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Abstract—The human gaze provides informative cues on hu-
man behavior during interactions in multi-user environments.
However, capturing this gaze information using traditional eye
trackers often requires complex and costly experimental setups.
Furthermore, conventional eye-tracking algorithms are catered
for single-user scenarios and cannot be used for multi-user envi-
ronments. We propose Multi-Eyes, a commodity webcam-based
solution offering scalability and cost-efficiency while leveraging
the advancements in deep learning for capturing multi-user
gaze. Multi-Eyes propose a three-step multi-user eye tracking
framework that (1) detects gaze subjects, (2) estimates gaze, and
(3) maps gaze-to-screen with a scalable, memory, and parameter-
efficient disentangled gaze estimation model. We evaluate the
gaze estimation model using two publicly available datasets and
the framework’s utility through a joint-attention case study. Our
proposed architecture achieves the lowest gaze error of 4.33,
while the case study demonstrates the feasibility of the Multi-Eyes
for multi-user interactions and joint attention with comparable
results to the state-of-the-art.

Index Terms—Eye Tracking, Multi-user, Deep Learning, Joint
Attention

I. INTRODUCTION

The gaze provides insight into human behavior ranging
from human-computer interaction [1], behavioral sciences [2],
and various other domains [3]. User interactions often happen
in collaborative environments though many studies in eye
tracking fail to capture collaborative behaviors primarily due
to studies being conducted in isolation. This can be attributed
to a couple of factors. First, even though eye trackers can
accurately capture the gaze of a single user, they cannot
capture the gaze information of more than one participant
simultaneously. Second, conventional eye-tracking algorithms
that leverage a single user for multi-user eye-tracking fail
to scale due to the requirement of a dedicated device per
participant, compounding the complexity and cost of the
experimental setup.

Eye tracking using commodity hardware (i.e., web camera)
provides a cost-efficient alternative to the limitations posed by
conventional eye trackers. Recent advancements in computer
vision have been steering a plethora of recent developments
in appearance-based gaze estimations [4], [5], [6]. Combined
with large-scale datasets[5], [7], these allow models with im-
proved feature extraction and accuracy. Despite being concep-
tually and technologically promising, these approaches depend
on the computational capacity of the platform[8]. Therefore
consistent performance requires scalable models balancing the
complexity and capacity.

While commodity hardware may offer a cost-effective op-
tion for multi-user eye-tracking, scalable and efficient models
for appearance-based eye-tracking still need to be developed.
This particularly plays a vital role in multi-user environments
where computation demand grows proportional to the number
of users. Our study investigates how to leverage recent ad-
vancements to develop a low-cost appearance-based multi-
user eye-tracking system using deep learning techniques.
Our contributions are three-fold;

1) We introduce a family of scalable gaze models;

2) We use these models to design a multi-user eye-tracking

methodology using low-cost commodity hardware;

3) We demonstrate the feasibility and utility of our ap-

proach using a case study on joint attention and evaluate
experimental results.

II. RELATED WORK

In this section, we review related literature on gaze estima-
tion techniques followed by multi-user eye tracking.

A. Gaze Estimation

Gaze estimation methodologies are broadly classified as
model-based or appearance-based methods[9], [6], [10].
Model-based approaches use landmarks to find ocular or facial
features and employ a geometric model of the eye [11], [12] or
face [13], [14] to estimate the gaze direction. These methods
rely heavily on correctly identifying landmarks such as pupil
center [11], [15]. For this purpose, these methods use other[11]
or incorporate additional [10] modalities, such as infrared
lighting [10].

In contrast, appearance-based approaches utilize images
to estimate the gaze directions using either ocular[6], [16]
or facial images[17], [4], [18], forming a mapping func-
tion between the image and the gaze directions [9]. This
eliminates the requirement of intermediate computation of
facial landmarks. Based on the technique employed, these
approaches can be further classified into conventional or deep
learning approaches [10]. Conventional appearance-based ap-
proaches utilize image processing techniques (e.g., histogram
equalization[19]) combined with machine learning models
(e.g., support vector machines[20], linear regression [16], [21],
or neural networks [19]) to estimate the gaze. Despite the
simplicity of the approach, these models are often constrained
by the capacity of the feature extractor and the complexity of
the gaze estimation model.
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Instead of relying on generic features or dimensionality
reduction techniques, deep learning methods approach this
problem by detecting features and mapping them to the gaze
estimation[10]. Recent studies in deep learning gaze estimation
have shown Convolutional Neural Networks (CNNSs) to be an
excellent candidate for appearance-based gaze estimation[22],
[23]. In order to achieve improved accuracy, CNNs typically
scale up by adding more layers [24], which can often lead to
bulkier, deeper CNN models. Despite the performance gain,
these models tend to be computationally expensive due to their
complexity.

