PHYSICAL REVIEW X 14, 031054 (2024)

Geometric Landscape Annealing as an Optimization Principle Underlying
the Coherent Ising Machine

Atsushi Yamamura®, Hideo Mabuchi, and Surya Ganguli
Department of Applied Physics, Stanford University, Stanford, California 94305, USA

® (Received 18 October 2023; revised 27 June 2024; accepted 14 August 2024; published 27 September 2024)

Given the fundamental importance of combinatorial optimization across many diverse domains, there
has been widespread interest in the development of unconventional physical computing architectures that
can deliver better solutions with lower resource costs. However, a theoretical understanding of their
performance remains elusive. We develop such understanding for the case of the coherent Ising machine
(CIM), a network of optical parametric oscillators that can be applied to any quadratic unconstrained binary
optimization problem. We focus on how the CIM finds low-energy solutions of the Sherrington-Kirkpatrick
spin glass. As the laser gain of this system is annealed, the CIM interpolates between gradient descent on
coupled soft spins to descent on coupled binary spins. By combining the Kac-Rice formula, the replica
method, and supersymmetry breaking, we develop a detailed understanding of the evolving geometry of the
high-dimensional energy landscape of the CIM as the laser gain increases, finding several phase transitions
in the landscape, from flat to rough to rigid. Additionally, we develop a novel cavity method that provides a
geometric interpretation of supersymmetry breaking in terms of the reactivity of a rough landscape to
specific external perturbations. Our energy landscape theory successfully matches numerical experiments,
provides geometric insights into the principles of CIM operation, and yields optimal annealing schedules.
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I. INTRODUCTION

Combinatorial optimization [1] is a key enabler of
performance in diverse application domains, including,
for example, machine learning, robotics, chip design,
operations research, and manufacturing. Thus, the code-
velopment of algorithms and hardware that can provide
better solutions with lower consumption of resources such
as time and energy could substantially impact many fields.
Promising recent demonstrations of unconventional hard-
ware architectures have ignited broad interest in physics-
based approaches to solving NP-hard problems, in which
combinatorial optimization over discrete variables is
embedded in the analog evolution of nonlinear dynamical
systems [2—6]. This interplay between discrete optimiza-
tion and analog evolution spawns a rich new field of
research based on fresh foundations to complement more
traditional approaches. While benchmarking experiments
have established high-performance scaling of physics-
based approaches up to as many as 103 optimization
variables [7], scant theory exists for extrapolating future
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prospects for unconventional architectures or analyzing
their strengths and weaknesses relative to mainstream
heuristics.

In this article, we develop substantial components of a
theoretical framework for how the coherent Ising machine
(CIM) [8-14], an unconventional physical optimization
architecture based on coupled optical parametric oscillators
(OPOs) solves a generic class of Sherrington-Kirkpatrick
(SK) spin-glass optimization problems [15]. As described in
more detail below, the CIM solves an optimization problem
by performing gradient descent on a high-dimensional
energy landscape whose geometry anneals over time from
an initial simple landscape to a final complex landscape
corresponding to the optimization problem of interest.
Understanding how the CIM solves optimization problems,
therefore, requires understanding the evolving high-
dimensional geometry of its energy landscape.

Our main contributions are as follows. First, we elucidate
mechanisms underlying how the CIM performs well on the
generic class of SK spin-glass problems by developing a
statistical mechanics based analysis of the evolving geom-
etry of the landscape, thereby deriving the first theory of
how this unconventional physical computing device oper-
ates in an ensemble of problems. In particular, we combine
the Kac-Rice formula, the replica method, and supersym-
metry breaking to reveal that, as the annealing process
proceeds, the landscape undergoes a sequence of geometric

Published by the American Physical Society


https://orcid.org/0009-0007-7942-3872
https://ror.org/00f54p054
https://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevX.14.031054&domain=pdf&date_stamp=2024-09-27
https://doi.org/10.1103/PhysRevX.14.031054
https://doi.org/10.1103/PhysRevX.14.031054
https://doi.org/10.1103/PhysRevX.14.031054
https://doi.org/10.1103/PhysRevX.14.031054
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/

YAMAMURA, MABUCHI, and GANGULI

PHYS. REV. X 14, 031054 (2024)

phase transitions. Our quantitative understanding of these
phase transitions allows us to derive an optimal annealing
schedule for the CIM, thereby showing for the first time
how to rationally design this important schedule using
principles of high-dimensional geometry. Our theoretical
analysis is also of general interest to the field of statistical
mechanics of random energy landscapes, because we
introduce a novel cavity method that provides considerable
geometric insights into the mysterious nature of supersym-
metry-breaking calculations in this field. In particular, our
cavity analysis provides a geometric interpretation of the
supersymmetry-breaking order parameters in terms of
the exponential reactivity of a complex energy landscape,
with exponentially many critical points, to specific small
perturbations.

In the rest of the introduction, we introduce the CIM as a
novel physical computing device and then review the
theory of random landscapes, which sets the context for
our new theory. Then, we discuss how the confluence of
these two disparate fields provide new ways to think about
how to solve optimization problems using unconventional
analog dynamics in evolving high-dimensional landscapes.

A. Review of coherent Ising machines

The architecture of a CIM [8-14] typically involves a
closed-loop optical fiber, wherein pulses of degenerate
OPOs circulate. The phase of electromagnetic oscillations
of the pulse’s optical modes encodes individual binary
variables. This binary encoding is due to the bistable phase
induced by phase-sensitive amplification dynamics which
forces each optical oscillator to oscillate either in or out of
phase with respect to its pump light. These binary variables
can be coupled via either delay lines or measurement
feedback mechanisms, as their corresponding pulses of
light traverse the closed-loop optical fiber. The coupling
can be arbitrarily programmed to correspond to any
symmetric connectivity matrix between N such pulses or
OPOs. The combined phase dynamics of this network of
OPOs can be thought of as an Ising network of soft spins
with arbitrary programmable connectivity, undergoing
energy-minimizing dynamics, with some annealing, as
described in more detail below. Indeed, large-scale physical
implementations exist with N = 0(10°) OPOs with
0(10'%) connections [7].

Overall, the CIM may be understood as a heuristic solver
for the Ising ground-state problem, which is to identify the
that minimizes the Ising Hamiltonian H = — % i idijsis;,
where J;; is an N X N symmetric matrix. This problem, also
known as quadratic unconstrained binary optimization
(QUBO), is known to be NP-hard [16]. Indeed, many
optimization problems, including partitioning, covering,
packing, matching, clique finding, graph coloring, minimum
spanning trees, and the traveling salesman problem, can be
mapped to a corresponding QUBO problem with only

polynomial overhead [17]. Thus, solving QUBO or Ising
optimization problems is of wide interest and applicability in
combinatorial optimization, yet there is no theoretical under-
standing of when and how the CIM successfully solves such
optimization problems.

Indeed, the central role of OPOs as building blocks
makes the CIM architecture especially interesting within
the broader field of physics-based optimization, as com-
prehensive quantitative models for OPO networks can be
constructed in ways that interpolate between classical and
quantum operating regimes (as a function, e.g., of linear
decoherence rates relative to coherent nonlinear dynamical
rates [18]). This makes CIM theory a fertile setting for
exploring how novel information dynamics that emerge in
the classical-quantum crossover [19] may impact optimi-
zation performance. But the first step in this program must
be to establish a baseline understanding of classical CIM
mechanics, against which quantum differences can be
highlighted. In this article, we begin to draw this classical
baseline.

The CIM approaches QUBO by relaxing the binary Ising
spins to continuous soft spins. Each OPO functions as a
relaxed analog state (soft spin) with a continuous state
variable x, subject to a double-well energy potential
E;(x,a) :=1x* —4x%. Here, x can be thought of roughly
as the phase of a single OPO, and the minima correspond to
this phase being 0 or z relative to its pump field, as
described above. The important laser gain parameter a
controls the depth of the two wells. As the gain parameter
increases, each OPO becomes strongly confined in one of
the wells, effectively functioning as a binary spin s;. At
very large gain, there are 2V minima in the energy land-
scape, and the global minimum corresponds to the ground
state of the Ising Hamiltonian [12]. To locate a global
minimum, the CIM anneals the gain, by first minimizing
the energy of the soft-spin network at a low gain, where the
energy landscape is convex, and then adiabatically increas-
ing the gain parameter until each soft spin starts to exhibit
behavior akin to a binary spin. Such optimization mech-
anisms, which continually reshape the energy landscape
starting from a trivial form, have also been suggested in
various other contexts such as mean-field annealing [20] (a
deterministic approximation of simulated annealing),
annealed stochastic gradient descent [21] in the context
of deep neural networks, and topology trivialization [22] in
the random landscape literature.

Numerous numerical and experimental benchmarks have
shown that this landscape annealing approach can achieve
high performance [7-9,23,24]. However, to the best of our
knowledge, no theoretical analysis for this performance has
been established. This is in stark contrast to other well-
recognized annealing algorithms, such as simulated
annealing and quantum annealing, which are known to
successfully find the optimum given a sufficiently slow
annealing schedule [25,26]. Interestingly, the CIM may fail
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to find the ground state for certain frustrated instances, even
if the annealing speed is appropriately slow [12]. This is
believed to stem from the amplitude heterogeneity of the
soft spins, which makes the mapping from Ising energy to
the soft-spin network’s energy less precise when the gain is
not substantial enough. Indeed, right after the landscape
becomes nonconvex, the global minimum of the energy
landscape lies along the eigenvector of the J matrix with the
minimum eigenvalue, generally different from the true
Ising ground-state configuration [27]. This amplitude
heterogeneity issue has been discussed, and a few methods
have been proposed to mitigate its effect [27-30]. While the
amplitude heterogeneity initially compels the Ising
machine to find the eigenvector rather than a global
minimum, as we further ramp up the gain, the signs of
soft-spin variables x; successively flip, leading to a con-
tinuous decrease in Ising energy. These configuration
adjustments enhance the Ising machine, making it a robust
Ising optimizer rather than just a simple linear solver.
Indeed, when optimizing the SK energy function, a
previous work reported that the CIM finds SK ground
states in finite-size systems with a finite probability [31]. To
understand how the CIM state evolves with the landscape
annealing process, we need to understand the changes in
the energy landscape as the gain increases.

This type of question has been extensively investigated
for simulated annealing and quantum annealing, especially
with purely random instances. In the former case, we
generally observe a phase transition from the paramagnetic
phase to the spin-glass phase as we cool down the system
[32]. In the spin-glass phase, free energies of different
thermodynamic states are generally crossing successively,
and the low free energy states at two slightly different
temperatures can be dramatically different [33—35]. This
phenomenon, known as temperature chaos, is related to
exponentially long thermalization times in the system size
[36], which can dramatically slow down simulated
annealing or parallel tempering algorithms that attempt
to find low-energy states. Interestingly, for the SK model,
an efficient message-passing algorithm [37] was derived to
find low-energy states, though the time it takes to find a
low-energy state is thought to diverge as the fractional
energy gap of that state relative to the ground state goes
to 0. The goal of our paper is not to find the best possible
algorithm for the SK spin glass but rather to understand
how an unconventional physical computing device solves
this problem.

Quantum annealing via a transverse magnetic field
exhibits similar level crossing properties [26]; it undergoes
a phase transition from a quantum paramagnetic phase to a
spin-glass or many-body localized phase as the transverse
field is reduced [38]. In systems with local interactions,
energy level crossings of low-energy states occur in the
localized phase, and it takes exponential time in system size
to follow the ground state due to the small overlap of those

localized states [39,40] (see Ref. [41] for reviews on
this topic.)

To our knowledge, such analysis has not been applied to
soft-spin networks and hardware like the coherent Ising
machine. In this paper, we focus on purely random instances,
corresponding in the Ising setting to the SK spin glass [32],
and we examine phase transitions in the geometry of the CIM
energy landscape. We discover significant phase transitions
in the energy landscape as well as evidence for potential level
crossings within a particular phase. Furthermore, we dem-
onstrate that these phase transitions are intimately tied to the
annealing schedule and optimization performance. In addi-
tion to contributing to a type of baseline theory that can
eventually be used to study the impact of increasingly
quantum OPO behavior in CIM-type architectures, our
analysis may also be useful for exploring the potential utility
of nondegenerate oscillatory OPO dynamics [42] for evading
landscape obstacles within the QUBO setting (see Sec. X).
Such studies will be the subject of future work, but our results
here provide essential foundations.

The structure of this paper is as follows: After discussing
how our work on CIM theory connects with statistical
physics results based on related technical approaches, we
review in Sec. II the classical formulation of the CIM as a
soft-spin network as well as the structure of the energy
landscape in both the small- and large-gain regimes, in the
case of random connectivity matrices corresponding to the
SK spin glass. We furthermore derive a theory delineating
the dependence of the curvature of the landscape, quanti-
fied through the Hessian eigenspectrum, on where one is
located in the landscape. This dependence is critical in all
following sections, given the CIM energy landscape pos-
sesses no special symmetries. In Sec. III, we demonstrate
numerically that the CIM performs well in finding a near-
ground-state solution of the SK spin glass, using an optimal
annealing schedule for the laser gain that we derive using
our subsequent landscape analysis; it significantly outper-
forms a spectral algorithm and finds a solution that is within
about 1% of the true intensive ground-state energy [43].

In Sec. IV, we begin our geometric landscape annealing
analysis by performing a supersymmetry-breaking replica
calculation to derive detailed predictions about the structure
and organization of critical points of the CIM energy
landscape and how it evolves as the laser gain is increased.
The detailed derivation of the result in this section can be
found in Appendix A. In Sec. V, we rederive these results
by developing a novel supersymmetry (SUSY)-breaking
cavity method, thereby providing considerable geometric
insight into the meaning of SUSY breaking in terms of
extreme landscape reactivity to external perturbations.
Readers who are more interested in the implications of
our work for CIM performance, rather than general theory
about landscape geometry, can skip the technical details of
this cavity derivation. In Sec. VI, we further analyze our
replica and cavity theory predictions and compare them to
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numerical explorations of the CIM energy landscape,
finding an excellent match between theory and numerical
experiments. In Sec. VII, we derive a supersymmetric but
full replica symmetry-breaking theory of global minima of
the CIM energy landscape and further confirm the pre-
dictions of this theory in numerical experiments. Together,
Secs. VI and VII provide matching theory and experiments
for the typical energy, distance from the origin, and Hessian
eigenspectra of saddle points, local minima, and global
minima as a function of laser gain and reveal a sequence of
important phase transitions in the landscape geometry
which we summarize in a phase diagram in Sec. VIII.

In Sec. IX, we relate the phase transitions in the land-
scape geometry to the performance of the CIM as a function
of the annealing schedule and explain how these phase
transitions suggest the optimal annealing schedule
employed earlier in Sec. III to obtain good CIM perfor-
mance for the SK spin glass. We end with a discussion and
future directions in Sec. X. Finally, we provide self-
contained derivations in Appendix A, as well as detailed
explanations of our numerical experiments in Appendix B.
Readers unfamiliar with the spin-glass theory may consult
Ref. [44], where we provide detailed step-by-step deriva-
tions for pedagogical purposes.

B. Review of theory of random landscapes

The fundamental problem of understanding how the
high-dimensional geometry of even the classical CIM
energy landscape evolves with increasing laser gain poses
several interesting challenges from the perspective of
random landscape theory, which has a rich history involv-
ing the analysis of several models, including, for example,
Thouless-Anderson-Palmer (TAP) free energy landscapes
[45-54], random Gaussian fields [55-59], and spherical
spin glasses [60—69]. Here, we situate our work within this
prior context.

To describe the evolving CIM landscape geometry, we
seek to describe changes in the number, location, energy,
Hessian eigenspectrum, and local susceptibility of various
critical points, including typical saddle points, local min-
ima, and global minima. We apply a combination of the
Kac-Rice method [55,70], replica theory [32], random
matrix theory [71], and supersymmetry [49,51,62,72-76]
to derive an analytic theory of the organization of critical
points in the CIM energy landscape as a function of laser
gain. Prior theoretical studies of the geometry of critical
points in continuous high-dimensional random landscapes
focused on simplified settings in which symmetry played a
crucial role in carrying forward calculations. For example,
in the case of random Gaussian fields [55-59] and spherical
spin glasses [60—69], translational and spherical symmetry,
respectively, were crucial. The reason symmetry has greatly
simplified past calculations is that, as we see below, the
combination of the Kac-Rice and replica methods require
an analysis of how the Hessian eigenspectrum of the energy

landscape depends on the location x within the landscape.
When strong translational or spherical symmetries are
present, the Hessian eigenspectrum becomes independent
of location and the problem of computing properties of
critical points can be reduced to computing properties of
the spectrum of a single random Hessian matrix. The TAP
free energy landscape, on the other hand, does not possess
such simple symmetries but does have a nongeneric
property, namely, that the Hessian eigenspectrum of typical
critical points has a bulk that is gapped away from the
origin, apart from a single zero eigenvalue [47,51], which
again simplifies certain analyses as described below.

In contrast, as we see below, the CIM energy landscape
possesses neither translational nor spherical symmetry, and
its Hessian eigenspectra extend continuously to zero, even
for local minima. All of this necessitates a more involved
analysis of the relationship between the Hessian eigens-
pectra of critical points and their location in the CIM energy
landscape. One of the contributions of this article from the
perspective of random landscape theory is to provide an
analysis of how the Hessian eigenspectrum depends on
location in a scenario in which no strong symmetries are
present. Intriguingly, in the case of the CIM, we find a
simple connection from location to Hessian eigenspectrum
through Dyson’s Brownian motion [77]. We furthermore
provide a framework for incorporating this dependence into
the combined Kac-Rice and replica methods to analytically
derive the organization of critical points in the CIM energy
landscape for arbitrary laser gains. Such a framework could
be broadly useful for other random landscape problems.

Our work also sheds new light on the geometric meaning
of SUSY breaking, which is one approach to analyzing
random landscape geometries [49,51,62,72-76]. The rea-
son SUSY can emerge in random landscape analysis is that
the Kac-Rice formula can be expressed in terms of a
partition function integral over bosonic degrees of freedom
related to the location x as well as fermionic degrees of
freedom, which, when integrated alone, yield the determi-
nant of the Hessian of the energy landscape. This integral
possesses a SUSY that exchanges bosonic and fermionic
degrees of freedom. When the integral is computed via the
saddle point method, the correct saddle point can some-
times break SUSY and, therefore, yield nonzero SUSY-
breaking order parameters. Given the abstract nature of this
calculation, the fundamental geometric meaning of SUSY
breaking and the resultant nonzero order parameters has
often remained mysterious in general settings.

Prior work has derived geometric interpretations of
SUSY breaking in limited settings [54] using modifications
of the cavity method [51,76] that take into account the
possibility that critical points may have Hessian eigens-
pectra with a single zero mode corresponding to a single
flat direction in the energy landscape, with the rest of the
bulk spectrum gapped away from the origin. Indeed,
Ref. [54] showed that the presence of this single flat
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direction indicates SUSY breaking, and the SUSY-breaking
order parameters for local minima are related to the inner
product between the location of the minimum and the flat
direction. This analysis suffices for the TAP free energy
landscape of the SK model, which is known to have such an
isolated single flat direction, or soft mode, around local
minima [47,51]. However, as we see below, this is not the
case for the CIM energy landscape, in which typical critical
points can have a continuous Hessian spectral density
extending to 0, indicating an extensive number of near-
flat directions about such critical points.

Another main contribution of our work is to not only
derive the properties of critical points using the Kac-Rice
formula combined with the SUSY-breaking replica method,
but also derive a generalized cavity method for the SUSY-
breaking phase. We demonstrate that the generalized cavity
and SUSY-breaking replica methods yield identical results,
but our novel general cavity method yields important geo-
metric insights into the meaning of SUSY breaking in more
general scenarios than previously derived. Importantly,
unlike prior work, our cavity method can handle Hessian
eigenspectra whose spectral density extends continuously to
zero, indicating a critical point that is marginally stable, with
extensively many soft modes, corresponding to the small
eigenvalues. These soft modes are highly susceptible to
perturbations of the landscape. Our cavity method shows that
SUSY breaking coincides with the presence of exponentially
many such marginally stable, soft critical points with high
susceptibility to perturbations. In such a scenario, a small
change in the landscape can induce bifurcations in these
exponentially many critical points, resulting in exponentially
more or fewer critical points. Moreover, we show that the
nonzero SUSY-breaking order parameters quantitatively
reflect the exponential reactivity of the number of critical
points of the energy landscape to specific perturbations.
Thus, our work provides a new, general, and quantitative
geometric interpretation of SUSY breaking in terms of the
extreme reactivity of the landscape stemming from expo-
nentially many marginally stable critical points.

Thus, overall, we see that the general analysis of a physical
analog computing device for solving random discrete com-
binatorial optimization problems, even in the classical limit,
yields an incredibly rich theoretical picture that interfaces
with numerous branches of physics and mathematics, includ-
ing the replica method, the cavity method, supersymmetry
breaking, random matrix theory, Dyson’s Brownian motion,
and the geometry of random landscapes. This rich picture
serves as an interesting foundational baseline for analyzing
how the classical to quantum transition may aid in optimi-
zation, in a physically implementable device.

