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This paper focuses on investigating generalized relative inte- Received 29 July 2023
rior notions for sets in locally convex topological vector spaces Accepted 2 May 2024
with particular attentions to graphs of set-valued mappings KEYWORDS

and epigraphs of extended-real-valued functions. We intro- Generalized convexity;

duce, study, and utilize a novel notion of quasi-near convexity
of sets that is an infinite-dimensional extension of the widely
acknowledged notion of near convexity. Quasi-near convex-
ity is associated with the quasi-relative interior of sets, which
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convexity; quasi-near
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is investigated in the paper together with other generalized topological vector spaces

relative interior notions for sets, not necessarily convex. In this
way, we obtain new results on generalized relative interiors for
graphs of set-valued mappings in convexity and generalized
convexity settings.
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49)52; 49)53; 90C31

1. Introduction

The concept of relative interior for convex sets is highly important in finite dimen-
sions, as it occupies a pivotal position in convex analysis and its practical applica-
tions to, e.g. convex optimization. Recognizing its fundamental importance, there
have been significant efforts to explore appropriate notions of generalized rela-
tive interior in infinite-dimensional spaces. The notions of quasi-interior, strong
quasi-relative interior, intrinsic relative interior, and quasi-relative interior for con-
vex sets in infinite dimensions have been well recognized while playing their own
notable roles in various aspects of convex analysis and optimization; see [1-15]
with the references and discussions therein.

Among the most significant results of finite-dimensional convex geometry,
we mention Rockafellar’s theorems on nonemptiness of the relative interior of a
nonempty convex set in R” and the relative interior representation for the graph
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of a convex set-valued mapping; see [16, Theorem 6.8]. Married to convex separa-
tion, the latter theorem lies at the core of the geometric approach for generalized
differentiation in convex analysis developed in [17]. This developed approach
provides an easy and unified way to access many important results of convex
analysis, optimization, and their applications.

The importance of the aforementioned relative interior representation in finite
dimensions calls for its extension to the infinite-dimensional setting by using
appropriate generalized relative interior notions. In particular, it is natural to con-
sider representations of the quasi-interior, strong quasi-relative interior, intrinsic
relative interior, and quasi-relative interior for graphs of convex set-valued map-
pings in infinite dimensions. To the best of our knowledge, this question has
been addressed only for the case of quasi-relative interior (see [7, 8, 11]), while
it remains open for the other listed cases of quasi-interior, strong quasi-relative
interior, and intrinsic relative interior of convex graphs.

Another important unsolved issue in this direction is to go beyond convex-
ity. Among various notions of generalized convexity for sets, the so-called near
convexity (known also as ‘almost convexity’) seems to be the most natural to con-
sider first. This notion actually goes back to Minty [18] in his study of maximal
monotone operators in finite dimensions. It can be equivalently formulated as
the property that the set in question is situated between a convex set and its clo-
sure, with taking into account that any (nonempty) finite-dimensional convex set
has nonempty relative interior. In [19], Rockafellar extended Minty’s notion and
result to smoothly reflexive Banach spaces in terms of the very differently formu-
lated notion of ‘virtual convexity’ with showing that the latter reduced to [18] in
finite dimensions. More recently, the near convexity of sets and associated notion
for functions have been consider in [20-24] but only in finite-dimensional spaces.

This paper addresses the aforementioned open questions in convex and non-
convex settings. To proceed with nonconvex sets in the general framework of
locally convex topological vector (LCTV) spaces, we introduce a new notion of
quasi-near convexity, which is an infinite-dimensional extension of near con-
vexity with the usage of nonempty quasi-relative interior of convex sets in the
definition of the new notion instead of (always nonempty) relative interior of
convex sets in the finite-dimensional near convexity. Note that any nonempty
convex set has nonempty quasi-relative interior in the case of separable Banach
spaces; see [3]. Then we establish generalizations of Rockafellar’s relative inte-
rior representation theorem for set-valued mappings with quasi-nearly convex
graphs.

Our paper is structured as follows. Section 2 contains some basic notation
and definitions of convex analysis broadly used in the subsequent material.
Section 3 focuses on revisiting a number of important notions of generalized
relative interior with further clarifications. Section 4 is devoted to the study of
the intrinsic relative interior and strong quasi-relative interior of convex graphs.
Section 5 introduces and investigates a new notion of quasi-near convexity for
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nonconvex sets. The final Section 6 provides estimates and representations of the
quasi-relative interior for graphs of quasi-nearly convex set-valued mappings.

2. Preliminaries

Throughout the paper, we use standard definitions and notation, which can be
founded, e.g. in [11]. Unless otherwise stated, all the spaces under considera-
tion are real LCTV spaces. Recall that the topological dual of X is denoted by X*
with the canonical pairing (x*, x) := x*(x) for x € X and x* € X*. A nonempty
set QC Xisaconeif Awe Qforallwe Qand 1 > 0. The closure, conic hull,
affine hull, and linear hull of Q are denoted by Q, cone(Q), aff(Q2), and span(Q),
respectively.

Let f: X — R := R U {400} be an extended-real-valued function. The effec-
tive domain and epigraph of f are defined, respectively, by

dom(f) :={x e X | f(x) < o0} and
epi(f) == {(x, 1) e X xR | f(x) < A}.

The function f is called proper if domf # @ and f(x) > —oo for all x € X. We
also say that f is convex if epi(f) is a convex set.

Given a set-valued mapping F: X = Y, define the domain, range, and graph
of F by

dom(F) :={x € X | F(x) # 0}, rge(F):= U F(x),
xeX

gph(F) == {(x,y») e X x Y | y € F(x)} .

If gph(F) is a convex set in X X Y, then we say that the mapping F is convex.
For a function f: X — R, define the epigraphical mapping E¢: X = R by

Ef(x) ={a eR | f(x) <a}, xeX. (1)
It is easy to verify the equalities
dom(Ef) = dom(f) and gph(Ef) = epi(f).

We also consider the epigraphical range of f given by rge(f) := rge(Ey).
Given a subset Q of X, define its polar by

Q° .= {x* e X* | (x*,w) < 1forallwe Q}.
Therefore, for a subset ® of X* we have

®° = {x eX | (z*,x) < 1 wheneverz* € ®}.
It follows from the definition that if Q is a cone in X, then

Q° = {x* e X* | (x*,w) < Oforallw e Q},
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and if ® is a cone in X*, then
0° ={xeX | (z*,x) < Oforallz* € ®}.

Finally in this section, we recall the fundamental separation properties of sets,
which are studied and applied in the subsequent sections.

Definition 2.1: Let Q; and 2, be two nonempty subsets of X. We say that Q;
and €, can be SEPARATED by a closed hyperplane if there exists x* € X* \ {0}
such that

sup {(x*,y) | ye Qz} < inf {(x*,x) | x € Ql}. (2)
If it holds in addition that

inf {(x*,y) | ye Qz} < sup {(x*,x) | x e Ql} , (3)

then we say that Q; and Q, can be PROPERLY SEPARATED by a closed hyperplane.

Observe that (2) can be rewritten as
(x*,y) < (x*,x) whenevery € Q; andx € Qy,
while (3) means that there exist y € Q; and x € Q, satisfying

(x*y) < (x*,x).

3. Extended relative interiors of sets

In this section, we first revisit the major generalized relative interior properties of
sets in LCTV spaces that are broadly used in the literature; see, e.g. [1-4, 10-12,
14, 25, 26]. We also present here some refinements of known results in the case
of arbitrary (not necessarily convex) sets.

Definition 3.1: Let Q be a subset of X.

(a) The INTERIOR of Q with respect to the affine hull aff(Q) is the set

rint(Q) := {x € Q | 3 aneighbourhood V of the origin such that
(x+ V) Naff(Q) c Q}.

