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Abstract—Eye movements can provide informative cues to
understand human visual scan/search behavior and cognitive load
during varying tasks. Visualizations of real-time gaze measures
during tasks, provide an understanding of human behavior as
the experiment is being conducted. Even though existing eye
tracking analysis tools provide calculation and visualization of
eye-tracking data, none of them support real-time visualizations
of advanced gaze measures, such as ambient or focal processing,
or eye-tracked measures of cognitive load. In this paper, we
present an eye movements analytics dashboard that enables
visualizations of various gaze measures, fixations, saccades,
cognitive load, ambient-focal attention, and gaze transitions
analysis by extracting eye movements from participants utilizing
common off-the-shelf eye trackers. We validate the proposed eye
movement visualizations by using two publicly available eye-
tracking datasets. We showcase that, the proposed dashboard
could be utilized to visualize advanced eye movement measures
generated using multiple data sources.

Index Terms—Visual Scanning, Eye-Tracking, Visualization

I. INTRODUCTION

The “Eye-Mind Hypothesis” [1] suggests that the mind and

eyes work together to form humans’ perceptions of the world.

The eyes and the mind are constantly adjusting and updating

the visual information to create an accurate representation of

the environment. Eyes move rapidly to keep the image of

the world stable on the retina when people are moving, thus

allowing the mind to construct a stable representation of the

world. Inspired by this real-time behavior of eyes and mind,

real-time eye movement analysis can provide insights into

various aspects of human behavior and cognition. For instance,

in neuroscience research [2], eye movements have proven to

reveal information about how people perceive and process

information, along with how their cognition varies with the

tasks they are working on. This helps researchers better under-

stand the workings of the brain and incorporate conditions like

Attention-deficit/hyperactivity disorder (ADHD) [3], Autism

Spectrum Disorder (ASD), and concussion in activities.

Real-time visualizations of eye movement analytics can

also potentially enhance safety, training, research, and user

experiences across various domains. They enable users to

make informed decisions, optimize their actions, and gain a

deeper understanding of how attention and visual behavior

impact their activities. In applications like healthcare, real-

time visualizations of eye movements can help medical pro-

fessionals diagnose and treat patients more effectively. Another

example is, monitoring driver’s attention [4] and alertness in

real time using eye movement data, to provide warnings or

take corrective actions to prevent accidents.

Real-time visualizations of advanced gaze measures are

also valuable for training and skill development. They allow

trainees to see when and where their attention is focused and

how it relates to their performance. Researchers in various

fields, such as psychology, neuroscience, and human-computer

interaction, can benefit from real-time visualizations to study

cognitive processes, attention, and decision-making, as they

provide immediate insights into subjects’ behavior.

This study aims to address the existing research gap by

designing an eye movements analytics dashboard that pro-

vides visualizations of advanced gaze measures in real time.

The proposed advanced gaze measures analytics dashboard

provides visualizations of advanced gaze measures including

ambient/focal attention coefficient K [5], an eye tracked mea-

sure of cognitive load, Real-time Index of Pupillary Activity

(RIPA) [6], and gaze transition matrices [7], during the course

of a single scan path of a participant in real-time. To vali-

date the proposed dashboard in terms of the applicability of

multiple data sources, we examine two scenarios drawn from

two publicly available eye-tracking datasets and evaluate the

advanced gaze measures visualizations.

In summary, our contributions in this work are:

1) We design and develop an interactive, advanced gaze

measures analytics dashboard that provides visualiza-

tions of positional gaze measures, as well as advanced

gaze measures in real-time.

2) We demonstrate the utility of the proposed dashboard

by examining two scenarios drawn from two publicly

available eye-tracking datasets.

II. RELATED WORK

Eye movement recording, including pupil diameter, has

been extensively used in human-computer interaction and

offers the possibility of understanding how information is per-

ceived and processed by humans [8]. Most existing software

and libraries for eye-tracking analysis are hardware-specific

software that comes bundled with an eye-tracking device.

