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Given the fundamental importance of combinatorial optimization across many diverse domains, there
has been widespread interest in the development of unconventional physical computing architectures that
can deliver better solutions with lower resource costs. However, a theoretical understanding of their
performance remains elusive. We develop such understanding for the case of the coherent Ising machine
(CIM), a network of optical parametric oscillators that can be applied to any quadratic unconstrained binary
optimization problem. We focus on how the CIM finds low-energy solutions of the Sherrington-Kirkpatrick
spin glass. As the laser gain of this system is annealed, the CIM interpolates between gradient descent on
coupled soft spins to descent on coupled binary spins. By combining the Kac-Rice formula, the replica
method, and supersymmetry breaking, we develop a detailed understanding of the evolving geometry of the
high-dimensional energy landscape of the CIM as the laser gain increases, finding several phase transitions
in the landscape, from flat to rough to rigid. Additionally, we develop a novel cavity method that provides a
geometric interpretation of supersymmetry breaking in terms of the reactivity of a rough landscape to
specific external perturbations. Our energy landscape theory successfully matches numerical experiments,
provides geometric insights into the principles of CIM operation, and yields optimal annealing schedules.
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I. INTRODUCTION

Combinatorial optimization [1] is a key enabler of
performance in diverse application domains, including,
for example, machine learning, robotics, chip design,
operations research, and manufacturing. Thus, the code-
velopment of algorithms and hardware that can provide
better solutions with lower consumption of resources such
as time and energy could substantially impact many fields.
Promising recent demonstrations of unconventional hard-
ware architectures have ignited broad interest in physics-
based approaches to solving NP-hard problems, in which
combinatorial optimization over discrete variables is
embedded in the analog evolution of nonlinear dynamical
systems [2–6]. This interplay between discrete optimiza-
tion and analog evolution spawns a rich new field of
research based on fresh foundations to complement more
traditional approaches. While benchmarking experiments
have established high-performance scaling of physics-
based approaches up to as many as 105 optimization
variables [7], scant theory exists for extrapolating future

prospects for unconventional architectures or analyzing
their strengths and weaknesses relative to mainstream
heuristics.
In this article, we develop substantial components of a

theoretical framework for how the coherent Ising machine
(CIM) [8–14], an unconventional physical optimization
architecture based on coupled optical parametric oscillators
(OPOs) solves a generic class of Sherrington-Kirkpatrick
(SK) spin-glass optimization problems [15]. As described in
more detail below, the CIM solves an optimization problem
by performing gradient descent on a high-dimensional
energy landscape whose geometry anneals over time from
an initial simple landscape to a final complex landscape
corresponding to the optimization problem of interest.
Understanding how the CIM solves optimization problems,
therefore, requires understanding the evolving high-
dimensional geometry of its energy landscape.
Our main contributions are as follows. First, we elucidate

mechanisms underlying how the CIM performs well on the
generic class of SK spin-glass problems by developing a
statistical mechanics based analysis of the evolving geom-
etry of the landscape, thereby deriving the first theory of
how this unconventional physical computing device oper-
ates in an ensemble of problems. In particular, we combine
the Kac-Rice formula, the replica method, and supersym-
metry breaking to reveal that, as the annealing process
proceeds, the landscape undergoes a sequence of geometric
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phase transitions. Our quantitative understanding of these
phase transitions allows us to derive an optimal annealing
schedule for the CIM, thereby showing for the first time
how to rationally design this important schedule using
principles of high-dimensional geometry. Our theoretical
analysis is also of general interest to the field of statistical
mechanics of random energy landscapes, because we
introduce a novel cavity method that provides considerable
geometric insights into the mysterious nature of supersym-
metry-breaking calculations in this field. In particular, our
cavity analysis provides a geometric interpretation of the
supersymmetry-breaking order parameters in terms of
the exponential reactivity of a complex energy landscape,
with exponentially many critical points, to specific small
perturbations.
In the rest of the introduction, we introduce the CIM as a

novel physical computing device and then review the
theory of random landscapes, which sets the context for
our new theory. Then, we discuss how the confluence of
these two disparate fields provide new ways to think about
how to solve optimization problems using unconventional
analog dynamics in evolving high-dimensional landscapes.

A. Review of coherent Ising machines

The architecture of a CIM [8–14] typically involves a
closed-loop optical fiber, wherein pulses of degenerate
OPOs circulate. The phase of electromagnetic oscillations
of the pulse’s optical modes encodes individual binary
variables. This binary encoding is due to the bistable phase
induced by phase-sensitive amplification dynamics which
forces each optical oscillator to oscillate either in or out of
phase with respect to its pump light. These binary variables
can be coupled via either delay lines or measurement
feedback mechanisms, as their corresponding pulses of
light traverse the closed-loop optical fiber. The coupling
can be arbitrarily programmed to correspond to any
symmetric connectivity matrix between N such pulses or
OPOs. The combined phase dynamics of this network of
OPOs can be thought of as an Ising network of soft spins
with arbitrary programmable connectivity, undergoing
energy-minimizing dynamics, with some annealing, as
described in more detail below. Indeed, large-scale physical
implementations exist with N ¼ Oð105Þ OPOs with
Oð1010Þ connections [7].
Overall, the CIM may be understood as a heuristic solver

for the Ising ground-state problem, which is to identify the
spin configuration fsigi¼1;2;…;N with spin variables si ¼ �1

that minimizes the Ising Hamiltonian H ¼ − 1
2

P
i;j Jijsisj,

where Jij is anN × N symmetric matrix. This problem, also
known as quadratic unconstrained binary optimization
(QUBO), is known to be NP-hard [16]. Indeed, many
optimization problems, including partitioning, covering,
packing, matching, clique finding, graph coloring, minimum
spanning trees, and the traveling salesman problem, can be
mapped to a corresponding QUBO problem with only

polynomial overhead [17]. Thus, solving QUBO or Ising
optimization problems is of wide interest and applicability in
combinatorial optimization, yet there is no theoretical under-
standing of when and how the CIM successfully solves such
optimization problems.
Indeed, the central role of OPOs as building blocks

makes the CIM architecture especially interesting within
the broader field of physics-based optimization, as com-
prehensive quantitative models for OPO networks can be
constructed in ways that interpolate between classical and
quantum operating regimes (as a function, e.g., of linear
decoherence rates relative to coherent nonlinear dynamical
rates [18]). This makes CIM theory a fertile setting for
exploring how novel information dynamics that emerge in
the classical-quantum crossover [19] may impact optimi-
zation performance. But the first step in this program must
be to establish a baseline understanding of classical CIM
mechanics, against which quantum differences can be
highlighted. In this article, we begin to draw this classical
baseline.
The CIM approaches QUBO by relaxing the binary Ising

spins to continuous soft spins. Each OPO functions as a
relaxed analog state (soft spin) with a continuous state
variable x, subject to a double-well energy potential
EIðx; aÞ ≔ 1