II. THE OVERVIEW OF THE CIM AND ITS
ADIABATIC EVOLUTION

Our fundamental problem of interest is to find ground
states of the Ising energy function, given by

|
Eiging (8) :Ezjijsisja (1)
=1

where each s; = %=1 is a binary spin. The reason for this is
that many optimization problems can be cast as Ising
optimization problems for a given choice of spin connec-
tivity J;; [17]. However, we focus, in particular, on one
generic ensemble of optimization problems in which J;; are
chosen to be independent identically distributed (i.i.d.) zero
mean random Gaussian variables with variance 1/N. This
is known as the Sherrington-Kirkpatrick spin glass [32].

A. A model of the coherent Ising machine

We consider a model of the CIM as a network of N soft
spins, each of which is described by a scalar x;€R
(i=1,2,...,N), corresponding to the x quadrature of a
degenerate OPO. The total energy of the network is given by

N

1 N
Ew(x) =Y Ei(x)+5 > Jyx.  (2)
i,j=1

i=1

where E;(x) is a single-site energy function governing the
dynamics of a single OPO and J;; reflects the symmetric
network connectivity between the OPOs.

While many of our derivations apply to arbitrary internal
energy functions E;(x) that are bounded from below, we
focus our comparisons to numerics using the particular
internal energy function

E(x) = x* =252, (3)

which governs the dynamics of each individual OPO in the
CIM. Here, a is an important effective laser gain parameter
that controls the overall shape of the internal energy of
individual OPOs. Note that a reflects a balancing between
the linear dissipation and the gain of the CIM system.
Therefore, it can be negative when the dissipation is
stronger. For a < 0, E;(x) is convex with a single minimum
at x = 0. But, as a increases beyond 0 to become positive,
the single OPO energy landscape undergoes a pitchfork
bifurcation wherein the minimum at x = 0 becomes a local
maximum and two new minima appear at x = ++/a, both
with energy E; = —%az. This corresponds to a symmetric
double-well potential in which the wells move further out
and become deeper and sharper as a increases, leading to
stronger confinement of the soft spins around x = +./a.

The simplified dynamics of the CIM at zero temperature
and fixed gain a can be described as gradient descent
dynamics [12,27]

dx; dE(x)

% _ 4
"t dx, )
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We work in units of time in which the intrinsic CIM
timescale 7= 1. The CIM is typically operated by
annealing the gain a as follows [11]. First, the gain
parameter a is large and negative, so that the initial CIM
state is prepared near the origin x = 0, corresponding to all
OPOs approximately in their vacuum state. Then, the gain
a is slowly increased over time, while the OPOs simulta-
neously undergo their natural gradient descent dynamics in
Eq. (4). Finally, at a large enough gain a, the OPO states x;
are measured and their signs s; = sgnx; are interpreted as a
binary spin configuration, which ideally would achieve a
very low Ising energy in the original Ising energy mini-
mization problem of interest in Eq. (1).

This typical annealing of the gain a leads to several
questions. First, how and why does annealing « lead to a
final answer with low Ising energy? Second, what deter-
mines a good annealing schedule, and at what value of a
should we stop annealing? In this work, we take a high-
dimensional geometric perspective to these questions, by
seeking to understand the changing structure of E,(X) in
Eq. (2) as a increases.

In particular, as a increases, a sequence of bifurcations in
the geometry of the high-dimensional energy landscape
E(x) takes place. In each such bifurcation, new critical
points [i.e., points where the gradient VE(x) vanishes] are
either created or destroyed. Additionally, at bifurcations, the
index of a critical point can change, where the index is
defined to be the number of negative eigenvalues of the
Hessian matrix of second derivatives of E,(x), evaluated at
the critical point. We seek to understand, at each value of a,
the high-dimensional geometry of E,(x) by analyzing
where critical points of a given index lie in terms of their
typical energies and their typical locations in x space. An
elucidation of this changing high-dimensional geometry
provides insights into the functional optimization advantage
gained by annealing the laser gain in the CIM. Furthermore, it
suggests properties of good annealing schedules for a.

B. Energy landscape geometry at extremal gains

As a warmup to understanding the high-dimensional
geometry of E(x) for arbitrary a, we first focus on two
extremal regimes: small a << 0 and large a > 0.

1. The small laser gain regime: The CIM computes a
spectral approximation to the Ising problem

For a <« 0, we expect the energy landscape to be convex,
with the only minimum occurring at x = 0. As a increases,
the landscape first becomes nonconvex, by definition, when
the Hessian matrix H(x) at any location x first acquires a
negative eigenvalue. The elements of this N by N Hessian
matrix are given by

0’E
— tot _HI(X)U_"J[]', (5)

H(X)ij a axiaxj N

where
HI(X)ij = azEl(xi)5ij (6)

is the diagonal contribution to the Hessian coming from the
internal single-site OPO energy function E;(x) alone. To
determine both the smallest a and the location x at which
the first negative eigenvalue of H(x) can occur, we lower
bound the eigenvalues of H(x) for all x as follows.

First, note that, since H(x) = H'(x) 4+ J and the mini-
mum eigenvalue A, of a symmetric matrix is a concave
function of its matrix elements, we have, by Jensen’s
inequality,

lmin [H(X)} 2 lmin<HI) + /1min (J)
= Inl_inazEI (xi) + ﬂmin (‘])

= min3x? — a + Apin(J). (7)

In the last line, we use the specific form of the single OPO
energy function in Eq. (3). Then, a sufficient condition for
Amin[H (X)] to be non-negative is that its lower bound (7) is
also non-negative. This yields the sufficient (but not
necessary) condition that if a < min,; 3x? + Ay, (J) at
any spin configuration x, then E.(X) is convex at X.
The contrapositive then implies that if E,(x) violates
convexity at any fixed location x, because the Hessian
obeys Anin[H(x)] < 0, then we must have a > min, 3x?+
Amin(J). This is a necessary (but not sufficient) condition for
E.(Xx) to be nonconvex at X.

As a increases, this inequality is first satisfied at the
origin x = 0, yielding the result that the origin is the first
place where the Hessian H(x) acquires a negative eigen-
value. Moreover, this occurs when a crosses A, (J). Since
the Hessian at the origin is simply H(0) = —al + J, the
associated eigenvector of this Hessian is simply the
minimal eigenvector v,,;, of J which solves the variational
problem

Vinin = Argmingyyry_ }VTJV_ (8)

As a increases beyond A,,;,(J), the first nonconvex behav-
ior of E(x) is a pitchfork bifurcation where the minimum
at x = 0 becomes an index 1 saddle with a single negative
curvature direction along v,;, and two new minima
appearing that are closely aligned to 4v,,;,. If one simply
computes the signs of the spin configuration x in these
minima, then one obtains an Ising configuration given by
§; = sgn(Vpin ), where v, is the solution to Eq. (8). This is
known as the spectral approximation to the Ising energy
minimization problem in Eq. (1). Thus, for small a just
above A, (J), the CIM computes the spectral approxima-
tion. We see below that increasing a can improve upon this
spectral solution by finding Ising spin configurations with
energy lower than that of the spectral solution.
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In summary, our analysis above yields the following
picture. For any fixed value of a, Ei(x) can be only
nonconvex in the region obeying min; 3x? < a — Apin(J)
(a necessary condition for nonconvexity). Contrapositively,
if min, 3x? > a — Ayin (), then E o (x) must be convex at x
(a sufficient condition for convexity).

2. The large laser gain regime: The CIM global minimum
coincides with the Ising global minimum

In the absence of the connectivity J, the N spins decouple
and the energy landscape of Eqs. (2) and (3) has 3" critical
points given by

x; = vas;, where s;€{-1,0,+1}. 9)
Thus, in the absence of connectivity J, the scale of the soft
spins x; grows as the square root of gain a. If we work with
rescaled variables x; := a~'/2x; which remain O(1) as a

becomes large, the total energy in Eqgs. (2) and (3) can be
written as

1
X2+ > > Ty (10)
ij

This shows that, for large a > 4,,,(J), the effect of the
connectivity J on the geometry of the energy landscape can
be treated as a weak perturbation of the decoupled land-
scape in which J = 0. Therefore, it is useful to first
understand this simple decoupled energy landscape.

In this landscape with 3" critical points given by Eq. (9),
the Hessian matrix H of each critical point is diagonal, with
each diagonal element either (i) taking the value —a for
every “uncommitted” spin sitting at the saddle point x; = 0
of the double-well potential in Eq. (3) or (ii) taking the
value 2a for every “committed” spin sitting at a minimum
x; = %+/a of the double-well potential. Thus, the intensive
index r of each critical point, defined as the fraction of
negative eigenvalues of H, simply corresponds to the
fraction of uncommitted spins in the critical point. Since
each uncommitted (committed) spin contributes internal
energy E; =0 (E; = — 4—1‘ a?) in Eq. (3), the energy of every
critical point is determined by its index r via

N
Etot:—z(l—r)az. (11)

Thus, a saddle point’s energy decreases linearly with
its index.

However, the introduction of the connectivity J breaks
the energy degeneracy between all critical points of the
same index. Applying perturbation theory in the small
parameter 1/a to Eq. (10) shows that each critical point of
the decoupled landscape in Eq. (9) moves to

x; = vas;— (3s? = 1)7'a” 1200 + 0(a™3?),  (12)

where h? =5 jJijs; 1s the field on spin i before the
perturbation. Inserting Eq. (12) into Egs. (2) and (3) shows
that the energy of each critical point at large a is given by

N

E = 4

(1 - r)a +§ZJ,-,sis, +o(a).  (13)
ij

Thus, to leading order in a, the term breaking the
degeneracy of critical points in the decoupled landscape
is proportional to the Ising energy in Eq. (1). This implies
that, at large a, the sign configuration of the global
minimum of the CIM energy function in Eqs. (2) and
(3) is equal to that of the global minimum of the Ising
energy function in Eq. (1).

Additionally, the Hessian H(x) in Eq. (5) at a critical
point x in Eq. (12) takes the form H = H!(x) + J, where
H!(x) is diagonal with elements

for s; = £1,

H— {2a—3h?+0(1/a) (14)
for s; = 0.

"\ -a+0(1/a)

The eigenvalue spectrum of this Hessian, in the case where
J is the random Gaussian connectivity of the SK model, can
be understood using the random matrix theory of the next
subsection, which also forms a basis for many subsequent
analyses.

C. A theory of Hessian eigenspectra in the CIM with an
SK spin-glass connectivity

The eigenvalue distribution of the Hessian H(x) in
Egs. (5) and (6) plays a key role in this work. Here, we
provide a theory for the spectrum of H(x), at any spin
configuration x, when J;; is a rotationally invariant
symmetric Wigner random matrix with i.i.d. elements
distributed as

Ji:J.iN{N(O’ff/N)
T LNV(0.2¢%/N)

for i # j (15)
for i = j,

where N (i, 6*) denotes a Gaussian distribution with mean
u and variance . This connectivity corresponds to the SK
spin glass in Eq. (1). Because of the fundamental impor-
tance of the eigenvalue distribution of H(x) in under-
standing the high-dimensional geometry of the CIM energy
landscape, we discuss this spectral distribution in the next
two subsections in two different ways: first, in a conceptual
way, as the outcome of a Dyson’s Brownian motion with
initial condition determined by x and, second, in a computa-
tionally tractable manner in terms of a self-consistent
formula involving the resolvent of H(x). Finally, in the
third subsection, we apply this random matrix theory
to analytically calculate the Hessian eigenspectra of CIM
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critical points at large a and verify our formula by
comparing to numerics. In the following, we set the
connectivity variance parameter g in Eq. (15) to 1 without
loss of generality, because the case of g # 1 can be reduced
to g = 1 through the rescaling x — ,/gx and a — ga. Note
that, for g = 1, the eigenvalue spectrum of J follows the
well-known Wigner semicircular law with minimum
and maximum eigenvalues given by A.;,(/)~—2 and
Amax (J) & +2 [78], respectively.

1. From the distribution of spins to Hessian eigenspectra
through Dyson’s Brownian motion

Now, at any spin configuration x for which the diagonal
elements H';(x;) = 0°E;(x;) are large relative to the ele-
ments of J;;, one can compute the eigenvalues of H(x)
through first-order perturbation theory, treating J as per-
turbation to H' in Eq. (5). This yields an approximate
expression for the eigenvalues 4; of H(x) given by

J2
/1-:H’..+J--+§ — .
T -

J#

(16)

This expression is applicable, for example, when x corre-
sponds to a critical point of the CIM energy landscape at
large a, where each x; in Eq. (12) is O(y/a), and, therefore,
each H; in Eq. (14) is O(a).

However, at smaller a, when critical points are closer to
the origin, the perturbative expression in Eq. (16) may not
be accurate. One can go beyond this perturbation theory by
exploiting the fact that H(x) is the sum of a fixed matrix H'
and a Wigner matrix. This sum can be thought of as the
outcome of a white-noise-driven diffusion process in the
space symmetric matrices running fromtimer =0tot = g
starting from the initial condition H’(x) and ending at
H(x). This diffusion process on symmetric matrices, in
turn, induces the well-known Dyson’s Brownian motion on
the corresponding eigenvalues [71,77], described by the
stochastic differential equation

2 1 dt
di; =\ —=dW; +—=) ——— 17
i \&dW’”LNZA,-—»’ (17)

J# J

where dW;; is a standard white noise process. This
stochastic evolution has a physical interpretation in which
each 4; can be thought of as a Coulomb charge in the
complex plane, confined to the real axis, feeling a deter-
ministic, repulsive 2D Coulomb force from all the other
charges 4;, in addition to an independent stochastic drive. If
this Brownian motion is initialized at r = 0 so that 4;(0) =
H!.(x;) and is run up to time 7 = g, then the resulting
eigenvalue distribution

pr(2) = > o1~ (o) (18)

i=1

will, at large N, converge to the eigenvalue distribution of
H(x) in Eq. (5) with J;; distributed as in Eq. (15).

Thus, Dyson’s Brownian motion provides an elegant and
intuitive understanding of the relationship between a spin
configuration x and the eigenvalue distribution of the
Hessian H(x): Simply initialize a set of N charges at
the positions H!, = 0°E;(x;) and allow them to diffuse
under Eq. (17) for a time g. However, this does not by itself
provide an analytic method for computing the final out-
come of the diffusion in Eq. (18).

2. From the distribution of spins to the Hessian
eigenspectra through the resolvent

In Appendix A, we provide a calculation of the Hessian
eigenspectrum py () of H(x) as a function of the distri-
bution of spins at x, defined as

P, (x) Eﬁzfs(x—xi). (19)

Our replica calculation yields a self-consistent equation for
the resolvent of H(x). A more detailed step-by-step
derivation can be found in Ref. [44]. In general, the
resolvent of any N-by-N symmetric matrix H is defined as

R(z) = ~Tr—
= — 1T s
< N H-z

(20)

where z€C is a complex scalar. One can recover the
eigenvalue density py(4) from the resolvent R(z) via the
inversion formula

. R(A—ie)—R(A+ie)
=1 . 21
puld) = I = 2y

For H(x), our replica-based self-consistent equation for its
resolvent, when g = 1, is given by (see Ref. [44], Sec. A,
for a derivation)

B P (x)
Riz) = / FE () —z—R(o)™ (22)

where P, (x) is the distribution of spins in Eq. (19). This
result agrees with Pastur’s self-consistent equation for the
resolvent of the sum of a fixed matrix and a Wigner
matrix [79].

Thus, we obtain a simple calculational framework to
obtain the Hessian eigenspectrum at any spin configuration
x: (i) Insert the distribution of spins P, (x) in Eq. (19) into
the self-consistent equation for the resolvent R(z) in
Eq. (22), (ii) solve this equation to find R(z), and (iii) insert
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this solution into the inversion formula in Eq. (21) to obtain
the Hessian eigenvalue distribution p(4). The result will
be equivalent to the distribution in Eq. (18) at time # =1
obtained by running Dyson’s Brownian motion in Eq. (17)
starting from the initial distribution of H/; induced by the
distribution of P,(x) under the map x — 0°E;(x).

3. Hessian eigenspectra of critical points at laser gain

Given this random matrix theory, we now return to the
large-gain regime in Sec. IIB2 to compute the Hessian
eigenspectra of critical points of the form in Eq. (12). In a
typical index r critical point, a fraction r of the spins (before
the perturbation by J) take the uncommitted value s; = 0,
while the remaining fraction 1 —r takes the committed
values s; = 1 with equal probability. Moreover, the field
h? => ;Jijs; in Eq. (12), which perturbs the critical point
after introducing the SK connectivity in Eq. (15), is, at large
N, a zero mean Gaussian random variable with variance
(1 —r), originating from the fraction 1 —r of nonzero
committed spins. Thus, the distribution of the diagonal
elements in H'(x) in Eq. (14) is given by

put(h) =r6(h+a)+ (1 =r)N[2a,9(1-r)]. (23)

This corresponds to a mixture of a § function at —a with
weight r coming from the uncommitted spins and a Gaussian
centered at 2a with weight 1 — r coming from the committed
spins. The variance of 9(1 — r) arises from the amplification
of hY by a factor of 3 in Eq. (14).

This initial distribution then undergoes Dyson’s
Brownian motion in Eq. (17) to yield the full distribution
pu(4) of H(x). Alternatively, we can make the change of
variables from x to & = 0*E;(x) in Eq. (22) to obtain a self-
consistent equation Ry(z) in terms of pyi(h):

R(z) = / #_(}g(z)dh. (24)

We can then solve this equation (numerically) and insert the
solution into Eq. (21) to obtain py(4).

We calculate the Hessian eigenspectrum in this fashion
both for typical critical points with index r = 1/3 and for
typical minima with index r =0, finding an excellent
match with direct numerical searches for such critical
points at a finite system size of N = 10% and at large laser
gain a =9 (Fig. 1). Some features of the outcome of
Dyson’s Brownian motion in going from p: () in Eq. (23)
to py (1) are readily apparent in Fig. 1. For example, at large
a for a typical critical point with index r = 1/3, the charges
start in two far apart clumps in Eq. (23), with a delta
function at —a and a Gaussian at 2a. Thus, these two distant
charge clumps do not interact strongly with each other in
the diffusion. However, each clump itself expands under
the repulsive diffusion. The delta function expands into a

1.0 0.15 0.15
0.10 0.10
0.5
0.05 0.05
0.0 0.00 0.00 ¢
1.0 0.15 0.15
0.10 0.10
0.5
0.05 0.05
0.0 0.00* 0.00 *
-5.0 -25 0.0 25 5.0 0 20 0 20
T Hessian diagonal Hessian spectrum

FIG. 1. Distribution of spins, Hessian diagonal elements, and
Hessian spectrum. The upper (or lower) panels showcase the
distribution of OPO amplitudes x (left), Hessian diagonal
elements (middle), and Hessian eigenvalues (right) corresponding
to a typical critical point (or a typical local minimum) with a large
gain a = 9. The empirical distributions portrayed as blue histo-
grams are obtained with a system size of N = 10°. The orange
curves in the left and middle figures are obtained with the
perturbation theory in Egs. (12) and (14). The distributions of
Hessian diagonal elements in the middle panels diffuse via
Dyson’s Brownian motion in Eq. (17) to generate the Hessian
eigenspectrum in the right panels. The orange curves in the right
panel are obtained from solutions of Eq. (24).

Wigner semicircle, still centered at —a, while the Gaussian
expands a bit more, largely retaining its shape and
remaining centered at 2a (Fig. 1, top).

III. THE PERFORMANCE OF GEOMETRIC
LANDSCAPE ANNEALING FOR THE SK SPIN
GLASS

We have seen in Sec. II B 1 that, at small gains a just
above A, (J), the CIM global minimum computes the
spectral solution in Eq. (8), which is not of direct interest.
On the other hand, in Sec. II B 2, at large gain a > 1,,,,(J),
we have seen that the CIM global minimum computes the
Ising energy minimization, which is of direct interest.
However, our analysis of the energy landscape at large
laser gain in Sec. II B 2 reveals a complex landscape with
exponentially many local minima and saddle points of all
indices. Thus, direct gradient descent in the large laser gain
energy landscape of the CIM is unlikely to find the CIM
global minimum (as we verify below in Sec. IX). Therefore,
to understand how the CIM solves optimization problems
by annealing the laser gain, a key first step is to understand
how the geometry of the landscape changes from small to
large gain.

In particular, we would like to understand, in general,
how the first local minimum to occur, which is aligned
along the lowest eigenvector v,,;, in Eq. (8), changes as the
laser gain is increased. There are several possibilities.

The first is that this local minimum is continuously
connected to one of the CIM global minima as we increase
the gain to large values. In this case, annealing will find the
global minimum. The second possibility is that the first
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local minimum to appear as the gain increases is contin-
uously connected to a higher-energy CIM local minimum at
large gain. In this case, annealing will not find the CIM
global minimum. A third possibility is that this first
minimum may disappear through a saddle-node bifurcation
and then slowly annealed gradient descent will flow to
another nearby minimum, which, in turn, can exhibit these
same three possibilities.

