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ABSTRACT Deep neural networks have performed remarkably in many areas, including image-related
classification tasks. However, various studies have shown that they are vulnerable to adversarial
examples — images carefully crafted to fool well-trained deep neural networks by introducing imperceptible
perturbations to the original images. To better understand the inherent characteristics of adversarial attacks,
this paper studies the features of three common attack families: gradient-based, score-based, and decision-
based. The primary objective is to recognize distinct types of adversarial examples, as identifying the type
of information possessed by the attacker can aid in developing effective defense strategies. This paper
demonstrates that adversarial images from different attack families can be successfully identified with
a simple model. To further investigate the reason behind the observations, this paper conducts carefully
designed experiments to study the distortion patterns of different attacks. Experimental results on CIFAR10
and Tiny ImageNet validated the differences in distortion patterns between various attack types for both
L> and Ly, norm.

INDEX TERMS Decision-based attacks, deep neural networks, gradient-based attacks, image classification,
score-based attacks.

I. INTRODUCTION

Well-trained deep neural networks are capable of achiev-
ing outstanding performance in many areas, including
image-related classification tasks [1], [2], [3]. However,
various studies have shown that they may not be fully
reliable and can be fooled by adversarial examples —
images that are carefully crafted to fool such deep neural
networks by introducing imperceptible perturbation to the
original images [4], [S], [6], [7]. This raises serious security
concerns for the Al community. Many works have been
done to study and defend against adversarial attacks [8], [9],
[10], [11]. In particular, adversarial detection methods have
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been proposed to determine whether an input image is an
adversarial example or not [12], [13], [14], [15], [16], [17].
Moreover, it is helpful for the defender if reverse engineering
can be done to reveal more information about the attacks
based on the detected adversarial examples. For example,
there are three main attack families to perform attacks:
gradient-based, score-based, and decision-based, which rely
on the gradient, predicted score, and predicted label of the
victim model, respectively. Based on the detected adversarial
examples, if the defender can tell what type of attack is
used, the defender will know what information has been
leaked to the attacker. Consequently, the defender can
modify the model accordingly to prevent further attacks.
Some works have been done to study the reverse engi-
neering of adversarial attacks: Pang et al. [18] proposed

© 2024 The Authors. This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.

117872

For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/

VOLUME 12, 2024



X. Wang et al.: Uncovering Distortion Differences: A Study of Adversarial Attacks

IEEE Access

+ 0.01x =

horse cat

FIGURE 1. An adversarial example generated by Boundary attack:
introducing adversarial perturbations to the horse image causes a
classifier to label it as a cat.

the query of interest (QOI) estimation model to infer the
adversary’s target class by model queries in black-box
settings. Goebel et al. [19] estimated adversarial setup from
image sample for gradient-based attacks FGSM [5] and
PGD [20]. Gong et al. [21] proposed a general formulation
of the reverse engineering of deceptions problem that can
estimate adversarial perturbations and provide the feasibility
of inferring the intention of an adversary.

In this paper, we first demonstrated that, given an
adversarial example, the corresponding attack family can
be accurately identified with a simple model. Once we
had established this, we turned our attention to ana-
lyzing the specific features of each type of attack to
understand the underlying differences between them better.
Section II covers preliminary information presented in the
paper. Section III focuses on our image classifier that
accurately identifies attack families (gradient-based, score-
based, or decision-based). In Section IV, we provide an
extensive analysis of the features associated with each type
of attack.

Il. PRELIMINARIES

A. NOTATIONS

We consider an image classifier f(-) as the victim model
of adversarial attacks. The input to the classifier is x9 €
[0, 1]W’h’c, a c-channel image sample with width w and
height h. The true label associated with x¢ is denoted as y,
and the adversarial example generated from x¢ is denoted
as x*. We denote f(xg) as the predicted score vector and
c(xg) = argmax;f(xg) as the predicted label, indicating the
i" label has the highest prediction score.

