N
Check for
Updates

All in One Place: Ensuring Usable Access to Online Shopping
Items for Blind Users

YASH PRAKASH, 0ld Dominion University, USA

AKSHAY KOLGAR NAYAK, Old Dominion University, USA
MOHAN SUNKARA, Old Dominion University, USA
SAMPATH JAYARATHNA, Old Dominion University, USA
HAE-NA LEE, Michigan State University, USA

VIKAS ASHOK, Old Dominion University, USA

Perusing web data items such as shopping products is a core online user activity. To prevent information
overload, the content associated with data items is typically dispersed across multiple webpage sections over
multiple web pages. However, such content distribution manifests an unintended side effect of significantly
increasing the interaction burden for blind users, since navigating to-and-fro between different sections in
different pages is tedious and cumbersome with their screen readers. While existing works have proposed
methods for the context of a single webpage, solutions enabling usable access to content distributed across
multiple webpages are few and far between. In this paper, we present InstaFetch, a browser extension that
dynamically generates an alternative screen reader-friendly user interface in real-time, which blind users can
leverage to almost instantly access different item-related information such as description, full specification,
and user reviews, all in one place, without having to tediously navigate to different sections in different
webpages. Moreover, InstaFetch also supports natural language queries about any item, a feature blind users
can exploit to quickly obtain desired information, thereby avoiding manually trudging through reams of text.
In a study with 14 blind users, we observed that the participants needed significantly lesser time to peruse
data items with InstaFetch, than with a state-of-the-art solution.

CCS Concepts: « Human-centered computing — Accessibility technologies; Empirical studies in
accessibility.

Additional Key Words and Phrases: Web usability, Online shopping, Blind, Visual impairment, Screen reader

ACM Reference Format:

Yash Prakash, Akshay Kolgar Nayak, Mohan Sunkara, Sampath Jayarathna, Hae-Na Lee, and Vikas Ashok. 2024.
All in One Place: Ensuring Usable Access to Online Shopping Items for Blind Users. Proc. ACM Hum.-Comput.
Interact. 8, EICS, Article 257 (June 2024), 25 pages. https://doi.org/10.1145/3664639

1 INTRODUCTION

Web data items on e-commerce websites are commonplace on the internet. Prominent e-commerce
platforms like Amazon offer customers a wide array of millions of products for purchase through

Authors’ Contact Information: Yash Prakash, Old Dominion University, Department of Computer Science, Norfolk, Virginia,
USA, yprak001@odu.edu; Akshay Kolgar Nayak, Old Dominion University, Department of Computer Science, Norfolk,
Virginia, USA, anaya001@odu.edu; Mohan Sunkara, Old Dominion University, Department of Computer Science, Norfolk,
Virginia, USA, msunk001@odu.edu; Sampath Jayarathna, Old Dominion University, Department of Computer Science,
Norfolk, Virginia, USA, sampath@cs.odu.edu; Hae-Na Lee, Michigan State University, Department of Computer Science
and Engineering, East Lansing, Michigan, USA, leehaena@msu.edu; Vikas Ashok, Old Dominion University, Department of
Computer Science, Norfolk, Virginia, USA, vganjigu@odu.edu.

This work is licensed under a Creative Commons Attribution International 4.0 License.
© 2024 Copyright held by the owner/author(s).

ACM 2573-0142/2024/6-ART257

https://doi.org/10.1145/3664639

Proc. ACM Hum.-Comput. Interact., Vol. 8, No. EICS, Article 257. Publication date: June 2024.

257:2 Yash Prakash et al.

INSIGNIA | firety

sAmsune

amazon o

o el 1058 FREE a0t 1217 OwoySes Siches
c e e L

Fig. 1. InstaFetch’s all-in-one interface, (A) and (B) respectively display the default ‘Query-Results’ and the
‘Details’ page. (C) and (D) showcasing four options: Query, Description, Specifications, and Reviews. The
Query feature (C) on the interface enables users to input any product-related queries and receive immediate
natural language responses, as detailed in Section 3.5. The other options — Description, Specifications, and
Reviews, offer instant access to the content of corresponding sections extracted from the ‘Details’ page.

their websites. While having plenty of options is desirable, the interaction challenges and the
information overload caused by the huge volume of data are also significant [41]. These challenges
are even more exacerbated in the case of blind users due to their dependence on screen reader
assistive technology that predominantly supports one-dimensional access to web content [20].

A screen reader, fundamentally designed to ‘read out’ on-screen content, also incorporates
specific keyboard shortcuts or gestures to facilitate content navigation (e.g., the ‘H’ key for the next
heading). Within the scope of web browsing, prominent screen readers such as JAWS, NVDA, and
VoiceOver allow blind individuals to navigate webpages via a diverse set of keyboard shortcuts,
including progression by headings, paragraphs, or hyperlinks. However, content navigation remains
predominantly one-dimensional — blind users have to sequentially process extensive textual data
before pinpointing their target information on a webpage [9, 33]. Given this interaction mode, blind
screen reader users often require a heightened amount of time and interaction effort while doing
daily online browsing compared to that required by their sighted counterparts [9].

A typical screen reader-based interaction with web data items is as follows. Upon accessing
a shopping website (e.g., Amazon), the screen-reader user behavior pattern for interacting with
online data involves initially navigating toward a search bar to enter a query, e.g., “TV”. This is
commonly achieved by utilizing the ‘TAB’ key or other designated shortcuts. After submitting the
query, users sift through the resulting list of item summaries by employing elementary navigation
keys like “TAB’ and arrow keys (Figure 1A). If a particular item piques their interest, they delve
deeper by selecting its main link, which takes them to a comprehensive Details page (Figure 1B).

Proc. ACM Hum.-Comput. Interact., Vol. 8, No. EICS, Article 257. Publication date: June 2024.

All in One Place: Ensuring Usable Access to Online Shopping Items for Blind Users 257:3

On this page, the users explore the chosen item’s specifics, attributes, and associated reviews,
employing a range of navigational shortcuts. Should they wish to continue shopping or exploring,
they return to the previous Query Results page containing the list of item summaries. This entire
interaction process is too tedious and cumbersome for blind users, mainly due to the sheer volume
of content they have to trudge through using a multitude of keyboard screen reader shortcuts [33].

There do exist prior works that have proposed techniques to understand and alleviate the
screen-reader usability problems while interacting with e-commerce web data items [20, 35, 45].
However, these efforts have predominantly focused on screen-reader navigation (e.g., enabling
faster screen-reader access to the search form and filter options [20], enabling easy navigation
between item summaries [34, 35], and facilitating quick navigation to product descriptions [45]).
Given the high volume and density of content in e-commerce webpages, quicker screen-reader
navigation to the beginning of segments alone is insufficient to ensure usable and efficient access
to item data. For instance, the product descriptions are typically large collections of textual data
(see Figure 1), so enabling quick navigation to the beginning of a description by itself does not fully
solve the usability problem, as the user will still need to navigate and listen to a large body of text
within the description to seek the desired product information.

Moreover, when users aim to gather comprehensive information from various segments of a
webpage, such as descriptions, specifications, and reviews, they are required not only to locate
these sections but also to mentally retain information from each segment across multiple products
to facilitate informed decision-making. For instance, consider a scenario where a user is looking to
purchase a television with particular attributes, such as smart casting capabilities and a minimum
of four HDMI ports. Additionally, if the user is interested in understanding the product’s reception,
gauging this by the volume of positive reviews, the user would initiate the process by selecting
the first product and then proceeding to scrutinize the specifications section to check for the
necessary information. Following this, the user would explore the review section to gauge the
overall positive feedback. Subsequently, the user must navigate away from the ‘Details page’ back
to the ‘Query-Results page’ before proceeding to evaluate the next product. This iterative process
entails a considerable amount of manual navigation and information synthesis, often making it
cumbersome for users to efficiently compare multiple products.

In this paper, we address these limitations of extant research by introducing InstaFetch, a browser
extension specifically designed to enhance the online e-commerce shopping experience of blind
screen reader users, particularly when they interact with web data items. InstaFetch significantly
simplifies the information retrieval process across multiple segments of the ‘Details’ page for blind
users by introducing a direct query feature that allows users to directly input queries concerning
any particular data item and receive instant responses, as demonstrated in Figure 1C. Instead of the
traditional and often arduous method of sifting through entire sections of content, InstaFetch enables
users to bypass extensive navigation by providing a mechanism to extract targeted information
instantly. For instance, a user could directly input a query about a product’s specifications and user
reviews (e.g., “Is the TV equipped with smart cast functionality, and how many HDMI ports does it
include? and what is the total count of positive reviews for this TV?”) and promptly receive the
relevant details. This is particularly beneficial for blind users, for whom navigating complex website
structures can be especially challenging. Furthermore, if a user still seeks to examine a data item in
detail, InstaFetch offers a solution by providing instantaneous access to all relevant information
(such as product details, specifications, and customer reviews) that is scattered across multiple web
pages, through a single uniform screen reader-friendly interface as shown in Figure 1D.

InstaFetch mainly relies on two internal frameworks: (1) Item Extractor and (2) Query-Response
Generator. The Item Extractor module leverages a mask R-CNN model [28] based extraction frame-
work built using a custom manually annotated dataset comprising 3000 ground-truth examples, to

Proc. ACM Hum.-Comput. Interact., Vol. 8, No. EICS, Article 257. Publication date: June 2024.

257:4 Yash Prakash et al.

identify and extract specific information from the ‘Details’ page such as product description, techni-
cal specifications, and customer reviews. The Query-Response Generator makes use of LLaMA [53]
language model-based framework to process the information gathered by the Item Extractor and
facilitate generating accurate responses to user queries.

In a user-study evaluation involving 14 blind participants, we observed that InstaFetch signif-
icantly reduced the frequency at which the blind users accessed the Details’ pages of items in
comparison to both a state-of-the-art solution (SalL [6]) as well as their preferred screen reader,
thereby reducing overall cumbersome back-and-forth navigation between the ‘Details” and ‘Query-
Results’ webpages. There was also a significant improvement in the average time spent and the
number of keys pressed per data item while using InstaFetch, compared to that while using either
SalL or their preferred screen reader. Consequently, within a given time duration, the participants
could sift through a greater number of data items with the aid of InstaFetch. A majority of the
participants also provided explicit feedback that the enhanced browsing experience facilitated
by InstaFetch allowed them to reduce interaction fatigue, and also increased their likelihood of
securing more “advantageous deals” while shopping online. In sum, our contributions are:

e Design and development of InstaFetch, a web browser extension that provides an instantly
accessible one-stop interface that allows users to receive immediate responses to desired
queries and also facilitates easy and quick access to relevant item information scattered across
‘Details’ pages and ‘Query-Results’ page in online e-commerce websites.

e Findings of a user study with 14 blind screen-reader users evaluating InstaFetch against both
the status-quo as well as a state-of-the-art solution.