It is an exceedingly difficult problem to analytically
predict, in advance of geometric landscape annealing,
which of these possibilities will occur for any large, fixed
connectivity matrix J. One would have to map out the
entire bifurcation structure of critical points as a increases.
Moreover, one would have to analytically derive the CIM
ground-state energy for that connectivity J at large a and
compare it to the energy of all critical points that are
continuously connected through bifurcations to the first
minimum to appear along v,;, near the origin. All of this is
more complex than simply performing geometric landscape
annealing itself.

We circumvent these difficulties by not analyzing any
fixed connectivity J but rather analyzing typical CIM
behavior in random Gaussian connectivities J in
Eq. (15) corresponding to an SK spin glass. For this
problem, we can use techniques from the statistical
mechanics of quenched disorder to analytically calculate
the CIM ground-state energy at arbitrary laser gain a, as
well as the location, Hessian eigenstructure, and energy
levels of critical points of any index. We can compare these
quantities to numerical simulations of geometric landscape
annealing to provide insights into its operation.

First, we assess the performance of CIM geometric
landscape annealing as we increase the laser gain a. We
perform numerical simulations of geometric landscape
annealing with several system sizes N by the integration
of Eq. (4). During the integration, we slowly increase the
gain parameter a starting from A, (J) to achieve the best
performance for each system size N. In Fig. 2, the blue dots
represent the medians of the final Ising energy obtained by
the simulations with several instances, and the blue dotted
line is the linear regression of those points against N~2/3. This
scaling comes from the finite-size scaling of the SK model’s
ground-state energy [80,81]. The y intercept of this blue line
represents the reachable lowest energy by the annealing
dynamics in the large-N limit. We call this energy E,,,ca- The
horizontal red dotted line is the theoretically obtained
ground-state energy E,~—0.763 in the large-N limit
[82,83], and the honzontal green dashed line is the energy
obtained from the Ising spin configuration by rounding the
principal eigenvector, which yields the known value E;, =
—2/m [37]. We can see that the energy E,ca~ —0.75
obtained by the annealing process in the large-N limit is
much lower than E,. This means that the first minimum to
appear along the eigenvector v,,,;, must undergo multiple sign
flips as a increases.

—0.650
-0.675
—0.700

—0.725

Ising energy

-0.750

0.00

FIG. 2. Ising energy of the final state obtained by the annealing
process for random instances. We simulate the annealing process
of the soft-spin network with many instances for each system size
N and plot the medians as blue dots. The blue dotted line is the
linear regression against N~2/3. This scaling comes from the SK
model’s finite scaling [80,81]. The y intercept of this line
represents the reachable lowest Ising energy by the dynamics
under the large-N limit. The horizontal red dotted line is the SK
model’s ground-state energy in the large-N limit E, ~ —0.763.

The horizontal green dashed line is E,, = —2/x, the energy of
spin configuration obtained by rounding the principal eigenvector
of J. The annealing schedule used here is given by Eq. (81) with
7 =10, apa = 0.0, and @(0) = Ay, The number of sampled
instances is 300, 300, 100, 100, 20, and 5 for N = 102, 3 x 102,
103, 3 x 103, and 10%, respectively.

Remarkably, these bifurcations substantially lower the
Ising energy found by the CIM, making it very close to the
actual ground-state Ising energy of the SK model, as reported
numerically in a previous work [31]. In the remainder of this
paper, we study the changing geometry of the CIM energy
landscape to understand how geometric annealing of this
landscape empowers the performance of the CIM in finding
low Ising energy solutions.

IV. THE EVOLVING ENERGY LANDSCAPE
GEOMETRY

To address the questions raised above, we first analyti-
cally derive a formula for the typical number N (r, e|J) of
critical points of a given intensive index r and energy e. In
order to average over the connectivity J, we work with the
complexity X(r, e|J) of critical points, which is defined via
the relation

N(r,e|J) = eNErel)), (25)

This complexity can be formally written as a sum over all
critical points:

—log Z

aeCrt(E

Z(r,elJ) — rlo[E(x%) —e],  (26)
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where E(x) = (1/N)E(x) is the intensive energy and
Crt(E) denotes the set of all critical points of E(x).

Unlike the potentially exponentially large number
N(r,e|J) itself, which could fluctuate across random
samples of J, we expect the complexity function X(r, e|J)
to be self-averaging with respect to J. This means that typical
values of X(r,e|J) for random samples of J concentrate
closely around the sample average X(r, e) = (X(r, e|J)),,
where (), denotes an average over J. Furthermore, in order
to compute this sample-averaged complexity X(r, e), we first
compute the sample average of the grand potential Q(f3, u|J),
defined as

1 a a
—BQ(p. u| J)zﬁlog Z e PEC)HI(x) - (27)

aeCrt(E)

where Z(x*)€[0, 1] denotes the intensive index of the
critical point x%, ie., Z(x*)=I(x*)/N. If one can
compute the sample-averaged grand potential Q(f, u)=
(Q(p.u|J)),, then one can recover the average complexity
X(e, r) via Legendre transform:

S(e.r) = infy, [fe —pr - pR(B).  (28)

Here, the effective inverse temperature f and energy density e
form a Legendre dual pair, as do the chemical potential 4 and
the intensive index r. Indeed, the typical values of e and r that
dominate in the sum in Eq. (27) are those that achieve the
infimum in Eq. (28). If the infimum does not occur at a
boundary, the typical e and r are related to # and y through

e= ;ﬂ pRpW).  r= —; PRB.W. (29)

Finally, we compute the sample-averaged grand potential
Q(f, u) via the replica trick [84], i.e.,

B, ) =, 08(2)),

1 1
= lim—log(Z"),. (30)

n—-0n

where Z is the partition function

7= Z e PEX)+uI(x) (31)
a€Crt(E)

Below, we apply the Kac-Rice formula to Eq. (30) to
compute Q(f3, #). This replica-based calculation is given in
Appendix A. Step-by-step pedagogical derivations are
presented in Ref. [44], Sec. S-II. This method involves
introducing both bosonic degrees of freedom (replicated
soft spins x“ for a = 1, ..., n) as well as fermionic degrees
of freedom whose integral computes the determinant of
the Hessian which arises in the Kac-Rice formula below.

The resulting integrals possess both replica symmetry,
involving permutations of the replicas, as well as super-
symmetry, involving exchanges of bosonic and fermionic
degrees of freedom. Such a SUSY-based framework has
also been used in a variety of works [49,51,62,72-76].
These integrals can be solved via a saddle point approxi-
mation, and the order parameters, whose extremal values
determine the saddle point, can either exhibit or break
replica symmetry or supersymmetry. Which pattern of
symmetry breaking occurs or not depends on the particular
values of the inverse temperature S, chemical potential y,
and gain a considered.

In the following, we consider three regimes in detail. First,
we consider f = u = 0, corresponding to a white average in
Eq. (31) in which all critical points are equally weighted. This
white average yields information about the typical behavior
of arandomly chosen critical point, regardless of its energy or
index. We find that in this regime, at the saddle point order
parameters, replica symmetry always holds, but SUSY is
preserved at low laser gain a, while it is broken at large laser
gain. The order parameters at the saddle point yield infor-
mation about the distribution of spins and Hessian eigen-
values at typical critical points.

The second regime we consider is f = 0 and g — —oo0.
This concentrates the sum over critical points onto those with
vanishing intensive index, independent of their energy. This
corresponds to a sum over all minima (we refer to critical
points with zero intensive index as minima). We find a similar
pattern for typical minima as we do for typical critical points:
Order parameters at the saddle point exhibit replica sym-
metry but can break SUSY depending on the laser gain. The
order parameters, distribution of spins, and Hessian eigen-
values for # = 0 and arbitrary u are given in Sec. IVA in the
case of replica symmetry and broken SUSY.

Unfortunately, the geometric interpretation of these
replica calculations, and, in particular, the geometric mean-
ing of broken SUSY in terms of the original energy
landscape, is unclear. Because the geometric interpretation
of SUSY breaking is a subject of considerable interest, we
provide in Sec. V a completely different derivation of the
results in Sec. IV A using the cavity method instead of the
supersymmetric method (see Appendix A or Ref. [44],
Sec. S-1V, for a detailed cavity derivation). This derivation
yields a new interpretation of nonzero supersymmetry-
breaking order parameters as signaling a high sensitivity of
the complex energy landscape to small changes in external
fields. We discuss, in particular, the case of typical critical
points in Sec. VI A and the typical minima in Sec. VI B and
successfully match our theoretical predictions with numeri-
cal experiments.

In Sec. VII A, we move on to the case of the global
minima, corresponding to the regime f — oo in Eq. (31).
We find that the global minima of the energy landscape
occur at significantly lower energies than that of typical
local minima for large values of the laser gain. Therefore, as
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in other spin-glass problems, replica symmetry is broken.
We analyze the global minima through two methods: (i) a
replica-based calculation of the grand potential (see
Appendix A and Ref. [44], Sec. S-II.G) or (ii) a calculation
of the free energy (see Ref. [44], Sec. S-1II), and we
demonstrate their equivalence.

Finally, in Sec. VIII, we summarize and describe the
significant phase transitions we can observe in the energy
landscape due to successive SUSY and replica symmetry
breaking and their geometric consequences.

A. The replica-based calculation

In our setting, the Kac-Rice formula (see Ref. [70] for an
introduction) enables us to convert the sum of any function
F(x) over all critical points x* for a € Crt(E) of a land-
scape E(x) into an integral over the entire domain x € RV
of the landscape. It is given by

Y F(x)= / [ [ dxsl0EGN [ detH(x)|F(x). (32)
i=1

aeCrt(E)

1
—pQ(0,u) = —E(Cq + A?) — At + log

\/_

1
dx|0*E;(x) — t| exp (—Zh(x)2 +g

where H(x) is the Hessian of E at x. Here, the § functions
in Eq. (32) localize the integral to critical points of E(x) as
desired, while the absolute value of the Hessian determi-
nant | det H(x)| corresponds to the Jacobian of the change
of variables from x; to y; = 9,E(x). Indeed, performing this
change of variables on the right-hand side of Eq. (32) and
then integrating recovers the left-hand side.

Now applying the Kac-Rice formula in Eq. (32) to the
partition function in Eq. (31) yields

_ / T] {60 )] det H(x)[e B0, (33)

Then inserting Eq. (33) into Eq. (30) provides the starting
point for the replica- and supersymmetry-based calculation
of the sample-averaged grand potential. A detailed deri-
vation is given in Appendix A and Ref. [44], Sec. S-II. The
final answer at a replica symmetric, annealed level with
p = 0, but with broken supersymmetry, is given by

A h(x )%chx +,J(x)>.

(34)

Additionally, beyond the sample-averaged grand potential, we consider the sample-averaged distribution of spins in an

ensemble of critical points, defined as

<Z_]Z(1€Crt e P THE < Z 5 X x“ >> ’

(35)
J

where Z is given in Eq. (31). We derive a formula for this distribution in Appendix A and Ref. [44], Sec. S-IL.B. In the case
of # = 0 and arbitrary u, which is relevant for typical critical points (4 = 0) and typical minima (4 — —o0), the answer is

P(x) o |0*E;(x) — t| exp (—zl—qh(x)2

Here, Z(x) is given by

I(x) = O{=[0°E;(x) — 1]}, (37)
where O is the Heaviside step function, and
h(x) = OE (x) - (38)

The formulas for the sample-averaged grand potential in
Eq. (34) and distribution of spins in Eq. (36) depend on four
order parameters ¢, t, A, and C which satisfy the following

A -
+ —xh(x) + = x2+/AZx>.
() + 50 8

14C - A?

(36)

|
self-consistent equations arising from extremizing the
grand potential in Eq. (34):

q = (x)?,
1
= <02E,<x> - t>’
(eh() 1
2q 2’

—2¢72A(xh(x)) + g1 A2,
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Here, (-) denotes an average with respect to the distribution
P(x) in Eq. (36). We note that self-consistent solutions with
nonzero values for the order parameters A and C corre-
spond to broken supersymmetry [48,62].

Finally, with knowledge of the typical distribution of
spins P(x) in an ensemble of critical points, we can obtain
the typical distribution of Hessian eigenvalues by inserting
P(x) in Eq. (36) into Eq. (22), solving for the resolvent
R(z), and inserting this solution into Eq. (21) to obtain
py(4) for any f = 0, u, and a. Note that we here assume
that the correlation between H'(x) and J is negligible for
any critical point x.

Importantly, we note that the last self-consistent equation
for ¢ in Eq. (22) is equivalent to the self-consistent equation
for R(z) at z = 0 in Eq. (22). But, more precisely, while the
resolvent R(z) of a large random symmetric matrix H is not
well defined at any point 4 on the real axis where the
eigenvalue distribution p (1) is nonzero, R(z) is defined on
the complex plane near the real axis for z = A + ie with
arbitrarily small e. Thus, we can define the complex
number 7z + it; = R(0 + i¢) for a small e. By the inversion
formula in Eq. (21), ¢; is nonzero if and only if the Hessian
eigenvalue density py(0) is nonzero. We see empirically
that py(0) is very close to 0. Therefore, assuming t; = 0, ¢
in Eq. (39) should be properly be thought of as
tg = R(0 + ie). On the other hand, if the Hessian eigen-
value density pp (1) at the origin 4 = 0 were nonzero, one
would have to self-consistently solve for another order
parameter ;. The full self-consistent equations for all five
order parameters g, tg, t;, A, and C are given in Ref. [44],
Sec. S-II.LE. However, to match the numerics below, we
need only to find approximate self-consistent solutions to
Eq. (39) assuming that ¢; = 0 or, equivalently, p5(0) = 0.

In summary, the replica analysis provides an efficient
calculational framework to obtain key information about
the number and properties of typical critical points (u = 0)
and typical minima (u — —o0), as well as critical points of
any index r related to u through Legendre duality in
Eq. (29). The procedure is as follows: (i) Solve the self-
consistent equations for the order parameters in Eq. (39);
(i1) insert them into Eq. (36) to obtain the typical distri-
bution of spins P(x) at a critical point; (iii) insert P(x) into
Egs. (22) and (21) to obtain the typical distribution of
Hessian eigenvalues py(1); (iv) insert the formula for the
grand potential Q(f, u) in Eq. (30) into the Legendre
transform in Eq. (28) to obtain the complexity X(e, r) at
typical energy e and index r given by Eq. (29).

Finally, we note that for typical critical points and typical
minima, if we wish only to compute the grand potential at
f = 0, we can still compute the typical energy e of critical
points without using the first Legendre dual relation in
Eq. (29). We do this by noting that any critical point x of
Eq. (2) obeys 0E;(x;) + h; = 0, where h; =), J;;x;. This
implies that, at any critical point x, the normalized intensive
energy obeys the special relation

E(x) = %XN: {E,(xg +%xih,}
1 N

— NZ {E,(xi) - %xidE,(x,»)] : (40)

i=1

This site-decoupled expression for the energy allows us to
calculate the typical energy e at critical points directly from
the typical distribution of spins P(x) in Eq. (36) via

o= / dxP(x) [E,(x) —%x@El(x)]. (41)

Similarly, the typical intensive index r can be calculated,
without resorting to the second Legendre dual relation in
Eq. (29), by directly using the typical Hessian eigenvalue
distribution py(4) obtained from Eq. (21) using the dis-
tribution of P(x) in Eq. (36) inserted into the formula for
R(z) in Eq. (22). In terms of this py(4), r is simply

r= /_0 dipy(R). (42)

[Se]

Overall, these results yield a complete characterization of
the typical energy e, index r, grand potential Q(0,u),
complexity X(e, r), distribution of spins P(x), and distri-
bution of Hessian eigenvalues p (1) of both typical critical
points and typical minima. We successfully confirm these
theoretical predictions with numerical simulations below in
Sec. VI. But first, we provide an alternate derivation of
these results by developing a novel cavity method.

V. A GEOMETRIC INTERPRETATION OF
SUPERSYMMETRY BREAKING VIA A
GENERALIZED CAVITY METHOD

While the replica-based calculation above provides
detailed information about critical points, the form of the
answers is difficult to understand. For example, why do the
grand potential fQ in Eq. (30), the distribution of spins
P(x) in Eq. (36), and the self-consistent equations for the
order parameters in Eq. (39) take the forms that they do?
Moreover, what is the geometric meaning of the order
parameters, especially the SUS Y-breaking order parameters
A and C? In essence, what is the qualitative difference
between high-dimensional energy landscapes described by
broken SUSY versus preserved SUSY? To obtain answers
to these questions, we develop a new generalized version of
the cavity method and demonstrate the equivalence
between our generalized cavity method and replica deri-
vations (see Appendix A and Ref. [44], Sec. S-1V, for
detailed derivations). Our generalized cavity method yields
considerable conceptual insights into the replica results
as well as a geometric interpretation of SUSY breaking.
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Note that readers who are less interested in the technical
details may skip this section.

A. The naive cavity method

We first take a naive approach to the cavity method,
which we see is appropriate when SUSY is preserved. The
cavity method, in general, for many mean-field systems
involves (i) analyzing the effect of adding a single new
degree of freedom to a system (called a cavity system
because it excludes the new degree of freedom), (ii) describ-
ing how the cavity system responds to the new degree of
freedom, often using simple perturbation theory under the
assumption that the single new degree of freedom exerts a
small effect on the large cavity, and (iii) quantifying how
the response of the cavity exerts a backreaction onto the
new degree of freedom as it comes to equilibrium with the
cavity system. The backreaction of the cavity onto the new
degree of freedom depends on certain order parameters
associated with the cavity. The cavity method then yields
self-consistent equations for these order parameters, assum-
ing the cavity system without the new degree of freedom
and the full system with the new degree of freedom have the
same order parameters, due to the existence of a thermo-
dynamic limit.

For example, in the context of the CIM, critical points of
any index (not necessarily energy minima) obey the
gradient equations

OE, (x +ZJ,,x,_0 fori=1,...,N—1. (43)

Here, this corresponds to a cavity system with only N — 1
spins. Next, we introduce a new spin x, coupled to the
cavity system via new random coupling constants
{Joi}iz1.. n-1- The gradient equations for x;,...xy in
the presence of the new spin in the full system become

OE;(x;) + Z Jijx; + Jigxg = 0, (44)

while the new spin, after it equilibrates with the cavity, must
obey

N-1
OE;(xo) + ZJOixi =0. (45)

i=1

The cavity method relates the critical point solutions of the
full system in Eqgs. (44) and (45) to the critical point
solutions of the cavity system in Eq. (43). In particular, let

O for i = I,...,N —1 be a critical point of the cavity

system in the absence of spin 0. Thus, xl/ % is a solution to
Eq. (43)foralli =1, ..., N — 1. Now, when the new spin 0

is brought into contact with the cavity and held at a fixed

value x,, the cavity will react to the new spin so as to solve
the modified equations (44), which are simply equivalent to
the original cavity equations (43) plus a small perturbative
term J,ox, that is O(1/v/N).

Assuming the effect of the new spin x; on the cavity is
small, one can solve Eq. (44) using perturbative linear
response theory, by Taylor expanding the first two terms

about x; = xl/ % and using the fact that x{ 9 satisfies Eq. (43).
The resulting approximate linear response of the cavity to
the new spin x; [i.e., approximate solution to Eq. (44)] is

N
xi = =Y Hy (x°)Tj0%. (46)
=

Here, H i‘jl (x/ 9 is the inverse Hessian of the cavity system

evaluated at its critical point x/° before the new spin x; is
introduced. As usual, this inverse Hessian acts as a linear
susceptibility matrix y = H~'(x/°) that translates the force

J joxo exerted by the new spin into the response of the cavity

from x{o to x; in Eq. (46).

Now, with Eq. (44) solved perturbatively via the cavity
response in Eq. (46) for arbitrary x,, we must next find the
equilibrium value of x, that generates an approximate
critical point of the full system by inserting Eq. (46) into
Eq. (45), obtaining

()E[ X()

ZJOI

H(x/%)J JOxO+ZJO, =0. (47
i=1

Here, the final term

/0 = Z JOt (48)

is the cavity field that the cavity would have exerted on the
new spin had it not reacted to the new spin at all and
remained at configuration x/°. The second term takes into
account the reaction of the cavity to x° through the force
J joxo and its resultant backreaction on the new spin through
the connections Jy;. This is an example of an Onsager
backreaction-type term [32].

Now both the cavity field and the backreaction term
depend on the cavity system through two simple order
parameters. First, note that xl/ , a critical point of the cavity
system in the absence of the new spin x,, is necessarily
independent of the new connectivity J;, which is not a part
of the cavity system. Thus, we can apply the central limit
theorem to conclude that 4#/° in Eq. (48) is a random
Gaussian variable distributed as A (0, g), where the vari-
ance ¢ is an order parameter given by
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1 N-1

N—
g= e R =Y W @)

i=1 i=0

|-

Here, we assume that the order parameter ¢ is self-
averaging and is the same in both the cavity system and
the full system, at large N. Similarly, we assume that the
Onsager backreaction term is self-averaging, and we
replace it with its average over the connectivity in
Eq. (15), yielding a second-order parameter ¢ which we
assume is the same both in the cavity and the full system:

=

! TrH ' (x/°) = lTrH‘l(X). (50)
-1 N
While ¢ is the squared length of a critical point, ¢ is the trace
of a critical point’s linear susceptibility matrix to small
external forces.

