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ABSTRACT Deep neural networks have performed remarkably in many areas, including image-related

classification tasks. However, various studies have shown that they are vulnerable to adversarial

examples – images carefully crafted to fool well-trained deep neural networks by introducing imperceptible

perturbations to the original images. To better understand the inherent characteristics of adversarial attacks,

this paper studies the features of three common attack families: gradient-based, score-based, and decision-

based. The primary objective is to recognize distinct types of adversarial examples, as identifying the type

of information possessed by the attacker can aid in developing effective defense strategies. This paper

demonstrates that adversarial images from different attack families can be successfully identified with

a simple model. To further investigate the reason behind the observations, this paper conducts carefully

designed experiments to study the distortion patterns of different attacks. Experimental results on CIFAR10

and Tiny ImageNet validated the differences in distortion patterns between various attack types for both

L2 and L∞ norm.

INDEX TERMS Decision-based attacks, deep neural networks, gradient-based attacks, image classification,

score-based attacks.

I. INTRODUCTION

Well-trained deep neural networks are capable of achiev-

ing outstanding performance in many areas, including

image-related classification tasks [1], [2], [3]. However,

various studies have shown that they may not be fully

reliable and can be fooled by adversarial examples –

images that are carefully crafted to fool such deep neural

networks by introducing imperceptible perturbation to the

original images [4], [5], [6], [7]. This raises serious security

concerns for the AI community. Many works have been

done to study and defend against adversarial attacks [8], [9],

[10], [11]. In particular, adversarial detection methods have

The associate editor coordinating the review of this manuscript and

approving it for publication was Jeon Gwanggil .

been proposed to determine whether an input image is an

adversarial example or not [12], [13], [14], [15], [16], [17].

Moreover, it is helpful for the defender if reverse engineering

can be done to reveal more information about the attacks

based on the detected adversarial examples. For example,

there are three main attack families to perform attacks:

gradient-based, score-based, and decision-based, which rely

on the gradient, predicted score, and predicted label of the

victim model, respectively. Based on the detected adversarial

examples, if the defender can tell what type of attack is

used, the defender will know what information has been

leaked to the attacker. Consequently, the defender can

modify the model accordingly to prevent further attacks.

Some works have been done to study the reverse engi-

neering of adversarial attacks: Pang et al. [18] proposed
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FIGURE 1. An adversarial example generated by Boundary attack:
introducing adversarial perturbations to the horse image causes a
classifier to label it as a cat.

the query of interest (QOI) estimation model to infer the

adversary’s target class by model queries in black-box

settings. Goebel et al. [19] estimated adversarial setup from

image sample for gradient-based attacks FGSM [5] and

PGD [20]. Gong et al. [21] proposed a general formulation

of the reverse engineering of deceptions problem that can

estimate adversarial perturbations and provide the feasibility

of inferring the intention of an adversary.

In this paper, we first demonstrated that, given an

adversarial example, the corresponding attack family can

be accurately identified with a simple model. Once we

had established this, we turned our attention to ana-

lyzing the specific features of each type of attack to

understand the underlying differences between them better.

Section II covers preliminary information presented in the

paper. Section III focuses on our image classifier that

accurately identifies attack families (gradient-based, score-

based, or decision-based). In Section IV, we provide an

extensive analysis of the features associated with each type

of attack.

II. PRELIMINARIES

A. NOTATIONS

We consider an image classifier f (·) as the victim model

of adversarial attacks. The input to the classifier is x0 ∈

[0, 1]w,h,c, a c-channel image sample with width w and

height h. The true label associated with x0 is denoted as y,

and the adversarial example generated from x0 is denoted

as x∗. We denote f (x0) as the predicted score vector and

c(x0) = argmaxi f (x0) as the predicted label, indicating the

ith label has the highest prediction score.

B. ADVERSARIAL EXAMPLES

An adversarial example x
∗ and the original image x0 are

visually indistinguishable, but their predicted labels are

different. That is, D(x0, x
∗) is very small in some distance

metric D, while c(x∗) ̸= c(x0). Taking Fig.1 as an example,

humans will recognize that the two images are of the same

horse. However, the image on the right is generated by adding

imperceptible perturbations to the original image on the left,

which causes a particular classifier to classify it as a cat.

