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Abstract: Water colour remote sensing is a valuable tool for assessing bio-optical and biogeochemi-
cal parameters across the vast extent of the Amazon River Continuum (ARC). However, accurate 
retrieval depends on selecting the best atmospheric correction (AC). Four AC processors (Acolite, 
Polymer, C2RCC, OC-SMART) were evaluated against in situ remote sensing reflectance (𝑅௥௦) meas-
urements. K-means classification identified four optical water types (OWTs) that are affected by the 
ARC. Two OWTs showed seasonal differences in the Lower Amazon River, influenced by the in-
crease in suspended sediment concentration with river discharge. The other OWTs in the Amazon 
River Plume are dominated by phytoplankton or by a mixture of optically significant constituents. 
The Quality Water Index Polynomial method used to assess the quality of in situ and orbital 𝑅௥௦ 
had a high failure rate when the Apparent Visible Wavelength was >580 nm for in situ 𝑅௥௦. OC-
SMART 𝑅௥௦ products showed better spectral quality compared to 𝑅௥௦ derived from other AC pro-
cessors evaluated in this study. These results improve our understanding of remotely sensing very 
turbid waters, such as those in the Amazon River Continuum. 

Keywords: atmospheric correction; Amazon River Continuum; turbid waters; optical water types; 
spectral quality 
 

1. Introduction 
Rivers and their marine receiving waters form an integrated system. The flow of the 

water, starting with the rainfall and headwaters, transports particulate and dissolved mat-
ter from land to sea, driving the biogeochemical cycling of a range of components 
throughout the river’s course and continuing as it enters the ocean [1–3]. Outside the river 
basin limits, the river plume is an important component that integrates different water 
masses. Freshwater river plumes have a significant impact on the salinity, sea surface tem-
perature, nutrients, carbon availability and primary production [4–12]. Understanding the 
biogeochemical dynamics induced by the land–ocean exchange is, therefore, crucial.  

The Amazon River Continuum (ARC), from the lower tidal river at Óbidos 850 km 
to the estuary and out into the plume, is a particularly challenging environment to under-
stand due to its sheer size, diversity of water types from low to high colour range, and 
tidal to seasonal cycles. In situ sampling, while fundamental, poses a significant challenge 
to the establishment of an effective and representative monitoring scheme, given the large 
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distances between sampling stations and the usual temporal nature of sampling [13,14]. 
With its ability to assess large areas, water colour remote sensing (WCRS) provides a crit-
ical capability to augment point measurements. For accurate retrieval of remote sensing 
reflectance (𝑅௥௦) and bio-optical properties by WCRS to assess the biogeochemical dynam-
ics of a given area, a reliable atmospheric correction (AC) is essential. 

The high turbidity of the ARC can add complexity to AC performance compared to 
other optically complex waters. Elevated suspended sediment concentrations show a 
strong signal response in the near-infrared spectrum, potentially leading to the misclassi-
fication of water pixels as clouds and an overestimation of aerosols [15]. This can result in 
misleading WCRS products, such as negative reflectance values [16] when processing sat-
ellite data with open ocean colour as the default setting in the AC processor [17]. In addi-
tion, AC for blue wavelengths is often challenging, especially in turbid waters [16,18–20], 
and can lead to problems with chlorophyll-a concentration (chla) retrieval, such as over-
estimation [17,21,22]. 

The ARC is also known for the high presence of coloured dissolved organic matter 
(CDOM) [23], which enhances water absorption, particularly in the blue-green part of the 
spectrum, thereby reducing the signal of water leaving radiance. The significant presence 
of CDOM, resulting in a low radiometric signal, has a direct impact on the signal-to-noise 
ratio, requiring precise (e.g., high spectral resolution) remotely sensed radiometric signals 
that rely heavily on effective atmospheric correction [24,25]. 

As a step towards developing a WCRS-based characterisation of the ARC, the overall 
objective of this study was to evaluate different atmospheric correction algorithms applied 
to Sentinel 3 Ocean and Land Colour Instrument (OLCI) images and to assess the quality 
of the in situ and remotely sensed spectra. Standard AC algorithms are designed to per-
form well in open ocean waters. These algorithms typically estimate aerosol radiance by 
assuming negligible water leaving radiance (black pixel assumption) in the near-infrared 
(NIR) bands, where pure water strongly absorbs light [16,26]. NIR bands are commonly 
used to estimate the atmospheric contribution, which is then extrapolated to the visible 
bands. However, in turbid waters, the retrieval of water leaving reflectance is hampered 
by increased light backscattering from suspended particles. This results in the water leav-
ing signal becoming significant in the NIR bands. Therefore, for accurate atmospheric cor-
rection, it is essential to distinguish between aerosol and water leaving contributions at 
the top of the atmosphere. In turbid waters where the NIR-based black pixel assumption 
is no longer valid [16,20], atmospheric correction algorithms based on the short-wave in-
frared (SWIR) region can provide a viable solution [16,21]. 

There are few studies in the ARC that evaluate the performance of existing AC algo-
rithms for the Amazon River and floodplains. However, these studies are limited to Sen-
tinel 2 MultiSpectral Instrument (MSI) [27–29] and/or Landsat 8 Operational Land Imager 
(OLI) [27,28]. Although the S3-OLCI is a medium spatial resolution sensor (300 m), it can 
be used to assess the water colour of the Amazon River [23] and has the advantage of a 
better spectral resolution than the previously mentioned sensors. Recently, this sensor has 
been used to assess the performance of AC processors in the optically complex coastal 
waters of French Guiana [30], a region seasonally influenced by the ARC due to its geo-
graphical proximity. 

To achieve optimal accuracy in WCRS products, it is essential to assess the data qual-
ity of both in situ and satellite 𝑅௥௦. The Quality Water Index Polynomial (QWIP) is an 
effective tool for this purpose. The QWIP score helps to diagnose outliers and subtle prob-
lems with the 𝑅௥௦  data by identifying spectra that deviate significantly from expected 
shapes. This technique provides a quick visual tool for assessing spectral shape and mag-
nitude, making it useful for a wide range of assessments of aquatic water-leaving reflec-
tance spectra [31]. Furthermore, as shown in [32], QWIP has the potential to evaluate the 
performance of different AC approaches. Therefore, this study assesses the quality of in 
situ and remotely sensed spectra obtained in the region and evaluates four different 
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atmospheric correction algorithms applied to S3-OLCI images in the Amazon River Con-
tinuum. 

