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Abstract—Developing lightweight algorithms to implement
DoS attack mitigation on edge devices is a growing interest
in edge cybersecurity. Various types of micro-controller boards
can be programmed to capture network traffic and implement
lightweight machine learning models to analyze the supplied
traffic data for signs of intrusion and attacks. This study
experimented with building Support Vector Machine and Logistic
Regression models on real-time DoS attack scenario data and
the CICIoT2023 dataset. The main contribution of this study
is to propose a framework for data capturing, processing, and
analysis to produce edge machine learning models for DoS attack
mitigation.

Index Terms—Denial-of-Service,
tinyML, micro-controller

DoS, machine learning,

I. INTRODUCTION

Denial-of-Service (DoS) attacks are among the most com-
mon and malicious types of cybersecurity attacks. These
attacks attempt to disrupt the normal traffic and function
of a targeted server or network. The current cybersecurity
landscape, which involves an exponentially growing number
of connected devices, has also contributed to the evolution of
Distributed Denial-of-Service (DDoS) attacks. These attacks
control networks of internet-connected devices to direct large-
scale and powerful attacks on their targets. DoS and DDoS
attack mitigation is of particular interest to the industry of
internet-of-things (IoT) devices because the growing adoption
of IoT devices render IoT networks an ideal amplification
platform for conducting dangerous high-volume attacks [3].
DoS attack mitigation has traditionally been implemented on
the cloud; however, as the number of IoT devices increases, the
efficiency and viability of cloud security infrastructure dimin-
ishes due to high computation and traffic load [4]. Lightweight
algorithms are a promising solution to this problem. These
algorithms are designed to consume fewer computational
resources (e.g. memory, processing power, etc.), thus suitable
for implementation on battery-powered, portable or remote
edge devices, which reduces the burden of centralized data
processing compared to cloud infrastructure. In this study, we
will investigate lightweight algorithms for implementation on
edge devices to address the limitations of cloud computing in
mitigating DoS attacks.
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DoS attacks can be launched on all seven layers of the
OSI model. In this study, we focus on the network layer,
within which there are three major categories of DoS attacks:
volumetric, amplification, and protocol-related attacks [1].

User Datagram Protocol (UDP) Flood attack is a volumetric
attack that takes advantage of UDP protocol vulnerabilities.
The attacker sends a large number of IP packets containing
UDP packets to arbitrary ports on a targeted server from a
spoofed IP address. The victim server will attempt to respond
to these UDP packet requests with appropriate ICMP packets.
Responding to a very large number of packets prevents the
server from processing legitimate traffic [13].

Amplification attacks exploit a disparity in bandwidth cost
between the attacker and the targeted server. The attacker
sends small requests that result in large responses, thereby
exhausting both the inbound and outbound bandwidth of the
victim. Some examples of amplification attacks are ICMP
floods and Smurf attacks, both of which overwhelm the victim
by sending ICMP Echo requests with IP address spoofed as
that of the targeted server. ICMP flood attacks use botnets with
spoofed IP addresses to increase the volume of the attack and
make it difficult to detect the source. On the other hand, Smurf
attacks exploit immediate IP broadcast networks to transmit
fake Echo requests to all hosts on the network of targeted
server, triggering them to send back an overwhelming number
of responses [1].

SYN flood attacks exploit the three-way handshake required
in a Transmission Control Protocol (TCP) connection. The
attacker sends a high volume of SYN packets to the targeted
server, but never responses to the server’s SYN/ACK packets.
This process triggers the server to leave ports open to receive
the ACK response from the attacker, exhausting the number
of ports available for legitimate requests [1].

II. RELATED WORKS
A. Early Detection Using Edge Devices

C. Avasalcai et al. [4] identified several limitations of cloud
computing with regard to the current state of the art in IoT: (1)
high end-to-end (e2e) latency, (2) increased risk of congestion
and bandwidth waste, and (3) difficulties of satisfying current
data privacy and other requirements of new IoT applications.
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They proposed shifting to edge paradigms to enable lower e2e
latency, more responsive IoT applications, augmented scalabil-
ity and privacy with processing data at the edge. These benefits
of edge computing are particularly relevant to cybersecurity
and DoS attack mitigation. Z. Liu et al. [3] highlighted three
main characteristics of DDoS attacks in edge environment:
(1) hard to detect due to indiscernible flow classified features
from normal traffic, (2) low-cost and able to attack multiple
targets simultaneously, (3) long term attacked-targets become
insensitive to attacks. For these reasons, edge computing is
becoming an essential solution to “alleviate the traffic load
of the network,” and at the same time “reduce the delay of
defense decision and improve the response speed.” Z. Liu et al.
suggested an edge DDoS detection method with high accuracy,
fast response time and certain self-learning ability for unknown
new attacks using LR and Deep CNN Q-Network models [3].