Existing methods use Lp metrics to evaluate the distance

between adversarial and original samples. This paper focuses

on L2 and L∞, themost commonly usedmetrics in adversarial

attacks.

C. DATA SETS AND VICTIM MODELS

We use CIFAR10 [22] image data set with ten different

classes of resolution 32 × 32. Another data set we use

is Tiny Imagenet [23], which has 200 classes, and the

resolution of the images is 64×64. For CIFAR-10, the victim

model is VGG-16 with batch normalization [1], of which

accuracy is 93.34%. For Tiny ImageNet, the victim model

architecture is ResNet18 [3] with 68.64% accuracy.

D. ADVERSARIAL ATTACKS

Different attack methods can be classified into two categories

according to their goals: untargeted and targeted. Untargeted

attacks are successful as long as the adversarial example is

misclassified. Targeted attacks, instead, are successful only

when the adversarial example is classified into a target class.

Take Fig.1 as an example; the untargeted attack is successful

if the right-side image is not classified as a horse, while the

targeted attack is successful only when it is predicted as a cat

if the target class is a cat. In this paper, all experiments are

based on untargeted attacks.

Depending on the information required, existing attack

methods can be divided into three categories: gradient-

based, score-based, and decision-based. The gradient-based

attack is also known as a white-box attack, in which all

information of the victim model is revealed to the attacker so

that the attackers can calculate gradients. Popular gradient-

based attacks are FGSM [5], PGD [20] and C&W [6].

If an attacker only has access to the predicted score of

the victim model, it is a score-based attack, also known as

a soft-label black-box setting. Popular score-based attacks

include ZOO [24], NES [25] and Square [26]. In practical

scenarios, the attacker only has access to the predicted labels

of the model. Attacks under this setting are called decision-

based attacks. Examples of such attacks include those

described in [27] and [28], as well as popular methods like

Boundary [29], Sign-OPT [30] andHopSkipJump (HSJ) [31].

Table 1 lists six representative attacks under different settings

in L2 or L∞ metrics. In this paper, we conduct attack family

classification with these attacks and study their perturbation

patterns. Adversarial images are generated based on ART

package [32].

TABLE 1. Representative attacks of different metrics from different
families under L2 and L∞.

E. PERTURBATION VISUALIZATION

Perturbations are the differences between the adversarial

example and the corresponding original image, showing

how the original image is modified. Since perturbations are

imperceptible, we amplify the perturbation by 100 times for

visualization purposes in this paper.
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III. REVERSE ENGINEERING OF ADVERSARIAL ATTACKS

Most current reverse engineering methods focus on analyzing

specific attack methods. However, this section explores

the potential for identifying attack families associated with

adversarial examples. Successful detection of attack families

(gradient-based, score-based, or decision-based) can be a

useful tool for defenders, as it allows them to understand

better the level of information that has been leaked during

attacks so that defenders can properly assess the potential

impact of that attack family.

When an adversarial attack is launched, it exploits weak-

nesses in the model: gradient-based attacks take advantage

of the model gradients; score-based attacks rely on the

predicted scores of themodel; and decision-based attacks rely

on the predicted labels. This knowledge can help develop

an effective response to the attack. Overall, by identifying

the specific attack families and taking targeted actions to

address the vulnerability exploited by the attack, defenders

can improve model resilience and minimize the damage

caused by attacks.

A. EXPERIMENTS: CLASSIFYING ATTACK FAMILIES

We generate adversarial examples of each attack family and

two metrics (L2 and L∞) using attacks in Table 1 with data

sets and victim models mentioned in Section II.

For the L2 attacks, the perturbation upper bounds are

1.00 and 5.00 on CIFAR10 and Tiny ImageNet, respectively.

The perturbation upper bound is 0.03 for different L∞ attacks

on both CIFAR10 and Tiny ImageNet.

