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ABSTRACT

Drones, embodying the spirit of innovation, have become dynamic

game-changers, rede�ning industries through their unparalleled

adaptability and budget-friendly solutions. However, compromised

drone sensors pose serious safety risks. Therefore, multiple studies

have been dedicated to analyzing various drone sensor attacks and

developing e�cient anomaly detectors.

In this paper, we utilize GANs to design a novel model named

DS-GAN for drone sensor data falsi�cation that can be used for

false data injection (FDI) attacks. Furthermore, considering the

presence of multiple sensors on a drone, we analyze both their

temporal and spatial relationships to develop an ensemble DSD-

GAN (EDSD-GAN), designed for executing more sophisticated yet

subtle attacks. We evaluate the proposed FDI attacks against two

popular machine learning (ML) architectures used for drone sensor

anomaly detection. Our extensive experiments demonstrate that

the proposed attack is highly e�ective for various drone sensors

with an average success rate above 80%. Moreover, we demonstrate

that using EDSD-GAN signi�cantly improves the attack success

rate by over 50% even for the most complex cases.

CCS CONCEPTS

• Computer systems organization → Sensors and actuators; •

Security and privacy→ Intrusion detection systems; •Computing

methodologies→Machine learning.
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1 INTRODUCTION

Drones, or Unmanned Aerial Vehicles (UAVs), have transformed

industries like surveillance, agriculture, and disaster management
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due to their cost-e�ectiveness. However, compromised sensors can

lead to malfunctions and pose safety risks [2, 5]. Studying threats

against drone sensors is crucial for developing e�ective security

systems.

Extensive research has focused on anomaly detection for drone

sensors. Earlier works utilized Extended Kalman Filter (EKF) as the

primary intrusion detection system (IDS) [7, 9]. Recent advance-

ments in machine learning (ML) led to more complex systems,

which can be categorized based on their operations, such as learn-

ing benign behavior [11, 15, 19] or distinguishing between benign

and speci�c anomalies like spoo�ng or jamming [6]. The common-

ality is their emphasis on inertial measurement unit (IMU) drone

sensors for e�ective anomaly detection.

While there is a lot of research devoted to drone sensor anomaly

detectors, the existing methods are mostly based on training with

limited data or data speci�c to a given attack. Traditional attacks

involve manual falsi�cation, such as GPS spoo�ng and jamming

using Software De�ned Radio (SDR) devices [2, 3]. Furthermore,

with false data injection (FDI) attacks, an attacker may directly

inject false readings into sensors [4]. However, the advancement of

generative adversarial networks (GANs) introduces possibilities for

more sophisticated falsi�ed sensor data through false data injection

(FDI) attacks.

In this paper, we introduce DSD-GAN, a GAN architecture for

the falsi�cation of drone sensor data. Our model enables the gen-

eration of high-quality fake data for individual accelerometer and

gyroscope IMU sensor readings, facilitating the use of GANs in

FDI attacks against drone IMU sensors. To address spatial relation-

ship challenges, we design an ensemble of DSD-GANs, EDSD-GAN,

combining individual sensor models and a combined meta-model.

EDSD-GAN facilitates falsifying data based on multi-sensor rela-

tionships, making it challenging for traditional detectors to �ag.

We evaluate our GAN-based FDI attack against two state-of-the-

art anomaly detectors representing the most commonly used ML

architectures, convolutional neural networks (CNNs), and autoen-

coders. We conduct an extensive set of experiments to investigate

the relationship between the attack success (i.e., the rate of success

at deceiving the classi�er) and the number of sensors a�ected by the

attack. Furthermore, we compare the performance of multi-sensor

FDI attacks executed using individual DSD-GANs and EDSD-GAN.

Our results demonstrate the e�ectiveness of both proposed attacks

in deceiving existing drone sensor anomaly detectors, with an attack

success rate exceeding 80% for given drone sensors. Notably, using

EDSD-GAN improves the attack success rate by at least twofold

compared to DSD-GAN.
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The paper is organized as follows: Section 2 reviews related work,

Section 3 outlines the system and threat model, Section 4 presents

the attackmethodology, and Section 5 evaluates the proposed attack.

Finally, Section 6 concludes the paper.

2 RELATED WORK

In this section, we discuss the relevant work on drone sensor at-

tacks, sensor-based anomaly detectors for drones, and generative

adversarial networks (GANs) used for adversarial ML.