They must be purchased in order to access the advanced

functionalities. Tobii Pro Lab [9] and SR Research [10] are

examples of hardware-specific software that comes bundled

with an eye-tracking device. Unlike vendor-specific software,

iMotions [11] is an independent, proprietary data collection

and analysis suite that is not tied to a specific vendor or

device. Also, there exist, open-source software for eye-tracking

research, such as PyGaze [12], EyetrackingR [13], EMA Tool-

box [14], Open Gaze and Mouse Analyzer (OGAMA) [15],

PyTrack [16], and Gaze Analytics Pipeline [17], and research
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Fig. 1. Example Visualizations of Advanced Gaze Measures Included in the
Proposed Dashboard and Key Components.

level multi-user eye tracking analysis software, such as DisE-

Trac dashboard [18]–[20].

Almost all of the existing eye-tracking analysis tools are

capable of generating a variety of plots, including heat map

generation, fixation plot generation, Areas of Interest (AOI)

analysis, dynamic viewing of pupil size/gaze position, and

main sequence plots. However, these tools are intended to be

used after the collected eye-tracking data is available, thus

generating the aforementioned plots at the end of the eye-

tracking experiment. Moreover, except for the Gaze Analytics

Pipeline [17], and DisETrac dashboard [18]–[20], none of

the aforementioned tools support advanced gaze measures

calculations such as ambient/focal attention coefficient K, gaze

transition entropy, or cognitive load measurements, utilizing

the eye-tracking data. Though Gaze Analytics Pipeline [17] is

capable of generating advanced gaze measures and visualiza-

tions of them, similar to the other tools, it is also intended to

be used after the initial process of recording eye movement

data. Alternatively, DisETrac dashboard [18]–[21] provides

visualizations of traditional and advanced gaze measures in a

distributed eye tracking setting with multiple users. However,

it is designed to generate visualizations for dyads, and not of

a single participant, and it does not provide visualizations of

the main sequence relationship, gaze transition matrices, or

the relationship between ambient/focal attention coefficient K

and pupil diameter.

Real-Time Advanced Eye Movements Analysis Pipeline

(RAEMAP) [22], [23] is employed for real-time processing

of advanced gaze measures. Real-time generation of advanced

gaze measures makes it possible to visualize how eye gaze

measures change during the course of a single scan path of a

participant during task completion. This provides calculation

of positional gaze measures such as numbers of fixations,

fixation duration, average fixation duration, fixation standard

deviation, pupil diameter of both eyes, percentage change of

pupil diameter, maximum and minimum saccade amplitude,

average saccade amplitude, and standard deviation of saccade

amplitude, and main sequence analysis.

III. METHODOLOGY

RAEMAP [22] integrated with StreamingHub [24] pro-

vides the capability to re-stream data, mimicking the real-

time simulation in the absence of real-time data. We utilize

this set up to process input streams to extract gaze and

pupil information and classify raw gaze points into fixations

and saccades. Upon doing so, it generates advanced gaze

measures including ambient/focal attention coefficient K [5],

an eye tracked measure of cognitive load, Real-time Index of

Pupillary Activity [6], and gaze transition matrices [7] which

shows the distribution of attention over AOIs for each scan

path. Finally, it outputs the computed advanced gaze measures

as data streams.

A. Advanced Gaze Measures

Ambient/focal attention coefficient K [5] is an indicator of

visual search behavior. Instead of using global statistical infor-

mation as in K, RAEMAP [22] currently utilizes statistical in-

formation per subject when calculating ambient/focal attention

coefficient K. Equation 1 shows how ambient/focal attention

coefficient K is calculated for each fixation detected [5].

Ki =
di − d̄

σd

−
ai+1 − ā

σa

(1)

Here, di is the fixation duration, and ai+1 is the saccade

amplitude. d̄d, σd, āaσa represent the mean and standard de-

viation of fixation duration and saccade amplitude, of the

corresponding subject.

