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ABSTRACT

Drones, embodying the spirit of innovation, have become dynamic
game-changers, redefining industries through their unparalleled
adaptability and budget-friendly solutions. However, compromised
drone sensors pose serious safety risks. Therefore, multiple studies
have been dedicated to analyzing various drone sensor attacks and
developing efficient anomaly detectors.

In this paper, we utilize GANSs to design a novel model named
DS-GAN for drone sensor data falsification that can be used for
false data injection (FDI) attacks. Furthermore, considering the
presence of multiple sensors on a drone, we analyze both their
temporal and spatial relationships to develop an ensemble DSD-
GAN (EDSD-GAN), designed for executing more sophisticated yet
subtle attacks. We evaluate the proposed FDI attacks against two
popular machine learning (ML) architectures used for drone sensor
anomaly detection. Our extensive experiments demonstrate that
the proposed attack is highly effective for various drone sensors
with an average success rate above 80%. Moreover, we demonstrate
that using EDSD-GAN significantly improves the attack success
rate by over 50% even for the most complex cases.
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1 INTRODUCTION

Drones, or Unmanned Aerial Vehicles (UAVs), have transformed
industries like surveillance, agriculture, and disaster management
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due to their cost-effectiveness. However, compromised sensors can
lead to malfunctions and pose safety risks [2, 5]. Studying threats
against drone sensors is crucial for developing effective security
systems.

Extensive research has focused on anomaly detection for drone
sensors. Earlier works utilized Extended Kalman Filter (EKF) as the
primary intrusion detection system (IDS) [7, 9]. Recent advance-
ments in machine learning (ML) led to more complex systems,
which can be categorized based on their operations, such as learn-
ing benign behavior [11, 15, 19] or distinguishing between benign
and specific anomalies like spoofing or jamming [6]. The common-
ality is their emphasis on inertial measurement unit (IMU) drone
sensors for effective anomaly detection.

While there is a lot of research devoted to drone sensor anomaly
detectors, the existing methods are mostly based on training with
limited data or data specific to a given attack. Traditional attacks
involve manual falsification, such as GPS spoofing and jamming
using Software Defined Radio (SDR) devices [2, 3]. Furthermore,
with false data injection (FDI) attacks, an attacker may directly
inject false readings into sensors [4]. However, the advancement of
generative adversarial networks (GANs) introduces possibilities for
more sophisticated falsified sensor data through false data injection
(FDI) attacks.

In this paper, we introduce DSD-GAN, a GAN architecture for
the falsification of drone sensor data. Our model enables the gen-
eration of high-quality fake data for individual accelerometer and
gyroscope IMU sensor readings, facilitating the use of GANs in
FDI attacks against drone IMU sensors. To address spatial relation-
ship challenges, we design an ensemble of DSD-GANs, EDSD-GAN,
combining individual sensor models and a combined meta-model.
EDSD-GAN facilitates falsifying data based on multi-sensor rela-
tionships, making it challenging for traditional detectors to flag.

We evaluate our GAN-based FDI attack against two state-of-the-
art anomaly detectors representing the most commonly used ML
architectures, convolutional neural networks (CNNs), and autoen-
coders. We conduct an extensive set of experiments to investigate
the relationship between the attack success (i.e., the rate of success
at deceiving the classifier) and the number of sensors affected by the
attack. Furthermore, we compare the performance of multi-sensor
FDI attacks executed using individual DSD-GANs and EDSD-GAN.
Our results demonstrate the effectiveness of both proposed attacks
in deceiving existing drone sensor anomaly detectors, with an attack
success rate exceeding 80% for given drone sensors. Notably, using
EDSD-GAN improves the attack success rate by at least twofold
compared to DSD-GAN.
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The paper is organized as follows: Section 2 reviews related work,
Section 3 outlines the system and threat model, Section 4 presents
the attack methodology, and Section 5 evaluates the proposed attack.
Finally, Section 6 concludes the paper.

2 RELATED WORK

In this section, we discuss the relevant work on drone sensor at-
tacks, sensor-based anomaly detectors for drones, and generative
adversarial networks (GANs) used for adversarial ML.

