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Abstract—Eye movements can provide informative cues to
understand human visual scan/search behavior and cognitive load
during varying tasks. Visualizations of real-time gaze measures
during tasks, provide an understanding of human behavior as
the experiment is being conducted. Even though existing eye
tracking analysis tools provide calculation and visualization of
eye-tracking data, none of them support real-time visualizations
of advanced gaze measures, such as ambient or focal processing,
or eye-tracked measures of cognitive load. In this paper, we
present an eye movements analytics dashboard that enables
visualizations of various gaze measures, fixations, saccades,
cognitive load, ambient-focal attention, and gaze transitions
analysis by extracting eye movements from participants utilizing
common off-the-shelf eye trackers. We validate the proposed eye
movement visualizations by using two publicly available eye-
tracking datasets. We showcase that, the proposed dashboard
could be utilized to visualize advanced eye movement measures
generated using multiple data sources.

Index Terms—Visual Scanning, Eye-Tracking, Visualization

I. INTRODUCTION

The “Eye-Mind Hypothesis” [1] suggests that the mind and
eyes work together to form humans’ perceptions of the world.
The eyes and the mind are constantly adjusting and updating
the visual information to create an accurate representation of
the environment. Eyes move rapidly to keep the image of
the world stable on the retina when people are moving, thus
allowing the mind to construct a stable representation of the
world. Inspired by this real-time behavior of eyes and mind,
real-time eye movement analysis can provide insights into
various aspects of human behavior and cognition. For instance,
in neuroscience research [2], eye movements have proven to
reveal information about how people perceive and process
information, along with how their cognition varies with the
tasks they are working on. This helps researchers better under-
stand the workings of the brain and incorporate conditions like
Attention-deficit/hyperactivity disorder (ADHD) [3], Autism
Spectrum Disorder (ASD), and concussion in activities.

Real-time visualizations of eye movement analytics can
also potentially enhance safety, training, research, and user
experiences across various domains. They enable users to
make informed decisions, optimize their actions, and gain a
deeper understanding of how attention and visual behavior
impact their activities. In applications like healthcare, real-
time visualizations of eye movements can help medical pro-
fessionals diagnose and treat patients more effectively. Another
example is, monitoring driver’s attention [4] and alertness in
real time using eye movement data, to provide warnings or
take corrective actions to prevent accidents.

Real-time visualizations of advanced gaze measures are
also valuable for training and skill development. They allow
trainees to see when and where their attention is focused and
how it relates to their performance. Researchers in various
fields, such as psychology, neuroscience, and human-computer
interaction, can benefit from real-time visualizations to study
cognitive processes, attention, and decision-making, as they
provide immediate insights into subjects’ behavior.

This study aims to address the existing research gap by
designing an eye movements analytics dashboard that pro-
vides visualizations of advanced gaze measures in real time.
The proposed advanced gaze measures analytics dashboard
provides visualizations of advanced gaze measures including
ambient/focal attention coefficient /C [5], an eye tracked mea-
sure of cognitive load, Real-time Index of Pupillary Activity
(RIPA) [6], and gaze transition matrices [7], during the course
of a single scan path of a participant in real-time. To vali-
date the proposed dashboard in terms of the applicability of
multiple data sources, we examine two scenarios drawn from
two publicly available eye-tracking datasets and evaluate the
advanced gaze measures visualizations.

In summary, our contributions in this work are:

1) We design and develop an interactive, advanced gaze
measures analytics dashboard that provides visualiza-
tions of positional gaze measures, as well as advanced
gaze measures in real-time.

2) We demonstrate the utility of the proposed dashboard
by examining two scenarios drawn from two publicly
available eye-tracking datasets.