RIPA [6] is an eye-tracked measure of cognitive load. It

consists of short Savtizky-Golay smoothing and differentiating

filters that require only a few pupillary data samples to perform

the calculation. RIPA is designed to indicate a higher cognitive

load if its values fall within 0.5-1.0, whereas, a lower cognitive

load if its values fall within 0.0-0.5 [6].

Gaze Transition Matrices [25] indicate the probability of

transition of gaze between two AOIs. Each cell of a gaze

transition matrix corresponds to the probability calculated

using the number of transitions that occurred from the source

AOI to the destination AOI. When AOIs are considered, gaze

transition matrices indicate the scan behavior of individuals

with respect to the AOIs.

Main Sequence Relationships [26] are plots that show the

relationship between (1) the peak velocity (on the vertical axis)

and amplitude (on the horizontal axis) and (2) the saccade

duration (on the vertical axis) and amplitude (on the horizontal

axis) of saccadic eye movements. According to the main

sequence relationships, the duration of human saccadic eye

movements is related in a nonlinear manner to the saccadic

amplitude, and the peak velocity is similarly related in a

quasi-linear manner to saccadic amplitude, where it reaches

a soft saturation limit and thereafter does not increase as

rapidly. Consequently, we hypothesize that any differences

encountered in main sequence relationships could lead to the

conclusion that the saccade is not normal.

115

Authorized licensed use limited to: Old Dominion University. Downloaded on March 30,2025 at 01:02:49 UTC from IEEE Xplore.  Restrictions apply. 



Fig. 2. Visual Scanning - (1) Fixations Overlayed on “Where’s Waldo” Scene, (2) RIPA, a Measure of Cognitive Load, (3) Gaze Transitions Matrix.

B. Advanced Gaze Analytics Dashboard

In our setup, we acquire fixations and saccade information

(including fixation centroid, fixation duration, saccade ampli-

tude, saccade peak velocity, saccade average velocity, saccade

duration) along with pupillary information, and advanced gaze

measures (RIPA, ambient/focal coefficient K, and gaze tran-

sitions between AOIs) for each subject, by subscribing to the

real-time data streams of RAEMAP. For each subscribed data

stream, we then, generate a dynamic data frame that supports

hvPlot [27] to generate the visualizations. As data is received,

we emit the available data points to the corresponding stream

data frame to update the visualizations.

Figure 1 shows example visualizations of our proposed

dashboard along with the key components. Our dashboard

provides more interactive functionalities to monitor, analyze,

and control the gaze measure visualizations. The dashboard

has three main components.

1) Tabs: enables switching between the views of different

gaze measures.

2) Plots: are real-time visualizations of advanced gaze

measures calculated during the experiment.

3) Control widgets: include zoom (box and wheel), save

plot, and reset plot functions.

There are five tabs offered in the advanced gaze measures

analytics dashboard. They are the main sequence analysis tab,

fixations tab, coefficient K tab, gaze transition matrix tab,

and RIPA tab. In the main sequence analysis tab, users can

visualize both main sequence relationships: saccade amplitude

vs. peak velocity, and saccade amplitude vs. saccade duration

(see Figure 5). In the fixations tab (see the first plot in Figure

2), users can analyze fixations that occurred on the scan path

during the experiment. In the ambient/focal attention coeffi-

cient K tab (see Figure 1), users can visualize, coefficient K

corresponding to each fixation duration and preceding saccade

amplitude. Additionally, our dashboard lets users compare how

ambient/focal attention coefficient K changes with fixation

duration, saccade amplitude, and pupil diameter. In the gaze

transition matrix tab (see the third plot in Figure 2), users

can visualize how many gaze transitions have occurred from

the source AOI to the destination AOI at a given time point.

The gaze transition matrix is color-coded in a way that a

darker color means a higher number of transitions, whereas

a lighter color means a lower number of transitions between

corresponding AOIs. In the RIPA tab (see the second plot in

Figure 2), users can analyze RIPA as it is being generated

from RAEMAP.