Drone Sensor Attacks: The majority of drones come equipped
with a diverse array of sensors to ensure their proper functioning.
These sensor readings play a crucial role in providing essential
information about the drone’s state and position to its Ground
Control Station (GCS), influencing control decisions. Given the
pivotal role of sensors in drone operations, attackers have devised
varjous types of attacks directly impacting these sensors, including
GPS spoofing, jamming, and FDI.

GPS spoofing attacks involve the falsification of GPS signals with
the intent of disrupting a drone’s flight by manipulating its sensors.
In this attack, an adversary injects false GPS signals into the shared
medium, leading the drone to perceive them as legitimate, thereby
compromising the mission’s success. Notably, in [2], the authors
executed a GPS spoofing attack against a 3DR Solo drone using SDR,
resulting in complete drone hijacking. Similarly, Saputo et al. [3]
employed an SDR device to demonstrate the effectiveness of a GPS
spoofing attack against a DJI Phantom 3 drone. Jamming attacks,
on the other hand, entail an attacker compromising the shared
communication medium. Unlike spoofing attacks, the primary aim
of jamming attacks is to disrupt communication between the drone
and its GCS and forcibly manipulate the drone’s flight mode. In one
instance, authors in [13] implemented uninterrupted radio jamming
to disrupt the operations of a rogue drone. FDI attacks are more
intrusive and targeted compared to spoofing and jamming attacks.
They involve an adversary injecting false sensor readings directly
into the drone system. In [4], a Kalman Filter-based FDI attack
was developed to manipulate drone position control. Chen et al.
[5] employed a jamming approach to inject false magnetometer
readings into a victim drone, successfully causing the drone to crash
or alter its trajectory.

Differently to previous approaches that manually falsify sensor
readings for drone attacks, our work utilizes Generative Adversarial
Networks (GANSs) to automate the sensor data generation process.
Furthermore, we generate data for different sensors concurrently
to preserve their original spatial relationships.

Drone Anomaly Detectors: Given the multitude of attacks that
can compromise drone operations through its sensors, substantial
effort has been dedicated to designing effective methods for sen-
sor anomaly detection. In [11], the authors proposed ML-based
method to detect drone sensor spoofing. They employed a multi-
layer perceptron (MLP) trained to predict the next position of the
aircraft. This system identifies anomalies when the prediction error
exceeds 1 meter, with a particular focus on inertial measurement
units (IMU) sensors. In [19], researchers developed a one-class de-
tection technique for drone sensor anomalies. Their evaluation of
various ML-based classifiers highlighted that the autoencoder neu-
ral network achieved the highest average F1 score of 94.81%, tested
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across various drone models. Galvan et al. [6] devised a Convolu-
tional Neural Network (CNN) model to identify anomalous sensor
faults by analyzing IMU sensor readings. The work presented in
[15] proposed the utilization of a modified Long-Short Term Mem-
ory (LSTM) model for anomaly detection using drone sensor data
and state information. Trained on benign data, this model learns
to predict the future state of the drone system and sensors based
on historical data. When tested against various manually injected
faults across IMU sensors, the system achieved an average F1 score
exceeding 95%.

Our research reveals that various anomaly detectors are vulnera-
ble to GAN-based FDI attacks. Additionally, we identify that GAN-
generated sensor data can be leveraged to analyze ML classifiers
and extract valuable insights into their decision-making processes.

GANs and Adversarial ML: Introduced in 2014 [8], generative ad-
versarial networks (GANSs) are often employed to generate realistic
fake data. GANSs are frequently used to create deep fakes and can
be utilized to generate synthetic data of various types, either from
scratch or with additional modifications, leading to an increase
in the number of attacks using GANs. In [17], the authors used
GAN:Ss to evade machine learning-based IDS for network traffic.
They subsequently demonstrated that GAN-generated data can
also be used to improve IDS performance by training on adversarial
perturbations. Authors in [12] developed a bi-objective GAN to mis-
lead Android malware detection systems. Shi et al. [16] designed
a spoofing attack based on GANS, successfully generating high-
quality synthetic signals for conducting a spoofing attack with a
76.2% success probability. In [10], GANs were employed to deceive
radio frequency (RF)-based authentication mechanisms, achieving
over a 90% success rate when attempting to fool the authentication
devices.