With the generated adversarial examples, we perform

the following experiments: (1) classifying attack families

in L2 metric; (2) classifying attack families in L∞ metric;

and (3) classifying attack families with adversarial examples

of both L2 and L∞ metrics. A classifier with VGG16

architecture is trained for multi-class classification to identify

the attack family based on adversarial examples. The same

architecture is used for both CIFAR10 and Tiny ImageNet in

all the following experiments except in Experiment D, where

the task is six-class classification, and the last layer has six

neurons instead of three.

1) EXPERIMENT A

For L2-norm based attacks, we choose C&W (gradient-

based), ZOO (score-based), and Boundary (decision-based)

as representatives of each attack family. If all three attacks

can successfully fool the victim model by modifying the

same original image under the perturbation bound, we keep

the corresponding adversarial examples and split them into

training and test sets for the attack family classification task.

These adversarial examples are called successful adversarial

examples across three attacks.

2) EXPERIMENT B

For L∞-norm based attacks, we choose PGD (gradient-

based), Square (score-based), and HopSkipJump (decision-

based) as representative attacks. A similar procedure is

applied as in Experiment A to obtain the training and test sets

for the attack family classification task.

3) EXPERIMENT C

Adversarial examples in Experiments A and B are merged

into three classes so that each class contains adversarial

examples generated by attacks from the same attack family

but different normmetrics. Similarly, we only keep successful

adversarial examples across six attacks. Gradient-based

class includes adversarial examples generated by C&W(L2)

and PGD(L∞). Score-based class includes ZOO(L2) and

Square(L∞). Decision-based class includes Boundary(L2)

and HopSkipJump(L∞). The classification task is to do a

three-class classification, identifying the attack family given

an adversarial example.

4) EXPERIMENT D

To investigate if there are not just differences between attack

families but also differences between attack methods, this

experiment uses the same data as in Experiment C but

performs six-class classification to identify specific attacks,

not attack families.

TABLE 2. Accuracy of attack family classification task (Experiments A,
B, C) and attack method classification task (Experiment D) on CIFAR10
and Tiny ImageNet without original images.

The first three rows (Experiments A, B, C) in Table 2 show

the attack family classification accuracies on CIFAR10 and

Tiny ImageNet datasets. The last row (Experiment D) shows

the attack method classification accuracy. The first three

experiments achieve high accuracies on different datasets,

which suggests that attack families modify the image in

different ways and machines can learn the pattern based

on adversarial examples, although adversarial examples are

indistinguishable from the original images to humans. The

testing accuracies are not bad for Experiment D, which

implies that attacks of the same family also have different

patterns.

In many real-world scenarios, whether the input has

been perturbed or not is often unknown to the models.

We incorporate non-perturbed original images into the

classification task to address this concern. The outcomes of

the experiment can be found in Table 3. The experimental

setup remains consistent, with the only variation being the

inclusion of original images as a distinct category in the

input. Except for Experiment A, all experiments stay at a

high accuracy level. Experiment A experiences a decrease in

accuracy due to its utilization of the L2 norm attack, which

considers the cumulative perturbations across all pixels,

leading to smaller discrepancy to original images when a
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certain threshold of the cumulative sum is applied. On the

other hand, the L∞ norm attack focuses on the maximum

perturbed pixel while allowing other pixels to be perturbed as

long as their individual perturbations are below the threshold,

leading to more noticeable perturbation patterns.

TABLE 3. Accuracy of attack family classification task (Experiments A,
B, C) on CIFAR10 and Tiny ImageNet with original images.

B. ROBUSTNESS OF ATTACK FAMILY CLASSIFICATION

This section presents evidence for the robustness of attack

family identification, even when they have varying perturba-

tion levels or involve ensemble attacks.

1) WITH VARIOUS NORM LIMITS

In this section, we demonstrate that attack family types of

adversarial examples can be accurately identified despite

having different perturbation levels. The CIFAR10 dataset

was used for Experiment A and Experiment B to investigate

the effect of different limits on the attack family classification

under L2 and L∞ norms. Experiment A of classifying

L2 attacks from three different attack families achieved

high levels of accuracy across a range of limit values,

including 1.0, 0.8, and 0.6. Similarly, in Experiment B of

classifying L∞ attacks from three different attack families,

high levels of accuracy were achieved across a range of

limit values including 0.03, 0.02, and 0.01, see Table 4.