II. RELATED WORK

Eye movement recording, including pupil diameter, has
been extensively used in human-computer interaction and
offers the possibility of understanding how information is per-
ceived and processed by humans [8]. Most existing software
and libraries for eye-tracking analysis are hardware-specific
software that comes bundled with an eye-tracking device.
They must be purchased in order to access the advanced
functionalities. Tobii Pro Lab [9] and SR Research [10] are
examples of hardware-specific software that comes bundled
with an eye-tracking device. Unlike vendor-specific software,
iMotions [11] is an independent, proprietary data collection
and analysis suite that is not tied to a specific vendor or
device. Also, there exist, open-source software for eye-tracking
research, such as PyGaze [12], EyetrackingR [13], EMA Tool-
box [14], Open Gaze and Mouse Analyzer (OGAMA) [15],
PyTrack [16], and Gaze Analytics Pipeline [17], and research
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Fig. 1. Example Visualizations of Advanced Gaze Measures Included in the
Proposed Dashboard and Key Components.

level multi-user eye tracking analysis software, such as DisE-
Trac dashboard [18]—[20].

Almost all of the existing eye-tracking analysis tools are
capable of generating a variety of plots, including heat map
generation, fixation plot generation, Areas of Interest (AOI)
analysis, dynamic viewing of pupil size/gaze position, and
main sequence plots. However, these tools are intended to be
used after the collected eye-tracking data is available, thus
generating the aforementioned plots at the end of the eye-
tracking experiment. Moreover, except for the Gaze Analytics
Pipeline [17], and DisETrac dashboard [18]-[20], none of
the aforementioned tools support advanced gaze measures
calculations such as ambient/focal attention coefficient /C, gaze
transition entropy, or cognitive load measurements, utilizing
the eye-tracking data. Though Gaze Analytics Pipeline [17] is
capable of generating advanced gaze measures and visualiza-
tions of them, similar to the other tools, it is also intended to
be used after the initial process of recording eye movement
data. Alternatively, DisETrac dashboard [18]-[21] provides
visualizations of traditional and advanced gaze measures in a
distributed eye tracking setting with multiple users. However,
it is designed to generate visualizations for dyads, and not of
a single participant, and it does not provide visualizations of
the main sequence relationship, gaze transition matrices, or
the relationship between ambient/focal attention coefficient K
and pupil diameter.

Real-Time Advanced Eye Movements Analysis Pipeline
(RAEMAP) [22], [23] is employed for real-time processing
of advanced gaze measures. Real-time generation of advanced
gaze measures makes it possible to visualize how eye gaze
measures change during the course of a single scan path of a
participant during task completion. This provides calculation
of positional gaze measures such as numbers of fixations,
fixation duration, average fixation duration, fixation standard
deviation, pupil diameter of both eyes, percentage change of
pupil diameter, maximum and minimum saccade amplitude,
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average saccade amplitude, and standard deviation of saccade
amplitude, and main sequence analysis.

III. METHODOLOGY

RAEMAP [22] integrated with StreamingHub [24] pro-
vides the capability to re-stream data, mimicking the real-
time simulation in the absence of real-time data. We utilize
this set up to process input streams to extract gaze and
pupil information and classify raw gaze points into fixations
and saccades. Upon doing so, it generates advanced gaze
measures including ambient/focal attention coefficient IC [5],
an eye tracked measure of cognitive load, Real-time Index of
Pupillary Activity [6], and gaze transition matrices [7] which
shows the distribution of attention over AOIs for each scan
path. Finally, it outputs the computed advanced gaze measures
as data streams.

A. Advanced Gaze Measures
Ambient/focal attention coefficient /C [5] is an indicator of
visual search behavior. Instead of using global statistical infor-
mation as in K, RAEMAP [22] currently utilizes statistical in-
formation per subject when calculating ambient/focal attention
coefficient K. Equation 1 shows how ambient/focal attention
coefficient K is calculated for each fixation detected [5].
d;
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Here, d; is the fixation duration, and a;1; is the saccade
amplitude. dg, 04, 0q04 represent the mean and standard de-
viation of fixation duration and saccade amplitude, of the
corresponding subject.

