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Abstract—Developing lightweight algorithms to implement
DoS attack mitigation on edge devices is a growing interest
in edge cybersecurity. Various types of micro-controller boards
can be programmed to capture network traffic and implement
lightweight machine learning models to analyze the supplied
traffic data for signs of intrusion and attacks. This study
experimented with building Support Vector Machine and Logistic
Regression models on real-time DoS attack scenario data and
the CICIoT2023 dataset. The main contribution of this study
is to propose a framework for data capturing, processing, and
analysis to produce edge machine learning models for DoS attack
mitigation.

Index Terms—Denial-of-Service, DoS, machine learning,
tinyML, micro-controller

I. INTRODUCTION

Denial-of-Service (DoS) attacks are among the most com-

mon and malicious types of cybersecurity attacks. These

attacks attempt to disrupt the normal traffic and function

of a targeted server or network. The current cybersecurity

landscape, which involves an exponentially growing number

of connected devices, has also contributed to the evolution of

Distributed Denial-of-Service (DDoS) attacks. These attacks

control networks of internet-connected devices to direct large-

scale and powerful attacks on their targets. DoS and DDoS

attack mitigation is of particular interest to the industry of

internet-of-things (IoT) devices because the growing adoption

of IoT devices render IoT networks an ideal amplification

platform for conducting dangerous high-volume attacks [3].

DoS attack mitigation has traditionally been implemented on

the cloud; however, as the number of IoT devices increases, the

efficiency and viability of cloud security infrastructure dimin-

ishes due to high computation and traffic load [4]. Lightweight

algorithms are a promising solution to this problem. These

algorithms are designed to consume fewer computational

resources (e.g. memory, processing power, etc.), thus suitable

for implementation on battery-powered, portable or remote

edge devices, which reduces the burden of centralized data

processing compared to cloud infrastructure. In this study, we

will investigate lightweight algorithms for implementation on

edge devices to address the limitations of cloud computing in

mitigating DoS attacks.

DoS attacks can be launched on all seven layers of the

OSI model. In this study, we focus on the network layer,

within which there are three major categories of DoS attacks:

volumetric, amplification, and protocol-related attacks [1].

User Datagram Protocol (UDP) Flood attack is a volumetric

attack that takes advantage of UDP protocol vulnerabilities.

The attacker sends a large number of IP packets containing

UDP packets to arbitrary ports on a targeted server from a

spoofed IP address. The victim server will attempt to respond

to these UDP packet requests with appropriate ICMP packets.

Responding to a very large number of packets prevents the

server from processing legitimate traffic [13].

Amplification attacks exploit a disparity in bandwidth cost

between the attacker and the targeted server. The attacker

sends small requests that result in large responses, thereby

exhausting both the inbound and outbound bandwidth of the

victim. Some examples of amplification attacks are ICMP

floods and Smurf attacks, both of which overwhelm the victim

by sending ICMP Echo requests with IP address spoofed as

that of the targeted server. ICMP flood attacks use botnets with

spoofed IP addresses to increase the volume of the attack and

make it difficult to detect the source. On the other hand, Smurf

attacks exploit immediate IP broadcast networks to transmit

fake Echo requests to all hosts on the network of targeted

server, triggering them to send back an overwhelming number

of responses [1].

SYN flood attacks exploit the three-way handshake required

in a Transmission Control Protocol (TCP) connection. The

attacker sends a high volume of SYN packets to the targeted

server, but never responses to the server’s SYN/ACK packets.

This process triggers the server to leave ports open to receive

the ACK response from the attacker, exhausting the number

of ports available for legitimate requests [1].

II. RELATED WORKS

A. Early Detection Using Edge Devices

C. Avasalcai et al. [4] identified several limitations of cloud

computing with regard to the current state of the art in IoT: (1)

high end-to-end (e2e) latency, (2) increased risk of congestion

and bandwidth waste, and (3) difficulties of satisfying current

data privacy and other requirements of new IoT applications.
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They proposed shifting to edge paradigms to enable lower e2e

latency, more responsive IoT applications, augmented scalabil-

ity and privacy with processing data at the edge. These benefits

of edge computing are particularly relevant to cybersecurity

and DoS attack mitigation. Z. Liu et al. [3] highlighted three

main characteristics of DDoS attacks in edge environment:

(1) hard to detect due to indiscernible flow classified features

from normal traffic, (2) low-cost and able to attack multiple

targets simultaneously, (3) long term attacked-targets become

insensitive to attacks. For these reasons, edge computing is

becoming an essential solution to “alleviate the traffic load

of the network,” and at the same time “reduce the delay of

defense decision and improve the response speed.” Z. Liu et al.

suggested an edge DDoS detection method with high accuracy,

fast response time and certain self-learning ability for unknown

new attacks using LR and Deep CNN Q-Network models [3].