2 RELATED WORK

Our work closely relates to the literature on the following topics: (i) Web data usability and its impact
on users with visual impairments; (ii) Information extraction from websites; and (iii) Product-driven
query-response generation.

2.1 Web Data Usability for Blind Users

Prior studies have extensively explored web accessibility for blind users [8, 25, 55]. However, only
a few works have addressed the usability of web content interaction for these users [6, 20, 35, 45].
Moreover, most of these works have focused on improving the usability of accessing content within
a single web page [6, 20, 35]; works addressing content distributed across multiple pages are far few
between [45]. Aydin et al. [6] introduced the SalL system that automatically pinpointed the ‘hot
spots’ in webpages. ARIA landmarks were then injected into these hot-spot page segments so that
users could quickly access the beginning of these segments using designated screen reader shortcuts.
Similarly, Ferdous et al. [20] presented the InSupport system, which offered blind users an accessible
proxy interface to directly access the root of auxiliary segments such as product filters and multi-
page links in the ‘Query-Results’ page. Prakash et al. [45] further extended usability support for web
data items through their AutoDesc system, which automatically extracted product descriptions from
the ‘Details’ page and then injected these descriptions into the corresponding product summaries
on the ‘Query-Results’ page. All these solutions were found to significantly improve usability
for blind users over the status quo screen readers. However, all of these solutions are limited to
addressing usability issues mostly within a single webpage, with minimal support for content
split across multiple pages. Therefore, these solutions cannot fully handle scenarios where item
content is distributed across multiple webpages. Moreover, these solutions only provide facilities to
quickly access the beginning of item-related segments (e.g., descriptions, filters); finding the desired

Proc. ACM Hum.-Comput. Interact., Vol. 8, No. EICS, Article 257. Publication date: June 2024.

All in One Place: Ensuring Usable Access to Online Shopping Items for Blind Users 257:5

information both within a segment and across segments is still a tedious and cumbersome process
for blind screen reader users. In this paper, we fill these exact usability gaps with our InstaFetch.

2.2 Information Extraction from Websites

With the internet evolving rapidly, websites consistently generate extensive amounts of data to
meet the diverse needs of their users. Hence, extracting pertinent information from these websites
is crucial for enhanced user experience [49]. A plethora of extraction techniques are available to
extract various types of data from web pages [3, 5, 13]. This includes data items [4, 19], widgets [40],
news articles [32], auxiliary segments [20] and product descriptions [45]. For instance, Alvarez
et al. [4] observed that data items (e.g., list of shopping products) in the DOM tree comprises
several complete subtrees, and each DOM node corresponding to some item property (e.g., price)
has the same path from the root of the DOM tree across all items. Based on these xpath patterns,
they employed clustering algorithms to group similar subtrees to detect web data items and then
extracted the item properties using a multiple-string alignment-based method. In addition to items,
several techniques have been explored for the extraction of diverse kinds of web data, such as
widgets [40], news articles [32], and auxiliary segments [20]. For example, Melnyk et al. [40]
introduced machine learning models to extract web widgets such as popup menus, chat boxes,
and calendars. Their system provided blind users access to chat widgets via a generic accessible
interface. To the best of our knowledge, there are currently no datasets or algorithms specifically
designed to automatically extract important item-related information such as Product Details, Full
Specifications, and Customer Reviews in real-time from corresponding ‘Details’ pages. We also fill
this gap in this paper by building a Mask R-CNN-based extraction model [28] on top of a novel
custom dataset that captures all relevant information in an item’s ‘Details’ page.

We chose Mask R-CNN [28], a specialized form of CNN, because of its state-of-the-art perfor-
mance in page object detection tasks, compared to other contemporary architectures such as Vislnt,
SOS, UITVN, and Matiai-ee [56]. Mask R-CNN is particularly effective in our problem scenario
because it incorporates semantic segmentation to provide pixel-level detection (masks) of objects
on a page [28]. Therefore, we built a custom Mask R-CNN model to extract relevant information
from webpages in InstaFetch.

2.3 Product-based Query-Response Systems

The excessive information overload on e-commerce websites has led to an increased popularity of
question-answering (QA) systems that help users easily locate specific information of interest 7, 30].
Many of these systems have demonstrated promising results in generating accurate product-aware
responses to users’ natural language queries [15-17, 21, 22, 58]. The subjectivity and reliability
inherent in user queries pose distinct challenges for Product Question Answering (PQA) compared to
conventional web-based QA [17]. Chen et al. [15] addressed these challenges through their ‘RAGE’
system, which employed a convolutional Seq2Seq architecture and recurrent neural networks
(RNNS) to create accurate review-driven responses to user queries on e-commerce websites. Gao et
al. [22], however, proposed an alternative adversarial learning method that utilized an attention-
based review reader to extract question-aware facts from reviews and item attributes to generate
responses to user queries. Although these systems significantly reduced the probability of inaccurate
answers, they lacked reasoning capabilities and produced ‘safe’ answers in multi-hop question-
answering scenarios. These issues were addressed in a follow-up research work, wherein Gao et
al. [21] proposed a ‘Meaningful Product Answering Generator’ (MPAG). This system incorporated
review clustering and instilled reasoning among them through a selective reading mechanism and
read-write memory for encoding. To overcome the ‘safe’ answer problem, they extracted answer
skeletons and employed an RNN-based encoder to generate the final response.

Proc. ACM Hum.-Comput. Interact., Vol. 8, No. EICS, Article 257. Publication date: June 2024.

257:6 Yash Prakash et al.

O~ HE Embedding
o —So-- i
o P
X HEH

Extractor Module ‘—" H
HE Query Embedding Similarity Search
fi T Top N
HES HTML Embedding Candidates
(Content Model
A

Prefetching
Details Page

Response Query

Top N
+System
Prompt

Natural
Response

é _ S e | foptions
'Us$ T = button’

Front End

(a) (b)

Fig. 2. InstaFetch architectural workflow (a) Info Phase and (b) Query Phase.

In real-time scenarios, however, a QA system must possess the capability to reason across various
sections of a webpage to respond to a complex user query. In their work, Yao et al. [57] proposed
the ‘ReAct, which equipped Large Language models (LLM) with reasoning, fact-checking, and
interactive decision-making abilities. This system presented a state-of-the-art architecture for
creating highly efficient and precise multi-hop question-answering systems. InstaFetch novelty lies
in employing ReAct prompting along with Chain-of-thought [54] in the RAG (Retrieval Augmented
Generation) [36] pipeline for handling multiple sections on a webpage within the context of the QA
system. Thus, InstaFetch is capable of reasoning on information distributed across various sections
of a webpage and then constructing a coherent and accurate response to user queries.

3 INSTAFETCH DESIGN
3.1 Overview

Figures 2a and b collectively present the architectural design and workflow of InstaFetch. When a
user loads the ‘Query-Results’ webpage, InstaFetch leverages the STEM algorithm [19] to automati-
cally detect item summaries and then embeds an ‘Options’ button into each data summary.

As shown in Figure 2a, when the user clicks on an ‘Options’ button for a specific item, InstaFetch
triggers the following sequence of internal actions. First, InstaFetch pre-fetches the corresponding
‘Details page’ and feeds it to an Information Extractor. Next, the Extractor identifies various relevant
contents on the details page, such as product descriptions, specifications, and customer reviews,
using a custom-built Mask R-CNN based model [28], then extracts the corresponding texts using
Optical Character Recognition (OCR) [50], and stores the extracted data within the Content Model
after pre-processing. This computer vision-based approach was chosen to effectively handle the
diverse and often changing DOM structures of various e-commerce webpages, ensuring that
InstaFetch can generalize and remain functional across multiple online shopping platforms despite
frequent updates.

Proc. ACM Hum.-Comput. Interact., Vol. 8, No. EICS, Article 257. Publication date: June 2024.

All in One Place: Ensuring Usable Access to Online Shopping Items for Blind Users 257:7

InstaFetch then leverages the extracted Content Model to support a natural language ‘Query’
feature! (see Figure 2) that allows users to input product-related queries in natural language. For
instance, a user might type in a question like “What are the battery life details of this laptop?”
(single-hop) or “Does this camera have a warranty?”, and “Can I get the highest liked review?”
(multi-hop). To answer these queries, InstaFetch leverages a custom LLaMA model [53] refined
through prompt engineering for generating product-aware natural language responses. InstaFetch
also visualizes the entire Content Model in a screen reader-friendly interface that is seamlessly
injected into the ‘Query-Results’ page in real-time, as illustrated in Figure1D. The user can then
navigate the InstaFetch interface to quickly and conveniently view all extracted item information
without having to navigate away from the ‘Query-Results’ page. If the user chooses to close the
interface, InstaFetch automatically returns the screen reader’s focus to the ‘Options’ button, thereby
allowing the user to continue exploring other items on the page. This streamlined access to relevant
information via InstaFetch offers blind users the potential to significantly conserve time and effort.
By mitigating the need for repetitive back-and-forth navigation between the ‘Query-Results’ page
and the ‘Details’ pages, users can more efficiently find and assess the desired information.

3.2 Extracting Item Information

Our goal in this regard was to engineer an Information Extractor that is generalizable across various
e-commerce webpages. Current literature in this domain primarily harnesses a combination of
visual cues, textual data, and DOM features to meticulously identify and parse every element within
e-commerce webpages [26, 31]. However, our objectives diverge; we seek to simplify and speed
up this process by focusing exclusively on three critical content segments within e-commerce
platforms: product descriptions, specifications, and user reviews, that contain all necessary product-
related information. To this end, our methodology is anchored in the application of Object Detection
techniques within the realm of computer vision [24, 28] primarily because object detection methods
are particularly adept at identifying the specific visual cues that distinguish product descriptions,
specifications, and reviews, independent of the varying DOM structures across websites. This
approach significantly simplifies the training and scalability aspects of extraction, allowing for
efficient development and easier adaptation to the dynamic nature of e-commerce platforms. To
extract relevant information from the ‘Details’ pages, InstaFetch leverages a custom Mask R-CNN
model [56]. The training of this model required the creation of a custom dataset, which involved
manual annotation of various regions of interest on a variety of ‘Details’ pages, as explained next.