B. ADVERSARIAL EXAMPLES

An adversarial example x* and the original image x( are
visually indistinguishable, but their predicted labels are
different. That is, D(xg, x*) is very small in some distance
metric D, while c(x*) # c(xg). Taking Fig.1 as an example,
humans will recognize that the two images are of the same
horse. However, the image on the right is generated by adding
imperceptible perturbations to the original image on the left,
which causes a particular classifier to classify it as a cat.
Existing methods use L, metrics to evaluate the distance
between adversarial and original samples. This paper focuses
on Ly and L, the most commonly used metrics in adversarial
attacks.
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C. DATA SETS AND VICTIM MODELS

We use CIFARI10 [22] image data set with ten different
classes of resolution 32 x 32. Another data set we use
is Tiny Imagenet [23], which has 200 classes, and the
resolution of the images is 64 x 64. For CIFAR-10, the victim
model is VGG-16 with batch normalization [1], of which
accuracy is 93.34%. For Tiny ImageNet, the victim model
architecture is ResNet18 [3] with 68.64% accuracy.

D. ADVERSARIAL ATTACKS

Different attack methods can be classified into two categories
according to their goals: untargeted and targeted. Untargeted
attacks are successful as long as the adversarial example is
misclassified. Targeted attacks, instead, are successful only
when the adversarial example is classified into a target class.
Take Fig.1 as an example; the untargeted attack is successful
if the right-side image is not classified as a horse, while the
targeted attack is successful only when it is predicted as a cat
if the target class is a cat. In this paper, all experiments are
based on untargeted attacks.

Depending on the information required, existing attack
methods can be divided into three categories: gradient-
based, score-based, and decision-based. The gradient-based
attack is also known as a white-box attack, in which all
information of the victim model is revealed to the attacker so
that the attackers can calculate gradients. Popular gradient-
based attacks are FGSM [5], PGD [20] and C&W [6].
If an attacker only has access to the predicted score of
the victim model, it is a score-based attack, also known as
a soft-label black-box setting. Popular score-based attacks
include ZOO [24], NES [25] and Square [26]. In practical
scenarios, the attacker only has access to the predicted labels
of the model. Attacks under this setting are called decision-
based attacks. Examples of such attacks include those
described in [27] and [28], as well as popular methods like
Boundary [29], Sign-OPT [30] and HopSkipJump (HSJ) [31].
Table 1 lists six representative attacks under different settings
in Ly or Ly metrics. In this paper, we conduct attack family
classification with these attacks and study their perturbation
patterns. Adversarial images are generated based on ART
package [32].

TABLE 1. Representative attacks of different metrics from different
families under L, and L.

Lo Lo
gradient-based C&W PGD
score-based Z00 Square
decision-based ~ Boundary = HopSkipJump

E. PERTURBATION VISUALIZATION
Perturbations are the differences between the adversarial
example and the corresponding original image, showing
how the original image is modified. Since perturbations are
imperceptible, we amplify the perturbation by 100 times for
visualization purposes in this paper.
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IIl. REVERSE ENGINEERING OF ADVERSARIAL ATTACKS
Most current reverse engineering methods focus on analyzing
specific attack methods. However, this section explores
the potential for identifying attack families associated with
adversarial examples. Successful detection of attack families
(gradient-based, score-based, or decision-based) can be a
useful tool for defenders, as it allows them to understand
better the level of information that has been leaked during
attacks so that defenders can properly assess the potential
impact of that attack family.

When an adversarial attack is launched, it exploits weak-
nesses in the model: gradient-based attacks take advantage
of the model gradients; score-based attacks rely on the
predicted scores of the model; and decision-based attacks rely
on the predicted labels. This knowledge can help develop
an effective response to the attack. Overall, by identifying
the specific attack families and taking targeted actions to
address the vulnerability exploited by the attack, defenders
can improve model resilience and minimize the damage
caused by attacks.

A. EXPERIMENTS: CLASSIFYING ATTACK FAMILIES

We generate adversarial examples of each attack family and
two metrics (L and L) using attacks in Table 1 with data
sets and victim models mentioned in Section II.

For the L, attacks, the perturbation upper bounds are
1.00 and 5.00 on CIFAR10 and Tiny ImageNet, respectively.
The perturbation upper bound is 0.03 for different L, attacks
on both CIFAR10 and Tiny ImageNet.

With the generated adversarial examples, we perform
the following experiments: (1) classifying attack families
in Lp metric; (2) classifying attack families in Lo, metric;
and (3) classifying attack families with adversarial examples
of both L, and L., metrics. A classifier with VGG16
architecture is trained for multi-class classification to identify
the attack family based on adversarial examples. The same
architecture is used for both CIFAR10 and Tiny ImageNet in
all the following experiments except in Experiment D, where
the task is six-class classification, and the last layer has six
neurons instead of three.