The cumulative advantages of edge detection of anomalous

network traffic promote early and prompt attacks mitigation,

preventing such attacks from spreading within the network and

causing further network failure and property loss. Moreover,

these advantages allow IoT devices and networks to satisfy

increasingly strict requirements regarding latency, data privacy,

and scalability.

B. Machine Learning Models for DoS Attack Detection

Current DDoS detection methods are often based on ana-

lyzing patterns in network packet metadata to discern anoma-

lous and normal network traffic. Therefore, machine learning

models have been widely implemented in cybersecurity and

DDoS detection for their quality performance while fulfilling

complex data analysis tasks.

In particular, M. F. Ashfaq et al. [5] suggests that machine

learning techniques can assist in restricting false positives.

Moreover, neural network models, a subset of machine learn-

ing models, can overcome classical machine learning models’

limitations in handling large datasets. They analyzed two

datasets: one collected using Wireshark and the other imported

from the KDD-Cup database . Two machine learning models

were used to train these datasets: Logistic Regression (LR)

and Decision Tree (DT), both of which outperformed K-

nearest neighbors (K-NN) and support vector machine (SVM)

in terms of accuracy across experiments on different numbers

of features . While K-NN and SVM models achieved accuracy

ranging from 90% - 98% for binary and 10-feature sets, the

figures for LR and DT models were between 99.81% and

99.89% [5].

Y. Jia et al. [6] applied long short-term memory (LSTM)

and convolutional neural network (CNN) models trained by the

CICDDoS2019 dataset [14] to the data generated in a real at-

tack scenario in a computer-based edge server. CICDDoS2019

contains both benign and 12 most common types of DDoS

attacks launched from PCs. After attempting a number of

layers for both LSTM and CNN from 1 to 10, they discovered

that 3 layers for LSTM and 6 layers for CNN are the most

effective ones. The average accuracy results for LSTM and

CNN models are up to 98.9% and 99.9%, respectively.

C. Benchmark Dataset

The characteristics of IoT devices pose a challenge against

detecting and mitigating cybersecurity attacks, prompting de-

mand for robust datasets to train efficient DDoS detection

models. Most existing datasets such as the CICDDoS2019

dataset do not consider relatively uncommon or emerging

types of attacks. In addition, they only consider computer-

based attacks rather than those launched from malicious IoT

devices. To fill this gap, E.C.P. Neto et al. [2] introduces the

CICIoT2023 dataset, composed of 33 attacks simulated on 105

devices. They used five machine and deep learning algorithms

to evaluate this dataset: Logistic Regression, Perceptron, Ad-

aBoost, Deep Neural Network (DNN), and Random Forest

(RF). Results showed that all five models maintain high

performance in binary classification. In 8-class and 34-class

classifications, DNN, LR and Decision Tree models maintain

relatively high performance, especially in terms of accuracy.

D. Tiny Machine Learning (TinyML)

As powerful a tool as machine learning is, many challenges

evolve in implementing machine learning in edge devices.

Training machine learning models is computationally and

time-wise expensive, and the power and memory consumption

for which often exceeds the constraints of edge devices [7].

TinyML, an emerging paradigm on the intersection between

machine learning and low-power computing, solves the above

challenges by enabling the implementation of machine learn-

ing algorithms on ultra-low-power devices. Ultra-low-power

devices are those designed to operate and process data with the

smallest amount of power needed, typically under a milliWatt

[8]. This study primarily focuses on ultra-low-power micro-

controller units (MCUs), which typically have an SRAM

(static random access memory) between 256KB and 1MB, and

clock rates between 64MHz to 600MHz [8].

There are a wide variety of MCUs that allow for TinyML

deployment. B. Sudharsan et al. [8] compared the costs and

performance of seven different common boards and showed

that between the two most inexpensive boards, Raspberry Pi

Pico and ESP32, the latter had the best price-performance.

This makes ESP32 a promising option for producing high-

performance yet affordable smart devices.