However, we observed a decrease in accuracy as L2 or L∞

norm limit becomes smaller, which can be attributed to the

limited number of successful adversarial samples across three

attacks under smaller limits.

2) WITH ENSEMBLE ATTACK

Auto attack is an ensemble attack algorithm that includes

four attacks: APGD-CE, APGD-DLR, FAB [33], and Square

Attack, where APGD-CE and APGD-CE are two extensions

of the PGD attack overcoming failures due to suboptimal

step size and problems of the objective function [34]. This

algorithm iterates over the list of attacks until an adversarial

example is successfully generated. Though both gradient and

score information are involved, we consider auto attack as

a gradient-based attack for the purpose of the attack family

classification task. In our evaluation, we classify adversarial

examples of CIFAR10 generated by Auto-attack(gradient-

based), ZOO(Score-based), and Boundary(decision-based)

under L2 norms and achieved an accuracy of 83.40%;

under L∞ norms, we evaluated Auto-attack(gradient-based),

Square(Score-based), HopSkipJump(decision-based), and

accuracy achieved 97.40%. These results demonstrated that

different attack families could be effectively classified even

when the gradient-based attack involves more than just

TABLE 4. Accuracy of attack family classification for various L2 and L∞

limits.

gradient information. Besides, the accuracy of the attack

family classification remains consistent regardless of the

specific attacks involved.

IV. EXPLORING CHARACTERISTICS OF ATTACK FAMILIES

Although adversarial examples from different attack families

appear to be indistinguishable, machines can learn and

classify them with some subtle signatures. One question

arises: What patterns does the classification model acquire

to recognize the attack family and attack method? Since the

differences in adversarial attacks are embedded in the pertur-

bations, we propose to investigate the reasons behind the ease

of identifying attack families by analyzing the perturbation

patterns exhibited in various attacks. Visualization examples

for representative L2 attacks and L∞ attacks are displayed

in Fig. 2 and Fig. 3. More examples are in the Appendix.

A. L2 ATTACKS

Different L2 attacks modify the original images in different

ways, resulting in different perturbation patterns; see Fig. 2,

each subfigure lists adversarial examples from C&W, ZOO,

and Boundary and corresponding amplified perturbations

from left to right. It is obvious that the perturbations of

the three attacks are different. The perturbations of the

C&W attack seem to focus on the location of the object.

ZOO introduces large perturbations for some pixels. The

perturbations of the Boundary attack are relatively smaller

and all over the place. In the following sections, we study

the characteristics of C&W, ZOO, and Boundary and discuss

why they generate perturbations of different patterns.

1) C&W ATTACK

C&W attack is one of the strongest gradient-based attacks to

date. It can perform targeted and untargeted attacks with L2 or

L∞ metric. Although L∞ norm is feasible, L2 norm is widely

used in C&W attacks and can be formulated as the following

regularized optimization problem:

x
∗ = argmin

x∈[0,1]n
{∥x− x0∥

2
2 + cg(x)}. (1)

The first term ∥x− x0∥
2
2 enforces a slight distortion to the

original input x0 and the second term g(x) is a loss function

that measures how successful the attack is. The parameter

c > 0 controls the trade-off between distortion and attack

success.

Compared to the other two attacks, it seems that the

perturbations of C&W concentrate on the object, see Fig. 2.
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FIGURE 2. Visualization examples for C&W, ZOO, and Boundary are displayed in each subfigure, sampled from CIFAR10. From left to right, the
first row shows the adversarial image generated by C&W, ZOO, and Boundary, and the second row shows corresponding amplified perturbations.
Though adversarial examples are indistinguishable, perturbations show different patterns: C&W’s perturbations focus on the main object; ZOO
introduces scattered bright per-pixel perturbations; Boundary’s perturbations are more uniform across the image.