(b) The INTERIOR of Q with respect to the closed affine hull aff(Q) is the set

ri(Q) := {x € Q | Janeighbourhood V of the origin such that (x + V)
Naff(Q) c Q).
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(c) The QUASI-INTERIOR of Q is the set
qi(Q) := {x € Q | cone(Q — x) = X}.
(d) The STRONG QUASI-RELATIVE INTERIOR of Q is the set
sqri(Q) := {x € Q | cone(Q — x) is a closed subspace of X}.
(e) The INTRINSIC RELATIVE INTERIOR of Q is the set
iri(Q) := {x € Q | cone(Q — x) is a subspace of X}.
(f) The QUASI-RELATIVE INTERIOR of Q is the set

qri(Q) := {x € Q | cone(L2 — x) is a subspace of X}.
If qri(QQ) = iri(Q2), we say that Q is QUASI-REGULAR.
The following proposition establishes a relationship between ri(€2) and rint(€2).

Proposition 3.2: Let Q be a subset of X, not necessarily convex. Then we have

rint(Q)  if aff(Q) is closed,

7] otherwise.

ri(Q) = [ (4)

In particular, ri(QQ) C rint(QQ), where the equality holds if ri(Q) # 0.

Proof: 1If aff(Q) is closed, then by definition ri(Q2) = rint(€2). Consider the case
where aft(Q2) is not closed and suppose on the contrary that ri(Q) # #. Pick x €
ri(Q2) and find a neighbourhood V of the origin such that

x4+ V)Nafi(Q) c Q. (5)

Fixanyz € aff(Q) and select A > 0 so small that x + Az —%) € x+ V.Thenwe
gety : =X+ Az —Xx) = Az + (1 — x € (x + V) N aff(€) because y is an affine
combination of z, x € aff(Q2). Using (5) gives us y € Q. Then

1 1
z= (1 - I)Ec-l— I)'/e aff(Q2)
since z is an affine combination of x, y € Q. This yields the closedness of aff(Q2),
a contradiction completing the proof of (4). The last statement follows from (4).

[ |

The next result provides relationships between the notions of generalized
relative interiors from Definition 3.1.
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Theorem 3.3: Let Q be a subset of X, not necessarily convex. Then we have the
inclusions

ri(Q) C sqri(Q) C iri(Q) C qri(Q), (6)
ri(Q) C rint(Q) C iri(Q). (7)

All the inclusions above become equalities if Q is convex with ri(Q2) # 0.

Proof: Take any x € ri(Q2). Then x € Q and there exists a neighbourhood V of
the origin such that (5) is satisfied. Let us verify that

aff(Q) — x = cone(Q — X). (8)

Indeed, take any z € aff(Q) — ¥ and find 1 > 0 so small that Az € V. Since
aff(Q) — X is a linear subspace, we have 1z € aff(Q) — x and thus

X+ lze (x+ V)Naff(Q) c Q.

Then z € 17 1(Q — X) C cone(Q — X), which justifies the inclusion ‘C” in (8).
Observe that Q — x C a_ff(Q) — X. Since the latter set is a linear subspace, we
arrive at the reverse inclusion in (8).

By (8), cone(£2 — x) is a closed linear subspace of X and thus x € sqri(€2),
which yields ri(Q) C sqri(Q). The inclusion sqri(€2) C iri(€2) follows from the
obvious fact that any closed linear subspace is a linear subspace. Since the closure
of a linear subspace is also a linear subspace, we obtain the inclusion iri(Q) C
qri(€2) and thus complete the proof of (6).

The inclusion ri(Q) C rint(€2) is a consequence of Proposition 3.2. Taking
now any x € rint(€2) and following the proof of (8) tell us that

aff(Q) — x = cone(Q — Xx),

which implies that cone(€2 — x) is a linear subspace. Hence x € iri(Q2) verify-

ing (7).
Finally, assume that Q is convex with ri(2) # @. Then ri(Q2) = qri(Q2) (see [3,
11]), which clearly implies that all the inclusions in (6) and (7) become equalities.
|

Next, we provide an example to demonstrate that the inclusion rint(Q) C
iri(€) is strict in general.

Example 3.4: Consider the set Q := {(x,4) e R? | x> < A} U (R x (—00,0]).
Then we have cone(Q — (0,0)) = R?, which implies that (0,0) € iri(Q2). How-
ever, it is easy to verify that (0,0) ¢ rint(€2).

The example below shows that rint(€2) and sqri(€2) can differ for a convex set
Q. More examples that distinguish other notions of generalized relative interiors
can be found in [2, 4].
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Example 3.5: Let X := Cjo,;) (the normed space of real continuous functions
on [0, 1]) with the ‘max’ norm, and let P be the set of all polynomials with real
coefficients on [0, 1]. It is well known that P is a dense subspace in X. Thus we get

rint(P) = P # @ = sqri(P).

To proceed further, take an affine subset M of an LCTV space X. It is well known
that there exists a unique linear subspace L of X such that

M =x9+ L forsomexye M.

In this case, L is called the linear subspace parallel to M. We have the represen-
tation L = M—M; see, e.g. [11]. Consider now a nonempty subset Q of X and
get that M := aff(Q) is a nonempty affine set in X. The next result provides a
representation of the linear subspace that is parallel to aff(Q2).

Proposition 3.6: Let Q be a nonempty setin X. Then L := aff(Q — Q) is the linear
subspace which is parallel to aff(Q2).

Proof: By the above, the linear subspace parallel to aff(Q2) is aff(Q2) — aftf(Q). It is
an easy exercise to show that aff(Q2) — aff(Q) = aff(Q — Q) = L. This completes
the proof. |

The following lemma presents a straightforward result involving the convexity
of the conic hull of a set Q given by cone(Q2) := {Ax| 1 > 0, x € Q}.

Lemma 3.7: If Q is a convex set in X, then so is cone ().

Although some results of the next three propositions can be distilled from [14],
we prefer for the reader’s convenience and completeness to give here their
simplified proofs with commentaries.

Proposition 3.8: If Q is a nonempty convex set in X, then
span(Q — w) = cone(Q — Q)

whenever w € Q.

Proof: Since Q — Q is convex, by Lemma 3.7 the set cone(Q2 — Q) is a con-
vex cone. It is indeed a linear subspace because if x € cone(Q — ), then
—x € cone(Q — Q). For any w € Q, we have Q — w C cone(Q2 — Q) and thus
span(Q — w) C cone(Q — Q).
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To verity the reverse inclusion, fix any x € cone(Q2 — Q) and get the represen-
tation

x = A(w; —w,) wherel >0, and wy, w, € Q.

Then x = A(w; — w) — A(wp — w) € span(Q — w). This justifies the reverse
inclusion and completes the proof. |

Proposition 3.9: Let Q be a nonempty convex set in X, and let w € Q. Then we
have:

(a) aff(Q) —w = cone(Q2 — Q).

(b) cone(Q — Q) is the linear subspace parallel to aff(Q).

(c) aff(Q) —w = cone(Q — w) if and only if cone(Q2 — w) is a linear subspace
of X.

(d) aff(Q) — w = cone(Q — w) if and only if cone(Q — w) is a linear subspace
of X.

Proof: (a) It follows from Proposition 3.8 that
cone(2 — Q) = span(Q — w).
Since the set aff(Q2 — w) is a linear subspace that contains Q — w, we see that
cone(Q — Q) = span(Q — w) C aff(Q — w) = aff(Q) — w.

Observe that Q —w C Q — Q C cone(Q — Q), where the last set is a linear
subspace and hence an affine set. Thus we have the inclusion aff(Q — w) C
cone(Q — Q), which completes the proof of assertion (a).