So far, TinyML has been implemented dominantly in key-

word spotting, image classification and visual wake words.

Less common use cases include object detection, anomaly

detection, motor control, gesture recognition, and face recog-

nition [9].

III. PROPOSED WORK

S. S. Saha et al. [11] introduced a coherent and closed loop

machine learning model development and deployment work-

flow for micro-controllers and discussed the current prominent

model development software suites. The process consists of

the model development phase and the model deployment

phase. The model development phase involves using data en-

gineering frameworks to collect and clean raw data to produce

a dataset; optionally, feature projection can also be performed
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at this stage to reduce dimensionality (i.e reduce the number of

features analyzed while retaining the meaningful properties of

the original data [15]). Several models are then chosen from a

pool of “lightweight model zoo” based on the application and

hardware constraints. The model deployment phase involves

porting the best performing model to a TinyML software suite,

performing model compression along generating embedded

code, then flashing the C file system onto the micro-controller

for inference [11].

In this study, we aim to train machine learning models on

network traffic data captured during a DoS attack scenario

using a packet sniffer on micro-controller. The performance of

these models will be examined further using the CICIoT2023

dataset, which contains a wide range of the most common

and recent types of DoS attack. As we focus on implementing

our project on Espressif ESP32 micro-controllers, we will use

TinyML frameworks compatible with ESP32 boards such as

TensorFlow Lite Micro to compress, convert and deploy these

models onto an ESP32 board. Once the models are deployed,

they should enable the micro-controller to perform inference

when supplied with real-time traffic data.

IV. IMPLEMENTATION

A. Packet Sniffing Using Micro-controllers for Machine

Learning

Packet sniffing is a method of intercepting and inspecting

each packet flowing across a network. Packets sniffers are

programs which are used to read packets that travel across the

network layer of the Transmission Control Protocol/Internet

Protocol, by listening to data that arrives at the Network

Interface Card (NIC). Packet sniffers exist in Local Area

Networks (LANs) and Wide Area Networks (WANs) [10].

In this study, we built and deployed a packet sniffer on

ESP32 micro-controllers to enable them to monitor and detect

malicious network traffic. The steps used for creating a Linux

packet sniffer can also be implemented on micro-controllers

using the appropriate development framework or environment.

The main steps in the development of a packet sniffer are: (1)

creating a socket stream, (2) setting the capturing interface

into promiscuous mode, so that it accepts all packets in the

network, and (3) reading data from the open socket stream

[10]. We also ran Wireshark in tandem with packet sniffing to

capture data for machine learning model development.

B. Data Capturing

Our data capturing setup consists of a computer which

acts as a server and several computers as clients. The client

computers are connected to the server wirelessly via a TP-

Link 1200 Dual-Band wireless access point. We launched a

De-authentication DoS attack from one of the client computers

in the network and captured all network traffic using an ESP32

Pico-Kit board flashed with a packet sniffer set in promiscuous

and monitor mode. We connected the ESP32 Pico-Kit board

to one of the client computers and captured traffic data into

PCAP files using Wireshark.

Fig. 1. DoS Attack Network Traffic Data Capture Setup

C. Machine Learning Model Development

Real-time network traffic data captured using Wireshark can

be parsed with DPKT module in Python or CICFlowMeter

traffic flow analyzer to extract features on packet metadata

and packet flow statistics [2]. In this study, we extracted two

features from captured network traffic data: (1) frame length,

and (2) packet inter-arrival time. We used the preprocessed

dataset to train Support Vector Machine (SVM) and Logistic

Regression (LR) models.

Both SVM and LR are relatively lightweight machine

learning models that are robust for datasets with fewer fea-

tures. SVM is more lightweight than most models in terms

of training time, model size, inference time and ease of

implementation, especially on constrained environments such

as micro-controllers. SVM models have also proven robust

when analyzing larger numbers of features (up to 34) as

experimented in study [12]. LR models are easy to imple-

ment for binary as well as multi-classification problems to

account for different types of DDoS attacks at the same

time. Compared to other models, it is also less prone to

overfitting [5]. These models fit our purpose of experimenting

viable machine learning models with minimal memory and

computation footprint.