In contrast to the aforementioned approaches, we propose the
use of an ensemble of GANs to generate high-quality sensor data
that captures their temporal and spatial correlations. Additionally,
our ensemble includes a state discriminator to ensure that the falsi-
fied data accurately reflects a specific drone’s state.

3 SYSTEM MODEL AND ADVERSARY MODEL
In this section, we present the control system model and threat
model considered in this paper.

3.1 Control System Model

The control system model is composed of a drone and a benign

GCS, engaging in communication with each other, as depicted in
Figure 1.
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Figure 1: Control System Model.
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We consider two key modules of the drone as follows:
Drone Sensors: A typical drone is equipped with an array of sen-
sors, including GPS, accelerometers, tilt sensors, and an inertial
measurement unit (IMU). These sensors play a vital role in deter-
mining the drone’s position, orientation, and component status,
which are crucial for effective aircraft control.
Flight Controller (FC): In this work, the Flight Controller (FC)
collects sensor data from the aircraft, serving two primary functions:
Transmitting sensor data to the GCS and directly triggering actions
of actuators based on received sensor readings. The GCS station,
upon receiving sensor data, sends control messages to the FC, which
in turn activates the actuators.

The GCS station comprises two primary components:
Sensor Anomaly Detector: The proposed system can incorpo-
rate up to two anomaly detectors, installed on-board and off-board.
These detectors serve as a protective mechanism designed to iden-
tify abnormal drone behaviors based on locally received or FC-
transmitted sensor data. The anomaly detector is equipped with
a pre-trained ML algorithm specialized in detecting spoofing and
jamming attacks on the drone. Furthermore, the model continues
to learn from sensor readings in real-time during drone flight.
Command Controller: Once the anomaly detector validates the
sensor data as benign, the Command Controller takes action. It
utilizes this verified data to formulate and transmit control messages
to the drone, specifying the desired trajectory for the aircraft.

3.2 Threat Model

In this work, we consider an adversary with the capability to both
observe the actual sensor readings of the drone and transmit modi-
fied sensor data to the GCS.

During the observation phase, the adversary collects benign
sensor data, which serves as a reference for creating fabricated
data. Alternatively, the adversary can obtain benign drone sensor
data from open-source datasets or by acquiring and flying the same
model of drone.

Subsequently, the falsified data can be transmitted by either 1)
modifying the sensor data as it exits the drone using a Man in
the Middle (MiTM) attack. This may involve blocking the drone’s
traffic, impersonating it, and sending altered sensor readings; or 2)
manipulating the sensors of the drone directly, such as spoofing
GPS sensor data. Additionally, 3) completely compromising the
drone, potentially through malware or modified firmware, can also
be used as a means to transmit falsified data. Figure 2 provides a
visual representation of all these scenarios.

First, an adversary can adopt a MiTM approach, positioning be-
tween the drone and its GCS. Initially, the adversary intercepts and
blocks communication signals carrying onboard sensor data and
system measurements from the drone to the GCS. Subsequently,
the adversary sends custom/modified sensor data to the GCS, por-
traying a false reality of the drone’s state. This manipulation leads
the GCS to issue control commands that could potentially trigger
unpredictable and hazardous behaviors in the drone.

Secondly, an adversary can transmit malicious signals to the
drone through a GPS spoofing attack to modify its sensors’ data.
Thus, falsified sensor GPS data is sent to the drone to disrupt its
normal operations.
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Figure 2: Threat Model.

A third technique consists of injecting sensor data directly into
the drone to either 1) conceal the anomalous behavior of a drone
that has already been hijacked or 2) trick the GCS into sending the
control commands based on the incorrect data. In these scenarios,
an adversary is capable of directly injecting falsified sensor data
onto the drone FC. For cases when the drone is hijacked and the
main goal of an adversary is to mimic normal drone operations,
the falsified sensor data is crafted to reflect the reaction to the
regular control commands received from the benign GCS, while
in reality, the drone is under an attacker’s control. Therefore, an
adversary gains complete control over the compromised drone,
while remaining undetected by the GCS. Alternatively, an adversary
can inject falsified sensor data with the goal of tricking the GCS
into sending malicious commands based on inaccurate information
about the state of the drone.