Dataset. We collected 3,000 images from 1,000 different ‘Details’ pages. These pages were sourced
from diverse domains such as Business and Finance (10%), Home and Garden (20%), Shopping (40%),
Style and Fashion (20%), and Technology (10%)?. For the ‘Details’ pages, we manually annotated
regions of interest by crafting rectangular masks using the GIMP software [52]. This step was
crucial for precisely identifying and segmenting the relevant areas on the webpages. After creating
these masks, we then mapped them onto the images, ensuring each image was paired with its
corresponding mask. We also compiled metadata for the dataset, which encompassed details such
as the name, URL, and creator of each webpage. The complete dataset, along with all relevant
information, can be accessed through the anonymous project GitHub folder®.

The “Query” feature in InstaFetch refers to the LLM-based natural language support, while “Query-Results” denotes the
default online page where users search for products.

2For detailed information and to access the complete list of webpages utilized in our study, please refer to the GitHub link
below.

3https://github.com/accessodu/InstaFetch.git

Proc. ACM Hum.-Comput. Interact., Vol. 8, No. EICS, Article 257. Publication date: June 2024.

257:8 Yash Prakash et al.

Training. We trained the model utilizing NVIDIA V100 GPU with 128 GB memory per node; the
training process spanned across 10 epochs, each containing 500 steps. For our training process, we
utilized the Mask R-CNN framework [1], incorporating the ResNet-101 backbone [29] augmented
by the Feature Pyramid Network (FPN) [38]. The inherent strength of Feature Pyramid Network is
its top-down architecture, which, when integrated with lateral connections, provides an enriched
hierarchical feature representation.

The training process began with feature extraction using ResNet-101 (with FPN) to obtain feature
maps from the input. These feature maps were then used by the Region Proposal Network (RPN)
[60] to generate appropriate webpage object proposals. Following this step, a Region of Interest
Align (RolAlign) technique [28] extracted accurate and precise feature maps. These maps are then
fed simultaneously to two separate convolution layers: masked branch convolution layers and
regular convolution layers. The masked branch convolution layers then produced the required
masks, whereas the regular convolution layers handled the object classification and bounding
box delineation. Finally, the masks generated were aligned to the corresponding identified objects
within their bounding boxes. The entire training was bifurcated into two distinct phases:

e Initial Adaptation Stage: Emphasis was placed solely on the head layers of the Mask R-CNN
model, ensuring the backbone layers remained static. A learning rate of 0.001 was chosen for
this segment.

o Refinement Stage: The model underwent a comprehensive fine-tuning. Here, all layers were
trained with a revised learning rate of 0.0001.

These specific parameter configurations emerged during optimization efforts on the accuracy of
the validation dataset consisting of 300 images. All information about the model is also available in
the GitHub folder®.

Evaluation. On 20 previously unseen websites, we assessed the model using Average Precision
(AP) [28] at different Intersections over Union (IoU) thresholds [28], which measure the accuracy of
the predicted area against the actual area. Our results showed a Mean Average Precision (MAP)® of
75.4% at a 50% IoU threshold and 69.7% at a 75% IoU threshold, indicating the model’s effectiveness
in accurately identifying regions of interest. We also monitored the total loss, which is the sum of
all the losses (loss mask, loss classifier, and loss box regression), and noticed a total loss of 0.529 at
convergence point.

3.3 Post-processing

The output from the Mask R-CNN model highlights the regions of interest on the ‘Details’ page.
However, these images often contain some noise, which can affect the output quality when passed
through the OCR. The OCR process itself can introduce additional noise, leading to imperfect
results. Therefore, to enhance the extraction accuracy, we implemented post-processing as follows:
Using the text obtained from OCR as a reference, we employed a simple search algorithm to locate
where this text appears within the HTML DOM of the ‘Details’ page. Once identified, the algorithm
traced back through the DOM tree to capture the parent element encompassing the text. The parent
node and corresponding children nodes are then extracted and stored by InstaFetch (Figure 2a).

3.4 InstaFetch User Interface

The interactive overlay popup of InstaFetch presents users with four distinct functionality tabs:
‘Query’, ‘Description’, ‘Specifications’, and ‘Reviews’, as shown in Figure 6 (Appendix A). The

4https://github.com/accessodu/InstaFetch.git
>The Average of AP for each category - product description, specification, and reviews

Proc. ACM Hum.-Comput. Interact., Vol. 8, No. EICS, Article 257. Publication date: June 2024.

All in One Place: Ensuring Usable Access to Online Shopping Items for Blind Users 257:9

interface was meticulously designed for easy navigation with simple ‘TAB’ and ‘ARROW’ shortcut
keys. The functionalities on this interface were optimized for accessibility through the utilization
of tab-index and ARIA (Accessible Rich Internet Applications) attributes. The tab-index attribute
determines the order in which elements receive keyboard focus, while the aria-label attribute
provides users with additional information about the web element [48]. The ‘Query’ button enables
users to submit product-related questions through an input field, whereas the other functionality
tabs in the InstaFetch overlay popup interface showcase specific product sections (i.e., ‘Description’,
‘Specifications’, and ‘Reviews’) while mirroring their structure on the ‘Details’ page. Initially, when
the popup interface is activated, the focus automatically rests on the ‘Query’ button. If a user
presses the key ‘ENTER’, the user is directed to a form, with the focus shifting seamlessly from the
button to the form itself. This form enables users to input and submit their product-related queries
by pressing the ‘ENTER’ key a second time (as illustrated in Figure 6). After query submission,
InstaFetch proceeds to retrieve a suitable answer from its back-end system and displays it beneath
the form. The screen reader’s focus then transitions to the response area once the answer is
displayed. In instances where the system cannot produce a relevant response, a standard error
message is provided — “Sorry, I do not have an answer to that question.” Furthermore, when users
press the ‘ENTER’ key on the other three functionalities, the corresponding content (Description,
Specification, or Reviews) from the ‘Details’ page are fetched and displayed below the navigation
section (see Figure 6), while also automatically shifting the focus from the button to the injected
content. This interaction design is consistent across the Description, Specifications, and Reviews
sections of the InstaFetch interface. The interface also has a close button, providing users with the
ability to close the overlay popup and seamlessly return to the exact product they were previously
engaging with before accessing the interface. Lastly, note that InstaFetch does not support its own
keyboard shortcuts; instead, it extends the current webpage with an additional HTML pop-up
interface that is navigable with the standard screen reader shortcuts. We adopted this design to
make InstaFetch compatible with any screen reader.

3.5 Dynamic user query handling

The ‘Query’ feature is the most significant part of InstaFetch as it empowers blind web users to
quickly access information scattered across multiple sections on a product’s ‘Details’ page. While
prior research has comprehensively delved into question-answering, they primarily address specific
sections of a webpage [14, 16, 21], none of the prior research works have explored reasoning
collectively across different sections of a webpage and that too in the context of easing web
navigation for blind users. InstaFetch addresses this research gap by providing an interface for blind
users to seek responses to complex product-related queries. This process of generating accurate
product-aware responses to user queries in InstaFetch involves the following sequence of steps: (i)
Constructing a contextual knowledge base utilizing data extracted by the Extractor module; (ii)
Retrieving information that is pertinent to the user query; and (iii) Generating coherent natural
language response to the user query. Details for each of these steps are provided next.

3.5.1 Constructing contextual knowledge base. The ‘Query’ feature of InstaFetch relies on a custom
knowledge base to provide necessary information for constructing valid responses to user queries.
This knowledge base supplies product-specific information to the LLM [36] and ensures that
responses are generated within the context of the product details available on the ‘Details’ page,
thereby preventing model hallucinations. The Extractor module (Section 3.2) provides relevant
information related to a specific product in the form of HTML data for each respective data section.
The large size and complexity of the HTML data obtained from the extractor module could limit the
LLM’s ability to comprehend the entire contents due to its limited contextual window [37, 39]. To

Proc. ACM Hum.-Comput. Interact., Vol. 8, No. EICS, Article 257. Publication date: June 2024.

257:10 Yash Prakash et al.

—» Chunker —¥» hunk ;1

:
|

‘

| g
Il | I

‘

1 chunk

I

|

i

|

I

‘

|

vectors [Memory

Fig. 3. Construction of knowledge base for response generation

address this, we fragment the document into smaller, semantically relevant chunks using a structure-
aware chunking strategy [44]. Additionally, we reduce the likelihood of missing pertinent details
during information retrieval by incorporating sufficient overlap between adjacent chunks [18].
These chunks of HTML data are then converted into dense vector representations using an OpenAl
embedder [42] and cached in the system’s memory for subsequent reference as shown in Figure 3.

3.5.2 Retrieving relevant information. In the answer-generation process, not all the information
available in the knowledge base may be relevant. Hence, we selectively retrieve only the infor-
mation pertinent to the query and pass it to the Large Language Model (LLM) for reasoning and
response generation. InstaFetch employs the Retrieval-Augmented Generation (RAG) framework
that includes a retriever and a generator [36]. When a user query is received via an HTTPS POST
request, it is translated into dense vector representations using the OpenAl embedder [42]. The
retriever then executes a cosine similarity of these query embeddings against the cached HTML
embeddings to retrieve the top N chunks that exhibit the highest degree of similarity. This retrieved
group of relevant chunks can include information of diverse nature and format, such as table
elements, description lists, and user reviews. This information is then passed to the generation
module, along with the query, mounted on a well-engineered prompt to construct a response to
the user query, as shown in Figure 2b.

3.5.3 Generating query response. We employed ‘Prompt-Engineering’ to guide a pre-trained LLaMA
Large Language Model (LLM) [53] to construct accurate product-aware responses to user queries
by utilizing information of diverse formats from multiple sections of a web page. This prompt is
vital to instruct the LLM to comprehend the user query and reason on the pertinent information
available from the retriever module to generate a natural-sounding response.

To achieve this, we employ Chain-of-thought (CoT) [54] and ReAct [57] techniques to empower
the LLM to reason across multiple data sections dynamically. With CoT, when a user asks a complex
question, the system breaks down its reasoning process step by step before providing an answer.
This is like the system showing its “thought process” behind reaching a conclusion or solving a
problem. ReAct takes this a step further by not just reasoning out loud but also taking “actions”
— for example, fetching the latest prices, or checking user reviews to provide a more informed,
accurate answer. For example,

(1) User Question: “What’s the battery life and is it good?”

(2) CoT: “Battery life is usually mentioned in the specifications or reviews”

(3) ReAct: Check the product’s specifications and also summarizes positive customer reviews
mentioning battery life.

By combining CoT and ReAct, the system not only understands user questions in depth but also
actively seeks out and verifies the information needed to give the user accurate, helpful answers.