Drone Sensor Attacks: The majority of drones come equipped

with a diverse array of sensors to ensure their proper functioning.

These sensor readings play a crucial role in providing essential

information about the drone’s state and position to its Ground

Control Station (GCS), in�uencing control decisions. Given the

pivotal role of sensors in drone operations, attackers have devised

various types of attacks directly impacting these sensors, including

GPS spoo�ng, jamming, and FDI.

GPS spoo�ng attacks involve the falsi�cation of GPS signals with

the intent of disrupting a drone’s �ight by manipulating its sensors.

In this attack, an adversary injects false GPS signals into the shared

medium, leading the drone to perceive them as legitimate, thereby

compromising the mission’s success. Notably, in [2], the authors

executed a GPS spoo�ng attack against a 3DR Solo drone using SDR,

resulting in complete drone hijacking. Similarly, Saputo et al. [3]

employed an SDR device to demonstrate the e�ectiveness of a GPS

spoo�ng attack against a DJI Phantom 3 drone. Jamming attacks,

on the other hand, entail an attacker compromising the shared

communication medium. Unlike spoo�ng attacks, the primary aim

of jamming attacks is to disrupt communication between the drone

and its GCS and forcibly manipulate the drone’s �ight mode. In one

instance, authors in [13] implemented uninterrupted radio jamming

to disrupt the operations of a rogue drone. FDI attacks are more

intrusive and targeted compared to spoo�ng and jamming attacks.

They involve an adversary injecting false sensor readings directly

into the drone system. In [4], a Kalman Filter-based FDI attack

was developed to manipulate drone position control. Chen et al.

[5] employed a jamming approach to inject false magnetometer

readings into a victim drone, successfully causing the drone to crash

or alter its trajectory.

Di�erently to previous approaches that manually falsify sensor

readings for drone attacks, our work utilizes Generative Adversarial

Networks (GANs) to automate the sensor data generation process.

Furthermore, we generate data for di�erent sensors concurrently

to preserve their original spatial relationships.

Drone Anomaly Detectors: Given the multitude of attacks that

can compromise drone operations through its sensors, substantial

e�ort has been dedicated to designing e�ective methods for sen-

sor anomaly detection. In [11], the authors proposed ML-based

method to detect drone sensor spoo�ng. They employed a multi-

layer perceptron (MLP) trained to predict the next position of the

aircraft. This system identi�es anomalies when the prediction error

exceeds 1 meter, with a particular focus on inertial measurement

units (IMU) sensors. In [19], researchers developed a one-class de-

tection technique for drone sensor anomalies. Their evaluation of

various ML-based classi�ers highlighted that the autoencoder neu-

ral network achieved the highest average F1 score of 94.81%, tested

across various drone models. Galvan et al. [6] devised a Convolu-

tional Neural Network (CNN) model to identify anomalous sensor

faults by analyzing IMU sensor readings. The work presented in

[15] proposed the utilization of a modi�ed Long-Short Term Mem-

ory (LSTM) model for anomaly detection using drone sensor data

and state information. Trained on benign data, this model learns

to predict the future state of the drone system and sensors based

on historical data. When tested against various manually injected

faults across IMU sensors, the system achieved an average F1 score

exceeding 95%.

Our research reveals that various anomaly detectors are vulnera-

ble to GAN-based FDI attacks. Additionally, we identify that GAN-

generated sensor data can be leveraged to analyze ML classi�ers

and extract valuable insights into their decision-making processes.

GANs and Adversarial ML: Introduced in 2014 [8], generative ad-

versarial networks (GANs) are often employed to generate realistic

fake data. GANs are frequently used to create deep fakes and can

be utilized to generate synthetic data of various types, either from

scratch or with additional modi�cations, leading to an increase

in the number of attacks using GANs. In [17], the authors used

GANs to evade machine learning-based IDS for network tra�c.

They subsequently demonstrated that GAN-generated data can

also be used to improve IDS performance by training on adversarial

perturbations. Authors in [12] developed a bi-objective GAN to mis-

lead Android malware detection systems. Shi et al. [16] designed

a spoo�ng attack based on GANs, successfully generating high-

quality synthetic signals for conducting a spoo�ng attack with a

76.2% success probability. In [10], GANs were employed to deceive

radio frequency (RF)-based authentication mechanisms, achieving

over a 90% success rate when attempting to fool the authentication

devices.