1) EXPERIMENT A

For L-norm based attacks, we choose C&W (gradient-
based), ZOO (score-based), and Boundary (decision-based)
as representatives of each attack family. If all three attacks
can successfully fool the victim model by modifying the
same original image under the perturbation bound, we keep
the corresponding adversarial examples and split them into
training and test sets for the attack family classification task.
These adversarial examples are called successful adversarial
examples across three attacks.

2) EXPERIMENT B

For L.,-norm based attacks, we choose PGD (gradient-
based), Square (score-based), and HopSkipJump (decision-
based) as representative attacks. A similar procedure is
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applied as in Experiment A to obtain the training and test sets
for the attack family classification task.

3) EXPERIMENT C

Adversarial examples in Experiments A and B are merged
into three classes so that each class contains adversarial
examples generated by attacks from the same attack family
but different norm metrics. Similarly, we only keep successful
adversarial examples across six attacks. Gradient-based
class includes adversarial examples generated by C&W(L;)
and PGD(Ls,). Score-based class includes ZOO(L,) and
Square(Lso). Decision-based class includes Boundary(L;)
and HopSkipJump(L,). The classification task is to do a
three-class classification, identifying the attack family given
an adversarial example.

4) EXPERIMENT D
To investigate if there are not just differences between attack
families but also differences between attack methods, this
experiment uses the same data as in Experiment C but
performs six-class classification to identify specific attacks,
not attack families.

TABLE 2. Accuracy of attack family classification task (Experiments A,
B, C) and attack method classification task (Experiment D) on CIFAR10
and Tiny ImageNet without original images.

CIFAR10  Tiny ImageNet
Experiment A 82.74% 81.08%
Experiment B 95.51% 96.96%
Experiment C 85.58% 85.77%
Experiment D 76.30% 73.84%

The first three rows (Experiments A, B, C) in Table 2 show
the attack family classification accuracies on CIFAR10 and
Tiny ImageNet datasets. The last row (Experiment D) shows
the attack method classification accuracy. The first three
experiments achieve high accuracies on different datasets,
which suggests that attack families modify the image in
different ways and machines can learn the pattern based
on adversarial examples, although adversarial examples are
indistinguishable from the original images to humans. The
testing accuracies are not bad for Experiment D, which
implies that attacks of the same family also have different
patterns.

In many real-world scenarios, whether the input has
been perturbed or not is often unknown to the models.
We incorporate non-perturbed original images into the
classification task to address this concern. The outcomes of
the experiment can be found in Table 3. The experimental
setup remains consistent, with the only variation being the
inclusion of original images as a distinct category in the
input. Except for Experiment A, all experiments stay at a
high accuracy level. Experiment A experiences a decrease in
accuracy due to its utilization of the L, norm attack, which
considers the cumulative perturbations across all pixels,
leading to smaller discrepancy to original images when a
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certain threshold of the cumulative sum is applied. On the
other hand, the L, norm attack focuses on the maximum
perturbed pixel while allowing other pixels to be perturbed as
long as their individual perturbations are below the threshold,
leading to more noticeable perturbation patterns.

TABLE 3. Accuracy of attack family classification task (Experiments A,
B, C) on CIFAR10 and Tiny ImageNet with original images.

CIFAR10  Tiny ImageNet
Experiment A 74.84% 65.45%
Experiment B 92.15% 91.87%
Experiment C 80.65% 89.36%

B. ROBUSTNESS OF ATTACK FAMILY CLASSIFICATION
This section presents evidence for the robustness of attack
family identification, even when they have varying perturba-
tion levels or involve ensemble attacks.

1) WITH VARIOUS NORM LIMITS

In this section, we demonstrate that attack family types of
adversarial examples can be accurately identified despite
having different perturbation levels. The CIFAR10 dataset
was used for Experiment A and Experiment B to investigate
the effect of different limits on the attack family classification
under L, and Lo, norms. Experiment A of classifying
L, attacks from three different attack families achieved
high levels of accuracy across a range of limit values,
including 1.0, 0.8, and 0.6. Similarly, in Experiment B of
classifying L, attacks from three different attack families,
high levels of accuracy were achieved across a range of
limit values including 0.03, 0.02, and 0.01, see Table 4.
However, we observed a decrease in accuracy as Ly or Ly
norm limit becomes smaller, which can be attributed to the
limited number of successful adversarial samples across three
attacks under smaller limits.