2. Materials and Methods 
2.1. Study Area: Lower Amazon River to the Amazon Plume 

The Amazon River Continuum considered in this study extends from the upstream 
boundary at Óbidos (01°55.14′S, 55°31.54′W) to the Amazon River Plume (Figure 1). The 
region from Óbidos to the estuary is characterised by extensive floodplains and a main 
river channel that becomes wider and slower toward the estuary [33]. The lower part of 
the reach is divided around the island of Marajó, where tides of ~3 m (detectable as far as 
Óbidos) create semi-diurnal flows to and from floodplains and channels, resulting in com-
plete flow reversal (but no salinity intrusion). As summarised by [34], the Amazon River 
plume is transported up to 1000 km away from the coast by four main water export path-
ways [9,35]. Amazon River discharge peaks in spring (April–May) during the northward 
migration of the Intertropical Convergence Zone (ITCZ), when onshore winds are relaxed. 
In the following summer (June–July), river discharge begins to feed the North Equatorial 
Counter Current (NECC), and in September, plume water is exported eastward through 
this pathway [36].  

 
Figure 1. Sampling stations along the Amazon River Continuum used in this study. Each campaign 
has a different colour (see Table 1). 

Table 1. Campaigns gathered in the Amazon River Continuum. 

Campaign Region Year 
Number of In Situ 
Radiometric Data 

TROCAS 1:4 Lower Amazon River  2014–2016 55 
TROCAS 5:9 Amazon River mouth 2017–2023 98 
Mudbencs Amazon River plume 2023 19 

Alucia Amazon River plume 2017 28 
Anacondas Amazon River plume 2012 19 

Oceano Norte IV Amazon River plume 2009 11 
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Total     230 

2.2. Sampling Campaigns: In Situ Data 
Radiometric data were collected over the last 14 years (2009–2023), comprising a total 

of 428 measurements during this period. Figure 1 gives an overview of all the campaigns 
considered in this study, while Table 1 provides detailed information about each cam-
paign. In brief, radiometric and chemical measurements were made during a series of nine 
TROCAS project expeditions over the lower Amazon. Four expeditions were carried out 
along the lower Amazon River between April 2014 and March 2016, during periods of 
low, rising, high and falling river discharge periods (Figure 1) at Óbidos, Almeirim (ap-
proximately halfway to the mouth) and two well-constrained channels by Macapá. Meas-
urements were made during five subsequent expeditions, 2017–2023, at the two Macapá 
stations and two stations bracketing the estuary. Intermediate measurements were taken 
on all expeditions. Chemical and radiometric measurements were carried out offshore as 
part of the Mudbencs project. Previous measurements were made during the Anacondas, 
Alucia and Oceano Norte IV campaigns. 

Above-water hyperspectral radiance (L, µW m−2 sr −1) was recorded using a portable 
hyperspectral spectroradiometer FieldSpec® (ASD Inc., Boulder, CO, USA; 350–1100 nm). 
The acquisition geometry followed recommendations to minimise shadows and avoid sun 
glint contamination of the measurements [37]. Radiometric measurements were per-
formed between 09:00 and 16:00 local time. Total water leaving radiance (𝐿௪), sky radiance 
(𝐿௦௞௬), and the radiance from a white panel Spectralon reference (𝐿௚) were measured 10 
times in succession. 𝐿௚ is used to estimate the downwelling irradiance (𝐸ௗ) (Equation (1)): 𝐸ௗ(𝜆) =  𝐿௚(𝜆)𝑓௖𝜋, (1) 

where the correction factor 𝑓௖ is determined by the ratio of a standard Spectralon refer-
ence kept in the laboratory to the Spectralon panel used in the fieldwork. The remote sens-
ing reflectance (𝑅௥௦) is then calculated from Equation (2): 𝑅௥௦ =  ௅ாೢ೏ = ௅ೠ ି ఘೌ೔ೝషೢೌ೟೐ೝ∗௅ೞೖ೤ா೏ , (2) 

where 𝐿௨   represents the upwelling radiance reaching the sensor and 𝜌௔௜௥ି௪௔௧௘௥  is the 
correction coefficient accounting for sky glint at the air–water interface. 

2.3. Data Processing 
Various methods have been proposed in the literature to correct optical signals af-

fected by sun glint interference. In this study, two approaches were used to assess the 
accuracy of the results. The first approach is based on [38] and is indicated for turbid to 
highly turbid waters. The correction coefficient 𝜌௔௜௥ି௪௔௧௘௥  is parameterised by wind 
speed and cloud cover (Equations (3) and (4)). ௅ೞೖ೤(ఒୀ଻ହ଴)ா೏(ఒୀ଻ହ଴) ≥ 0.05 → 𝜌௔௜௥ି௪௔௧௘௥ = 0.0256, (3) 

or ௅ೞೖ೤(ఒୀ଻ହ଴)ா೏(ఒୀ଻ହ଴) < 0.05 → 𝜌௔௜௥ି௪௔௧௘௥ = 0.0256 + 0.00039𝑊 +0.000034𝑊ଶ, 
(4) 

where 𝑊 is the wind measured concurrently with the radiometric measurements. 
The second approach is the Three-Component Reflectance Model (3C), initially de-

signed to improve the estimation of 𝑅௥௦  using above-water radiometric hyperspectral 
measurements performed under sub-optimal conditions, such as cloudy skies, varying 
viewing geometry, high glint disturbances and low illumination conditions [39]. The in-
water component of 3C is based on a semi-analytical bio-optical model that provides 𝑅௥௦ 
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as a function of the optical properties of the significant water constituents and various 
boundary conditions. For this study, we used parameter bounds and initial estimates for 
the 3C retrievals for measurements significantly affected by sun glint. The table with sug-
gested parameter bounds and access to the 3C model can be found in [39]. The processing 
of the raw radiometric data followed the methodology proposed by [37], with the correc-
tion for sun and sky glint as recommended by [38] and the application of the 3C model. 

2.4. In Situ 𝑅௥௦ Classification 
2.4.1. Spectra Normalisation 

The aim of the normalisation is to reduce first-order variability in reflectance and 
emphasise spectral shape, thereby eliminating amplitude differences due to concentration 
variations. Normalisation is a standard procedure prior to optical classification, as demon-
strated in previous studies [23,40,41]. Each 𝑅௥௦ spectrum was normalised by its integrated 
value [23,40,41] according to Equation (5). Integration was performed using the trapezoi-
dal method over the 400–800 nm spectral range. 𝑟௡(𝜆) =  ோೝೞ(ఒ)׬ ோೝೞ(ఒ)ௗఒഊమഊభ , (5) 

where 𝑟௡(𝜆)  (in units of nm−1) is the normalised spectrum obtained by integration be-
tween 𝜆ଵ (400 nm) and 𝜆ଶ (800 nm). 