(b) This assertion follows directly from (a).

(c) If aff(QQ) — w = cone(2 — w), it is obvious that cone(2 — w) is a linear
subspace since aff(€2) — w has this property. To verify the converse implication,
suppose that cone(€ — w) is a linear subspace. Observe by (a) that

cone(Q — w) C cone(Q — Q) = aff(Q) — w.

Take further any x € aff(Q2) — w = cone(Q — Q) and find 4 > Oand w1, w, € Q
such that

x=A(w; —wp) = A(wg — w) + A(w — wy).

Since wy — w € cone(€2 — w), where the latter set is a linear subspace, we see that
w — wy € cone(Q — w). This shows that x € cone(Q — w) and hence justifies (c)
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(d) Assume that cone(Q2 — w) is a linear subspace of X. It follows from (a) that
cone(Q — w) C cone(Q — Q) = aff(Q) — w = aff(Q) — w.

To verify the reverse inclusion, it suffices to show that cone(Q — Q) C cone(Q —
w). Take any x € cone(Q2 — Q) and find 4 > 0, w;, w, € Q such that

x=A(w; —wp) = A(wy — w) + A(w — wy).

Similarly to the proof of (c), we see that w — w, € cone(Q — w), which implies
that x belongs to the set cone(€2 — w) since the latter is a linear subspace. This
completes the proof of (d) by taking into account that the other implication is
obvious. [

The relationship between the strong quasi-relative interior and the intrinsic
relative interior of a convex set is established next.

Proposition 3.10: Let Q be a nonempty convex set in X. Then we have the
representation

iri(QQ) i aff(Q) is closed,

7] otherwise.

sqri(Q) = [ 9)

Proof: Suppose that aff(Q) is closed. Taking any x € iri(Q), it follows from
definition that cone(£2 — x) is a linear subspace of X. By Proposition 3.9(c) we
have cone(2 — x) = aff(Q2) — X, and so cone(£2 — Xx) is a closed linear subspace
of X. Thus x € sqri(€2), which implies that iri(Q2) C sqri(€2). Since the reverse
inclusion follows from Theorem 3.3, we justify the equality sqri(Q2) = iri(€2) in
this case.

Assume now that aff(Q2) is not closed. Arguing by contradiction, suppose that
sqri(€2) is nonempty and pick x € sqri(€2). Then cone(Q2 — x) is a closed linear
subspace of X. It follows from Proposition 3.9(c) that aff(Q2) — x = cone(Q — Xx)
is also a closed linear subspace of X. Hence the affine hull aff(Q) is closed, which
is a contradiction verifying that the set sqri(€2) is empty in this case. [

The next proposition shows that the notions of generalized relative interiors
in Definition 3.1 for convex sets agree with those taken from [2] under different
names.

Proposition 3.11: Let Q be a convex set in X. We have the following assertions:
(a) sqri(Q) = {x € Q| cone(Q — x) = span(Q — x)}.

(b) iri(Q) = {x € Q| cone(Q — x) = span(Q — x)}.
(c) qri(Q) = {x € Q| cone(Q — x) = span(Q — x)}.
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Proof: (a) Suppose that x € sqri(2). Then x € Q and cone(Q — x) is a closed
linear subspace. By Propositions 3.8 and 3.9(a,c) we have

cone(Q2 — x) = aff(Q) — x = cone(Q2 — Q) = span(Q — x).
It follows that
cone(Q — x) = cone(Q — x) = span(Q — x).

This justifies the inclusion * C * of the equality in (a). The reverse inclusion follows
directly from the definition of strong quasi relative interior.

(b) Suppose that x € iri(2). Then by definition cone(€2 — x) is a linear sub-
space of X. Using Propositions 3.8 and 3.9(a,c) as in the proof of assertion (a), we
get

cone(Q — x) = span(Q — x).

This implies the inclusion ‘C’ in (b). The reverse inclusion is obvious.
(c) Assume finally that x € qri(Q) and get that cone(Q — x) is a linear sub-
space. Using again Propositions 3.8 and 3.9(a,d) gives us

cone(Q — x) = aff(Q) — x = cone(Q — Q) = span(Q — x).

This justifies the inclusion ‘C’ in (c). The reverse inclusion follows from the
definition of quasi-relative interior and the fact that span(Q — x) is a linear
subspace. ]

The following result, which extends [3, Lemma 2.3] from convex sets to
arbitrary sets in LCTV spaces, plays an important role in representations of
generalized relative interiors for graphs of set-valued mappings.

Proposition 3.12: Let Q be a subset of X, and let x € Q. Then x € iri(Q) if and
only if for each x € Q there exists xy € Q such thatx = (1 — to)x + toxo with some
ty € (0, 1).

Proof: Suppose x € iri(Q2). Fix any x € Q. If x = X, we immediately get the con-
clusion. Otherwise, since cone(2 — x) isa linear subspace, x — x € cone(Q2 — X).
Thus there exist /10 > 0 and xg € Q such that x — x = A¢(xo — Xx), which reads
€ (0,1), we obtain x = (1 — tp)x +

as x = 1+; ——Xx+ 1+/1 xo. Setting ty := 1+/1
toXo.

To verify the converse implication, pick any nonzero vector v € cone(Q — x).
Then we find 19 > 0 and x € Q such that v = Ao(x — X). By the assumption,

there exists xp € Q with x = (1 — tp)x + foxo for some ty € (0, 1). It follows that

X — tox Aot
—v=dg (- —20) = 22 (5 — %)
1—1 1—+1

Consequently, —v € cone(Q2 — x), which completes the proof. |
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Proposition 3.13: Let Q be a nonempty convex set. If x € sqri(Q) (ri(€2), iri(L2),
qri(Q), respectively) and xo € Q, then for every t € [0, 1) we have the inclusions
(I = t)x + txg € sqri(Q) (ri(Q), iri(Q), qri(QQ), respectively).

Proof: We only provide the proof for the case of sqri(€2). The proofs for the other
cases can be found in [3, 11]. Let w; = (1 — £)x + txo for 0 < t < 1. Then
Q-QOQ-w=Q—-(1—-x—txg=(1—1)(Q—Xx) + t(Q — xp)
D1 —-1)(Q—X).

It follows therefore that

cone(Q — Q) D cone(Q — wy) D cone(Q — X).
As seen in the proof of Proposition 3.11(a), we have

cone(QQ — Q) = cone(Q — wy) = cone(Q — x),

which implies by definition that w; € sqri (2) and thus completes the proof of
the proposition. |

Proposition 3.14: Let T: X — Y be a linear mapping, and let Q be a subset of X.
Then

T(iri(Q)) C iri(T (L)),
where the equality holds if Q is convex and iri(Q) # 9.

Proof: Fixing any x € iri(Q2), we get that cone(£2 — x) is a linear subspace of X.
It follows from the linearity of T that the set cone(T'(2) — T'(x)) = T(cone(Q2 —
X)) is a linear subspace of Y. Thus T'(x) € iri(T(£2)), which justifies the claimed
inclusion.

Now assume that iri(Q) # @ and fix x € iri(Q2). Letting y = T(X), observe
that y € iri(T(€)). Picking any y € iri(T(L2), we deduce from Proposition 3.12
that there exists yo € T(€) such that y = (1 — o)y + toyo for some ¢y € (0, 1).
Choose xp € Q with yo = T'(xp). Then

y= (1 — t()))_/ + toyo = (1 — t())T()_C) -+ toT(xo) = T((l — t())ﬁ_c + t()X()).