RIPA [6] is an eye-tracked measure of cognitive load. It
consists of short Savtizky-Golay smoothing and differentiating
filters that require only a few pupillary data samples to perform
the calculation. RIPA is designed to indicate a higher cognitive
load if its values fall within 0.5-1.0, whereas, a lower cognitive
load if its values fall within 0.0-0.5 [6].

Gaze Transition Matrices [25] indicate the probability of
transition of gaze between two AOIs. Each cell of a gaze
transition matrix corresponds to the probability calculated
using the number of transitions that occurred from the source
AOI to the destination AOI. When AOIs are considered, gaze
transition matrices indicate the scan behavior of individuals
with respect to the AOIs.

Main Sequence Relationships [26] are plots that show the
relationship between (1) the peak velocity (on the vertical axis)
and amplitude (on the horizontal axis) and (2) the saccade
duration (on the vertical axis) and amplitude (on the horizontal
axis) of saccadic eye movements. According to the main
sequence relationships, the duration of human saccadic eye
movements is related in a nonlinear manner to the saccadic
amplitude, and the peak velocity is similarly related in a
quasi-linear manner to saccadic amplitude, where it reaches
a soft saturation limit and thereafter does not increase as
rapidly. Consequently, we hypothesize that any differences
encountered in main sequence relationships could lead to the
conclusion that the saccade is not normal.

Oq
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Fig. 2. Visual Scanning - (1) Fixations Overlayed on “Where’s Waldo” Scene, (2) RIPA, a Measure of Cognitive Load, (3) Gaze Transitions Matrix.

B. Advanced Gaze Analytics Dashboard

In our setup, we acquire fixations and saccade information
(including fixation centroid, fixation duration, saccade ampli-
tude, saccade peak velocity, saccade average velocity, saccade
duration) along with pupillary information, and advanced gaze
measures (RIPA, ambient/focal coefficient K, and gaze tran-
sitions between AOIs) for each subject, by subscribing to the
real-time data streams of RAEMAP. For each subscribed data
stream, we then, generate a dynamic data frame that supports
hvPlot [27] to generate the visualizations. As data is received,
we emit the available data points to the corresponding stream
data frame to update the visualizations.

Figure 1 shows example visualizations of our proposed
dashboard along with the key components. Our dashboard
provides more interactive functionalities to monitor, analyze,
and control the gaze measure visualizations. The dashboard
has three main components.

1) Tabs: enables switching between the views of different
gaze measures.

2) Plots: are real-time visualizations of advanced gaze
measures calculated during the experiment.

3) Control widgets: include zoom (box and wheel), save
plot, and reset plot functions.

There are five tabs offered in the advanced gaze measures
analytics dashboard. They are the main sequence analysis tab,
fixations tab, coefficient I tab, gaze transition matrix tab,
and RIPA tab. In the main sequence analysis tab, users can
visualize both main sequence relationships: saccade amplitude
vs. peak velocity, and saccade amplitude vs. saccade duration
(see Figure 5). In the fixations tab (see the first plot in Figure
2), users can analyze fixations that occurred on the scan path
during the experiment. In the ambient/focal attention coeffi-
cient K tab (see Figure 1), users can visualize, coefficient K
corresponding to each fixation duration and preceding saccade
amplitude. Additionally, our dashboard lets users compare how
ambient/focal attention coefficient K changes with fixation
duration, saccade amplitude, and pupil diameter. In the gaze
transition matrix tab (see the third plot in Figure 2), users
can visualize how many gaze transitions have occurred from
the source AOI to the destination AOI at a given time point.
The gaze transition matrix is color-coded in a way that a
darker color means a higher number of transitions, whereas
a lighter color means a lower number of transitions between
corresponding AOIs. In the RIPA tab (see the second plot in
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Figure 2), users can analyze RIPA as it is being generated
from RAEMAP.

IV. EVALUATION

Using two publicly available datasets, Driving Simulation
Dataset [28], and Visual Scanning Dataset [29], we conducted
a visual analysis to validate the proposed dashboard’s utility
in visualizing advanced gaze measures. For this, we use
two randomly selected trials representing a scenario from
both datasets and generate advanced gaze measures in real
time. We employed visualizations of fixations along the scan
path, changes of ambient/focal attention coefficient K over
time, RIPA, and main sequence relationships, compared to
the anticipated behavior in both scenarios as our evaluation
measures.