2.4.2. Optical Water Type Identification 
In this study, we used an unsupervised k-means classification of the normalised in 

situ 𝑅௥௦ to identify the different optical water types (OWT) within the Amazon River Con-
tinuum in order to partition the responses of the respective AC processors. The use of k-
means classification is well-established in water colour studies. It has been used success-
fully in a variety of settings, including highly turbid waters such as our study area and 
other river-influenced waters [23,32,41]. To determine the optical number of clusters (k) 
for optical classification, we employed the Silhouette width analysis [42]. The analysis was 
performed over a range of 2–10 clusters. 

2.5. Satellite Data 
A total of 56 Level 1 OLCI images from the Sentinel-3 satellites (S3A and S3B, 300 m 

spatial resolution) were acquired via the CREODIAS platform (https://explore.cre-
odias.eu/, accessed on 11 July 2024) and the Copernicus Online Data Access 
(https://data.eumetsat.int/, accessed on 11 July 2024). The acquired images correspond to 
the day of the in situ measurements, as well as one day before and one day after.  

For the match-up analysis between satellite and in situ data, the mean satellite-de-
rived 𝑅௥௦ in a 3 × 3 pixel window cantered on each in situ station with more than 5 valid 
pixels (non-NAN) and <20% of the coefficient of variation was considered [43,44]. In ad-
dition, the match-up analysis has identified the samples that fall within and outside the 3 
h satellite pass window. 

2.5.1. Selected Atmospheric Correction Algorithms 
Each processor was operated using the default settings, as these are generally con-

sidered to be the best options for use without prior knowledge of the aquatic system or 
atmospheric conditions, including the recommended water correction settings. If the at-
mospheric correction produced 𝑅௥௦ (sr⁻1), this option was selected. If normalised water-
leaving reflectance (ρw, dimensionless) was produced, the output was transformed to 𝑅௥௦ 
by dividing by π. If the processor offered the option to obtain ancillary data by registering 
for an EarthData account (https://www.earthdata.nasa.gov/, accessed on 11 July 2024), this 
option was selected. A general overview of the selected atmospheric correction is given in 
Table 2.  
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The following atmospheric correction algorithms, designed for coastal and/or turbid 
waters, were considered in this study: (i) The Acolite processor was developed by the 
Royal Belgian Institute of Natural Sciences [45]. By default, it employs the Dark Spectrum 
Fitting (DSF) approach [46,47], which was used in this study. This AC scheme is entirely 
image-based and, as such, does not require external inputs such as aerosol optical thick-
ness (whether measured or estimated). The algorithm operates under the assumption that 
the atmosphere is homogeneous across a scene or sub-scene, allowing the prediction of 
atmospheric path reflectance from multiple dark targets within the scene or sub-scene. 
The selection of these targets is based on the lowest observed Top-Of-Atmosphere (TOA) 
reflectance values across all bands. Acolite offers flexibility, as it can also be configured 
using SWIR bands [21,45] by setting the aerosol correction to exponential in the settings 
file. Importantly, this AC algorithm is specifically designed for use in clear to turbid wa-
ters and is adaptable to most satellite sensors. However, it is important to note that Acolite 
requires SWIR bands for effective performance over turbid waters. For this study, we used 
the 20221114 version of the processor, which is available both as a compiled binary format 
and as Python source code. Further information can be found on the Institute of Natural 
Sciences website (https://odnature.naturalsciences.be/remsem/software-and-data/acolite, 
accessed on 11 July 2024). 

(ii) The Polynomial-based algorithm (Polymer) was developed to accommodate wa-
ters both with and without sun glint contamination [48]. Polymer operates based on the 
principle of the spectral matching method, which relies on a polynomial function to char-
acterise the spectral reflectance of both the atmosphere and sun glint. This is achieved by 
leveraging a water reflectance model applicable to the visible spectrum, further extended 
to the NIR spectral range (700–900 nm) using a similarity spectrum tailored for turbid 
waters. Polymer is written in Python, and for this study, we used version v4.16. More 
information can be found on the HYGEOS website (https://hygeos.com/en/polymer/, ac-
cessed on 11 July 2024).  

(iii) The Case 2 Regional Coast Colour (C2RCC) is an atmospheric correction algo-
rithm based on Neural Network (NN) principles. Originally developed by [49] under the 
name “Case 2 Regional processor”, the method utilised a substantial collection of radiative 
transfer simulations inverted by neural networks. Subsequently, the algorithm has been 
improved, incorporating an additional set of NN computations specifically trained to en-
compass broader ranges of water scattering and absorption coefficients. This refinement 
has resulted in the enhanced version available on the European Space Agency (ESA) Sen-
tiNel Application Platform (SNAP). In this study, we used version 9.0. 

(iv) The Ocean Color—Simultaneous Marine and Aerosol Retrieval Tool (OC-
SMART) is a machine learning algorithm that relies on a multilayer neural network 
(MLNN) classifier driven by extensive radiative transfer simulations. The MLNN used in 
this processor is a spectral matching algorithm based on the spectral similarity between 
the Rayleigh corrected TOA and the water leaving radiances. In particular, this approach 
eliminates the need to retrieve aerosol radiances [50]. It was downloaded from the Light 
and Life Lab website (http://www.rtatmocn.com/oc-smart/, accessed on 11 July 2024) as a 
plug-in that was installed in the SNAP platform. OC-SMART is only compatible with 
SNAP version 7.0, which is the version used to run the plug-in.  

Table 2. General information about the selected atmospheric correction processors (ACP). 

ACP Developed by 
Implement

ed in Where to Get 

Acolite 
Royal Belgian Institute 

of Natural Sciences Phyton 

https://odnature.naturalscience
s.be/remsem/software-and-
data/acolite, accessed on 11 

July 2024 
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C2RCC 
European Space 

Agency 
SNAP 

https://step.esa.int/main/downl
oad/snap-download/, accessed 

on 11 July 2024 

OC-SMART 
Stevens Institute of 

Technology 
SNAP v.7 

http://www.rtatmocn.com/oc-
smart/, accessed on 11 July 

2024 

Polymer HYGEOS Phyton 
https://hygeos.com/en/, 
accessed on 11 July 2024 

2.5.2. Assessment of the Spectral Quality of In Situ and Orbital Data 
To assess the spectral quality of both the in situ measured and the Sentinel 3 OLCI A 

and B (S3-OLCI) derived 𝑅௥௦ after the applied atmospheric correction, we used the Qual-
ity Water Index Polynomial (QWIP) scoring technique [31]. Considering the high sedi-
ment content in the Amazon River Continuum waters [23], which leads to a significant 
magnitude of the 𝑅௥௦ spectrum, especially in the red and NIR bands, we chose to use the 
spectral range from 400 to 800 nm for in situ data and 400 to 779 nm for S3-OLCI bands. 
QWIP (Equation (8)) is based on a polynomial relationship involving the Apparent Visible 
Wavelength (AVW) index [51] (Equation (6)) and the Normalised Difference Index (NDI) 
(Equation (7)). This relationship is established using the red (band 665) and green (band 
490) wavelengths. The QWIP score (Equation (9)) is the difference between the AVW and 
NDI values of a spectrum and the QWIP polynomial. Further information on the method 
and constant parameters can be found in [31]. AVW = ൭∑ ୖ౨౩(஛౟)౤౟సభ∑ ౎౨౩(ಓ౟)ಓ౟౤౟సభ ൱, (6) 