Despite the popularity of deep learning-based models in
general computer vision applications, the wide adoption of
mobile devices has led to the development of computation-
ally efficient CNNs. Mobile-oriented CNN models such as
MobileNet[25] and ShuffleNet[26] attempt to address the
issue through computationally efficient layers. However, the
scaling of these models in resource-rich environments remains
arbitrary and often limited to one of the three dimensions:
resolution, depth, and width. As a result, despite the efficiency
of resource-constrained environments, they fail to exploit
the benefits of resource-rich environments due to a lack of
systematic scaling. In contrast, EfficientNets[27] are a class
of CNNs built around the principles of systematic scaling. As
a result, an application developed utilizing EfficientNets can
scale per the device’s capabilities.

B. Multi-user Eye-tracking

Despite the wide adoption of eye tracking for single-user
experiments [28], the concept of multi-user eye tracking re-
mains relatively less explored across existing domains. Studies
that use multi-user eye tracking are of two main types: time-
sharing and space-sharing [10]. The time-sharing approaches
[29] combine the gaze information of multiple users spanning
non-overlapping time windows. In comparison, space-sharing
approaches [30], [31], [32] estimate the gazes of multiple users
concurrently [10].

The first challenge for the space-sharing approach is the
lack of specialized hardware for the purpose. Even though eye
trackers excel in estimating gaze for single-user studies, they
cannot be directly used for space-sharing setups as they cannot
track more than one person. A straightforward approach to
overcome the issue is to use a dedicated device per participant
[33], [31]. Despite the simplicity, the solution can lead to
multiple issues. There can be interferences among the eye
trackers, leading to incorrect data, which can be mediated by
imposing strict restrictions on the movement of the users in the
setup. However, the setup will not scale well for large-scale
experiments, driving the cost of the experimental setup.

III. METHODOLOGY

A. Gaze Model

Intuitively we can identify a face image patch to comprise
two feature forms: gaze-defining, such as ocular region fea-
tures, and non-gaze-defining features, such as skin complex-
ion. We extend the idea to low-dimensional representations
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of the image, which we model using standard autoencoders.
A standard autoencoder comprises an encoder that transforms
the data into a low-dimensional latent representation and a
decoder that uses the representation to reconstruct the input.
During training, an autoencoder learns an entangled repre-
sentation without modification, meaning we cannot classify
each dimension between two feature types. To overcome the
entanglement, we introduce an architectural modification to
the auto-encoders and form the disentangled gaze models.

Our model architecture (see Figure 1) uses an encoder that
transforms a given image into an encoded representation as
FE : 2z — e and a decoder D : e — T that reconstructs an ap-
proximation of the original input such that x ~ & = D(E(z)).
In order to disentangle the representation, we consider the
latent space to comprise two feature forms, gaze-defining
encodings (e,) and non-gaze-defining encodings (e ) such that
E(z) = {ef(x); eq(x)}. For enforcing the disentanglement to
the model, we introduce an additional decoder - Gaze decoder
G : ey, — g, which decodes gaze-defining encodings into
the target gaze descriptor (e.g., gaze angles, gaze positions,
or gaze categories). For a latent representation generated by
the encoder to be of N € N elements, we define a hyper-
parameter x € [0, N]- the number of elements allocated for
the gaze-dependent features in the latent space, termed as
disentanglement of our model. Therefore, the dimensionalities
of e, and ey becomes x and N — k respectively.

Our architectural modification provides two additional ben-
efits in addition to enforcing disentanglement. First, image
reconstruction acts as a form of regularization to the gaze es-
timation network (£, ), thus preventing overfitting. Second,
because we use only part of the latent space for estimating
gaze, we get a comparatively lesser number of parameters
for gaze estimation compared to models that utilize the entire
latent space.

Reconstruction
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Fig. 1: Proposed disentangled model architecture for gaze
estimation.

Our overall loss for the model comprises two loss terms
considering the task rendered by the model. First, considering
the image reconstruction of the decoder D, we define the
reconstruction loss L, as,

- 1 -
Ly(x,2) = m2|u17u1| (D
where u; and u; are corresponding pixels from two images.

Next, we define the Gaze error (L), considering the gaze
direction in the image and the gaze estimation from the gaze
decoder G by,

Authorized licensed use limited to: Old Dominion University. Downloaded on March 30,2025 at 01:01:19 UTC from IEEE Xplore. Restrictions apply.