Letting further x := (1 — #p)X + foxo and taking into account the assumed con-
vexity of Q allow us to apply Proposition 3.13 and conclude that x € iri(€2). Thus
y € T(iri(L2)), which yields the reverse inclusion and hence completes the proof
of the proposition. |

To study below images of strong quasi-relative interiors of sets under linear
mappings, we need the following definition.
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Definition 3.15: A linear mapping T: X — Y is said to be SUBSPACE CLOSED if
it maps any closed subspace of X to a closed subspace of Y.

First, we present an easy verifiable sufficient condition for subspace closedness.

Proposition 3.16: Let X be a Banach space, and let Y be a normed space. Consider
a continuous linear mapping T: X — Y. Suppose that there exists y > 0 such that

ylIxl < ITGON - forall x € X.

Then the mapping T is subspace closed.

Proof: Take any convergent sequence {y,} C T(Z), where Z is a closed subspace
of X. Then y, = T'(x,) for x, € Z, n € N. We have

7 1m = xull < 1TCom) = TGl = llym = yull = 0 asm,n — oo.

This yields {x,} is a Cauchy sequence, and hence it converges to xy € Z due to the
completeness of X. Then y, = T'(x,) = T(x9) € T(Z)as n — oo, which verifies
that T'(Z) is closed. |

In the next proposition, we use the notion of strong quasi-regularity for a
nonempty set Q C X meaning that sqri(Q) = iri(Q2).

Proposition 3.17: Let T: X — Y be a continuous linear mapping which is sub-
space closed, and let Q be a nonempty convex set in X. Then we have

T(sqri(Q2)) C sqri(T(L)).

If in addition sqri(Q) # @ and Q is strongly quasi-regular, then the reverse inclu-
sion holds.

Proof: Suppose that w € sqri(€2). Then by Proposition 3.11(a) we have
cone(Q2 — w) = span (Q — w).
Therefore, we obtain the equalities

cone(T(Q) — T(w)) = T(cone(Q — w)) = T(span (Q — w))
= span(T(Q) — T(w)),

which tell us that T(w) € sqri(T(€2)). To verify the reverse inclusion, assume that
sqri(Q2) # @ and Q is strongly quasi-regular. Then Proposition 3.14 ensures that

sqri(T(Q)) C iri(T(Q)) = T(iri(Q)) = T(sqri(Q2)),

which thus completes the proof of the claimed result. |
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4. Generalized relative interiors of graphical sets

This section is devoted to extending Rockafellar’s relative interior representation
theorem in R” to generalized relative interiors of graphs of set-valued mappings
and epigraphs of extended-real-valued functions.

We start with considering intrinsic relative interiors for graphs of set-valued
mappings.

Theorem 4.1: Let F: X =2 Y be a set-valued mapping. Then
iri(gph(F)) C {(x,y) € X x Y | x € iri(dom(F)),y € iri(F(x))} . (10)
Assuming in addition that F is convex, we have the equality

iri(gph(F)) = {(x,y) € X x Y | x € iri(dom(F)),y € iri(F(x))} .

Proof: To verify the inclusion  C’, take any (x, y) € iri(gph(F)). Considering the
projection mapping P: X x Y — X given by

P,y)=x (x,y) e X x Y,
gives us P(gph(F)) = dom(F). Using Proposition 3.14, we have
P(iri(gph(F))) C iri(dom(F)), (11)

which implies that x € iri(dom(F)). To show next that y € iri(F(x)), fix any y €
F(x) telling us that (x, y) € gph(F). By Proposition 3.12, find (xo, y0) € gph(F)
such that

(x%,9) = (1 — to)(x,y) + to(x0,y0) for some ty € (0,1).

This yields xo = x and y = (1 — to)y + toyo with yp € F(x). It follows therefore
by Proposition 3.12 that y € iri(F(x)), which completes the proof of the inclusion
‘.

To verify now the reverse inclusion under the convexity of gph(F), fix x €
iri(dom(F)) and y € iri(F(x)). Arguing by contradiction, suppose that (x,y) ¢
iri(gph(F)). Then Proposition 3.12 yields the existence of (x’,)") € gph(F) such
that

(xy) # QA —=1(,y) +t(x,y) forall (x,y) € gph(F)and t € (0,1). (12)

Consider the following two cases:

(A) x# (1 — )x' + txfor all (x,t) € dom(F) x (0, 1),
(B) x = (1 — to)x’ + toxo for some (xg, ty) € dom(F) x (0, 1).

Let us show below that in each of these cases we arrive at a contradiction. In case
(A), we clearly have a contradiction due to x € iri(dom(F)).
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In case (B), we distinguish two subcases:

(B1) X' = k. Sincex = (1 — fy)x’ + toxp, we getx = X' = xp and hence F(x) =
F(x') = F(xp). Then it follows from (12) that y # (1 — )y’ + ty for all (y,t) €
F(x) x (0,1). By Proposition 3.12 we have y ¢ iri(F(x)), which gives us a contra-
diction.

(B2) X’ # x. Note first that since xo € dom(F), there exists yy € Y such that
(%0, y0) € gph(F). Using the convexity of gph(F) ensures that

(1 = t0) (', ¥') + to(x0, yo) € gph(F).
Define further the vector
¥ = (1 —t)y + toyo.
Since X = (1 — to)x’ + toxo, we get y € F(x) and
(x,)) = (1 = to)(x',y") + to(x0, y0)- (13)

On the other hand, it follows from y € iri(F(x)) and Proposition 3.12 that
there exists y, € F(x) such that y = (1 — )y’ + tyy; for some t;, € (0, 1). This
together with (13) ensures the equalities
(7)) = (1 — 1) (%)) + to(x yp)
= (1= ) [(1 = o) (x', ') + to(x0, yo)] + (%, o)
= (1 - 1)1 — 1), ) + (1 = t)to(x0, y0) + (X, o)
= (1= 1) (1 = t)(x,y) + (b0 = oo + fo)
(fo — tyto) t
X | —2= (x0,y0) + ———>———
[(to o+ ) 0t G T )
=1 =), y) +s&".y"),

(9_@)”0)}

where s := to — tyto + t; € (0,1) and

(to — tyto) f

x//) /! — X0, + 0
CO (x0, y0) o=t +1)

=0 X, h(F).
P (%, ) € gph(F)

This also gives us a contradiction due to (12), which therefore completes the proof
of the theorem. |

Remark 4.2: If in the setting of Theorem 4.1 an additional assumption
iri(gph(F)) # @ is imposed, then we have the following alternative simple proof
for the reverse inclusion of (10). Fix x € iri(dom(F)) and y € iri(F(x)). By (11)
which holds as an equality under the convexity of gph(F), we find yy € F(x) with
(X, yo) € iri(gph(F)).If yo = y, then (x, y) € iri(gph(F)) and we are done. Other-
wise, since y € iri(F(x)), we deduce from [3, Lemma 3.1] that there exists y > 0
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such that (1 4+ y)y — y yo € F(x). Then it follows from the corresponding result
of Proposition 3.13 that

(=D y0) + & (1 +7)y =y y0) € iri(gph(F)) forall ¢ € [0,1).

Choosing t := ﬁ € (0, 1), we obtain

&9 = (1- 1) G + 1

1+ ) (%, (1 +7)y — 7 y0) € iri(gph(F)),

which completes the alternative proof of Theorem 4.1.
To proceed further, we need one more useful result.

Lemma 4.3: Let F: X =2 Y be a set-valued mapping. Suppose that int(F(x)) # @
for all x € dom(F). Then we have the equality

aff(gph(F)) = aff(dom(F)) x Y.

