N − κ respectively.

Our architectural modification provides two additional ben-

efits in addition to enforcing disentanglement. First, image

reconstruction acts as a form of regularization to the gaze es-

timation network (E,G), thus preventing overfitting. Second,

because we use only part of the latent space for estimating

gaze, we get a comparatively lesser number of parameters

for gaze estimation compared to models that utilize the entire

latent space.

Fig. 1: Proposed disentangled model architecture for gaze

estimation.

Our overall loss for the model comprises two loss terms

considering the task rendered by the model. First, considering

the image reconstruction of the decoder D, we define the

reconstruction loss Lr as,

Lr(x, x̃) =
1

|x|

∑

|ui − ũi| (1)

where ui and ũi are corresponding pixels from two images.

Next, we define the Gaze error (Lg), considering the gaze

direction in the image and the gaze estimation from the gaze

decoder G by,
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Lg(g, g̃) =
1

|g|

∑

|vi − ṽi| (2)

where g is the ground truth gaze descriptor, g̃ estimated

gaze descriptor, and vi, and ṽi are elements of the gaze

descriptors. Finally, we combine the error terms using two

hyper-parameters L = λrLr+λgLg , defining weights for each

type of loss in the model.

Considering different combinations of the hyper-parameters

of the model λr, λg , and κ, we can build a family of

models that are both disentangled and aware of gaze features

leveraging the disentanglement. For instance, we can arrive at

a classical auto-encoder type model with κ = 0 and λg = 0
(λr > 0). On the other hand, we derive a naive gaze estimation

model with κ = N and λr = 0 (λg > 0).

We use the publicly available ETH X-Gaze dataset [17]

of over one million high-resolution images of varying gaze

under extreme head poses to train the model. The dataset

consists of facial images of 110 participants, collected using

a custom hardware setup with 18 digital SLR cameras, an

adjustable illumination setup, and a calibrated system to record

ground-truth gaze targets. We use an EfficientNet architecture-

based CNN that takes input images of shape (224× 224) and

produces a latent representation of (N × 1) as the encoder

(E) in our model with empirically chosen N = 64 for

our experiments. We use a deconvolutional neural network

that uses the latent representation and reconstructs the facial

image as the decoder (D). The gaze decoder (G) comprises

a fully connected neural network that estimates the gaze in

the form of pitch and yaw angles. We use Adam optimizer

[34] with a linearly decaying learning rate starting from 0.001,

decays to 0.0001 throughout 50 epochs, and 80-20 training and

validation split in the study during the training process. When

forming the validation splits, we use the participants as the

selection criteria for the validation split, ensuring the images

used in validation remain unknown to the model.

B. Multi-user Eye-Tracking

Our proposed multi-user eye-tracking architecture (see Fig-

ure 2 ) employs a three-step process, (1) gaze subject detection,

(2) gaze estimation, and (3) gaze-to-screen mapping to esti-

mate the gaze position (i.e., gaze coordinates in the display)

of the participants.

Gaze Subject Detection: For the simplicity of our pro-

totype, we divide the camera images into regions, referred

to as user-designated regions, where we expect the user to

be present during the experiment. Further, we assume no

occlusions exist between the camera and the user and only

one user to present in each region. We expect to eliminate

redundant operations such as face detection or occlusion

detection. We split the image vertically into two regions where

we expect the two participants to be present. Then, we utilize

the Facemesh [35] model to detect the faces in the image

region and establish the bounding box using the centroid of

the detected landmarks. Finally, we crop and generate the face

patches for the gaze estimation step.

Gaze Estimation: Here, we process the images using a

model variant to estimate the gaze directions expressed as

pitch and yaw angles with respect to the detected face. Since

the image patches can be of different sizes depending on the

user’s distance from the camera, we use bilinear interpolation

[36] to resize each facial image to match the specifications

of the estimation model. We select and use a model from the

model variants discussed earlier based on gaze estimation and

inferencing throughput. To orient model performance on gaze

estimation, we empirically select N = 64, κ = N , and train

the model with λg = 1 and λr = 1. Considering the real-

time inferencing performance, we use the model comprising

EfficientNet-B0 [27] as the encoder.

Gaze-to-Screen Mapping: Our approach uses the encoded

face position to model the relationship between gaze directions

and on-screen positions. Here, we propose a grid-like encoding

scheme to represent the position derived using the pinhole

camera model, assuming the camera remains stationary rela-

tive to the interaction surface.

For our calculations, we consider the face of a person at

(xp, yp, zp) with dimensions (∆xp,∆yp,∆zp) in the world

coordinate frame, projecting an image of size (∆u,∆v) at

(u, v) on camera coordinate system. We derive the relation-

ships u = f
zp
xp and ∆u =

∆xp

zp
f using the pinhole camera

model, where f represents the focal distance.