4
x4 − a

2
x2. Here, x can be thought of roughly

as the phase of a single OPO, and the minima correspond to
this phase being 0 or π relative to its pump field, as
described above. The important laser gain parameter a
controls the depth of the two wells. As the gain parameter
increases, each OPO becomes strongly confined in one of
the wells, effectively functioning as a binary spin si. At
very large gain, there are 2N minima in the energy land-
scape, and the global minimum corresponds to the ground
state of the Ising Hamiltonian [12]. To locate a global
minimum, the CIM anneals the gain, by first minimizing
the energy of the soft-spin network at a low gain, where the
energy landscape is convex, and then adiabatically increas-
ing the gain parameter until each soft spin starts to exhibit
behavior akin to a binary spin. Such optimization mech-
anisms, which continually reshape the energy landscape
starting from a trivial form, have also been suggested in
various other contexts such as mean-field annealing [20] (a
deterministic approximation of simulated annealing),
annealed stochastic gradient descent [21] in the context
of deep neural networks, and topology trivialization [22] in
the random landscape literature.
Numerous numerical and experimental benchmarks have

shown that this landscape annealing approach can achieve
high performance [7–9,23,24]. However, to the best of our
knowledge, no theoretical analysis for this performance has
been established. This is in stark contrast to other well-
recognized annealing algorithms, such as simulated
annealing and quantum annealing, which are known to
successfully find the optimum given a sufficiently slow
annealing schedule [25,26]. Interestingly, the CIM may fail
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to find the ground state for certain frustrated instances, even
if the annealing speed is appropriately slow [12]. This is
believed to stem from the amplitude heterogeneity of the
soft spins, which makes the mapping from Ising energy to
the soft-spin network’s energy less precise when the gain is
not substantial enough. Indeed, right after the landscape
becomes nonconvex, the global minimum of the energy
landscape lies along the eigenvector of the J matrix with the
minimum eigenvalue, generally different from the true
Ising ground-state configuration [27]. This amplitude
heterogeneity issue has been discussed, and a few methods
have been proposed to mitigate its effect [27–30]. While the
amplitude heterogeneity initially compels the Ising
machine to find the eigenvector rather than a global
minimum, as we further ramp up the gain, the signs of
soft-spin variables xi successively flip, leading to a con-
tinuous decrease in Ising energy. These configuration
adjustments enhance the Ising machine, making it a robust
Ising optimizer rather than just a simple linear solver.
Indeed, when optimizing the SK energy function, a
previous work reported that the CIM finds SK ground
states in finite-size systems with a finite probability [31]. To
understand how the CIM state evolves with the landscape
annealing process, we need to understand the changes in
the energy landscape as the gain increases.
This type of question has been extensively investigated

for simulated annealing and quantum annealing, especially
with purely random instances. In the former case, we
generally observe a phase transition from the paramagnetic
phase to the spin-glass phase as we cool down the system
[32]. In the spin-glass phase, free energies of different
thermodynamic states are generally crossing successively,
and the low free energy states at two slightly different
temperatures can be dramatically different [33–35]. This
phenomenon, known as temperature chaos, is related to
exponentially long thermalization times in the system size
[36], which can dramatically slow down simulated
annealing or parallel tempering algorithms that attempt
to find low-energy states. Interestingly, for the SK model,
an efficient message-passing algorithm [37] was derived to
find low-energy states, though the time it takes to find a
low-energy state is thought to diverge as the fractional
energy gap of that state relative to the ground state goes
to 0. The goal of our paper is not to find the best possible
algorithm for the SK spin glass but rather to understand
how an unconventional physical computing device solves
this problem.
Quantum annealing via a transverse magnetic field

exhibits similar level crossing properties [26]; it undergoes
a phase transition from a quantum paramagnetic phase to a
spin-glass or many-body localized phase as the transverse
field is reduced [38]. In systems with local interactions,
energy level crossings of low-energy states occur in the
localized phase, and it takes exponential time in system size
to follow the ground state due to the small overlap of those

localized states [39,40] (see Ref. [41] for reviews on
this topic.)
To our knowledge, such analysis has not been applied to

soft-spin networks and hardware like the coherent Ising
machine. In this paper, we focus on purely random instances,
corresponding in the Ising setting to the SK spin glass [32],
andwe examine phase transitions in the geometry of the CIM
energy landscape. We discover significant phase transitions
in the energy landscape aswell as evidence for potential level
crossings within a particular phase. Furthermore, we dem-
onstrate that these phase transitions are intimately tied to the
annealing schedule and optimization performance. In addi-
tion to contributing to a type of baseline theory that can
eventually be used to study the impact of increasingly
quantum OPO behavior in CIM-type architectures, our
analysis may also be useful for exploring the potential utility
of nondegenerate oscillatoryOPOdynamics [42] for evading
landscape obstacles within the QUBO setting (see Sec. X).
Such studieswill be the subject of futurework, but our results
here provide essential foundations.
The structure of this paper is as follows: After discussing

how our work on CIM theory connects with statistical
physics results based on related technical approaches, we
review in Sec. II the classical formulation of the CIM as a
soft-spin network as well as the structure of the energy
landscape in both the small- and large-gain regimes, in the
case of random connectivity matrices corresponding to the
SK spin glass. We furthermore derive a theory delineating
the dependence of the curvature of the landscape, quanti-
fied through the Hessian eigenspectrum, on where one is
located in the landscape. This dependence is critical in all
following sections, given the CIM energy landscape pos-
sesses no special symmetries. In Sec. III, we demonstrate
numerically that the CIM performs well in finding a near-
ground-state solution of the SK spin glass, using an optimal
annealing schedule for the laser gain that we derive using
our subsequent landscape analysis; it significantly outper-
forms a spectral algorithm and finds a solution that is within
about 1% of the true intensive ground-state energy [43].
In Sec. IV, we begin our geometric landscape annealing

analysis by performing a supersymmetry-breaking replica
calculation to derive detailed predictions about the structure
and organization of critical points of the CIM energy
landscape and how it evolves as the laser gain is increased.
The detailed derivation of the result in this section can be
found in Appendix A. In Sec. V, we rederive these results
by developing a novel supersymmetry (SUSY)-breaking
cavity method, thereby providing considerable geometric
insight into the meaning of SUSY breaking in terms of
extreme landscape reactivity to external perturbations.
Readers who are more interested in the implications of
our work for CIM performance, rather than general theory
about landscape geometry, can skip the technical details of
this cavity derivation. In Sec. VI, we further analyze our
replica and cavity theory predictions and compare them to
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numerical explorations of the CIM energy landscape,
finding an excellent match between theory and numerical
experiments. In Sec. VII, we derive a supersymmetric but
full replica symmetry-breaking theory of global minima of
the CIM energy landscape and further confirm the pre-
dictions of this theory in numerical experiments. Together,
Secs. VI and VII provide matching theory and experiments
for the typical energy, distance from the origin, and Hessian
eigenspectra of saddle points, local minima, and global
minima as a function of laser gain and reveal a sequence of
important phase transitions in the landscape geometry
which we summarize in a phase diagram in Sec. VIII.
In Sec. IX, we relate the phase transitions in the land-

scape geometry to the performance of the CIM as a function
of the annealing schedule and explain how these phase
transitions suggest the optimal annealing schedule
employed earlier in Sec. III to obtain good CIM perfor-
mance for the SK spin glass. We end with a discussion and
future directions in Sec. X. Finally, we provide self-
contained derivations in Appendix A, as well as detailed
explanations of our numerical experiments in Appendix B.
Readers unfamiliar with the spin-glass theory may consult
Ref. [44], where we provide detailed step-by-step deriva-
tions for pedagogical purposes.

