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ABSTRACT
This paper presents a study of generalized polyhedral con-
vexity under basic operations on multifunctions. We address
the preservation of generalized polyhedral convexity under
sums and compositions of multifunctions, the domains and
ranges of generalized polyhedral convex multifunctions, and
the direct and inverse images of sets under such mappings.
Then we explore the class of optimal value functions defined
by a generalized polyhedral convex objective function and
a generalized polyhedral convex constrained mapping. The
new results provide a framework for representing the relative
interior of the graph of a generalized polyhedral convex mul-
tifunction in terms of the relative interiors of its domain and
mapping values in locally convex topological vector spaces.
Among the new results in this paper is a significant extension
of a result by Bonnans and Shapiro on the domain of general-
ized polyhedral convex multifunctions from Banach spaces to
locally convex topological vector spaces.
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1. Introduction

The concept of polyhedral convex sets or convex polyhedra can be traced back
to ancient Greece, where Plato discussed the five regular polyhedra in his book
‘Timaeus’. However, it wasn’t until the 19th century that the study of convex
polyhedra gained significant interest due to their crucial role in the theory of lin-
ear programming and their connection to convex analysis and optimization. The
notion of polyhedral convex sets has since been used to define polyhedral convex
functions and polyhedral convex multifunctions, which require their epigraphs
and graphs, respectively, to be polyhedral convex sets. Polyhedral convex sets,
functions, andmultifunctions havemany nice properties that can be used in con-
vex analysis and optimization, making them valuable in many applications; see,
e.g. [1–5].
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The important role of polyhedral convex sets in optimization and other areas
has led to the development of a more general concept called generalized polyhe-
dral convex set in the framework of locally convex Hausdorff topological vector
spaces. This concept was introduced by Bonnans and Shapiro in their book ‘Per-
turbation Analysis of Optimization Problems’, where they defined a generalized
polyhedral convex set as the intersection of a polyhedral convex set and a closed
affine subspace [6, Definition 2.195]. These more general sets allow for a broader
range of applications in optimization and other fields, particularly in the theories
of generalized linear programming and quadratic programming [6, Sections 2.5.7
and 3.4.3].

It is well known that any infinite-dimensional normed space equipped with
the weak topology is not metrizable, but it is a locally convex Hausdorff topolog-
ical vector space. Similarly, the dual space of any infinite-dimensional normed
space equippedwith the weak∗ topology is notmetrizable, but it remains a locally
convex Hausdorff topological vector space. The just mentioned two models pro-
vide us with the most typical examples of locally convex Hausdorff topological
vector spaces, whose topologies cannot be defined by norms. Clearly, results on
generalized convex polyhedra in Banach spaces are not applicable either to an
infinite-dimensional normed space equipped with the weak topology or to the
dual space of any infinite-dimensional normed space equipped with the weak∗

topology. Therefore, it becomes necessary to extend some results on generalized
convex polyhedra, as well as on convex polyhedra, to the case of locally con-
vex topological vector spaces (see [7, pp. 471–477] for more comments and the
related references).

A generalized polyhedral convex function and a generalized polyhedral con-
vex multifunction can be defined accordingly by requiring their epigraphs and
graphs, respectively, to be generalized polyhedral convex sets. So, the concept of
generalized polyhedral convex set has proved to be very useful in many issues
of convex analysis and applications; see [7–19] and the references therein. The
paper of Luan, Yao, and Yen [20] can be seen as a comprehensive study on gener-
alized polyhedral convex sets, generalized polyhedral convex functions on locally
convex Hausdorff topological vector spaces, and the related constructions such
as sum of sets, sum of functions, directional derivative, infimal convolution, nor-
mal cone, conjugate function, subdifferential, sum rule. Some results of [20] can
be considered as adequate extensions of the corresponding classical results in [4,
Section 19].

The present paper explores many properties of generalized polyhedral con-
vex multifunctions with refinements to the case of polyhedral convex ones. We
first examine the generalized polyhedral convexity of the domains and ranges
as well as the direct and inverse images of generalized polyhedral convex sets
under these mappings. Our new results include an answer to the question of
whether the domain of a generalized polyhedral convex multifunction is also a
generalized polyhedral convex set in locally convex topological vector spaces.
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This is an important extension of a related result by Bonnans and Shapiro in
the Banach space setting (see [6, Theorem 2.207]). Then we study the preser-
vation of polyhedral convexity for multifunctions under various operations. We
provide our answers to another question asking if the sum or composition of
two generalized polyhedral convex multifunctions remains a generalized poly-
hedral convex multifunction. The question has not been fully answered in the
literature, even in the case of polyhedral convex mappings. We also study the
generalized polyhedral convexity of the optimal value function, which is impor-
tant in parametric optimization. The specific features of generalized polyhedral
convex sets allow us to obtain a representation for their generalized relative
interiors, whichwe use to study the generalized relative interiors of graphs of gen-
eralized polyhedral convex multifunctions in locally convex topological vector
spaces. Our developments have great potential applications to the theory of gen-
eralized differentiation involving generalized polyhedral convex sets, functions,
multifunctions, and to optimization theory.

The rest of the paper is structured as follows. Section 2 introduces basic
notions and results related to generalized polyhedral convex sets and multi-
functions. In Section 3, we discuss some properties of generalized polyhedral
convex multifunctions including their domains and ranges, as well as the direct
and inverse images of generalized polyhedral convex sets under such map-
pings. To analyze the concept of continuous linear mappings closed under
finite-codimensional subspaces, as well as the assumptions of some theorems in
Section 3, three useful examples are given in Section 4. The stability of generalized
polyhedral convexity under basic operations is presented in Section 5. The study
of generalized relative interiors of generalized polyhedral convex sets is given in
Section 6, where we also obtain a formula for the relative interior of the graph
of a generalized polyhedral convex multifunction in locally convex topological
vector spaces.

In the sequel, X, Y, and Z are assumed to be locally convex Hausdorff topolog-
ical vector spaces. We use the notation X∗ to denote the topological dual space of
X, and ⟨x∗, x⟩ to represent the value of x∗ ∈ X∗ at x ∈ X. For a subset ! ⊂ X, we
denote its topological closure and interior by! and int!, respectively. The same
notation is used for subsets ofX∗. The cone (resp., the linear subspace) generated
by a set ! ⊂ X are denoted by cone! (resp., span!).

2. Preliminaries

This section recalls the definitions of generalized polyhedral convex sets, func-
tions, and multifunctions, as well as some basic notations and results that will be
used throughout the paper. The readers are referred to [6] for more details.

Let X0 ⊂ X be a closed linear subspace. Recall that the codimension of X0
is the dimension of the quotient space X/X0 (see [21, p. 106]). In the lemma
below, we present two well-known characterizations of finite-codimensional
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linear subspaces and provide a detailed proof for the convenience of the
readers.

Lemma2.1: Let X0 ⊂ X be a closed linear subspace. Then the following statements
are equivalent:

(a) X0 is finite-codimensional.
(b) There exists a finite-dimensional linear subspace X1 of X such that X0 + X1 =

X and X0 ∩ X1 = {0}.
(c) There exists a continuous linear mapping T from X to a locally convex Haus-

dorff topological vector space W such that W is finite-dimensional and X0 =
kerT.

Proof: (a) =⇒ (b) See the proof of [21, Lemma 4.21(b)].
(b) =⇒ (c) Let π0 : X → X/X0, x )→ x + X0 for all x ∈ X, be the canonical

projection from X onto the quotient space X/X0. Consider further the linear
operator #0 : X/X0 → X1 defined as follows. For any x ∈ X, there is a unique
representation x = x0 + x1, where x0 ∈ X0 and x1 ∈ X1. Then we set #0(x +
X0) = x1 and observe that#0 is bijective.On one hand, by [21, Theorem1.41(a)],
π0 is a continuous linear mapping. On the other hand, #0 is a homeomorphism
by [7, Lemma 2.5]. Thus, the operator T : X → X1 given by T = #0 ◦ π0 is lin-
ear and continuous with kerT = X0. The proof of this implication is complete
by lettingW = X1 and observing thatW is a locally convex Hausdoff topological
vector space that is finite-dimensional.

(c) =⇒ (a) It is clear that the operator # : X/X0 → T(X), x + X0 )→ T(x)
for all x ∈ X, is a bijective linear mapping. Since T(X) is a linear subspace
of the finite-dimensional space W, one has dimT(X) < ∞. Therefore, X0 is
finite-codimensional because dim(X/X0) = dimT(X) < ∞. !

A subsetD ⊂ X is said to be a generalized polyhedral convex set, or a generalized
convex polyhedron, if there exist x∗

i ∈ X∗, αi ∈ R, i = 1, 2, . . . ,m, and a closed
affine subspace L ⊂ X such that

D =
{
x ∈ X | x ∈ L, ⟨x∗

i , x⟩ ≤ αi, i = 1, . . . ,m
}
. (1)

If D can be represented in the form (1) with L = X, then we say that it is a
polyhedral convex set, or a convex polyhedron.