Similarly, we derive a similar relationship for v and ∆v,

indicating the possibility of encoding the facial location in 3D

space using the projection on the image. For this purpose, we

first form a mask M of the input image size with i, and jth

value defined as,

Mi,j =

{

1 if u ≤ i ≤ u+∆u and v ≤ j ≤ v +∆v

0 otherwise

(3)

Then we perform average pooling on the mask with the

same pool size and stride to derive the derived mask to obtain

the position encoding of size n× n.

Finally, we combine the gaze direction estimate (g) and

the encoded face positions (P ) to estimate the gaze locations

on the screen (s = (sx, sy)) using a mapping function S :
(P, g) → s. For modeling the mapping function, we assume a

nonlinear relationship between the variables modeled through

a multi-layer neural network trained during the calibration

phase of the application. Even though we can change the

sensitivity by choosing different values for n, we use n = 2 in

our prototype setup for simplicity. Moreover, in each session,

the proctor monitors the training and validation errors during

each calibration round to prevent overfitting.

IV. RESULTS

A. Gaze Estimation

We first evaluate the model performance by implementing

the encoder (E) by CNNs with EfficientNet architectures, a

class of CNNs built for systematic scaling. We test and report

the performance against the publicly available ETH XGaze
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Fig. 2: Left: Proposed Multi-Eyes framework, Right: Joint attention experiment with two participants

[17] dataset across all model variants. We use κ = N to

allocate the entire latent space for gaze estimation and report

the performance using the Mean Absolute Error (MAE) of the

gaze angle estimation (see Table I). The results suggest that the

series of models we used in the experiments provide improved

accuracy by increasing the number of parameters. This allows

us to identify efficient model sizes depending on the accuracy

and the hardware capabilities required for a scalable multi-

user eye-tracking system. However, it is essential to note

that through each model configuration, we can derive more

optimized models by adjusting hyper-parameters often leading

to better-generalized models while achieving better parameter

efficiency.

TABLE I: Evaluation of the Gaze Estimation Network using

ETH X-Gaze Dataset[17] (N = 64, κ = 64 and λr = 0).

Model Gaze Error # Parameters

X-Gaze Baseline [17] 4.50 26M

EfficientNet-B0 5.22 4.3M

EfficientNet-B1 5.12 6.9M

EfficientNet-B2 5.05 9.1M

EfficientNet-B3 4.99 11M

EfficientNet-B4 4.85 18M

EfficientNet-B5 4.64 29M

EfficientNet-B6 4.64 42M

EfficientNet-B7 4.34 65M

We use the EfficientNet-B0 encoder-based model and ex-

plore the effect of hyperparameters λr and λg of the model.

Here we use the N = 64 and κ ∈ {16, 32, 64} and change

the hyperparameters and report the results (see Table II). Here

we explore the possibility of using the reconstruction as a

form of regularization to the network and its effect on gaze

estimation accuracy. The decrease in error for increments of

the hyperparameter λ indicates where κ ∈ {16, 64} that the

model achieves more generalizability through regularization.

In contrast, the experiments with κ = 32 show an opposite

pattern with the decrease in λ corresponding to an increase

in the accuracy of gaze estimation, with λr = 0.01, κ = 64
yielding the least gaze estimation error.

Considering the utility of the proposed gaze model across

hardware with varying computational capabilities requires

different optimizations to leverage the hardware capabilities of

the host platform. In our experiments, we explore the effect of

due to quantization, where we execute the model with lower

TABLE II: Effect of Hyper Parameters on the estimation.

EfficientNet-B0 model (N = 64, λg = 1)

Regularization (λr)

0.01 0.1 1

κ = 16 5.3520 5.2854 5.1936

κ = 32 5.1340 5.1815 5.4166

κ = 64 5.1604 5.1725 5.1012

precision parameters by discretizing the model parameters.

Quantization allows to compress the model and run with

lower computations. Our study considers float16 quantization,

transforming the mode parameters from float64 to float16. We

conduct the study in two steps; first, we use the same models

used to study the effect of hyperparameters and analyze the

effect of quantization. Next, we compare the performance

against models trained with emulated quantization in the

forward pass (quantization-aware).

Our results (see Table III) indicate that the quantization

of pre-trained models yields mixed results between different

combinations of model parameters, with the highest achieved

by λr = 0.01, κ = 32. In comparison, the quantization-aware

models (see Table IV) lead to higher gaze errors in similar

model configurations, indicating that the additional step of

emulating quantization did not improve estimation accuracy.

TABLE III: Effect of quantization on Gaze Error (+improve-

ment/ -decline%) using EfficientNet-B0 (N = 64, λg = 1)

Regularization (λr)

0.01 0.1 1

κ = 16 5.3504 (+0.45) 5.2854 (-0.11) 5.1926 (+0.01)

κ = 32 5.1347 (-0.01) 5.1821 (-0.01) 5.4166 (+0.03)

κ = 64 5.1582 (+0.04) 5.1735 (-0.02) 5.4147 (-6.15)

TABLE IV: Effect of quantization on Mean Gaze Error using

EfficientNet-B0 with emulated quantization on forward pass.