For improved understanding and reasoning, we structure prompts to include examples of rea-
soning (CoT) and action (ReAct), thereby guiding the LLM to not only produce answers but also

Proc. ACM Hum.-Comput. Interact., Vol. 8, No. EICS, Article 257. Publication date: June 2024.

All in One Place: Ensuring Usable Access to Online Shopping Items for Blind Users 257:11

follow logical steps in fetching and incorporating external information. For this, we leverage a
few-shot prompt template that was constructed by providing demonstrative task examples [12, 46].
These examples were defined manually for diverse questions that could be potentially raised on
the ‘Details’ page. Additionally, the prompt also ensured that the model refrained from generating
generic responses. In cases where a suitable match was not found, it delivered a standardized
“Response not found” error message, enhancing the model’s reliability and user experience. All
details are available on the anonymous GitHub project folder®.

Note that off-the-shelf LLMs cannot be used as-is for our problem, as they lack the context and
domain-specific knowledge required for real-time product-related queries. Moreover, re-training or
fine-tuning these models is not always feasible due to high computational costs [59]. We address
these issues in our LLM customization by integrating Retrieval Augmented Generation [36] and
Prompt engineering techniques [53]. Specifically, we incorporated CoT (known for its detailed
reasoning) [54] and ReAct (known for its factual grounding) [57] prompting strategies that guided
the LLM through a series of logical steps leading to the final response.

Evaluation. To evaluate the quality of responses generated by InstaFetch, we employed BLEU [43]
score, which measures the lexical unit overlap between the generated response and the ground
truth. The BLEU score for the sampled set of questions was 0.78, indicating high similarity and
good performance of the system. Additionally, we conducted manual evaluations of response
accuracy, as automatic evaluation metrics could be misleading [51]. We invited 10 annotators from
diverse academic and professional backgrounds to evaluate the quality of the responses generated
on multiple web pages for a total of 50 randomly sampled questions for which the response was
generated by InstaFetch.

The annotators rated the answers generated by InstaFetch on a scale of 1 to 10 for the following
metrics: (i) Factuality (1 for least accurate and 10 for highly accurate): determining if the facts
mentioned in the response were correct or not; (ii) Relevance (1 for least relevant and 10 for highly
relevant): measuring the degree to which the answer was relevant to the question and did not
deviate from its context; and (iii) Grammaticality (1 for grammatically incorrect and 10 for no
grammatical errors): determining if the answer generated was grammatically correct.

The sampled set of questions included: (i) simple questions that could be answered by a direct
one-shot reference to any content on the ‘Details’ page (e.g., “‘How many HDMI ports are available
on this TV?”); (ii) “Single-hop questions that required reasoning (e.g., “Can I connect my laptop to
the TV using a USB cable?”); and (iii) multi-hop questions that required reasoning across multiple
pieces of content spanning different sections on the web page (e.g., “Does the TV support surround
sound, and what do past buyers think about the sound quality of the response generated?”).

The mean rating for all questions was calculated for different metrics. On average, the responses
generated by InstaFetch were rated at 8 for factuality, 6.6 for relevance, and 9.2 for grammaticality.
Inaccuracies in relevance primarily stemmed from conflicting information extracted from different
sections. Notably, the user-generated review sections on webpages posed a challenge due to
their inherent ambiguity, resulting in a higher frequency of conflicting data within the generated
responses. For example, a participant queried about the quality of a certain TV on Amazon. While
the product description might boast of high picture quality, users in the review section observed a
lack of clarity and sharpness. In such cases, InstaFetch produced responses that were not relevant
to the users’ expected response.

Shttps://github.com/accessodu/InstaFetch.git

Proc. ACM Hum.-Comput. Interact., Vol. 8, No. EICS, Article 257. Publication date: June 2024.

257:12 Yash Prakash et al.

3.6 Implementation Details

This section describes the implementation challenges and engineering efforts involved in imple-
menting various modules and integrating them into InstaFetch.

We implemented InstaFetch as a web browser extension, following the open-source guidelines
provided by Google’”. When the browser extension is enabled, the service worker is activated, which
listens and responds to browser events such as loading of a new page or closing of an existing
page®. Once the ‘Query-Results’ page is loaded, the content scripts’ are injected into the webpage.
These Javascript files communicate with the parent extension code and have access to modify
the standard DOM of the webpage. When the ‘Query-results’ page loads, InstaFetch leverages
the STEM algorithm [19] (whose code is available at GitHub!) to identify data items and inject
the UI code for the popup overlay interface into the DOM tree including the ‘Options’ button for
every data item listed on the webpage. The injected HTML code included special labels and screen
reader-focus modifications to make the elements accessible to blind users. The Ul was implemented
using HTML, CSS, and JavaScript.

Once the users selected a data item of choice, we employed the Selenium driver [23] that captures
comprehensive snapshots of multiple windows of the entire ‘Details’ page. These snapshots serve
as the preliminary input for the subsequent extraction process executed by the Mask R-CNN model.
To build the Mask R-CNN model for extracting the item description from the ‘Details’ page, we
leveraged the publicly available Matterport code on GitHub'!. For post-processing of the Mask
R-CNN output, we used the Tesseract OCR engine [50]. We specifically used the raw text output
from the OCR to feed a simple DOM search algorithm to retrieve the respective DOM subtrees for
each of the data sections (i.e., Reviews, Description, Specification) from the webpage’s HTML code
and stored them in the Content Model (Section 3.2).

After the DOM data for the web elements was extracted and stored, we leveraged the HTMLHead-
erTextSplitter class provided by the Langchain framework!? to fragment them into semantically
grouped smaller chunks that included metadata providing information about where that chunk
came from based on the HTML. We then employed the OpenAl embedder [42] to translate these
fragments of code to dense vectors. These vector representations of the webpage were then cached
in the system memory using a Python dictionary. These stored vectors of web data elements served
as the knowledge base for the Q&A functionality of InstaFetch.

Whenever a user submits a query from the InstaFetch user interface, the server receives a
POST request with the query in the request body. This query was then extracted and embedded
using OpenAl ‘text-embedding-ada-002" embedder. A custom retriever module was then utilized to
execute a similarity search of the query embeddings against cached DOM vectors to shortlist the
documents that exhibited the highest degree of similarity. These documents were then sent to a
Llama LLM with a well-engineered prompt to generate a natural-sounding response, which was
then relayed back to the user interface. In contrast, whenever a user hits either the Description,
Technical Specifications, or Review button, the backend server receives a GET request. The request
is then handled, and the respective data element is sent back to the front end for rendering13.

"https://developer.chrome.com/docs/extensions/mv3/devguide/
8https://developer.chrome.com/docs/extensions/mv3/service_workers/
“https://developer.chrome.com/docs/extensions/mv3/content_scripts/
Ohttps://github.com/accessodu/InstaFetch.git
Uhttps://github.com/matterport/Mask_RCNN
Zhttps://python.langchain.com/docs/get_started/introduction
Bhttps://developer.mozilla.org/en-US/docs/Web/HTML

Proc. ACM Hum.-Comput. Interact., Vol. 8, No. EICS, Article 257. Publication date: June 2024.

All in One Place: Ensuring Usable Access to Online Shopping Items for Blind Users 257:13

The backend server was developed using Django REST Framework (DRF)!* and Python. This
server was responsible for managing incoming requests, executing essential functions, and providing
responses to the front-end user interface. All the code and demo videos associated with InstaFetch
is available on GitHub'®.

4 EVALUATION

To evaluate InstaFetch, we conducted an IRB-approved user study with blind screen-reader users
as explained next.

4.1 Participants

We recruited a total of 14 blind participants'® through email lists and word-of-mouth snowball
sampling. These participants were selected based on the following specific inclusion criteria: (i)
experience with web browsing using a screen reader in a desktop/laptop environment; (ii) familiarity
with the Chrome web browser; and (iii) ability to communicate in English. Gender representation
was approximately balanced, with 6 female and 8 male participants, and the average age of the
participants was 31.14 (with a Median of 31.5, a Minimum of 20, and a Maximum of 43). None of the
participants reported any other difficulties, such as hearing or motor control issues, that interfered
with their ability to complete the study tasks. Table 1 presents the full self-reported participant
demographic information.

4.2 Design

In a within-subject experimental design, influenced by previous research [20, 34], participants
were asked to do a representative online shopping task under the following three distinct study
conditions or treatments:

e Screen Reader — In this status-quo condition, the participants performed the task using their
preferred screen reader.

e SalL - In this condition, the participants did the task with assistance from a state-of-the-art
solution, namely SalL [6]. SalL automatically detects salient segments (e.g., menu, search form,
item summaries, filters) in the current webpage and then injects special ARIA landmarks into
the detected segments, so that users can quickly navigate to these segments using special
screen reader shortcuts (e.g., ‘R’ in JAWS screen reader).

e InstaFetch — In this condition, the participants did the task with the assistance of InstaFetch
browser extension.

In each of these conditions, the participants were asked to browse a list of products on an e-
commerce website and choose a product that most closely aligned with their individual preferences.
We chose this task to simulate real-world scenarios where individuals typically review lists of items,
compare their features, and ultimately select their preferred item from the list. To minimize the
potential impact of a learning effect, we ensured that the same website was not used more than once
when performing the task under different conditions. Instead, we selected three different shopping
websites for the three conditions: Amazon, Etsy, and eBay. We further ensured that the product
types explored in the three conditions were also different; specifically, we used the following
three product types: Television, Furniture, and shoes. The exact assignment of product types to
websites, websites to conditions, and the ordering of conditions were all counterbalanced across

4https://www.django-rest-framework.org/

Bhttps://github.com/accessodu/InstaFetch.git

1This is the typical sample size for research in this area, due to the difficulty in recruiting participants belonging to this
disadvantaged community [20, 35].

Proc. ACM Hum.-Comput. Interact., Vol. 8, No. EICS, Article 257. Publication date: June 2024.

257:14 Yash Prakash et al.

Table 1. Demographics of blind participants in the InstaFetch evaluation study. All information was self-
reported by the participants.

Age of
Vision Loss

Preferred Web E-Commerce Use

ID Age Gender Screen Reader Experience (times/week)

Occupation

P1 43 M Since birth Teacher JAWS 7 years 4-6
P2 36 M Age 8 Unemployed JAWS 4 years 2-3
P3 28 M Since birth Student NVDA 2 years 1-2
P4 23 M Age 10 Student NVDA 1 year 3-5
P5 36 F Since birth ‘S)ch)crfir JAWS 5 years 5

P6 32 M Age 6 Teacher JAWS 4 years 3-4
P7 25 F Cannot remember Unemployed NVDA 2 years 2-3
P8 38 M Cannot remember ‘S)V(:)Crfi; JAWS 6 years 7-8
P9 31 F Since birth Teacher JAWS 5 years 3-4
P10 22 F Age 8 Student NVDA 1 year 2

P11 27 F Since birth Unemployed NVDA 3 years 5-6
P12 34 M Cannot remember IT employee JAWS 7 years 4-5
P13 20 F Since birth Unemployed NVDA 1 year 1-2
P14 41 M Cannot remember Teacher JAWS 8 years 6-8

the study participants to the best extent possible using the well-known Latin-square method [10].
A maximum of 20 minutes was allotted for each study task.