NDI =  (R୰ୱ(λଶ) − R୰ୱ(λଵ))(R୰ୱ(λଶ) + R୰ୱ(λଵ)) , (7) 

QWIP =  pଵAVWସ + pଶAVWଷ + pଷAVWଶ + pସAVW + pହ, (8) 

where pଵ =  −8.399885 × 10ିଽ , pଶ =  1.715532 × 10ିହ , pଷ =  −1.301670 × 10ିଶ , pସ =4.357828, pହ =  −5.449532 × 10ଶ QWIP score = NDI(490,665) − QWIP, (9) 

where an absolute QWIP score threshold of > 0.2 is used to identify spectra of questionable 
quality [31]. 

2.5.3. Statistical Indicators for Atmospheric Correction Performance Assessment 
In addition to the use of the coefficient of determination Rଶ and the slope, other sta-

tistical descriptors were used to assess the performance of the atmospheric correction pro-
cessors considered. These included Root Mean Square Deviation (RMSD), Mean Relative 
Absolute Difference (MRAD) and mean bias (MB) (Equations (10)–(12)): 

RMSD =  ቊ∑ ቂ୪୭୥భబ(ୖ୰ୱ౟ఽి)ି୪୭୥భబ(ୖ୰ୱ౟౥ౘ౩)ቃమ୒୒୧ୀଵ ቋଵ ଶൗ
, (10) 

MRAD = 1N × ෍ หRrs୧୅େ − Rrs୧୭ୠୱหRrs୧୭ୠୱ୒
୍ୀଵ × 100%, (11) 

MB =  1N × ෍หlog10൫Rrs୧୅େ൯ − log10(Rrs୧୧୬ୱ୧୲୳)ห୒
୧ୀଵ , (12) 
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where 𝑅𝑟𝑠௢௕௦ is the in situ 𝑅௥௦ observations and 𝑅𝑟𝑠஺஼  is the 𝑅௥௦ obtained by remote 
sensing after the atmospheric correction. 

Another metric considered here is the number of valid pixels (VP), which takes into 
account the number of match-ups between in situ measurements and 𝑅௥௦ retrieved from 
the image for the same latitude and longitude. 

Radar plots were also used to compare the performance of the AC model tested in 
this study. This graphical representation allows the visualisation of various statistical pa-
rameters condensed into a two-dimensional graph [52]. In this context, an overview of the 
normalised RMSD, MRAD, MB, slope, Rଶ and VP (Equations (13)–(18)) is given. The nor-
malisation process is calculated as follows:  RMSD୬୭୰୫ (j) = RMSD(j)max(RMSD(j), j = 1, k) , (13) 

MRAD୬୭୰୫ (j) = MRAD(j)max(MRAD(j), j = 1, k) , (14) 

MB୬୭୰୫ (j) = MB(j)max(MB(j), j = 1, k) , (15) 

Slope୬୭୰୫ (j) = |1 − Slope(j)|max(|1 − Slope(j)|, j = 1, k) , (16) 

Rଶ୬୭୰୫ (j) = min (Rଶ(j), j = 1, k) Rଶ , (17) 

VP୬୭୰୫(j) =  min (Vp(j), j = 1, k) Vp , (18) 

where j represents each individual AC model considered in a defined intercomparison 
exercise. 

In addition to a synthetic visual examination, radar plots were also used to calculate 
a comprehensive statistical indicator, summarising the overall performance of the AC pro-
cessor under consideration. In practice, this consists of calculating the area associated with 
the polygons connecting the normalised indicators from Equations (13)–(18) as follows 
(Equation (19)): Area =  12 × π6 × ሾRMSD୬୭୰୫ (j) × VP୬୭୰୫ (j) + VP୬୭୰୫ (j) × MRAD୬୭୰୫ (j)+ MRAD୬୭୰୫ (j) × MB୬୭୰୫ (j) + MB୬୭୰୫ (j) × Slope୬୭୰୫ (j)+ Slope୬୭୰୫ (j) × Rଶ୬୭୰୫ (j) + Rଶ୬୭୰୫ (j) × RMSD୬୭୰୫ (j)ሿ, (19) 

An overview of the study process is shown in the following flowchart (Figure 2). 
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Figure 2. Flowchart of the present study illustrating the overall methodology. The orange, blue and 
green lines represent the statistical comparisons made between the in situ 𝑅௥௦ and the satellite-de-
rived 𝑅௥௦ values after atmospheric correction. 

3. Results 
3.1. Match-Ups 

All AC processors tested consistently underestimated the in situ 𝑅௥௦, showing a neg-
ative mean bias (Figure 3). However, exceptions were observed for the 665 and 674 nm 
bands of OC-SMART (Figure 4). The Acolite processor showed higher Rଶ values for most 
bands and a lower RMSD compared to other AC processors. The RMSD showed a similar 
pattern for all processors, with high values at lower wavelengths, decreasing until reach-
ing the NIR, at which point the values increased again. Except for Acolite, the RMSD at 
620 nm showed a peak with high values for all AC processors. Compared to the other AC 
processors, Acolite showed mean bias values closer to zero, indicating that it was the pro-
cessor that least underestimated 𝑅௥௦ retrievals (Figure 4). 

Looking more closely at the match-ups on a band-to-band basis, it becomes apparent 
that the accuracy of the retrievals varied depending on the wavelength. This band-to-band 
variation has also been observed by [53] for different ACs, including Polymer and C2RCC. 
For the bands from 400 to 510 nm, the scattering of the retrievals was consistently high 
across all AC processors. However, it is noteworthy that within this range, Acolite showed 
superior performance compared to the other AC processors (Figure 3). 

There is a marked increase in Rଶ as the wavelengths move from the blue to the red 
part of the spectrum, peaking at 665 nm, 674 nm, and 681 nm. There is then a decrease as 
the bands enter the NIR region (Figure 4). MRAD shows the same trend for all AC pro-
cessors, with higher values at the extremes of the spectrum and lower values in the green 
region, except for OC-SMART, which shows a peak between the bands of 620–754 nm. 
This MRAD peak corresponds to an increase in the average bias of the OC-SMART 𝑅௥௦ 
(Figure 4). 