B. Review of theory of random landscapes

The fundamental problem of understanding how the
high-dimensional geometry of even the classical CIM
energy landscape evolves with increasing laser gain poses
several interesting challenges from the perspective of
random landscape theory, which has a rich history involv-
ing the analysis of several models, including, for example,
Thouless-Anderson-Palmer (TAP) free energy landscapes
[45–54], random Gaussian fields [55–59], and spherical
spin glasses [60–69]. Here, we situate our work within this
prior context.
To describe the evolving CIM landscape geometry, we

seek to describe changes in the number, location, energy,
Hessian eigenspectrum, and local susceptibility of various
critical points, including typical saddle points, local min-
ima, and global minima. We apply a combination of the
Kac-Rice method [55,70], replica theory [32], random
matrix theory [71], and supersymmetry [49,51,62,72–76]
to derive an analytic theory of the organization of critical
points in the CIM energy landscape as a function of laser
gain. Prior theoretical studies of the geometry of critical
points in continuous high-dimensional random landscapes
focused on simplified settings in which symmetry played a
crucial role in carrying forward calculations. For example,
in the case of random Gaussian fields [55–59] and spherical
spin glasses [60–69], translational and spherical symmetry,
respectively, were crucial. The reason symmetry has greatly
simplified past calculations is that, as we see below, the
combination of the Kac-Rice and replica methods require
an analysis of how the Hessian eigenspectrum of the energy

landscape depends on the location x within the landscape.
When strong translational or spherical symmetries are
present, the Hessian eigenspectrum becomes independent
of location and the problem of computing properties of
critical points can be reduced to computing properties of
the spectrum of a single random Hessian matrix. The TAP
free energy landscape, on the other hand, does not possess
such simple symmetries but does have a nongeneric
property, namely, that the Hessian eigenspectrum of typical
critical points has a bulk that is gapped away from the
origin, apart from a single zero eigenvalue [47,51], which
again simplifies certain analyses as described below.
In contrast, as we see below, the CIM energy landscape

possesses neither translational nor spherical symmetry, and
its Hessian eigenspectra extend continuously to zero, even
for local minima. All of this necessitates a more involved
analysis of the relationship between the Hessian eigens-
pectra of critical points and their location in the CIM energy
landscape. One of the contributions of this article from the
perspective of random landscape theory is to provide an
analysis of how the Hessian eigenspectrum depends on
location in a scenario in which no strong symmetries are
present. Intriguingly, in the case of the CIM, we find a
simple connection from location to Hessian eigenspectrum
through Dyson’s Brownian motion [77]. We furthermore
provide a framework for incorporating this dependence into
the combined Kac-Rice and replica methods to analytically
derive the organization of critical points in the CIM energy
landscape for arbitrary laser gains. Such a framework could
be broadly useful for other random landscape problems.
Our work also sheds new light on the geometric meaning

of SUSY breaking, which is one approach to analyzing
random landscape geometries [49,51,62,72–76]. The rea-
son SUSY can emerge in random landscape analysis is that
the Kac-Rice formula can be expressed in terms of a
partition function integral over bosonic degrees of freedom
related to the location x as well as fermionic degrees of
freedom, which, when integrated alone, yield the determi-
nant of the Hessian of the energy landscape. This integral
possesses a SUSY that exchanges bosonic and fermionic
degrees of freedom. When the integral is computed via the
saddle point method, the correct saddle point can some-
times break SUSY and, therefore, yield nonzero SUSY-
breaking order parameters. Given the abstract nature of this
calculation, the fundamental geometric meaning of SUSY
breaking and the resultant nonzero order parameters has
often remained mysterious in general settings.
Prior work has derived geometric interpretations of

SUSY breaking in limited settings [54] using modifications
of the cavity method [51,76] that take into account the
possibility that critical points may have Hessian eigens-
pectra with a single zero mode corresponding to a single
flat direction in the energy landscape, with the rest of the
bulk spectrum gapped away from the origin. Indeed,
Ref. [54] showed that the presence of this single flat
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direction indicates SUSY breaking, and the SUSY-breaking
order parameters for local minima are related to the inner
product between the location of the minimum and the flat
direction. This analysis suffices for the TAP free energy
landscape of the SKmodel, which is known to have such an
isolated single flat direction, or soft mode, around local
minima [47,51]. However, as we see below, this is not the
case for the CIM energy landscape, in which typical critical
points can have a continuous Hessian spectral density
extending to 0, indicating an extensive number of near-
flat directions about such critical points.
Another main contribution of our work is to not only

derive the properties of critical points using the Kac-Rice
formula combined with the SUSY-breaking replica method,
but also derive a generalized cavity method for the SUSY-
breaking phase. We demonstrate that the generalized cavity
and SUSY-breaking replica methods yield identical results,
but our novel general cavity method yields important geo-
metric insights into the meaning of SUSY breaking in more
general scenarios than previously derived. Importantly,
unlike prior work, our cavity method can handle Hessian
eigenspectra whose spectral density extends continuously to
zero, indicating a critical point that is marginally stable, with
extensively many soft modes, corresponding to the small
eigenvalues. These soft modes are highly susceptible to
perturbations of the landscape.Our cavitymethod shows that
SUSYbreaking coincides with the presence of exponentially
many such marginally stable, soft critical points with high
susceptibility to perturbations. In such a scenario, a small
change in the landscape can induce bifurcations in these
exponentiallymany critical points, resulting in exponentially
more or fewer critical points. Moreover, we show that the
nonzero SUSY-breaking order parameters quantitatively
reflect the exponential reactivity of the number of critical
points of the energy landscape to specific perturbations.
Thus, our work provides a new, general, and quantitative
geometric interpretation of SUSY breaking in terms of the
extreme reactivity of the landscape stemming from expo-
nentially many marginally stable critical points.
Thus, overall, we see that the general analysis of a physical

analog computing device for solving random discrete com-
binatorial optimization problems, even in the classical limit,
yields an incredibly rich theoretical picture that interfaces
with numerous branches of physics andmathematics, includ-
ing the replica method, the cavity method, supersymmetry
breaking, random matrix theory, Dyson’s Brownian motion,
and the geometry of random landscapes. This rich picture
serves as an interesting foundational baseline for analyzing
how the classical to quantum transition may aid in optimi-
zation, in a physically implementable device.

II. THE OVERVIEW OF THE CIM AND ITS
ADIABATIC EVOLUTION

Our fundamental problem of interest is to find ground
states of the Ising energy function, given by

EIsingðsÞ ¼
1

2

XN
i;j¼1

Jijsisj; ð1Þ

where each si ¼ �1 is a binary spin. The reason for this is
that many optimization problems can be cast as Ising
optimization problems for a given choice of spin connec-
tivity Jij [17]. However, we focus, in particular, on one
generic ensemble of optimization problems in which Jij are
chosen to be independent identically distributed (i.i.d.) zero
mean random Gaussian variables with variance 1=N. This
is known as the Sherrington-Kirkpatrick spin glass [32].

A. A model of the coherent Ising machine

We consider a model of the CIM as a network of N soft
spins, each of which is described by a scalar xi ∈R
(i ¼ 1; 2;…; N), corresponding to the x quadrature of a
degenerate OPO. The total energy of the network is given by

EtotðxÞ ¼
XN
i¼1

EIðxiÞ þ
1

2

XN
i;j¼1

Jijxixj; ð2Þ

where EIðxÞ is a single-site energy function governing the
dynamics of a single OPO and Jij reflects the symmetric
network connectivity between the OPOs.
While many of our derivations apply to arbitrary internal

energy functions EIðxÞ that are bounded from below, we
focus our comparisons to numerics using the particular
internal energy function

EIðxÞ ¼
1

4
x4 −

a
2
x2; ð3Þ

which governs the dynamics of each individual OPO in the
CIM. Here, a is an important effective laser gain parameter
that controls the overall shape of the internal energy of
individual OPOs. Note that a reflects a balancing between
the linear dissipation and the gain of the CIM system.
Therefore, it can be negative when the dissipation is
stronger. For a < 0, EIðxÞ is convex with a single minimum
at x ¼ 0. But, as a increases beyond 0 to become positive,
the single OPO energy landscape undergoes a pitchfork
bifurcation wherein the minimum at x ¼ 0 becomes a local
maximum and two new minima appear at x ¼ � ffiffiffi

a
p

, both
with energy EI ¼ − 1

4
a2. This corresponds to a symmetric

double-well potential in which the wells move further out
and become deeper and sharper as a increases, leading to
stronger confinement of the soft spins around x ¼ � ffiffiffi

a
p

.
The simplified dynamics of the CIM at zero temperature

and fixed gain a can be described as gradient descent
dynamics [12,27]