Proof: The inclusion ‘C’ is obvious. Let us verify the reverse one. Take any
(%0, y0) € aff(dom(F)) x Y, which yields xy € aff(dom(F)) and yy € Y. Choose
Zi € R and x; € dom(F) for i=1,...,m such that > " ;=1 and xo =
>, Aixi. Then select y; € int(F(x;)) and define y := >"1" | 1;y; while having in
this way that (xo, y) € aft(gph(F)). We also choose € > 0 so small that

vi+ €l —y) € F(x;) foralli=1,...,m,
which yields (xo, y + € (yo — »)) € aft(gph(F)), or equivalently
(0,€(y0 = 3)) € aff(gph(F)) — (x0,)-

Note that since (xo,y) € aff(gph(F)), the affine hull aff(gph(F)) — (xp,y) is a
linear subspace. This gives us the inclusion

00 =) = ZO.c0 = ) € - (allgph(F) — (x0.9)
= aff(gph(F)) — (x0.),
and tells us therefore that
(%0, 70) = (x0,)) + (0,y0 — y) € aff(gph(F)) — (x0,)) + (x0,)) = aff(gph(F))

and thus completes the proof of the lemma. |

The next theorem provides a new representation of strong quasi-relative inte-
riors for graphs of convex set-valued mappings.
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Theorem 4.4: Let F: X =2 Y be a convex set-valued mapping. Then we have

sqri(gph(F)) = {(6y) | x € sqri(dom(F)), y € sqri(F)},  (14)

provided that int(F(x)) # @ for all x € dom(F).

Proof: Take any (x,y) € sqri(gph(F)). Then it follows from Proposition 3.10
and Lemma 4.3 that the affine hull aff(gph(F)) = aff(dom(F)) x Y is closed
and that (x,y) € iri(gph(F)). By Theorem 4.1, we have x € iri(dom(F)) and
y € iri(F(x)). Since aff(dom(F)) is closed, using Proposition 3.10 again gives
us x € sqri(domF). In addition, y € iri(F(x)) = sqri(F(x)) since int(F(x)) # @.
This justifies the inclusion ‘C’ in (14).

Conversely, take x € sqri(dom(F)) and y € sqri(F(x)). Then aff(dom(F)) is
closed and x € iri(dom(F)). Since int(F(x)) # @, we see that y € iri(F(x)). It
follows from Theorem 4.1 and Lemma 4.3 that (x,y) € iri(gphF) and that
aff(gph(F)) is closed. This yields (x,y) € sqri(gph(F)), which completes the
proof. |

The following important statement is a consequence of both Theorems 4.1
and 4.4 applying to epigraphs of extended-real-valued convex functions.

Proposition 4.5: Let f: X — R be an extended-real-valued convex function.
Then we have the generalized relative interior representations

iri(epif) = { (x,a) € X x R| x € iri(domf), f(x) < a},
sqri(epi(f)) = {(x,a) € X x R| x € sqri(dom(f)), f(x) < a}.

Proof: Consider the epigraphical mapping Ef associated with f given in (1). Then
the first formula follows from Theorem 4.1. Since int(Ef(x)) is nonempty for all
x € dom(f) = dom(Ey), the second formula follows from Theorem 4.4. |

To conclude this section, we provide a result on the representation of strong
quasi-relative interiors for ideally convex graphs of set-valued mappings, the
notion taken from [27].

Definition 4.6: A subset Q of X is called IDEALLY CONVEX if for any bounded
sequence {x,} C Q and sequence {1} of nonnegative numbers with > >, 1, =
1, the series > | Anxy either converges to an element of Q, or does not converge
at all.

As observed in [27], any convex subset of X, which is either open or closed, is
ideally convex. Moreover, every finite-dimensional convex set is ideally convex.
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Proposition 4.7: Let F: X =Y be a convex set-valued mapping. Assume
that gph(F) is an ideally convex subset of the product space X x Y and that

sqri(gph(F)) # 9. Then

sqri(gph(F)) = {(x,y) € X x Y | x € sqri(dom(F)), y € sqri(F(x))}.

Proof: Combining Theorem 4.1 with [28, Proposition 3.2] verifies theresult. W

5. Generalized relative interiors of quasi-nearly convex sets

In this section, we introduce a new notion of generalized convexity called quasi-
near convexity, investigate its basic properties, and establish its relationship with
the near convexity or almost convexity notions known in the literature; see,
e.g. [20-22, 24]).

Definition 5.1: Let Q be a nonempty subset of X. We say that £ is QUASI-NEARLY
CONVEX if there exists a convex subset C C X such that qri(C) # @ and

cCcQccC.

Remark 5.2: If Q is a nonempty convex subset of X with qri(€2) # @, then Q
QUASI-NEARLY CONVEX.

The next proposition shows that the notion of quasi-near convexity agrees with
the near convexity in finite dimensions; see, e.g. [16, 18-22].

Proposition 5.3: Let Q be a nonempty set in R". The following properties are
equivalent:

(a) Qis quasi-nearly convex.
(b) There exists a convex set C C R" such that

ri(C)c Q c C.
(c) There exists a convex set D C R" such that
DcQcD.
(d) Qs convex and ri(Q) C Q.

Proof: (a)==(b): Obvious.
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(b)==(c): Suppose that (b) is satisfied. Define the convex set D := ri(C). Then
D =r1i(C) = C, and thus

DcQcD.

(c)=>(d): Suppose that (c) is satisfied. It can be easily checked that Q =D, and
hence Q is a convex set. In addition, we have

ri(Q) =ri(D) =ri(D) c D C Q,

which ensures that (d) is satisfied.
(d)==(a): Let (d) hold. Defining C := ri(Q), which is nonempty convex set,
we get

C=ri(Q cQcQ=ri(Q) =C.
Since qri(C) = ri(C) = ri(ri(Q) = ri(Q) # @, it follows that (a) is satisfied. H

Some basic properties of quasi-nearly convex sets are established below.

Proposition 5.4: Let Q be a quasi-nearly convex set with C C Q C C, where Cisa
convex subset of X satisfying the condition qri(C) # @. Then we have the following:

(a) Q=C.
(b) gqri(C) C qri(Q) c gri(C).

Consequently, the set qri(Q) is quasi-nearly convex. Moreover, the set qri() is
convex if qri(Q) C Q, which holds when X = R".

Proof: (a) The conclusion is an immediate consequence of the definition.
(b) For each x € X, we have

cone(C — x) C cone(Q — x) C cone(C — x) C cone(C — x),
which implies in turn the equalities
cone(C — x) = cone(Q — x) = cone(C — x).
The latter brings us to the inclusions
qri(C) c qri(Q) c qri(C),

which completes the proof of (b).
We therefore have

qri(C) C qri(Q) c gri(C) c qri(C) = C = qri(C),

where the equalities hold by Borwein and Lewis [4, Proposition 2.12]. More-
over, we get that qri(C) is convex by Borwein and Lewis [4, Lemma 2.9] and that
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qri(qri(C)) = qri(C) # @ by Bot et al. [6, Proposition 2.5(vii)]. Consequently,
the set qri(Q) is quasi-nearly convex. If qri(Q) C Q, we can easily check that
qri(C) = qri(Q) c qri(Q) by definition. This implies that qri(Q) = qri(Q) =
qri(C), which is a convex set. This completes the proof of the proposition. W

The following example shows that each inclusion in Proposition 5.4(b) can be
strict.

Example 5.5: Let X and P be the given as in Example 3.5. Consider an element
X € X\ P and let Q := P U {x}. Then Q is not convex but quasi-nearly convex,
and we have

qri(P) = P C qri(Q) = Q C qri(P) = X.

Some other useful properties of quasi-nearly convex sets are collected in the next
proposition.

Proposition 5.6: Let Q be a quasi-nearly convex set in X, and let x € X. Then we
have the following properties:

(a) gi(Q) = QN gi(Q)and gri(Q) = Q N gri(Q).
(b) gri(@) = Q.