In contrast to the aforementioned approaches, we propose the

use of an ensemble of GANs to generate high-quality sensor data

that captures their temporal and spatial correlations. Additionally,

our ensemble includes a state discriminator to ensure that the falsi-

�ed data accurately re�ects a speci�c drone’s state.

3 SYSTEM MODEL AND ADVERSARY MODEL

In this section, we present the control system model and threat

model considered in this paper.

3.1 Control System Model

The control system model is composed of a drone and a benign

GCS, engaging in communication with each other, as depicted in

Figure 1.

Sensors

Flight Controller

Drone GCS

Offboard
Anomaly Detector

Command
Controller

Actuators (i.e.,
motors, rotors)

No anomaly detected
Onboard

Anomaly Detector

No anomaly detected Sensor Data

Control
Commands

Figure 1: Control System Model.
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We consider two key modules of the drone as follows:

Drone Sensors: A typical drone is equipped with an array of sen-

sors, including GPS, accelerometers, tilt sensors, and an inertial

measurement unit (IMU). These sensors play a vital role in deter-

mining the drone’s position, orientation, and component status,

which are crucial for e�ective aircraft control.

Flight Controller (FC): In this work, the Flight Controller (FC)

collects sensor data from the aircraft, serving two primary functions:

Transmitting sensor data to the GCS and directly triggering actions

of actuators based on received sensor readings. The GCS station,

upon receiving sensor data, sends control messages to the FC, which

in turn activates the actuators.

The GCS station comprises two primary components:

Sensor Anomaly Detector: The proposed system can incorpo-

rate up to two anomaly detectors, installed on-board and o�-board.

These detectors serve as a protective mechanism designed to iden-

tify abnormal drone behaviors based on locally received or FC-

transmitted sensor data. The anomaly detector is equipped with

a pre-trained ML algorithm specialized in detecting spoo�ng and

jamming attacks on the drone. Furthermore, the model continues

to learn from sensor readings in real-time during drone �ight.

Command Controller: Once the anomaly detector validates the

sensor data as benign, the Command Controller takes action. It

utilizes this veri�ed data to formulate and transmit control messages

to the drone, specifying the desired trajectory for the aircraft.

3.2 Threat Model

In this work, we consider an adversary with the capability to both

observe the actual sensor readings of the drone and transmit modi-

�ed sensor data to the GCS.

During the observation phase, the adversary collects benign

sensor data, which serves as a reference for creating fabricated

data. Alternatively, the adversary can obtain benign drone sensor

data from open-source datasets or by acquiring and �ying the same

model of drone.

Subsequently, the falsi�ed data can be transmitted by either 1)

modifying the sensor data as it exits the drone using a Man in

the Middle (MiTM) attack. This may involve blocking the drone’s

tra�c, impersonating it, and sending altered sensor readings; or 2)

manipulating the sensors of the drone directly, such as spoo�ng

GPS sensor data. Additionally, 3) completely compromising the

drone, potentially through malware or modi�ed �rmware, can also

be used as a means to transmit falsi�ed data. Figure 2 provides a

visual representation of all these scenarios.

First, an adversary can adopt a MiTM approach, positioning be-

tween the drone and its GCS. Initially, the adversary intercepts and

blocks communication signals carrying onboard sensor data and

system measurements from the drone to the GCS. Subsequently,

the adversary sends custom/modi�ed sensor data to the GCS, por-

traying a false reality of the drone’s state. This manipulation leads

the GCS to issue control commands that could potentially trigger

unpredictable and hazardous behaviors in the drone.

Secondly, an adversary can transmit malicious signals to the

drone through a GPS spoo�ng attack to modify its sensors’ data.

Thus, falsi�ed sensor GPS data is sent to the drone to disrupt its

normal operations.

Real Data Falsified Data

Regular control commands

Attacker injects False Data to mislead
GCS into sending wrong command

Falsified Data

Regular commands

Attacker Corrupts Drone Sensor and devices

Falsified Data Mimicking Normal Operations

Regular control commands

Attacker transmits False Data to hide
the hijacked drone from GCS 

Falsified Data

Figure 2: Threat Model.

A third technique consists of injecting sensor data directly into

the drone to either 1) conceal the anomalous behavior of a drone

that has already been hijacked or 2) trick the GCS into sending the

control commands based on the incorrect data. In these scenarios,

an adversary is capable of directly injecting falsi�ed sensor data

onto the drone FC. For cases when the drone is hijacked and the

main goal of an adversary is to mimic normal drone operations,

the falsi�ed sensor data is crafted to re�ect the reaction to the

regular control commands received from the benign GCS, while

in reality, the drone is under an attacker’s control. Therefore, an

adversary gains complete control over the compromised drone,

while remaining undetected by the GCS. Alternatively, an adversary

can inject falsi�ed sensor data with the goal of tricking the GCS

into sending malicious commands based on inaccurate information

about the state of the drone.