With the definition of the cavity field 4/ in Eq. (48) and
the order parameters g in Eq. (49) and ¢ in Eq. (50), the
solution(s) of xy in Eq. (47) is in one-to-one correspon-
dence with critical points of a mean-field energy function

EWWMEE@%%M—M, (51)

where the random external cavity field & ~ A (0, ). Here,
we drop the index O from both the new spin x, and its cavity
field 4/°, because, under the random mean field connectivity
in Eq. (15), there is nothing special about removing and
adding back spin 0. We could have done this for any spin x;,
yielding its own cavity field /' which is also distributed as
N (0, g). Moreover, each cavity field //? in the absence of x;
is independent of any other cavity field 4// in the absence of
x;. Therefore, the empirical distribution of spins x; across the
index i, defined as P(x) = (1/N)> Y, 8(x —x;) can be
obtained, in the large-N limit, as

P(x) <Zx eCrt<EMFVl])5(x - x*)>h, (52)

where Crt(Eyg[h]) denotes the set of critical points of the
function Eyr[h] in Eq. (51) and (-),, denotes an average with
respect to the Gaussian cavity field h ~ N(0,q). The
normalization factor in Eq. (52) is simply the mean number
of critical points in the random ensemble of mean-field
energy functions Eyg[h].

Now, with the distribution of spins P(x) in a typical
critical point in hand, we can derive self-consistent equa-
tions for the order parameters. In particular, it is clear that ¢
in Eq. (49) is simply the second moment of P(x), yielding
the self-consistent equation

q= /dxsz(x). (53)

Furthermore, ¢ in Eq. (50) is simply the mean of the diagonal
elements of the inverse Hessian. The Hessian of the mean-
field energy function is given by H(x) = 0°E,(x) — t and is
independent of the cavity field /. Taking the average of its
inverse yields the self-consistent equation

tz/ﬁﬁﬁgz. (54)

Together, Egs. (51)-(54) constitute a theoretical prediction
for the distribution of spins in a typical critical point [i.e., the
special case of f = pu =0 in Eq. (35)]. Interestingly, the
cavity result appealingly and intuitively replaces the problem
of summing over critical points in a large-N-dimensional
system [i.e., Egs. (2) and (35) with y = = 0] with the
problem of summing over critical points in a random
ensemble of one-dimensional systems [i.e., Egs. (51)
and (52)].

B. Equivalence of the naive cavity method
with the supersymmetric replica method

We next show that these cavity results are exactly
equivalent to those of the replica method in the further
special case where SUSY is preserved (i.e., A = C = 0).
We can demonstrate the equivalence of the cavity result for
P(x) in Eq. (52) with the replica result for P(x) in Eq. (36)
with y = A = C =0 as follows. First, we can apply the
Kac-Rice formula in Eq. (32) to Eq. (52) and perform the
resulting integral over x, which simply fixes it to x,
yielding

P(x) o (3[0E,(x) — tx = ]| E; (x) = 1]);.  (55)

Then, performing the integral over h fixes it to be
h(x) = 0E;(x) — tx, and, recalling that (-), denotes an
average with respect to the Gaussian distribution N (0, g),

we obtain
h 2
2q

where h(x) = 0E;(x) — tx is the external field & required to
make x a critical point of the mean-field energy function in
Eq. (51). Thus, the distribution of spins P(x) in Eq. (56), and,
therefore, in Eq. (52), is entirely equivalent to the replica
expression for P(x) when y = A = C =0.

Moreover, given this equivalence of P(x), the cavity-
derived self-consistent equations for the order parameters ¢
in Eq. (53) and ¢ in Eq. (54) are entirely equivalent to the
first two self-consistent equations derived via the replica
method in Eq. (39). Thus, overall, the naive cavity method
recovers the results of the supersymmetric solution but
cannot account for supersymmetry breaking.

P(x)  |0*E;(x) — t| exp (—
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C. Beyond the naive cavity method: Accounting for
supersymmetry breaking

Why does the naive cavity method recover the replica
results only in the case of preserved SUSY—i.e., Eq. (36)
when A = C = 0 and the first two equations in Eq. (39)?
Here, we resolve this issue as well as generalize to nonzero
u. The key idea is that the naive cavity method makes an
implicit assumption about the nature of the perturbative
reaction of the cavity system to the addition of a single new
spin in Eq. (46). In particular, this account of the reaction
assumes that the only effect of adding a new spin x; is to
move every critical point of the cavity system a small
amount to generate a critical point of the full system. Thus,
it is assumed that critical points of the cavity system and the
full system are in one-to-one correspondence with each
other.

This assumption is likely to be valid if the Hessian matrix
H(x) has an eigenvalue distribution p(4) which vanishes
in a finite region about A = 0. Because the susceptibility
matrix y is the inverse Hessian, such a gap in the Hessian
spectrum yields a nondegenerate, structurally stable critical
point that is unlikely to undergo a bifurcation or change its
index upon the addition of a new spin. However, if the
Hessian spectral density py(4) extends continuously to
A =0, such a critical point is degenerate with extremely
soft modes, and the addition of a single spin could cause it
to either disappear or bifurcate to create additional critical
points. If the landscape has exponentially many critical
points whose typical Hessian eigenspectra are gapless, then
the addition of a single new spin x, could lead to
exponentially more or fewer critical points of any given
index, depending on the realization of the couplings J,, and
the value of x, at its own equilibrium. This extreme
reactivity of the landscape to the addition of a single spin,
marked by an exponential change in the number of critical
points, is a fundamental possibility that is not accounted for
by the naive cavity method.

We provide a generalized cavity method that can account
for this extreme reactivity. We provide a detailed derivation
in Appendix A. Readers who are not familiar with spin-
glass methods can refer to the step-by-step derivations in
Ref. [44], Sec. S-1V, as well. Here, we simply outline the
key ideas and intermediate results. Our generalized cavity
method starts from the expression for the grand potential:

_po— %ln<Z>1, (57)

where Z is the partition function given in Eq. (33). Thus, we
start from an annealed approximation. Next, because of the
critical importance of the presence of soft modes in the
energy landscape in the vicinity of critical points, corre-
sponding to eigenvectors of the Hessian with small eigen-
values, we soften the o functions of the gradient in Eq. (33)
and replace them with Gaussians via

S[0.E(x)] — \/Ze—y[afE(X)]z. (58)
T

We work at finite y throughout the calculation, taking
y — oo at the end. A finite y crucially allows the partition
function Z in Eq. (33) to receive contributions not only
from critical points, but also from the geometry of the
landscape in the vicinity of critical points, including the
nature of the nonzero gradient in the neighborhood of each
critical point.

Next, we split the degrees of freedom x into that of a
cavity system x/° with components xl/ Ofori=1,...N—1
and a single spin x,. Mirroring this split, we would like to
express the grand potential of the full system in Eq. (57) in
terms of the grand potential of the cavity system x/° (taking
into account the effect of the new spin on it) and an
effective mean-field grand potential of the new spin x
(taking into account the effect of the cavity on it in terms of
certain cavity fields and order parameters). Achieving this
decomposition prima facie poses several challenges,
because x, and x/° appear intricately coupled in the
expressions for the Hessian determinant |det H(x)| and
the Hessian index Z(x) in Z in Eq. (33). Despite this
seemingly intricate coupling, we can show that, upon
averaging over the random choice of coupling J;, between
the cavity x/0 and the new spin x, the interaction between
them depends on the cavity system x/° only through the
mean cavity susceptibility order parameter ¢, defined in
Eq. (50).

In particular, for the Hessian determinant, we show that,
after averaging over J,

|det H(x)| = |02E; (xo) — f]| det H(x/?)].  (59)

The first term is nothing other than the absolute value of the
Hessian of the mean-field energy function Ey in Eq. (51)
evaluated at x = x, while the second term is the same
Hessian determinant for the cavity system.

Similarly, for the index of the Hessian, we show that,
after averaging over J,

Z(x) = Z(xo) + Z(x/°). (60)

Here, Z(x,) is defined in Eq. (37) and can be interpreted
simply as the index of the mean-field energy function Eyg
in Eq. (51) evaluated at x = x. Thus, remarkably, the index
of the full system is simply the sum of the index of the
mean-field system and the cavity system, on average.
Now assuming formulas (59) and (60) are self-averaging
(i.e., they also hold to high accuracy for typical random
choices of J;)), we can substitute these formulas into
Eq. (33), thereby achieving a partial decomposition of
the full partition function Z into that of a cavity system of
size N — 1 and a mean-field system of size 1, coupled so far
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only through the cavity susceptibility order parameter ¢
in Eq. (50).

However, to fully complete this decomposition, we must
also account for interactions between the cavity system x/°
and the single spin x, through the Gaussian softening in
Eq. (58) of the ¢ functions in Eq. (33). We show that these
interactions are mediated precisely by two fields:

=
1

_JO . X/O,

—yJo - VE(x/0). (61)

Z

Here, J is the N — 1 dimensional coupling vector between
x, and the cavity system x/°. Note that / and Z are jointly
Gaussian distributed with a 2-by-2 covariance matrix that
depends on cavity order parameters specified by inner
products of x/° and VE(x/?). In particular, / is simply the
Gaussian cavity field that already appears in the naive
cavity method in Eq. (48) with variance g in Eq. (49).

But, most importantly, Z is a new cavity field that appears
only in our generalized cavity method and plays a funda-
mental role in accounting for the extreme sensitivity of the
landscape to the addition of a new spin x,. In particular, as
detailed in Ref. [44], Sec. S-IV.B.4, the field Z couples the
new spin x; to the cavity system through an exponential
modification of the partition function Z in Eq. (33) via a
multiplicative factor exp(xoz). Given the form of Z in
Eq. (61), this means that if the coupling vector J, were
aligned to the cavity gradient VE(x/°) in the vicinity of a
typical critical point, so that Z is negative, then the partition
function Z would be exponentially enhanced (diminished)
if xo were to assume larger negative (positive) values.
Conversely, if J, were antialigned to the cavity gradient
VE(x/%) so that z were positive, then Z would be
exponentially enhanced (diminished) if x, were to assume
larger positive (negative) values. The end result of the field
Z is then to exponentially reweight the distribution of spins
in the mean-field theory of a single spin x, according to the
exponential weight that different values of x, exert on the
cavity partition function and, therefore, on the grand
potential and the complexity. Thus, while the usual cavity
field & exerts a force on the new spin x, through an energy
term —hx, in the mean-field energy function Eyp in
Eq. (51), we see that the new field Z yields an entropic
force on the new spin x, through the proliferation or
destruction of exponentially many critical points in the
cavity system for different values of x.

Now, in order to take the y — oo limit, it is useful not to
work directly with the fields 4 and Z but to perform a
change of variables (detailed in Appendix A and Ref. [44],
Sec. S-IV.B.4) to h and z which remain jointly Gaussian
distributed with density P(h, z) given by

(1[0 2) @

Here, the covariance parameters at finite y are given by

1

_ /o2
q =771
2
4
_ Y e -2
¢ =B -2 (63

and correspond to cavity order parameters involving inner
products of x/° and VE(x/?) in the vicinity of critical
points.

Now, with the definition of the cavity order parameters g,
A, and C in Eq. (63) and ¢ in Eq. (50), as well as the
Gaussian fields A and z with distribution P(h,z) in
Eq. (62), we can achieve a decomposition of the partition
function Z in Eq. (33), and, therefore, of the grand potential
Q in Eq. (57), into a cavity system x/° and a single spin x.
However, there is one remaining issue: The resultant grand
potential of the cavity system has a mismatched variance;
the size of the cavity system is N — 1, while the variance of
its connectivity in Eq. (15) for ¢ =1 is 1/N. Given the
potentially extreme reactivity of the energy landscape, we
cannot ignore this mismatch. Indeed, to obtain self-
consistent equations for the order parameters ¢, A, C,
and 1 of the full system, we must analyze the susceptibility
of the grand potential in response to small changes in the
variance of its connectivity. We obtain a simple formula for
this susceptibility in terms of the cavity order parameters:

dQ(g)

1
— A2) + At 4
4 5 (4C+ ) + At (64)

g=1

Here, Q(g) denotes the grand potential of the full system
with a general variance parameter g in Eq. (15). (See
Ref. [44], Sec. S-IV.B.6, for details.)

Finally, putting everything together and taking the
y — oo limit, we find that the grand potential in Eq. (57)
or, equivalently, the annealed connectivity average of the
grand potential in Eq. (27) (in the special case of f =0
relevant to typical critical points and minima) is given by

(0.4 = =%

dg — Qpf. (65)

g=1

Here, the first term is a simple function of the order
parameters given in Eq. (64), while the second term is the
mean-field grand potential Qyr of a single spin given by

—Quip = log(Zyg[h. Z]>h$zv (66)

where (-), . denotes an average over the Gaussian distri-
bution P(h,z) of cavity fields in Eq. (62) and Zyg[h, z]
denotes the mean-field partition function of a single spin in
the presence of cavity fields & and z, given by
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ZMF [h, Z] = exZ_HLT(x). (67)

x € Crt(Eyg[h])

Here, as above, Crt(Eyg[h]) denotes the set of critical
points of the mean-field energy function Eyg[h](x) in
Eq. (51), and the mean-field index function Z (x) defined in
Eq. (37) is simply the index of Ey evaluated at x. Finally,
our generalized cavity method computes the distribution of
spins in a typical critical point, defined in Eq. (35), to be
(see Ref. [44], Sec. S-IV.C, for details)

P(x) x <Zx* ECrt(EMF[h])eXZﬂJ(X)(S(x B x*)> ' (68)

h.z

Appealingly, Egs. (66)—(68) all correspond to the problem
of counting critical points in a random ensemble of one-
dimensional systems with mean-field energy functions
Ewir[h] subject to a random external field cavity field 4, in
addition to a random exponential factor ¢** that reweights
both the partition function Zyg[h, z] in Eq. (67) and the spin
distribution P(x) in Eq. (68). Notably, when the variance C of
z and, therefore, the covariance A between 4 and z is 0, the
reweighting factor ¢** plays no role, and P(x) in Eq. (68)
reduces to the prediction of the naive cavity method in
Eq. (52) (when u = 0). The origin of this reweighting factor
for nonzero A and C, as summarized above and described in
detail in Ref. [44], Sec. S-IV.B, arises from entropic effects in
the cavity system due to exponential changes in the number
of critical points, depending on the value x of an added spin
and the random alignment z of its coupling vector to the
cavity system gradient near critical points. This entropic
effect of the cavity on the new spin is encapsulated in the
mean-field theory of the new spin simply through the
reweighting factor e**.

Finally, we can directly obtain self-consistent equations
for the order parameters g, A, C, and ¢ through our
generalized cavity method (see Appendix A or Ref. [44],
Sec. S-IV.C, for details). The self-consistent equations for ¢
and ¢ are identical in form to those obtained in the naive
cavity method in Egs. (53) and (54), respectively, with the
sole difference being that the distribution of spins P(x)
obtained in the naive cavity method in Eq. (52) is replaced
with the reweighted distribution of spins P(x) obtained in
the generalized cavity method in Eq. (68). The generalized
cavity method also enables us to find self-consistent
equations for the two new order parameters A and C
(see Appendix A or Ref. [44], Sec. S-IV.C, for details):

0 _
_ 0 e xz+uZ(x _
A=e MF<ah [ZXECﬂ(EMF[h])e ol >x}> L

h.z

Pz
c_eQMF< MF> . (69)
h.z

oh?

Furthermore, we show in Ref. [44], Sec. S-IV.C, that the
cavity-derived self-consistent equations for the order
parameters ¢ in Eq. (53), t in Eq. (54), and A and C in
Eq. (69) are collectively equivalent to the four equations
obtained from extremizing the grand potential Q in Eq. (65)
with respect to g, ¢, A, and C. This extremization yields the
highly compact self-consistent equations

[61 A} L [zaCQMF 0, Q0
A C 0Qur 20,95’

D. Equivalence between the generalized cavity method
and the supersymmetry-broken replica method

We now show the equivalence between the generalized
cavity method and SUSY-breaking replica method, identify-
ing the cavity order parameters A and C in the generalized
cavity method in Eq. (63) with the SUSY-breaking order
parameters A and C in Egs. (34), (36), and (39).

First, we note that the distribution of spins P(x) in the
generalized cavity method in Eq. (68) is entirely equivalent
to the distribution of spins derived via the SUSY-broken
replica method in Eq. (36) for any values of the order
parameters A and C (as well as ¢ and ¢). This can be seen by
applying the Kac-Rice formula to Eq. (68) and directly
performing the integrals over i and then z (see Ref. [44],
Sec. S-IV.F, for details).

Second, we note that the formula for the grand potential
Q derived by the generalized cavity method in Eq. (65) is
entirely equivalent to that obtained by the SUSY-breaking
replica method in Eq. (34). However, the generalized cavity
method now provides a simple interpretation of each of the
terms in Eq. (34). In particular, the first part —%(Cq +
A?) — At of Eq. (34) is equivalent to the first term in
Eq. (65) and is simply the susceptibility of the grand
potential to a change in variance, derived in Eq. (64). Its
origin lies in the mismatch between the size of the cavity
system (N — 1) and its connectivity variance (1/N). The
remaining term in Eq. (34) is equivalent to the remaining
term —Qr in Eq. (65) and is simply the grand potential of
an ensemble of single spins defined in Egs. (66) and (67).
This equivalence can be seen by applying the Kac-Rice
formula to the mean-field partition function in Eq. (67) and
performing the integrals over 4 and z in Eq. (66). This
calculation yields the final term in Eq. (34) (see Ref. [44],
Sec. S-IV.F, for details).

Thus, we conclude that the expressions for Q in the
generalized cavity method in Eq. (65) and the SUSY-
breaking replica method in Eq. (34) are equivalent.
However, the generalized cavity method provides the
important intuition, embodied in Eq. (65), that the grand
potential density Q of the full N-dimensional system is
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simply the mean-field grand potential Qyr of an ensemble
of random one-dimensional systems in Eq. (66) plus a
correction given in Eq. (64) due to the extreme reactivity of
the landscape to changes in connectivity variance.
Finally, given the equivalence of the grand potentials
derived via the generalized cavity and SUSY-breaking
replica method, as well as the demonstration in the previous
subsection that the self-consistent equations for the order
parameters in the generalized cavity method can be
obtained by extremizing the grand potential, we can
conclude that these self-consistent equations are the same
in both methods. To further corroborate this conclusion, we
provide a direct proof in Ref. [44], Sec. S-IV.F, that the self-
consistent equations derived via the generalized cavity
method for A and C in Eq. (69) are equivalent to those
derived via the SUSY-breaking replica method in Eq. (39).
Moreover, the equations for ¢ and ¢ in Eqgs. (53) and (54),
respectively, are manifestly equivalent to those derived via
the SUSY-breaking replica method in Eq. (39) given the
equivalence of the distributions P(x) in Egs. (68) and (36).

E. Supersymmetry-breaking order parameters
in terms of landscape susceptibility

The equivalence of the generalized cavity method and
the SUSY-breaking replica method at the level of the grand
potential Q, self-consistent equations for order parameters,
and distribution of spins P(x), thus, identifies the param-
eters A and C in the generalized cavity method with the
supersymmetry-breaking order parameters of the SUSY-
breaking replica method. We now provide a further geo-
metric interpretation of these order parameters in terms of
the susceptibility of the grand potential Q to changes in the
energy landscape. In particular, consider adding two extra
perturbative terms to the original energy landscape E,(x)
in Eq. (2) to obtain

Eia(x) = Eua(x) = 3 a0l + v/2sg - x. (71
Here, g is a zero mean random Gaussian vector with
identity covariance. Given the structure of the single-site
energy function E;(x) in Eq. (3), the first perturbation in
Eq. (71) corresponds in the CIM to changing the laser gain
from a to a + a,y. The second perturbation corresponds to
applying a random Gaussian field on the landscape with a
variance on each component of 2s,. We can then consider
computing the grand potential density Q(ay, so) (we sup-
press the dependence on # = 0 and p here) in Eq. (27) by
replacing E, in Eq. (2) with E}., in Eq. (71) and further
averaging over the random field g. We show in Appendix A
(see Ref. [44], Sec. S-IV.D, for detailed explanations) that
the supersymmetry-breaking order parameters A and C are
very simply related to the (connectivity and field averaged)
susceptibility of the grand potential Q with respect to the
perturbation strengths a, and s, respectively:

0Q
A_

- 5 )
aao ap=0,59=0

0Q
C_

= oo (72)

ay=0,59=0

This result directly connects the supersymmetry-breaking
order parameters to the extreme reactivity of the landscape
to two specific small perturbations of the energy function.
In particular, A and C are nonzero if and only if the
potential Q and, therefore, the landscape complexity X are
sensitive to these perturbations.