(©) qri(Q) = qri(qri(<)).

(d) gri(Q+ x) = qri(Q) + x.

Proof: (a) Itis easy to see that qi(Q) C Q N qi(Q). Conversely, take any x € Q N
qi(Q). Then cone(Q — x) = cone(Q — x) = X, which means that x € qi(Q).
Similarly, we have qri(Q) = Q N qri(Q).

(b) Since Q is quasi-nearly convex, there exists a convex set C C X satisfy-
ing qri(C) # @ and C ¢ Q c C. Then it follows from Proposition 5.4 and [4,
Proposition 2.12] that

C=qiC) =qi@ ca="=C

This justifies assertion (b).
(c) It follows directly from (a) and (b) that

qri (qri(Q)) = qri(Q) N qri(qri(Q)) = qri(Q) N qri(Q) = qri(Q).

(d) Take any x € qri(€2) 4+ x. Then we have x — x € qri(€2) and hence cone(Q +
X — x) is subspace, which ensures that x € qri(Q + X).

Conversely, take any x € qri(2 + X). Then the set cone(Q2 + X — x) is a sub-
space, and hence —(x — x) € qri(Q). This tells us that x € qri(Q) + x and thus
completes the proof. [
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To proceed further, we define the normal cone to a quasi-nearly convex set in
the same way as in the case of pure convexity.

Definition 5.7: Let Q C X be a quasi-nearly convex set, and let x € Q. The
NORMAL CONE to Q at X is

N Q) :={x"e X" | (x",x—Xx) <0forallx € Q}.

The next result provides a characterization of quasi-relative interiors of quasi-
nearly convex sets in LCTV spaces.

Proposition 5.8: Let Q C X be a quasi-nearly convex set, and let x € Q. Then
x € qri(Q) if and only if the normal cone N (x; Q) is a subspace.

Proof: By the continuity of x* € X* on X, we have that (x*,x — x) < Oforallx €
Qifand only if (x*, u) < 0 whenever u € cone(Q2 — X). It follows that N(x; Q) =
cone( — x)°. This tells us that if x € qri(Q2), then cone(2 — x) is a subspace,
and so is N(x; Q).

Conversely, we have that the set cone(£2 — x) is closed and 0 € cone(Q2 —
X). Furthermore, it follows from Proposition 5.4 that Q is convex, and so
is Cone(Q — x) = cone(Q — x). Employing the classical bipolar theorem (see,
e.g. [14, Theorem 1.1.9]) gives us the representation

N(x; Q)° = (cone(Q — k)°)° = cone(Q — Xx).
This implies that if N(x; Q) is a subspace, then so is cone(€2 — x), and thus x €
qri(Q). |

The next result, which is often employed in the subsequent sections, presents
an equivalent description of quasi-relative interiors via proper separation of quasi-
nearly convex sets in LCTV spaces.

Proposition 5.9: Let Q be a quasi-nearly convex set in X, and let x € Q. Then
X & qri(Q) if and only if the sets {x} and Q can be properly separated by a closed
hyperplane.

Proof: As seen in Proposition 5.8, x € qri(Q2) if and only if the normal cone
N(x; Q) is a linear subspace of X*. It follows that x ¢ qri(Q) if and only if there
is x* € N(x; Q) such that —x* ¢ N(x; Q). By the definition of the normal cone,
we have

(x*,x) < (x*,x) forallx € Q,
while —x* ¢ N(x; Q) means that there exists X € Q satisfying
(x*,fc) < (x*,)_c),

which completes the proof. |
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The example below shows that even if Q is convex, the assumption x € Q in
Proposition 5.9 is essential.

Example 5.10: Let X, P, and X are given as in Example 5.5. We have seen that
qri(P) = P and x ¢ qri(P). Let us now show that the sets {x} and P can not be
properly separated by a closed hyperplane. Suppose on the contrary that there
exists x* € X* \ {0} such that

(x*,x) < (x*,x) forallx € P, and (x*,y) < (x*,X) for some y € P.
Since P is dense in X and x* is continuous, we get that
(x*,z) < (x*,x) forallz € X,

which is impossible. Therefore, the sets {X} and P cannot be properly separated
by a closed hyperplane because the assumption x € P is violated.

The next theorem establishes proper separation of two quasi-nearly convex sets.

Theorem 5.11: Let Q; and Q; be quasi-nearly convex subsets of an LCTV space
X. Assume that Q; N Q, # @ and that

qri(Q1 — Q) = gri(Q1) — qri(€2). (15)
Then the sets Q; and , can be properly separated by a closed hyperplane if and

only if we have

qri(Q1) N gri(2,) = . (16)

Proof: The imposed assumptions ensure that 0 € Q and qri(Q2) = qri(Q;) —
qri(€2;), where Q := Q; — Q,. Therefore, if relation (16) holds, then

0 ¢ qri(€2) = qri(Q;) — qri(€2).

According to Proposition 5.9, the sets ; — €, and {0} can be properly separated
by a closed hyperplane, which clearly ensures the proper separation of the sets
and Q,.

Conversely, suppose that Q; and Q, can be properly separated by a closed
hyperplane. Then the sets Q; — €, and {0} can be properly separated by a closed
hyperplane as well. Using Proposition 5.9 and (15) yields

0 ¢ qri(Q) = qri(Q;) — qri(Q2),
and hence qri(Q) N qri(€2;) = @, which completes the proof. |
Based on the sufficient conditions for the fulfilment of (15) from [11,

Theorem 2.183(c)], we obtain the following result for the convex case as a direct
consequence of Theorem 5.11; see [7, Theorem 4.2] and [11, Theorem 2.184].
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Corollary 5.12: Let Q; and Q) be convex subsets of X such that Q; N Q, # @.
Assume that qri(Q) # 0, qri( ;) # 0, and the set difference Q) — Q, is quasi-
regular. Then Q) and Q, can be properly separated if and only if

qri(Qy) N qri(Qy) = 9.

To continue our study of quasi-nearly convex sets and their generalized relative
interiors, we need the following proposition.

Proposition 5.13: Let Q be a quasi-nearly convex set in X. If x € qri(Q), xo € €,
and (1 — to)x + toxg € Q for some ty € (0,1], then (1 — ty)x + toxo € qri(€2).

Proof: Suppose on the contrary that X := (1 — tp)X + toxo ¢ qri(2). Then
Proposition 5.9 ensures the existence of x* € X* \ {0} with

(x*,x — 5c) <0 forallx e Q, (17)
(x*,)'/ - fc) <0 forsomey e Q. (18)

By the continuity of x* on X, we deduce from (17) that
(x*,v) <0 forallv € cone(Q — x). (19)

On the other hand, the quasi-near convexity of Q yields the existence of a con-
vex subset C C X such that qri(C) # @ and C ¢ Q C C. Thus x; € C and by
Proposition 5.4 we have x € qri(C). Using Proposition 3.13 gives us x € qri(C),
i.e. cone(C — &) is a subspace. Since cone(C — ) = cone(Q — %), it follows
from (19) that

(x*,v) =0 forallv e cone(Q — ).

This contradicts (18) and completes the proof. |

Now we give a characterization of the quasi-interior of quasi-nearly convex
sets.

Proposition 5.14: Let Q be a quasi-nearly convex set in X, and let x € Q. Then
x € qi(Q) if and only if N(x; Q) = {0}.

Proof: Assume that x € qi(Q2) and take any x* € N(x; Q). Then the continuity
of x* on X ensures that (x*,v) < 0 for all v € cone(Q — Xx) = X, which yields
x*=0.