2) WITH ENSEMBLE ATTACK

Auto attack is an ensemble attack algorithm that includes
four attacks: APGD-CE, APGD-DLR, FAB [33], and Square
Attack, where APGD-CE and APGD-CE are two extensions
of the PGD attack overcoming failures due to suboptimal
step size and problems of the objective function [34]. This
algorithm iterates over the list of attacks until an adversarial
example is successfully generated. Though both gradient and
score information are involved, we consider auto attack as
a gradient-based attack for the purpose of the attack family
classification task. In our evaluation, we classify adversarial
examples of CIFAR10 generated by Auto-attack(gradient-
based), ZOO(Score-based), and Boundary(decision-based)
under L, norms and achieved an accuracy of 83.40%;
under L, norms, we evaluated Auto-attack(gradient-based),
Square(Score-based), HopSkipJump(decision-based), and
accuracy achieved 97.40%. These results demonstrated that
different attack families could be effectively classified even
when the gradient-based attack involves more than just
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TABLE 4. Accuracy of attack family classification for various L, and L,
limits.

Lo Norm Limit 1.0 0.8 0.6
Accuracy 82.74%  81.30%  76.30%

Loo Norm Limit 0.03 0.02 0.01
Accuracy 95.51%  92.63%  81.57%

gradient information. Besides, the accuracy of the attack
family classification remains consistent regardless of the
specific attacks involved.

IV. EXPLORING CHARACTERISTICS OF ATTACK FAMILIES
Although adversarial examples from different attack families
appear to be indistinguishable, machines can learn and
classify them with some subtle signatures. One question
arises: What patterns does the classification model acquire
to recognize the attack family and attack method? Since the
differences in adversarial attacks are embedded in the pertur-
bations, we propose to investigate the reasons behind the ease
of identifying attack families by analyzing the perturbation
patterns exhibited in various attacks. Visualization examples
for representative L, attacks and L, attacks are displayed
in Fig. 2 and Fig. 3. More examples are in the Appendix.

A. L, ATTACKS

Different L, attacks modify the original images in different
ways, resulting in different perturbation patterns; see Fig. 2,
each subfigure lists adversarial examples from C&W, ZOO,
and Boundary and corresponding amplified perturbations
from left to right. It is obvious that the perturbations of
the three attacks are different. The perturbations of the
C&W attack seem to focus on the location of the object.
Z0O0 introduces large perturbations for some pixels. The
perturbations of the Boundary attack are relatively smaller
and all over the place. In the following sections, we study
the characteristics of C&W, ZOO, and Boundary and discuss
why they generate perturbations of different patterns.

1) C&W ATTACK

C&W attack is one of the strongest gradient-based attacks to
date. It can perform targeted and untargeted attacks with L, or
Loo metric. Although Ly, norm is feasible, L, norm is widely
used in C&W attacks and can be formulated as the following
regularized optimization problem:

x* = argmin{x —xo|3 + cg(®)). 1
xef0,1]"

The first term ||x — xg ||% enforces a slight distortion to the
original input x¢ and the second term g(x) is a loss function
that measures how successful the attack is. The parameter
¢ > 0 controls the trade-off between distortion and attack
success.

Compared to the other two attacks, it seems that the
perturbations of C&W concentrate on the object, see Fig. 2.
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(a) Horse

(b) Deer

FIGURE 2. Visualization examples for C&W, Z0O, and Boundary are displayed in each subfigure, sampled from CIFAR10. From left to right, the
first row shows the adversarial image generated by C&W, Z0O, and Boundary, and the second row shows corresponding amplified perturbations.
Though adversarial examples are indistinguishable, perturbations show different patterns: C&W’s perturbations focus on the main object; ZOO
introduces scattered bright per-pixel perturbations; Boundary’s perturbations are more uniform across the image.