The expressions for A and C in Eq. (72) also have a
counterpart in the mean-field theory of a single spin.
Consider adding the same two perturbations to the
mean-field energy function Eyg[h] in Eq. (51), obtaining
the perturbed energy function

Elgelh a0, 50](6) = Exie[A]() = 30002 + Isogx, (73)
where ¢ is now a zero mean unit variance random Gaussian
scalar field. We can then consider computing the mean-
field grand potential Qy(ag, sg) obtained by replacing
Englh](x) with Eyglh, ag, so](x) in the defining formula
for Qyr in Eq. (66) and also further averaging over g. Then,
we show in Appendix A that the supersymmetry-breaking
order parameters A and C are also very simply related to the
susceptibility of the mean-field grand potential Qyr with
respect to the perturbation strengths a, and s, respectively:

0Q
A— _ ORavF

) C -

ay=0,50=0

(74)

600 6s0

ay=0,59=0

This result provides an additional way to interpret the
SUSY-breaking order parameters A and C within the mean-
field theory and exhibits an appealing correspondence
to Eq. (72).

F. Structural stability of critical points implies
preserved supersymmetry

We further connect the Hessian eigenspectrum to SUSY
breaking by showing in Appendix A (or in Ref. [44],
Sec. S-IV.E) that if the typical Hessian eigenspectrum of
critical points has a gap away from 0, then the SUSY is
preserved, and A = C = 0. We do this by working at large
but finite y and directly calculating A and C through
Eq. (63) and averaging over x/° (or, equivalently, x) with
respect to a distribution with partition function given by Z
in Eq. (31), with § functions softened to Gaussians via
Eq. (58). The key idea is that this distribution concentrates
in the vicinity of critical points, and if the Hessian has a gap
at typical critical points, one can perform a change of
variables from x to VE(x), since there is a one-to-one map
between these quantities in the neighborhood of any critical
point with a gapped Hessian eigenspectrum. Direct calcu-
lation of the integral over gradients in the vicinity of a
critical point then reveals that A = C = 0.
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Thus, if typical critical points are structurally stable (i.e.,
with gapped Hessian eigenspectra), SUSY is preserved.
The contrapositive of this statement then tells us that SUSY
breaking implies a vanishing gap in the Hessian eigens-
pectrum and, therefore, structural instability in typical
critical points. If exponentially many critical points have
such structural instability, then SUSY will be broken. This
analytic calculation provides further justification for why
the generalized cavity method (and not just the naive cavity
method) is necessary when exponentially many critical
points are structurally unstable.

G. Convexity of the mean-field energy landscape
implies preserved supersymmetry

Suppose the mean-field energy function Eyg[h] in
Eq. (51) is strictly convex. This happens only if a+1 <0.
We provide a proof in Appendix A (or in Ref. [44],
Sec. S-IV.E) that, under this assumption of convexity, the
self-consistent equations for the order parameters in Eq. (69)
admit SUSY-preserving solutions with A = C = 0. We find
below in Sec. VI that these SUSY-preserving solutions
correctly predict the distribution of spins and Hessian
eigenspectra when a + t < 0. In contrast, we also see that
when a+1t >0, and, therefore, the mean-field energy
function Eyg[h] is nonconvex, we must use SUSY-breaking
solutions to correctly predict the distribution of spins and
Hessian eigenspectra. Thus, just as SUSY breaking implies a
highly reactive landscape in the full N-dimensional system,
as evidenced by the susceptibility formulas in Eq. (72), at the
level of the mean-field one-dimensional system, SUSY
breaking is closely related to nonconvexity in the mean-
field energy landscape.

We further show in Appendix A that, when the mean-
field energy function is convex, SUSY-preserving solutions
also exhibit vanishing complexity X. Thus, convexity of the
mean-field landscape implies simplicity of the full land-
scape under SUSY. Thus, in summary, the predictions of
our replica and generalized cavity theories are that, for
a+t <0, SUSY is preserved and landscape complexity is
0, and, when a + ¢ > 0, SUSY is broken.

VI. NUMERICAL TESTS OF SUPERSYMMETRY
BREAKING FOR TYPICAL CRITICAL
POINTS AND MINIMA

A. A supersymmetry-breaking phase transition
in the properties of typical critical points

Here, we test our theoretical predictions for the structure
of typical critical points derived from the grand potential in
Eq. (34) or, equivalently, Eq. (65) with ¢ = 0. We directly
sample critical points of all indices in many finite-size SK
models. Across this ensemble of critical points, the dis-
tribution of intensive index r and energy E peak sharply at
their respective most likely values. Focusing on these
typical critical points (see Appendix B 1 for details of

the numerical sampling of critical points), we can measure
the distribution of spins P(x), the distribution diagonal
elements H!(x); in Eq. (6), and the distribution of
Hessian eigenvalues pp (1), shown as blue histograms in
Figs. 3(a)-3(c), respectively. We can further compare these
observables to the theoretical predictions for P(x) in
Eq. (36) or (52), the distribution of H’(x);; derived from
P(x), and the Hessian eigenspectrum py(4) derived from
Egs. (21) and (22). We obtain an excellent match between
theory and experiment for a range of laser gain a [compare
orange curves and blue histograms in Figs. 3(a)-3(c)].

A key feature of these results is that, as the laser gain a is
increased, the distribution of OPO amplitudes in Fig. 3(a)
bifurcates into a bimodal then trimodal distribution with an
increasing density of uncommitted spins with values near
the origin. Correspondingly, the distribution of diagonal
Hessian eigenvalues in Fig. 3(b) exhibits an increasing
density of negative values originating from these uncom-
mitted spins, which then corresponds to an increasing
density of negative Hessian eigenvalues in Fig. 3(c) via
Dyson’s Brownian motion in Eq. (17), starting from the
initial condition in Fig. 3(b).

We further compute the order parameters ¢, t, A, and C
arising from solutions of Eq. (39) or, equivalently, Eq. (69) or
(70) (see Appendix B 2 for numerical details of solving these
self-consistent equations). Figure 3(d) shows the evolution of
A and C with increasing laser gain a, indicating a super-
symmetry-breaking phase transition at a = a, ~ —0.93,
when A and C first acquire nonzero values. Figure 3(e)
shows the evolution of a + ¢, which, in both theory and
experiment, transitions from negative to positive also at
a = a, ~ —0.93. Recall that the mean-field energy function
Eyie[h](x) in Egs. (51) and (3) is convex if and only if
a + t < 0. Thus, together, Figs. 3(d) and 3(e) confirm our
theoretical prediction that SUSY is broken precisely when
the mean-field energy function becomes nonconvex.

Finally, Figs. 3(f)-3(i) demonstrate an excellent match
between theory (orange curves) and experiments (blue dots)
for the order parameter ¢, the complexity X [derived from
Eq. (28)], the intensive index r [derived from Eq. (42)], and
the intensive energy E [derived from Eq. (41)], respectively.
In particular, the complexity in Fig. 3(g) becomes nonzero at
the same transition a = a, ~ —0.93 when SUSY is broken
and the mean-field energy function becomes nonconvex.

Quite remarkably, the intensive index r and complexity X
are exactly zero for a < a, [Figs. 3(g) and 3(h)]. This
means that most critical points have a vanishing intensive
index, and the number of critical points is subexponential.
Therefore, we can expect that the energy landscape is
relatively flat and not so rugged at such low laser gain a. In
contrast, at very large a, the complexity approaches log 3
and the intensive index r approaches 1/3, as expected from
the discussion in Sec. II B 2, which suggests the existence
of 3V critical points at large a located near the points
{—=V/a,0,/a}", in which a typical critical point has 1/3 of
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FIG. 3. A supersymmetry-breaking phase transition in the properties of typical critical points. All panels indicate theoretical results

(orange curves) and experimental results (blue histograms and markers). Details of experimental results are in Appendix B 1, and details
of theoretical solutions are in Appendix B 2. (a) The distribution of spins or OPO amplitudes as laser gain a increases. (b) The
distribution of Hessian diagonal elements H!(x);;. (c) The Hessian eigenspectrum pj(4). The Hessian eigenspectra in (c) can be
understood intuitively as the outcome of Dyson’s Brownian motion starting from the initial condition of diagonal elements in (b).
(d)—(f) The order parameters A and C, a +t, and g, respectively. A supersymmetry-breaking phase transition is observed at the

theoretically predicted point a = a, ~ —0.93 (vertical dotted line).

energy FE, respectively, of typical critical points.

its spins uncommitted near 0, contributing to a typical index
of r=1/3.

In summary, our combined theory and experiment
uncovers a phase transition between a supersymmetric
phase (when a < a, ~—0.93), where the intensive index
and complexity of typical critical points is 0, the number of
critical points is subexponential in N, and the mean-field
energy function is convex, and a supersymmetry-broken
phase (when a > a, ~ —0.93), where the intensive index
and complexity of critical points is finite, there are
exponentially many structurally unstable critical points,
and the mean-field energy function is nonconvex.

B. A supersymmetry-breaking phase transition in the
properties of typical minima

We next test our theoretical predictions for the structure
of typical minima, derived from the grand potential in
Eq. (34) or, equivalently, Eq. (65) with g - —oo. The
theoretical calculations are entirely parallel to those of the
previous subsection, with the sole replacement of y =0
with g — —o0, and the experimental results are also parallel
with the sampling restricted to minima as opposed to saddle
points of any index. We further compute the binned energy
of all minima found and focus on the typical minima with
the most likely binned value of energy (see Appendix B 1
for details). As we see below, the intensive energy of typical
minima can be strictly higher than the energy of the global
minimum, especially at large laser gain.

Figures 4(a)-4(c) demonstrate an excellent match
between theory and experiment for the distribution of spins

(g)—(1) The complexity Z, the intensive index r, and the intensive

P(x), the distribution diagonal elements H’(x);; in Eq. (6),
and the distribution of Hessian eigenvalues pp(4), respec-
tively. Interestingly, the distribution of spins P(x) at large
laser gain exhibits exactly O density for a range of x values
around x = 0 [see, e.g., the cases of a = 0, 1, 2 in Fig. 4(a)].
This vanishing density can be understood through the cavity
method as a simple consequence of the structure of the mean-
field energy function Eyg[h](x) in Egs. (51) and (3) and its
associated mean-field index function Z(x) defined in
Eq. (37), which is simply the index of Ey evaluated at x.
7 (x) plays arole in determining P(x) through Eq. (68), and,
when y — —o0, this equation indicates that P(x) must vanish
whenever Z(x) > 0, or, equivalently, P(x) must vanish over
any range of x where Eyr[h](x) has a negative Hessian. For
the particular double-well form of Eyg[h](x) in Egs. (51)
and (3) with a + ¢ > 0, the theory implies P(x) must vanish
exactly when |x| < +/(a + t)/3. Remarkably, this striking
prediction of vanishing density in P(x) for typical minima at
large a when Ey[h](x) is nonconvex is verified in experi-
ments [vanishing of blue histograms in Fig. 4(a)].
Furthermore, Figs. 4(d) and 4(e) show a match between
theory and experiment for the order parameters a + ¢ and g,
respectively, while Fig. 4(f) shows the evolution of A and C
with a. Figure 4(f) indicates a supersymmetry-breaking
phase transition [50] at a = a, ~ —0.93, when A and C first
become nonzero as laser gain a increases. This is exactly
the same transition value at which supersymmetry breaking
occurs for typical critical points. Indeed, this phase tran-
sition shares several similar properties with that of typical
critical points. At this transition, a + ¢ first becomes
positive as a increases [Fig. 4(d)], which means the

031054-21



YAMAMURA, MABUCHI, and GANGULI

PHYS. REV. X 14, 031054 (2024)

d Pzt 0.2 : T "
N 1
05 @ P2 TN w
yo R
0.0 s 0.0 IR s = .
* \ = N
-0.5 4 -0.1 — A -10
y'e . - =
V -0.2 _15
, 2 0 2 4 6
e o a
(e) '3 . 06 (¢) o T
1.0 i Z ) 4
& 304 pv e
a.
73 o/
05 % £ 02 Y
& @) o
9 log2

0.0 > 0.0 peeet

510120 5 10 0 5 10 =20 -15 -1.0 -0.5 00 05 2 0 2 4 s
a

z Hessian diagonal Hessian eigenvalue a

FIG. 4. A supersymmetry-breaking phase transition in the properties of typical minima. All panels indicate theoretical results (orange
curves) and experimental results (blue histograms and markers). Details of experimental results are in Appendix B 1, and details of
theoretical solutions are in Appendix B 2. (a) The distribution of spins or OPO amplitudes as laser gain a increases. (b) The distribution
of Hessian diagonal elements H'(x),;. (c) The Hessian eigenspectrum py(1). The Hessian eigenspectra in (c) can be understood
intuitively as the outcome of Dyson’s Brownian motion starting from the initial condition of diagonal elements in (b). (d)—(f) The order
parameters a + f, ¢, and A and C, respectively. A supersymmetry-breaking phase transition is observed at the theoretically predicted
point a = a, ~ —0.93 (vertical dotted line). (g),(h) The complexity X and the intensive energy E, respectively, of typical minima.

mean-field energy function Eyg[h](x) first becomes non-
convex. This nonconvexity of Eyg[h](x) then generates an
increasingly large region of vanishing density in P(x) for
typical minima around x = 0, as a increases beyond «,
[Fig. 4(a)], as discussed above.

Finally, the complexity X first becomes nonzero just
above a = a, [Fig. 4(g)]. In the supersymmetric phase with
a < a,and A = C = 0, the complexity X of typical minima
is 0, indicating the number of minima in the energy
landscape is subexponential in N. On the other hand, there
are exponentially many minima in the supersymmetry-
broken phase. As a becomes large, we expect 2" minima,
and indeed the complexity converges to log 2 in the large-a
limit. Finally, Fig. 4(h) depicts the evolution of the intensive
energy of typical minima with increasing a, again indicating
an excellent match between theory and experiment.

VII. FULL REPLICA SYMMETRY BREAKING
AND RIGIDITY PHASE TRANSITIONS
IN GLOBAL MINIMA

We next move on from typical critical points and typical
minima to the properties of global energy minima. We
define global minima as those with the lowest intensive
energy. For a single sample, different global minima with
the same intensive energy in the large-N limit could have
different extensive energies with subleading o(N)
differences. Note that this definition allows the landscape
to have multiple global minima. We find that, at large laser
gain a, global minima have lower intensive energies than
local minima, and, to describe such low-energy global
minima, we must break replica symmetry, just like in the
SK model. In contrast for local minima, as described above,
replica symmetric solutions, albeit with broken SUSY,
sufficed to match numerical experiments.

A. A full replica symmetry-breaking
theory of global minima

We performed a full replica symmetry-breaking calcu-
lation (see Ref. [44], Secs. S-II.G and S-III, for details) for
global minima, which yields the following formula for the
grand potential in the low-temperature f§ — oo limit:

1 p :
Q(c0, ~00) = lim 7 g4t +7 <q5 —A dyqz(y))

- 1(0,0), (75)
where the function f(y,h) obeys the Parisi differential
equation

0 (v, h) = 1dq 62f+ﬂ of\?2 (76)
oy T "5y (o2 TP \on) |

with the boundary condition

f(1,h) = p~'log [ > e—ﬂEMF<x’h>] . (77)
x € Crig[Eyir(-.h)]
This expression has order parameters 7, g4, and ¢(y), where
q(y) is a nondecreasing non-negative function defined in
y €0, 1]. The values of these order parameters are chosen
to extremize the grand potential in Eq. (75). The order
parameter ¢ reflects, as above in Eq. (50), the trace of the
susceptibility matrix of the system to a small external field,
but this time while the system is in a global minimum. g,
reflects the self-overlap (i.e., the average of (1/N) >, x?).
The function ¢(y) is called the overlap function, whose
functional inverse represents the cumulative probability
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density of the overlap (1/N) >, x!x? of two different  Eq. (75) by approximating the overlap function ¢(y) to be a

randomly sampled global minima x' and x?. sum of 37 step functions. This corresponds to a 37-step

Furthermore, the distribution P(x) can be obtained from  replica symmetry-breaking solution, approximating full

a solution to the following differential equation for a  replica symmetry breaking. We exploit numerical tech-

propagator P(y, h) [85]: niques addressed in Ref. [83] to find the order parameters
satisfying the extremization conditions.

oP  ldgq *P ) daf oP 73 In Fig. 5, we compare our theoretical predictions with

dy  2dy \on* Py ohoh)’ (78) numerical experiments on finite-size systems. For the

numerical experiments, we find the lowest energy mini-

with a boundary condition at y = 0 given by mum among many sampled minima for each sample
2 of J (see Appendix B 1 for details of the sampling).

_ —1 _ Figures 5(a)-5(c) demonstrate an excellent match between

P(0.h) = [22q(O)]" exp < 2q(0)> (79) theory and experiment for the distribution of spins P(x),

the distribution of diagonal elements H'(x);; in Eq. (6),
The distribution of spins P(x) in global minima can thenbe  and the distribution of Hessian eigenvalues py (4), respec-
written in terms of the propagator evaluated at y = 1 and  tively. Figures 5(d)-5(g) show a match between theory
the value of i = E;(x) — tx which solves the extremization  and experiment for the order parameters a + 1, g, and the
condition for the mean-field energy function Eyip[h] (see  intensive energy, respectively. Finally, Fig. 5(h) shows the
Ref. [44], Sec. S-II.G, details): overlap function g(y).

Figure 5 implies the existence of two phase transitions
as a increases. First, a phase transition occurs at a =
Amin(J) = —2. This is the point where the origin x = 0 first
bifurcates and the landscape starts to be nonconvex. Indeed,
Fig. 5(e) shows that the self-overlap g, starts to have a finite
value at a = —2, which implies that the global minimum is
no longer at the origin. Moreover, the overlap function ¢(y)
function undergoes a transition from a vanishing flat
function for a < —2, indicating replica symmetry, to a

To test our theory for global minima, we numerically  continuously increasing function for a > —2, indicating
solve the extremization conditions for the grand potential in ~ full replica symmetry breaking (FRSB) [Fig. 5(h)].

P(x) = |0*E;(x) — #|P[1, 0E,(x) — tx]. (80)

Finally, with P(x) in hand, we can calculate the distribution
of Hessian eigenvalues py(4) as above, using Egs. (21)
and (22).

B. Numerical tests of full replica symmetry
breaking for global minima
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FIG. 5. Replica symmetry breaking and rigidity phase transitions in the properties of global minima. All panels indicate theoretical
results (orange curves) and experimental results (blue histograms and markers). Details of experimental results are in Appendix B 1, and
details of theoretical solutions are in Appendix B 2. (a) The distribution of spins or OPO amplitudes as laser gain a increases. (b) The
distribution of Hessian diagonal elements H'(x);;. (c) The Hessian eigenspectrum py(1). The Hessian eigenspectra in (c) can be
understood intuitively as the outcome of Dyson’s Brownian motion starting from the initial condition of diagonal elements in (b). (d)—
(f) The order parameters a + ¢, g4, and A, (H), respectively. At a = a, = =2 there is a replica symmetry-breaking phase transition
where g, first acquires a nonzero value as a increases [see (e)]. At a = a, ~ —0.45, there is a rigidity phase transition in the global
minimum when a + ¢ first becomes positive (d) and the minimum Hessian eigenvalue transitions from O to positive (f). (g) The intensive
energy E of global minima. (h) The overlap function ¢(y) transitions from flat for a < —2 to continuously increasing for a > -2,
indicating a replica symmetric to full replica symmetry-breaking transition at a = a, = —2. The two phase transitions in replica
symmetry breaking at @ = a, = —2 and rigidity at a = a, ~ —0.45 are shown as dotted vertical lines in (d)—(g).
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Within this FRSB regime, we find another phase
transition similar to the case of the typical minima, which
is again characterized by the sign of the a + ¢, which now
goes from negative to positive at the critical point a =
a,~—0.45 [Fig. 5(d)]. The global minimum is super-
symmetric (see Ref. [44], Sec. S-II.G, for details), so this
transition is not characterized by spontaneous SUSY
breaking as in the case of typical minima. Instead, it is
characterized by the minimum eigenvalue of the Hessian.
Figures 5(c) and 5(f) clearly show that this minimum
eigenvalue is close to vanishing for a, < a < a, This
indicates that even the global minima, like all typical
minima, are marginally stable with soft or flat directions
corresponding to vanishingly small Hessian eigenvalues.
On the other hand, for a > g the global minimum
undergoes a rigidity phase transition in which the soft,
flat directions disappear, because the Hessian eigenspec-
trum is gapped away from O [Figs. 5(c) and 5(f)]. Thus, the
global minimum is rigid or stable to small perturbations. In
contrast, typical local minima remain soft and flat for all
values of a considered, since the Hessian eigenspectrum
always reaches to 0 [Fig. 4(c)].

Note that, while the global minima are marginally stable
when -2 < a < ay, they can still be described without
SUSY-breaking order parameters A and C, in contrast to the
case of the typical local minima. This phenomenon can
happen when the complexity of global minima is zero. In
this case, even if states are highly reactive to perturbations
of the energy landscape, the change in the number of the
global minima, in response to small changes in the energy
landscape, is still subexponential. Thus, the susceptibility
of the grand potential and complexity to such perturbations
is 0, which implies via Eq. (72) that the SUSY-breaking
order parameters obey A = C = 0.