Conversely, assume that N (x; Q) = {0}. Arguing by contradiction, consider an
arbitrary element v € X, and suppose that v ¢ cone(Q — x). Note that cone(Q —
X) is convex as seen in the proof of Proposition 5.4(b). By Zilinescu [14,
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Theorem 1.1.5], the sets {v} and cone(L2 — x) can be strictly separated by a closed
hyperplane, i.e. there exists x* € X* \ {0} and a;, a2 € R such that

(x*,v) <a; <og < (x*,T/) for all v € cone(Q — x).

Fixany y € Qand get (x*,y —x) < a;/A as A > 0, which yields (x*,y — x) < 0.
Since y was chosen arbitrarily in Q, we arrive at x* € N(x; Q), a contradiction
completing the proof. |

The next proposition describes the separation of quasi-nearly convex sets via
quasi-interiors.

Proposition 5.15: Let Q be a quasi-nearly convex set in X, and let x € Q. Then
X & qi(Q) if and only if the sets {x} and Q can be separated by a closed hyperplane.

Proof: By Proposition 5.14, we have x ¢ qi(€2) if and only if there is a nonzero
element x* € N(x; Q). It follows from the normal cone definition that x* €
N(x; Q) if and only if

(x*,y) < (x*,;'c) forally € Q,

which completes the proof of the proposition. |

By Definition 3.1(c,f) we have qi(Q2) C qri(€2). The next proposition shows
that the equality holds therein if the quasi-interior of Q is nonempty.

Proposition 5.16: Let Q be a quasi-nearly convex set in X. If qi(Q2) # @, then
qi(Q) = gri(Q).

Proof: Observe first that if qi(€2) # @, then N(0; Q — Q) = {0}. Indeed, take any
x € qi(Q2). Then 0 € qi(Q2 — x), and since Q — x C Q — Q, we get 0 € qi(Q —
Q). Therefore, it follows from Proposition 5.14 that

N(@©0;Q — Q) = {0}. (20)

To show that qri(Q2) C qi(€2), pick any x € qri(€2) and x* € N(0; Q — x). Then
we get

(x*,w—2x) <0 forallwe Q, (21)

which implies that x* € N(x; Q). Since x € qri(Q2), it follows from Proposi-
tion 5.8 that N(x, Q) is a linear subspace. Thus we arrive at —x* € N(x; Q),
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ie.
(x*,x—w) <0 forallwe Q. (22)

Summing up the two inequalities (21) and (22) gives us
(x*, w1 — wa) <0 whenever wi,w; € Q,

and so x* € N(0; Q — Q). Then it follows from (20) that x* = 0. Since x* €
N(0; Q — x) was chosen arbitrarily, we get N(0; Q — x) = {0}. Applying finally
Proposition 5.14 tells us that x € qi(2) and thus completes the proof of the
proposition. ]

Now we ready to derive some calculus rules for quasi-relative interiors of quasi-
nearly convex sets via continuous linear mappings.

Theorem 5.17: Let T: X — Y be a continuous linear mapping between LCTV

spaces, and let Q be a quasi-nearly convex set in X. Then the following assertions
hold:

(a) T(gri(Q)) C qri(T(().

(b) If T is injective and T(Q) is quasi-regular, then T(qri(2)) = qri(T(L2)). The
injectivity of T is not required if Q is convex with qri(Q) # 0.

(c) T(L) and T(qri(Q)) are quasi-nearly convex sets in Y.

Proof: (a) Pick any x € qri(€2) and deduce from Proposition 5.8 that N(x; Q)
is a linear subspace. Take y* € N(T(x); T(€2)) and get (y*,T(x) — T(x)) <0
for all x € Q, which implies that T*y* € N(x; Q), where T*: Y* — X* is the
classical adjoint operator. Since N(x;€2) is a subspace, we have that —T*y* €
N(x; Q). Equivalently, it holds that —y* € N(T'(x); T(€2)), which implies that
N(T(x); T(Q)) is a linear subspace of Y*. Hence Proposition 5.8 tells us that
T(x) € qri(T(L)).
(b) We have by the assumption that there is x € qri(Q2), and thus

y = T(x) € qri(T(Q)).

Fix any y € qri(T(Q)) = iri(T(L2)) and deduce from Proposition 3.12 that there
exists yo € T(Q) such that y = (1 — ty)y + toyo € T(Q) for some ty € (0, 1).
Then we find xp, ¥ € Q satistying yo = T'(x0) and y = T(x). Since T is injective
and

T(x) =y = T((1 — to)x + toXo),

we obtain (1 — fy)x + toxo = X € Q. Moreover, since X € qri(Q2), Proposi-
tion 5.13 tells us that x € qri(Q), and hence y € T(qri(2)). The imposed assump-
tions and the proved result in (a) yield

qri(T(Q)) c T(qri(Q)) c qri(T(€2)).
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If Q is convex with qri(€2) # @, then the conclusion follows directly from [11,
Theorem 2.183(c)]. (c) Since Q is quasi-nearly convex, we get from Definition 5.1
that there exists a convex set C C X such that qri(C) # @ and

ccQccC.

Then Proposition 5.4(a) together with [4, Proposition 2.12] tells us that qri(C) =
C = Q. Thus

T(qri(C)) € T(qri(®) € T(Q) C T(Q) = T(qri(C)) C T(qri(C)),  (23)

where the first inclusion is satisfied by Proposition 5.4(b) and the last inclu-
sion holds because T is continuous. Note that qri(C) is convex by Borwein and
Lewis [4, Lemma 2.9], and we deduce from the linearity of T that T(qri(C)) is
convex. Combining this with (23) implies that T'(Q2) and T(qri(£2)) are quasi-
nearly convex. |

6. Generalized relative interiors of quasi-nearly convex graphs

The last section of the paper is devoted to deriving new results on quasi-relative
interiors and quasi-interiors of graphs of set-valued mappings in the quasi-near
convexity framework.

Given a function f: X — R, we say that f is quasi-nearly convex if epi(f) is a
quasi-nearly convex set. We also say that a set-valued mapping F: X = Y between
LCTYV spaces is quasi-nearly convex convex if its graph gph(F) is a quasi-nearly
convex setin X x Y.

The following proposition is useful to establish the major results of this section.

Proposition 6.1: Let F: X = Y is quasi-nearly convex set-valued mapping
between LCTV spaces. Then both sets dom(F) and rge(F) are quasi-nearly con-
vex sets. Consequently, if f : X — R is an extended-real-valued proper quasi-nearly
convex function, then the sets dom(f) and rge(f) are quasi-nearly convex.

Proof: We first see that dom(F) = P(gph(F)), where P is the continuous linear
mapping given by
P,y =x (xy)eXxY.

Then it follows from Theorem 5.17(c) that dom(F) is quasi-nearly convex. Sim-
ilarly, rge(F) is quasi-convex because rge(F) = P;(gph(F)), where P; is the
continuous linear mapping defined by

Pix,y) =y, (x,y)eXxY.

Finally, suppose that f is quasi-nearly convex. Then the epigraphical mapping E¢
defined in (1) is quasi-nearly convex. Since dom(Ey) = dom(f) and rge(Es) =
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rge(f), the sets dom(f) and rge(f) are both quasi-nearly convex, and we are
done. [

Now we are ready for the first main result.

Theorem 6.2: Let F: X =2 Y be a quasi-nearly convex set-valued mapping. The
following assertions are valid:

(a) Ifgph(F) is quasi-regular, then we have
qri(gph(F)) C {(x,y) € X x Y | x € gri(dom(F)),y € qri(F(x))}.

(b) If F(x) is quasi-nearly convex and qi(F(x)) # @ for every x € dom(F), then
qri(gph(F)) D {(x,y) € X x Y | x € gri(dom(F)),y € qri(F(x))}.