τ
dxi
dt

¼ −
dEtotðxÞ

dxi
: ð4Þ
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We work in units of time in which the intrinsic CIM
timescale τ ¼ 1. The CIM is typically operated by
annealing the gain a as follows [11]. First, the gain
parameter a is large and negative, so that the initial CIM
state is prepared near the origin x ¼ 0, corresponding to all
OPOs approximately in their vacuum state. Then, the gain
a is slowly increased over time, while the OPOs simulta-
neously undergo their natural gradient descent dynamics in
Eq. (4). Finally, at a large enough gain a, the OPO states xi
are measured and their signs si ¼ sgnxi are interpreted as a
binary spin configuration, which ideally would achieve a
very low Ising energy in the original Ising energy mini-
mization problem of interest in Eq. (1).
This typical annealing of the gain a leads to several

questions. First, how and why does annealing a lead to a
final answer with low Ising energy? Second, what deter-
mines a good annealing schedule, and at what value of a
should we stop annealing? In this work, we take a high-
dimensional geometric perspective to these questions, by
seeking to understand the changing structure of EtotðxÞ in
Eq. (2) as a increases.
In particular, as a increases, a sequence of bifurcations in

the geometry of the high-dimensional energy landscape
EtotðxÞ takes place. In each such bifurcation, new critical
points [i.e., points where the gradient∇EtotðxÞ vanishes] are
either created or destroyed. Additionally, at bifurcations, the
index of a critical point can change, where the index is
defined to be the number of negative eigenvalues of the
Hessian matrix of second derivatives of EtotðxÞ, evaluated at
the critical point. We seek to understand, at each value of a,
the high-dimensional geometry of EtotðxÞ by analyzing
where critical points of a given index lie in terms of their
typical energies and their typical locations in x space. An
elucidation of this changing high-dimensional geometry
provides insights into the functional optimization advantage
gained byannealing the laser gain in theCIM.Furthermore, it
suggests properties of good annealing schedules for a.

B. Energy landscape geometry at extremal gains

As a warmup to understanding the high-dimensional
geometry of EtotðxÞ for arbitrary a, we first focus on two
extremal regimes: small a ≪ 0 and large a ≫ 0.

1. The small laser gain regime: The CIM computes a
spectral approximation to the Ising problem

For a ≪ 0, we expect the energy landscape to be convex,
with the only minimum occurring at x ¼ 0. As a increases,
the landscape first becomes nonconvex, by definition, when
the Hessian matrix HðxÞ at any location x first acquires a
negative eigenvalue. The elements of this N by N Hessian
matrix are given by

HðxÞij ¼
∂
2Etot

∂xi∂xj
¼ HIðxÞij þ Jij; ð5Þ

where

HIðxÞij ¼ ∂
2EIðxiÞδij ð6Þ

is the diagonal contribution to the Hessian coming from the
internal single-site OPO energy function EIðxÞ alone. To
determine both the smallest a and the location x at which
the first negative eigenvalue of HðxÞ can occur, we lower
bound the eigenvalues of HðxÞ for all x as follows.
First, note that, since HðxÞ ¼ HIðxÞ þ J and the mini-

mum eigenvalue λmin of a symmetric matrix is a concave
function of its matrix elements, we have, by Jensen’s
inequality,

λmin½HðxÞ� ≥ λminðHIÞ þ λminðJÞ
¼ min

i
∂
2EIðxiÞ þ λminðJÞ

¼ min
i
3x2i − aþ λminðJÞ: ð7Þ

In the last line, we use the specific form of the single OPO
energy function in Eq. (3). Then, a sufficient condition for
λmin½HðxÞ� to be non-negative is that its lower bound (7) is
also non-negative. This yields the sufficient (but not
necessary) condition that if a ≤ mini 3x2i þ λminðJÞ at
any spin configuration x, then EtotðxÞ is convex at x.
The contrapositive then implies that if EtotðxÞ violates
convexity at any fixed location x, because the Hessian
obeys λmin½HðxÞ� < 0, then we must have a > mini 3x2iþ
λminðJÞ. This is a necessary (but not sufficient) condition for
EtotðxÞ to be nonconvex at x.
As a increases, this inequality is first satisfied at the

origin x ¼ 0, yielding the result that the origin is the first
place where the Hessian HðxÞ acquires a negative eigen-
value. Moreover, this occurs when a crosses λminðJÞ. Since
the Hessian at the origin is simply Hð0Þ ¼ −aI þ J, the
associated eigenvector of this Hessian is simply the
minimal eigenvector vmin of J which solves the variational
problem

vmin ¼ argminfvjvTv¼1gvTJv: ð8Þ

As a increases beyond λminðJÞ, the first nonconvex behav-
ior of EtotðxÞ is a pitchfork bifurcation where the minimum
at x ¼ 0 becomes an index 1 saddle with a single negative
curvature direction along vmin and two new minima
appearing that are closely aligned to �vmin. If one simply
computes the signs of the spin configuration x in these
minima, then one obtains an Ising configuration given by
si ¼ sgnðvminÞ, where vmin is the solution to Eq. (8). This is
known as the spectral approximation to the Ising energy
minimization problem in Eq. (1). Thus, for small a just
above λminðJÞ, the CIM computes the spectral approxima-
tion. We see below that increasing a can improve upon this
spectral solution by finding Ising spin configurations with
energy lower than that of the spectral solution.
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In summary, our analysis above yields the following
picture. For any fixed value of a, EtotðxÞ can be only
nonconvex in the region obeying mini 3x2i < a − λminðJÞ
(a necessary condition for nonconvexity). Contrapositively,
if mini 3x2i ≥ a − λminðJÞ, then EtotðxÞ must be convex at x
(a sufficient condition for convexity).

2. The large laser gain regime: The CIM global minimum
coincides with the Ising global minimum

In the absence of the connectivity J, theN spins decouple
and the energy landscape of Eqs. (2) and (3) has 3N critical
points given by

xi ¼
ffiffiffi
a

p
si; where si ∈ f−1; 0;þ1g: ð9Þ

Thus, in the absence of connectivity J, the scale of the soft
spins xi grows as the square root of gain a. If we work with
rescaled variables x0i ≔ a−1=2xi which remain Oð1Þ as a
becomes large, the total energy in Eqs. (2) and (3) can be
written as

a−2Etot ¼
X
i

1

4
x04i −

1

2
x02i þ 1

2a

X
i;j

Jijx0ix
0
j: ð10Þ

This shows that, for large a ≫ λmaxðJÞ, the effect of the
connectivity J on the geometry of the energy landscape can
be treated as a weak perturbation of the decoupled land-
scape in which J ¼ 0. Therefore, it is useful to first
understand this simple decoupled energy landscape.
In this landscape with 3N critical points given by Eq. (9),

the Hessian matrixH of each critical point is diagonal, with
each diagonal element either (i) taking the value −a for
every “uncommitted” spin sitting at the saddle point xi ¼ 0
of the double-well potential in Eq. (3) or (ii) taking the
value 2a for every “committed” spin sitting at a minimum
xi ¼ � ffiffiffi

a
p

of the double-well potential. Thus, the intensive
index r of each critical point, defined as the fraction of
negative eigenvalues of H, simply corresponds to the
fraction of uncommitted spins in the critical point. Since
each uncommitted (committed) spin contributes internal
energy EI ¼ 0 (EI ¼ − 1

4
a2) in Eq. (3), the energy of every

critical point is determined by its index r via

Etot ¼ −
N
4
ð1 − rÞa2: ð11Þ

Thus, a saddle point’s energy decreases linearly with
its index.
However, the introduction of the connectivity J breaks

the energy degeneracy between all critical points of the
same index. Applying perturbation theory in the small
parameter 1=a to Eq. (10) shows that each critical point of
the decoupled landscape in Eq. (9) moves to

xi ¼
ffiffiffi
a

p
si − ð3s2i − 1Þ−1a−1=2h0i þOða−3=2Þ; ð12Þ

where h0i ¼
P

j Jijsj is the field on spin i before the
perturbation. Inserting Eq. (12) into Eqs. (2) and (3) shows
that the energy of each critical point at large a is given by

Etot ¼ −
N
4
ð1 − rÞa2 þ a

2

X
i;j

Jijsisj þOða0Þ: ð13Þ

Thus, to leading order in a, the term breaking the
degeneracy of critical points in the decoupled landscape
is proportional to the Ising energy in Eq. (1). This implies
that, at large a, the sign configuration of the global
minimum of the CIM energy function in Eqs. (2) and
(3) is equal to that of the global minimum of the Ising
energy function in Eq. (1).
Additionally, the Hessian HðxÞ in Eq. (5) at a critical

point x in Eq. (12) takes the form H ¼ HIðxÞ þ J, where
HIðxÞ is diagonal with elements

HI
ii ¼

�
2a − 3h0i þOð1=aÞ for si ¼ �1;

−aþOð1=aÞ for si ¼ 0:
ð14Þ

The eigenvalue spectrum of this Hessian, in the case where
J is the randomGaussian connectivity of the SKmodel, can
be understood using the random matrix theory of the next
subsection, which also forms a basis for many subsequent
analyses.