Let D be given as in (1). By [6, Remark 2.196], there exists a continuous sur-
jective linear mapping A from X to a locally convex Hausdorff topological vector
space Z and a vector z ∈ Z such that L = {x ∈ X | A(x) = z}. Then D can be
represented by

D =
{
x ∈ X |A(x) = z, ⟨x∗

i , x⟩ ≤ αi, i = 1, . . . ,m
}
.
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If D is a polyhedral convex set in X, then one can choose Z = {0}, A ≡ 0, and
z = 0.

It follows from the definition that every generalized polyhedral convex set is a
closed set. If X is finite-dimensional, a subset D ⊂ X is a generalized polyhedral
convex set if and only if it is a polyhedral convex set. In that case, we can represent
a given affine subspace L ⊂ X as the solution set of a systemoffinitelymany linear
inequalities.

The next useful lemma can easily be proved by using [7, Theorem 2.7].

Lemma 2.2: Let E be a closed linear subspace of a locally convex topological vector
space X and P be a finite dimensional generalized convex polyhedron in X, and
let T be a continuous linear operator from X to another locally convex topological
vector space Y such that T(E) is closed in Y. Then T(E + P) is a generalized convex
polyhedron in Y.

Given a function f : X → R̄ = [−∞,∞], recall that the epigraph of f is
defined by

epi f =
{
(x, λ) ∈ X × R | f (x) ≤ λ

}
.

The function f is said to be a lower semicontinuous if epi f is a closed set inX × R.
We also say that f is a generalized polyhedral convex function (resp., a polyhedral
convex function) if epi f is a generalized polyhedral convex set (resp., a polyhedral
convex set) in X × R.

Let F : X ⇒ Y be a multifunction. The domain, range, and graph of F are
defined, respectively, by

dom F = {x ∈ X | F(x) ̸= ∅}, rge F = {y ∈ Y | ∃x ∈ X such that y ∈ F(x)}

and

gph F =
{
(x, y) ∈ X × Y | x ∈ dom F, y ∈ F(x)

}
.

It is clear that dom F = πX(gph F), where πX : X × Y → X with πX(x, y) = x
is the projection mapping from X × Y onto X. Similarly, rge F = πY(gph F),
whereπY : X × Y → Y withπY(x, y) = y is the projectionmapping fromX × Y
onto Y. Observe that rge F−1 = dom F and rge F = dom F−1, where the inverse
multifunction F−1 : Y ⇒ X of F is given by F−1(y) = {x ∈ X | y ∈ F(x)}.

A multifunction F : X ⇒ Y is said to be generalized polyhedral (resp., poly-
hedral) if gph F is a union of finitely many generalized polyhedral convex sets
(resp., polyhedral convex sets) in X × Y . If gph F is generalized polyhedral con-
vex (resp., polyhedral convex), then we say that F is generalized polyhedral convex
(resp., polyhedral convex).

Clearly, if F : X ⇒ Y is generalized polyhedral convex (resp., polyhedral con-
vex), then F−1 is also generalized polyhedral convex (resp., polyhedral convex).
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Let F : X ⇒ Y be a generalized polyhedral convex multifunction. If A : X ×
Y → Z is a continuous linear mapping, then the formula A1(x) = A(x, 0) for
x ∈ X (resp., the formula A2(y) = A(0, y) for y ∈ Y) defines a continuous linear
mapping from X to Z (resp., a continuous linear mapping from Y to Z), and one
has

A(x, y) = A1(x) + A2(y), (x, y) ∈ X × Y .

Note also that (X × Y)∗ = X∗ × Y∗. Therefore, the graph of F can be given by
the formula

gph F =
{
(x, y) ∈ X × Y |A1(x) + A2(y) = z,

⟨x∗
i , x⟩ + ⟨y∗

i , y⟩ ≤ βi, i = 1, . . . ,m
}
, (2)

where A1 (resp., A2) is a continuous linear mapping from X (resp., from Y) to Z,
z ∈ Z, x∗

i ∈ X∗, y∗
i ∈ Y∗, βi ∈ R, for i = 1, . . . ,m. Conversely, if the graph of a

multifunction F : X ⇒ Y can be represented by (2), then F is a generalized poly-
hedral convexmultifunction.Note that if gph F is the emptyset, then by definition
F is a generalized polyhedral convex multifunction. Clearly, if F is a polyhedral
convexmultifunction, then one can chooseZ = {0},A1 ≡ 0,A2 ≡ 0 and z = 0. If
the graph of amultifunction F : X ⇒ Y can be represented by (2), whereZ = {0},
A1 ≡ 0, A2 ≡ 0 and z = 0, then F is a polyhedral convex multifunction.

We say that a continuous linear mapping A : Y → Z is closed under finite-
codimensional subspaces if A(Y0) is closed for every finite-codimensional closed
linear subspace Y0 ⊂ Y . Clearly, if A is closed under finite-codimensional sub-
spaces, thenA(Y) is closed. The converse is true if bothY andZ are Fréchet spaces
(see Theorem 3.11 below). Since every Banach space is a Fréchet space, any con-
tinuous linear mapping between Banach spaces with a closed range is closed under
finite-codimensional subspaces.

3. Properties of generalized polyhedral convexmultifunctions

In this section,we study the domains and ranges of generalized polyhedral convex
multifunctions, as well as the direct and inverse images of generalized polyhe-
dral convex sets under such mappings. We will also discuss refinements of the
obtained results in the case of polyhedral convex sets and multifunctions.

First, we will extend a part of Theorem 2.207 in the book by Bonnans and
Shapiro [6], which was given in a Banach space setting, to the case of generalized
polyhedral convex multifunctions in locally convex Hausdorff topological vector
spaces.

Theorem 3.1: If the graph of a multifunction F is described by (2) in which
the mapping A2 is closed under finite-codimensional subspaces, then dom F is a
generalized polyhedral convex set.
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Proof: Without loss of generality we can assume that gphF is nonempty. Fix an
element (x̄, ȳ) ∈ gph F. We observe that gph F = (x̄, ȳ) + Q with

Q =
{
(x, y) ∈ X × Y |A1(x) + A2(y) = 0, ⟨x∗

i , x⟩ + ⟨y∗
i , y⟩

≤ β̄i, i = 1, . . . ,m
}
,

where β̄i = βi − ⟨x∗
i , x̄⟩ − ⟨y∗

i , ȳ⟩ for i = 1, . . . ,m. Let

W =
{
(x, y) ∈ X × Y | A1(x) + A2(y) = 0

}
.

Since W0 = {(x, y) ∈ W | ⟨x∗
i , x⟩ + ⟨y∗

i , y⟩ = 0, i = 1, . . . ,m} is a closed linear
subspace of finite codimension in W, one can find a finite-dimensional linear
subspaceW1 ofW such thatW0 + W1 = W andW0 ∩ W1 = {0} by Lemma 2.1.
The subspaceW1 is closed by [21, Theorem 1.21(b)]. Obviously,

Q1 =
{
(x, y) ∈ W1 | ⟨x∗

i , x⟩ + ⟨y∗
i , y⟩ ≤ β̄i, i = 1, . . . ,m

}

is a polyhedral convex set in W1. It is clear that W0 + Q1 ⊂ Q. The reverse
inclusion is also true. Indeed, for each (x, y) ∈ Q there exist (x0, y0) ∈ W0 and
(x1, y1) ∈ W1 satisfying (x, y) = (x0, y0) + (x1, y1). Since

⟨x∗
i , x1⟩ + ⟨y∗

i , y1⟩ = [⟨x∗
i , x⟩ + ⟨y∗

i , y⟩] − [⟨x∗
i , x0⟩ + ⟨y∗

i , y0⟩] ≤ β̄i

for all i = 1, . . . ,m, one has (x1, y1) ∈ Q1, so (x, y) ∈ W0 + Q1. We have
thus proved that Q = W0 + Q1. Therefore, gph F = (x̄, ȳ) + W0 + Q1. Since
dom F = πX(gph F), this yields

dom F = x̄ + πX(Q1) + πX(W0). (3)

Let Ã1 : X → Z × Rm, Ã2 : Y → Z × Rm be continuous linear mappings
defined, respectively, by

Ã1(x) =
(
A1(x), ⟨x∗

1, x⟩, . . . , ⟨x∗
m, x⟩

)
, Ã2(y) =

(
A2(y), ⟨y∗

1, y⟩, . . . , ⟨y∗
m, y⟩

)
.

It follows that

πX(W0) =
{
x ∈ X | there exists y ∈ Y such that Ã1(x) + Ã2(y) = 0

}

=
{
x ∈ X | Ã1(x) ∈ Ã2(Y)

}
= Ã−1

1 (Ã2(Y)). (4)

Next, we will claim that the linear subspace Ã2(Y) is closed in Z × Rm. Indeed,
since

Y0 =
{
y ∈ Y | ⟨y∗

i , y⟩ = 0 for all i = 1, . . . ,m
}

is a closed linear subspace of finite codimension in Y, one can find a finite-
dimensional linear subspace Y1 of Y such that Y0 + Y1 = Y and Y0 ∩ Y1 = {0}
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by Lemma 2.1. The linear subspace Y1 is closed by [21, Theorem 1.21(b)]. We
have

Ã2(Y) = Ã2(Y0 + Y1) = Ã2(Y0) + Ã2(Y1) = (A2(Y0) × {0}) + Ã2(Y1).