FIGURE 3. Visualization examples for PGD, Square, and HopSkipJump are displayed in each subfigure, sampled from the CIFAR10 data set. From
left to right, the first row shows the adversarial image generated by PGD, Square, and HopSkipJump, and the second row shows corresponding
amplified perturbations. PGD and HSJ have cluttered perturbation patterns, but HSJ is darker due to smaller perturbations. Square’s perturbations
consist of vertical strips covered by square-shaped regions, though vertical strips may not be obvious since too many squares cover them.

FIGURE 4. The proportion of perturbations inside the bounding box for
C&W, ZOO, and Boundary are 96.40%, 69.25%, and 79.51% respectively,
from left to right.

To verify if this observation is true, we draw a bounding

box of the horse in Fig. 2 and compute the proportion

of L2 perturbations inside the box for all three attacks,

see Fig. 4: the proportion of perturbation inside the bounding

box for C&W is 96.40%, while for ZOO and Boundary, the

proportions are 69.25% and 79.51% respectively.

To verify if this pattern is true for most cases, we randomly

sample five images with success across three attacks from

each class of CIFAR10 and draw bounding boxes for

all 50 images per attack to calculate the proportions of

perturbations inside bounding boxes. The proportion is

calculated per sampled image for each attack. Fig. 5 shows the

histograms of in-box perturbation proportion for each attack.

It is evident that C&W has the most left-skewed distribution,

indicating that C&W focuses on perturbing the main object

in the image.

Two reasons might explain why C&W attacks the object:

1) C&W has access to the true gradients; 2) C&W method

starts attacking from the original image. Gradients w.r.t. the

input indicates the important areas in the input image and

usually concentrate on the objects because the victimmodel is
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FIGURE 5. In-box perturbation proportion histograms for C&W, ZOO, and
Boundary. C&W’s distribution is most left-skewed, indicating C&W focuses
on attacking the main object.

FIGURE 6. From left to right, a cat image is attacked by C&W,
estimated-gradient C&W, and random-start C&W. Even though the
perturbations of estimated-gradient C&W and random-start C&W also
roughly focus on the object area, it is not as obvious as in the
perturbations of the original C&W.

trained to do object classification. Therefore, it is expected to

see C&W focus on modifying the object. Besides, the initial

point of the optimization process is the original image, which

excludes the possibility of unnecessary perturbations outside

the object area.

To support the above hypothesis, we compare C&W

with its two variants: estimated-gradient C&W and random-

start C&W. Instead of using true gradients, estimated-

gradient C&W uses gradients estimated by Natural Evolution

Strategy [35], which was also used by Ilyas et al. [25] to

do score-based attack. Random-start C&W starts the attack

processwith a random adversarial point instead of the original

image. The random adversarial point is a random noise image

that is not classified into the class of the original image. The

point is already misclassified but not close to the original

image.

We generate adversarial imageswith the original C&Wand

its two variants, then train a VGG16-based model to classify

the three types of adversarial images. The classification

accuracy reaches 96.03%, indicating that the three types of

FIGURE 7. An automobile image is attacked by ZOO(left) and
estimated-gradient C&W(right). The first row contains adversarial
examples, and the second row contains amplified perturbations. ZOO’s
amplified perturbations are more spread due to coordinate descent.

adversarial attacks are significantly different. Therefore, both

gradients and random start affect the patterns of the C&W

perturbations.

Fig. 6 lists the adversarial examples and perturbations

of C&W, estimated-gradient C&W, and random-start C&W

from left to right. The perturbations of estimated-gradient

C&W still roughly focus on the object area but are less

accurate than those of the original C&W. Also, the overall

perturbations are larger: with estimated gradients, it cannot

converge to the same level as C&W, resulting in a larger

distortion level. With a random adversarial start, C&W gets

noisier in the background, even though many perturbations

are in the object area. In conclusion, C&W’s perturbations

focusing on the object area come from two factors: starting

from original images and accurate gradients. See more

examples in Appendix A.

2) ZOO ATTACK

Zeroth Order Optimization Based Attack (ZOO) uses the

finite difference method to approximate the gradients of the

loss with respect to the input. The objective function is

the same as that of C&W attack but using coordinate descent

with estimated gradient:

∂f

∂xi
≈
f (x+ hei) − f (x− hei)

2h
, (2)

where h is a small constant, ei is a standard basis vector

with a single nonzero entry with value 1 as the i-th element,

and i ranges from 1 to the input dimension. That is, ZOO

is another variant of C&W but with estimated gradient and

coordinate descent.