C. A theory of Hessian eigenspectra in the CIM with an
SK spin-glass connectivity

The eigenvalue distribution of the Hessian HðxÞ in
Eqs. (5) and (6) plays a key role in this work. Here, we
provide a theory for the spectrum of HðxÞ, at any spin
configuration x, when Jij is a rotationally invariant
symmetric Wigner random matrix with i.i.d. elements
distributed as

Jij ¼ Jji ∼
�
N ð0; g2=NÞ for i ≠ j

N ð0; 2g2=NÞ for i ¼ j;
ð15Þ

where N ðμ; σ2Þ denotes a Gaussian distribution with mean
μ and variance σ2. This connectivity corresponds to the SK
spin glass in Eq. (1). Because of the fundamental impor-
tance of the eigenvalue distribution of HðxÞ in under-
standing the high-dimensional geometry of the CIM energy
landscape, we discuss this spectral distribution in the next
two subsections in two different ways: first, in a conceptual
way, as the outcome of a Dyson’s Brownian motion with
initial condition determined by x and, second, in a computa-
tionally tractable manner in terms of a self-consistent
formula involving the resolvent of HðxÞ. Finally, in the
third subsection, we apply this random matrix theory
to analytically calculate the Hessian eigenspectra of CIM
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critical points at large a and verify our formula by
comparing to numerics. In the following, we set the
connectivity variance parameter g in Eq. (15) to 1 without
loss of generality, because the case of g ≠ 1 can be reduced
to g ¼ 1 through the rescaling x →

ffiffiffi
g

p
x and a → ga. Note

that, for g ¼ 1, the eigenvalue spectrum of J follows the
well-known Wigner semicircular law with minimum
and maximum eigenvalues given by λminðJÞ ≈ −2 and
λmaxðJÞ ≈þ2 [78], respectively.

1. From the distribution of spins to Hessian eigenspectra
through Dyson’s Brownian motion

Now, at any spin configuration x for which the diagonal
elements HI

iiðxiÞ ¼ ∂
2EIðxiÞ are large relative to the ele-

ments of Jij, one can compute the eigenvalues of HðxÞ
through first-order perturbation theory, treating J as per-
turbation to HI in Eq. (5). This yields an approximate
expression for the eigenvalues λi of HðxÞ given by

λi ¼ HI
ii þ Jii þ

X
j≠i

J2ij
HI

ii −HI
ij
: ð16Þ

This expression is applicable, for example, when x corre-
sponds to a critical point of the CIM energy landscape at
large a, where each xi in Eq. (12) isOð ffiffiffi

a
p Þ, and, therefore,

each HI
ii in Eq. (14) is OðaÞ.

However, at smaller a, when critical points are closer to
the origin, the perturbative expression in Eq. (16) may not
be accurate. One can go beyond this perturbation theory by
exploiting the fact thatHðxÞ is the sum of a fixed matrixHI

and a Wigner matrix. This sum can be thought of as the
outcome of a white-noise-driven diffusion process in the
space symmetric matrices running from time t ¼ 0 to t ¼ g
starting from the initial condition HIðxÞ and ending at
HðxÞ. This diffusion process on symmetric matrices, in
turn, induces the well-known Dyson’s Brownian motion on
the corresponding eigenvalues [71,77], described by the
stochastic differential equation

dλi ¼
ffiffiffiffi
2

N

r
dWii þ

1

N

X
j≠i

dt
λi − λj

; ð17Þ

where dWii is a standard white noise process. This
stochastic evolution has a physical interpretation in which
each λi can be thought of as a Coulomb charge in the
complex plane, confined to the real axis, feeling a deter-
ministic, repulsive 2D Coulomb force from all the other
charges λj, in addition to an independent stochastic drive. If
this Brownian motion is initialized at t ¼ 0 so that λið0Þ ¼
HI

iiðxiÞ and is run up to time t ¼ g, then the resulting
eigenvalue distribution

ρHðλÞ≡ 1

N

XN
i¼1

δ½λ − λiðgÞ� ð18Þ

will, at large N, converge to the eigenvalue distribution of
HðxÞ in Eq. (5) with Jij distributed as in Eq. (15).
Thus, Dyson’s Brownian motion provides an elegant and

intuitive understanding of the relationship between a spin
configuration x and the eigenvalue distribution of the
Hessian HðxÞ: Simply initialize a set of N charges at
the positions HI

ii ¼ ∂
2EIðxiÞ and allow them to diffuse

under Eq. (17) for a time g. However, this does not by itself
provide an analytic method for computing the final out-
come of the diffusion in Eq. (18).

2. From the distribution of spins to the Hessian
eigenspectra through the resolvent

In Appendix A, we provide a calculation of the Hessian
eigenspectrum ρHðλÞ of HðxÞ as a function of the distri-
bution of spins at x, defined as

PxðxÞ≡ 1

N

XN
i¼1

δðx − xiÞ: ð19Þ

Our replica calculation yields a self-consistent equation for
the resolvent of HðxÞ. A more detailed step-by-step
derivation can be found in Ref. [44]. In general, the
resolvent of any N-by-N symmetric matrix H is defined as

RðzÞ ¼ 1

N
Tr

1

H − z
; ð20Þ

where z∈C is a complex scalar. One can recover the
eigenvalue density ρHðλÞ from the resolvent RðzÞ via the
inversion formula

ρHðλÞ ¼ lim
ε→0þ

Rðλ − iεÞ − Rðλþ iεÞ
2πi

: ð21Þ

For HðxÞ, our replica-based self-consistent equation for its
resolvent, when g ¼ 1, is given by (see Ref. [44], Sec. A,
for a derivation)

RðzÞ ¼
Z

PxðxÞ
∂
2EIðxÞ − z − RðzÞ dx; ð22Þ

where PxðxÞ is the distribution of spins in Eq. (19). This
result agrees with Pastur’s self-consistent equation for the
resolvent of the sum of a fixed matrix and a Wigner
matrix [79].
Thus, we obtain a simple calculational framework to

obtain the Hessian eigenspectrum at any spin configuration
x: (i) Insert the distribution of spins PxðxÞ in Eq. (19) into
the self-consistent equation for the resolvent RðzÞ in
Eq. (22), (ii) solve this equation to find RðzÞ, and (iii) insert
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this solution into the inversion formula in Eq. (21) to obtain
the Hessian eigenvalue distribution ρHðλÞ. The result will
be equivalent to the distribution in Eq. (18) at time t ¼ 1
obtained by running Dyson’s Brownian motion in Eq. (17)
starting from the initial distribution of HI

ii induced by the
distribution of PxðxÞ under the map x → ∂

2EIðxÞ.