A. Datasets

1) Driving Simulation Dataset: This dataset [28] contains
eye movement and weighted NASA-TLX score data collected
from 68 subjects who completed various driving tasks with
different types of distractions, along with a non-driving base-
line. This dataset has been acquired in a controlled experiment
on a driving simulator. Participants drove the same highway
under four different conditions: (1) no distraction, (2) cognitive
distraction, (3) emotional distraction, and (4) sensorimotor
distraction.

2) Visual Scanning Dataset: This dataset [29] contains
eye movements collected from 8 subjects who completed 120
trials of viewing images, each for 45 seconds, in two viewing
conditions: (1) fixation-viewing and (2) free-viewing [29]. At
each trial, participants were presented with one image from
four scenes: blank scene, natural scene, picture puzzle, and
Where’s Waldo. In the free-viewing conditions, the subject’s
task depended on the visual scene presented. In the blank
scene and natural scene conditions, subjects were instructed to
explore the image at will, and the picture puzzle and where’s
waldo conditions involved visual searches. In the fixation
conditions, the visual stimulus varied from trial to trial, but the
subject’s task (i.e., attempted fixation) did not. Both fixation
and free-viewing conditions were identical, except for the
presence/ absence of a fixation cross.

B. Real-Time Simulation and Visualizations

Both datasets had originally split up eye-tracking data
related to each trial into separate files for each participant.

Authorized licensed use limited to: Old Dominion University. Downloaded on March 30,2025 at 01:02:49 UTC from IEEE Xplore. Restrictions apply.



To simulate real-time processing, we generated advanced gaze
measures using RAEMAP. Upon generating advanced gaze
measures, it outputs the generated measures into data streams.

Our dashboard is configured to acquire the advanced gaze
measures from RAEMAP by subscribing to the real-time
data streams. For each subscribed data stream, we then
generate the visualizations, as data being received. Our
dashboard features five real-time visualizations of advanced
gaze measures; (1) main sequence analysis, (2) ambient/focal
attention coefficient /C, (3) RIPA, (4) gaze transition matrix,
and (5) fixations on scanpath.

To validate the visualizations, we consider two scenarios
from the datasets.

1) Scene One: In a driving simulation, the expectations of
a driver in terms of eye movements are similar to those in real-
world driving. Driver should focus primarily on the road ahead
to anticipate potential hazards, obstacles, and changes in traffic
conditions. Additionally, drivers are expected to exhibit focal
attention as it is a critical aspect of their cognitive engagement.
Focal attention refers to the driver’s ability to concentrate their
cognitive resources on specific elements within the simulated
environment. These elements often include the road ahead,
traffic signs, other vehicles, and potential hazards. Maintaining
focused attention is essential for making rapid and accurate
decisions, effectively scanning the environment for critical
information, and responding to unexpected events. Therefore,
we anticipate drivers to exhibit focal attention during the driv-
ing task. Moreover, cognitive processes, such as perception,
attention, memory, decision-making, and problem-solving, are
continually engaged as drivers assess and respond to simulated
traffic situations. Drivers must swiftly process visual and
auditory information, maintaining situational awareness by
recognizing road signs, anticipating the behavior of virtual
vehicles, and reacting to sudden events. Hence we expect the
driver’s cognitive load to be higher in the simulation setting
as well.

ManSequence  Cooficentk  RPA Gaze T ManSequence  CooicentX  RPA  GazoTansons  Fustons

o AIPA

Fig. 3. Driving Simulation - Left: Fixations along the Scan Path,
Right: RIPA, Eye Tracked Measure of Cognitive Load.