Since themappingA2 is closed under finite-codimensional subspaces, we see that
A2(Y0) is closed in Z and hence A2(Y0) × {0} is a closed linear subspace of Z ×
Rm. As Ã2(Y1) is afinite-dimensional subspace ofZ × Rm, by [21, Theorem1.42]
we can assert that (A2(Y0) × {0}) + Ã2(Y1) is closed. Thus, Ã2(Y) is a closed
linear subspace of Z × Rm.

Combining the result in the claim above with the continuity of the linear map-
ping Ã1, we can assert that Ã−1

1 (Ã2(Y)) is closed. Therefore, the linear subspace
πX(W0) is closed by formula (4). Since x̄ + πX(Q1) is a finite dimensional gen-
eralized convex polyhedron in X, from (3) and Lemma 2.2 it follows that dom F
is a generalized polyhedral convex set in X. !

To derive the following result, we use a similar argument as in the proof of
Theorem 3.1.

Theorem 3.2: If the graph of a multifunction F is described by (2) in which
the mapping A1 is closed under finite-codimensional subspaces, then rge F is a
generalized polyhedral convex set.

We can explore an interesting question related to Theorem 3.1: Can the
assumption that the mapping A2 is closed under finite-codimensional subspaces be
removed from this theorem? To answer this question, let us provide an example.

Example 3.3: Let X = Y = C[a, b], a<b, be the linear space of continuous
real-valued functions on the interval [a, b] with the norm defined by ∥x∥ =
maxt∈[a,b] |x(t)|. Let the continuous linear mappings A1 : X → X and A2 : Y →
X be defined, respectively, by A1(x) = x and

(
A2(y)

)
(t) =

∫ t

a
y(τ ) dτ ,

where integral is understood in the Riemannian sense. It is clear that

! =
{
(x, y) ∈ X × Y | A1(x) + A2(y) = 0

}
(5)

is a closed linear subspace of X × Y ; hence it is a generalized polyhedral convex
set in X × Y . Let F : X ⇒ Y be the generalized polyhedral convex multifunction
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with gph F = !. Then we have

dom F = πX(gph F)

=
{
x ∈ X | there exists y ∈ Y such that A1(x) + A2(y) = 0

}

= {x ∈ X |A1(x) ∈ A2(Y)}
= {x ∈ X | x ∈ A2(Y)} = A2(Y).

Since

A2(Y) =
{
x ∈ C[a, b] | x(a) = 0, x is continuously differentiable on (a, b),

lim
t↓a

ẋ(t) and lim
t↑b

ẋ(t) exist
}
,

where ẋ(t) denotes the derivative of x at t ∈ (a, b), is a non-closed linear subspace
of X (see [22, Example 2.1] for details), dom F is not a generalized polyhedral
convex set.

The following theorem addresses a special case of Theorem 3.1 in which F is
a polyhedral convex multifunction.

Theorem 3.4: If F is a polyhedral convex multifunction, then dom F and rge F are
polyhedral convex sets.

Proof: We can assume that gph F is given by (2) with Z = {0}, A1 ≡ 0, A2 ≡ 0
and z = 0. Arguing similarly as in the proof of Theorem 3.1, to prove that
dom F is a polyhedral convex set in X, we need only to show that πX(W0) is a
closed linear subspace of finite codimension of X. In the notation of the proof of
Theorem 3.1, observe that Ã2(Y) is a linear subspace of the finite dimensional
space {0} × Rm. Therefore, Ã−1

1 (Ã2(Y)) is a closed linear subspace of finite codi-
mension in X. Thus, from (4) it follows that πX(W0) is a closed linear subspace
of finite codimension in X.

The fact that rge F a polyhedral convex set in Y is obtained from the above
result by considering the multifunction F−1, which is polyhedral convex by the
assumption of the theorem, and applying the formula rge F = dom F−1. !

As a direct consequence of Theorem 3.4, we now present a property of the
projection of a polyhedral convex set in a product space onto each component of
the latter.

Corollary 3.5: If P is a polyhedral convex set in X × Y, then πX(P) is a polyhedral
convex set in X and πY(P) is a polyhedral convex set in Y.
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Proof: Suppose that P ⊂ X × Y is a polyhedral convex set. LetG : X ⇒ Y be the
multifunction defined by G(x) = {y ∈ Y | (x, y) ∈ P} for x ∈ X. Since gphG =
P, we see that G is a polyhedral convex multifunction. As πX(P) = domG and
πY(P) = rgeG, the desired properties follow from Theorem 3.4. !

The proposition below gives us a useful result concerning the generalized
polyhedral convexity of the function values of a generalized polyhedral convex
multifunction.

Proposition 3.6: If F : X ⇒ Y is a generalized polyhedral convex multifunction,
then F(x) is a generalized polyhedral convex set in Y for every x ∈ X.

Proof: Wecan assume that the graph of F can be given by (2). Taking any element
x̄ ∈ X, we have

F(x̄) =
{
y ∈ Y | (x̄, y) ∈ gph F

}

=
{
y ∈ Y |A1(x̄) + A2(y) = z, ⟨x∗

i , x̄⟩ + ⟨y∗
i , y⟩ ≤ βi, i = 1, . . . ,m

}

=
{
y ∈ Y |A2(y) = z − A1(x̄), ⟨y∗

i , y⟩ ≤ βi − ⟨x∗
i , x̄⟩, i = 1, . . . ,m

}
.

This clearly implies that F(x̄) is a generalized polyhedral convex set in Y. !

We now show that the image of a generalized polyhedral convex set under a
polyhedral convex multifunction is a polyhedral convex set.

Proposition 3.7: Let F : X ⇒ Y be a polyhedral convex multifunction. If C ⊂ X
is a generalized polyhedral convex set in X, then F(C) is a polyhedral convex set in
Y. In particular, if P ⊂ X is a polyhedral convex set in X, then F(P) is a polyhedral
convex set in Y.

Proof: Without loss of generality, suppose that both sets gph F and C are
nonempty. By the assumptions, we can assume that

gph F =
{
(x, y) ∈ X × Y | ⟨x∗

i , x⟩ + ⟨y∗
i , y⟩ ≤ αi, i = 1, . . . , p

}

and
C =

{
x ∈ X |A(x) = z, ⟨u∗

j , x⟩ ≤ βj, j = 1, . . . , q
}
,

where x∗
i ∈ X∗, y∗

i ∈ Y∗,αi ∈ R for i = 1, . . . , p, A : X → Z is a continuous
linear mapping, z ∈ Z, u∗

j ∈ X∗,βj ∈ R for j = 1, . . . , q. Set X0 = kerA, ! =
gph F ∩ (C × Y), and select a point x̄ ∈ C. Let

!0 =
{
(x0, y) ∈ X0 × Y | ⟨x∗

0,i, x0⟩ + ⟨y∗
i , y⟩ ≤ α0,i, i = 1, . . . , p,

⟨u∗
0,j, x0⟩ ≤ β0,j, j = 1, . . . , q

}
, (6)

where x∗
0,i denotes the restriction of x∗

i to X0, α0,i = αi − ⟨x∗
i , x̄⟩ for i = 1, . . . , p,

u∗
0,j denotes the restriction of u∗

j to X0, and β0,j = βj − ⟨u∗
j , x̄⟩ for j = 1, . . . , q. It
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is easily verified that ! = (x̄, 0) + !0. Since F(C) = πY(!), this implies that

F(C) = πY(x̄, 0) + πY(!0) = πY(!0). (7)

By (6), the set !0 is polyhedral convex in X0 × Y . According to Corollary 3.5,
πY(!0) is a polyhedral convex set in Y. Hence, from (7) it follows that F(C) is a
polyhedral convex set in Y. !

The next example shows that both assertions of Proposition 3.7 are false if F
is merely a generalized polyhedral convex multifunction.

Example 3.8: Let X,Y , and F be the same as in Example 3.3. Since F is a
generalized polyhedral convex multifunction, its inverse F−1 : Y ⇒ X is also a
generalized polyhedral convex multifunction. Obviously, Y is a polyhedral con-
vex set in Y and F−1(Y) = rge F−1 = dom F. Since dom F is not a generalized
polyhedral convex set, the image of Y via the generalized polyhedral convex
multifunction F−1 is not a generalized polyhedral convex set.

As a direct consequence of Proposition 3.7, the corollary below addresses the
inverse image of a generalized polyhedral convex set under a polyhedral convex
multifunction.

Corollary 3.9: Let F : X ⇒ Y be a polyhedral convex multifunction. If D ⊂ Y is a
generalized polyhedral convex set, then F−1(D) is a polyhedral convex set in X. In
particular, if Q ⊂ Y is a polyhedral convex set, then F−1(Q) is a polyhedral convex
set in X.

Proof: By the assumptionsmade, F−1 : Y ⇒ X is a polyhedral convexmultifunc-
tion and D is a generalized polyhedral convex set in Y. Then, by Proposition 3.7
we can assert that F−1(D) is a polyhedral convex set in X. !

Remark 3.1: In a Banach spaces setting, Theorem 3.4, Corollaries 3.5 and 3.9,
and the convex polyhedron part of Proposition 3.7 are consequences of [17,
Corollary 2.2]. In particular, Theorem 3.4 is just [17, Corollary 2.2] reducing to
the special case where P = X and Q = Y.