4 PROPOSED DECEPTION METHODOLOGY

Given the attack model, in this section we propose to utilize GANs
for the execution of FDI attack. To this end, we follow a three-step
process depicted in Figure 3.
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Figure 3: The proposed attack scheme.

4.1 Overview of the Attack Setup

The main goal of an attacker is to fabricate drone sensor data indis-
tinguishable from real sensor readings in the eyes of a designated
sensor anomaly detector. Due to its ability to generate high-quality
data [1], we select GAN as a primary tool to produce adversar-
ial samples. Moreover, using GANs allows us to capture specific
features directly from the benign samples instead of reproducing
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them from scratch. The key stages of the proposed attack shown in
Figure 3 can be outlined as follows:

(1)Sensor Data Flow Extraction. We gather raw data from M
sensors simultaneously active on the drone and convert them into
time-series vectors. Specifically, we extract N sliding windows of
size W with a stride of s, creating sequences of events for each
sensor denoted as S,; = {Sil, Sfl, Si\l]}

(2) Fabricated Sensor Data Generation. Utilizing the acquired
sensor data vectors, we train M distinct sensor data generation
models denoted as G = {G1, Ga, ...Gp}.

(3) Ensemble of Falsified Sensor Data. An aggregator generator
model Eg is applied to ensemble all individual S¢4, vectors in a
collaborative manner.

We use the proposed scheme to execute multiple FDI attacks
on the drone IMU sensors. We design minimal and incremental
intrusion FDI attacks, by gradually increasing the number of com-
promised IMU sensors. We assume that two distinct ML-based
anomaly detectors are employed by the drone control system as a
protection mechanism.

4.2 Model Design

In this section, we develop a novel sensor data generator model,
namely DSD-GAN, to produce realistic readings for various drone
sensors in desired spatial and temporal domains.

As indicated in Figure 4, DSD-GAN consists of 2 deep learning
models, G (Generator) and D (Discriminator). Specifically, G uses
latent space of samples, X, to produce a set of falsified readings
G(X). D computes the difference between G(X) and S,; to evaluate
the authenticity of the falsified sensor data. The details of each
model are as follows:

Control Parameter (z_dim). A user-defined value for z_dim also
determines the sporadic nature of the data. This parameter initial-
izes an architectural dimension of G and thus, is used to determine
the width of the latent sample input for G.

Generator (G). In our application, G plays a crucial role in generat-
ing a vector of falsified sensor data that needs to be virtually indis-
tinguishable from real sensor readings. We use Linear layers to serve
as an initial mapping from a latent space to a higher-dimensional
feature space. Linear layers are valuable for their simplicity and
their capacity to linearly transform the input data. This initial trans-
formation helps set the foundation for subsequent layers to capture
more complex relationships.

To account for the temporal and spatial dependencies within
the drone sensor data, we incorporate 1D Convolutional (Conv 1D)
layers into our architecture. Conv 1D layers are well-suited for
detecting patterns and features in sequential data, making them
ideal for capturing the time-varying aspects of sensor readings
within our desired window.

Additionally, we leverage Long Short-Term Memory (LSTM) lay-
ers, which are a type of recurrent neural network, to model and
capture long-range dependencies in the sensor data. Our use of
LSTM layers allows us to capture more extended, apparent pat-
terns across windows, which the Conv 1D layers may lack. This
is particularly important, as drone sensor data, such as altimeter
and accelerometer readings, often exhibits intricate patterns and
correlations over time.
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Furthermore, between the Conv 1D and LSTM layers, we employ

a series of reshaping operations. These reshaping operations are
essential for handling the differences in data channel dimensions.
They not only ensure that the data is properly prepared and aligned
for processing by each of the layers but also help expand the layers’
capacity to capture more features effectively.
Discriminator (D). For our D, we employ an MLP architecture with
fully connected Linear units. The primary role of D is to discern
and evaluate temporal and spatial disparities between real and
generated sensor data.

The architecture of D consists of multiple fully connected Lin-
ear layers. These layers are instrumental in expanding the input
data, allowing it to be processed and transformed in a manner that
facilitates the discrimination between real and fake sensor data. By
employing Linear layers, we enable D to capture both local and
global relationships in the input data.