Ly(9,9) = ﬁzm—ﬁi\ 2
where ¢ is the ground truth gaze descriptor, g estimated
gaze descriptor, and v;, and v; are elements of the gaze
descriptors. Finally, we combine the error terms using two
hyper-parameters L = A\, L.+ 4L, defining weights for each
type of loss in the model.

Considering different combinations of the hyper-parameters
of the model A., A;,, and x, we can build a family of
models that are both disentangled and aware of gaze features
leveraging the disentanglement. For instance, we can arrive at
a classical auto-encoder type model with x = 0 and Ay = 0
(A > 0). On the other hand, we derive a naive gaze estimation
model with kK = N and A\, = 0 (A\; > 0).

We use the publicly available ETH X-Gaze dataset [17]
of over one million high-resolution images of varying gaze
under extreme head poses to train the model. The dataset
consists of facial images of 110 participants, collected using
a custom hardware setup with 18 digital SLR cameras, an
adjustable illumination setup, and a calibrated system to record
ground-truth gaze targets. We use an EfficientNet architecture-
based CNN that takes input images of shape (224 x 224) and
produces a latent representation of (N x 1) as the encoder
(E) in our model with empirically chosen N 64 for
our experiments. We use a deconvolutional neural network
that uses the latent representation and reconstructs the facial
image as the decoder (D). The gaze decoder (G) comprises
a fully connected neural network that estimates the gaze in
the form of pitch and yaw angles. We use Adam optimizer
[34] with a linearly decaying learning rate starting from 0.001,
decays to 0.0001 throughout 50 epochs, and 80-20 training and
validation split in the study during the training process. When
forming the validation splits, we use the participants as the
selection criteria for the validation split, ensuring the images
used in validation remain unknown to the model.

B. Multi-user Eye-Tracking

Our proposed multi-user eye-tracking architecture (see Fig-
ure 2 ) employs a three-step process, (1) gaze subject detection,
(2) gaze estimation, and (3) gaze-to-screen mapping to esti-
mate the gaze position (i.e., gaze coordinates in the display)
of the participants.

Gaze Subject Detection: For the simplicity of our pro-
totype, we divide the camera images into regions, referred
to as user-designated regions, where we expect the user to
be present during the experiment. Further, we assume no
occlusions exist between the camera and the user and only
one user to present in each region. We expect to eliminate
redundant operations such as face detection or occlusion
detection. We split the image vertically into two regions where
we expect the two participants to be present. Then, we utilize
the Facemesh [35] model to detect the faces in the image
region and establish the bounding box using the centroid of
the detected landmarks. Finally, we crop and generate the face
patches for the gaze estimation step.
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Gaze Estimation: Here, we process the images using a
model variant to estimate the gaze directions expressed as
pitch and yaw angles with respect to the detected face. Since
the image patches can be of different sizes depending on the
user’s distance from the camera, we use bilinear interpolation
[36] to resize each facial image to match the specifications
of the estimation model. We select and use a model from the
model variants discussed earlier based on gaze estimation and
inferencing throughput. To orient model performance on gaze
estimation, we empirically select N = 64, k = N, and train
the model with \; = 1 and A, = 1. Considering the real-
time inferencing performance, we use the model comprising
EfficientNet-BO [27] as the encoder.

Gaze-to-Screen Mapping: Our approach uses the encoded
face position to model the relationship between gaze directions
and on-screen positions. Here, we propose a grid-like encoding
scheme to represent the position derived using the pinhole
camera model, assuming the camera remains stationary rela-
tive to the interaction surface.

For our calculations, we consider the face of a person at
(@p, Yp, zp) with dimensions (Axzy, Ay,, Az,) in the world
coordinate frame, projecting an image of size (Au,Av) at
(u,v) on camera coordinate system. We derive the relation-
ships u = %xp and Au = Azip f using the pinhole camera
model, where f represents the focal distance.

Similarly, we derive a similar relationship for v and Auw,
indicating the possibility of encoding the facial location in 3D
space using the projection on the image. For this purpose, we
first form a mask M of the input image size with ¢, and jth
value defined as,

M= 1 fu<i<u+Auandv<j<v+Av
“ )10 otherwise
3)

Then we perform average pooling on the mask with the
same pool size and stride to derive the derived mask to obtain
the position encoding of size n X n.

Finally, we combine the gaze direction estimate (g) and
the encoded face positions (P) to estimate the gaze locations
on the screen (s = (s, s,)) using a mapping function S :
(P,g) — s. For modeling the mapping function, we assume a
nonlinear relationship between the variables modeled through
a multi-layer neural network trained during the calibration
phase of the application. Even though we can change the
sensitivity by choosing different values for n, we use n = 2 in
our prototype setup for simplicity. Moreover, in each session,
the proctor monitors the training and validation errors during
each calibration round to prevent overfitting.