4 PROPOSED DECEPTION METHODOLOGY

Given the attack model, in this section we propose to utilize GANs

for the execution of FDI attack. To this end, we follow a three-step

process depicted in Figure 3.

Sensor Data
Flow Extraction

Raw Sensor Data

Sensor Data
Transformation

Sensor Data Flow
Extraction

Falsified Sensor
Data Generation

Individual Sensor
Data Generation

Model - GAN

Individually Falsified
Sensor data

Ensemble Falsified
Sensor Data

Ensemble Sensor
Data GAN

Collaboratively
Falsified Sensor

Data

Figure 3: The proposed attack scheme.

4.1 Overview of the Attack Setup

The main goal of an attacker is to fabricate drone sensor data indis-

tinguishable from real sensor readings in the eyes of a designated

sensor anomaly detector. Due to its ability to generate high-quality

data [1], we select GAN as a primary tool to produce adversar-

ial samples. Moreover, using GANs allows us to capture speci�c

features directly from the benign samples instead of reproducing
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them from scratch. The key stages of the proposed attack shown in

Figure 3 can be outlined as follows:

(1)Sensor Data Flow Extraction. We gather raw data from ĉ

sensors simultaneously active on the drone and convert them into

time-series vectors. Speci�cally, we extract Ċ sliding windows of

sizeē with a stride of ĩ , creating sequences of events for each

sensor denoted as ďĨĢ = {ď1
ĨĢ
, ď2

ĨĢ
, ...ďĊ

ĨĢ
}.

(2) Fabricated Sensor Data Generation. Utilizing the acquired

sensor data vectors, we train ĉ distinct sensor data generation

models denoted as ă = {ă1,ă2, ...ăĉ }.

(3) Ensemble of Falsi�ed Sensor Data. An aggregator generator

model āă is applied to ensemble all individual ďĜ ėġě vectors in a

collaborative manner.

We use the proposed scheme to execute multiple FDI attacks

on the drone IMU sensors. We design minimal and incremental

intrusion FDI attacks, by gradually increasing the number of com-

promised IMU sensors. We assume that two distinct ML-based

anomaly detectors are employed by the drone control system as a

protection mechanism.

4.2 Model Design

In this section, we develop a novel sensor data generator model,

namely DSD-GAN, to produce realistic readings for various drone

sensors in desired spatial and temporal domains.

As indicated in Figure 4, DSD-GAN consists of 2 deep learning

models, G (Generator) and D (Discriminator). Speci�cally, G uses

latent space of samples, X, to produce a set of falsi�ed readings

G(X). D computes the di�erence between G(X) and ďĨĢ to evaluate

the authenticity of the falsi�ed sensor data. The details of each

model are as follows:

Control Parameter (z_dim). A user-de�ned value for z_dim also

determines the sporadic nature of the data. This parameter initial-

izes an architectural dimension of G and thus, is used to determine

the width of the latent sample input for G.

Generator (G). In our application, G plays a crucial role in generat-

ing a vector of falsi�ed sensor data that needs to be virtually indis-

tinguishable from real sensor readings.We use Linear layers to serve

as an initial mapping from a latent space to a higher-dimensional

feature space. Linear layers are valuable for their simplicity and

their capacity to linearly transform the input data. This initial trans-

formation helps set the foundation for subsequent layers to capture

more complex relationships.

To account for the temporal and spatial dependencies within

the drone sensor data, we incorporate 1D Convolutional (Conv 1D)

layers into our architecture. Conv 1D layers are well-suited for

detecting patterns and features in sequential data, making them

ideal for capturing the time-varying aspects of sensor readings

within our desired window.

Additionally, we leverage Long Short-Term Memory (LSTM) lay-

ers, which are a type of recurrent neural network, to model and

capture long-range dependencies in the sensor data. Our use of

LSTM layers allows us to capture more extended, apparent pat-

terns across windows, which the Conv 1D layers may lack. This

is particularly important, as drone sensor data, such as altimeter

and accelerometer readings, often exhibits intricate patterns and

correlations over time.