L]

(a) Horse

(b) Bird

FIGURE 3. Visualization examples for PGD, Square, and HopSkipJump are displayed in each subfigure, sampled from the CIFAR10 data set. From
left to right, the first row shows the adversarial image generated by PGD, Square, and HopSkipJump, and the second row shows corresponding
amplified perturbations. PGD and HSJ have cluttered perturbation patterns, but HSJ is darker due to smaller perturbations. Square’s perturbations
consist of vertical strips covered by square-shaped regions, though vertical strips may not be obvious since too many squares cover them.

FIGURE 4. The proportion of perturbations inside the bounding box for
C&W, Z0O, and Boundary are 96.40%, 69.25%, and 79.51% respectively,
from left to right.

To verify if this observation is true, we draw a bounding
box of the horse in Fig. 2 and compute the proportion
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of L, perturbations inside the box for all three attacks,
see Fig. 4: the proportion of perturbation inside the bounding
box for C&W is 96.40%, while for ZOO and Boundary, the
proportions are 69.25% and 79.51% respectively.

To verify if this pattern is true for most cases, we randomly
sample five images with success across three attacks from
each class of CIFAR10 and draw bounding boxes for
all 50 images per attack to calculate the proportions of
perturbations inside bounding boxes. The proportion is
calculated per sampled image for each attack. Fig. 5 shows the
histograms of in-box perturbation proportion for each attack.
It is evident that C&W has the most left-skewed distribution,
indicating that C&W focuses on perturbing the main object
in the image.

Two reasons might explain why C&W attacks the object:
1) C&W has access to the true gradients; 2) C&W method
starts attacking from the original image. Gradients w.r.t. the
input indicates the important areas in the input image and
usually concentrate on the objects because the victim model is
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FIGURE 5. In-box perturbation proportion histograms for C&W, Z0O, and

Boundary. C&W's distribution is most left-skewed, indicating C&W focuses
on attacking the main object.

FIGURE 6. From left to right, a cat image is attacked by C&W,
estimated-gradient C&W, and random-start C&W. Even though the
perturbations of estimated-gradient C&W and random-start C&W also
roughly focus on the object area, it is not as obvious as in the
perturbations of the original C&W.

trained to do object classification. Therefore, it is expected to
see C&W focus on modifying the object. Besides, the initial
point of the optimization process is the original image, which
excludes the possibility of unnecessary perturbations outside
the object area.

To support the above hypothesis, we compare C&W
with its two variants: estimated-gradient C&W and random-
start C&W. Instead of using true gradients, estimated-
gradient C&W uses gradients estimated by Natural Evolution
Strategy [35], which was also used by Ilyas et al. [25] to
do score-based attack. Random-start C&W starts the attack
process with a random adversarial point instead of the original
image. The random adversarial point is a random noise image
that is not classified into the class of the original image. The
point is already misclassified but not close to the original
image.

We generate adversarial images with the original C&W and
its two variants, then train a VGG16-based model to classify
the three types of adversarial images. The classification
accuracy reaches 96.03%;, indicating that the three types of
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FIGURE 7. An automobile image is attacked by Z0O(left) and
estimated-gradient C&W(right). The first row contains adversarial
examples, and the second row contains amplified perturbations. ZOO’s
amplified perturbations are more spread due to coordinate descent.

adversarial attacks are significantly different. Therefore, both
gradients and random start affect the patterns of the C&W
perturbations.

Fig. 6 lists the adversarial examples and perturbations
of C&W, estimated-gradient C&W, and random-start C&W
from left to right. The perturbations of estimated-gradient
C&W still roughly focus on the object area but are less
accurate than those of the original C&W. Also, the overall
perturbations are larger: with estimated gradients, it cannot
converge to the same level as C&W, resulting in a larger
distortion level. With a random adversarial start, C&W gets
noisier in the background, even though many perturbations
are in the object area. In conclusion, C&W'’s perturbations
focusing on the object area come from two factors: starting
from original images and accurate gradients. See more
examples in Appendix A.

2) ZOO ATTACK

Zeroth Order Optimization Based Attack (ZOO) uses the
finite difference method to approximate the gradients of the
loss with respect to the input. The objective function is
the same as that of C&W attack but using coordinate descent
with estimated gradient:

of [+ he)—fCx— hei)

0x; 2h ’
where & is a small constant, e; is a standard basis vector
with a single nonzero entry with value 1 as the i-th element,
and i ranges from 1 to the input dimension. That is, ZOO
is another variant of C&W but with estimated gradient and
coordinate descent.