IV. EVALUATION

Using two publicly available datasets, Driving Simulation

Dataset [28], and Visual Scanning Dataset [29], we conducted

a visual analysis to validate the proposed dashboard’s utility

in visualizing advanced gaze measures. For this, we use

two randomly selected trials representing a scenario from

both datasets and generate advanced gaze measures in real

time. We employed visualizations of fixations along the scan

path, changes of ambient/focal attention coefficient K over

time, RIPA, and main sequence relationships, compared to

the anticipated behavior in both scenarios as our evaluation

measures.

A. Datasets

1) Driving Simulation Dataset: This dataset [28] contains

eye movement and weighted NASA-TLX score data collected

from 68 subjects who completed various driving tasks with

different types of distractions, along with a non-driving base-

line. This dataset has been acquired in a controlled experiment

on a driving simulator. Participants drove the same highway

under four different conditions: (1) no distraction, (2) cognitive

distraction, (3) emotional distraction, and (4) sensorimotor

distraction.

2) Visual Scanning Dataset: This dataset [29] contains

eye movements collected from 8 subjects who completed 120

trials of viewing images, each for 45 seconds, in two viewing

conditions: (1) fixation-viewing and (2) free-viewing [29]. At

each trial, participants were presented with one image from

four scenes: blank scene, natural scene, picture puzzle, and

Where’s Waldo. In the free-viewing conditions, the subject’s

task depended on the visual scene presented. In the blank

scene and natural scene conditions, subjects were instructed to

explore the image at will, and the picture puzzle and where’s

waldo conditions involved visual searches. In the fixation

conditions, the visual stimulus varied from trial to trial, but the

subject’s task (i.e., attempted fixation) did not. Both fixation

and free-viewing conditions were identical, except for the

presence/ absence of a fixation cross.

B. Real-Time Simulation and Visualizations

Both datasets had originally split up eye-tracking data

related to each trial into separate files for each participant.
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To simulate real-time processing, we generated advanced gaze

measures using RAEMAP. Upon generating advanced gaze

measures, it outputs the generated measures into data streams.

Our dashboard is configured to acquire the advanced gaze

measures from RAEMAP by subscribing to the real-time

data streams. For each subscribed data stream, we then

generate the visualizations, as data being received. Our

dashboard features five real-time visualizations of advanced

gaze measures; (1) main sequence analysis, (2) ambient/focal

attention coefficient K, (3) RIPA, (4) gaze transition matrix,

and (5) fixations on scanpath.

To validate the visualizations, we consider two scenarios

from the datasets.

1) Scene One: In a driving simulation, the expectations of

a driver in terms of eye movements are similar to those in real-

world driving. Driver should focus primarily on the road ahead

to anticipate potential hazards, obstacles, and changes in traffic

conditions. Additionally, drivers are expected to exhibit focal

attention as it is a critical aspect of their cognitive engagement.

Focal attention refers to the driver’s ability to concentrate their

cognitive resources on specific elements within the simulated

environment. These elements often include the road ahead,

traffic signs, other vehicles, and potential hazards. Maintaining

focused attention is essential for making rapid and accurate

decisions, effectively scanning the environment for critical

information, and responding to unexpected events. Therefore,

we anticipate drivers to exhibit focal attention during the driv-

ing task. Moreover, cognitive processes, such as perception,

attention, memory, decision-making, and problem-solving, are

continually engaged as drivers assess and respond to simulated

traffic situations. Drivers must swiftly process visual and

auditory information, maintaining situational awareness by

recognizing road signs, anticipating the behavior of virtual

vehicles, and reacting to sudden events. Hence we expect the

driver’s cognitive load to be higher in the simulation setting

as well.

Fig. 3. Driving Simulation - Left: Fixations along the Scan Path,
Right: RIPA, Eye Tracked Measure of Cognitive Load.