The cumulative advantages of edge detection of anomalous
network traffic promote early and prompt attacks mitigation,
preventing such attacks from spreading within the network and
causing further network failure and property loss. Moreover,
these advantages allow IoT devices and networks to satisfy
increasingly strict requirements regarding latency, data privacy,
and scalability.

B. Machine Learning Models for DoS Attack Detection

Current DDoS detection methods are often based on ana-
lyzing patterns in network packet metadata to discern anoma-
lous and normal network traffic. Therefore, machine learning
models have been widely implemented in cybersecurity and
DDoS detection for their quality performance while fulfilling
complex data analysis tasks.

In particular, M. F. Ashfaq et al. [5] suggests that machine
learning techniques can assist in restricting false positives.
Moreover, neural network models, a subset of machine learn-
ing models, can overcome classical machine learning models’
limitations in handling large datasets. They analyzed two
datasets: one collected using Wireshark and the other imported
from the KDD-Cup database . Two machine learning models
were used to train these datasets: Logistic Regression (LR)
and Decision Tree (DT), both of which outperformed K-
nearest neighbors (K-NN) and support vector machine (SVM)
in terms of accuracy across experiments on different numbers
of features . While K-NN and SVM models achieved accuracy
ranging from 90% - 98% for binary and 10-feature sets, the
figures for LR and DT models were between 99.81% and
99.89% [5].

Y. Jia et al. [6] applied long short-term memory (LSTM)
and convolutional neural network (CNN) models trained by the
CICDDo0S2019 dataset [14] to the data generated in a real at-
tack scenario in a computer-based edge server. CICDD0S2019
contains both benign and 12 most common types of DDoS
attacks launched from PCs. After attempting a number of
layers for both LSTM and CNN from 1 to 10, they discovered
that 3 layers for LSTM and 6 layers for CNN are the most
effective ones. The average accuracy results for LSTM and
CNN models are up to 98.9% and 99.9%, respectively.

C. Benchmark Dataset

The characteristics of IoT devices pose a challenge against
detecting and mitigating cybersecurity attacks, prompting de-
mand for robust datasets to train efficient DDoS detection
models. Most existing datasets such as the CICDDo0S2019
dataset do not consider relatively uncommon or emerging
types of attacks. In addition, they only consider computer-
based attacks rather than those launched from malicious [oT
devices. To fill this gap, E.C.P. Neto et al. [2] introduces the
CICIoT2023 dataset, composed of 33 attacks simulated on 105
devices. They used five machine and deep learning algorithms
to evaluate this dataset: Logistic Regression, Perceptron, Ad-
aBoost, Deep Neural Network (DNN), and Random Forest
(RF). Results showed that all five models maintain high
performance in binary classification. In 8-class and 34-class
classifications, DNN, LR and Decision Tree models maintain
relatively high performance, especially in terms of accuracy.

D. Tiny Machine Learning (TinyML)

As powerful a tool as machine learning is, many challenges
evolve in implementing machine learning in edge devices.
Training machine learning models is computationally and
time-wise expensive, and the power and memory consumption
for which often exceeds the constraints of edge devices [7].
TinyML, an emerging paradigm on the intersection between
machine learning and low-power computing, solves the above
challenges by enabling the implementation of machine learn-
ing algorithms on ultra-low-power devices. Ultra-low-power
devices are those designed to operate and process data with the
smallest amount of power needed, typically under a milliWatt
[8]. This study primarily focuses on ultra-low-power micro-
controller units (MCUs), which typically have an SRAM
(static random access memory) between 256KB and 1MB, and
clock rates between 64MHz to 600MHz [8].

There are a wide variety of MCUs that allow for TinyML
deployment. B. Sudharsan et al. [8] compared the costs and
performance of seven different common boards and showed
that between the two most inexpensive boards, Raspberry Pi
Pico and ESP32, the latter had the best price-performance.
This makes ESP32 a promising option for producing high-
performance yet affordable smart devices.