From Fig. 2, we can see that ZOO’s perturbations are
made of a few bright pixels, which is expected as it uses
coordinate descent to optimize each coordinate iteratively.
Unlike gradient descent, that updates all coordinates at
once, coordinate descent updates the coordinates by mini-
batch. The nature of coordinate descent can lead to ZOO’s

©))
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perturbation pattern. To show the effect of coordinate descent
on perturbation patterns, we compare ZOO with the estimated
gradient C&W. The difference is the optimization method:
Z00 uses coordinate descent while estimated-gradient C&W
uses gradient descent, but both methods need to estimate the
gradient. A VGG16-based binary classifier achieves 97.62%
accuracy in classifying the adversarial examples generated
by the two methods, implying that different optimization
methods will result in different perturbation patterns. Fig. 7
shows the adversarial examples and amplified perturbations
of ZOO and estimated-gradient C&W. More examples are
available in Appendix B. Compared to the estimated-gradient
C&W, ZOO has more spread perturbations because of
the optimization method. In Appendix IV-Al, we verified
that the estimated gradient makes the perturbations larger
and less accurate by comparing estimated-gradient C&W
with the original C&W. This also helps explain why the
perturbations of ZOO are so prominent and scattered. There-
fore, coordinate descent and the estimated gradient together
lead to ZOO’s prominent scattered pixel-level perturbation
pattern.

3) BOUNDARY ATTACK

Boundary attack starts with a random adversarial point from
a different class, then seeks to minimize the perturbations
by randomly walking on the boundary of two classes while
remaining adversarial. Compared to C&W, the Boundary
attack does not start from the original image and has no
access to the gradient information. From Fig. 2, we noticed
that the Boundary attack’s perturbations distribute over the
entire image compared to C&W and ZOO. In fact, we verified
in Section IV-Al that starting from an adversarial point
instead of the original image will spread the perturbations,
and the gradient information is the key to an accurate attack
on the object. This explanation applies to the perturbation
patterns of Boundary attacks as well. Fig. 8 shows adversarial
examples and perturbations of C& W, random-start C&W, and
Boundary. Compared to C&W, the other two attacks show
noisy and spread perturbations, even though random-start
C&W has most perturbations focused on the frog area. More
examples are available in Appendix C.

Besides, unlike random-start C&W, Boundary’s updating
procedure relies on a random walk instead of gradients, which
draws random perturbation from a proposal distribution at
each iteration. Hence, Boundary’s perturbations are more
blurry than the random-start C&W. A VGG16-based three-
class model achieves 88.12% accuracy in classifying the three
attacks, indicating that the differences are obvious and easy
to detect. Therefore, both random adversarial start and lack
of gradient information contribute to Boundary’s specific
perturbation patterns.

B. L, ATTACKS

Lo, attacks in different attack families show different
perturbation patterns as well. In this section, we study
the Lo,-norm version of PGD (gradient-based), Square
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FIGURE 8. A frog image is attacked by C&W, random-start C&W and
Boundary in turn. From left to right, the perturbations are getting noisier,
and the frog outline is blurring. It indicates both random start and

random walk iteration without gradient information contribute to
Boundary’s noisy perturbations.

(score-based), and HopSkipJump (decision-based). In our
experiments, perturbations are bounded by 0.03. Fig. 3
shows adversarial examples and perturbation patterns of
PGD, Square, and HopSkipJump (HSJ). The perturbations
of Square consist of vertical strips covered by square-
shaped regions. Both PGD and HSJ have clutter perturbation
patterns, but the perturbations of HSJ are darker. In the
following sections, we discuss the characteristics of Square
first and then compare PGD and HSJ.

1) SQUARE ATTACK

The Square attack is score-based, but unlike other score-
based attacks, such as ZOO or NES, it does not estimate
the gradients when generating adversarial examples. Instead,
it adopts an iterative randomized search scheme: at each
iteration, a local square update is chosen at random locations
and projected to the input space, then this update is added
to the current iteration if the objective function improves.
This explains the square-shaped regions in the perturbation
pattern. As for initialization, Square uses vertical stripes of
width 1, where the color of each stripe is randomly and
uniformly sampled. In some cases, it takes many iterations
to generate a successful adversarial example, so the stripes
are nearly covered by squares.