4.3 Apparatus and Procedure

Depending on the participant’s availability and location, the user study was conducted either
in-person or virtually via Zoom. Participants used their own computers/laptops with their preferred
screen readers to do the study tasks. All web pages related to the tasks were pre-processed, cached,
and securely hosted on a web server. During the pre-processing stage, the SalL landmarks were
proactively computed and injected into the task webpages before caching them on the web server.
The InstaFetch ‘Options’ button too was injected a priori into the task webpages before caching,
and moreover all InstaFetch functionalities were setup on the web server. This setup ensured that
all participants (both in-person and remote) could do all the tasks in all the conditions without
having to install anything on their computers. This cached setup also helped avoid any confounding
effects of frequent website changes.

The study commenced with the experimenter obtaining formal consent from the participant
and providing a brief explanation of the study’s purpose. Next, the experimenter introduced the
different study conditions, and allowed the participant to practice for 20 minutes in order to get
comfortable using both the SalL landmarks and the InstaFetch interface. The experimenter then
administered the tasks one-by-one in the predetermined counterbalanced order. For each task, a
maximum of 20 minutes was allocated, however, this time limit was not explicitly conveyed to the
participant in advance, so as to prevent any confounding influence on their natural interaction
behavior with web data items.

Proc. ACM Hum.-Comput. Interact., Vol. 8, No. EICS, Article 257. Publication date: June 2024.

All in One Place: Ensuring Usable Access to Online Shopping Items for Blind Users 257:15

1200 12 900
800
1000 %10 00
T
4 E
— %
§ 800 2 8 £600
5 ks 8500
v 600 2 6 S 400
£ £
" 400 g 4 £%
- 2 & H “ 200 T
200 -~ 2 100 -

|

SR SalL InstaFetch SR SalL InstaFetch SR SalL InstaFetch

Fig. 4. Box plots for the Average time spent per item, the Average number of items covered during the task,
and the Average number of Shortcut Presses per item in all three study conditions.

Upon completing the study tasks, the experimenter administered the System Usability Scale
(SUS) [11] and NASA Task Load Index (NASA-TLX) [27] subjective questionnaires. These question-
naires were intended to assess the perceived usability and interaction effort for each of the study
conditions. This was following by an exit interview, where the experimenter engaged in an open-
ended discussion with the participant to gather qualitative feedback, including feature requests
and suggestions for improvement. Upon the participant’s consent, screen-sharing and recording
features were kept active throughout the study to capture all interaction activities for post-study
analysis. All conversations were conducted in English, and participants received compensation in
the form of an Amazon gift card.

4.4 Data Collection and Analysis

From the study data, we computed the following metrics for each participant: (i) Average time
spent per item; (ii) Average number of shortcuts pressed per item (including navigating the Details
page) while doing a task; (iii) Number of items covered while doing a task; (iv) SUS usability scores;
(v) NASA-TLX workload scores; and (vi) Qualitative feedback. These metrics and data allowed us
to compare the various study conditions and assess whether InstaFetch had a significant positive
impact on the overall user experience when interacting with web data items. We report our findings
in the next subsection.

4.5 Results

4.5.1 Average time spent per item. The average time spent by a participant per data item was
determined by dividing the total time spent on the task (irrespective of its completion status) by
the number of unique items they interacted with during the task. Figure 4 presents the statistics for
this metric for all three study conditions. In general, participants spent an average of 478 seconds
(with Median = 344, Minimum = 205, Maximum = 1200) when using screen readers, 310 seconds
(with Median = 299, Minimum = 214, Maximum = 400) with SalL, and 182 seconds (with Median =
176, Minimum = 100, Maximum = 289) with InstaFetch. This 182 seconds per item with InstaFetch
included a 2.1-second average time delay for fetching the ‘Description, ‘Specifications’ and ‘Reviews’

Proc. ACM Hum.-Comput. Interact., Vol. 8, No. EICS, Article 257. Publication date: June 2024.

257:16 Yash Prakash et al.

data in the back-end and a 3.8-second average time overhead for obtaining product-related responses
from the customized LLM service to address user queries. A Friedman test demonstrated that there
was a significant!’ effect of the study condition on the average time spent per item (y? = 12.6,
p = 0.0018). Subsequently, a post-hoc Conover’s test with Benjaminyi-Hochberg FDR adjustment
revealed that InstaFetch significantly outperformed both the screen reader (p = 0.01) and the SalL
(p = 0.022) study conditions.

A comprehensive analysis of the screen reader log data showed that the average time spent
per item was greatly influenced by two main task activities: (i) Finding the webpage segment
of interest, i.e., Description, Technical Specification, and User Reviews; and (ii) Navigating back to
the item summary on the ‘Query Results’ page after exploring the ‘Details’ page for additional
item-related information. The time spent on these activities was significantly lower in the InstaFetch
condition, the gain was attributed to the fact that 70% of the users had pre-existing knowledge
about the specific information they sought from the products, i.e., since the participants already
knew the ‘type’ of products (i.e., television, furniture, and shoes) they were perusing, they each
had a good idea of what features or attributes (e.g., shoe material, TV size) mattered to them the
most for making a final selection. Consequently, these users directly interacted with the interface
by inputting their queries and were generally satisfied with the information provided in response.
Their satisfaction was evidenced by their behavior; they either submitted a follow-up query for
additional details or proceeded to evaluate another product. Notably, when users exhibited a deeper
interest in a particular item, they could access related information seamlessly through the interface.
This feature significantly curtailed the need for users to visit the ‘Details’ page of the product,
indicating the effectiveness of InstaFetch in streamlining the information retrieval process. The time
spent was highest in the Screen Reader condition, where the users frequently navigated back and
forth between the ‘Query Results’ and ‘Details’ pages. In the SalL condition, the participants spent
relatively less time per item compared to that in the screen reader condition, likely because SalL-
injected ARIA landmarks helped them skip much irrelevant content. However, a few participants
forgot their shortcuts for navigating ARIA landmarks during the task, leading them to revert to
standard one-dimensional screen reader navigation, which in turn increased their time spent per
data item.

4.5.2 Number of Shortcut Presses per Item. The number of keyboard shortcuts is directly propor-
tional to the effort exerted by the participants to do the tasks, as determined in prior studies [20].
Therefore, fewer shortcuts mean reduced task effort and, hence, better usability. Similar to average
time spent per item, the average number of keyboard shortcuts per item was calculated by dividing
the total number of shortcuts pressed by the participant throughout the task (regardless of task com-
pletion) by the number of unique items explored during the task. Figure 4c presents the statistics for
this metric for all three study conditions. In sum, participants averaged 397 shortcuts (with Median
=317, Minimum = 185, Maximum = 895) while using screen readers, 145 shortcuts (with Median =
151, Minimum = 85, Maximum = 222) with SalL, and 57 shortcuts (with Median = 55, Minimum =
25, Maximum = 85) with InstaFetch. These differences in the average number of keyboard shortcuts
between the study conditions was found to be statistically significant (Friedman’s test, y* = 20.0,
p < 0.001). A post-hoc Conover’s test with Benjaminyi-Hochberg FDR adjustment demonstrated
that InstaFetch significantly outperformed both screen reader (p < 0.001) and SalL (p = 0.03).
Analysis of the screen reader shortcut log data revealed that the main cause underlying the
differences in the observed values between conditions was the navigation behavior adopted by the
user on the task webpages in different conditions, which in-turn affected the amount of content
navigated during the course of locating desired item-related information. In the Screen-Reader

7By ‘significant’, we mean statistical significance.

Proc. ACM Hum.-Comput. Interact., Vol. 8, No. EICS, Article 257. Publication date: June 2024.

All in One Place: Ensuring Usable Access to Online Shopping Items for Blind Users 257:17

condition, a majority of the participants used only a handful of basic navigation shortcuts such as
UP/DOWN Arrow keys, TAB key, and H key (on average 6 unique keys per participant), therefore
they had to sift through a lot of irrelevant content in the task webpages before reaching the desired
content of interest. This burden was somewhat reduced in case of the SalL condition, where the
participants could avoid much of the irrelevant content by leveraging the special landmark shortcut.
However, in the SalL condition, the participants still had to navigate back-and-forth between the
Query Results page and the Details pages, and also reposition themselves within each webpage,
which involved considerable shortcut presses. In the InstaFetch condition, as most of the item-
relevant data was accessible through the InstaFetch interface in the Query Results page itself, there
was a significant reduction in the one dimensional navigation effort, thereby resulting in fewer key
shortcut presses.

4.5.3 Number of items covered during task. This metric measured the count of unique items that a
participant interacted with during a task, excluding any revisits to items already explored. This
metric is significant as it quantifies the breadth of user engagement with different items within
a task, offering insights into the diversity of user exploration and interest. Figure 4b displays the
statistics for this metric for all three study conditions. Overall, the participants explored an average
of 2.2 items (Median = 2, Minimum = 1, Maximum = 4) while using a screen reader, 3.5 items
(Median = 3.5, Minimum = 3, Maximum = 4) with SalL, and 6.8 items (Median = 6, Minimum
= 4, Maximum = 12) with InstaFetch. An inferential analysis using the Friedman test revealed
a statistically significant difference in the number of items explored between the three study
conditions (y? = 18.2, p < 0.001). Similar to the previous metrics, a post-hoc Conover’s test with
Benjaminyi-Hochberg FDR adjustment demonstrated that InstaFetch significantly outperformed
both the screen reader (p = 0.001) and the SalL (p = 0.036) study conditions.

The average number of unique items explored during a task was again influenced by the par-
ticipant’s navigation behavior especially regarding revisits to the previously-explored items. The
number of revisits were significantly higher in the Screen Reader and SalL conditions compared
to the InstaFetch condition. Each revisit added a significant time overhead, thereby affecting the
number of items covered in the allotted task time of 20 minutes. As explained later in the paper,
many participants also attributed the reduced coverage in the Screen Reader and SalL conditions
to interaction fatigue, specifically, they stated that listening to a lot of irrelevant content during
navigation increased frustration and reduced motivation to further explore the list of items. Since
InstaFetch provided direct access to almost all item-related information on the ‘Query-Results’ page
itself, the interaction fatigue was substantially less compared to that in other conditions, thereby
enabling the participants to explore more items.