Furthermore, between the Conv 1D and LSTM layers, we employ

a series of reshaping operations. These reshaping operations are

essential for handling the di�erences in data channel dimensions.

They not only ensure that the data is properly prepared and aligned

for processing by each of the layers but also help expand the layers’

capacity to capture more features e�ectively.

Discriminator (D). For ourD, we employ anMLP architecture with

fully connected Linear units. The primary role of D is to discern

and evaluate temporal and spatial disparities between real and

generated sensor data.

The architecture of D consists of multiple fully connected Lin-

ear layers. These layers are instrumental in expanding the input

data, allowing it to be processed and transformed in a manner that

facilitates the discrimination between real and fake sensor data. By

employing Linear layers, we enable D to capture both local and

global relationships in the input data.

Subsequently, a sigmoid activation function is applied to the

output of D. It assigns a probability score for each data point within

the window of sensor data. These The probability scores serve as

an indicator of the likelihood that a given data point is real or fake.

In summary, our choice of an MLP architecture with fully con-

nected Linear layers for D enables it to e�ectively assess the tempo-

ral and spatial di�erences between real and generated sensor data.

The sigmoid activation function aids in quantifying the authenticity

of individual data points within the window data, allowing D to

play a crucial role in the adversarial training process.

4.3 Model Training

We train DSD-GAN in a two-player minimax game, whereG aims to

fool D, and D seeks to correctly identify real and fake data. During

this process, we use the Adam optimizer to calculate corresponding

weights for both models as ÿĀ and ÿă . Furthermore, the Smooth L1

Loss function is used for backpropagation to combine the bene�ts

of both mean squared error and mean absolute error losses and

minimize the in�uence of the outliers.

4.3.1 Sensor Data Flow Extraction. We use raw data consisting of

readings obtained from IMU drone sensors to train proposed DSD-

GAN. Since sensor data is in time-series form, we apply windowing

to extract Ċ vectors using a sliding approach. This process helps

preserve temporal relations for individual sensors. Furthermore, we

stack obtained time-series vectors on top of each other to capture a

spectral relationship between sensor readings.

4.3.2 GAN Training. The generator and discriminator of our GAN

are trained concurrently. For each epoch of the training, the gener-

ator produces a new set of samples which is then evaluated by the

discriminator. The training data fed to the discriminator consists of

the generator output samples (i.e., data generated from latent space

random samples) and real sensor data. We design a custom loss

function that is used to update the discriminator model’s weight

according to its performance. Subsequently, the generator weights

are updated using a separate loss function based on the backpropa-

gation of the discriminator feedback as indicated in Figure 4.

4.4 Ensemble Falsi�ed Sensor Data

In this section, we expand our DSD-GAN model to an ensemble

DSD-GAN (EDSD-GAN) for improved data generation (Figure 5).
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We introduce a state discriminator to enable the generator to learn

intricate connections between sensor outputs over time, re�ecting

various �ight phases such as take-o�, standard �ight, and landing.

This approach enhances data authenticity, surpassing our previous

method of merging separately generated sensor streams. It enables

the model to develop a comprehensive understanding of sensor

relationships, resulting in more realistic sensor data for each feature.

4.4.1 State Discriminator Architecture. The new addition of a state

discriminator model is designed to predict the �ight state (e.g. take-

o�, standard �ight, and landing) from the sensor data. As input,

the state discriminator takes in the multi-dimensional sensor data,

ĉďĨĢĩ , consisting of both sensor data and state values. The archi-

tecture of the state discriminator is shown in Figure 5.

4.4.2 Conditioning the Generator. In EDSD-GAN, we modify the

architecture of the generator by replacing 1D convolution with a

2D convolution layer, which results in a multi-dimensional array

denoted as ā-ă (Ĕ ). Furthermore, to enable the generator to produce

sensor data aligned with speci�c �ight states (e.g. take-o�, standard

�ight, and landing), we incorporate the state discriminator into the

training process. The state label is concatenated with the random

noise vector that serves as the generator’s input.

4.4.3 Training Procedure. Our training procedure consists of the

following steps:

State Discriminator Training: We train the state discriminator

to accurately predict �ight states from the sensor data. The state

discriminator is provided with both real sensor data and generated

data from the generator. The loss is computed using a smooth

L1 loss function between the discriminator’s predictions and the

corresponding �ight state labels. This step ensures that the state

discriminator can e�ectively distinguish di�erent �ight states.