We visualized the subject’s fixations along the scan path
while completing the driving simulation. (see left plot in
Figure 3). Here, we observed that the selected subject primar-
ily fixated on the road ahead without changing his/her gaze
much. Then, we visualized RIPA, an eye tracked measure of
cognitive load (see right plot in Figure 3). We observed that
the subject’s cognitive load varied between 0.8 and 1 on RIPA
scale, indicating a higher cognitive load throughout the task.
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Fig. 4. Driving Simulation - Ambient/Focal Attention Coefficient IC Over
Time, and Comparisons with Pupil Diameter, Fixation Duration, and Saccade
Amplitude.

Next, we visualized the changes of ambient/focal attention
coefficient /C over time, along with comparisons between am-
bient/focal attention coefficient /C and pupil diameter, fixation
duration, and saccade amplitude, as illustrated in Figure 4. We
observed that the subject’s ambient/focal attention coefficient
K had more positive values overall. This is an indication
of a focal attention pattern. Additionally, we observed that
higher fixation durations contributed to positive ambient/focal
attention coefficient C, whereas, higher saccade amplitudes
contributed to negative ambient/focal attention coefficient /.
This observation is on par with the Equation 1. However, we
did not observe a relationship between ambient/focal attention
coefficient X and pupil diameter, though the subject in general
had a higher pupil diameter throughout the driving task.
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Fig. 5. Driving Simulation - Main Sequence Relationships. Left: Saccade
Peak Velocity vs. Saccade Amplitude, Right: Saccade Duration vs. Saccade
Amplitude.

Finally, we visualized both main sequence relationships of
the subject. Figures 5 show the relationships between saccade
amplitude and saccade peak velocity in representative subjects
during the driving task. Here, we did not observe a quasi-
linear relationship between the saccade peak velocity and the
saccadic amplitude (see the left plot in Figure 5), where it
reaches a soft saturation limit. It was evident that on average,
saccades were not normal during driving tasks which involved
different types of distractions. However, we observed that
the duration of saccadic eye movements is related in a non-
linear manner to the saccadic amplitude (see the right plot in
Figure 5). This observation yields that the relationship between
saccade amplitude and saccade duration holds in accordance
with the main sequence relationship.

2) Scene Two: During visual scanning tasks, individuals
typically use a combination of fixations and saccades. Fix-
ations involve briefly pausing the eyes on a specific area of
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the scene to gather detailed visual information, while saccades
are rapid eye movements that shift the gaze from one location
to another. In many visual search tasks, people tend to use
a systematic scanning pattern. This might involve scanning
from left to right or from top to bottom, or using a more
complex pattern based on the task’s requirements. The eye
movements can be influenced by the background and context
of the search task. If the target stands out from the background,
it may be quickly identified. However, in this scenario, we
selected a random subject’s eye movement data collected when
completing a “where’s Waldo” scene. Figure 2 shows the
selected “where’s Waldo” scene, where the Waldo is blended
into the scene, thus requiring more extensive scanning to find
the target. Due to the complexity of the scene, we expect
participants to exhibit more ambient attention patterns and a
higher cognitive load throughout the experiment.

We selected a random trial from the scene under the free-
viewing condition, where, there was no fixation cross in the
middle of the scene. We first visualized the subject’s fixations
along the scan path (see the first plot in Figure 2) by overlaying
on top of the “Where’s Waldo” scene. We observed that the
subject exhibits a more complex scan pattern throughout the
visual scan task. Then, we visualized how RIPA changed
over time (see the second plot in figure 2). Here as well, we
observed that the subject’s cognitive load was greater than 0.8
throughout the tasks, indicating a higher cognitive load.
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Fig. 6. Visual Scanning - Main Sequence Relationships. Left: Saccade

Peak Velocity vs. Saccade Amplitude, Right: Saccade Duration vs. Saccade
Amplitude.

Visualizations of both main sequence relationships of the
subject are shown in Figure 6. Here, we observed that the
saccade duration and saccade amplitude have a non-linear
relationship (see the right plot in Figure 6), in accordance
with the main sequence relationship. We also observed a quasi-
linear relationship between the saccade peak velocity and the
saccade amplitude (see the left plot in Figure 6), showing that
overall, saccades were normal during the visual scan task.