Example 3.8 has demonstrated that the conclusions of Proposition 3.7 do not
hold if F is just assumed to be a generalized polyhedral convex multifunction.
Nevertheless, when F is a surjective continuous linear mapping between Fréchet
spaces (a specific type of generalized polyhedral convex multifunction), we have
the following intriguing result. Recall [21, p. 9] that a Hausdorff topological vec-
tor space is said to be an F-space if its topology is induced by a complete invariant
metric. A locally convex F-space is called [21, p. 9] a Fréchet space. Therefore, a
locally convex Hausdorff topological vector space is a Fréchet space if and only if
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its topology is induced by a complete invariant metric. So, any Banach space is a
Fréchet space.

Theorem 3.10: Let X and Y be Fréchet spaces and T : X → Y a surjective contin-
uous linear mapping. If D ⊂ X a polyhedral convex set, then T(D) is a polyhedral
convex set in Y.

Proof: By [7, Theorem 2.8], we can find a convex polyhedron P in a finite-
dimensional subspace of X and a finite-codimensional closed linear subspace X0
of X such that D = X0 + P. Then T(D) = T(P) + T(X0). Note by the surjectiv-
ity of T that T(X0) is a finite-codimensional subspace of Y. Thus, according to
[7, Theorem 2.8], to prove that T(D) is a polyhedral convex set in Y it suffices
to show that T(X0) is closed. Since X0 is finite-codimensional in X0 + ker(T),
there exists afinite dimensional subspaceE ofX such thatX0 + ker(T) = X0 + E.
Hence X0 + ker(T) is closed (cf. [21, Theorem 1.42]). Since X and Y are Fréchet
spaces and T is surjective, T(X \ (X0 + ker(T)) is an open set in Y by the open
mapping theorem (cf. [21, Corollary 2.12(a)]). As

T(X0) = T(X0 + ker(T)) = Y \ T(X \ (X0 + ker(T))),

we see that T(X0) is closed. !

The last theorem of this section establishes the relationship between the
closedness under finite-codimensional subspaces and the closed range property
of a continuous linear mapping between Fréchet spaces.

Theorem 3.11: Let X and Y be Fréchet spaces and T : X → Y a continuous linear
mapping. Then T is closed under finite-codimensional subspaces if and only if T(X)
is closed.

Proof: It suffices to prove that if T(X) is closed then T is closed under finite-
codimensional subspaces because the converse implication is obvious. Suppose
that X0 is a finite-codimensional closed linear subspace of X. Using Lemma 2.1,
we have the representationX = X0 + X1, whereX0 ∩ X1 = {0} andX1 is a finite-
dimensional subspace of X. By [7, Theorem 2.8], the linear subspace X0 is a
polyhedral convex set in X. Since T(X) is closed, the continuous linear mapping
T : X → T(X) is surjective between two Fréchet spaces. Thus, it follows from
Theorem 3.10 that T(X0) is a polyhedral convex set in T(X), so T(X0) is closed
in T(X). Since T(X) is closed in Y, we see that T(X0) is closed in Y. Therefore, T
is closed under finite-codimensional subspaces. !

Combining Theorem 3.11 with Theorem 3.1, we get the following result.

Corollary 3.12: If Y and Z are Fréchet spaces and the graph of a multifunction F is
given by (2) inwhich themappingA2 has a closed range, thendom F is a generalized
polyhedral convex set.
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4. Three useful examples

In this section, we will construct three useful examples for analyzing the con-
cept of continuous linearmappings closed underfinite-codimensional subspaces,
along with the assumptions of Theorems 3.1 and 3.2.

Let us begin with some important remarks. Given any infinite-dimensional
normed space Z, there exists a discontinuous linear functional f : Z → R (see,
e.g. [16, p. 40]). Then,

Z0 = kerf = {z ∈ Z | f (z) = 0}

is a non-closed linear subspace of Z (see, e.g. [21, Theorem 1.18]). Consider the
product space Y = Z0 × Rwith the norm defined by ∥(y0,µ)∥ = ∥y0∥ + |µ| for
(y0,µ) ∈ Y = Z0 × R. Since there are Cauchy sequences in Z0 × {0} not con-
verging in Y, the product space is incomplete (hence, it is neither a Banach space
nor a Fréchet space, even if Z is a Banach space). Note that the subsequent con-
siderations of this section also apply to the case where Z is considered with its
weak topology, the linear subspace Z0 ⊂ Z is equipped with the induced topol-
ogy from the weak topology of Z, and Y = Z0 × R is the product of the locally
convex Hausdorff topological vector spaces Z0 andR. In that case, the dual space
of Z is again Z∗, where Z∗ stands for the dual space of the normed space Z; see
[23, Proposition 7, p. 33] and Lemma 2.1 in [24] (to get the desired property, it
suffices to apply that lemma for the dual pair (X,Z) with X = Z∗).

In connection with Theorem 3.11, the following natural question arises: Is
there a continuous linear mapping between two locally convex Hausdorff topologi-
cal vector spaces with a closed range which is not closed under finite-codimensional
subspaces? An affirmative answer to the above question is given in the next
example.

Example 4.1 (A continuous linearmapping between two locally convexHaus-
dorff topological vector spaces with a closed range which is not closed under
finite-codimensional subspaces): Let Z be any infinite-dimensional locally
convex Hausdorff topological vector space, for which there exists discontinu-
ous linear functional f : Z → R. Note that f (Z) = R. Define the linear subspace
Z0 = kerf . By a classical result (see, e.g. [21, Theorem 1.18]) we know that Z0 is
a non-closed linear subspace of Z. We consider the linear subspace Z0 equipped
with the induced topology from the topology on Z. Note that Z0 is a locally con-
vex Hausdorff topological vector space. Let Y = Z0 × R be the product space of
Z0 and R. Select a vector e ∈ Z satisfying f (e) = 1. Then, e ∈ Z \ Z0. Define a
linear mapping A : Y → Z by

A ((z0,µ)) = z0 + µe, (z0,µ) ∈ Y = Z0 × R. (8)

For every z ∈ Z, since z = z0 + f (z).e, where z0 := z − f (z).e ∈ Z0, one has
A((z0, f (z)) = z0 + f (z).e = z. So A(Y) = Z and the linear mapping A has a
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closed range. Obviously, A is continuous. It is clear that Y0 := Z0 × {0} and
Y1 := {0} × R are linear subspaces of Y, Y = Y0 + Y1 and Y0 ∩ Y1 = {0}. Since
Y \ Y0 = Z0 × (R \ {0}) is an open subset of Y = Z0 × R, Y0 is a closed subset
of Y. In addition, since the dimension of Y1 is 1, Y0 is a closed linear subspace
having codimension 1 of Y (see [21, p. 106]). As A(Z0 × {0}) = Z0, we see that
A : Y → Z is not closed under finite-codimensional subspaces.

To guarantee the conclusion of the main result in Theorem 3.1 (and the
subsequent Theorem 3.2), we need the assumption thatA2 is closed under finite-
codimensional subspaces. Below, we provide two counterexamples to illustrate
the necessity of this assumption. Unlike in Example 3.3, a general framework of
locally convex Hausdorff topological vector spaces is adopted.

Example 4.2 (The assumption stating that the mapping A1 is closed under
finite-codimensional subspaces inTheorem3.2 cannot be omitted): LetZ,Z0,
and e be the same as in Example 4.1. Again, we consider the induced topology on
Z0. Put X = Z0 × R, Y = Z, and z = 0. Define the linear mapping

A(x, y) = z0 − y, x = (z0,µ) ∈ X = Z0 × R and y ∈ Y = Z.

Then, in the notations of Theorem 3.2, one has A(x, y) = A1(x) + A2(y) with
A1(x) = z0 for all x = (z0,µ) ∈ X = Z0 × R,A2(y) = −y for all y ∈ Y = Z, and

gph F =
{
(x, y) ∈ X × Y | A1(x) + A2(y) = 0

}
. (9)

Arguing similarly as in Example 4.1, we can show that A1 : X → Z is a contin-
uous linear mapping having a non-closed range; hence it is not closed under
finite-codimensional subspaces. Clearly, the mapping A2 : Y → Z is linear and
continuous. Thus, themultifunction F : X ⇒ Y is generalized polyhedral convex.
From (9) it follows that

F(x) = {y ∈ Y = Z | y = z0} = {z0}

for every x = (z0,µ) ∈ X = Z0 × R. Hence, rge F = Z0. Since Z0 is a non-closed
subset of Z, the range of F is not a generalized polyhedral convex set.

Example 4.3 (The assumption saying that the mapping A2 is closed under
finite-codimensional subspaces inTheorem3.1 cannot be omitted): LetZ,Z0,
and e be the same as in Example 4.2. Put X = Z, Y = Z0 × R, and z = 0. Define
the linear mapping

A(x, y) = −x + z0, x ∈ X = Z and y = (z0,µ) ∈ Y = Z0 × R.