2) PGD AND HOPSKIPJUMP ATTACK

Projected-Gradient Descent Attack (PGD) crafts adversarial
examples by solving the constraint optimization problem
iteratively with projected gradient descent, widely used with
Lo norm. It can be formulated as

*

x* = argmax L(0,x,y), 3)

le—x*[loo <€
where L is the loss function used to train the victim model,
0 is a fixed model parameter, and (x, y) is the input pair of
the original image x and the corresponding label y. It uses
a multi-step iteration scheme: at each iteration, take a small
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FIGURE 9. Histogram of perturbation values of PGD and HSJ. PGD has a
bar-plot-like perturbation distribution because it uses a fixed step size to
update, while HSJ has a normal-like perturbation distribution.
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FIGURE 10. Histogram of In-box significant perturbation proportion of
PGD and HSJ. HSJ's distribution is more left-skewed than PGD, indicating
it has more significant perturbations in the object area.

step o according to the sign of the gradient and clip the result
to the e-ball of the original input:

¥ = {x' +a - sign (VeL(0.x",y)) . x0}. (4

HopSkipJump attack finds optimal adversarial examples by
iterative procedure and gradient estimate. Like Boundary,
it starts from an adversarial point of a different class. For
each iteration, it first moves towards the boundary of the
two classes (true class vs. a wrong class) through binary
search, then updates the step size along the estimated gradient
direction through geometric progression until perturbation is
successful, and lastly projects the perturbed sample back to
the boundary again.

Though PGD and HSJ belong to different attack families,
both have cluttered perturbations, except that the pertur-
bations of HSJ are dimmer due to smaller perturbations.
Though both methods are Lo,-norm based and bounded
by 0.03, HSJ has perturbations of different scales ranging
from —0.03 to 0.03, while PGD has more extremely per-
turbed pixels with a perturbation value of 0.03. From Fig. 9,
we can see that the histograms of the perturbations of
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PGD and HSJ are very different. The histogram of PGD
perturbations is like a bar plot because it updates depending
on the sign of the gradients with a fixed step-size «,
which explains the discrete bars in the distribution of PGD’s
perturbations. While HSJ does not use a fixed step size to
update, it does not have such a pattern. We also test if the
perturbations of PGD and HSJ focus on the object area.
The same bounding box method in Section IV-Al is used
to calculate the proportion of significant perturbations inside
the box for both attacks. A significant perturbation is defined
as a perturbation whose absolute value is larger than the
90% quantile. In Fig. 10, we can see the in-box significant
perturbation proportion histogram. HSJ’s distribution is more
left-skewed than PGD’s; the average in-box significant
perturbation proportions of PGD and HSJ are 50.37%
and 60.38%, respectively. Therefore, even though PGD has
access to the true gradient information, HSJ has more
significant perturbations in the object area.

V. CONCLUSION

Our findings demonstrate attack methods from different
attack families (gradient-based, score-based, decision-based)
possess different characteristics. Given adversarial examples,
the machine can learn such characteristics to identify which
attack family they belong to. Further studies show that even
attacks from the same family can be different. We system-
atically study the properties of the perturbation patterns of
different attacks and explore where their differences come
from. We hope that our work can shed light on a deeper
understanding of adversarial attacks and help with the reverse
engineering of adversarial attacks.

APPENDIX

This supplementary material provides more illustrative
examples and details of those classification experiments.
As mentioned in Section IV, Fig. 11 provides extra adver-
sarial examples and corresponding perturbation patterns for
C&W, ZOO, and Boundary, and Fig. 12 provides extra
adversarial examples and corresponding perturbation patterns
for PGD, Square, and HopSkipJump.

APPENDIX A
SUPPLEMENTARY EXAMPLES AND EXPERIMENT
IN SECTION IV-A1
In Section IV-Al, we proposed that the plausible reasons
for C&W attacking the main object are true gradients
and starting the attack process from the original image.
To verify the idea, we generate adversarial images based
on two variants of C&W: the estimated-gradient C&W uses
estimated gradients from NES instead of the true gradients,
and random-start C&W generates adversarial images starting
from a random adversarial image instead of the original
image. More examples are displayed in Fig. 13.