4.5.4 Use of Natural Language Queries and Errors. Overall, 12 out of 14 participants used natural
language queries while doing tasks in the InstaFetch condition. These 12 participants issued a total
of 40 queries, with an average of 3.3 queries (Standard Deviation: 2.53) per participant. Based on
the participants’ behavior and utterances while using the query feature, the experimenter noticed
that 5 of these 12 participants were issuing a higher number of queries purely out of curiosity
and for ‘fun’, and it was not clear if their intention in these scenarios was to deeply examine the
product item details. The remaining 7 participants were more specific in their querying and did not
issue back-to-back queries. The experimenter observed that 5 of 7 participants repeatedly asked
the same question for multiple items (“What is the total number of good reviews?”), most likely
to compare these items based on common aspect (e.g., number of good reviews). However, the
questions asked by the two remaining participants steadily evolved as they perused the data items
one by one; for example, Participant 3 only asked about sound quality for the first three TV data
records (“How is the sound quality of this TV?”), and from the fourth record, the questions started

Proc. ACM Hum.-Comput. Interact., Vol. 8, No. EICS, Article 257. Publication date: June 2024.

257:18 Yash Prakash et al.

eliciting more details (“Does this TV support Dolby Atmos, and if so, how would you describe
its overall sound quality?”). This observation indicates that as users gained more confidence in
InstaFetch, they started exploring more of its capabilities by diversifying their queries.

We examined the responses generated by InstaFetch for the 40 queries and manually computed
the error rate'®. Specifically, two authors independently examined the query-response pairs along
with the corresponding webpage context and determined if the response was correct or wrong.
The annotations of the two authors were then examined for inter-annotator agreement, which was
0.81 (Cohen Kappa), thereby indicating high accordance. All authors then debated the mismatching
annotations and settled on a final annotation through majority voting. The overall accuracy of
InstaFetch in generating responses to participants’ queries was 48.4%. From the collected recordings,
we then analyzed the participants’ reactions to the responses that were deemed incorrect. We
observed that in 84.8% of these cases, the participants simply shrugged it off, as best expressed
by P3: “It is just like my Siri saying something weird at times, let me try asking in a different way”.
In the remaining 15.2% cases, the involved participants were visibly annoyed by the incorrect
responses. In 64.7% of the inaccurate cases, the participants re-issued their queries in a slightly
different manner, whereas in the remaining 35.3% of cases, the participants simply navigated back
to the other segments on the InstaFetch interface to manually search for the desired information
on their own.

4.6 Queries vs. Interface Access

Through analyzing screen-reader logs and video recordings, we discerned the significant influence of
core components of InstaFetch on user interaction. The capability for direct query input stood out as
anotably impactful feature, utilized by 12 out of 14 participants. While only 2 participants exclusively
used the InstaFetch’s instant access feature for checking out detailed product information, preferring
it over the query option to meticulously review products, a majority of those who employed the
query feature also engaged with the instant access feature.

Overall, the study revealed a unanimous agreement among most participants that unfamiliar-
ity with new websites typically leads to navigational challenges, resulting in a preference for a
limited number of familiar online shopping platforms. This restricts their exposure to potentially
attractive deals and products available on other sites. However, with the introduction of InstaFetch,
users reported the ability to freely navigate through various web pages, obtaining the necessary
information without the burden of extensive searching.

4.6.1 System Usability Scale (SUS) and Perceived Workload. The System Usability Scale (SUS)
questionnaire [11] involved the participants rating a series of alternating positive and negative
Likert items on a scale from 1 to 5, with 1 indicating strong disagreement, 3 representing a neutral
response, and 5 signifying strong agreement. These responses are then aggregated into a single
usability score between 0 to 100, with higher scores indicate more favorable usability ratings.
Figure 5 displays the SUS statistics for the three study conditions. The SUS ratings for the InstaFetch
condition (Average = 80.25, Standard Deviation = 12.52) were significantly higher than those for
both the screen reader (Average = 47.5, Standard Deviation = 7.98) and SalL (Average = 62, Standard
Deviation = 13.07) conditions (one-way Anova test, F = 18.57, p < 0.001).

The NASA-TLX (NASA Task Load Index) questionnaire [27] was used to evaluate the perceived
workload as expressed by the participants in their responses to the questionnaire. NASA-TLX too
generates a score between 0 and 100, however, lower TLX ratings indicate reduced workloads
and therefore better performance. In our study, we observed a significant influence of the study
conditions on the NASA-TLX scores, as confirmed by the results of the Anova test (F = 19.26,

18Examples and discussion on errors are provided in GitHub https://github.com/accessodu/InstaFetch.git

Proc. ACM Hum.-Comput. Interact., Vol. 8, No. EICS, Article 257. Publication date: June 2024.

All in One Place: Ensuring Usable Access to Online Shopping Items for Blind Users 257:19

90
80 80
70 70
» 60 V60
v (e}
S50 A 50
§ 40 : 40
30 230
20 20
10 10
0 0
SR SAIL InstaFetch SR SAIL InstaFetch

Fig. 5. Perceived usability (SUS) and task workload (NASA-TLX) for all three study conditions.

p < 0.001). Specifically, the TLX scores for the InstaFetch condition (Average = 38.96, Standard
Deviation = 12.001) were significantly lower than those for both the SalL condition (Average =
57.03, Standard Deviation = 11.69) and the Screen Reader condition (Average = 76.83, Standard
Deviation = 14.89). This significant difference in TLX scores was further validated through pairwise
comparisons using the post-hoc Tukey’s HSD test, which showed that InstaFetch outperformed
both screen reader (Q = 8.78, p < 0.001) and SalL (Q = 4.19, p = 0.016).

The reasons underlying the participants’ SUS and NASA-TLX ratings for the different study
conditions were uncovered during the analysis of the participants’ feedback in the open-ended exit
interviews as explained next.

4.6.2 Qualitative feedback. The participants’ feedback in the exit interviews were qualitatively
analyzed using the standard open coding followed by axial coding method [47] where we iteratively
went over the transcripts to identify recurring themes and insights that were common across
multiple participants. A few notable ones are presented next.

To-and-fro navigation between pages is frustrating. Almost all (9) participants mentioned that
navigating between different pages while searching for desired information was time-consuming
and frustrating. Five participants further stated that having all item information in a single place,
as facilitated by InstaFetch, substantially reduced the amount of listening, so it helped better retain
item-related information in their memories while perusing the list of items. This explains why
there were fewer revisits to items in the InstaFetch condition.

Navigation within an e-commerce webpage is also tedious and frustrating. A majority
(7) of the participants also mentioned that locating different pieces of item-related information
scattered within a webpage is often an arduous ordeal that involves plenty of listening to irrelevant
content. These participants appreciated the SalL’s ability to avoid a bulk of the irrelevant content
while navigating a webpage, however, they mentioned that they still had to navigate through at
considerable amount of unrelated content such as menu, search form, company logo image, and
quick links, all of which were determined as salient by SalL. The participants mentioned that no
such problem existed in InstaFetch, as only item-related information was present in its interface.

Proc. ACM Hum.-Comput. Interact., Vol. 8, No. EICS, Article 257. Publication date: June 2024.

257:20 Yash Prakash et al.

Searching for information within a page segment can sometimes be cambersome. Half
of the participants recommended adding additional navigation support in InstaFetch to tackle
voluminous item-related segments. These participants mentioned that often item-related segments
are too long, especially reviews (4 participants), and that they would prefer to listen to some kind
of summaries, instead of navigating through the whole segment. The participants however did
mention that InstaFetch support for natural language queries alleviated this burden to a large
extent, but explained that as they usually look for different pieces of information within a segment,
typing multiple queries, one for each desired information piece, can be a bit cumbersome.
Missing out on better deals due to interaction fatigue. All participants mentioned that while
shopping online, they always experienced interaction fatigue due to which they could not cover
enough items in the available list, thereby missing out on ‘good deals’. The participants attributed
this fatigue to a variety of factors including numerous shortcut presses, constant back-and-forth
between webpages, and listening to too much content during navigation. Seven participants
explicitly stated that InstaFetch mitigated these interaction burdens to a substantial extent, which
enabled them to consider more items before making a decision.

Request for voice-based input and intelligent assistants. All participants suggested inclusion
of voice-based querying support in InstaFetch. A few (3) participants even suggested extending
natural language-querying to full-fledged conversations, where they could get engage in a dialog
with InstaFetch to get all the desired information about any item in one exchange, as opposed to
typing multiple queries one-by-one. Nonetheless, most participants stated that they would like
to “keep” InstaFetch on their computers and a few of the participants also asked if InstaFetch was
“free” to use.

5 DISCUSSION

The empirical findings from our user study demonstrate the capability of InstaFetch in notably
enhancing both the browsing efficiency and overall user experience for blind screen reader users
during their interactions with web data items on e-commerce platforms. However, the study also
highlighted certain limitations, which paves the way for subsequent investigative endeavors in this
field. A few notable ones are discussed next.

5.1 Limitations

A limitation of our study was that we focused on websites where both Sall. and InstaFetch algorithms
demonstrated accurate extraction of segments from the ‘Details’ pages. While such a design choice
was instrumental in avoiding confounding variables, it inadvertently prevented us from uncovering
the repercussions of algorithmic inaccuracies on the user experience. The question of how blind
participants would react and adapt to potential algorithmic errors in InstaFetch is the scope of
future work. The second limitation of InstaFetch is that it presently supports only typed natural
language queries. As mentioned earlier, several participants expressed a desire for voice-based
querying and a few even suggested incorporating intelligent dialog agents in InstaFetch. The third
limitation of our work is that InstaFetch currently supports only English-language websites and
queries. Integrating regional language support is one of our future research objectives, and we
aspire to attract a broader and more diverse user base.

Another inherent limitation of InstaFetch is that it was designed and tested only for e-commerce
shopping websites, its usefulness in other types of websites is yet to be explored. Given the modular
and easily generalizable architecture of InstaFetch, future research could focus on expanding its
capabilities to different genres of websites, such as news portals, blogs, and educational sites.
Moreover, when a user’s query is ambiguous, the LLM-based module in InstaFetch may find it
challenging to deliver an accurate response despite sophisticated prompt engineering. Addressing

Proc. ACM Hum.-Comput. Interact., Vol. 8, No. EICS, Article 257. Publication date: June 2024.