The 3 h time difference between in situ and satellite measurements appears to be 
more significant for C2RCC than for the other AC processors (Figure 3). Although C2RCC 
had significantly more valid pixels, it also had the worst retrieval performance, with low 
coefficients of determination (Rଶ) and high RMSD values for all bands (Figure 4). 

With the exception of Acolite, which showed a distinct pattern, the slope of the re-
gression line showed a consistent trend of increasing with the wavelength. The peak 
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occurred between the 665 and 709 nm bands, after which the slope decreased abruptly 
(Figure 4). 

 
Figure 3. Match-ups of simulated in situ 𝑅௥௦ for S3-OLCI bands and 𝑅௥௦ derived from different 
atmospheric correction processors for the same day: (A) Acolite; (B) Polymer; (C) C2RCC; (D) OC-
SMART. The data were measured at the Amazon River Continuum, and the in situ 𝑅௥௦ were de-
rived following the methodology proposed by [37] with the elimination of sun and sky glint as rec-
ommended by [38]. Scatter plots are presented in a log–log scale. Circles represent match-ups within 
a 3 h satellite pass window, while triangles represent match-ups outside the 3 h satellite pass win-
dow. 
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Figure 4. Spectral variation in the statistical parameters between 400 and 779 nm: (A) Coefficient of 
determination (Rଶ), (B) Root Mean Square Deviation (RMSD), (C) slope, (D) Mean Relative Absolute 
Difference (MRAD), (E) Mean Bias (MB) and (F) Valid Pixel (VP). 

We assessed the feasibility of including measurements from one day before or after 
the in situ measurement and investigated whether the 3C model agrees with our in situ 
data. To provide an overview, we compare all the bands together (Figure 5). A smaller 
area on the radar plot indicates better results.  
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Figure 5. Radar plot illustrating the statistical metrics used to evaluate the accuracy of the remote 
sensing reflectance for each atmospheric correction processor, using different approaches to esti-
mate in situ 𝑅௥௦. The green line represents the in situ 𝑅௥௦ processed according to [37] with sun and 
sky glint corrected according to the method proposed in [38] (M99 + R06). The blue line shows the 
same approach, not only considering the day of the in situ measurement but also one day before or 
after to increase the number of match-ups. The red line corresponds to the in situ 𝑅௥௦ processed 
with the 3C model. 

Clearly, the 3C model showed poor performance with our data (area size: Acolite = 
1.53; Polymer = 1.57; C2RCC = 1.57; OC-SMART = 1.57, Table A1), resulting in suboptimal 
agreement with the 𝑅௥௦ obtained from the post-atmospheric correction image. We also 
continued the evaluation using only the in situ 𝑅௥௦ processed by the M99 + R06 method. 
While restricting the data to the same day as the in situ measurement gave slightly better 
results for most of the AC processors (area size: Acolite = 0.37; Polymer = 0.77; C2RCC = 
1.03; OC-SMART = 0.81, Table A2), including data from one day before or after did not 
significantly affect the results (area size: Acolite = 0.41; Polymer = 0.85; C2RCC = 0.83; OC-
SMART = 0.85, Table A3). Therefore, for this study area, the number of match-ups could 
be increased if necessary. In our case, including data from one day before or after in-
creased the number of match-ups by 57% for Acolite, 100% for Polymer, 46% for C2RCC 
and 77% for OC-SMART. 

3.2. Optical Water Types at the Amazon River Continuum 
To assess the optical variability within the dataset, we employed k-means classifica-

tion, which resulted in the identification of five distinct OWTs. In particular, OWT K5 
(Figure 6A) exhibited optical properties similar to those of oceanic waters, characterised 
by increased reflectance at shorter wavelengths and increased absorption at longer wave-
lengths [40]. Most of cluster K5 (in blue, Figure 6B) lies below the Amazon River estuary 
and is not under the influence of the Amazon River, whose plume is known to extend 
north-westwards towards French Guiana [36,54]. Consequently, from this point on, all 
spectra from this class were removed from our analysis, ensuring that only waters with 
the Amazon River Continuum signal were assessed. 

 
Figure 6. (A) Optical Water Types (OWT) identified in the Amazon River Continuum and (B) their 
location for the different campaigns carried out (see Figure 1 and Table 1 for more information on 
the field campaigns). 

OWTs K1 and K2 characterise sediment-laden waters, mainly along the Lower Ama-
zon [23] (Valerio et al., 2021). Conversely, OWTs K3 and K4 are predominantly found in 
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coastal waters, with their spectral signatures indicating the prevalent presence of chla (K3) 
and a covariance of other bio-optical parameters (K4) [23,55]. 

3.3. Assessment of the Spectral Quality 
3.3.1. In Situ 𝑅௥௦ 

To ensure the spectral quality of the final dataset (in situ 𝑅௥௦ simulated on S3-OLCI 
bands after the removal of the K5 spectrum and extracted OLCI for match-ups, except for 
those from K5 OWT), we applied the AVW and QWIP score method on the remaining 
spectra. Considering the entire dataset (excluding the K5 OWT determined by k-means), 
out of a total of 203 in situ 𝑅௥௦ spectra, only 25% are considered valid when applying the 
recommended range of −0.2 to 0.2 [31], indicating that these spectra “pass” the quality 
assessment. On closer inspection, there is considerable variability between the different 
OWTs. The first two OWTs (K1 and K2), located mainly in the Amazon River and adjacent 
coastal waters with higher sediment content, have a higher failure rate, with only 14% and 
4% considered to be of adequate quality. In contrast, OWTs K3 and K4, located in the 
coastal waters of Brazil and the outer reaches of the Amazon River Plume, have higher 
validity rates of 94% and 81%, respectively (Table 3). All spectra from OWT K1 and K2 
that did not pass the QWIP score had values < −0.2, a pattern also observed and discussed 
by [31] and attributed to optically shallow waters. Conversely, our study area does not 
exhibit characteristics of optically shallow waters; rather, the problem arises when the 
AVW > 580 nm (Figure 7), where absolutely all of our K1 fits with the AVW mean of 614 
nm and 90% of our OWT K2 fits with an AVW mean of 592 nm. For this reason, we have 
relaxed the QWIP score threshold to the range between −0.3 and 0.3 for these two OWTs 
(K1 and K2).  