Discriminator Training: The Discriminator model is left mostly

the same, however, it is altered to take in the real multi-dimensional

sensor values,ĉďĨĢ and ā-ă (Ĕ ).

Generator Training with State Conditioning: We modify the

generator training to include state conditioning. During each itera-

tion, the generator takes a combination of random noise and the

�ight state label as input. We calculate the loss for the generator

based on the output of the state discriminator when evaluating the

generated data.

Ensemble Falsi�ed Sensor Data Generation: After training,

we generate ensemble falsi�ed sensor data that captures di�erent

�ight states. We employ the trained generator to produce sensor

data samples corresponding to each �ight state. Bypassing these

generated samples through the state discriminator, we evaluate the

extent to which the generator captures the desired �ight states.

Improved Training with State Feedback: To further enhance

the generator’s performance, we introduce a feedback mechanism

using the state discriminator’s output. The state feedback loss is

combined with the traditional adversarial loss during generator

training. A hyperparameter, denoted as ąstate, controls the balance

between these two loss components.

5 PERFORMANCE EVALUATION

In this section, we describe experimental settings and provide an

extensive series of experiments to assess the performance of our

system. We also make our code available at Github 1.

5.1 Experimental Setting

5.1.1 Dataset Description. We utilize a publicly available drone

sensor dataset by Whelan et al. [20] for training and evaluating

1https://github.com/mkuludag/DroneGAN-Synthetic-Sensor-Time-Series-Data-
Generation-using-GANs
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our attack method against existing anomaly detectors. This dataset

includes diverse sensor data from a Holybro S500 drone running

PX4 Autopilot v1.11.3, comprising CSV logs from benign �ights

and �ights with simulated GPS spoo�ng and Ping Denial of Ser-

vice attacks. The attacks involve fabricated GPS messages and

MAVLink PING message �ooding, implemented using HackRF

software-de�ned radio. Focusing on gyroscope and accelerome-

ter IMU readings, our dataset consists of 20,000 consecutive be-

nign readings and 20,000 equally distributed anomalous samples

(jammed and spoofed) for training and testing anomaly detectors,

with a 70/30 training-testing split.

5.1.2 Anomaly Detectors. Our proposed FDI attack is assessed

against two drone sensor anomaly detectors, deployable on-board

or o�-board. First, we replicate the CNN-based classi�er by Galvan

et al. [6], using sequences of consecutive sensor readings to detect

anomalous drone behavior. Additionally, we implement an autoen-

coder model, a choice found in several literature works [14, 19],

consisting of encoder and decoder components with two Dense

layers each (16 and 32 units). Trained to reconstruct benign samples,

the model compares them with a prede�ned threshold for anomaly

detection, relying on the mean squared logarithmic error (MSLE).

5.1.3 EvaluationMetrics. Weuse variousmetrics to assess anomaly

classi�er performance in the presence of the attack, with a focus

on the false positive rate (FPR) and false negative rate (FNR). FPR

quanti�es false alarms, assessing the classi�er’s ability to classify

benign samples while minimizing false alerts correctly. FNR is used

to compute the attack success rate (ýďĎ), indicating successful FDI

attacks.

5.2 Data Quality Analysis

In this subsection, we assess the generated sensor data quality of

DSD-GAN and EDSD-GAN. Training both models on benign data,

we generate new data for gyroscope X, gyroscope Y, gyroscope

Z, accelerometer X, accelerometer Y, and accelerometer Z sensors

across 5000 consecutive timestamps. Employing t-SNE [18] for

analysis, we visualize the distributions of generated and benign

data in 2-D space.

Figure 6 compares the data generated by EDSD-GANwith benign

and DSD-GAN data, illustrating the proximity of DSD-GAN data

to benign data. This visualization sets the stage for our subsequent

step, where we subject these synthetic datasets to real anomaly

detectors to assess their deceptive potential. The graphical represen-

tation underscores the model’s capability to create synthetic data

resembling real sensor patterns across a comprehensive range of

readings, anticipating the forthcoming analysis and testing against

anomaly detectors.