So far, TinyML has been implemented dominantly in key-
word spotting, image classification and visual wake words.
Less common use cases include object detection, anomaly
detection, motor control, gesture recognition, and face recog-
nition [9].

III. PROPOSED WORK

S. S. Saha et al. [11] introduced a coherent and closed loop
machine learning model development and deployment work-
flow for micro-controllers and discussed the current prominent
model development software suites. The process consists of
the model development phase and the model deployment
phase. The model development phase involves using data en-
gineering frameworks to collect and clean raw data to produce
a dataset; optionally, feature projection can also be performed
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at this stage to reduce dimensionality (i.e reduce the number of
features analyzed while retaining the meaningful properties of
the original data [15]). Several models are then chosen from a
pool of “lightweight model zoo” based on the application and
hardware constraints. The model deployment phase involves
porting the best performing model to a TinyML software suite,
performing model compression along generating embedded
code, then flashing the C file system onto the micro-controller
for inference [11].

In this study, we aim to train machine learning models on
network traffic data captured during a DoS attack scenario
using a packet sniffer on micro-controller. The performance of
these models will be examined further using the CICIoT2023
dataset, which contains a wide range of the most common
and recent types of DoS attack. As we focus on implementing
our project on Espressif ESP32 micro-controllers, we will use
TinyML frameworks compatible with ESP32 boards such as
TensorFlow Lite Micro to compress, convert and deploy these
models onto an ESP32 board. Once the models are deployed,
they should enable the micro-controller to perform inference
when supplied with real-time traffic data.

IV. IMPLEMENTATION

A. Packet Sniffing Using Micro-controllers for Machine
Learning

Packet sniffing is a method of intercepting and inspecting
each packet flowing across a network. Packets sniffers are
programs which are used to read packets that travel across the
network layer of the Transmission Control Protocol/Internet
Protocol, by listening to data that arrives at the Network
Interface Card (NIC). Packet sniffers exist in Local Area
Networks (LANs) and Wide Area Networks (WANSs) [10].

In this study, we built and deployed a packet sniffer on
ESP32 micro-controllers to enable them to monitor and detect
malicious network traffic. The steps used for creating a Linux
packet sniffer can also be implemented on micro-controllers
using the appropriate development framework or environment.
The main steps in the development of a packet sniffer are: (1)
creating a socket stream, (2) setting the capturing interface
into promiscuous mode, so that it accepts all packets in the
network, and (3) reading data from the open socket stream
[10]. We also ran Wireshark in tandem with packet sniffing to
capture data for machine learning model development.

B. Data Capturing

Our data capturing setup consists of a computer which
acts as a server and several computers as clients. The client
computers are connected to the server wirelessly via a TP-
Link 1200 Dual-Band wireless access point. We launched a
De-authentication DoS attack from one of the client computers
in the network and captured all network traffic using an ESP32
Pico-Kit board flashed with a packet sniffer set in promiscuous
and monitor mode. We connected the ESP32 Pico-Kit board
to one of the client computers and captured traffic data into
PCAP files using Wireshark.

Aol %

Network Traffic Capture

Wireless
Access Point

Client(s)

Fig. 1. DoS Attack Network Traffic Data Capture Setup

C. Machine Learning Model Development

Real-time network traffic data captured using Wireshark can
be parsed with DPKT module in Python or CICFlowMeter
traffic flow analyzer to extract features on packet metadata
and packet flow statistics [2]. In this study, we extracted two
features from captured network traffic data: (1) frame length,
and (2) packet inter-arrival time. We used the preprocessed
dataset to train Support Vector Machine (SVM) and Logistic
Regression (LR) models.

Both SVM and LR are relatively lightweight machine
learning models that are robust for datasets with fewer fea-
tures. SVM is more lightweight than most models in terms
of training time, model size, inference time and ease of
implementation, especially on constrained environments such
as micro-controllers. SVM models have also proven robust
when analyzing larger numbers of features (up to 34) as
experimented in study [12]. LR models are easy to imple-
ment for binary as well as multi-classification problems to
account for different types of DDoS attacks at the same
time. Compared to other models, it is also less prone to
overfitting [5]. These models fit our purpose of experimenting
viable machine learning models with minimal memory and
computation footprint.