Table 3. Percentage of valid in situ 𝑅௥௦ spectra after the QWIP score evaluation. The right column 
shows the percentage of valid in situ 𝑅௥௦ spectra considering a range from −0.2 to 0.2. The left col-
umn shows the percentage of valid in situ 𝑅௥௦ spectra considering a range from −0.3 to 0.3. 

OWT (N)  −0.2 to 0.2 −0.3 to 0.3 
All (203) 25% 80% 
K1 (97) 14% 89% 
K2 (67) 4% 60% 
K3 (16) 94% 94% 
K4 (21) 81% 95% 

 
Figure 7. (A) The QWIP relationship between Apparent Visible Wavelength (AVW) and the Nor-
malised Difference Index (NDI) at blue-green and red bands, as described in [31], with the Amazon 
River Continuum (ARC) in situ 𝑅௥௦  dataset showing the different levels of QWIP values (±0.2 
dashed grey line and ±0.3 dash-dotted grey line). Each optical water type found at the ARC is rep-
resented by a different colour. (B) Histogram of the AVW for our in situ ARC dataset. 
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3.3.2. S3-OLCI 𝑅௥௦ 
The AVW and QWIP scoring methods were also applied to S3-OLCI images resulting 

from the four atmospheric corrections. As an example, we choose the 8 November 2019 
image at the Amazon River mouth to represent the application of the AVW in the images 
(Figure 8). 

 
Figure 8. Mapped S3-OLCI image as an example (8 November 2019), where Apparent Visible Wave-
length has been applied after using different atmospheric corrections: (A) Acolite; (B) Polymer; (C) 
C2RCC and (D) OC-SMART. The white line in the C2RCC image represents the transect used to 
extract pixels for evaluation. The same transect was applied to all four images processed with dif-
ferent atmospheric corrections. 

The AVW results are strongly influenced by the AC method used (Figures 8 and 9, 
Table A4). Despite having similar values, the same pixel lacks consistency when processed 
with different atmospheric corrections. Images processed with the Polymer processor 
show higher AVW values in an overall basic statistic, while OC-SMART shows lower AVW 
values (Table A4).  

We traced a transect extending from the river mouth to the inner plume (white line 
in Figure 8 on the C2RCC image) to examine the pixel variations along this path (Figure 
9). It is clear that Acolite and C2RCC have higher variability, which increases towards the 
oceanic region. Conversely, Polymer and OC-SMART show lower variability, although 
there is noticeable noise in the Polymer image, indicated by the dark blue patches (Figure 
8). OC-SMART stands out as having lower AVW values compared to the other AC-pro-
cessed images. This consistently lower AVW trend for OC-SMART is also evident (Table 
A4). 
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Figure 9. Apparent Visible Wavelength (AVW) values for the same pixel according to different at-
mospheric correction approaches, with longitudinal variability. 

The QWIP score was calculated for each image using different AC approaches (Fig-
ure 10). As observed, more pixels from the OC-SMART were considered to be valid (in the 
range of −0.2 to 0.2) compared to other AC approaches. It is also noticeable that pixels with 
negative values are concentrated in the Amazon River and adjacent waters, while positive 
values are concentrated closer to oceanic waters.  

 
Figure 10. Mapped S3-OLCI image as an example (8 November 2019), where Quality Water Index 
Polynomial score was calculated after applying different atmospheric corrections: (A) Acolite; (B) 
Polymer; (C) C2RCC and (D) OC-SMART. Black pixels are those outside the range of −0.2 to 0.2, as 
recommended by [31]. Pixels outside this range are considered as not passing the spectral quality. 

After calculating the QWIP score for each pixel in the images processed using the 
four AC approaches, we again performed a match-up comparison with the good quality 
in situ data to assess whether there was any improvement in the results. Using the QWIP 
score interval (−0.2 to 0.2) in the images to retain only those pixels that passed the spectra 
quality threshold, we observed utilisation rates of 65%, 71%, 94% and 43% for Acolite, 
C2RCC, OC-SMART and Polymer, respectively (Table A5).  
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This means that more data were used from C2RCC and OC-SMART compared to 
Acolite and Polymer, the latter having fewer pixels passing the QWIP score interval. The 
results show a slight improvement with an overall reduction in the scattering of the re-
trievals (Figure 11) when compared to the results in Figures 3 and 4. 

 
Figure 11. Match-ups of simulated in situ 𝑅௥௦ for S3-OLCI bands and 𝑅௥௦ derived from different 
atmospheric correction processors for the same day: (A) Acolite; (B) Polymer; (C) C2RCC; (D) OC-
SMART. The in situ and satellite data used for the match-up passed the QWIP score with an interval 
of ±0.3. The data were measured at the Amazon River Continuum, and the in situ 𝑅௥௦ were derived 
following the methodology proposed by [37] and the elimination of sun and sky glint as recom-
mended by [38]. Scatter plots are presented on a log–log scale. Circles represent match-ups within 
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a 3 h satellite pass window, while triangles represent match-ups outside the 3 h satellite pass win-
dow. 

After applying the QWIP score, there was an increase in the coefficient of determina-
tion, with values close to one in the blue region of the wavelengths for the Acolite proces-
sor. The MRAD did not show any significant changes before and after the QWIP score, 
while the MB showed a slight improvement (Figure 12). The Acolite had fewer valid pixels 
compared to the other ACs. 

 
Figure 12. Spectral variation in the statistical parameters between 400 and 779 nm for the in situ and 
satellite data that passed the QWIP score with an interval of ±0.3: (A) Coefficient of determination 
(Rଶ), (B) Root Mean Square Deviation (RMSD), (C) Slope, (D) Mean Relative Absolute Difference 
(MRAD), (E) Mean Bias (MB) and (F) Valid Pixel (VP). 

4. Discussion 
To our knowledge, no study has been conducted using S3-OLCI in Amazon waters 

to investigate differences in atmospheric correction and remote sensing reflectance. Our 
study showed a high scatter in the retrievals in the lower wavelength bands (<510 nm) 
(Figure 3), and this is especially true for the 𝑅௥௦ corrected with C2RCC. This scattering 
persists even in higher wavelength bands for this AC processor, unlike other processors 
that remain closer to the 1:1 line. The low performance of the C2RCC is to be expected, as 
the training data used to train its neural network consisted mainly of simulations of the 
Hydrolight model and samples from European waters [56], where water constituents and 
bio-optical properties differ considerably from those found in the extremely turbid waters 
of the Amazon River Continuum. 

A study conducted by [30] examined two coastal waters: (i) those of French Guiana, 
which are seasonally influenced by the turbid waters of the Amazon River plume, and (ii) 
the Eastern English Channel, which is characterised by moderately turbid waters. 