Besides real-time captured data, we also used DoS attack

data from the CICIoT2023 dataset to train the aforementioned

models. This dataset contains more types of DoS attacks

experimented on a wide range of IoT devices. As we only

experimented with a simplified Deauthentication DoS attack

on a small Wi-Fi network, the CICIoT2023 dataset assists

in testing the applicability and generalizability of our models

over the most common and recent types of DoS attacks. The

features that we used for analyzing the CICIoT2023 Dataset

are flow duration, frame length, protocol type, time to live,

flow rate, total length of frames in flow, and inter-arrival time

(IAT).

V. RESULTS AND ANALYSIS

We evaluated our machine learning models based on two

metrics: accuracy and confusion matrix. Both datasets are used
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to train binary classification models (benign against malicious

traffic) using SVM and LR models.

Table I shows the precision, recall and F1-score in detecting

malicious traffic, and overall accuracy for four models.

TABLE I
CLASSIFICATION REPORT

SVM LR

CICIoT2023

Accuracy 99.36% 99.15%
Precision 99.44% 99.18%
Recall 99.85% 99.89%
F-1 Score 99.65% 99.53%

Real-time

Accuracy 99.84% 99.71%
Precision 100.00% 100.00%
Recall 99.69% 99.13%
F-1 Score 99.84% 99.56%

Both LR and SVM models yielded comparable results in

terms of accuracy, precision, recall and F-score, with figures

for models trained on the CICIoT2023 dataset slightly lower

than those of models trained on real-time data. The results can

be further examined by analyzing their confusion matrices.

Fig. 2 and Fig. 3 show the confusions matrices for SVM

and LR models trained on real-time data. Malicious instances

are labeled ’1’ and benign instances ’0’. Both SVM and LR

models yielded high true positive rates of 99.69% and 99.44%,

respectively, indicating they correctly classified almost all DoS

attack instances as malicious. The percentage of false positives

were 0.31% for SVM and 0.56% for LR, while neither models

returned any false negatives. While both models achieved

high accuracy, precision and recall, they were biased towards

classifying traffic as malicious.

Fig. 2. Confusion matrix for SVM trained on real-time data

Fig. 4 and Fig. 5 show the confusion matrices for SVM and

LR models trained on the CICIoT2023 dataset. Compared to

models trained on real-time data, these models reported some

percentages of both false positives and false negatives. While

the percentages of false negatives were relatively low (0.11%

Fig. 3. Confusion matrix for LR trained on real-time data

for LR and 0.15% for SVM), both models yielded significantly

higher rates of false positives (5.04% for SVM and 6.20%

for LR). As our real-time data only contains instances of

De-authentication DoS attacks while the CICIoT2023 dataset

includes a much wider variety of DoS and DDoS attacks,

classifying network traffic proves more challenging for models

trained the CICIoT2023 dataset. While these models achieved

overall lower accuracy and precision, they are expected to cor-

rectly detect many types of DoS attacks in real-life scenarios.

Fig. 4. Confusion matrix for SVM trained on CICIoT2023 Dataset

We observed that compared to models trained on CI-

CIoT2023 dataset, models trained on real-time data yielded

higher accuracy, but were more prone to poor generalization to

other data due to (1) real-time experiments involving a single

type of DoS attack and (2) the limited number of features

available for analysis. This limitation can be improved by

incorporating a variety of DoS attacks and implementing more

thorough feature extraction processes in future experiments.

1744

Authorized licensed use limited to: FLORIDA INTERNATIONAL UNIVERSITY. Downloaded on March 30,2025 at 03:41:55 UTC from IEEE Xplore.  Restrictions apply. 



Fig. 5. Confusion matrix for LR trained on CICIoT2023 Dataset

VI. CONCLUSION AND FUTURE WORK

Implementing DoS attack detection and mitigation on the

edge will alleviate the traffic load within IoT networks, lower

end-to-end latency, improve response speed and improve data

privacy. A survey of current micro-controllers and software

development frameworks suggests the feasibility of capturing

network traffic data and deploying lightweight machine learn-

ing models on small edge devices.

This idea still needs to be tested on a variety of micro-

controller boards to study their capability to capture network

traffic and perform inference on the resulting data. In the

future, we aim to investigate more novel and advanced micro-

controller boards and experiment with their capability to

capture various types of network traffic and execute DoS attack

mitigation decisions based on lightweight yet robust machine

learning models. Besides classical machine learning models,

we aim to experiment with deep neural network models in the

future to study the trade-offs between memory, computation

load, and performance across a wide range of machine learning

models.
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