Besides real-time captured data, we also used DoS attack
data from the CICIoT2023 dataset to train the aforementioned
models. This dataset contains more types of DoS attacks
experimented on a wide range of IoT devices. As we only
experimented with a simplified Deauthentication DoS attack
on a small Wi-Fi network, the CICIoT2023 dataset assists
in testing the applicability and generalizability of our models
over the most common and recent types of DoS attacks. The
features that we used for analyzing the CICIoT2023 Dataset
are flow duration, frame length, protocol type, time to live,
flow rate, total length of frames in flow, and inter-arrival time
(IAT).

V. RESULTS AND ANALYSIS

We evaluated our machine learning models based on two
metrics: accuracy and confusion matrix. Both datasets are used
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to train binary classification models (benign against malicious
traffic) using SVM and LR models.

Table I shows the precision, recall and F1-score in detecting
malicious traffic, and overall accuracy for four models.

TABLE I
CLASSIFICATION REPORT
SVM LR
Accuracy  99.36% 99.15%
Precision 99.44% 99.18%
CICIoT2023 —pecar 99.85%  99.89%
F-1 Score  99.65% 99.53%
Accuracy  99.84% 99.71%
Real-time Precision 100.00%  100.00%
Recall 99.69% 99.13%
F-1 Score  99.84% 99.56%

Both LR and SVM models yielded comparable results in
terms of accuracy, precision, recall and F-score, with figures
for models trained on the CICIoT2023 dataset slightly lower
than those of models trained on real-time data. The results can
be further examined by analyzing their confusion matrices.

Fig. 2 and Fig. 3 show the confusions matrices for SVM
and LR models trained on real-time data. Malicious instances
are labeled "1’ and benign instances '0’. Both SVM and LR
models yielded high true positive rates of 99.69% and 99.44%,
respectively, indicating they correctly classified almost all DoS
attack instances as malicious. The percentage of false positives
were 0.31% for SVM and 0.56% for LR, while neither models
returned any false negatives. While both models achieved
high accuracy, precision and recall, they were biased towards
classifying traffic as malicious.

Support Vector Machine - Real Time Data

True Labels

- 04

- 0.2

- 0.0

Predicted Labels

Fig. 2. Confusion matrix for SVM trained on real-time data

Fig. 4 and Fig. 5 show the confusion matrices for SVM and
LR models trained on the CICIoT2023 dataset. Compared to
models trained on real-time data, these models reported some
percentages of both false positives and false negatives. While
the percentages of false negatives were relatively low (0.11%

Logistic Regression - Real Time Data

True labels

- 0.0

Predicted labels

Fig. 3. Confusion matrix for LR trained on real-time data

for LR and 0.15% for SVM), both models yielded significantly
higher rates of false positives (5.04% for SVM and 6.20%
for LR). As our real-time data only contains instances of
De-authentication DoS attacks while the CICIoT2023 dataset
includes a much wider variety of DoS and DDoS attacks,
classifying network traffic proves more challenging for models
trained the CICI0oT2023 dataset. While these models achieved
overall lower accuracy and precision, they are expected to cor-
rectly detect many types of DoS attacks in real-life scenarios.

Support Vector Machine - CICloT2023 Dataset

- 0.8
0.0504
0.6

-04

True Labels

Predicted Labels

Fig. 4. Confusion matrix for SVM trained on CICIoT2023 Dataset

We observed that compared to models trained on CI-
CIoT2023 dataset, models trained on real-time data yielded
higher accuracy, but were more prone to poor generalization to
other data due to (1) real-time experiments involving a single
type of DoS attack and (2) the limited number of features
available for analysis. This limitation can be improved by
incorporating a variety of DoS attacks and implementing more
thorough feature extraction processes in future experiments.
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Fig. 5. Confusion matrix for LR trained on CICIoT2023 Dataset

VI. CONCLUSION AND FUTURE WORK

Implementing DoS attack detection and mitigation on the
edge will alleviate the traffic load within IoT networks, lower
end-to-end latency, improve response speed and improve data
privacy. A survey of current micro-controllers and software
development frameworks suggests the feasibility of capturing
network traffic data and deploying lightweight machine learn-
ing models on small edge devices.

This idea still needs to be tested on a variety of micro-
controller boards to study their capability to capture network
traffic and perform inference on the resulting data. In the
future, we aim to investigate more novel and advanced micro-
controller boards and experiment with their capability to
capture various types of network traffic and execute DoS attack
mitigation decisions based on lightweight yet robust machine
learning models. Besides classical machine learning models,
we aim to experiment with deep neural network models in the
future to study the trade-offs between memory, computation
load, and performance across a wide range of machine learning
models.
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