Then, in the notations of Theorem 3.1, one has A(x, y) = A1(x) + A2(y) with
A1(x) = −x for all y ∈ X = Z and A2(y) = z0 for all y = (z0,µ) ∈ Y = Z0 × R.
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Based on these linear mappings A1 and A2, we consider a multifunction F : X ⇒
Y , whose gph F is given by (9). Obviously, A2 : Y → Z is a continuous linear
mapping. Since A2(Y) = Z0 is a non-closed subset of Z, the mapping A2 is not
closed under finite-codimensional subspaces. As A1 : X → Z is a continuous
linear mapping, F : X ⇒ Y is a generalized polyhedral convex multifunction.
From (9) we can deduce that

F(x) = {(z0,µ) ∈ Y = Z0 × R | z0 = x}

for every x ∈ X = Z. It follows that dom F = Z0. SinceZ0 is non-closed inX = Z,
the domain of F is not a generalized polyhedral convex set.

5. Generalized polyhedral convexity under basic operations

In this section, we will examine the generalized polyhedral convex property in
relation to basic operations on multifunctions. Our goal is to study the preser-
vation of the generalized polyhedral convexity under sums and compositions of
multifunctions. We will also study an important class of extended-real-valued
functions known as the optimal value function defined by a polyhedral convex
objective function and a polyhedral convex constrained multifunctions.

The theorem below establishes a framework in which the composition of
two generalized polyhedral convex multifunctions yields another generalized
polyhedral convex multifunction.

Theorem 5.1: Let F : X ⇒ Y and G : Y ⇒ Z be generalized polyhedral convex
multifunctions whose graphs are given by

gph F =
{
(x, y) ∈ X × Y |A1(x) + A2(y) = u,

⟨x∗
i , x⟩ + ⟨y∗

1,i, y⟩ ≤ αi, i = 1, . . . , p
}
, (10)

gphG =
{
(y, z) ∈ Y × Z |B1(y) + B2(z) = v,

⟨y∗
2,j, y⟩ + ⟨z∗j , z⟩ ≤ βj, j = 1, . . . , q

}
, (11)

where A1 : X → U, A2 : Y → U, B1 : Y → V, B2 : Z → V are continuous lin-
ear mappings between locally convex Hausdorff topological vector spaces, u ∈ U,
v ∈ V, x∗

i ∈ X∗, y∗
1,i ∈ Y∗, αi ∈ R for i = 1, . . . , p, y∗

2,j ∈ Y∗, z∗j ∈ Z∗, βj ∈ R for
j = 1, . . . , q. If the continuous linear mapping (A2,B1) : Y → U × V defined by
(A2,B1)(y) = (A2(y),B1(y)) for all y ∈ Y is closed under finite-codimensional
subspaces, then the multifunction G ◦ F : X ⇒ Z is generalized polyhedral convex.
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Proof: Define the sets

!1 =
{
(x, z, y) ∈ X × Z × Y | (x, y) ∈ gph F

}
,

!2 =
{
(x, z, y) ∈ X × Z × Y | (y, z) ∈ gphG

}
.

We have

!1 ∩ !2 =
{
(x, z, y) ∈ X × Z × Y |A1(x) + A2(y) = u,B1(y) + B2(z) = v,

⟨x∗
i , x⟩ + ⟨y∗

1,i, y⟩ ≤ αi, i = 1, . . . , p,

⟨y∗
2,j, y⟩ + ⟨z∗j , z⟩ ≤ βj, j = 1, . . . , q

}
.

Let W = X × Z, Ã1 : W → U × V , Ã2 : Y → U × V , ũ ∈ W, x̃∗
i , z̃∗j ∈ W∗ for

i = 1, . . . , p and j = 1, . . . , q be given by setting

Ã1(w) = Ã1

(
x
z

)
=

(
A1(x)
B2(z)

)
, Ã2(y) =

(
A2(y)
B1(y)

)
,

ũ =
(
u
v

)
,

〈
x̃∗
i ,

(
x
z

)〉
= ⟨x∗

i , x⟩,
〈
z̃∗
j ,

(
x
z

)〉
= ⟨z∗j , z⟩

for all w = (x, z) ∈ X × Z and y ∈ Y . Then one has

!1 ∩ !2 =
{
(w, y) ∈ W × Y | Ã1(w) + Ã2(y) = ũ,

⟨̃x∗
i ,w⟩ + ⟨y∗

1,i, y⟩ ≤ αi, i = 1, . . . , p,

⟨y∗
2,j, y⟩ + ⟨̃z∗

j ,w⟩ ≤ βj, j = 1, . . . , q
}
. (12)

Let πW : W × Y → W be the projection mapping fromW × Y ontoW. Then it
holds that

gph(G ◦ F) = πW(!1 ∩ !2).

In other words, gph(G ◦ F) is the domain of the multifunction T : W ⇒ Y with

T(w) =
{
y | (w, y) ∈ !1 ∩ !2

}
, w ∈ W.

Since Ã2 = (A2,B1), the continuous linear mapping Ã2 is closed under finite-
codimensional subspaces by our assumptions. Therefore, by Theorem 3.1 and
formula (12) we can infer that πW(!1 ∩ !2) is a generalized polyhedral convex
set inW. Therefore, G ◦ F is a generalized polyhedral convex multifunction. !

The theorem below states that the composition of two polyhedral convex
multifunctions is itself a polyhedral convex multifunction.

Theorem 5.2: If F : X ⇒ Y and G : Y ⇒ Z are polyhedral convex multifunctions,
then G ◦ F : X ⇒ Z is a polyhedral convex multifunction.
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Proof: We can assume that gph F and gphG are given by (10) and (11) withU =
V = {0}, A1 ≡ 0, A2 ≡ 0, B1 ≡ 0, B2 ≡ 0 and u = v = 0. Arguing similarly to
the proof of Theorem 5.1, we obtain (12) where Ã1 ≡ 0 and Ã2 ≡ 0. So, !1 ∩
!2 is a polyhedral convex set in W × Y . Then, applying Corollary 3.5 for !1 ∩
!2, one has πW(!1 ∩ !2) is a polyhedral convex set in W. Since gph(G ◦ F) =
πW(!1 ∩ !2), we can assert that the multifunction G ◦ F : X ⇒ Z is polyhedral
convex. !

To conclude this section, we show that the sum of two polyhedral convex
multifunctions is a polyhedral convex one and then follow up with an example
showing that the conclusion no longer holds if the multifunctions involved are
just generalized polyhedral convex.

Theorem 5.3: If F1, F2 : X ⇒ Y are polyhedral convex multifunctions, then the
multifunction F1 + F2 is also polyhedral convex.

Proof: Consider the sets !1 = {(x, y1, y2) ∈ X × Y × Y | y1 ∈ F1(x)} =
(gph F1) × Y and

!2 = {(x, y1, y2) ∈ X × Y × Y | y2 ∈ F2(x)}.

Since F1 and F2 are polyhedral convex multifunctions, !1 and !2 are polyhe-
dral convex sets in X × Y × Y . Hence, !1 ∩ !2 is a polyhedral convex set in
X × Y × Y . Let A : X × Y × Y → X × Y be given by A(x, y1, y2) = (x, y1 + y2)
for all (x, y1, y2) ∈ X × Y × Y . It is clear that A is a continuous linear mapping
and gph(F1 + F2) = A(!1 ∩ !2). If !1 ∩ !2 = ∅, then gph (F1 + F2) = ∅; so
the multifunction F1 + F2 is polyhedral convex. To proceed further, let us sup-
pose that !1 ∩ !2 is nonempty. Since !1 ∩ !2 is a polyhedral convex set in
X × Y × Y , there exist x∗

i ∈ X∗, y∗
1,i ∈ Y∗, y∗

2,i ∈ Y∗, and αi ∈ R for i = 1, . . . ,m
such that

!1 ∩ !2 =
{
(x, y1, y2) ∈ X × Y × Y | ⟨x∗

i , x⟩ + ⟨y∗
1,i, y1⟩ + ⟨y∗

2,i, y2⟩
≤ αi, i = 1, . . . ,m} .

Consider the sets X0 = {x ∈ X | ⟨x∗
i , x⟩ = 0, i = 1, . . . ,m},

Y1,0 = {y1 ∈ Y | ⟨y∗
1,i, y1⟩ = 0, i = 1, . . . ,m},

Y2,0 = {y2 ∈ Y | ⟨y∗
2,i, y2⟩ = 0, i = 1, . . . ,m}.

Because X0 ⊂ X, Y1,0 ⊂ Y , Y2,0 ⊂ Y are closed linear subspaces of finite codi-
mension, one canfindfinite-dimensional linear subspacesX1 ⊂ X,Y1,1 ⊂ Y , and
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Y2,1 ⊂ Y such that

X = X0 + X1, Y = Y1,0 + Y1,1, Y = Y2,0 + Y2,1,

X0 ∩ X1 = {0}, Y1,0 ∩ Y1,1 = {0}, and Y2,0 ∩ Y2,1 = {0}. According to [21,
Theorem 1.21(b)], the subspaces X1,Y1,1,Y2,1 are closed. It is clear that

D1 =
{
(x, y1, y2) ∈ X1 × Y1,1 × Y2,1 | ⟨x∗

i , x⟩ + ⟨y∗
1,i, y1⟩ + ⟨y∗

2,i, y2⟩
≤ αi, i = 1, . . . ,m}

is a polyhedral convex set in X1 × Y1,1 × Y2,1. Put D0 = X0 × Y1,0 × Y2,0. It is
easy to verify that

D0 + D1 ⊂ !1 ∩ !2.