From Fig. 2, we can see that ZOO’s perturbations are

made of a few bright pixels, which is expected as it uses

coordinate descent to optimize each coordinate iteratively.

Unlike gradient descent, that updates all coordinates at

once, coordinate descent updates the coordinates by mini-

batch. The nature of coordinate descent can lead to ZOO’s
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perturbation pattern. To show the effect of coordinate descent

on perturbation patterns, we compare ZOOwith the estimated

gradient C&W. The difference is the optimization method:

ZOO uses coordinate descent while estimated-gradient C&W

uses gradient descent, but both methods need to estimate the

gradient. A VGG16-based binary classifier achieves 97.62%

accuracy in classifying the adversarial examples generated

by the two methods, implying that different optimization

methods will result in different perturbation patterns. Fig. 7

shows the adversarial examples and amplified perturbations

of ZOO and estimated-gradient C&W. More examples are

available in Appendix B. Compared to the estimated-gradient

C&W, ZOO has more spread perturbations because of

the optimization method. In Appendix IV-A1, we verified

that the estimated gradient makes the perturbations larger

and less accurate by comparing estimated-gradient C&W

with the original C&W. This also helps explain why the

perturbations of ZOO are so prominent and scattered. There-

fore, coordinate descent and the estimated gradient together

lead to ZOO’s prominent scattered pixel-level perturbation

pattern.

3) BOUNDARY ATTACK

Boundary attack starts with a random adversarial point from

a different class, then seeks to minimize the perturbations

by randomly walking on the boundary of two classes while

remaining adversarial. Compared to C&W, the Boundary

attack does not start from the original image and has no

access to the gradient information. From Fig. 2, we noticed

that the Boundary attack’s perturbations distribute over the

entire image compared to C&Wand ZOO. In fact, we verified

in Section IV-A1 that starting from an adversarial point

instead of the original image will spread the perturbations,

and the gradient information is the key to an accurate attack

on the object. This explanation applies to the perturbation

patterns of Boundary attacks as well. Fig. 8 shows adversarial

examples and perturbations of C&W, random-start C&W, and

Boundary. Compared to C&W, the other two attacks show

noisy and spread perturbations, even though random-start

C&W has most perturbations focused on the frog area. More

examples are available in Appendix C.

Besides, unlike random-start C&W, Boundary’s updating

procedure relies on a randomwalk instead of gradients, which

draws random perturbation from a proposal distribution at

each iteration. Hence, Boundary’s perturbations are more

blurry than the random-start C&W. A VGG16-based three-

class model achieves 88.12% accuracy in classifying the three

attacks, indicating that the differences are obvious and easy

to detect. Therefore, both random adversarial start and lack

of gradient information contribute to Boundary’s specific

perturbation patterns.

B. L∞ ATTACKS

L∞ attacks in different attack families show different

perturbation patterns as well. In this section, we study

the L∞-norm version of PGD (gradient-based), Square

FIGURE 8. A frog image is attacked by C&W, random-start C&W and
Boundary in turn. From left to right, the perturbations are getting noisier,
and the frog outline is blurring. It indicates both random start and
random walk iteration without gradient information contribute to
Boundary’s noisy perturbations.

(score-based), and HopSkipJump (decision-based). In our

experiments, perturbations are bounded by 0.03. Fig. 3

shows adversarial examples and perturbation patterns of

PGD, Square, and HopSkipJump (HSJ). The perturbations

of Square consist of vertical strips covered by square-

shaped regions. Both PGD and HSJ have clutter perturbation

patterns, but the perturbations of HSJ are darker. In the

following sections, we discuss the characteristics of Square

first and then compare PGD and HSJ.

1) SQUARE ATTACK

The Square attack is score-based, but unlike other score-

based attacks, such as ZOO or NES, it does not estimate

the gradients when generating adversarial examples. Instead,

it adopts an iterative randomized search scheme: at each

iteration, a local square update is chosen at random locations

and projected to the input space, then this update is added

to the current iteration if the objective function improves.