We delve deeper into data distributions to identify the under-

lying reasons for the predominant clustering of EDSD-GAN data

at the fringes of benign data distribution. As depicted in Figure 7,

EDSD-GAN data exhibits notably less variation across all sensors

over time. This suggests that the generator model yields similar

results for diverse data inputs, resulting in reduced diversity. The

visualization also reveals that while DSD-GAN captures more dis-

tinct distributions for each sensor, EDSD-GAN tends to smooth

these distributions in relation to each other and across time.
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Figure 6: The t-SNE Visualization of Sensor Data: Compara-

tive Analysis of Benign Data, SD-GAN Data, and EDSD-GAN

Data for Gyroscope and Accelerometer sensor readings.
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Figure 7: Visualization of Sensor Data over Time: Compara-

tive Analysis of Benign Data, SD-GAN Data, and EDSD-GAN

Data for Gyroscope and Accelerometer Sensor Readings

5.3 Evaluation of Attack E�ectiveness Against
Anomaly Detectors

We conducted an extensive evaluation of the e�ectiveness of the

GAN-based attack across multiple scenarios of False Data Injection

(FDI) attacks targeting gyroscope and accelerometer sensors. Ini-

tially, we trained both CNN and autoencodermodels to attain bench-

mark accuracies of 100% and 97.3%, respectively. Subsequently, we

leveraged a single Deep Spatial Distribution Generative Adversar-

ial Network (DSD-GAN) to generate synthetic data for six sensor

readings independently, encompassing gyro X, gyro Y, gyro Z, accel

X, accel Y, and accel Z. This synthetic data enabled us to evalu-

ate classi�er performance under minimal intrusion FDI attacks,

where a single sensor is compromised. Following this, we devised

scenarios where an attacker injected GAN-generated data for two

or more sensor readings. Speci�cally, we identi�ed four sensor

combinations for both gyroscope and accelerometer data, along
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with a scenario where all sensor readings were GAN-generated.

We refer to these experiments as multi-sensor FDI attacks. Finally,

we conducted a comparative analysis between the performance

of individual DSD-GANs and an ensemble GAN in the context of

multi-sensor scenarios.

5.3.1 Single Sensor A�ack. Figure 8 represents the ASR of the DSD-

GAN for minimal intrusion FDI attack. We observe that ASR has

a similar tendency for corresponding sensors when tested against

autoencoder and CNN anomaly detectors.
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Figure 8: ASR for the single sensor FDI.

We observed that both anomaly detectors exhibited limitations

in successfully identifying GAN-based False Data Injection (FDI)

attacks targeting gyro X and gyro Y sensor values. Conversely, we

noted that attacks involving the accel Z sensor were more likely to

be detected, particularly in the case of the autoencoder. Furthermore,

our proposed FDI attack demonstrated a high level of e�ectiveness

when applied to accel X and accel Y sensors against the autoencoder,

as well as for the gyro Z sensor when applied against the CNN

classi�er. In summary, we conclude that GAN-based single-sensor

FDI attacks are more successful against the CNN classi�er.

5.3.2 Multi-Sensor A�ack. We implemented multi-sensor scenar-

ios using two distinct approaches. Initially, each sensor value was

generated independently using Deep Spatial Distribution Gener-

ative Adversarial Networks (DSD-GANs). Subsequently, we har-

nessed an ensemble of DSD-GANs to jointly generate various com-

binations of sensor values (e.g., accel (X,Y,Z), gyro (X,Y), and all

sensors).

Figure 9 illustrates that in all cases, employing an ensemble of

GANs for multi-sensor FDI led to higher ASR. Notably, manipu-

lating accelerometer X and Z values jointly resulted in a lower

ASR compared to the other accelerometer cases. For all FDI attacks

conducted on the gyroscope sensor, we achieved a 100% ASR.

Similarly, an FDI attack executed against the autoencoder using

an ensemble of DSD-GANs is more successful compared to separate

GANs. From Figure 10, we identify that autoencoder is highly e�ec-

tive against FDI attacks that include fake accelerometer Z sensor

values. Nonetheless, we emphasize that ensemble GANs allows to

increase ASR for those cases at least twice.

5.4 Discussion

The results of our experiments demonstrate the remarkable e�ec-

tiveness of adversarially generated data using GANs in deceiving

real-time drone sensor anomaly detectors.
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Figure 9: ASR for the multi-sensor FDI using separate DSD-

GANs and EDSD-GANs when evaluated using CNNClassi�er.
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Figure 10: ASR for the multi-sensor FDI using separate DSD-

GANs and EDSD-GANs when evaluated using Autoencoder.

5.4.1 Single-sensor FDI. In our analysis, we observed that both

classi�ers exhibit high sensitivity to FDI attacks targeting the ac-

celerometer Z sensor. This heightened sensitivity can be attributed

to the broader distribution of accelerometer Z sensor values, which

enables the classi�ers to better capture the benign data distribution

compared to other sensors. Notably, our GAN-based FDI attack

demonstrates consistent and e�ective performance when applied

to other sensors, achieving an average ASR exceeding 90% against

both anomaly detectors. This underscores the attack’s robustness

and its ability to succeed consistently in adversarial scenarios.