We visualized the subject’s fixations along the scan path

while completing the driving simulation. (see left plot in

Figure 3). Here, we observed that the selected subject primar-

ily fixated on the road ahead without changing his/her gaze

much. Then, we visualized RIPA, an eye tracked measure of

cognitive load (see right plot in Figure 3). We observed that

the subject’s cognitive load varied between 0.8 and 1 on RIPA

scale, indicating a higher cognitive load throughout the task.

Fig. 4. Driving Simulation - Ambient/Focal Attention Coefficient K Over
Time, and Comparisons with Pupil Diameter, Fixation Duration, and Saccade
Amplitude.

Next, we visualized the changes of ambient/focal attention

coefficient K over time, along with comparisons between am-

bient/focal attention coefficient K and pupil diameter, fixation

duration, and saccade amplitude, as illustrated in Figure 4. We

observed that the subject’s ambient/focal attention coefficient

K had more positive values overall. This is an indication

of a focal attention pattern. Additionally, we observed that

higher fixation durations contributed to positive ambient/focal

attention coefficient K, whereas, higher saccade amplitudes

contributed to negative ambient/focal attention coefficient K.

This observation is on par with the Equation 1. However, we

did not observe a relationship between ambient/focal attention

coefficient K and pupil diameter, though the subject in general

had a higher pupil diameter throughout the driving task.

Fig. 5. Driving Simulation - Main Sequence Relationships. Left: Saccade
Peak Velocity vs. Saccade Amplitude, Right: Saccade Duration vs. Saccade
Amplitude.

Finally, we visualized both main sequence relationships of

the subject. Figures 5 show the relationships between saccade

amplitude and saccade peak velocity in representative subjects

during the driving task. Here, we did not observe a quasi-

linear relationship between the saccade peak velocity and the

saccadic amplitude (see the left plot in Figure 5), where it

reaches a soft saturation limit. It was evident that on average,

saccades were not normal during driving tasks which involved

different types of distractions. However, we observed that

the duration of saccadic eye movements is related in a non-

linear manner to the saccadic amplitude (see the right plot in

Figure 5). This observation yields that the relationship between

saccade amplitude and saccade duration holds in accordance

with the main sequence relationship.

2) Scene Two: During visual scanning tasks, individuals

typically use a combination of fixations and saccades. Fix-

ations involve briefly pausing the eyes on a specific area of
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the scene to gather detailed visual information, while saccades

are rapid eye movements that shift the gaze from one location

to another. In many visual search tasks, people tend to use

a systematic scanning pattern. This might involve scanning

from left to right or from top to bottom, or using a more

complex pattern based on the task’s requirements. The eye

movements can be influenced by the background and context

of the search task. If the target stands out from the background,

it may be quickly identified. However, in this scenario, we

selected a random subject’s eye movement data collected when

completing a “where’s Waldo” scene. Figure 2 shows the

selected “where’s Waldo” scene, where the Waldo is blended

into the scene, thus requiring more extensive scanning to find

the target. Due to the complexity of the scene, we expect

participants to exhibit more ambient attention patterns and a

higher cognitive load throughout the experiment.

We selected a random trial from the scene under the free-

viewing condition, where, there was no fixation cross in the

middle of the scene. We first visualized the subject’s fixations

along the scan path (see the first plot in Figure 2) by overlaying

on top of the “Where’s Waldo” scene. We observed that the

subject exhibits a more complex scan pattern throughout the

visual scan task. Then, we visualized how RIPA changed

over time (see the second plot in figure 2). Here as well, we

observed that the subject’s cognitive load was greater than 0.8

throughout the tasks, indicating a higher cognitive load.

Fig. 6. Visual Scanning - Main Sequence Relationships. Left: Saccade
Peak Velocity vs. Saccade Amplitude, Right: Saccade Duration vs. Saccade
Amplitude.

Visualizations of both main sequence relationships of the

subject are shown in Figure 6. Here, we observed that the

saccade duration and saccade amplitude have a non-linear

relationship (see the right plot in Figure 6), in accordance

with the main sequence relationship. We also observed a quasi-

linear relationship between the saccade peak velocity and the

saccade amplitude (see the left plot in Figure 6), showing that

overall, saccades were normal during the visual scan task.