All in One Place: Ensuring Usable Access to Online Shopping Items for Blind Users 257:21

such ambiguities in queries will be crucial moving forward. Additionally, while we mitigated the
bias while evaluating the customized LLM through independent annotations and reviews by the
entire research team, we admit that there may be a small possibility of unforeseen bias due to the
lack of external personnel in the evaluation. Validating by findings by using external evaluators is
in scope of our future work on this topic.

Lastly, to drive broader acceptance of InstaFetch, it is imperative to ensure compatibility with
prominent screen readers and internet browsers. A potential way to achieve this is to formulate
screen-reader plugins or multi-browser extensions to smoothly fuse InstaFetch’s features with all
mainstream browsing platforms. Currently, InstaFetch is tailored for desktop and laptop settings,
leaving the mobile user segment unsupported. Given the pervasive nature of smartphones and
the increasing trend of mobile-based e-commerce activities, facilitating efficient non-visual web
interactions becomes crucial on smart mobile devices. Considering these considerations, we look
forward to creating InstaFetch alternatives for mobile browsers.

5.2 Enabling Skimming-based Navigation.

While InstaFetch provided instant access to item-related segments, such as reviews, product
specifications, and shipping details, navigating the content with these segments can sometimes be
challenging and tedious, especially user reviews that can be extremely long. Sighted individuals
have the advantage of swiftly skimming visual data, thereby capturing the essence of the vast
content in reviews. In contrast, blind users have to navigate content serially via auditory interfaces
using keyboard shortcuts, which can be very tedious and burdensome, as shown in our results.
Therefore, we are considering extending InstaFetch to include advanced skimming support (e.g.,
[2]). Our objective is to enable blind users to swiftly gauge the relevance of content, enabling them
to judiciously decide on whether to delve deeper into the content.

5.3 Societal Impact.

The usability of web interactions is critical for visually impaired individuals, yet most web
designs cater to sighted users, imposing extra burdens on blind users. This imbalance creates a
usability gap that limits the web’s benefits for those with visual disabilities, unlike their sighted
counterparts. Typically, sighted users leverage visual cues on a webpage to swiftly locate specific
product information, utilizing spatial orientation to inform their content search. Conversely, blind
users are required to sequentially traverse the DOM to access the information they need using
keyboard shortcuts. In this paper, we address this disparity by enabling users to directly input
queries and receive immediate responses, thereby streamlining the information retrieval process
for visually impaired users. Moreover, we enable a more streamlined, effortless, and user-friendly
interaction with information about web data items, thereby empowering blind users to explore a
greater number of data items within a shorter timeframe and with reduced effort, thereby enhancing
their ability to secure advantageous shopping deals comparable to those achieved by their sighted
peers in shopping websites.

6 CONCLUSION

The prevailing distributed visualization of information related to web data items over multiple
segments and multiple webpages predominantly cater to the preferences and convenience of sighted
individuals. For blind users, this configuration induces a tedious and frustrating navigation exercise,
marked by frequent toggling between multiple pages and inevitably encountering a myriad of irrel-
evant content. Addressing this glaring usability divide, we introduced InstaFetch, a novel browser
extension tailored specifically for visually impaired users, aiming to centralize access to critical
item information. This extension seamlessly aggregates essential data like product descriptions,

Proc. ACM Hum.-Comput. Interact., Vol. 8, No. EICS, Article 257. Publication date: June 2024.

257:22 Yash Prakash et al.

specifications, and reviews into a single screen reader-friendly interface that is accessible with a
single user action. Furthermore, InstaFetch enables users to pose queries for specific item-related
information and obtain relevant answers excavated from the webpage as the context. In a user
study involving 14 blind participants, InstaFetch significantly outperformed both the status quo
screen reader and a state-of-the-art solution.

REFERENCES

(1]

[10]

[11]
[12]

[13]
[14

=

[15]

[16]

[17]
[18]
[19]

[20]

[21]

Waleed Abdulla. 2017. Mask R-CNN for object detection and instance segmentation on Keras and TensorFlow.
https://github.com/matterport/Mask_RCNN.

Faisal Ahmed, Yevgen Borodin, Andrii Soviak, Muhammad Islam, IV Ramakrishnan, and Terri Hedgpeth. 2012.
Accessible skimming: faster screen reading of web pages. In Proceedings of the 25th annual ACM symposium on User
interface software and technology. 367-378.

Julian Alarte, David Insa, and Josep Silva. 2017. Webpage menu detection based on DOM. In International Conference
on Current Trends in Theory and Practice of Informatics. Springer, 411-422.

Manuel Alvarez, Alberto Pan, Juan Raposo, Fernando Bellas, and Fidel Cacheda. 2010. Finding and extracting data
records from web pages. Journal of Signal Processing Systems 59, 1 (2010), 123-137.

Vikas Ashok, Yury Puzis, Yevgen Borodin, and IV Ramakrishnan. 2017. Web screen reading automation assistance
using semantic abstraction. In Proceedings of the 22nd International Conference on Intelligent User Interfaces. 407-418.
Ali Selman Aydin, Shirin Feiz, Vikas Ashok, and IV Ramakrishnan. 2020. Sail: Saliency-driven injection of aria
landmarks. In Proceedings of the 25th International Conference on Intelligent User Interfaces. 111-115.

Shrabastee Banerjee, Chrysanthos Dellarocas, and Georgios Zervas. 2021. Interacting user-generated content tech-
nologies: How questions and answers affect consumer reviews. Journal of Marketing Research 58, 4 (2021), 742-761.
Sean Bechhofer, Simon Harper, and Darren Lunn. 2006. Sadie: Semantic annotation for accessibility. In International
Semantic Web Conference. Springer, 101-115.

Yevgen Borodin, Jeffrey P. Bigham, Glenn Dausch, and I. V. Ramakrishnan. 2010. More than Meets the Eye: A Survey
of Screen-Reader Browsing Strategies. In Proceedings of the 2010 International Cross Disciplinary Conference on Web
Accessibility (W4A) (Raleigh, North Carolina) (W4A ’10). Association for Computing Machinery, New York, NY, USA,
Article 13, 10 pages. https://doi.org/10.1145/1805986.1806005

James V. Bradley. 1958. Complete Counterbalancing of Immediate Sequential Effects in a Latin Square
Design. J. Amer. Statist. Assoc. 53, 282 (1958), 525-528. https://doi.org/10.1080/01621459.1958.10501456
arXiv:https://amstat.tandfonline.com/doi/pdf/10.1080/01621459.1958.10501456

John Brooke. 1996. Sus: a “quick and dirty’usability. Usability evaluation in industry 189, 3 (1996).

Tom Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared D Kaplan, Prafulla Dhariwal, Arvind Neelakantan,
Pranav Shyam, Girish Sastry, Amanda Askell, et al. 2020. Language models are few-shot learners. Advances in neural
information processing systems 33 (2020), 1877-1901.

Deng Cai, Shipeng Yu, Ji-Rong Wen, and Wei-Ying Ma. 2003. Vips: a vision-based page segmentation algorithm. (2003).
Kaushik Chakrabarti, Zhimin Chen, Siamak Shakeri, and Guihong Cao. 2020. Open domain question answering using
web tables. arXiv preprint arXiv:2001.03272 (2020).

Shigian Chen, Chenliang Li, Feng Ji, Wei Zhou, and Haiqing Chen. 2019. Driven answer generation for product-related
questions in e-commerce. In Proceedings of the Twelfth ACM International Conference on Web Search and Data Mining.
411-419.

Yang Deng, Wenxuan Zhang, and Wai Lam. 2020. Opinion-aware answer generation for review-driven question
answering in e-commerce. In Proceedings of the 29th ACM International Conference on Information & Knowledge
Management. 255-264.

Yang Deng, Wenxuan Zhang, Qian Yu, and Wai Lam. 2023. Product Question Answering in E-Commerce: A Survey.
arXiv preprint arXiv:2302.08092 (2023).

Prasad M Deshpande, Karthikeyan Ramasamy, Amit Shukla, and Jeffrey F Naughton. 1998. Caching multidimensional
queries using chunks. In Proceedings of the 1998 ACM SIGMOD international conference on Management of data. 259-270.
Yixiang Fang, Xiaoqin Xie, Xiaofeng Zhang, Reynold Cheng, and Zhiqiang Zhang. 2018. STEM: a suffix tree-based
method for web data records extraction. Knowledge and Information Systems 55, 2 (2018), 305-331.

Javedul Ferdous, Hae-Na Lee, Sampath Jayarathna, and Vikas Ashok. 2022. InSupport: Proxy Interface for Enabling
Efficient Non-Visual Interaction with Web Data Records. In 27th International Conference on Intelligent User Interfaces.
49-62.

Shen Gao, Xiuying Chen, Zhaochun Ren, Dongyan Zhao, and Rui Yan. 2021. Meaningful answer generation of
e-commerce question-answering. ACM Transactions on Information Systems (TOIS) 39, 2 (2021), 1-26.

Proc. ACM Hum.-Comput. Interact., Vol. 8, No. EICS, Article 257. Publication date: June 2024.

All in One Place: Ensuring Usable Access to Online Shopping Items for Blind Users 257:23

[22] Shen Gao, Zhaochun Ren, Yihong Zhao, Dongyan Zhao, Dawei Yin, and Rui Yan. 2019. Product-aware answer
generation in e-commerce question-answering. In Proceedings of the Twelfth ACM International Conference on Web
Search and Data Mining. 429-437.

[23] Boni Garcia, Mario Munoz-Organero, Carlos Alario-Hoyos, and Carlos Delgado Kloos. 2021. Automated driver
management for selenium WebDriver. Empirical Software Engineering 26, 5 (2021), 1-51.

[24] Ross Girshick. 2015. Fast r-cnn. In Proceedings of the IEEE international conference on computer vision. 1440-1448.

[25] Cole Gleason, Amy Pavel, Emma McCamey, Christina Low, Patrick Carrington, Kris M Kitani, and Jeffrey P Bigham.
2020. Twitter A11y: A browser extension to make Twitter images accessible. In Proceedings of the 2020 chi conference
on human factors in computing systems. 1-12.

[26] Tomas Gogar, Ondrej Hubacek, and Jan Sedivy. 2016. Deep neural networks for web page information extraction. In
Artificial Intelligence Applications and Innovations: 12th IFIP WG 12.5 International Conference and Workshops, AIAI 2016,
Thessaloniki, Greece, September 16-18, 2016, Proceedings 12. Springer, 154-163.

[27] Sandra G Hart and Lowell E Staveland. 1988. Development of NASA-TLX (Task Load Index): Results of empirical and
theoretical research. In Advances in psychology. Vol. 52. Elsevier, 139-183.