The reverse inclusion is also true. Indeed, for each (x, y1, y2) ∈ !1 ∩ !2 there
exist x0 ∈ X0, x1 ∈ X1, y1,0 ∈ Y1,0, y1,1 ∈ Y1,1, y2,0 ∈ Y2,0, y2,1 ∈ Y2,1 satisfying
x = x0 + x1, y1 = y1,0 + y1,1, y2 = y2,0 + y2,1. Since

⟨x∗
i , x1⟩ + ⟨y∗

1,i, y1,1⟩ + ⟨y∗
2,i, y2,1⟩

=
(
⟨x∗

i , x⟩ − ⟨x∗
i , x0⟩

)
+

(
⟨y∗

1,i, y1⟩ − ⟨y∗
1,i, y1,0⟩

)

+
(
⟨y∗

2,i, y2⟩ − ⟨y∗
2,i, y2,0⟩

)

= ⟨x∗
i , x⟩ + ⟨y∗

1,i, y1⟩ + ⟨y∗
2,i, y2⟩ ≤ αi

for every i = 1, . . . ,m, it follows that (x1, y1,1, y2,1) ∈ D1; so

(x, y1, y2) = (x0, y1,0, y2,0) + (x1, y1,1, y2,1) ∈ D0 + D1.

We have thus proved that !1 ∩ !2 = D0 + D1. Hence

A(!1 ∩ !2) = A(D0) + A(D1) = X0 × (Y1,0 + Y2,0) + A(D1).

On one hand, since X0 ⊂ X, Y1,0 ⊂ Y , Y2,0 ⊂ Y are closed linear subspaces of
finite codimension, the set X0 × (Y1,0 + Y2,0) is a finite-codimensional closed
linear subspace of X × Y × Y . On the other hand, since D1 is a polyhedral
convex set in the finite-dimensional space X1 × Y1,1 × Y2,1, A(D1) is a finite-
dimensional generalized convex polyhedron inX × Y . Then, by [7, Theorem2.8]
we can infer thatA(!1 ∩ !2) is a polyhedral convex set inX × Y . Since gph(F1 +
F2) = A(!1 ∩ !2), the set gph (F1 + F2) is polyhedral convex. So, F1 + F2 is a
polyhedral convex multifunction. !

One may ask whether the statement in Theorem 5.3 applies to the summation
of generalized polyhedral convex multifunctions. To clarify this, we now provide
an example.
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Example 5.4: Choose a suitable topological vector space X and closed lin-
ear subspaces X1,X2 of X satisfying X1 + X2 = X and X1 + X2 ̸= X (see [20,
Remark 2.12] for more details). Let F1, F2 : X ⇒ X be given by F1(x) =
X1, F2(x) = X2 for all x ∈ X. It is clear that F1 and F2 are generalized polyhe-
dral convex multifunctions. Since gph(F1 + F2) = X × (X1 + X2) is not closed
in the product space X × X, F1 + F2 is not a generalized polyhedral convex
multifunction.

Given a function ϕ : X × Y → R and a multifunction F : X ⇒ Y , define the
optimal value function µ : X → R̄ associated with ϕ and F by

µ(x) = inf
{
ϕ(x, y) | y ∈ F(x)

}
, x ∈ X. (13)

Here we use the convention inf ∅ = ∞. The solution map M : X ⇒ Y of the
optimization problem in (13) is defined by

M(x) =
{
y ∈ F(x) | µ(x) = ϕ(x, y)

}
, x ∈ X. (14)

The next result concerns the nonempty property of the solution set M(x) at a
given parameter x ∈ X.

Proposition 5.5: Consider the optimal value function µ from (13) and the solution
mapping from (14) in which ϕ is a proper generalized polyhedral convex function
and F is a generalized polyhedral convex multifunction. For an element x ∈ X, if
µ(x) is finite, then M(x) is a nonempty generalized polyhedral convex set of Y.

Proof: Fix x ∈ X and assume that µ(x) is finite, i.e. µ(x) ∈ R. As F is a gener-
alized polyhedral convex multifunction, F(x) is a generalized polyhedral convex
set inY by Proposition 3.6. Since γ = µ(x) is finite, we see that F(x) is nonempty,
ϕ(x, y) ≥ γ for all y ∈ F(x), and there exists y ∈ F(x) such that ϕ(x, y) is finite.

Let the function ϕx : Y → R be given by ϕx(y) = ϕ(x, y). Since ϕ is a proper
function and ϕ(x, y) is finite, the function ϕx is also proper. Next, we will
claim that ϕx is a generalized polyhedral convex function. Since ϕ is a proper
generalized polyhedral convex function, the set epi ϕ can be represented by

epi ϕ =
{
(x, y, t) ∈ X × Y × R |B1(x) + B2(y) + B3(t) = z,

⟨u∗
j , x⟩ + ⟨v∗

j , y⟩ + ⟨tj, t⟩ ≤ αj, j = 1, . . . , k
}
,

where B1 (resp., B2, B3) is a continuous linear mapping from X (resp., from Y,
from R) to Z, z ∈ Z, u∗

j ∈ X∗, v∗
j ∈ Y∗, tj ∈ R, αj ∈ R for j = 1, . . . , k. Then one
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has

epi ϕx =
{
(y, t) ∈ Y × R | ϕx(y) ≤ t

}

=
{
(y, t) ∈ Y × R | ϕ(x, y) ≤ t

}

=
{
(y, t) ∈ Y × R | (x, y, t) ∈ epi ϕ

}

=
{
(y, t) ∈ Y × R |B1(x) + B2(y) + B3(t) = z,

⟨u∗
j , x⟩ + ⟨v∗

j , y⟩ + ⟨tj, t⟩ ≤ αj, j = 1, . . . , k
}

=
{
(y, t) ∈ Y × R |B2(y) + B3(t) = z − B1(x),

⟨v∗
j , y⟩ + ⟨tj, t⟩ ≤ αj − ⟨u∗

j , x⟩, j = 1, . . . , k
}
.

It follows that ϕx is a proper generalized polyhedral convex function and
dom ϕx ∩ F(x) is nonempty. Since ϕx(y) ≥ γ for all y ∈ F(x), applying [25,
Theorem 3.1], one can assert that the problem

minimizeϕx(y) subject to y ∈ F(x)

has an optimal solution. Therefore, M(x) is a nonempty set. Moreover, by [25,
Proposition 3.9],M(x) is a generalized polyhedral convex set. !

The following proposition enables us to represent the epigraph of the optimal
value function in terms of the image of a generalized polyhedral convex set under
a projection mapping.

Proposition 5.6: Consider the optimal value function µ from (13) and let

!1 = epi ϕ and !2 = (gph F) × R. (15)

We have the representation

epiµ = πX,R(!1 ∩ !2), (16)

where πX,R : X × Y × R → X × R is the projection mapping from X × Y × R
onto X × R. If we assume in addition that ϕ is a proper generalized polyhedral
convex function and F is a generalized polyhedral convex multifunction, then the
closure signs in (16) can be omitted, i.e.

epiµ = πX,R(!1 ∩ !2). (17)

Proof: Consider the set epis µ = {(x, λ) ∈ X × R | µ(x) < λ}. We have

epis µ ⊂ πX,R(!1 ∩ !2) ⊂ epiµ. (18)

Indeed, for any (x, λ) ∈ epis µ we have µ(x) < λ and thus there exists ȳ ∈
F(x) such that ϕ(x, ȳ) < λ. Then we get (x, ȳ, λ) ∈ !1 ∩ !2, which implies that
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(x, λ) ∈ πX,R(!1 ∩ !2). This justifies the first inclusion in (18). To prove the sec-
ond inclusion, take any (x, λ) ∈ πX,R(!1 ∩ !2). Then there is a point ȳ ∈ Y such
that (x, ȳ, λ) ∈ !1 ∩ !2. It means that ϕ(x, ȳ) ≤ λ and ȳ ∈ F(x). Thus, µ(x) ≤
ϕ(x, ȳ) ≤ λ. This implies that (x, λ) ∈ epiµ and completes the proof of (18).
Finally, using (18) and the obvious equality epis µ = epiµ gives us (16).

Now, assume that ϕ is a proper generalized polyhedral convex function and F
is a generalized polyhedral convex multifunction. The proof above gives us

πX,R(!1 ∩ !2) ⊂ epiµ.

Thus, to justifies (17), it suffices to show that epiµ ⊂ πX,R(!1 ∩ !2). Take any
(x, λ) ∈ epiµ and get µ(x) ≤ λ. If µ(x) is finite, by Proposition 5.5, there exists
y ∈ F(x) such that ϕ(x, y) = µ(x) ≤ λ. Now, consider the case where µ(x) =
−∞ < λ. In this case we can also choose y ∈ F(x) such that ϕ(x, y) < λ. Thus,
(x, y, λ) ∈ epi ϕ and (x, y, λ) ∈ !2. It follows that (x, y, λ) ∈ !1 ∩ !2. Therefore,
(x, λ) ∈ πX,R(!1 ∩ !2), so (17) is valid. !

The next theorem characterizes the generalized polyhedral convex property of
the optimal value function µ via its lower semicontinuity.