Visualizations of ambient/focal attention coefficient K over

time (see Figure 7) show more negative values overall, indi-

cating that the subject had an ambient attention pattern. From

the comparisons between ambient/focal attention coefficient K

and pupil diameter, fixation duration, and saccade amplitude,

we observed a positive linear relationship between fixation

durations with ambient/focal attention coefficient K and a

negative linear relationship between saccade amplitudes with

ambient/focal attention coefficient K.

Fig. 7. Visual Scanning - Ambient/Focal Attention Coefficient K Over
Time, and Comparisons with Pupil Diameter, Fixation Duration, and Saccade
Amplitude.

V. DISCUSSION

In line with expectations, visualizations generated from the

proposed real-time gaze analytics dashboard suggest that real-

time eye movement analysis indeed could provide important

insights into various aspects of human behavior and cognition.

In this study, we analyzed two distinct scenarios, where

we evaluate the usability of the proposed dashboard. We

monitored a driver’s attention and alertness in a simulated real-

time scenario, and we analyzed the visual scan behavior of a

person under free viewing of a complex image followed by a

search task. In contrast to the existing eye tracking analysis

tools which allow calculation and visualization of eye-tracking

data upon the initial process of recording eye movement data is

completed, our proposed dashboard, integrated with RAEMAP

allows researchers to gain immediate insights into subjects’

behavior such as cognitive processes, attention, and decision-

making, while the experiment is ongoing in a simulated

environment.

Through the visualizations, we observed a greater RIPA

response during the simulated driving task as well as the

complex visual search task. Also in line with predictions

on the dynamics ambient/focal attention coefficient K, we

observed a larger number of positive coefficient K values in the

simulated driving task, indicating a focal attention behavior,

and a larger number of negative coefficient K values in the

complex visual search task, indicating an ambient attention

behavior. Further studies conducted on different scenarios are

required to evaluate the utility of visualizations.

While presenting promising features and insights, the sug-

gested advanced gaze analytics dashboard does come with cer-

tain limitations. The absence of a user evaluation is one such

limitation that leaves unanswered questions regarding the prac-

tical usability and user-friendliness of the dashboard in real-

world applications. Furthermore, the scope of the dashboard’s

capabilities may not encompass all potential eye movement

measures and nuances that researchers might require in their

work. It is essential to recognize that the effectiveness of the

dashboard could vary depending on the specific research con-

text and user requirements. These limitations underscore the

need for continued refinement and validation as the dashboard

is integrated into various research and practical settings.
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Future directions of the proposed advanced gaze analyt-

ics dashboard involve refining its capabilities, expanding its

applications, and ensuring it meets the evolving needs of

researchers and professionals in various domains. In the future,

we plan on conducting a comprehensive user evaluation of

the proposed dashboard to gather user feedback, to refine

the dashboard’s user interface, functionality, and accessibility.

Additionally, we also plan on enhancing the dashboard’s

flexibility to allow researchers to customize the measures

they wish to visualize. Another promising future direction of

the proposed gaze analytics dashboard is employing machine

learning algorithms to analyze eye movement data in con-

junction with other data sources. This could enable predictive

analytics, aiding in areas like diagnosing cognitive disorders

or predicting user behavior in user interface design.

VI. CONCLUSIONS

In this study, we presented an eye movements analyt-

ics dashboard that enables visualizations of advanced gaze

measures. This dashboard provides visualizations of RIPA,

ambient/focal attention coefficient K, gaze transitions, and

other eye movement data analysis. By using two publicly

available eye-tracking datasets, we showcased the proposed

dashboard’s utility in visualizing advanced eye movement

measures generated using multiple data sources. In the future,

we plan to improve the proposed dashboard and conduct a user

study to assess the effectiveness of our dashboard by recruiting

experts in UI/UX design and the eye-tracking domain.
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