3. Hessian eigenspectra of critical points at laser gain

Given this random matrix theory, we now return to the
large-gain regime in Sec. II B 2 to compute the Hessian
eigenspectra of critical points of the form in Eq. (12). In a
typical index r critical point, a fraction r of the spins (before
the perturbation by J) take the uncommitted value si ¼ 0,
while the remaining fraction 1 − r takes the committed
values si ¼ �1 with equal probability. Moreover, the field
h0i ¼

P
j Jijsj in Eq. (12), which perturbs the critical point

after introducing the SK connectivity in Eq. (15), is, at large
N, a zero mean Gaussian random variable with variance
(1 − r), originating from the fraction 1 − r of nonzero
committed spins. Thus, the distribution of the diagonal
elements in HIðxÞ in Eq. (14) is given by

pHIðhÞ ¼ rδðhþ aÞ þ ð1 − rÞN ½2a; 9ð1 − rÞ�: ð23Þ

This corresponds to a mixture of a δ function at −a with
weight r coming from the uncommitted spins and aGaussian
centered at 2awith weight 1 − r coming from the committed
spins. The variance of 9ð1 − rÞ arises from the amplification
of h0i by a factor of 3 in Eq. (14).
This initial distribution then undergoes Dyson’s

Brownian motion in Eq. (17) to yield the full distribution
ρHðλÞ of HðxÞ. Alternatively, we can make the change of
variables from x to h ¼ ∂

2EIðxÞ in Eq. (22) to obtain a self-
consistent equation RHðzÞ in terms of pHIðhÞ:

RðzÞ ¼
Z

pHIðhÞ
h − z − RðzÞ dh: ð24Þ

We can then solve this equation (numerically) and insert the
solution into Eq. (21) to obtain ρHðλÞ.
We calculate the Hessian eigenspectrum in this fashion

both for typical critical points with index r ¼ 1=3 and for
typical minima with index r ¼ 0, finding an excellent
match with direct numerical searches for such critical
points at a finite system size of N ¼ 103 and at large laser
gain a ¼ 9 (Fig. 1). Some features of the outcome of
Dyson’s Brownian motion in going from pHIðhÞ in Eq. (23)
to ρHðλÞ are readily apparent in Fig. 1. For example, at large
a for a typical critical point with index r ¼ 1=3, the charges
start in two far apart clumps in Eq. (23), with a delta
function at −a and a Gaussian at 2a. Thus, these two distant
charge clumps do not interact strongly with each other in
the diffusion. However, each clump itself expands under
the repulsive diffusion. The delta function expands into a

Wigner semicircle, still centered at −a, while the Gaussian
expands a bit more, largely retaining its shape and
remaining centered at 2a (Fig. 1, top).

III. THE PERFORMANCE OF GEOMETRIC
LANDSCAPE ANNEALING FOR THE SK SPIN

GLASS

We have seen in Sec. II B 1 that, at small gains a just
above λminðJÞ, the CIM global minimum computes the
spectral solution in Eq. (8), which is not of direct interest.
On the other hand, in Sec. II B 2, at large gain a ≫ λmaxðJÞ,
we have seen that the CIM global minimum computes the
Ising energy minimization, which is of direct interest.
However, our analysis of the energy landscape at large
laser gain in Sec. II B 2 reveals a complex landscape with
exponentially many local minima and saddle points of all
indices. Thus, direct gradient descent in the large laser gain
energy landscape of the CIM is unlikely to find the CIM
global minimum (as we verify below in Sec. IX). Therefore,
to understand how the CIM solves optimization problems
by annealing the laser gain, a key first step is to understand
how the geometry of the landscape changes from small to
large gain.
In particular, we would like to understand, in general,

how the first local minimum to occur, which is aligned
along the lowest eigenvector vmin in Eq. (8), changes as the
laser gain is increased. There are several possibilities.
The first is that this local minimum is continuously

connected to one of the CIM global minima as we increase
the gain to large values. In this case, annealing will find the
global minimum. The second possibility is that the first

FIG. 1. Distribution of spins, Hessian diagonal elements, and
Hessian spectrum. The upper (or lower) panels showcase the
distribution of OPO amplitudes x (left), Hessian diagonal
elements (middle), and Hessian eigenvalues (right) corresponding
to a typical critical point (or a typical local minimum) with a large
gain a ¼ 9. The empirical distributions portrayed as blue histo-
grams are obtained with a system size of N ¼ 103. The orange
curves in the left and middle figures are obtained with the
perturbation theory in Eqs. (12) and (14). The distributions of
Hessian diagonal elements in the middle panels diffuse via
Dyson’s Brownian motion in Eq. (17) to generate the Hessian
eigenspectrum in the right panels. The orange curves in the right
panel are obtained from solutions of Eq. (24).
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local minimum to appear as the gain increases is contin-
uously connected to a higher-energy CIM local minimum at
large gain. In this case, annealing will not find the CIM
global minimum. A third possibility is that this first
minimum may disappear through a saddle-node bifurcation
and then slowly annealed gradient descent will flow to
another nearby minimum, which, in turn, can exhibit these
same three possibilities.
It is an exceedingly difficult problem to analytically

predict, in advance of geometric landscape annealing,
which of these possibilities will occur for any large, fixed
connectivity matrix J. One would have to map out the
entire bifurcation structure of critical points as a increases.
Moreover, one would have to analytically derive the CIM
ground-state energy for that connectivity J at large a and
compare it to the energy of all critical points that are
continuously connected through bifurcations to the first
minimum to appear along vmin near the origin. All of this is
more complex than simply performing geometric landscape
annealing itself.
We circumvent these difficulties by not analyzing any

fixed connectivity J but rather analyzing typical CIM
behavior in random Gaussian connectivities J in
Eq. (15) corresponding to an SK spin glass. For this
problem, we can use techniques from the statistical
mechanics of quenched disorder to analytically calculate
the CIM ground-state energy at arbitrary laser gain a, as
well as the location, Hessian eigenstructure, and energy
levels of critical points of any index. We can compare these
quantities to numerical simulations of geometric landscape
annealing to provide insights into its operation.
First, we assess the performance of CIM geometric

landscape annealing as we increase the laser gain a. We
perform numerical simulations of geometric landscape
annealing with several system sizes N by the integration
of Eq. (4). During the integration, we slowly increase the
gain parameter a starting from λminðJÞ to achieve the best
performance for each system size N. In Fig. 2, the blue dots
represent the medians of the final Ising energy obtained by
the simulations with several instances, and the blue dotted
line is the linear regressionof thosepoints againstN−2=3. This
scaling comes from the finite-size scaling of the SK model’s
ground-state energy [80,81]. The y intercept of this blue line
represents the reachable lowest energy by the annealing
dynamics in the large-N limit.We call this energyEanneal. The
horizontal red dotted line is the theoretically obtained
ground-state energy Eg ∼ −0.763 in the large-N limit
[82,83], and the horizontal green dashed line is the energy
obtained from the Ising spin configuration by rounding the
principal eigenvector, which yields the known value Esp ¼
−2=π [37]. We can see that the energy Eanneal ∼ −0.75
obtained by the annealing process in the large-N limit is
much lower than Esp. This means that the first minimum to
appear along the eigenvector vmin must undergomultiple sign
flips as a increases.

Remarkably, these bifurcations substantially lower the
Ising energy found by the CIM, making it very close to the
actual ground-state Ising energy of the SKmodel, as reported
numerically in a previous work [31]. In the remainder of this
paper, we study the changing geometry of the CIM energy
landscape to understand how geometric annealing of this
landscape empowers the performance of the CIM in finding
low Ising energy solutions.