VIII. THE PHASE DIAGRAM OF GEOMETRIC
LANDSCAPE ANNEALING

We can now put together a global view of the geometry of
the evolving energy landscape as the laser gain a is
annealed. Overall, the energy landscape experiences three
important phase transitions: (i) the replica symmetry-
breaking transition for global minima at a = a, = -2;
(i1) the SUSY-breaking transition for typical minima and
typical critical points at a = a, ~ —0.93; and (iii) the rigidity
phase transition for global minima at a = a, ~ —0.45. The
entire phase diagram is shown in Fig. 6.

When a < a, = -2, the landscape is convex, and the
single global minimum occurs at the origin x = 0. Then, at
the first phase transition at a = a,, the origin bifurcates,
and just above a = a, many minima start to appear.
Figure 6 shows that the energy of global minima, typical
minima, and typical critical points are all essentially
equivalent for a, < a < a,. This means that the majority
of critical points are minima, along with associated saddles

g

—— Typical critical points Typical minima ~== Global minima

Energy FE

-05 00 0.5
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FIG. 6. The phase diagram of the energy landscape. The curves
are theoretically predicted energy of the typical critical points (top
blue line), typical minima (middle orange line), and global
minima (green dashed line). The markers are the numerically
obtained energies for typical critical points (triangles), typical
minima (circles), and global minima (crosses), respectively. We
observe three phase transitions at @ = a,, a,, and a,. The insets
are sketches of the energy landscape in the four different phases.

of finite or at most subleading o(N) index and energy
barrier heights. Moreover, typical minima are also almost
global minima. Finally, due to zero complexity of typical
critical points and minima in the range a < a, [Figs. 3(g)
and 4(g), respectively], the total number of critical points is
subexponential within this phase, and, hence, so is the
number of minima. Thus, SUSY is preserved due to zero
complexity in the range a, < a < a,, despite the fact that
typical critical points, minima, and global minima have
a Hessian eigenspectrum that extends to O in this range
[Figs. 3(c), 4(c), and 5(c)]. Thus, overall, in the SUSY phase
a, < a < a,;, the nonconvex energy landscape is relatively
flat, with all subexponentially many critical points having
essentially the same intensive energies and all having soft or
flat directions with near zero Hessian eigenvalues.

At a = a,, both typical critical points and minima expe-
rience SUSY breaking, due to the proliferation of exponen-
tially many critical points and minima with nonzero
complexity [Figs. 3(g) and 4(g), respectively] in conjunction
with their marginal stability [Figs. 3(c) and 4(c)]. Moreover,
an intensive energy gap starts to appear between typical
minima and global minima. Hence, we expect that finding the
lowest CIM energy state starts to get difficultata > a, due to
the exponential number of higher-energy typical minima.

Finally, while global minima are marginally stable until
a = a,, with many soft or flat modes, they become fully
rigid for a > a, due to a Hessian eigenspectrum gapped
away from 0 [Fig. 5(c)].

In addition to a global view of how typical critical points,
minima, and global minima evolve as a function of laser
gain a, as depicted in Fig. 6, we can also obtain a global
view of the energies and locations of critical points of all
indices at a fixed laser gain a. Figure 7 depicts this global
view for both theory and experiment at large a (in this case,
a = 4), which is the important case when the CIM energy
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FIG.7. A schematic view of the energy landscape at large laser
gain. (a) A two-dimensional heat map of the experimentally
derived distribution of intensive energy and squared radius g of
critical points with a =4, N = 12, derived from the sampled
points depicted in Fig. 3. The color gradient denotes the index of
critical points, while the opacity illustrates the complexity. The
black points are the experimentally derived most likely location
of critical points for each index I = 0, ..., 12. The orange curve is
a theoretically predicted relationship between the energy and
squared radius g of critical points obtained by solving Eq. (39) for
varying u in Eq. (34) and plotting g(u) versus E(u) [given in
Eq. (41)]. (b) A schematic depiction of the energy landscape at
large laser gain, consisting of concentric shells of increasing
radius and decreasing index and energy.

function approximates well the Ising energy function of
interest [see Eq. (13)].

In particular, Fig. 7(a) shows a heat map of the numeri-
cally estimated complexity of critical points in a finite-size
(N = 12) system, as a joint function of their energy and
squared radius g = (1/N) > ;x? and colored by their
index. This complexity heat map shows a clear correlation
between index, radius, and energy, with lower index critical
points occurring at lower energy and larger radius.
Moreover, for each index we plot the most likely location
in the energy-squared radius plane (i.e., the location where
the complexity of critical points of that index is maximized)
as black dots in Fig. 7(a).

We then compare the locations of these black dots with
theoretical predictions derived from our SUSY-breaking
theory of critical points. In particular, we continuously vary
the chemical potential y in the expression for the grand
potential in Eq. (34) [or, equivalently, Eq. (65)] and solve
the self-consistent equations for the order parameters in
Eq. (39) [or, equivalently, Egs. (69) and (70)] as a function
of u, as well as computed the intensive energy as a function
of u via Eq. (41). Altogether, this yields the average
squared radius g(u) and intensive energy E(u) over a
weighted averaged of critical points controlled by p, as in
the partition function in Eq. (27) with # = 0. As y — —o0,
this weighted averaged is dominated by index O critical
points, or minima. As p increases, the weighted average is
dominated by higher index critical points. Thus, a theo-
retical prediction is that the curve E(u) versus g(u) as u
varies from —oo to 4+-oo0 should provide information about

the most likely location of saddle points of increasing index
in the E-q plane, thereby going through all the black points
in Fig. 7(a). Remarkably, this prediction is confirmed in
Fig. 7(a): The orange curve is a plot of the theoretically
derived curve E(u) versus g(u), and it does indeed go
through all the black points, which indicate the experi-
mentally derived most likely locations in the E-g plane for
critical points of each index.

A schematic view of the energy landscape which is
justified by Fig. 7(a) is shown in Fig. 7(b). Schematically, at
large a, the CIM energy landscape exhibits a highly rough
structure with concentric shells of critical points of increas-
ingly lower index occurring at increasing lower energy and
increasingly larger radius. In particular, the global mini-
mum occurs at the largest radius and lowest energy. But,
just above this in energy and at a smaller radius, there is a
wall of exponentially many typical local minima that stand
as a potential barrier. Thus, despite the fact that at large a
the CIM energy landscape has the nice property that it
mimics the Ising energy landscape of interest [see Eq. (13)],
direct optimization at large a starting from the origin poses
a difficult problem, as energy minimization must traverse
successively lower index saddles and minima at lower
energy and larger radius that may prevent reaching the
deepest global minima at the largest radius.

IX. THE RELATIONSHIP BETWEEN
ANNEALING PERFORMANCE AND
ENERGY LANDSCAPE GEOMETRY

We next discuss the relationship between the phase
transitions in the energy landscape geometry discussed
above and the performance of geometric landscape
annealing. This analysis also reveals an optimal annealing
schedule to arrive at a low value of the Ising energy. Indeed,
it is this annealing schedule that we use to attain good
performance in Fig. 1 in Sec. III

We simulate the annealing processes with various
annealing schedules with a system size of N = 10*. The
schedules a(r) are chosen as

a(f) = min (; +a(0), amx>; (81)

i.e., a(t) linearly increases from a(0) with slope of ~! until
it saturates at a = a,,,, (see top panel in Fig. 8). We set a(0)
to be the smallest eigenvalue of J, i.e., approximately
a, = —2, because the state x is always trivially at the origin
for a smaller than the eigenvalue. The initial state is chosen
as a random Gaussian vector with independent components
each drawn from a Gaussian distribution with zero mean
and standard deviation 0.1. We verify that the annealing
performance is not influenced by the choice of the standard
deviation unless it is much smaller than O(1). In that case,
the initial state is very close to the origin and takes a long
time to escape the saddle point at the origin. When it does,
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FIG. 8. An example of annealing trajectories (a) The annealing
schedule given by Eq. (81) with a,,,, = 1.5 and 7 = 102. (b) the
trajectory of soft-spin network’s energy E. (c) The trajectory of
Ising energy Ejg,, of the corresponding spin configuration.
The green dashed line represents the Ising energy obtained by
the spectral method Eyg,, = —(2/7), and the red dotted line the
ground-state energy in the large-N limit (approximately —0.76).
(d) The local variables’ distributions P(x). The plots represent the
snapshots of the distribution at time ¢t = 0, 50, 100, 150, 200,
400, which are shown as vertical dotted lines above.

it aligns with the principal eigenvector of J, which is the
most negative curvature direction around the saddle at the
origin. Therefore, initializing very close to the origin is
almost equivalent to the case of initializing the state along
the principal eigenvector of J, a possibility which we
discuss further below.

In Fig. 8, we show the trajectory of an annealing process
with a,,,« = 1.5 and 7 = 100 for the CIM energy (second
panel), Ising energy (third panel), and several snapshots of
the distribution of OPO amplitudes P(x) (fourth panel).
Since the initial state is a random vector around the origin,
both the CIM energy E and the Ising energy Eyy,, are close
to zero [86]. As the laser gain a(z) increases, both energies
decrease monotonically, and the distribution P(x) gradually
transforms from an unimodal shape around the origin to a
bimodal shape. During this transformation, small OPO
amplitudes x; around the origin are driven to either large
positive or negative values, causing sign flips of x; that
lower Eyg,,. However, once the distribution P(x) gets
completely separated into positive and negative parts at
t ~ 200, fewer amplitudes x; can flip their signs, and the
Ising energy freezes.

To understand the dependency of the final CIM and Ising
energies on the annealing schedule, we simulate the
annealing processes with various a,,,, and 7. Figure 9(a)
shows the CIM and Ising energy trajectories for three

different a,,, and ten different z. Each row and color
corresponds to a certain value of a,,, and 7, respectively.
Figures 9(b) and 9(c) show the final achieved CIM and
Ising energies, respectively at t = 6 x 10%, averaged over
five different realizations of the random initial state and the
connectivity J. In particular, Fig. 9(b) shows for each a,,,
the difference AE between the final CIM energy achieved
by annealing to a,,, and the corresponding global mini-
mum energy at a,,,c, while Fig. 9(c) shows the correspond-
ing Ising energy Ejg,, of the Ising sign pattern of the CIM
state found by annealing. The colored solid lines represent
the final achieved energy for different a,,, on the x axis
and different colors for different z. The dotted black curve
with triangle markers above these colored solid lines
corresponds to 7 =0, i.e., a rapid quench or gradient
descent from a random initial state at fixed ap,,. On the
other hand, the solid black curve with inverted triangle
markers below all the colored solid lines corresponds to
T = o0, or the slowest possible annealing process obtained
by integrating the following adiabatic evolution:

dx .
= H 'x, (82)
with Hessian H given in Eq. (5). Note that this equation can
be obtained by differentiating the stationary condition
[dE\(x)/dx;] =0 with respect to a. For comparison,
Figs. 9(b) and 9(c) also show the results of gradient descent
starting from the principal eigenvector (the black dashed
line with rectangle markers) [87]. This corresponds to the
limit of an extremely small standard deviation of the initial
random Gaussian state. In Fig. 9(b), we also show for
reference the CIM energy of typical minima (the highest
black dotted line with “x” markers).

In the following subsections, we discuss the major
features observed in Fig. 9 when the annealing process
terminates in different phases of the energy landscape
geometry revealed in previous sections. In particular, we
discuss in succession (i) the small-gain supersymmetric
phase where a, < a,,,x < a, [the left column in Fig. 9(a)];
(ii) the intermediate-gain supersymmetry-breaking phase
where a, < an,, < a, [the middle column in Fig. 9(a)]; and
(iii) large-gain rigid global minimum phase of @y, > a,
[the right column in Fig. 9(a)]. Note that when the gain is
smaller than a, = -2, the energy landscape is convex and
the CIM state is confined to the origin.

A. The small-gain supersymmetric phasea, < a,,,, < a,

As is shown in Fig. 9(b), all the final achieved CIM
energies are very close to the AE = 0 horizontal line,
regardless of annealing time constant 7. This is because the
majority of minima in the supersymmetric phase are almost
global minima (Fig. 6). The final achieved Ising energy is
also almost independent of the annealing schedule, as is
shown in Fig. 9(c). However, unlike the final achieved

031054-26



GEOMETRIC LANDSCAPE ANNEALING AS AN OPTIMIZATION ... PHYS. REV. X 14, 031054 (2024)

(a) Apax = — 1.5 < ay a; < amax = — 0.6 <a, ay < Qmax = 1.5 Lo
0.00 { }
m )‘
=0.02 {2 LA
0 200 400 600 0 200 400 600 10! &
-0.65
&0
2
[
o —0.70
-0.75 .
A N NN A A R i
0 200 400 600 0 200 400 600 0 200 400 600
t t t
102
10! -
10°

Qmax

-~ Typical local min (Theory) —— Quenched (GD) 7=0 —— 0<7<occ —*— Adiabatic (r=o) --#-- Quenched (init with PE)

FIG. 9. The performance of geometric landscape annealing and its dependence on annealing schedules. We simulate geometric
landscape annealing with a two-parameter family of annealing schedules in Eq. (81) parametrized by the final laser gain a,,,, and time
constant 7. (a) Trajectories of the CIM energy E (top) and corresponding Ising energy Ejgp, (bottom) in the three different phases for
Amax- The color bar indicates the annealing time constant z. In the three top plots of CIM energy, the green dashed and red dotted lines
represent the energy of typical local minima and the global minima, respectively. In the bottom plots of Ising energy, the green dashed
and red dotted horizontal lines represent Eq, = —2/x and Egg ~ —0.763, respectively. (b) The solid colored lines (with color indicating
annealing time constant according to the color bar) indicate the final achieved CIM energy E for each a,,,, at t = 6 x 10? minus the
theoretically calculated CIM ground-state energy for the same value of a,,. The dotted horizontal line of AE = 0 represents the
baseline ground-state energy. The very top dotted black line indicates the theoretically calculated CIM energy of typical local minima
(again, minus the energy of the corresponding global minima). (c) The final achieved Ising energy at t = 6 x 10? as a function of
annealing time constant 7 indicated by color and final gain a,,, on the horizontal axis. The horizontal dotted line is the ground-state
Ising energy Egx =~ —0.763. In (b) and (c), the solid colored lines are the annealing processes with mean and standard deviation
computed across five different initializations and connectivities J. The black line above these colored lines is the case of 7 = 0, which
corresponds to rapid quench from a = a, to a = a,,,,. The black line below all the colored lines is the trajectory of the energy obtained
by integrating the adiabatic differential equation (82), which essentially corresponds to 7 = oo. The black dashed line in the midst of the
colored lines represents the energy trajectory of gradient descent dynamics initialized along the principal eigenvector of J when a is
fixed at a,y-

CIM energy in Fig. 9(b), the final achieved Ising energy in
Fig. 9(c) decreases rapidly with increasing a,,, in the range
a, < adma < a,;. This decrease occurs because the distribu-
tion of OPO amplitudes P(x) has a finite density at the origin,
and so ramping up the laser gain allows some of these small
amplitude spins to flip their signs, thereby lowering the
achieved Ising energy.

B. The intermediate-gain SUSY-breaking
phase a;, < ap, < a,

Once a exceeds a,, the complexity of minima becomes
positive [Fig. 4(g)], and the energy of typical minima
becomes strictly larger than that of global minima (Fig. 6).
This means there are exponentially many local minima
above the global minima in the energy landscape. Thus, if
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we rapidly increase the laser gain a and relax the system from
a high-energy state near the origin, the resultant trajectory is
likely to be trapped by a high-energy local minimum. This
effect makes the final achieved CIM energy of rapid
annealing higher than that of slow annealing [Fig. 9(a),
middle top, and Fig. 9(b)]. Moreover, since the CIM energy is
correlated with the Ising energy, rapid annealing also yields
higher Ising energy than slow annealing [Fig. 9(a), middle
bottom, and Fig. 9(c)]. However, since the complexity of
minima s still relatively low in the range a, < am,y < a,, the
increment of final achieved CIM and Ising energies with
annealing speed is relatively small.

On the other hand, another effect decreases the Ising
energy with increasing a,,,, at all annealing speeds in the
range a, < dp < a, [Fig. 9(c)]. As seen in the top middle
panel in Figs. 9(a) and 9(b), the final CIM energy achieved
by annealing is still lower than that of typical minima and is
rather closer to that of global minima. Therefore, the states
obtained by annealing are likely to have features of the
global minima rather than the typical minima. Indeed, the
slowest annealing process has energy very close to that of
global minima. This observation is bolstered by the
numerical results shown in Fig. 10, which indicates that
the trajectories of the slowest possible annealing processes
have the features of the global minima’s rigidity phase

a:ag_.g

-2.0 -1.5 -1.0 -0.5 0.0 0.5 1.0
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FIG. 10. Slow annealing trajectories exhibit the same phase
transition as that of CIM global minima. We simulate the
geometric landscape annealing process by integrating Eq. (4)
with five different samples of J with system size N = 10*. The
annealing schedule is given by Eq. (81) with 7 = 10> and
an.x = 4. Each color represents a trajectory of a single instance.
Top: the minimum eigenvalue of the Hessian along the trajectory.
We observe a similar rigidity phase transition as that of global
minima in Fig. 5(f) wherein the minimal eigenvalue of the
Hessian transitions from O to nonzero values at @ = a,. Bottom:
The fraction of the number of OPOs with small amplitudes |x;| <
0.01 starts to vanish at a = a,, similar to how the distribution
P(x = 0) for global minima vanishes at a = a,. These two
observations provide evidence that the slow annealing process
can find the near-global CIM energy minima at least
around a = a,.

transition; i.e., the trajectory experiences the transition from
marginal stability to full stability and the localization of
P(x) exactly at a = a,. Since P(x) has a finite density
around the origin below a, the signs of some OPO
amplitudes can still be flipped by ramping up the gain
up to a = a,,. This effect allows Eigy,, to decrease further in
the range a, < an, < ag, especially for slow annealing, as
seen in Fig. 9(c).

C. The large-gain rigid global minima phase a,,,, > a,

First, we focus on the black bottom lines in Figs. 9(b)
and 9(c) representing the trajectory of the slowest possible
annealing process. As we discuss above, this trajectory
experiences a rigidity phase transition similar to that of
global minima, and the Hessian of the energy landscape
along this trajectory becomes gapped away from O for
a > ag, just as it does for global minima [Fig. 5(f)]. This
implies that the adiabatic evolution (82) is nonsingular, and
the time derivative of x; cannot be large. Because the
distribution P(x) is localized and separated into two sets of
x; with positive and negative signs, only a few numbers of
x; can flip their signs by this bounded state evolution.
Hence, it is unlikely that many x; flip their signs, and,
therefore, it is also unlikely that the Ising energy is lowered
for a > a,. Indeed, the final achieved Ising energy for the
slowest annealing process [lower solid black curve in
Fig. 9(c)] is flat for ay,, > a,. Thus, interestingly, as we
ramp up the laser gain beyond a,, even though the CIM
energy landscape becomes more like the Ising landscape,
the final achieved Ising energy via annealing cannot be
lowered. In other words, the geometric landscape annealing
process at slow annealing speeds is effectively terminated
by the rigidity phase transition in global minima at a = a,,
well before the CIM energy landscape looks like the Ising
energy landscape at large a as in Eq. (13).

When the annealing speed is faster, the trajectory is more
likely to be trapped by a higher-energy local minimum,
leading to both higher final CIM and Ising energies. This
increase of final energies with increased annealing speeds
becomes stronger as the final gain a,,,, increases because
of both the complexity growth of typical minima with a
[Fig. 4(g)] and the growing energy gap between typical and
global minima (Fig. 6). Likely because of both of these
landscape properties, the final achieved CIM and Ising
energies are significantly larger under faster annealing
compared to slower process at very large dap., > a,
[Fig. 9(a), right, and Figs. 9(b) and 9(c)].

D. The optimal annealing schedule terminates at the
rigidity phase transition for global minima

In summary, out of the general space of annealing
schedules in Eq. (81), the optimal schedule with lowest
achievable Ising energy is given by a.,,x = a, and large 7.
If the annealing speed is slow enough, a further increase of
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amax does not further lower the Ising energy, because the
annealing trajectory tracks the evolution of a CIM global
minimum found at @ = a,, which remains rigid for a > a,.
Also, more rapid annealing (smaller 7) yields much less
optimal, much higher Ising energies at larger ap, > a,.
However, at a = a,, the dependence of the final achieved
Ising energy on the speed of the annealing process is
remarkably weak, ranging from approximately —0.75 to
approximately —0.73 as 7 ranges from 1 to 100. Thus,
geometric landscape annealing in this case is surprisingly
robust to annealing speed, provided annealing is optimally
terminated at the rigidity phase transition for global minima.