[28] Kaiming He, Georgia Gkioxari, Piotr Dollar, and Ross Girshick. 2017. Mask r-cnn. In Proceedings of the IEEE international
conference on computer vision. 2961-2969.

[29] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. 2016. Deep residual learning for image recognition. In
Proceedings of the IEEE conference on computer vision and pattern recognition. 770~778.

[30] Warut Khern-am nuai, Hossein Ghasemkhani, Dandan Qiao, and Karthik Kannan. 2023. The impact of online Q&As
on product sales: The case of Amazon answer. Information Systems Research (2023).

[31] Anurendra Kumar, Keval Morabia, Jingjin Wang, Kevin Chen-Chuan Chang, and Alexander Schwing. 2021. CoVA:
context-aware visual attention for webpage information extraction. arXiv preprint arXiv:2110.12320 (2021).

[32] Eduardo Sany Laber, Criston Pereira de Souza, lam Vita Jabour, Evelin Carvalho Freire de Amorim, Eduardo Teixeira
Cardoso, Raul Pierre Renteria, Licio Cunha Tinoco, and Caio Dias Valentim. 2009. A fast and simple method for
extracting relevant content from news webpages. In Proceedings of the 18th ACM conference on Information and
knowledge management. 1685-1688.

[33] Jonathan Lazar, Aaron Allen, Jason Kleinman, and Chris Malarkey. 2007. What frustrates screen reader users on the
web: A study of 100 blind users. International Journal of human-computer interaction 22, 3 (2007), 247-269.

[34] Hae-Na Lee and Vikas Ashok. 2022. Customizable Tabular Access to Web Data Records for Convenient Low-Vision
Screen Magnifier Interaction. ACM Transactions on Accessible Computing (TACCESS) (2022).

[35] Hae-Na Lee, Sami Uddin, and Vikas Ashok. 2020. TableView: Enabling Efficient Access to Web Data Records for
Screen-Magnifier Users. In The 22nd International ACM SIGACCESS Conference on Computers and Accessibility. 1-12.

[36] Patrick Lewis, Ethan Perez, Aleksandra Piktus, Fabio Petroni, Vladimir Karpukhin, Naman Goyal, Heinrich Kiittler,
Mike Lewis, Wen-tau Yih, Tim Rocktaschel, et al. 2020. Retrieval-augmented generation for knowledge-intensive nlp
tasks. Advances in Neural Information Processing Systems 33 (2020), 9459-9474.

[37] Dacheng Li, Rulin Shao, Anze Xie, Ying Sheng, Lianmin Zheng, Joseph Gonzalez, Ion Stoica, Xuezhe Ma, and Hao
Zhang. 2023. How Long Can Context Length of Open-Source LLMs truly Promise?. In NeurIPS 2023 Workshop on
Instruction Tuning and Instruction Following.

[38] Tsung-Yi Lin, Piotr Dollar, Ross Girshick, Kaiming He, Bharath Hariharan, and Serge Belongie. 2017. Feature pyramid
networks for object detection. In Proceedings of the IEEE conference on computer vision and pattern recognition. 2117—
2125.

[39] Nelson F Liu, Kevin Lin, John Hewitt, Ashwin Paranjape, Michele Bevilacqua, Fabio Petroni, and Percy Liang. 2023.
Lost in the middle: How language models use long contexts. arXiv preprint arXiv:2307.03172 (2023).

[40] Valentyn Melnyk, Vikas Ashok, Yury Puzis, Andrii Soviak, Yevgen Borodin, and IV Ramakrishnan. 2014. Widget
classification with applications to web accessibility. In International Conference on Web Engineering. Springer, 341-358.

[41] Carol Moser, Chanda Phelan, Paul Resnick, Sarita Y Schoenebeck, and Katharina Reinecke. 2017. No such thing as too
much chocolate: evidence against choice overload in e-commerce. In Proceedings of the 2017 CHI Conference on Human
Factors in Computing Systems. 4358-4369.

[42] Arvind Neelakantan, Tao Xu, Raul Puri, Alec Radford, Jesse Michael Han, Jerry Tworek, Qiming Yuan, Nikolas Tezak,
Jong Wook Kim, Chris Hallacy, et al. 2022. Text and code embeddings by contrastive pre-training. arXiv preprint
arXiv:2201.10005 (2022).

[43] Kishore Papineni, Salim Roukos, Todd Ward, and Wei-Jing Zhu. 2002. Bleu: a method for automatic evaluation of
machine translation. In Proceedings of the 40th annual meeting of the Association for Computational Linguistics. 311-318.

[44] Pinecone. 2023. LangChain Unleashed. https://www.pinecone.io/learn/chunking-strategies/.

[45] Yash Prakash, Mohan Sunkara, Hae-Na Lee, Sampath Jayarathna, and Vikas Ashok. 2023. AutoDesc: Facilitating
Convenient Perusal of Web Data Items for Blind Users. In Proceedings of the 28th International Conference on Intelligent
User Interfaces. 32-45.

Proc. ACM Hum.-Comput. Interact., Vol. 8, No. EICS, Article 257. Publication date: June 2024.

257:24 Yash Prakash et al.

[46] Jack W Rae, Sebastian Borgeaud, Trevor Cai, Katie Millican, Jordan Hoffmann, Francis Song, John Aslanides, Sarah
Henderson, Roman Ring, Susannah Young, et al. 2021. Scaling language models: Methods, analysis & insights from
training gopher. arXiv preprint arXiv:2112.11446 (2021).

[47] Johnny Saldafia. 2021. The coding manual for qualitative researchers. sage.

[48] Weishi Shi, Heather Moses, Qi Yu, Samuel Malachowsky, and Daniel E Krutz. 2023. ALL: Supporting Experiential Ac-
cessibility Education and Inclusive Software Development. ACM Transactions on Software Engineering and Methodology
(2023).

[49] Brijendra Singh and Hemant Kumar Singh. 2010. Web data mining research: a survey. In 2010 IEEE International
Conference on Computational Intelligence and Computing Research. IEEE, 1-10.

[50] Ray Smith. 2007. An overview of the Tesseract OCR engine. In Ninth international conference on document analysis and
recognition (ICDAR 2007), Vol. 2. IEEE, 629-633.

[51] Amanda Stent, Matthew Marge, and Mohit Singhai. 2005. Evaluating evaluation methods for generation in the presence
of variation. In International conference on intelligent text processing and computational linguistics. Springer, 341-351.

[52] The GIMP Development Team. 1998. GNU Image Manipulation Program. https://www.gimp.org

[53] Hugo Touvron, Louis Martin, Kevin Stone, Peter Albert, Amjad Almahairi, Yasmine Babaei, Nikolay Bashlykov, Soumya
Batra, Prajjwal Bhargava, Shruti Bhosale, et al. 2023. Llama 2: Open foundation and fine-tuned chat models. arXiv
preprint arXiv:2307.09288 (2023).

[54] Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten Bosma, Fei Xia, Ed Chi, Quoc V Le, Denny Zhou, et al. 2022.
Chain-of-thought prompting elicits reasoning in large language models. Advances in Neural Information Processing
Systems 35 (2022), 24824-24837.

[55] Shaomei Wu, Jeffrey Wieland, Omid Farivar, and Julie Schiller. 2017. Automatic alt-text: Computer-generated image
descriptions for blind users on a social network service. In Proceedings of the 2017 ACM Conference on Computer
Supported Cooperative Work and Social Computing. 1180-1192.

[56] Canhui Xu, Cao Shi, Hengyue Bi, Chuangi Liu, Yongfeng Yuan, Haoyan Guo, and Yinong Chen. 2021. A Page Object
Detection Method Based on Mask R-CNN. IEEE Access 9 (2021), 143448-143457.

[57] Shunyu Yao, Jeffrey Zhao, Dian Yu, Nan Du, Izhak Shafran, Karthik Narasimhan, and Yuan Cao. 2022. React: Synergizing
reasoning and acting in language models. arXiv preprint arXiv:2210.03629 (2022).

[58] Qian Yu, Wai Lam, and Zihao Wang. 2018. Responding e-commerce product questions via exploiting qa collections

and reviews. In Proceedings of the 27th International Conference on Computational Linguistics. 2192-2203.

Xujiang Zhao, Jiaying Lu, Chengyuan Deng, Can Zheng, Junxiang Wang, Tanmoy Chowdhury, Li Yun, Hejie Cui,

Zhang Xuchao, Tianjiao Zhao, et al. 2023. Domain specialization as the key to make large language models disruptive:

A comprehensive survey. arXiv preprint arXiv:2305.18703 (2023).

[60] Zhuoyao Zhong, Lei Sun, and Qiang Huo. 2019. An anchor-free region proposal network for Faster R-CNN-based text
detection approaches. International Journal on Document Analysis and Recognition (IJDAR) 22, 3 (2019), 315-327.

(59

—

Proc. ACM Hum.-Comput. Interact., Vol. 8, No. EICS, Article 257. Publication date: June 2024.

All in One Place: Ensuring Usable Access to Online Shopping Items for Blind Users 257:25

A INSTAFETCH ILLUSTRATION

Fig. 6. InstaFetch illustration. Upon selection of the ‘options’ button accompanying any data record (1), users
can activate a quartet of choices displayed via a pop-up interface (2). The primary feature of this pop-up is a
’query’ function, which provides users with the capability to submit a question and receive an immediate
answer pertinent to their inquiry (3). Complementing this feature are three additional options—‘description’
(4), ‘specifications’ (5), and ‘reviews’ (6)—which collectively furnish users with a comprehensive synopsis of
the product’s detail page. This functionality affords users the convenience of an expedited, in-situ overview
of product specifics, circumventing the necessity for page redirection to obtain this information.

Received February 2024; revised April 2024; accepted April 2024

Proc. ACM Hum.-Comput. Interact., Vol. 8, No. EICS, Article 257. Publication date: June 2024.

	Abstract
	1 Introduction
	2 Related Work
	2.1 Web Data Usability for Blind Users
	2.2 Information Extraction from Websites
	2.3 Product-based Query-Response Systems

	3 InstaFetch Design
	3.1 Overview
	3.2 Extracting Item Information
	3.3 Post-processing
	3.4 InstaFetch User Interface
	3.5 Dynamic user query handling
	3.6 Implementation Details

	4 Evaluation
	4.1 Participants
	4.2 Design
	4.3 Apparatus and Procedure
	4.4 Data Collection and Analysis
	4.5 Results
	4.6 Queries vs. Interface Access

	5 Discussion
	5.1 Limitations
	5.2 Enabling Skimming-based Navigation.
	5.3 Societal Impact.

	6 Conclusion
	References
	A InstaFetch Illustration