Consequently, if gph(F) is quasi-regular and qi(F(x)) # @ for every x € dom(F),
then

qri(gph(F)) = {(x,y) € X x Y | x € gri(dom(F)),y € qri(F(x))}.

Proof: (a) Observe first that dom(F) is quasi-nearly convex by Proposition 6.1.
We now fix any (x,y) € qri(gph(F)) and suppose on the contrary that x ¢
qri(dom(F)). Then it follows from Proposition 5.9 that the sets {x} and dom(F)
can be properly separated by a closed hyperplane, i.e. there exist x* € X* \ {0}
and x € dom(F) such that

(x*,x) < (x*,a_c) for all x € dom(F)
and
(x*,?c) < (x*,a_c).
Thus, we have
((x*,O) , (x,y)) = (x*,x) < (x*,a_c) = ((x*,O) , ()_c,)_/)) for all (x, y) € gph(F)
and for each y € F(%),
((6,0), (5) = (68) < (6"3) = ((,0) G ).

This implies that the sets gph(F) and {(X, y)} can be properly separated. It fol-
lows from Proposition 5.9 that (X, ) ¢ qri(gph(F)), a contradiction, which x €
qri(dom(F)). It remains to show that y € qri(F(x)). Fix any y € F(x). Then by
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the quasi-regularity of gph(F) and Proposition 3.12, there exist (xo, yo) € gph(F)
and ¢y € (0, 1) such that
(% 7) = (1 = t0)(%,y) + to(x0, y0)-

This yields xo = x and y = (1 — tp)y + toyo with yo € F(x). It follows there-
fore by Proposition 3.12 and Theorem 3.3 that y € iri(F(x)) C qri(F(x)), which
completes the proof of (a).

(b) To verify the reverse inclusion in this assertion under the imposed assump-
tions that F(x) is quasi-nearly convex and qi(F(x)) # @ for every x € dom(F),
we fix x € qri(dom(F)) and y € qri(F(x)). Arguing by contradiction, suppose
that (x, y) ¢ qri(gph(F)). Then it follows from Proposition 5.9 that there exist
(x*,y*) € X* x Y*\ {(0,0)} and (%, y) € X x Y such that

(x*,x) + (y*,y) < (x*,fc) + (y*,)'/) whenever x € dom(F) and y € F(x) (24)
together with the strict inequality

e 3 30 < (8 + b 3). @9

We distinguish the two possible cases: (A) y* = 0 and (B) y* # 0.
In case (A), we get from (24) that

(x*,x) < (x*,x) whenever x € dom(F)
and from (25) that
(x*, %) < (x*,%).
Then it follows from Proposition 5.9 that x ¢ qri(dom(F)), a contradiction.

In case (B), letting x = xin (24) gives us (y*,y) < (y*,y) forall y € F(x). Then
Propositions 5.15 and 5.16 tell us that

y € qi(F(x)) = qri(F(x)).

This contradiction shows that (x,y) € qri(gph(F)) and hence completes the
proof of (B) and of the whole theorem. |

Another description of the quasi-relative interiors of graphs for quasi-nearly
convex set-valued mappings is formulated as follows.

Theorem 6.3: Let F: X =2 Y be a quasi-nearly convex set-valued mapping. Then
we have

qri(gph(F)) D {(x,y) € X x Y | x € qri(dom(F)), y € int(F(x))}.

If in addition gph(F) is quasi-regular, F(x) is convex and int(F(x)) # @ for every
x € dom(F), then

qri(gph(F)) = {(x,y) e X x Y | x € qri(dom(F)), y € int(F(x))}.
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Proof: Pick any (x,y) € X x Y with x € qri(dom(F)) and y € int(F(x)). We
prove by contradiction, suppose that (x,y) ¢ qri(gph(F)). By Proposition 5.9,
there exists (x*,y*) € X* x Y* \ {(0,0)} such that

(x*,x) + (y*,y) < (x*, %)+ (y*,y) forallx € dom(F)andy € F(x), (26)
and there exists (%, y) € gph(F) for which
(X%, %) + (" 9) < (%) + (") (27)
Letting x = X in (26), we obtain that
(y*,y) < (y*,y) whenevery € F(x). (28)

Since y € int(F(x)), there exists a symmetric neighbourhood V of the origin sat-
isfying V' C F(x) — {y}. It follows from (28) that (y*,v) < 0 and (y*,—v) <0
for all 0 # v € V, and hence y* = 0 on V. Moreover, since V is a symmet-
ric neighbourhood of 0 € X, for every 0 # y € Y we find 0 # t € R such that
ty = v € V, and therefore (y*,y) = %(y*, v) = 0. This implies that y* =0 on Y,
which implies by (26) and (27) that the sets {x} and dom(F) can be properly sepa-
rated by a closed hyperplane. Then Proposition 5.9 tells us that x ¢ qri(dom(F)),
a contradiction that justifies the inclusion

qri(gph(F)) D {(x,y) €e X x Y | x € qri(dom(F)), y € int(F(x))}.

To check the inclusion ‘C’ in the theorem under the additional assumptions
made, we take any (X, y) € qri(gph(F)) and suppose on the contrary that x ¢
qri(dom(F)). By Proposition 5.9, there exist a nonzero function x* € X* and
x € dom(F) such that

(x*,x) < (x*,x) forall x € dom(F)
and
(x*, %) < (x*,%).
Then for all (x, y) € gph(F), we get
((X*, 0), (X,y)) = (X*,X> < <X*’5C> = ((X*,O), ()_C’}_/)) .

Taking any fixed y € F(X) gives us
((x*,0), (%,7)) = (x*,%) < (x*,X) = ((x*,0), (%, 7).

Thus, the sets {(x, y)} and gph(F) can be properly separated. Applying Propo-
sition 5.9 again, we arrive at the condition (x,y) ¢ qri(gph(F)), which is a
contradiction telling us that x € qri(dom(F)).

To proceed further, let us verify that y € int(F(x)). Under the assumptions of
the convexity of F(x) and the nonemptiness of int(F(x)), we have by Borwein and
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Goebel [3, Theorem 2.12(b)] that int(F(x)) = iri(F(x)). Therefore, it suffices to
show y € iri(F(x)). To justify this, fix any y € F(x). Then the quasi-regularity of
gph(F) and Proposition 3.12 give us (xo, yo) € gph(F) such that

(%,7) = (1 — to)(x, ) + to(x0,y0) for some ty € (0, 1).

This yields xo = x and y = (1 — ty)y + toyo with yo € F(x). Applying Propo-
sition 3.12 again tells that y € iri(F(x)), which completes the proof of the
theorem. [

Next, we employ the above result to deduce representations of the quasi-
relative interiors of epigraphs for extended-real-valued functions.

Corollary 6.4: Let f: X — R be a proper quasi-nearly convex function. If epi(f)
is quasi-regular, then we have

qri(epi(f)) = {(x,a) € X x R| x € gri(dom(f)), f(x) < a}.

Proof: Consider the epigraphical mapping Ey associated with f. Since Ef(x) =
[f (x), 00) is convex and int(Ef(x)) is nonempty every x € dom(Es) = dom(f),
the conclusion follows from Theorem 6.3. |

We end this section with the following inclusion of quasi-interiors for graphs
of quasi-nearly convex set-valued mappings.

Theorem 6.5: Let F: X =Y be a quasi-nearly convex set-valued mapping
between LCTV spaces. Then we have the inclusion

qi(gph(F)) D {(x,y) € X x Y | x € qi(dom(F)), y € qi(F(x))}.

Proof: We proceed as in the proof of Theorem 6.2(b) with using now Proposi-
tion 5.15 instead of Proposition 5.9. |
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