(N = 64, λg = 1)

Regularization (λr)

0.01 0.1 1

κ = 32 5.555 5.594 5.639

κ = 64 5.686 5.736 5.979

Next, we evaluate the knowledge transferability of the

model against the publicly available Columbia-Gaze dataset

[20] of 5,880 images of 56 people over varying gaze directions

311

Authorized licensed use limited to: Old Dominion University. Downloaded on March 30,2025 at 01:01:19 UTC from IEEE Xplore.  Restrictions apply. 



and head poses. We pass each image in the dataset through

Facemesh[35] to identify faces and evaluate the gaze estima-

tion for each detected face. We observed no clear patterns

between the model configuration and the gaze estimation error

(see Table V). However, the results provide an estimate of

the model’s generalizability for potential application in real-

world studies, which can be improved through model scaling

or calibration.

TABLE V: Cross-dataset evaluation of gaze estimation net-

work using Columbia-Gaze Dataset [20] (N = 64, λg = 1)

Regularization (λr)

0.01 0.1 1

κ = 16 6.091 5.548 7.177

κ = 32 6.211 6.021 5.305

κ = 64 6.027 7.107 6.229

B. Feasibility Study: Joint Attention Tracking

To demonstrate the feasibility of our framework, we de-

signed an experimental setup (see Figure 2) using a 72” wall-

mounted display and Logitech C270 web camera (720p/30fps,

55◦ dFoV) to capture multi-user gaze movements. We re-

cruited five participants aged 20 - 27 (2 F, 3M) for the

user study (3 pairs, 7 trials, within-subject) with normal or

corrected-to-normal vision. We instructed participants to stand

approximately 6 feet in front of the screen and adjusted the

web camera based on their heights. We started our experiment

by calibrating the eye tracker for each user separately. Here,

the application selectively prompted each user to look at five

given targets (top left, top right, bottom left, bottom right, and

center of the screen) sequentially. At the prompt, the applica-

tion collected gaze direction and encoded face location after

a predefined delay to settle the users’ gaze. The application

collected 100 samples for each target before proceeding to

the next target in the sequence. Before the experiment, we

allowed the participants to test their calibration by presenting

a test screen and asking them to fixate on selected positions.

Following the work of [37], each joint interaction trial

consisted of a 1-minute five-point calibration step and a 1.5-

2.5 minute joint attention task among two participants in front

of the screen and one proctor across from the participants. The

web camera was placed on the bottom center of the screen.

Afterward, the proctor instructed the participants to look at

one of the objects (photo frame, ball, or shark) displayed on

the screen for 10 seconds. For each trial, the participants were

given an object name to look at. The order of the objects was

randomized among different pairs of participants.

Given the gaze position (i.e., x and y screen coordinators)

of participants along with timestamps, we derived eye move-

ment metrics indicative of joint attention, fixation duration,

fixation count, and time to first fixation [38]. We derived eye

movement are-of-interest (AOI) given three object boundaries

and extracted feature sets within these AOIs.

In order to detect joint attention, we measured the time

to the first fixation upon receiving an instruction. We also

measured the number of fixations a subject made on the object

upon receiving instruction and the fixation duration of subjects

upon fixating on an object. Table VI presents the calculated

eye-tracking metrics. Our results using commodity hardware

are comparable to the joint attention tasks from prior work

given conventional eye tracking configurations [38], [39], [40],

[41].

TABLE VI: Eye Movement Measurements During the Joint

Attention Tasks

Metric Mean Median Std.

Time to First Fixation (seconds) 1.25 1.18 0.93

Fixation Count 7.26 5.50 6.72

Fixation Duration (seconds) 5.45 6.06 3.00

Further, we evaluated the throughput of our experimental

setup considering the average frame rate across the joint atten-

tion experiments, using the number of gaze samples generated

by each thread dedicated for each user. Our results indicate

that without any optimizations or hardware acceleration, our

setup achieved an average throughput of 17 frames per second

(see Table VII) with a max throughput rate of 20 frames per

second.

TABLE VII: Multi-eyes pipeline throughput during joint at-

tention experiment

Left Thread Right Thread

Session Mean SD Max Mean SD Max

Session 1 17.05 2.02 19 17.06 1.98 20

Session 2 16.84 2.18 19 17.18 1.76 21

Session 3 17.18 1.56 20 16.88 2.55 21

V. CONCLUSION

In this paper, we present Multi-Eyes, a framework for

performing multi-user gaze estimation using commodity hard-

ware. The proposed approach’s lightweight EfficientNet model

allows gaze estimation to be deployed to a wide range of

devices.

Our results show the potential for the off-the-shelf hardware

resources to perform gaze estimation during multi-user interac-

tions. Our prototype did not use hardware acceleration such as

GPUs, CPU-based optimizations, or software-based optimiza-

tions, which are possible avenues to improve our application’s

throughput. However, the prototype in its current form would

be sufficient for applications that require approximate gaze

positions with low sampling rates. In the future, we expect to

incorporate application-level optimizations to further improve

scalability during multi-user interactions, and comprehensive

end-to-end evaluation of our pipeline.
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