This explains the square-shaped regions in the perturbation

pattern. As for initialization, Square uses vertical stripes of

width 1, where the color of each stripe is randomly and

uniformly sampled. In some cases, it takes many iterations

to generate a successful adversarial example, so the stripes

are nearly covered by squares.

2) PGD AND HOPSKIPJUMP ATTACK

Projected-Gradient Descent Attack (PGD) crafts adversarial

examples by solving the constraint optimization problem

iteratively with projected gradient descent, widely used with

L∞ norm. It can be formulated as

x
∗ = argmax

∥x−x∗∥∞<ϵ

L(θ, x, y), (3)

where L is the loss function used to train the victim model,

θ is a fixed model parameter, and (x, y) is the input pair of

the original image x and the corresponding label y. It uses

a multi-step iteration scheme: at each iteration, take a small
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FIGURE 9. Histogram of perturbation values of PGD and HSJ. PGD has a
bar-plot-like perturbation distribution because it uses a fixed step size to
update, while HSJ has a normal-like perturbation distribution.

FIGURE 10. Histogram of In-box significant perturbation proportion of
PGD and HSJ. HSJ’s distribution is more left-skewed than PGD, indicating
it has more significant perturbations in the object area.

step α according to the sign of the gradient and clip the result

to the ϵ-ball of the original input:

x
t+1 = 5ϵ{x

t + α · sign
(

∇xL(θ, x
t
, y)

)

, x0}. (4)

HopSkipJump attack finds optimal adversarial examples by

iterative procedure and gradient estimate. Like Boundary,

it starts from an adversarial point of a different class. For

each iteration, it first moves towards the boundary of the

two classes (true class vs. a wrong class) through binary

search, then updates the step size along the estimated gradient

direction through geometric progression until perturbation is

successful, and lastly projects the perturbed sample back to

the boundary again.

Though PGD and HSJ belong to different attack families,

both have cluttered perturbations, except that the pertur-

bations of HSJ are dimmer due to smaller perturbations.

Though both methods are L∞-norm based and bounded

by 0.03, HSJ has perturbations of different scales ranging

from −0.03 to 0.03, while PGD has more extremely per-

turbed pixels with a perturbation value of 0.03. From Fig. 9,

we can see that the histograms of the perturbations of

PGD and HSJ are very different. The histogram of PGD

perturbations is like a bar plot because it updates depending

on the sign of the gradients with a fixed step-size α,

which explains the discrete bars in the distribution of PGD’s

perturbations. While HSJ does not use a fixed step size to

update, it does not have such a pattern. We also test if the

perturbations of PGD and HSJ focus on the object area.

The same bounding box method in Section IV-A1 is used

to calculate the proportion of significant perturbations inside

the box for both attacks. A significant perturbation is defined

as a perturbation whose absolute value is larger than the

90% quantile. In Fig. 10, we can see the in-box significant

perturbation proportion histogram. HSJ’s distribution is more

left-skewed than PGD’s; the average in-box significant

perturbation proportions of PGD and HSJ are 50.37%

and 60.38%, respectively. Therefore, even though PGD has

access to the true gradient information, HSJ has more

significant perturbations in the object area.

V. CONCLUSION

Our findings demonstrate attack methods from different

attack families (gradient-based, score-based, decision-based)

possess different characteristics. Given adversarial examples,

the machine can learn such characteristics to identify which

attack family they belong to. Further studies show that even

attacks from the same family can be different. We system-

atically study the properties of the perturbation patterns of

different attacks and explore where their differences come

from. We hope that our work can shed light on a deeper

understanding of adversarial attacks and help with the reverse

engineering of adversarial attacks.

APPENDIX

This supplementary material provides more illustrative

examples and details of those classification experiments.

As mentioned in Section IV, Fig. 11 provides extra adver-

sarial examples and corresponding perturbation patterns for

C&W, ZOO, and Boundary, and Fig. 12 provides extra

adversarial examples and corresponding perturbation patterns

for PGD, Square, and HopSkipJump.