Theorem 5.7: Consider the optimal value function µ from (13) in which ϕ is a
generalized polyhedral convex function and F is a generalized polyhedral convex
multifunction. The function µ is generalized polyhedral convex if and only if µ is
lower semicontinuous on X.

Proof: If µ is a generalized polyhedral convex function, then epiµ is a gen-
eralized polyhedral convex set and hence epiµ is closed. Thus, µ is lower
semicontinuous on X.

Now, suppose that µ is lower semicontinuous on X. Then epiµ is closed.
Combining this fact with (16) gives us the equality

epiµ = πX,R(!1 ∩ !2), (19)

where !1 and !2 are defined by (15). Since F is a generalized polyhedral con-
vex multifunction and ϕ is a generalized polyhedral convex function, the set
!1 ∩ !2 is generalized polyhedral convex. Applying Proposition 2.10 in [20], we
can conclude that πX,R(!1 ∩ !2) is a generalized polyhedral convex set. There-
fore, by equality (19) we can assert that epiµ is generalized polyhedral, so µ is a
generalized convex function. !

Sufficient conditions for the polyhedral convex property of the optimal value
function µ are given in the following theorem.
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Theorem 5.8: Consider the optimal value function µ from (13). If ϕ is a proper
polyhedral convex function and F is a polyhedral convex multifunction, then µ is a
polyhedral convex function.

Proof: The polyhedral convexity of F and ϕ guarantees that!1 ∩ !2 is a polyhe-
dral convex set in X × Y × R. Using Corollary 3.5, we can assert that πX,R(!1 ∩
!2) is a polyhedral convex set in X × R. Combining this with (17), we conclude
that µ is a polyhedral convex function. !

The conclusion of Theorem 5.8 may not hold if one of the assumptions is vio-
lated. The next example shows that if ϕ is a proper polyhedral convex function
and F is merely a generalized polyhedral convex multifunction, then µ may not
be a generalized polyhedral convex function.

Example 5.9: Let X,Y , and F be as in Example 3.3. Set

X1 =
{
x ∈ C[a, b] | x(a) = 0, x is continuously differentiable on (a, b),

lim
t↓a

ẋ(t) and lim
t↑b

ẋ(t) exist
}
,

and note that X1 is a non-closed linear subspace of X. Since gph F = !, where
! is defined by (5), we have F(x) = {y} for all x ∈ X1, where y(t) = −ẋ(t) for
t ∈ (a, b), y(a) = − limt↓a ẋ(t), y(b) = − limt↑b ẋ(t), and F(x) = ∅ for all x /∈
X1. Consider the proper polyhedral convex function ϕ with ϕ(x, y) = 0 for all
(x, y) ∈ X × Y . As µ(x) = 0 for every x ∈ X1 and µ(x) = ∞ for any x /∈ X1,
we see that epiµ = X1 × [0,∞). Since the latter set is non-closed, µ is not a
generalized polyhedral convex function.

6. Generalized relative interiors of generalized polyhedral convex sets

The notion of relative interior has been known to be useful for the study of con-
vex analysis in finite dimensions. Its importance has motivated the development
of new notions of generalized relative interiors in infinite dimensions. In this
section, we show that several generalized relative interior concepts known in the
literature do coincide for generalized polyhedral convex sets in infinite dimen-
sions.We also obtain representations of such generalized relative interiors for the
graphs of generalized polyhedral convex multifunctions.

Recall (see, e.g. [2, Definition 2.168]) that the relative interior, the intrinsic
relative interior, and the quasi-relative interior of a subset ! of X are defined
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respectively by

ri! =
{
a ∈ ! | ∃ a neighborhood V of the origin such that (a + V)

∩ aff! ⊂ !
}
.

iri! =
{
a ∈ ! | cone(! − a) is a linear subspace of X

}
,

qri! =
{
a ∈ ! | cone(! − a) is a linear subspace of X

}
.

By [2, Theorem 2.174], the following inclusions hold

ri! ⊂ iri! ⊂ qri!. (20)

The theorem below shows that these generalized relative interior notions coin-
cide for generalized polyhedral convex sets. It is a basis for obtaining the
subsequent useful result about generalized polyhedral convex multifunctions.

Theorem 6.1: Let X be a locally convex Hausdorff topological vector space. Con-
sider the generalized polyhedral convex set

P =
{
x ∈ X | ⟨x∗

i , x⟩ ≤ αi for all i = 1, . . . ,m
}

∩ L,

where x∗
i ∈ X∗, αi ∈ R for all i = 1, . . . ,m, and L is a closed affine subspace of X.

Suppose that P is nonempty. Then ri P is nonempty and we have the equalities

qri P = iri P = ri P =
{
x ∈ P | ⟨x∗

i , x⟩ < αi for all i ∈ I
}
, (21)

where

I =
{
i = 1, . . . ,m | ∃x̂i ∈ P such that ⟨x∗

i , x̂i⟩ < αi
}
.

Proof: In the first part of the proof, we follow the proof of [6, Proposition 2.197],
while providing more details.

First, consider the case where I ̸= ∅. Fix an element a ∈ P ⊂ L. Denote by N
the unique linear subspace parallel to aff P. Let us show that

N =
{
x ∈ X | ⟨x∗

i , x⟩ = 0 for all i ∈ {1, . . . ,m} \ I
}

∩ (L − a) . (22)

Recall that N = cone(P − P) = span(P − a) and a + N = aff P. One has

⟨x∗
i , a⟩ ≤ αi for all i = 1, . . . ,m.

Observe that ⟨x∗
i , a⟩ = αi if i /∈ I. The set on the right-hand side of (22), which

is denoted by N1, is a closed linear subspace. For any x ∈ P we have ⟨x∗
i , x⟩ = αi

whenever i /∈ I, which implies that

⟨x∗
i , x − a⟩ = αi − αi = 0 whenever i /∈ I.

In addition, it is clear that x − a ∈ (P − a) ⊂ (L − a). Thus, x − a ∈ N1 and
hence P − a ⊂ N1. ThenN = span(P − a) ⊂ N1 becauseN1 is a linear subspace.
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To prove the reverse inclusion in (22), take any x ∈ N1 and get ⟨x∗
i , x⟩ = 0 for

all i /∈ I. For every i ∈ I, choose x̂i ∈ P such that ⟨x∗
i , x̂i⟩ < αi. Denote by p be the

number of elements of I and define

x̂ = 1
p

∑

i∈I
x̂i.

Then we have x̂ ∈ P and ⟨x∗
i , x̂⟩ < αi for all i ∈ I. Fix any j ∈ I. Since x̂i ∈ P, we

see that ⟨x∗
j , x̂i⟩ ≤ αj if i ̸= j, and ⟨x∗

j , x̂j⟩ < αj. Therefore,

⟨x∗
j , x̂⟩ = 1

p
∑

i∈I
⟨x∗

j , x̂i⟩ <
1
p
pαj = αj.

We have thus shown that ⟨x∗
j , x̂⟩ < αj for all j ∈ I. Then, for a sufficiently small

t>0, we have

⟨x∗
i , x̂ + tx⟩ < αi for all i ∈ I, and ⟨x∗

i , x̂ + tx⟩ = ⟨x∗
i , x̂⟩ ≤ αi for all i /∈ I.

In addition, since x ∈ L − a = L − x̂, one has x̂ + x ∈ L. Hence,

x̂ + tx = (1 − t)x̂ + t(x̂ + x) ∈ L

as L is an affine subspace. Thus, x̂ + tx ∈ P; so x ∈ 1
t (P − x̂) ⊂ cone(P − P) =

N, which completes the proof of (22).
For convenience, let

C =
{
x ∈ P | ⟨x∗

i , x⟩ < αi for all i ∈ I
}
. (23)

We will show that C = ri P. Taking any x0 ∈ C, we have x0 ∈ P and ⟨x∗
i , x0⟩ < αi

for all i ∈ I. By the continuity of x∗
i for i ∈ I, we can find a neighborhood U of

the origin such that

⟨x∗
i , x0 + u⟩ ≤ αi for all u ∈ U and for all i ∈ I. (24)

Let us show that

(x0 + U) ∩ aff P = (x0 + U) ∩ (x̂ + N) ⊂ P. (25)

Note that x̂ is chosen above and N is closed with x̂ + N = affP = aff P ⊂ L by
the definition of parallel subspace. Hence, the equality in (25) is valid. To obtain
the inclusion in (25), fix any x ∈ (x0 + U) ∩ (x̂ + N). Then x = x0 + u for some
u ∈ U, and x = x̂ + v ∈ L for some v ∈ N. For i ∈ I, from (24) it follows that

⟨x∗
i , x⟩ = ⟨x∗

i , x0 + u⟩ ≤ αi.

If i /∈ I, by (22) we have

⟨x∗
i , x⟩ = ⟨x∗

i , x̂ + v⟩ = ⟨x∗
i , x̂⟩ + ⟨x∗

i , v⟩ = ⟨x∗
i , x̂⟩ ≤ αi.