Select those images that have been successfully attacked
by all three attacks and split them into training and test sets
of size 1764 and 756, respectively. Train a VGG16-based
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(d) Fro (e) Alrplane (f) Truck

FIGURE 11. Visualization examples for C&W, Z0O, and Boundary are displayed in each subfigure, sampled from CIFAR10. From left to right, the
first row shows the adversarial image generated by C&W, Z0O, and Boundary, and the second row shows corresponding amplified
perturbations. Though adversarial examples are indistinguishable, perturbations show different patterns: C&W'’s perturbations focus on the
main object; ZOO introduces scattered bright per-pixel perturbations; Boundary’s perturbations are more uniform across the image.

A
i

(a) Horse

-(d) Airplane (e) Ship (f) Automobile

FIGURE 12. Visualization examples for PGD, Square, and HopSkipJump are displayed in each subfigure, sampled from the CIFAR10 data set.
From left to right, the first row shows the adversarial image generated by PGD, Square, and HopSkipJump, and the second row shows
corresponding amplified perturbations. PGD and HSJ have cluttered perturbation patterns, but HSJ is darker due to smaller perturbations.
Square’s perturbations consist of vertical strips covered by square-shaped regions, though vertical strips may not be obvious since it’s covered
by too many squares.

classifier to evaluate whether there’s a difference among APPENDIX B

them. Accuracy reaches 96.03%. Table 5 records the SUPPLEMENTARY EXAMPLES AND EXPERIMENT
confusion matrix of this classification task; we can see that IN SECTION IV-A2

both variants can be easily distinguished from C&W. This Z0O0 is another variant of C&W with estimated gradients
result further explains that the true gradients and original start and coordinate descent. In Section IV-A2, to evaluate
affect C&W'’s performance. the optimization method’s effect on perturbation patterns,
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FIGURE 13. Each subfigure displays adversarial images and perturbations of C&W, estimated-gradient C&W, random-start C&W from left to
right, sampled from CIFAR10 dataset.

FIGURE 14. Additional visualization examples for ZOO and estimated-gradient C&W are displayed in each subfigure from left to right, sampled
from the CIFAR10 dataset.

TABLE 5. Confusion Matrix for C&W, estimated-gradient C&W and

TABLE 6. Confusion matrix for zoo and estimated-gradient C&W.
random-start C&W.

Predicted Predicted

redicte - -

C&W  estimated-gradient C&W  random-start C&W —_ 200 estlmated—gradlent C&wW
= C&W 247 0 5 s 700 825 38

£ estimated-gradient C&W 2 249 1 - : . H

3 e CaW » p 230 é estimated-gradient C&W 3 860

we compare ZOO with estimated-gradient C&W; more

examples are displayed in Fig. 14. Table 6 records the confusion matrix of the classification

Select those images that have been successfully attacked result. The two attacks are separated by a highly accurate
by ZOO and estimated-gradient C&W and split them into classifier, which shows an obvious effect when using different
training and test sets of size 2013 and 863, respectively. optimization methods.
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(d) Airplane

FIGURE 15. Additional visualization examples for C&W, random-start C&W, and Boundary are displayed in each subfigure from left to right,

sampled from the CIFAR10 dataset.

TABLE 7. Confusion matrix for C&W, random-start C&W and boundary.

Predicted
C&W  random-start C&W  Boundary
= C&W 477 5 40
‘5 random-start C&W 13 500 19
< Boundary 115 4 403
APPENDIX C

SUPPLEMENTARY EXAMPLES AND EXPERIMENT

IN SECTION IV-A3

Boundary attack starts with a random adversarial image and
uses a random walk for each update. In Section IV-A3,
we study the effect of random start and lack of gradient
information by comparing C&W, random-start C&W, and
Boundary; more examples are displayed in Fig. 15.

Select those images that have been successfully attacked
by all three attacks and split them into training and test sets
of size 3645 and 1566, respectively. Table 7 records the
confusion matrix. The three attacks can be classified by a
high accuracy machine, indicating an obvious pattern among
the attacks. This classification result proves that Boundary’s
blurry perturbations are caused by random start and random
walk without gradient information.
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