Subsequently, a sigmoid activation function is applied to the
output of D. It assigns a probability score for each data point within
the window of sensor data. These The probability scores serve as
an indicator of the likelihood that a given data point is real or fake.

In summary, our choice of an MLP architecture with fully con-
nected Linear layers for D enables it to effectively assess the tempo-
ral and spatial differences between real and generated sensor data.
The sigmoid activation function aids in quantifying the authenticity
of individual data points within the window data, allowing D to
play a crucial role in the adversarial training process.

4.3 Model Training

We train DSD-GAN in a two-player minimax game, where G aims to
fool D, and D seeks to correctly identify real and fake data. During
this process, we use the Adam optimizer to calculate corresponding
weights for both models as fp and fg. Furthermore, the Smooth L1
Loss function is used for backpropagation to combine the benefits
of both mean squared error and mean absolute error losses and
minimize the influence of the outliers.

4.3.1 Sensor Data Flow Extraction. We use raw data consisting of
readings obtained from IMU drone sensors to train proposed DSD-
GAN. Since sensor data is in time-series form, we apply windowing
to extract N vectors using a sliding approach. This process helps
preserve temporal relations for individual sensors. Furthermore, we
stack obtained time-series vectors on top of each other to capture a
spectral relationship between sensor readings.

4.3.2  GAN Training. The generator and discriminator of our GAN
are trained concurrently. For each epoch of the training, the gener-
ator produces a new set of samples which is then evaluated by the
discriminator. The training data fed to the discriminator consists of
the generator output samples (i.e., data generated from latent space
random samples) and real sensor data. We design a custom loss
function that is used to update the discriminator model’s weight
according to its performance. Subsequently, the generator weights
are updated using a separate loss function based on the backpropa-
gation of the discriminator feedback as indicated in Figure 4.

4.4 Ensemble Falsified Sensor Data

In this section, we expand our DSD-GAN model to an ensemble
DSD-GAN (EDSD-GAN) for improved data generation (Figure 5).
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We introduce a state discriminator to enable the generator to learn
intricate connections between sensor outputs over time, reflecting
various flight phases such as take-off, standard flight, and landing.
This approach enhances data authenticity, surpassing our previous
method of merging separately generated sensor streams. It enables
the model to develop a comprehensive understanding of sensor
relationships, resulting in more realistic sensor data for each feature.

4.4.1 State Discriminator Architecture. The new addition of a state
discriminator model is designed to predict the flight state (e.g. take-
off, standard flight, and landing) from the sensor data. As input,
the state discriminator takes in the multi-dimensional sensor data,
MS, s, consisting of both sensor data and state values. The archi-
tecture of the state discriminator is shown in Figure 5.

4.4.2 Conditioning the Generator. In EDSD-GAN, we modify the
architecture of the generator by replacing 1D convolution with a
2D convolution layer, which results in a multi-dimensional array
denoted as E-G(X). Furthermore, to enable the generator to produce
sensor data aligned with specific flight states (e.g. take-off, standard
flight, and landing), we incorporate the state discriminator into the
training process. The state label is concatenated with the random
noise vector that serves as the generator’s input.

4.4.3 Training Procedure. Our training procedure consists of the
following steps:

State Discriminator Training: We train the state discriminator
to accurately predict flight states from the sensor data. The state
discriminator is provided with both real sensor data and generated
data from the generator. The loss is computed using a smooth
L1 loss function between the discriminator’s predictions and the
corresponding flight state labels. This step ensures that the state
discriminator can effectively distinguish different flight states.

Discriminator Training: The Discriminator model is left mostly
the same, however, it is altered to take in the real multi-dimensional
sensor values, MS,; and E-G(X).

Generator Training with State Conditioning: We modify the
generator training to include state conditioning. During each itera-
tion, the generator takes a combination of random noise and the
flight state label as input. We calculate the loss for the generator
based on the output of the state discriminator when evaluating the
generated data.

Ensemble Falsified Sensor Data Generation: After training,
we generate ensemble falsified sensor data that captures different
flight states. We employ the trained generator to produce sensor
data samples corresponding to each flight state. Bypassing these
generated samples through the state discriminator, we evaluate the
extent to which the generator captures the desired flight states.
Improved Training with State Feedback: To further enhance
the generator’s performance, we introduce a feedback mechanism
using the state discriminator’s output. The state feedback loss is
combined with the traditional adversarial loss during generator
training. A hyperparameter, denoted as Agtate, controls the balance
between these two loss components.