Note that we also discover that the suboptimal higher
Ising energies found by fast annealing can be mitigated by
initializing the state along the principal eigenvector of the
connectivity J. The performance of gradient descent at
fixed a,,,, with this initialization is shown as a dashed back
line with square markers in Figs. 9(b) and 9(c). The final
Ising energy of this process also achieves the lowest value
around a = a,, and the Ising energy difference from the
slowest annealing process is < 0.01. Since the slow
annealing process can reach a global minimum of the
CIM energy at a = a,, the best achievable Ising energy can
be simply characterized as the Ising energy of the CIM
global minimum specifically when a = a,. Note, however,
that as a,, increases beyond a,, even at extremely slow
annealing, the CIM energy found by annealing is no longer
equivalent to the CIM energy of the global minimum, as
reflected by the detachment of the lower black solid line
from the lowest horizontal dotted line of AE =0 in
Fig. 9(b) for a > a, This means geometric landscape
annealing cannot find a CIM global energy minimum for
a> a,. Since the CIM energy global minimum at very
large a is also an Ising energy global minimum, according
to Eq. (13), this means the annealing process cannot find
the exact Ising ground state either, as reflected by the gap in
Fig. 9(c), between the solid black bottom curve and the
dotted horizontal line of Egx ~—0.763. As discussed
above, the adiabatic evolution for a > a, is continuous
due to the nondegeneracy of Hessian along the trajectory.
This implies that the near-global CIM energy minimum at
a = a, that originates from the bifurcation at the origin is
itself not continuously connected to global CIM energy
minima at very large a. This type of discontinuity around
phase transitions has been known as a major challenge for
annealing processes such as simulated annealing and
quantum annealing.

X. DISCUSSION

In an effort to develop a theoretical understanding of how
a physical computing device, the coherent Ising machine,
solves discrete combinatorial optimization problems by
embedding them in annealed nonlinear analog dynamics,
we engaged in an extensive study of the geometry of the

energy landscape of this system and how it evolves as the
laser gain is annealed, when the system is attempting to find
the ground state of the SK spin glass. We were able to
quantitatively describe the geometry of the landscape at all
laser gains in terms of the number of critical points, and
their locations (distance from the origin), energies, indices,
and Hessian eigenspectra. We found at large laser gain,
when the CIM energy function mimics the Ising energy
function, the CIM energy landscape exhibits a complex
hierarchical concentric shell structure in which saddle
points of successively lower index and energy are located
at successively larger radii (Fig. 7). This complex landscape
presents a challenge to dissipative gradient descent dynam-
ics, which at a fixed large laser gain cannot come close to
either the CIM or Ising energy global minimum [top
solid quenched 7 = 0 black line with triangle markers in
Figs. 9(b) and 9(c)].

However, annealing the laser gain takes the CIM land-
scape through a sequence of phase transitions, each one
introducing successive complexity. For a < a,, the land-
scape is convex with a single global minimum at the origin.
Then, for a, < a < a,, there are many (though subexpo-
nential in N) critical points. The intensive energies of all
critical points are close to those of both typical and global
minima. Hessian eigenspectra of all critical points extend to
zero, indicating extensively many soft modes. This repre-
sents a highly flat landscape with many minima with
similar energies tightly concentrated around a specific
value, separated by saddle points whose energy barrier
heights relative to minima and whose indices both scale
sublinearly in N. The existence of such soft modes implies
that the CIM undergoes subsequent bifurcations, called
retarded bifurcations [29], flipping the signs of frustrated
soft spins. This situation is described by supersymmetric
solutions. Then, for a, < a < a,, supersymmetry for typ-
ical critical points and minima is broken; there are
exponentially many of them with Hessian eigenspectra
extending to 0. Furthermore, the intensive energies of
typical critical points, typical minima, and global minima
start to separate, indicating the beginnings of a rugged
landscape (Fig. 6). The global minimum still has extensively
many soft modes. Finally, for a > a,, the global minimum
undergoes a rigidity phase transition and all its soft modes
disappear. Moreover, our cavity method for deriving these
results yields conceptual insight into the meaning of SUSY
breaking and the resultant order parameters, in terms of the
extreme reactivity of the landscape to specific external
perturbations, originating from exponentially many critical
points with extensively many soft modes.

This detailed analysis of the landscape not only provides
conceptual insights into why geometric landscape annealing
works, through annealing the laser gain of the CIM, but also
suggests an optimal annealing schedule. Basically, the Ising
energy along a slow CIM annealing trajectory continuously
decreases as a increases until @ hits a,,. At this point, the CIM
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annealing trajectory, whose energy has been following that of
the CIM global minimum [bottom solid adiabatic 7 = o
black line with inverted triangle markers in Fig. 9(b)],
becomes trapped in a rigid minimum that it cannot escape
with further annealing. Thus, no further sign flips can occur
and the Ising energy is fixed; there is no advantage to
terminating the annealing process at any ap,,, > a,. In fact,
there is a disadvantage: If one terminates annealing at some
Amax > ag, the results can depend strongly on the annealing
speed 7 [i.e., substantial height variation of the colored lines
for amy. > a, in Figs. 9(b) and 9(c)]. However, if one
terminates at dp,, = @, the final achieved CIM or Ising
energies do not depend strongly on annealing speed [i.e.,
very little height variation of the colored lines for a,,, = a,
in Figs. 9(b) and 9(c)]. This robustness to annealing speed is a
consequence of the landscape geometry: For a up to a,, the
intensive energy gap between typical local minima and
global minima is not so large (Fig. 6), so if faster annealing
results in trapping by local minima, such trapping cannot lead
to substantially higher CIM energy.

All of this landscape analysis together points to an
optimal and robust annealing schedule: Simply anneal a to
amax = a, when the global minima of the CIM energy
landscape become rigid. The slower the annealing, the
better, but excessive slowness is not required due to the
robustness of the final energies to annealing speed. Indeed,
this landscape-derived annealing schedule allowed us to
find SK spin configurations with energies in the large-N
limit close to within about 1% of the true ground-state
energy (Fig. 2). This final mismatch between the Ising
energy found by CIM annealing and the actual Ising energy
means that the global minimum of the CIM energy land-
scape at a = a, (or at least the state, with energy close to
that of the global minimum, found by annealing) is not
continuously connected to the global minimum of the CIM
energy landscape at a > a,, when the CIM energy land-
scape approximates well the Ising energy landscape. One
possible scenario is an energy level crossing between two
far apart local minima between a, and large a, which leads
to a different state becoming the global minimum at large a
than the state that is a global minimum at a = a,.

Overall, this extensive analysis of energy landscape
geometry and its relation to annealing dynamics opens
the door to several interesting directions. Most importantly,
while we have focused on the SK spin-glass problem due to
its combined mathematical simplicity and high degree of
frustration, it would be interesting to extend our proposed
theoretical framework to more realistic problem instances,
which typically exhibit more structure than the SK
instances. We believe our theoretical framework can be
adapted to such structured instances by introducing addi-
tional order parameters, thereby providing a pathway
toward tackling more realistic problem instances. A logical
first step would be to generalize our results for previously

studied structured instances, such as the Wishart planted
ensemble [88] or the spiked Wigner model [89]. These
problem instances incorporate low-rank term(s) in their
Ising coupling matrices of the form ss?, where s is an
N-dimensional vector. In such cases, it would be natural to
introduce an order parameter quantifying the inner product
between s and the position of typical critical points of CIM.
Elucidating the phase diagram of the energy landscape with
this new order parameter presents a challenging yet
promising avenue for future research.

Moreover, there exist many other ensembles of random
optimization problems that can be efficiently mapped to
Ising energy minimization, including, for example, parti-
tioning, covering, packing, matching, clique finding, graph
coloring, minimum spanning trees, and the traveling sales-
man problem [17]. Each of these ensembles of random
problems could exhibit different geometric properties under
landscape annealing, and analyzing the relationship
between the evolution of landscape geometry, optimal
annealing schedules, and annealing performance in these
different ensembles could shed light on different univer-
sality classes of possible scenarios. To address these varied
random problem instances, we can no longer rely on
Pastur’s formula (22), which stems from the properties
of the Gaussian orthogonal ensemble. Consequently, we
must develop and employ alternative theoretical methods
tailored to each ensemble. Furthermore, while our current
work assumes that the eigenvalue density of the Hessian
vanishes at the origin (an assumption validated by our
numerical results), this may not hold true for other cases.
Investigating the conditions under which this assumption
breaks down represents another intriguing area for future
exploration.

Second, we have considered gradient descent dynamics
on an evolving energy landscape. One could also analyze
nongradient descent dynamics. For instance, a few previous
works discuss the addition of nonconservative feedback
such as the error-correcting scheme [28] or manifold
reduction method [30], which introduce better control of
soft-spin amplitudes. Another possibility is the addition of
asymmetric parts to the connectivity matrix [90]. Such
additional nongradient dynamics can typically induce
chaos and destabilize the least stable minima. Just as the
Kac-Rice formula can be used to count critical points of an
energy landscape, as we have done here, it can also be used
to count fixed points in nongradient dynamical systems, for
example, in neural network dynamics [91] or ecological
dynamics [92-94]. Such a Kac-Rice analysis of the CIM
dynamics with an asymmetric connectivity component,
which can be implemented physically in the CIM hardware,
may provide an intriguing window into whether and how
chaos might aid optimization [95,96].

Third, our analysis methods may also be useful for
exploring the potential utility of nondegenerate OPO
dynamics [42] for evading obstacles in the CIM energy
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landscape. Such nondegenerate OPO dynamics can be
modeled as a set of coupled oscillatory phase variables,
akin to a network of Kuramoto oscillators [97], which have
also been employed in physical computing devices to solve
Ising energy minimization problems [98-100]. The geo-
metric landscape annealing considered here can be thought
of as gradually interpolating between soft-spin variables to
strongly bistable binary variables while keeping the Ising
connectivity fixed. On the other hand, the flexibility of
physical OPO devices also opens the door to more general
dynamics annealing strategies that interpolate between
nondegenerate oscillatory phaselike dynamics and degen-
erate soft-spin dynamics or strongly bistable binary dynam-
ics [42]. Exploring and analyzing the utility of this broader
class of annealing strategies in solving diverse optimization
problems constitutes an interesting direction for future
research.

Fourth, and perhaps most interestingly, OPO networks can
be constructed in ways that interpolate between classical and
quantum operating regimes, as a function, e.g., of linear
decoherence rates relative to coherent nonlinear dynamical
rates [18]. Our work in the classical setting here provides a
foundation for exploring how novel emergent information
dynamics in the classical-quantum crossover [19] may
impact optimization performance. Indeed, a key open ques-
tion is, how does open dissipative quantum dynamics
negotiate high-dimensional spaces riddled with saddle points
and local minima as in Fig. 77 Is there some balance between
coherent quantum evolution and environment-induced dis-
sipation that can aid in optimization through energy mini-
mization? Perhaps an interesting place to start is small
systems of N =4 coupled OPOs whose open dissipative
quantum dynamics can both be tractably simulated on
classical computers [101], as well as physically implemented
in circuit QED [102] or nanophotonic [18] devices. An
interesting question is to map out the computational phase
diagram of such problems, parametrized by 4-by-4 connec-
tivity matrices, and determine the boundaries between two
computational phases in which the classical CIM either
succeeds or fails. Then, one could explore how the quantum
CIM behaves differently in each of these phases.

Along these quantum lines, recent work has examined
how quantum or other physical effects in open dissipative
physical systems modify their classical dissipative dynam-
ics, yielding optimization benefits. For example, in a
multimode cavity QED system whose classical dynamics
mimics a Hopfield associative memory [103], the natural
cavity dynamics yield the steepest energy descent dynamics
that enhance both the capacity and robustness of memories
relative to that of the classical Hopfield model [104]. Also,
when the same cavity QED system implements an SK spin
glass, simulations of the system reveal that the open
dissipative quantum dynamics drive the coupled spins to
enter highly entangled quantum states, which, in turn, allow

the system to evade semiclassical energy barriers, thereby
arriving at lower-energy states more quickly relative to the
more semiclassical dissipative dynamics [105]. It would be
interesting to explore whether analogous effects related to
optimization benefits arise in quantum versions of the CIM.

In summary, the solution of combinatorial optimization
algorithms using novel physical computing hardware is arich
and emerging field. Our initial theoretical analysis of the
coherent Ising machine in the classical limit reveals a rich
theory with diverse connections across physics and math-
ematics, spanning spin glasses, the replica method, the cavity
method, supersymmetry breaking, Dyson’s Brownian
motion, random matrix theory, and the statistical mechanics
of random landscapes. Moreover, analysis combining these
topics yields geometric insights into the nature of optimal
annealing schedules and the computational power of geo-
metric landscape annealing in optimization. Future direc-
tions of theory suggest the potential for usefully connecting
to even more diverse topics, including Kuramoto networks,
chaos, and open dissipative quantum dynamics. Given the
recent emerging interest in diverse physical computing
devices, spanning spintronic [106], memristor [107], pho-
tonic and optical [2,108], and CMOS substrates [109], for
solving diverse NP-hard combinatorial optimization prob-
lems, we hope our theoretical analysis may inspire much
future work aimed at understanding general approaches for
how annealed nonlinear analog dynamical systems can aid in
solving discrete optimization problems, thereby merging the
primarily analog worlds of physics with the primarily
discrete worlds of computer science.
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APPENDIX A: DERIVATION OF GRAND
POTENTIAL

In this appendix, we present two detailed derivations of
the grand potential. Our first derivation employs the replica
method, while our second derivation involves a novel
generalized cavity method. For readers less acquainted
with these methodologies, we recommend consulting
Ref. [44], where step-by-step derivations are provided
for pedagogical purposes.
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1. Replica-based calculation

As is shown in Eq. (30), the grand potential can be calculated by the ensemble average of Z" where the partition function

Z is given by Eq. (31). By introducing new auxiliary variables u“ for a = 1,2, ...

/de /_mli_a[ ’|det

,n, Z" can be written as

(6 exp | S ut0,B(x) = ()|

i

Then, inserting this expression for Z", performing a change of variables in J;; [45], and introducing new auxiliary variables

via Hubbard-Stratonovich transformations [73], we obtain

1 ! a
—|—Nlog {/ Dx/DuleS (9”“"“")<Ha| det H(x?)|er?(x )>1]),

where [Dx = [[];,dx¢ and [Du = [* TT;,(du$/2xi). ©

PEp.) =ty Exta 24(0)

= ({q}, {w®},{4%’}) is a tuple of several auxiliary

variables, Extg means extremization with respect all variables ®, and €((®) and S'(®, x, u) are given, respectively, by

04(©) = 3= -5 (w2 - ey -
ab
S'(©,x,u) = Y [=PE/(x) + u0E, (x

a

We assume that the average of the product of the deter-
minant and the chemical potential factor factorizes into the
product of the averages:

<H | det H(x®)|erT(x >>
J

To evaluate the chemical potential term, we exploit the
formula [110]

a

7(x )_hmzi(mgdet[ (x) — ie]

e—0

— logdet[H(x) + ie]).

Further assuming that the Hessian’s eigenspectrum density
at the origin vanishes, the average of the chemical potential
term is calculated as

10g<e”I > —,uZI(x,

ﬂz a a a
(gt =g,

~ T detH(x“)|>,<e"I("”)>J.

)]+ Z {W“"x + = q“”u b4 /I“bx”x”] :

|
where Z(x) is given in Eq. (37). Similarly, we obtain

log(| det|H(x)]|); = Zlog [0%E;(x;) — 1].

We substitute these equations and introduce new variables
A% and C%(= C"*), as is done for supersymmetry-
breaking complexity calculations [54]. Specifically, we
perform the change of variables

web = _ta(sab - ﬁqab - Aahv

p p p
ab =" =
71 0 T 2

§ ab ab ba 1 ab

CXA (A" + A )+2C .

While w® and A% are difficult to interpret, the new
variables A?? and C“ have clear physical interpretations
as the susceptibility of the complexity to certain perturba-
tions in the energy landscape, which we discuss later. In
terms of the new variables A% and C*’, the grand potential

is expressed as

1 T(va
—ﬁQ(ﬂ’ﬂ) = III%—EXt(QO + log/ H[dxaduaw<_xa)]es+ﬂ ZnI<X ))
n—=-0n

with w(x%) = 0?E;(x?) — t* and
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Q, :Z _l(Aab)Z_Aaataa _éqaatatg _ﬂ_z(qab>2
" ab 2 Kb 2 “ 4
b ab 1 b ab
_ﬁAu qa _Eca qu ,
S = Z lqabuaub +Aabuaxb _'_lcabxaxb
ab 2 2
14
+ Z [—u“ha + preh = B(E(x) =5 <xa>2>] ,
(A1)

where h* = 0E;(x%) — t“x“

We next derive the grand potential for f = 0 with the
replica symmetric ansatz. Under this ansatz, ¢*® is para-
metrized as g,, = gd,;, + g, with two parameters ¢g and g.
Similarly, A and C are parametrized as A*> = A§,, + A and
C*® = C5,;, + C, respectively, and ° is now independent
of the replica index a, which we denote ¢. It is easy to see
that the terms including g, A, and C are proportional to n?,
where n is the number of replicas, and, hence, we ignore
such terms, meaning that all the replicas are decoupled.
Then, under this ansatz, we obtain

—4Q(0, ) :Ext[—%(Cq—i-Az)—At—l—log/_iZj—Z/dxw(x)exp G(Z)T(Z 2‘) <Z> —uh—f—,uf(x))].

By integrating out u, we get Eq. (34). The self-consistent
equations [Eq. (39)] are obtained by the stationary con-
dition of the extermination.

Lastly, we discuss how we obtain the expression for
distribution P(x) [Eq. (36)] and the Hessian eigenvalue
spectrum [Eq. (22)]. For an arbitrary well-behaved function
O(x;), we define the following expectation value:

(0) = <%ZQECH(E) B ( Z 0x) >> .

This quantity is equivalent to the following derivative:

o PE)HT(x)+5 3, 0(x)
<1 gZaeCn Z > :

J

14
Nds

s=0

Following the derivation of grand potential above, we can
calculate this quantity, resulting in (O) = [ dxP(x)O(x),
where P(x) is given by Eq. (36).

The Hessian eigenspectrum can be obtained from the
resolvent R(z) via the inverse Stieltjes transform. The
resolvent can be written as a derivative as follows:

<log Z exp (—ﬁEl(x”) + uZ(x*) + s{logdet[H(x*) — 2I] — log det[H (x*) — zl]}> >
a€eCrt(E)

1
= ’111LnnExt{QO +log/l:[[dx duw(x

where the stationary condition gives 1(z) =
derivative with respect to s, we obtain

1d
Ndz

det[H(x) — ZI]
det[H(x) —zI]

=z

R(z) =-—

(A2)

We calculate the average of logdet/H(x*)—2l]—
log det[H(x*) — zI] and then obtain an ensemble-averaged
resolvent through Eq. (A2). Following this strategy, the

average of log det[H(x%) — zI| — log det[H(x*) — zI] is
given by
(logdet[H(x%) — 2I] — log det[H (x*) — zI);,
d
:N_lds log Z exp< —PE;(x*) 4+ uZ(x“)
5=0 aeCrt(E

+ s{log det[H (x%) — 21| — log det[H (x*) — zI}}).

Here, (-); , represents the weighted average over all critical
points x* with the Boltzmann weights exp (—fE;(x%)+
uZ(x*)). The modified free energy parametrized by s can be
calculated using the replica method in a manner parallel to the
previous calculation and also by exploiting the formula for
the average of the determinant. In the end, we obtain

J

OE;(x%)

]es+uzaf(X“> exp <s B/{[t“(i)]z [1(2)} + log 0E;(x%) :i: ;:8]) }

([PE(x*) — z — t9(2)] 1), with Q; and S defined in Eq. (A1). By taking the
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1(2)) - % [1(2)] + N<1°g Zg,ﬁﬁi - i - §8>s

(logdet[H (x*) — 2I] — log det[H (x*) — zl]);,, ; =

N
2

Here, we exploit the fact that ¢ is independent of the replica index a and write it as ¢ without its replica index. Assuming that
the quantity above is self-averaging,

R(z) = -N"'2

exp(5 0P = 5 (0P + N {log
)

= 1(2)1'(2) = ([0E;(x*) — 2 = 1(2)] 7' [1 + £'(2)])s

Therefore, the function ¢ defined in Eq. (39) is nothing other than the resolvent of the Hessian at the origin z = 0. Moreover,
through the inverse Stieltjes transform, the eigenvalue density of the Hessian is simply proportional to the imaginary part of
1(z) near the real axis.