IV. THE EVOLVING ENERGY LANDSCAPE
GEOMETRY

To address the questions raised above, we first analyti-
cally derive a formula for the typical number N ðr; ejJÞ of
critical points of a given intensive index r and energy e. In
order to average over the connectivity J, we work with the
complexity Σðr; ejJÞ of critical points, which is defined via
the relation

N ðr; ejJÞ ¼ eNΣðr;ejJÞ: ð25Þ

This complexity can be formally written as a sum over all
critical points:

Σðr; ejJÞ ¼ 1

N
log

X
α∈CrtðEÞ

δ½IðxαÞ − r�δ½EðxαÞ − e�; ð26Þ

FIG. 2. Ising energy of the final state obtained by the annealing
process for random instances. We simulate the annealing process
of the soft-spin network with many instances for each system size
N and plot the medians as blue dots. The blue dotted line is the
linear regression against N−2=3. This scaling comes from the SK
model’s finite scaling [80,81]. The y intercept of this line
represents the reachable lowest Ising energy by the dynamics
under the large-N limit. The horizontal red dotted line is the SK
model’s ground-state energy in the large-N limit Eg ∼ −0.763.
The horizontal green dashed line is Esp ¼ −2=π, the energy of
spin configuration obtained by rounding the principal eigenvector
of J. The annealing schedule used here is given by Eq. (81) with
τ ¼ 102, amax ¼ 0.0, and að0Þ ¼ λmin. The number of sampled
instances is 300, 300, 100, 100, 20, and 5 for N ¼ 102, 3 × 102,
103, 3 × 103, and 104, respectively.
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where EðxÞ ¼ ð1=NÞEtotðxÞ is the intensive energy and
CrtðEÞ denotes the set of all critical points of EðxÞ.
Unlike the potentially exponentially large number

N ðr; ejJÞ itself, which could fluctuate across random
samples of J, we expect the complexity function Σðr; ejJÞ
to be self-averagingwith respect to J. Thismeans that typical
values of Σðr; ejJÞ for random samples of J concentrate
closely around the sample average Σðr; eÞ≡ hΣðr; ejJÞiJ,
where h·iJ denotes an average over J. Furthermore, in order
to compute this sample-averaged complexityΣðr; eÞ, we first
compute the sample average of the grand potentialΩðβ; μjJÞ,
defined as

−βΩðβ; μjJÞ ¼ 1

N
log

X
α∈CrtðEÞ

e−βEðxαÞþμIðxαÞ; ð27Þ

where IðxαÞ∈ ½0; 1� denotes the intensive index of the
critical point xα, i.e., IðxαÞ ¼ IðxαÞ=N. If one can
compute the sample-averaged grand potential Ωðβ; μÞ≡
hΩðβ; μjJÞiJ, then one can recover the average complexity
Σðe; rÞ via Legendre transform:

Σðe; rÞ ¼ infβ;μ ½βe − μr − βΩðβ; μÞ�: ð28Þ

Here, the effective inverse temperatureβ andenergydensitye
form a Legendre dual pair, as do the chemical potential μ and
the intensive index r. Indeed, the typical values of e and r that
dominate in the sum in Eq. (27) are those that achieve the
infimum in Eq. (28). If the infimum does not occur at a
boundary, the typical e and r are related to β and μ through

e ¼ ∂

∂β
½βΩðβ; μÞ�; r ¼ −

∂

∂μ
½βΩðβ; μÞ�: ð29Þ

Finally, we compute the sample-averaged grand potential
Ωðβ; μÞ via the replica trick [84], i.e.,

−βΩðβ; μÞ ¼ 1

N
hlogðZÞiJ

¼ 1

N
lim
n→0

1

n
loghZniJ; ð30Þ

where Z is the partition function

Z ¼
X

α∈CrtðEÞ
e−βEðxαÞþμIðxαÞ: ð31Þ

Below, we apply the Kac-Rice formula to Eq. (30) to
compute Ωðβ; μÞ. This replica-based calculation is given in
Appendix A. Step-by-step pedagogical derivations are
presented in Ref. [44], Sec. S-II. This method involves
introducing both bosonic degrees of freedom (replicated
soft spins xa for a ¼ 1;…; n) as well as fermionic degrees
of freedom whose integral computes the determinant of
the Hessian which arises in the Kac-Rice formula below.

The resulting integrals possess both replica symmetry,
involving permutations of the replicas, as well as super-
symmetry, involving exchanges of bosonic and fermionic
degrees of freedom. Such a SUSY-based framework has
also been used in a variety of works [49,51,62,72–76].
These integrals can be solved via a saddle point approxi-
mation, and the order parameters, whose extremal values
determine the saddle point, can either exhibit or break
replica symmetry or supersymmetry. Which pattern of
symmetry breaking occurs or not depends on the particular
values of the inverse temperature β, chemical potential μ,
and gain a considered.
In the following, we consider three regimes in detail. First,

we consider β ¼ μ ¼ 0, corresponding to a white average in
Eq. (31) inwhich all critical points are equallyweighted. This
white average yields information about the typical behavior
of a randomly chosen critical point, regardless of its energyor
index. We find that in this regime, at the saddle point order
parameters, replica symmetry always holds, but SUSY is
preserved at low laser gain a, while it is broken at large laser
gain. The order parameters at the saddle point yield infor-
mation about the distribution of spins and Hessian eigen-
values at typical critical points.
The second regime we consider is β ¼ 0 and μ → −∞.

This concentrates the sumover critical points onto thosewith
vanishing intensive index, independent of their energy. This
corresponds to a sum over all minima (we refer to critical
pointswith zero intensive index asminima).We find a similar
pattern for typical minima aswe do for typical critical points:
Order parameters at the saddle point exhibit replica sym-
metry but can break SUSY depending on the laser gain. The
order parameters, distribution of spins, and Hessian eigen-
values for β ¼ 0 and arbitrary μ are given in Sec. IVA in the
case of replica symmetry and broken SUSY.
Unfortunately, the geometric interpretation of these

replica calculations, and, in particular, the geometric mean-
ing of broken SUSY in terms of the original energy
landscape, is unclear. Because the geometric interpretation
of SUSY breaking is a subject of considerable interest, we
provide in Sec. V a completely different derivation of the
results in Sec. IVA using the cavity method instead of the
supersymmetric method (see Appendix A or Ref. [44],
Sec. S-IV, for a detailed cavity derivation). This derivation
yields a new interpretation of nonzero supersymmetry-
breaking order parameters as signaling a high sensitivity of
the complex energy landscape to small changes in external
fields. We discuss, in particular, the case of typical critical
points in Sec. VI A and the typical minima in Sec. VI B and
successfully match our theoretical predictions with numeri-
cal experiments.
In Sec. VII A, we move on to the case of the global

minima, corresponding to the regime β → ∞ in Eq. (31).
We find that the global minima of the energy landscape
occur at significantly lower energies than that of typical
local minima for large values of the laser gain. Therefore, as
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in other spin-glass problems, replica symmetry is broken.
We analyze the global minima through two methods: (i) a
replica-based calculation of the grand potential (see
Appendix A and Ref. [44], Sec. S-II.G) or (ii) a calculation
of the free energy (see Ref. [44], Sec. S-III), and we
demonstrate their equivalence.
Finally, in Sec. VIII, we summarize and describe the

significant phase transitions we can observe in the energy
landscape due to successive SUSY and replica symmetry
breaking and their geometric consequences.