5.4.2 Multi-sensor FDI. In our investigation, we assessed two key

aspects of multi-sensor FDI scenarios: 1) the impact of concurrently

injecting synthetic data generated by GANs into multiple sensors

and 2) the advantages of employing an ensemble of GANs for multi-

sensor data injection.

As the number of sensors injected with GAN-generated data

increases, FDI attack ASR decreases. Findings reveal that injecting

fabricated data for speci�c sensor attributes, such as accelerometer

Z, signi�cantly reduces ASR, indicating the in�uential role of certain

sensor attributes in machine learning classi�ers’ decision-making.

Enhanced classi�er performance against FDI attacks using multiple

sensors is attributed to their ability to detect inconsistencies in

correlations among injected GAN-generated sensor values.

Utilizing an ensemble of DSD-GANs to capture spatial relation-

ships between sensor values correlates with increased ASR for all

multi-sensor FDI attacks. The ensemble’s impact is notable, partic-

ularly when ASR is initially lower for separate DSD-GANs with
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sensor combinations like accel (X,Y), accel (X,Y,Z), and all sensors.

Despite the lower initial ASR, employing an ensemble leads to a

minimum doubling of ASR. In the case of an FDI attack targeting

accel (Y, Z) sensors against the autoencoder classi�er, the ensemble

of GANs elevates ASR from 5.35% to 22.68%.

5.4.3 Analysis of Anomaly Detectors. Our main goal was to de-

velop an e�ective FDI attack using an ensemble of GANs. Initially,

the CNN classi�er outperformed the autoencoder on a benchmark

dataset with benign, spoofed, and jammed sensor readings. How-

ever, further experiments revealed the autoencoder’s greater e�ec-

tiveness in detecting GAN-generated injected data for the majority

of multi-sensor FDI scenarios.

Hence, we conclude that the CNN classi�er demonstrates less

e�ectiveness in identifying anomalies it hasn’t encountered before,

necessitating frequent retraining to capture novel types of FDI

attacks. This observation aligns with the structural di�erences

between the two classi�ers: the CNN classi�er is trained on both

benign and anomalous samples, while the autoencoder exclusively

learns patterns from benign data. Therefore, while the autoencoder

anomaly detector may not prevent all FDI attacks, it is more robust

to a variety of anomaly types.

Both classi�ers exhibited high sensitivity to deviations in ac-

celerometer Z sensor values, suggesting the reliance of anomaly

detectors on these values. Based on this insight, we suggest that

GANs can be used to enhance model explainability via (1) incorpo-

rating generated data during training and (2) reducing dependence

on the single feature and aiding in feature selection for anomaly

detection

Conversely, attackers can exploit gathered intelligence about

classi�er performance to launch a poisoning attack. Injecting false

data, especially for signi�cant features like accel Z, can render the

model ine�ective and result in model drift. We also demonstrated

that avoiding the injection of the most signi�cant features (i.e.,

accel Z) results in higher ASR, as indicated in Figures 9 and 10.

6 CONCLUSION

In our investigation into UAV security, we unveiled the vulnerabil-

ities within Machine Learning-based anomaly detection systems.

We introduced two potent GAN-based FDI attacks, targeting critical

IMU sensors of drones. The DSD-GAN model skillfully manipu-

lated individual drone sensor data by exploiting temporal features,

resulting in compelling FDI attacks. Additionally, our innovative

EDSD-GAN, utilizing an ensemble approach to preserve spatial sen-

sor relationships, excelled in crafting high-�delity multi-sensor FDI

attacks. In our evaluations against CNN and autoencoder-based

anomaly detectors, we discovered these classi�ers exhibited re-

markable susceptibility to DSD-GAN FDI attacks on single sensors,

failing to detect anomalies in nearly 80% of cases, on average. Com-

plementing this, the EDSD-GAN demonstrated its deceivability,

achieving over a 50% increase in the attack success rate compared

to separate DSD-GANs. Our work also identi�ed that anomaly de-

tectors trained on exclusively benign data are more robust against

unseen FDI attacks. Finally, we discussed the potential alternatives

for utilizing developed approaches as a tool for anomaly detector

analysis.
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