APPENDIX A

SUPPLEMENTARY EXAMPLES AND EXPERIMENT

IN SECTION IV-A1

In Section IV-A1, we proposed that the plausible reasons

for C&W attacking the main object are true gradients

and starting the attack process from the original image.

To verify the idea, we generate adversarial images based

on two variants of C&W: the estimated-gradient C&W uses

estimated gradients from NES instead of the true gradients,

and random-start C&W generates adversarial images starting

from a random adversarial image instead of the original

image. More examples are displayed in Fig. 13.

Select those images that have been successfully attacked

by all three attacks and split them into training and test sets

of size 1764 and 756, respectively. Train a VGG16-based
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FIGURE 11. Visualization examples for C&W, ZOO, and Boundary are displayed in each subfigure, sampled from CIFAR10. From left to right, the
first row shows the adversarial image generated by C&W, ZOO, and Boundary, and the second row shows corresponding amplified
perturbations. Though adversarial examples are indistinguishable, perturbations show different patterns: C&W’s perturbations focus on the
main object; ZOO introduces scattered bright per-pixel perturbations; Boundary’s perturbations are more uniform across the image.

FIGURE 12. Visualization examples for PGD, Square, and HopSkipJump are displayed in each subfigure, sampled from the CIFAR10 data set.
From left to right, the first row shows the adversarial image generated by PGD, Square, and HopSkipJump, and the second row shows
corresponding amplified perturbations. PGD and HSJ have cluttered perturbation patterns, but HSJ is darker due to smaller perturbations.
Square’s perturbations consist of vertical strips covered by square-shaped regions, though vertical strips may not be obvious since it’s covered
by too many squares.

classifier to evaluate whether there’s a difference among

them. Accuracy reaches 96.03%. Table 5 records the

confusion matrix of this classification task; we can see that

both variants can be easily distinguished from C&W. This

result further explains that the true gradients and original start

affect C&W’s performance.

APPENDIX B

SUPPLEMENTARY EXAMPLES AND EXPERIMENT

IN SECTION IV-A2

ZOO is another variant of C&W with estimated gradients

and coordinate descent. In Section IV-A2, to evaluate

the optimization method’s effect on perturbation patterns,
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FIGURE 13. Each subfigure displays adversarial images and perturbations of C&W, estimated-gradient C&W, random-start C&W from left to
right, sampled from CIFAR10 dataset.

FIGURE 14. Additional visualization examples for ZOO and estimated-gradient C&W are displayed in each subfigure from left to right, sampled
from the CIFAR10 dataset.

TABLE 5. Confusion Matrix for C&W, estimated-gradient C&W and
random-start C&W.

we compare ZOO with estimated-gradient C&W; more

examples are displayed in Fig. 14.

Select those images that have been successfully attacked

by ZOO and estimated-gradient C&W and split them into

training and test sets of size 2013 and 863, respectively.

TABLE 6. Confusion matrix for zoo and estimated-gradient C&W.

Table 6 records the confusion matrix of the classification

result. The two attacks are separated by a highly accurate

classifier, which shows an obvious effect when using different

optimization methods.
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FIGURE 15. Additional visualization examples for C&W, random-start C&W, and Boundary are displayed in each subfigure from left to right,
sampled from the CIFAR10 dataset.

TABLE 7. Confusion matrix for C&W, random-start C&W and boundary.

APPENDIX C

SUPPLEMENTARY EXAMPLES AND EXPERIMENT

IN SECTION IV-A3

Boundary attack starts with a random adversarial image and

uses a random walk for each update. In Section IV-A3,

we study the effect of random start and lack of gradient

information by comparing C&W, random-start C&W, and

Boundary; more examples are displayed in Fig. 15.

Select those images that have been successfully attacked

by all three attacks and split them into training and test sets

of size 3645 and 1566, respectively. Table 7 records the

confusion matrix. The three attacks can be classified by a

high accuracy machine, indicating an obvious pattern among

the attacks. This classification result proves that Boundary’s

blurry perturbations are caused by random start and random

walk without gradient information.
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