They also used S3-OLCI images but used different atmospheric correction processors 
to those used in our study. Their results showed similarly high scatter in the 𝑅௥௦ retrievals 
in the lower wavelength bands (400–443 nm). According to the statistical metrics pre-
sented in Figure 4, the spectral variation shows significant differences depending on the 
AC applied. Nevertheless, our results consistently show an underestimation of the 𝑅௥௦ 
for all AC processors tested. This consistent underestimation was also observed in highly 
turbid waters when using different AC processors for S3-OLCI [57]. 
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When comparing the four AC methods tested, Acolite showed the best performance 
with a smaller area size, followed by Polymer (area size: Acolite = 0.37; Polymer = 0.77; 
C2RCC = 1.03; OC-SMART = 0.81) (Figure 5, Table A2). However, it is important to note 
that Acolite had fewer valid pixels compared to the other ACs, which could pose a chal-
lenge for match-up exercises and validation. Furthermore, the Amazon region is known 
for its high cloud cover, which also complicates data retrieval using water colour remote 
sensing. Previous studies have shown that Polymer also performed better, producing a 
higher number of match-ups because it worked well even under conditions of high sun 
glint and high aerosol loads. However, it also underestimated 𝑅௥௦ for turbid waters [53]. 

The Amazon River has a unique water colour due to its high turbidity. In this study, 
we aimed to evaluate whether the 3C model, which is recommended to improve the esti-
mation of 𝑅௥௦  using above-water radiometric measurements can provide accurate 𝑅௥௦ 
estimates in such environments. Typically, above-water measurements, such as those con-
ducted in this study, are susceptible to significant contributions from sun glint and re-
flected sky radiance [58]. While previous studies have reported satisfactory results with 
the 3C model for optically complex water systems [32], our results were not consistent 
with those in our study area. Contrary to expectations, the 3C model underestimated val-
ues obtained by different AC processors (Table A1) and showed poor statistical metrics 
(Figure 5). The discrepancies between 𝑅௥௦ calculated from [37] and the 3C model may be 
due to water or atmospheric properties that the 3C model could not accurately recon-
struct. It is expected that the 3C model would provide lower 𝑅௥௦ values [58]. Therefore, 
the calculation of 𝑅௥௦ according to [37], followed by the sun glint correction proposed by 
[38], which is recommended for turbid waters, proved to be the most appropriate method 
for our study area. Including data from one day before or after did not significantly affect 
the results, as shown in Figure 5. This can be attributed to the fact that the optical varia-
bility of the Amazon River is determined by the hydrological regime. Therefore, it could 
be expected that the water colour would not vary significantly within one or two days 
during the same hydrological season. 

The four OWTs identified in this study have also been discussed by other authors in 
the context of Amazonian waters or highly turbid waters. In their study [23], they showed 
that the difference between OWT K1 and K2 lies in the amount of sediment content result-
ing from the seasonal discharge of the Amazon River. OWT K1 typically occurs during 
the rising water season, which is characterised by a significant sediment input, resulting 
in a three times higher absorption coefficient of particulate matter (ap) compared to the 
absorption coefficient of coloured dissolved organic matter (aCDOM) [23]. During the rest of 
the year, the ratio of ap to aCDOM in the Amazon River is close to 1:1, defining OWT K2. The 
OWTs K3 and K4 have also been identified in other studies assessing global inland and 
coastal OWTs [40,55]. They represent coastal waters where the optical signals are predom-
inantly influenced by phytoplankton and a mixture of covarying bio-optical parameters, 
respectively. 

It is not the intention of this study to perform a validation match-up comparison of 
OWT’s 𝑅௥௦ for the AC processors evaluated. In fact, we would need more samples to per-
form such an analysis. However, based on the available data and using the same statistical 
metrics defined in our methods, preliminary results indicate that there is an interval in the 
spectrum between 490 and 709 nm where all ACs showed better performance (Figure 13). 
Conversely, the blue region between 400 and 443 nm showed lower performance. 



Remote Sens. 2024, 16, 2663 19 of 25 
 

 

 
Figure 13. Performance evaluation according to the statistical metrics (Rଶ, RMSD, MRAD, MB, VP). 
Light colours (white or yellow, closer to 0) are likely to have accurate 𝑅௥௦ for a given optical water 
type (OWT: K1, K2, K3 and K4) and S3-OLCI band. 

Preliminary results also suggest that Acolite performed better for OWT K1 but also 
showed good performance for K2, similar to Polymer (Figure 13). On the other hand, OC-
SMART showed better performance for K3, which is characterised by coastal waters with 
higher chla. Unfortunately, there are insufficient data to perform this analysis for all ACs 
for OWT K4, and the same limitation applies to OWT K3 for Acolite, C2RCC, and Polymer. 
Although [27] used different orbital sensors (Landsat 8 and S2-MSI), their results appear 
to be consistent with our preliminary results. They found that Acolite performed better in 
highly turbid inland waters, while OC-SMART showed good accuracy in clearer waters. 
As mentioned, further studies are still needed, but preliminary results show that different 
AC methods may perform better in retrieving 𝑅௥௦  depending on the OWT. This 
knowledge may be useful if the OWT system is matched to the performance of the atmos-
pheric correction [59]. 

Using the QWIP score as a quality control method for in situ and orbital 𝑅௥௦ data has 
been recommended by recent studies [32,59] and may even help to determine the best AC 
method to use in a given study area [32]. While [31] recommend using a range of ±0.2 to 
ensure high-quality data, other authors suggest that this range can be relaxed to ±0.3 when 
working with multispectral data such as S3-OLCI [59]. If we extend this range to ±0.3 for 
both in situ and orbital data, we observe a data utilisation rate of over 80% for the OWTs 
defined in this study using in situ data, except for K2, and a pixel utilisation rate of over 
95% in the images for all atmospheric correction methods. Polymer, in particular, benefits 
significantly from this relaxation, more than doubling the number of usable pixels. The 
prospect of obtaining more usable pixels in Polymer images is promising, given that it has 
been specifically designed to minimise the effect of sun glint [48]. Given the Amazon re-
gion’s notorious propensity for high glint effects in satellite imagery [60], the use of Poly-
mer could prove highly beneficial. 

Relaxing the QWIP score range had little effect on the OC-SMART images, which 
increased from 94% to 97% (Table A5). Finally, after applying the QWIP score to in situ 
and orbital 𝑅௥௦  corrected by different AC methods, Acolite still has the smallest area, 
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followed by Polymer (area size: Acolite = 0.36; Polymer = 0.69; C2RCC = 1.17; OC-SMART 
= 0.95, Table A6). 