Visualizations of ambient/focal attention coefficient C over
time (see Figure 7) show more negative values overall, indi-
cating that the subject had an ambient attention pattern. From
the comparisons between ambient/focal attention coefficient X
and pupil diameter, fixation duration, and saccade amplitude,
we observed a positive linear relationship between fixation
durations with ambient/focal attention coefficient I and a
negative linear relationship between saccade amplitudes with
ambient/focal attention coefficient K.

118

e as——

Fig. 7. Visual Scanning - Ambient/Focal Attention Coefficient /C Over
Time, and Comparisons with Pupil Diameter, Fixation Duration, and Saccade
Amplitude.

V. DISCUSSION

In line with expectations, visualizations generated from the
proposed real-time gaze analytics dashboard suggest that real-
time eye movement analysis indeed could provide important
insights into various aspects of human behavior and cognition.
In this study, we analyzed two distinct scenarios, where
we evaluate the usability of the proposed dashboard. We
monitored a driver’s attention and alertness in a simulated real-
time scenario, and we analyzed the visual scan behavior of a
person under free viewing of a complex image followed by a
search task. In contrast to the existing eye tracking analysis
tools which allow calculation and visualization of eye-tracking
data upon the initial process of recording eye movement data is
completed, our proposed dashboard, integrated with RAEMAP
allows researchers to gain immediate insights into subjects’
behavior such as cognitive processes, attention, and decision-
making, while the experiment is ongoing in a simulated
environment.

Through the visualizations, we observed a greater RIPA
response during the simulated driving task as well as the
complex visual search task. Also in line with predictions
on the dynamics ambient/focal attention coefficient K, we
observed a larger number of positive coefficient K values in the
simulated driving task, indicating a focal attention behavior,
and a larger number of negative coefficient K values in the
complex visual search task, indicating an ambient attention
behavior. Further studies conducted on different scenarios are
required to evaluate the utility of visualizations.

While presenting promising features and insights, the sug-
gested advanced gaze analytics dashboard does come with cer-
tain limitations. The absence of a user evaluation is one such
limitation that leaves unanswered questions regarding the prac-
tical usability and user-friendliness of the dashboard in real-
world applications. Furthermore, the scope of the dashboard’s
capabilities may not encompass all potential eye movement
measures and nuances that researchers might require in their
work. It is essential to recognize that the effectiveness of the
dashboard could vary depending on the specific research con-
text and user requirements. These limitations underscore the
need for continued refinement and validation as the dashboard
is integrated into various research and practical settings.
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Future directions of the proposed advanced gaze analyt-
ics dashboard involve refining its capabilities, expanding its
applications, and ensuring it meets the evolving needs of
researchers and professionals in various domains. In the future,
we plan on conducting a comprehensive user evaluation of
the proposed dashboard to gather user feedback, to refine
the dashboard’s user interface, functionality, and accessibility.
Additionally, we also plan on enhancing the dashboard’s
flexibility to allow researchers to customize the measures
they wish to visualize. Another promising future direction of
the proposed gaze analytics dashboard is employing machine
learning algorithms to analyze eye movement data in con-
junction with other data sources. This could enable predictive
analytics, aiding in areas like diagnosing cognitive disorders
or predicting user behavior in user interface design.

VI. CONCLUSIONS

In this study, we presented an eye movements analyt-
ics dashboard that enables visualizations of advanced gaze
measures. This dashboard provides visualizations of RIPA,
ambient/focal attention coefficient K, gaze transitions, and
other eye movement data analysis. By using two publicly
available eye-tracking datasets, we showcased the proposed
dashboard’s utility in visualizing advanced eye movement
measures generated using multiple data sources. In the future,
we plan to improve the proposed dashboard and conduct a user
study to assess the effectiveness of our dashboard by recruiting
experts in UI/UX design and the eye-tracking domain.
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