IV. RESULTS

A. Gaze Estimation

We first evaluate the model performance by implementing
the encoder (&) by CNNs with EfficientNet architectures, a
class of CNNs built for systematic scaling. We test and report
the performance against the publicly available ETH XGaze
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Fig. 2: Left: Proposed Multi-Eyes framework, Right: Joint attention experiment with two participants

[17] dataset across all model variants. We use « = N to
allocate the entire latent space for gaze estimation and report
the performance using the Mean Absolute Error (MAE) of the
gaze angle estimation (see Table I). The results suggest that the
series of models we used in the experiments provide improved
accuracy by increasing the number of parameters. This allows
us to identify efficient model sizes depending on the accuracy
and the hardware capabilities required for a scalable multi-
user eye-tracking system. However, it is essential to note
that through each model configuration, we can derive more
optimized models by adjusting hyper-parameters often leading
to better-generalized models while achieving better parameter
efficiency.

TABLE I: Evaluation of the Gaze Estimation Network using
ETH X-Gaze Dataset[17] (N = 64, kK = 64 and A\, = 0).

Model Gaze Error | # Parameters
X-Gaze Baseline [17] | 4.50 26M
EfficientNet-BO 5.22 4.3M
EfficientNet-B1 5.12 6.9M
EfficientNet-B2 5.05 9.IM
EfficientNet-B3 4.99 11M
EfficientNet-B4 4.85 18M
EfficientNet-B5 4.64 29M
EfficientNet-B6 4.64 42M
EfficientNet-B7 4.34 65M

We use the EfficientNet-BO encoder-based model and ex-
plore the effect of hyperparameters A, and A, of the model.
Here we use the N = 64 and ~ € {16,32,64} and change
the hyperparameters and report the results (see Table II). Here
we explore the possibility of using the reconstruction as a
form of regularization to the network and its effect on gaze
estimation accuracy. The decrease in error for increments of
the hyperparameter \ indicates where x € {16,64} that the
model achieves more generalizability through regularization.
In contrast, the experiments with k = 32 show an opposite
pattern with the decrease in A corresponding to an increase
in the accuracy of gaze estimation, with A\, = 0.01,x = 64
yielding the least gaze estimation error.

Considering the utility of the proposed gaze model across
hardware with varying computational capabilities requires
different optimizations to leverage the hardware capabilities of
the host platform. In our experiments, we explore the effect of
due to quantization, where we execute the model with lower
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TABLE II: Effect of Hyper Parameters on the estimation.
EfficientNet-BO model (N = 64, A\, = 1)

Regularization (\;-)
0.01 0.1 1
k=16 | 53520 | 5.2854 | 5.1936
k=32 | 51340 | 5.1815 | 5.4166
k=64 | 5.1604 | 5.1725 | 5.1012

precision parameters by discretizing the model parameters.
Quantization allows to compress the model and run with
lower computations. Our study considers float16 quantization,
transforming the mode parameters from float64 to float16. We
conduct the study in two steps; first, we use the same models
used to study the effect of hyperparameters and analyze the
effect of quantization. Next, we compare the performance
against models trained with emulated quantization in the
forward pass (quantization-aware).

Our results (see Table III) indicate that the quantization
of pre-trained models yields mixed results between different
combinations of model parameters, with the highest achieved
by A, = 0.01, x = 32. In comparison, the quantization-aware
models (see Table IV) lead to higher gaze errors in similar
model configurations, indicating that the additional step of
emulating quantization did not improve estimation accuracy.

TABLE III: Effect of quantization on Gaze Error (+improve-
ment/ -decline%) using EfficientNet-BO (N = 64, \; = 1)

Regularization (A,)

0.01 0.1 1
k=16 | 5.3504 (+0.45) | 5.2854 (-0.11) | 5.1926 (+0.01)
k=32 | 5.1347 (-0.01) | 5.1821 (-0.01) | 5.4166 (+0.03)
% =64 | 5.1582 (40.04) | 5.1735 (0.02) | 54147 (-6.15)

TABLE IV: Effect of quantization on Mean Gaze Error using
EfficientNet-BO with emulated quantization on forward pass.
(N =064, \; =1)

Regularization (A,)

0.01 0.1 1
k=32 | 5555 | 5594 | 5.639
k=064 | 5686 | 5.736 | 5.979

Next, we evaluate the knowledge transferability of the
model against the publicly available Columbia-Gaze dataset
[20] of 5,880 images of 56 people over varying gaze directions
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and head poses. We pass each image in the dataset through
Facemesh[35] to identify faces and evaluate the gaze estima-
tion for each detected face. We observed no clear patterns
between the model configuration and the gaze estimation error
(see Table V). However, the results provide an estimate of
the model’s generalizability for potential application in real-
world studies, which can be improved through model scaling
or calibration.