5 PERFORMANCE EVALUATION

In this section, we describe experimental settings and provide an
extensive series of experiments to assess the performance of our
system. We also make our code available at Github 1.

5.1 Experimental Setting
5.1.1 Dataset Description. We utilize a publicly available drone

sensor dataset by Whelan et al. [20] for training and evaluating

Lhttps://github.com/mkuludag/DroneGAN-Synthetic-Sensor-Time-Series-Data-
Generation-using-GANs
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our attack method against existing anomaly detectors. This dataset
includes diverse sensor data from a Holybro S500 drone running
PX4 Autopilot v1.11.3, comprising CSV logs from benign flights
and flights with simulated GPS spoofing and Ping Denial of Ser-
vice attacks. The attacks involve fabricated GPS messages and
MAVLink PING message flooding, implemented using HackRF
software-defined radio. Focusing on gyroscope and accelerome-
ter IMU readings, our dataset consists of 20,000 consecutive be-
nign readings and 20,000 equally distributed anomalous samples
(jammed and spoofed) for training and testing anomaly detectors,
with a 70/30 training-testing split.

5.1.2  Anomaly Detectors. Our proposed FDI attack is assessed
against two drone sensor anomaly detectors, deployable on-board
or off-board. First, we replicate the CNN-based classifier by Galvan
et al. [6], using sequences of consecutive sensor readings to detect
anomalous drone behavior. Additionally, we implement an autoen-
coder model, a choice found in several literature works [14, 19],
consisting of encoder and decoder components with two Dense
layers each (16 and 32 units). Trained to reconstruct benign samples,
the model compares them with a predefined threshold for anomaly
detection, relying on the mean squared logarithmic error (MSLE).

5.1.3  Evaluation Metrics. We use various metrics to assess anomaly
classifier performance in the presence of the attack, with a focus
on the false positive rate (FPR) and false negative rate (FNR). FPR
quantifies false alarms, assessing the classifier’s ability to classify
benign samples while minimizing false alerts correctly. FNR is used
to compute the attack success rate (ASR), indicating successful FDI
attacks.

5.2 Data Quality Analysis

In this subsection, we assess the generated sensor data quality of
DSD-GAN and EDSD-GAN. Training both models on benign data,
we generate new data for gyroscope X, gyroscope Y, gyroscope
Z, accelerometer X, accelerometer Y, and accelerometer Z sensors
across 5000 consecutive timestamps. Employing t-SNE [18] for
analysis, we visualize the distributions of generated and benign
data in 2-D space.

Figure 6 compares the data generated by EDSD-GAN with benign
and DSD-GAN data, illustrating the proximity of DSD-GAN data
to benign data. This visualization sets the stage for our subsequent
step, where we subject these synthetic datasets to real anomaly
detectors to assess their deceptive potential. The graphical represen-
tation underscores the model’s capability to create synthetic data
resembling real sensor patterns across a comprehensive range of
readings, anticipating the forthcoming analysis and testing against
anomaly detectors.

We delve deeper into data distributions to identify the under-
lying reasons for the predominant clustering of EDSD-GAN data
at the fringes of benign data distribution. As depicted in Figure 7,
EDSD-GAN data exhibits notably less variation across all sensors
over time. This suggests that the generator model yields similar
results for diverse data inputs, resulting in reduced diversity. The
visualization also reveals that while DSD-GAN captures more dis-
tinct distributions for each sensor, EDSD-GAN tends to smooth
these distributions in relation to each other and across time.
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Figure 7: Visualization of Sensor Data over Time: Compara-
tive Analysis of Benign Data, SD-GAN Data, and EDSD-GAN
Data for Gyroscope and Accelerometer Sensor Readings