5. Conclusions 
This study on the evaluation of atmospheric corrections for S3-OLCI imagery in the 

Amazon River Continuum revealed several important findings. First, the tested AC meth-
ods consistently underestimated 𝑅௥௦ compared to in situ measurements. In particular, the 
3C model showed poorer performance than the traditional M99 + R06 approach in our 
study area, which is characterised by very turbid waters. Of the AC processors tested, 
Acolite had the best overall performance, followed by Polymer and OC-SMART, while 
C2RCC had the lowest performance. Examination of the 𝑅௥௦ match-ups band by band 
revealed increasing coefficients of determination with wavelengths up to bands 665 nm, 
674 nm, and 681 nm (𝑅ଶ ≈ 0.8 for Acolite), followed by a decrease in the near-infrared 
spectral range. It is also worth noting that there is a peak in the RMSD in the 620 nm band 
for Polymer, OC-SMART and C2RCC. Using a match-up interval of 3 days (±1 day) 
slightly increased the error but did not significantly affect the results, making it a viable 
option to increase the number of observations for match-up analysis if required. This is 
because the optical variability of the Amazon River is determined by the hydrological re-
gime. It was therefore expected that the water colour would not vary greatly within a day 
or two during the same hydrological season. 

In addition, four OWTs under the influence of the Amazon River Continuum were 
identified. Two of these OWTs are typically associated with the Amazon River and show 
seasonal variations in response to changes in Amazon River discharge. The other two 
OWTs are typically associated with the Amazon River Plume. One of these OWTs is char-
acterised by the dominance of chla, while the other exhibits a mixture of covarying bio-
optical parameters. 

Furthermore, the QWIP score range of −0.2 to 0.2 was found to be inadequate for very 
turbid waters, such as those represented by OWTs K1 and K2, where AVW > 580 nm. The 
results also highlighted the dependence of AVW results on the AC method used. Overall, 
the OC-SMART 𝑅௥௦  products showed superior spectral quality compared to other AC 
processors. 

Further studies are warranted to assess the impact of different optical water types on 
the retrieval of 𝑅௥௦ with respect to atmospheric correction methods. It is important to note 
that OWTs are not only determined by the bio-optical properties found in a geographic 
location; seasonal variations also play an important role. Therefore, if an AC processor 
performs well in a particular region during a particular season, this does not guarantee 
optimal performance during another season of the year. 

Finally, it is worth noting that, as emphasised by previous studies, there is no con-
sensus on which AC method is superior, as this depends on specific scientific objectives 
and applications [27,30]. Furthermore, it is important to keep in mind that atmospheric 
correction processors are constantly evolving, and the methodology used in this study 
only captures a momentary perspective of the current state. 
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Appendix A 

Table A1. Statistical metrics (R2, slope, Root Mean Square Deviation—RMSD, Mean Relative Abso-
lute Difference—MRAD, mean bias—MB, and valid pixel—VP), using the 3C model to calculate 𝑅௥௦ 
and applying different atmospheric correction procedures. These statistics use satellite data from 
the same day as the in situ measurement. 

  Acolite Polymer C2RCC OC-SMART 
R2 0.18 0.48 0.20 0.36 
RMSD 0.60 0.81 1.02 0.86 
SLOPE 0.157 0.168 0.102 0.146 
MB 0.50 0.72 0.85 0.74 
MRAD 81 75 80 78 
VP 313 258 552 279 
AREA 1.53 1.57 1.57 1.57 

Table A2. Statistical metrics (R2, slope, Root Mean Square Deviation—RMSD, Mean Relative Abso-
lute Difference—MRAD, mean bias—MB, and valid pixel—VP), using [37,38] to calculate 𝑅௥௦ and 
correct for sun glint and sky radiance. These statistics use satellite data from the same day as the in 
situ measurement. 

  Acolite Polymer C2RCC OC-SMART 
R2 0.74 0.54 0.23 0.70 
RMSD 0.29 0.46 0.80 0.53 
SLOPE 0.59 0.39 0.25 0.44 
MB 0.24 0.38 0.61 0.45 
MRAD 39 55 62 76 
VP 264 267 591 306 
AREA 0.37 0.77 1.03 0.81 

Table A3. Statistical metrics (R2, slope, Root Mean Square Deviation—RMSD, Mean Relative Abso-
lute Difference—MRAD, mean bias—MB, and valid pixel—VP), using [37,38] to calculate 𝑅௥௦ and 
correct for sun glint and sky radiance. These statistics include data from satellite images taken one 
day before or after the in situ measurement. 

  Acolite Polymer C2RCC OC-SMART 
R2 0.63 0.51 0.31 0.58 
RMSD 0.35 0.55 0.77 0.66 
SLOPE 0.51 0.36 0.29 0.38 
MB 0.27 0.45 0.59 0.52 
MRAD 42 58 62 71 
VP 414 534 863 542 
AREA 0.41 0.85 0.83 0.85 
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Table A4. Basic statistics of the Apparent Visible Wavelength (AVW) in the Amazon River Contin-
uum according to the different atmospheric correction processors used in this study (Acolite, Poly-
mer, C2RCC and OC-SMART). 

  Acolite Polymer C2RCC OC-SMART 
Min 475 440 455 453 
Max 650 700 681 631 

Mean 577.8 586.2 582.8 572.1 
Median 588.9 600.5 593.5 587.5 

Table A5. Percentage of valid pixel 𝑅௥௦ spectra after the Quality Water Index Polynomial (QWIP) 
score evaluation. The right column shows the percentage of valid pixel 𝑅௥௦ spectra considering a 
range from −0.2 to 0.2. The left column shows the percentage of valid pixel 𝑅௥௦ spectra considering 
a range from −0.3 to 0.3. 

AC  −0.2 to 0.2 −0.3 to 0.3 
Acolite 65% 100% 

Polymer 43% 96% 
C2RCC 71% 100% 

OC-SMART 94% 97% 

Table A6. Statistical metrics (R2, slope, Root Mean Square Deviation—RMSD, Mean Relative Abso-
lute Difference—MRAD, mean bias—MB, and valid pixel—VP), using [37,38] to calculate 𝑅௥௦ and 
correct for sun glint and sky radiance. These statistics use satellite data from the same day as the in 
situ measurement. Quality Water Index Polynomial score was used to improve the relationship be-
tween in situ and satellite data. 

  Acolite Polymer C2RCC OC-SMART 
R2 0.70 0.57 0.39 0.66 
RMSD 0.22 0.45 0.67 0.53 
SLOPE 0.60 0.55 0.36 0.51 
MB 0.18 0.35 0.52 0.43 
MRAD 34 52 58 80 
VP 91 182 328 225 
AREA 0.36 0.69 1.17 0.95 
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