TABLE V: Cross-dataset evaluation of gaze estimation net-
work using Columbia-Gaze Dataset [20] (N = 64, A\, = 1)

Regularization (\,)

0.01 0.1 1
k=16 | 6.091 | 5548 | 7.177
k=32 | 6211 | 6.021 | 5.305
k=64 | 6.027 | 7.107 | 6.229

B. Feasibility Study: Joint Attention Tracking

To demonstrate the feasibility of our framework, we de-
signed an experimental setup (see Figure 2) using a 72” wall-
mounted display and Logitech C270 web camera (720p/30fps,
55° dFoV) to capture multi-user gaze movements. We re-
cruited five participants aged 20 - 27 (2 F, 3M) for the
user study (3 pairs, 7 trials, within-subject) with normal or
corrected-to-normal vision. We instructed participants to stand
approximately 6 feet in front of the screen and adjusted the
web camera based on their heights. We started our experiment
by calibrating the eye tracker for each user separately. Here,
the application selectively prompted each user to look at five
given targets (top left, top right, bottom left, bottom right, and
center of the screen) sequentially. At the prompt, the applica-
tion collected gaze direction and encoded face location after
a predefined delay to settle the users’ gaze. The application
collected 100 samples for each target before proceeding to
the next target in the sequence. Before the experiment, we
allowed the participants to test their calibration by presenting
a test screen and asking them to fixate on selected positions.

Following the work of [37], each joint interaction trial
consisted of a 1-minute five-point calibration step and a 1.5-
2.5 minute joint attention task among two participants in front
of the screen and one proctor across from the participants. The
web camera was placed on the bottom center of the screen.
Afterward, the proctor instructed the participants to look at
one of the objects (photo frame, ball, or shark) displayed on
the screen for 10 seconds. For each trial, the participants were
given an object name to look at. The order of the objects was
randomized among different pairs of participants.

Given the gaze position (i.e., x and y screen coordinators)
of participants along with timestamps, we derived eye move-
ment metrics indicative of joint attention, fixation duration,
fixation count, and time to first fixation [38]. We derived eye
movement are-of-interest (AOI) given three object boundaries
and extracted feature sets within these AOIs.

In order to detect joint attention, we measured the time
to the first fixation upon receiving an instruction. We also
measured the number of fixations a subject made on the object
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upon receiving instruction and the fixation duration of subjects
upon fixating on an object. Table VI presents the calculated
eye-tracking metrics. Our results using commodity hardware
are comparable to the joint attention tasks from prior work
given conventional eye tracking configurations [38], [39], [40],
[41].

TABLE VI: Eye Movement Measurements During the Joint
Attention Tasks

Metric Mean | Median | Std.
Time to First Fixation (seconds) | 1.25 1.18 0.93
Fixation Count 7.26 5.50 6.72
Fixation Duration (seconds) 5.45 6.06 3.00

Further, we evaluated the throughput of our experimental
setup considering the average frame rate across the joint atten-
tion experiments, using the number of gaze samples generated
by each thread dedicated for each user. Our results indicate
that without any optimizations or hardware acceleration, our
setup achieved an average throughput of 17 frames per second
(see Table VII) with a max throughput rate of 20 frames per
second.

TABLE VII: Multi-eyes pipeline throughput during joint at-
tention experiment

Left Thread Right Thread
Session Mean SD Max | Mean SD Max
Session 1 | 17.05 | 2.02 19 17.06 | 1.98 20
Session 2 | 16.84 | 2.18 19 17.18 | 1.76 21
Session 3 | 17.18 | 1.56 20 16.88 | 2.55 21

V. CONCLUSION

In this paper, we present Multi-Eyes, a framework for
performing multi-user gaze estimation using commodity hard-
ware. The proposed approach’s lightweight EfficientNet model
allows gaze estimation to be deployed to a wide range of
devices.

Our results show the potential for the off-the-shelf hardware
resources to perform gaze estimation during multi-user interac-
tions. Our prototype did not use hardware acceleration such as
GPUs, CPU-based optimizations, or software-based optimiza-
tions, which are possible avenues to improve our application’s
throughput. However, the prototype in its current form would
be sufficient for applications that require approximate gaze
positions with low sampling rates. In the future, we expect to
incorporate application-level optimizations to further improve
scalability during multi-user interactions, and comprehensive
end-to-end evaluation of our pipeline.
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