5.3 Evaluation of Attack Effectiveness Against
Anomaly Detectors

We conducted an extensive evaluation of the effectiveness of the
GAN-based attack across multiple scenarios of False Data Injection
(FDI) attacks targeting gyroscope and accelerometer sensors. Ini-
tially, we trained both CNN and autoencoder models to attain bench-
mark accuracies of 100% and 97.3%, respectively. Subsequently, we
leveraged a single Deep Spatial Distribution Generative Adversar-
ial Network (DSD-GAN) to generate synthetic data for six sensor
readings independently, encompassing gyro X, gyro Y, gyro Z, accel
X, accel Y, and accel Z. This synthetic data enabled us to evalu-
ate classifier performance under minimal intrusion FDI attacks,
where a single sensor is compromised. Following this, we devised
scenarios where an attacker injected GAN-generated data for two
or more sensor readings. Specifically, we identified four sensor
combinations for both gyroscope and accelerometer data, along
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with a scenario where all sensor readings were GAN-generated.
We refer to these experiments as multi-sensor FDI attacks. Finally,
we conducted a comparative analysis between the performance
of individual DSD-GANSs and an ensemble GAN in the context of
multi-sensor scenarios.

5.3.1 Single Sensor Attack. Figure 8 represents the ASR of the DSD-
GAN for minimal intrusion FDI attack. We observe that ASR has
a similar tendency for corresponding sensors when tested against
autoencoder and CNN anomaly detectors.
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Figure 8: ASR for the single sensor FDI.

We observed that both anomaly detectors exhibited limitations
in successfully identifying GAN-based False Data Injection (FDI)
attacks targeting gyro X and gyro Y sensor values. Conversely, we
noted that attacks involving the accel Z sensor were more likely to
be detected, particularly in the case of the autoencoder. Furthermore,
our proposed FDI attack demonstrated a high level of effectiveness
when applied to accel X and accel Y sensors against the autoencoder,
as well as for the gyro Z sensor when applied against the CNN
classifier. In summary, we conclude that GAN-based single-sensor
FDI attacks are more successful against the CNN classifier.

5.3.2  Multi-Sensor Attack. We implemented multi-sensor scenar-
ios using two distinct approaches. Initially, each sensor value was
generated independently using Deep Spatial Distribution Gener-
ative Adversarial Networks (DSD-GANSs). Subsequently, we har-
nessed an ensemble of DSD-GAN:Ss to jointly generate various com-
binations of sensor values (e.g., accel (X,Y,Z), gyro (X,Y), and all
Sensors).

Figure 9 illustrates that in all cases, employing an ensemble of
GANSs for multi-sensor FDI led to higher ASR. Notably, manipu-
lating accelerometer X and Z values jointly resulted in a lower
ASR compared to the other accelerometer cases. For all FDI attacks
conducted on the gyroscope sensor, we achieved a 100% ASR.

Similarly, an FDI attack executed against the autoencoder using
an ensemble of DSD-GANSs is more successful compared to separate
GANS . From Figure 10, we identify that autoencoder is highly effec-
tive against FDI attacks that include fake accelerometer Z sensor
values. Nonetheless, we emphasize that ensemble GANs allows to
increase ASR for those cases at least twice.

5.4 Discussion

The results of our experiments demonstrate the remarkable effec-
tiveness of adversarially generated data using GANSs in deceiving
real-time drone sensor anomaly detectors.

SAC *24, April 08-12, 2024, Spain

[N
o
o

80

60

40

20

Attack Success Rate (ASR)

0
0 \('D \(/D R 1/\ \(1/\ \(1) o\‘—’
aoe\d‘ oe\d\ Cge e\d\ S \!\0* o \g S \ge‘“‘

(I SD-GAN [EEEE ESD-GAN |

Figure 9: ASR for the multi-sensor FDI using separate DSD-
GANs anlgoEDSD-GANs when evaluated using CNN Classifier.
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Figure 10: ASR for the multi-sensor FDI using separate DSD-
GANs and EDSD-GANs when evaluated using Autoencoder.

5.4.1 Single-sensor FDI. In our analysis, we observed that both
classifiers exhibit high sensitivity to FDI attacks targeting the ac-
celerometer Z sensor. This heightened sensitivity can be attributed
to the broader distribution of accelerometer Z sensor values, which
enables the classifiers to better capture the benign data distribution
compared to other sensors. Notably, our GAN-based FDI attack
demonstrates consistent and effective performance when applied
to other sensors, achieving an average ASR exceeding 90% against
both anomaly detectors. This underscores the attack’s robustness
and its ability to succeed consistently in adversarial scenarios.