It follows that x ∈ P, and so (25) holds. Then we get x0 ∈ ri P, which justifies the
inclusion C ⊂ ri P.
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Now we show that riP ⊂ C. Fix any x0 ∈ ri P and find a neighborhood U of
the origin such that

(x0 + U) ∩ aff P ⊂ P. (26)

By contradiction, suppose that x0 /∈ C, and so there exists j ∈ I such that
⟨x∗

j , x0⟩ ≥ αj, which implies ⟨x∗
j , x0⟩ = αj. Since U is a neighborhood of the

origin, we can find t>0 sufficiently small such that

z = x0 + t(x0 − x̂j) ∈ x0 + U,

where ⟨x∗
j , x̂j⟩ < αj. Obviously, z ∈ aff P because z = −tx̂j + (1 + t)x0, x̂j ∈ P,

and x0 ∈ P. So, by (26) one has z ∈ P. This implies that ⟨x∗
j , z⟩ ≤ αj. Then x0 =

1
1+t z + t

1+t x̂j and thus

αj = ⟨x∗
j , x0⟩ = 1

1 + t
⟨x∗

j , z⟩ + t
1 + t

⟨x∗
j , x̂j⟩ <

1
1 + t

αj +
t

1 + t
αj = αj,

which is a contradiction. Therefore, x0 ∈ C, and so riP ⊂ C.We have thus proved
that if I ̸= ∅, then ri P = C.

Now, consider the case where I = ∅. In this case, we have

P =
{
x ∈ X | ⟨x∗

i , x⟩ = αi for all i = 1, . . . ,m
}

∩ L.

It follows that P = aff P = affP. Therefore, ri P = P. On the other hand, by (23)
we get C = P. Thus, the equality ri P = C is also valid in the case where I ̸= ∅.

The preceding proof shows that ri P ̸= ∅.
By (20), to obtain (21), it suffices to show that qriP ⊂ C = ri P. If I = ∅,

then C = ri P = P; hence the latter is valid. Now, consider the case where I ̸= ∅
and suppose on the contrary that there is a ∈ qri P but a /∈ C. Then, by (23),
there exists j ∈ I such that ⟨x∗

j , a⟩ = αj. Choose x̂j ∈ P such that ⟨x∗
j , x̂j⟩ < αj.

Obviously, x̂j − a ∈ cone(P − a). Since cone(P − a) is a linear subspace, we see
that

a − x̂j ∈ cone(P − a).

For any x ∈ P, we have ⟨x∗
j , x − a⟩ = ⟨x∗

j , x⟩ − ⟨x∗
j , a⟩ ≤ αj − αj = 0, and hence

⟨x∗
j , z⟩ ≤ 0 for all z ∈ cone(P − a). By the continuity of x∗

j , we deduce that
⟨x∗

j , z⟩ ≤ 0 for all z ∈ cone(P − a). Then ⟨x∗
j , a − x̂j⟩ ≤ 0, which yields

αj = ⟨x∗
j , a⟩ ≤ ⟨x∗

j , x̂j⟩ < αj,

a contradiction. This completes the proof. !

Remark 6.1: The fact that the equalities riP = iri P = qri P hold for any gener-
alized polyhedral convex set follows from the second assertion of Theorem 2.174
in [2] and Proposition 2.197 from [6].
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To continue, we recall the following important properties of iri! and qri! for
a convex set! (see [2, Propositions 2.169 and 2.181] more details). Given x̄ ∈ !,
we have

[x̄ ∈ iri!] ⇐⇒ [∀x ∈ !, ∃x′ ∈ ! such that x̄ ∈ (x, x′)],

[x̄ /∈ qri!] ⇐⇒ [{x̄} and ! can be properly separated].

The next theorem allows us to obtain a representation of the relative interior of
a generalized polyhedral convex multifunction. This representation is based on
Theorem 6.1 and the idea for proving Theorem 4.3 in [26]. The closed range
assumption is essential for the validity of the conclusion.

Theorem 6.2: If the graph of a generalized polyhedral convex multifunction
F : X ⇒ Y is described by (2) in which the mapping A2 is closed under finite-
codimensional subspaces, then

ri(gph F) =
{
(x, y) | x ∈ ri(dom F), y ∈ ri(F(x))

}
. (27)

Proof: Suppose that the graph of F is described by (2) in which the mapping
A2 is closed under finite-codimensional subspaces. Then dom F is a generalized
polyhedral convex set by Theorem 3.1. Now, take any (x0, y0) ∈ ri(gph F). First,
let us show that x0 ∈ ri(dom F). For any x ∈ dom F we can choose y ∈ F(x),
so (x, y) ∈ gph F. Since ri(gph F) = iri(gph F) by Theorem 6.1, we can choose
(x′, y′) ∈ gph F and t ∈ (0, 1) such that

(x0, y0) = t(x, y) + (1 − t)(x′, y′).

Then x0 ∈ (x, x′), where x′ ∈ dom F. Since x ∈ dom F can be chosen arbitrarily,
it follows that

x0 ∈ iri (dom F).

So, applying Theorem 3.1 to the generalized polyhedral convex set dom F yields
x0 ∈ ri(dom F). Now, let us show that y0 ∈ ri(F(x0)). Observe that F(x0) =
gph F ∩ ({x0} × Y) is a generalized polyhedral convex set. Take any y ∈ F(x0)
and get (x0, y) ∈ gph F and thus we can find (x1, y1) ∈ gph F and s ∈ (0, 1) such
that (x0, y0) = s(x0, y) + (1 − s)(x1, y1). Then x1 = x0 and y0 ∈ (y, y1), where
y1 ∈ F(x0). Thus, y0 ∈ iri(F(x0)) = ri(F(x0)). This justifies the inclusion ⊂
in (27).

We will now prove the inclusion ⊃ in (27). Take any x0 ∈ ri(dom F) and
y0 ∈ ri(F(x0)). By contradiction, suppose that (x0, y0) /∈ ri(gph F) = qri(gph F),
where the last equality holds by Theorem 6.1. By the proper separation men-
tioned prior to the formulation of this theorem, there exist x∗ ∈ X∗ and y∗ ∈ Y∗
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such that

⟨x∗, x⟩ + ⟨y∗, y⟩ ≤ ⟨x∗, x0⟩ + ⟨y∗, y0⟩ (28)

for all (x, y) ∈ gph F and there exists (x̂, ŷ) ∈ gph F such that

⟨x∗, x̂⟩ + ⟨y∗, ŷ⟩ < ⟨x∗, x0⟩ + ⟨y∗, y0⟩. (29)

Substituting (x, y) = (x0, y), where y ∈ F(x0), to (28) gives us ⟨y∗, y⟩ ≤ ⟨y∗, y0⟩
for all y ∈ F(x0). Since x̂ ∈ dom F and x0 ∈ ri(dom F) = iri(dom F), we can find
x2 ∈ dom F and λ ∈ (0, 1) such that x0 = λx̂ + (1 − λ)x2. Choosing y2 ∈ F(x2)
and letting y′ = λŷ + (1 − λ)y2 give us

(x0, y′) = λ(x̂, ŷ) + (1 − λ)(x2, y2) ∈ gph F

due to the convexity of gph F, so y′ ∈ F(x0). Using (28), we have

⟨x∗, x2⟩ + ⟨x∗, y2⟩ ≤ ⟨x∗, x0⟩ + ⟨y∗, y0⟩. (30)

Multiplying both sides of (29) with λ, multiplying (30) with (1 − λ), and adding
the resulting inequalities give us

⟨x∗, λx̂ + (1 − λ)x2⟩ + ⟨y∗, λŷ + (1 − λ)y2⟩ < ⟨x∗, x0⟩ + ⟨y∗, y0⟩.

Then we get

⟨x∗, x0⟩ + ⟨y∗, y′⟩ < ⟨x∗, x0⟩ + ⟨y∗, y0⟩,
which implies that ⟨y∗, y′⟩ < ⟨y∗, y0⟩, where y′ ∈ F(x0). Remembering that
⟨y∗, y⟩ ≤ ⟨y∗, y0⟩ for all y ∈ F(x0), we see that {y0} and F(x0) can be properly sep-
arated, so y0 /∈ qri(F(x0)) = ri(F(x0)), which is a contradiction. This completes
the proof. !

Thanks to Theorems 3.1 and 6.1, we can obtain the following representa-
tions for the quasi-relative interior and intrinsic relative interior of the graph
of a generalized polyhedral convex multifunction as a direct consequence of
Theorem 27.

Corollary 6.3: If the graph of F is described by (2) in which the mapping A2 is
closed under finite-codimensional subspaces, then

qri(gph F) = {(x, y) | x ∈ qri(dom F), y ∈ qri(F(x))},
iri(gph F) = {(x, y) | x ∈ iri(dom F), y ∈ iri(F(x))}.

Regarding Theorem 6.2, an interesting question arises: Can the assumption
that the mapping A2 is closed under finite-codimensional subspaces be removed
from the theorem? In order to answer this question in the negative, let us consider
an example.
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Example 6.4: Let the spaces X, Y and the multifunction F be as in Example 3.3.
Since gph F is a closed linear subspace ofX × Y , one has ri(gph F) = gph F. Here

dom F =
{
x ∈ C[a, b] | x is continuously differentiable on (a, b), x(a) = 0

}

is a non-closed linear subspace, which is dense in X (see [22, Example 2.1] for
details). Hence

ri(dom F) = int(dom F) = ∅.
Consequently, the equality (27) does hold for the generalized polyhedral convex
multifunction F under our consideration.
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