2. The generalized cavity method

In this section, we derive the grand potential at the annealed level via a generalized cavity method with more detailed
mathematical expressions. We start from the Kac-Rice formula for the grand potential, but we relax the delta-function
constraint on the gradient and replace it with a soft Gaussian function with effective inverse temperature f. The relaxed
grand potential is given as follows:

N-1 N-1
exp(NQ;) = E, { / I éx (f‘j) N/2| det H(x)|e"™ exp (—ﬁz <aE, + ZJ,J ]> >]
i=0 i=0

We split the system of N soft spins into a single soft spin x; and the rest of the spins, i.e., the cavity system
x/% = (x',...,xV). Note that the joint distribution of x = x, and gradient y = V(E(x) is given by

Py(x.y) < E; [ / ﬁl dx; exp (—ﬁz (aE, + ZJ,] ,) )|detH(x)|e"1(X)5(x0 — x)8[VoE(x) — y]} (A3)

The grand potential can be factorized as follows:

N-1 N )
exp(NQyg) = E [/ H dx;Ej | @ [ (xodo. x/o)\/gexp <—ﬁ <Z Joix; + 0E,(x0)> > %e"mx)‘ﬂ‘/ ))H . (A4)

i=1

Here, H(x/°) is the N — 1 x N — 1 submatrix of H(x) and is simply the Hessian of the cavity system in the absence of x.
[E,, represents an average over the vector Jo == (Jo;, Joo, .. JO(N_I)) which couples x, to the cavity system x/°. Also, E 0
represents an average over J/° which is the N — 1 x N — 1 submatrix of J corresponding to the connectivity matrix of the
cavity. Finally, w(s, x/0) is the grand potential density of the cavity system x/° in the absence of x° but in the presence of an
external field s that tilts the gradient:

ﬁ (N-1)/2 N-1 N-1 2
w(s,x/0) = (—) | det H(x/)|e#Zx") exp (—/}Z <6E, x;) + Z]Ux] + s,) )
T

l
Assuming that ¢:= N7!TrH~'(x) is self-averaging, the determinant ratio in Eq. (A4) is calculated as

|det H(x)/ det H(x/?)| = |0*E;(x,) — t|. Furthermore, the difference of indices Z(x) — Z(x/%) in Eq. (A4) is calculated
as follows:
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Z(x)-Z(x/?)
1 <10 det[H(x) — ie] I det[H(X)—l—ie])

"2 et H ) =] S Qe (x) + i

e=027i

:f(xo),

where Z(x) is given by Eq. (37). The grand potential
density @(s,x/?) can be factored into the product of
w(0,x/%) and a function of s @(xpJ. x/0) =
(0. x/%) exp (=208 Y051 VE(x/*)J; — fx3), where

|

ViE(x/%) = 0E;(x;) + > Y., J;x;.  Substituting  these
expressions into Eq. (A4), we notice that the expression
depends on the coupling vector J, only through
two variables h:=—>N1Jyx; and z:=-28> N7lx
V.E(x/%)J;. These two scalars are jointly Gaussian distrib-
uted with zero mean, and the integration over J, can be
replaced with the two-dimensional integration over (7).
Then, the integration over J, can be replaced with the
expectation value (-); - with respect to random Gaussian
variables & and Z:

N-l B\ 1/2 _ .
exp(NQ;) = Ep [/ H dx;w(0,x/9) <;> <exp <x02 — B(OE (xy) — h)* — ﬂxﬁ) > |0%E, (xg) — tg|ert(x0)
i=0

Furthermore, the expectation value can be rewritten by a
change of Gaussian variables 7 — h and 7 — z as follows:

<exp (XOZ ~ B(OE (xo) — h)? —ﬂx3> >

h.z

— <exp (xoz — B(OE, (xy) — trxo — h)2>> :

h.z

where the covariance of the new centered Gaussian random
variables z and 4 is now given by

(h?) = N-
(hz) = 2N~1BVE(x/?) - x/0 — ¢,
(%) = AN~ F|VE(x/?)]? - 2p.

After this change of variables, it is not difficult to see that
the expression is equivalent to the following:

N—1
exp(NQy) =E [/ H dx;w(0,x/%)

</dy\/:e_ﬁy xz+ﬂZ(x)> ]7
xeCrt( EMFb+h]) hz

where Eyglh + y](x) = E;(x) = (t/2)x* — (h + y)x.

In this equation, the Gaussian average (-),. has a
covariance matrix that depends on the cavity system x/°
only through the following three quantities, which we
define to be g(x/?), A(x/?), and C(x/°):

q(x/%) = (N = )7 x/°] ~ (1?),
A(x/%) = 2(N = 1)7IBVE(x/?) - x/° — t ~ (hz),
C(x/%) = 4(N = )T'PIVE(x"")? = 2p = ().

hzZ

We assume that ¢(x/°), A(x/?), and C(x/°) concentrate
around their expectation values ¢, A, and C under the cavity
grand potential density (0, x/?). Under this assumption,
the average (), . can be taken outside of the integral over

x/0, obtaining

Qs = (N —1)(Q — Q)

—|—10g</ dy\/7 -By? eXZ+Mf(x>> ,
xeCrt( EMF [y+h]) hz

where the covariance of /& and z is given by

(3 ¢)

and Q/; is defined as

expl(N — 1)) = Eu [ / ﬁ dx,0(0, X/O)] .

In the limit of large N, the first term of the equation above
converges to a derivative, which can be written in terms of
order parameters:

lim (N — 1)(Q, — Q) — -2 ()

N—oo do

o=1

_ 1 C—|—1A2+At
—29%73 '

Substituting this expression and taking the limit of large f,
we recover Eq. (65).

Lastly, we discuss the derivation of the self-consistent
equations via the cavity method. We assume that the joint

distribution of x and VE(x) can be factorized into a
product of N copies of the independent distribution

031054-35



YAMAMURA, MABUCHI, and GANGULI

PHYS. REV. X 14, 031054 (2024)

Py(x,y), defined in Eq. (A3). Under this assumption, any
self-averaging function of x and VE(x) that tightly con-
centrates about its mean can be well approximated as an
average over the mean-field distribution Py(x,y). Under
this assumption, the functions ¢(x), A(x), and C(x)
concentrate about their means as follows:

q(x) = / dxdyPpy(x, y)x*,
A(x) = 2ﬁ/dxdyP/j(x,y)xy -1,

C(x) = 4p? / dxdyPg(x,y)y* = 2.

The distribution Pg(x,y) can be obtained similarly to the
grand potential, resulting in

Py(x,y) = Z,71< / dy,8(x, —x)8(y, —y) \/ée—ﬂyi

X E ex*2+ﬂj-(x¥) >
x, € Crt(Eye[y,+h]) hyz

(A5)

where

B ﬂ 1/2 —/j 2 XZ+ j—<x)
Zﬂ o </dy (; e erCH(EMF[)’+]1])e o

Substituting this expression into Eq. (A5) and taking the
low-temperature limit f — co, we obtain self-consistent
equations for the order parameters associated with critical
points:

h.z

_ 7-1 xz4uZ(x) 2
q=2 <erCrt(EMF[h])e HHx > ’

h.z

d _
-1/ = xz+uZ(x _
z <dh erCn(EMF[h])e o )x> L,

h,z

& :
_ 71/ = xz+puZ(x
C=27 <dh2 erCrt(EMF[h])e - )>hz’

RS
|

with Z = (3 e cnyein) €< ),, .- Note that, while the

derivatives with respect to & can be undefined with some
values of i, we can always define the expectation value of
the derivatives through integration by parts. Similarly, the
self-consistent equation for ¢ can be obtained under the
limit f — oo:

1
tr=1 dxdyPsz(x,y) 5——
jim [ dxdyFy(x.) e

= dx
o xz+uZ (x) 27
Z <Zx€Cﬂ(EMF[h]>e dh>h.z‘

These self-consistent equations can also be given a
variational characterization. Indeed, they are equivalent
to the equations obtained by extremizing the right-hand
side of Eq. (65) with respect to ¢, A, C, and ¢, i.e.,

1
Q= t |—=(C A?) — At
(qs\).,(C,t) |: 2 ( q+ )

+ IOg < Zx € Crt(Evg[h]) eXZHJ(X) > :| ‘ (A6)
hz

This equivalence can be seen by explicitly calculating the
stationary condition of the right-hand side.

It is not difficult to see that Eq. (A6) is equivalent to an
extremizer of Eq. (34). This means that the cavity method
and the aforementioned replica-based calculation give the
equivalent result.

3. A geometric interpretation of the
supersymmetry-breaking order parameters

Here, we show that the supersymmetry-breaking order
parameters A and C can be interpreted as susceptibilities of
the grand potential Q to certain perturbations. Specifically,
we consider the perturbations of the quadratic term and a
random magnetic field:

E'(x) = E(x) - g X2+ V2sg - x.

where a is a constant for the quadratic term and the other
term g - X represents the coupling with the external random
field g, a centered Gaussian vector with unit variance. s is
the scalar coupling constant. The corresponding mean-field
energy is defined as

Ejplh. a,V2sg](x) = Eyglh](x) - gxz + V2sgx.

We first consider the case where we have only the
quadratic perturbation (a > 0 and s =0). The grand
potential Q(a) of the perturbed energy function has the
form of Eq. (A6) with different mean-field energy function
Ejylh, a,\/2sg](x). The order parameters g(a), A(a),
C(a), and t(a) all depend on a and satisfy the stationary
condition for Q(a). Hence, the derivative of Q(a) with
respect to a is given by

o 10 i
Y Zot <zxeCn(EMF[h]>e e >>

da

00
a=0 B da

=A.

(A7)
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This equality shows that A can be interpreted as a
susceptibility of the grand potential with respect to the
strength of the quadratic perturbation.

Similarly, we consider the case only with the coupling
with the random external field (i.e., a =0, s > 0). We
define the averaged grand potential as follows:

exp[NQ(s)] =

N-1
E, [ / H dx;| det H(x)| et )
N-1

x Ha(aE, +ZJ,]xJ + \/_g,ﬂ

i=0

where [, represents the average over the random external
field g. By calculating the average over g, we get
exp[NQ(s)] = exp(NQ,). Therefore, the derivative with

respect to s is given by

dQ
ds s=0

dQ,
d%ﬁ_l f=0

1/ d? .
- — xz+ul (x _
= Z<dh2 erCn(E’MF[h])e o )> =C

h,z

Thus, C can be interpreted as the susceptibility of the grand
potential with respect to the coupling with the random
external field.

It is not difficult to see that A and C can be understood
also as the derivatives of the mean-field grand potential
Qi (a,9) =108 (X e cnypinavamg) € ), - Indeed,
for the order parameter A, it is clear that Eq. (A7) implies
A = (0/0a)|,—oQup. Similarly, the following argument
shows C = (9/0s)|,_oQumr- Notice that the quantity inside

the bracket -, ¢y EL [h0./354) et#I() js a function of

h ++/2sg, which is a centered random Gaussian variable.
Its variance and covariance with z are {(h +v/2sg)?) =

q+2s and ((h+ v/2s9)z) = A, respectively. Hence, the
Gaussian average over h, z, and g is equivalent to the

average over h 4 +/2sg and z with the covariance matrix

<q+2s A)
A C)

Therefore, the derivative by s is equivalent to the derivative
by ¢/2. Thus,

Qup| 5 d eI\ _
o - 2d_q <erCrt(EMF[h])e e =C.

os

4. Nondegeneracy of critical points implies
supersymmetry and structural stability

Next, we show that if typical critical points have eigen-
values bounded away from 0, then its supersymmetry-
breaking order parameters are vanishing, which implies
the structural stability of the typical critical points (since
A and C are susceptibilities of the grand potential to certain
perturbations of the energy landscape.)

Recall that, with a finite inverse temperature, A and C
are defined as A(x) =2N~'BVE(x)-x —t and C(x) =
AN'B|VE(x)|* — 2, respectively. If § is large enough,
we anticipate that the order parameters of a typical critical
point can be obtained by averaging A(x) and C(x) over a
small neighborhood U around the critical point, i.e.,

N—-1 -1
Attg = [ / T dnie7E00F  det H(x)
U i—0

/Hdzﬂ

Here, we exploit the fact that Z(x) is constant in the small
neighborhood because the eigenvalues are bounded away
from zero. Similarly,

e PVEF | det H(x)|.

N—-1 _
Ci2p— [ / T dxie7E09F  det H(x)
Uizo

N-1
VE(x)?
X dx;4  [VEX)P
I

By the assumption, we can apply the inverse function
theorem to y; := V,;E(x) around the neighborhood of the
critical point. The Jacobian is given by the Hessian
(dy;/dx;) = H;, and we approximately see that x; = Hl-‘j'yj.
Therefore,

2
A z_ﬂ/ dnyH—lye—ﬁylz// dye—ﬂ\wz —¢
N RN RN

=NITtH™' =t =0,

2 2
Cz%/ dy|y|2e—ﬁy2// dye ¥ —2p =0,
RV RV

where dy = [[¥! dy;.

The contrapositive of this result then immediately tells us
that if supersymmetry-breaking order parameters are non-
zero, then typical critical points are marginally unstable
(with no gap in the eigenvalue density away from 0). Earlier
results additionally imply such marginally unstable critical
points are also structurally unstable to small perturbations
in the energy landscape.

e PIVE®P | det H(x)|.
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a. Convexity of the mean-field energy landscape implies
vanishing complexity and supersymmetry

In the following discussion, we address two statements
on the convexity of the mean-field energy landscape and
supersymmetry of the typical critical points. First, we
show that the strict convexity of the mean-field energy
landscape Eyg[0](x) is a sufficient condition for the self-
consistent equations to have a supersymmetric fixed point
with A = C =0, resulting in vanishing complexity.
Suppose that the supersymmetry-breaking order parame-
ters vanish A =C =0. In this setting, the Gaussian
random variable z is always zero, and the average (), .
is only over & with variance of ¢, which we denote ().
Therefore, the self-consistent equations for A and C are
reduced to A =Z7'((d/dh)Y " ccnpm)X), =1 and
C=Z""((d*/dh*) 3 ccn(pysim 1), Tespectively. It is
easy to see that these self-consistent equations hold when
the mean-field energy function without external field
Enge[0](x) is strictly convex and has a monotonically
increasing gradient. Indeed, Crt(Ey[h]) contains only a
single element for any 7 €R, and, therefore,

— l"

d
S V
A=Z <dh erCrt(EMF[h])x>h
d2
S Y
C=2 <dh2 erCrt(EMF[h])1>

Hence, the convexity of the mean-field energy implies
supersymmetry and, therefore, also implies structural
stability of typical critical points. In this case, the grand
potential (and, therefore, the complexity) of typical
critical points vanishes:

(A8)

h

1 2 )
Q= -7 (Cq+A") - A+ 1°g<zxecnwww>e >

= 10g<ZXGCrt(EMF[h])1>h =0.

Next, we prove that the convexity is a necessary condition
when the mean-field energy is given by the quartic

h.z

function Eygp[0](x) = x*/4 — acyx?/2; ie., age <0 is a
necessary condition for the existence of supersymmetric
solutions—i.e., if a.; > 0, the self-consistent equations
do not have any supersymmetric solution. Suppose
desr > 0 and a supersymmetric solution exists, with which
Eq. (A8) holds. The second equation of Eq. (A8) can be

calculated as C = (2h/+\/27q>) exp [-(h?/2q)], where
h= (2a§f/f3 /3+/3). This is strictly positive and contradicts
our assumption of supersymmetry A = C = 0. Hence, the
SUSY solution does not exist.

APPENDIX B: DETAILS OF COMPARISON
OF THEORY AND NUMERICAL
EXPERIMENTS IN FIGS. 3-5

1. Numerical exploration of critical points

Here, we explain how we numerically sample typical
critical points in Fig. 3, typical minima in Fig. 4, and global
minima in Fig. 5 for different realizations of J.

In Fig. 3, we sample critical points via Newton’s method
with many different initializations. Note that Newton’s
method converges not only to local minima, but also to
critical points of any index [111] and, hence, works as an
efficient sampler of all critical points. The detailed exper-
imental parameters are shown in Table I, including the
system size N, chosen for each value of a. The chosen
system size N decreases as a grows. This is because the
number of critical points increases exponentially, and,
hence, it is difficult to sample all the critical points with
large N in the large-a regime. The initial states are sampled
from a centered Gaussian distribution for a < 1, while for
a > 1 we initialize at every point of {—/a, 0, /a}". After
the deduplication of the sampled critical points, we estimate
the most frequent values of the energy and the index. In
order to select specifically the most typical critical points,
we focus only on sampled critical points with the most
frequent values of both the energy and index. The most
frequent index is plotted in the figure with the error bar of
length 1/N reflecting the minimum discretization of the
fractional index r at finite N. To find the most likely energy,
we discretize energy into Ny, bins and include only

TABLE I. Parameters for sampling typical critical points.

Param Description Values

a Gain parameter -1.5 -1.0 -0.5 0.0 0.5 1.0 1.5 20 25 30 35 40 45 5.0

N System size 400 400 120 48 20 20 14 14 12 12 12 12 12 12

Ngmpe Number of sampled 1x 10° 2x10° 1x10° 3x10° 4x10° 1.6x 10% 34 314 312 312 302 312 312 312
minima for each
instance

N; Number of sampled 20 20 20 10 10 5 5 5 5 5 5 5 5 5
instances

Npins  Number of bins for 100 100 100 100 100 100 100 100 100 100 100 100 100 100

energy histogram
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Parameters for sampling typical minima.

TABLE II.

Description ~ Values

Param

<
v

4.0
15
20

3.0
20
20

2.0
20
20

1.0
30
20

0.25
30
20

0.0
50
20

-0.25
100

-0.75 -0.5

-1.0

400
20

-1.75  -15 -1.25
1x10° 1x10°

1x103

2.0
1 x103

Gain parameter

System size

a

=}
N

150
20

200
20

N

)
N

20

20 20 20

20

Number of

N,

sampled
instances

Ngample Number of

1.4x10° 2.8 x10° 2.8 x 10° 2.8 x10° 2.8 x 10 7x10° 7 x10° 7 x 10® 7 x 10°

7x103 7x10° 7x 10> =7x 10> 7x10°

7 x 10!

sampled

minima for

each instance
Number of bins

10 10 20 25 25 50 100 100 50 25 500 500 500 500

10

N bins

for energy
histogram

critical points whose energy is in the most likely bin. From
this restricted set of the most typical critical points, we can
directly compute order parameters ¢ in Eq. (49) and ¢ in
Eq. (50) for each typical critical point. Then, we compute
the average values of ¢ and ¢ over all the typical critical
points for each instance. For each sampled instance J, we
compute the means of order parameters across all the
typical critical points. In the plots of g and ¢ in Fig. 3, the
error bars represent the standard deviation of the mean over
the different instances of J. We sample more realizations of
J at smaller a to compensate for the fact that there are fewer
critical points at smaller a. To compute the distribution of
spins P(x), we compute the empirical histogram of
individual spin values across the ensemble of typical
critical points with the most frequent energy and index.
The Hessian eigenspectrum is computed similarly as
ensembles of the eigenvalues of those sampled critical
points.

In Fig. 4, we minimize the energy function by the
Newton-Conjugate-Gradient algorithm from many ran-
domly initialized points to sample minima. The detailed
experimental parameters are shown in Table II, such as the
number of samples N,y and the system size N chosen
for each value of a. After the deduplication of the sampled
minima, we focus on the typical minima, defined as the
minima with the most likely energy in a bin among Ny,
energy bins (just as we do for critical points above). We
compute the order parameters ¢ and ¢ from this set of
minima. The error bars in the figure represent the standard
deviation across instances of J of the values over all typical
minima for each instance. The complexity is calculated for
a > —1.5 as N~'1og(N pax/OE), where N . is the num-
ber of minima in the most likely energy bin and SF is the
bin width. For a < —1.5, the numbers of minima we obtain
are not enough to estimate the density N ,,./SF, and,
hence, we instead estimate the complexity as the logarithm
of the total number of minima, divided by N. We compute
the ensemble of P(x) [Fig. 4(a)] and the Hessian spectrum
[Fig. 4(b)] across all minima in the most likely energy bin.
The system size N is selected according to the value of a,
from N = 15to N = 103. Since the complexity X is smaller
for smaller a, we use a larger N for smaller a to be able to
more accurately estimate the smaller complexity.

In Fig. 5, we sample minima in the same manner above
using the Newton-CG method with N, different ini-
tialized points and choose the lowest energy state from each
of N, instances. The values of N, Ngpie, and N for each
value of a are displayed in Table III. The order parameters
and the distributions are computed as the ensemble of those
sampled lowest-energy states.

2. Solving self-consistent equations
for order parameters

In the following, we describe our approach to solving the
self-consistent equations (39), for each value of the gain
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TABLE III.  Parameters for sampling global minima.

Param Description Values

a Gain parameter -40 -30 -20 -1.25 -1.0 -0.5 0.0 1.0 2.0 4.0
N System size 1000 1000 1000 1000 800 200 100 40 40 20
N, Number of sampled instances 20 20 20 20 20 20 20 200 200 200

Ngample Number of sampled minima
for each instance

7x 101 7x 10" 7x 10" 7x10% 2.8 x 10° 1.4 x 10° 2.8 x 10° 7 x 10° 7 x 10° 7 x 10°

parameter a. Our solution is obtained by iteratively updat-
ing the order parameters until they satisfy the self-
consistent relations. To simplify the iterative process, we
fix a value of a.y = a+t rather than fixing the gain
parameter a.

With a fixed value of a.;, we proceed to iteratively
update ¢, A, and Cg with the following equations starting
from ¢ = 1.0, A=0.5, and Cq = 2.0:

q < (x*),

JURCC IR VAR S
2q 2 3X2—(leff

Cq <« —1+q " (h*(x)) —2¢7"A(xh(x)) + A2.

We perform these updates for a total of 300 iterations,
after which the variables converge within an error margin of
1075, Subsequently, we compute ¢ using the following
equation: t = (1/3x> — a.g). Finally, we determine the
value of a by calculating a = ag — t.
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