5.4.2  Multi-sensor FDI. In our investigation, we assessed two key
aspects of multi-sensor FDI scenarios: 1) the impact of concurrently
injecting synthetic data generated by GANs into multiple sensors
and 2) the advantages of employing an ensemble of GANSs for multi-
sensor data injection.

As the number of sensors injected with GAN-generated data
increases, FDI attack ASR decreases. Findings reveal that injecting
fabricated data for specific sensor attributes, such as accelerometer
Z, significantly reduces ASR, indicating the influential role of certain
sensor attributes in machine learning classifiers” decision-making.
Enhanced classifier performance against FDI attacks using multiple
sensors is attributed to their ability to detect inconsistencies in
correlations among injected GAN-generated sensor values.

Utilizing an ensemble of DSD-GANS to capture spatial relation-
ships between sensor values correlates with increased ASR for all
multi-sensor FDI attacks. The ensemble’s impact is notable, partic-
ularly when ASR is initially lower for separate DSD-GANs with
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sensor combinations like accel (X,Y), accel (X,Y,Z), and all sensors.
Despite the lower initial ASR, employing an ensemble leads to a
minimum doubling of ASR. In the case of an FDI attack targeting
accel (Y, Z) sensors against the autoencoder classifier, the ensemble
of GANs elevates ASR from 5.35% to 22.68%.

5.4.3  Analysis of Anomaly Detectors. Our main goal was to de-
velop an effective FDI attack using an ensemble of GANS. Initially,
the CNN classifier outperformed the autoencoder on a benchmark
dataset with benign, spoofed, and jammed sensor readings. How-
ever, further experiments revealed the autoencoder’s greater effec-
tiveness in detecting GAN-generated injected data for the majority
of multi-sensor FDI scenarios.

Hence, we conclude that the CNN classifier demonstrates less
effectiveness in identifying anomalies it hasn’t encountered before,
necessitating frequent retraining to capture novel types of FDI
attacks. This observation aligns with the structural differences
between the two classifiers: the CNN classifier is trained on both
benign and anomalous samples, while the autoencoder exclusively
learns patterns from benign data. Therefore, while the autoencoder
anomaly detector may not prevent all FDI attacks, it is more robust
to a variety of anomaly types.

Both classifiers exhibited high sensitivity to deviations in ac-
celerometer Z sensor values, suggesting the reliance of anomaly
detectors on these values. Based on this insight, we suggest that
GANSs can be used to enhance model explainability via (1) incorpo-
rating generated data during training and (2) reducing dependence
on the single feature and aiding in feature selection for anomaly
detection

Conversely, attackers can exploit gathered intelligence about
classifier performance to launch a poisoning attack. Injecting false
data, especially for significant features like accel Z, can render the
model ineffective and result in model drift. We also demonstrated
that avoiding the injection of the most significant features (i.e.,
accel Z) results in higher ASR, as indicated in Figures 9 and 10.

6 CONCLUSION

In our investigation into UAV security, we unveiled the vulnerabil-
ities within Machine Learning-based anomaly detection systems.
We introduced two potent GAN-based FDI attacks, targeting critical
IMU sensors of drones. The DSD-GAN model skillfully manipu-
lated individual drone sensor data by exploiting temporal features,
resulting in compelling FDI attacks. Additionally, our innovative
EDSD-GAN, utilizing an ensemble approach to preserve spatial sen-
sor relationships, excelled in crafting high-fidelity multi-sensor FDI
attacks. In our evaluations against CNN and autoencoder-based
anomaly detectors, we discovered these classifiers exhibited re-
markable susceptibility to DSD-GAN FDI attacks on single sensors,
failing to detect anomalies in nearly 80% of cases, on average. Com-
plementing this, the EDSD-GAN demonstrated its deceivability,
achieving over a 50% increase in the attack success rate compared
to separate DSD-GANs. Our work also identified that anomaly de-
tectors trained on exclusively benign data are more robust against
unseen FDI attacks. Finally, we discussed the potential alternatives
for utilizing developed approaches as a tool for anomaly detector
analysis.
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