A. The replica-based calculation

In our setting, the Kac-Rice formula (see Ref. [70] for an
introduction) enables us to convert the sum of any function
FðxÞ over all critical points xα for α∈CrtðEÞ of a land-
scape EðxÞ into an integral over the entire domain x∈RN

of the landscape. It is given by

X
α∈CrtðEÞ

FðxαÞ¼
Z YN

i¼1

½dxiδ½∂iEðxÞ��jdetHðxÞjFðxÞ; ð32Þ

where HðxÞ is the Hessian of E at x. Here, the δ functions
in Eq. (32) localize the integral to critical points of EðxÞ as
desired, while the absolute value of the Hessian determi-
nant j detHðxÞj corresponds to the Jacobian of the change
of variables from xi to yi ¼ ∂iEðxÞ. Indeed, performing this
change of variables on the right-hand side of Eq. (32) and
then integrating recovers the left-hand side.
Now applying the Kac-Rice formula in Eq. (32) to the

partition function in Eq. (31) yields

Z ¼
Z YN

i¼1

½dxiδ½∂iEðxÞ��j detHðxÞje−βEðxÞþμIðxÞ: ð33Þ

Then inserting Eq. (33) into Eq. (30) provides the starting
point for the replica- and supersymmetry-based calculation
of the sample-averaged grand potential. A detailed deri-
vation is given in Appendix A and Ref. [44], Sec. S-II. The
final answer at a replica symmetric, annealed level with
β ¼ 0, but with broken supersymmetry, is given by

−βΩð0; μÞ ¼ −
1

2
ðCqþ A2Þ − Atþ log

1ffiffiffiffiffiffiffiffi
2πq

p
Z

dxj∂2EIðxÞ − tj exp
�
−

1

2q
hðxÞ2 þ A

q
xhðxÞ þ 1

2

qC − A2

q
x2 þ μĪðxÞ

�
:

ð34Þ

Additionally, beyond the sample-averaged grand potential, we consider the sample-averaged distribution of spins in an
ensemble of critical points, defined as

PðxÞ ¼
�
Z−1

X
α∈CrtðEÞe

−βEIðxαÞþμIðxαÞ
�
1

N

XN
i¼1

δðx − xαi Þ
��

J

; ð35Þ

where Z is given in Eq. (31). We derive a formula for this distribution in Appendix A and Ref. [44], Sec. S-II.B. In the case
of β ¼ 0 and arbitrary μ, which is relevant for typical critical points (μ ¼ 0) and typical minima (μ → −∞), the answer is

PðxÞ ∝ j∂2EIðxÞ − tj exp
�
−

1

2q
hðxÞ2 þ A

q
xhðxÞ þ 1

2

qC − A2

q
x2 þ μĪðxÞ

�
: ð36Þ

Here, ĪðxÞ is given by

ĪðxÞ ¼ Θf−½∂2EIðxÞ − t�g; ð37Þ

where Θ is the Heaviside step function, and

hðxÞ ¼ ∂EIðxÞ − tx: ð38Þ

The formulas for the sample-averaged grand potential in
Eq. (34) and distribution of spins in Eq. (36) depend on four
order parameters q, t, A, and C which satisfy the following

self-consistent equations arising from extremizing the
grand potential in Eq. (34):

q ¼ hxi2;

t ¼
�

1

∂
2EIðxÞ − t

�
;

A ¼ hxhðxÞi
2q

−
t
2
;

C ¼ −q−1 þ q−2hh2ðxÞi − 2q−2AhxhðxÞi þ q−1A2: ð39Þ
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Here, h·i denotes an average with respect to the distribution
PðxÞ in Eq. (36). We note that self-consistent solutions with
nonzero values for the order parameters A and C corre-
spond to broken supersymmetry [48,62].

Finally, with knowledge of the typical distribution of
spins PðxÞ in an ensemble of critical points, we can obtain
the typical distribution of Hessian eigenvalues by inserting
PðxÞ in Eq. (36) into Eq. (22), solving for the resolvent
RðzÞ, and inserting this solution into Eq. (21) to obtain
ρHðλÞ for any β ¼ 0, μ, and a. Note that we here assume
that the correlation between HIðxÞ and J is negligible for
any critical point x.
Importantly, we note that the last self-consistent equation

for t in Eq. (22) is equivalent to the self-consistent equation
for RðzÞ at z ¼ 0 in Eq. (22). But, more precisely, while the
resolvent RðzÞ of a large random symmetric matrixH is not
well defined at any point λ on the real axis where the
eigenvalue distribution ρHðλÞ is nonzero, RðzÞ is defined on
the complex plane near the real axis for z ¼ λþ iε with
arbitrarily small ε. Thus, we can define the complex
number tR þ itI ¼ Rð0þ iεÞ for a small ε. By the inversion
formula in Eq. (21), tI is nonzero if and only if the Hessian
eigenvalue density ρHð0Þ is nonzero. We see empirically
that ρHð0Þ is very close to 0. Therefore, assuming tI ¼ 0, t
in Eq. (39) should be properly be thought of as
tR ¼ Rð0þ iεÞ. On the other hand, if the Hessian eigen-
value density ρHðλÞ at the origin λ ¼ 0 were nonzero, one
would have to self-consistently solve for another order
parameter tI. The full self-consistent equations for all five
order parameters q, tR, tI , A, and C are given in Ref. [44],
Sec. S-II.F. However, to match the numerics below, we
need only to find approximate self-consistent solutions to
Eq. (39) assuming that tI ¼ 0 or, equivalently, ρHð0Þ ¼ 0.

In summary, the replica analysis provides an efficient
calculational framework to obtain key information about
the number and properties of typical critical points (μ ¼ 0)
and typical minima (μ → −∞), as well as critical points of
any index r related to μ through Legendre duality in
Eq. (29). The procedure is as follows: (i) Solve the self-
consistent equations for the order parameters in Eq. (39);
(ii) insert them into Eq. (36) to obtain the typical distri-
bution of spins PðxÞ at a critical point; (iii) insert PðxÞ into
Eqs. (22) and (21) to obtain the typical distribution of
Hessian eigenvalues ρHðλÞ; (iv) insert the formula for the
grand potential Ωðβ; μÞ in Eq. (30) into the Legendre
transform in Eq. (28) to obtain the complexity Σðe; rÞ at
typical energy e and index r given by Eq. (29).
Finally, we note that for typical critical points and typical

minima, if we wish only to compute the grand potential at
β ¼ 0, we can still compute the typical energy e of critical
points without using the first Legendre dual relation in
Eq. (29). We do this by noting that any critical point x of
Eq. (2) obeys ∂EIðxiÞ þ hi ¼ 0, where hi ≡P

j Jijxj. This
implies that, at any critical point x, the normalized intensive
energy obeys the special relation

EðxÞ ¼ 1

N

XN
i¼1

�
EIðxiÞ þ

1

2
xihi

	

¼ 1

N

XN
i¼1

�
EIðxiÞ −

1

2
xi∂EIðxiÞ

	
: ð40Þ

This site-decoupled expression for the energy allows us to
calculate the typical energy e at critical points directly from
the typical distribution of spins PðxÞ in Eq. (36) via

e ¼
Z

dxPðxÞ
�
EIðxÞ −

1

2
x∂EIðxÞ

	
: ð41Þ

Similarly, the typical intensive index r can be calculated,
without resorting to the second Legendre dual relation in
Eq. (29), by directly using the typical Hessian eigenvalue
distribution ρHðλÞ obtained from Eq. (21) using the dis-
tribution of PðxÞ in Eq. (36) inserted into the formula for
RðzÞ in Eq. (22). In terms of this ρHðλÞ, r is simply

r ¼
Z

0

−∞
dλρHðλÞ: ð42Þ

Overall, these results yield a complete characterization of
the typical energy e, index r, grand potential Ωð0; μÞ,
complexity Σðe; rÞ, distribution of spins PðxÞ, and distri-
bution of Hessian eigenvalues ρHðλÞ of both typical critical
points and typical minima. We successfully confirm these
theoretical predictions with numerical simulations below in
Sec. VI. But first, we provide an alternate derivation of
these results by developing a novel cavity method.

V. A GEOMETRIC INTERPRETATION OF
SUPERSYMMETRY BREAKING VIA A
GENERALIZED CAVITY METHOD

While the replica-based calculation above provides
detailed information about critical points, the form of the
answers is difficult to understand. For example, why do the
grand potential βΩ in Eq. (30), the distribution of spins
PðxÞ in Eq. (36), and the self-consistent equations for the
order parameters in Eq. (39) take the forms that they do?
Moreover, what is the geometric meaning of the order
parameters, especially the SUSY-breaking order parameters
A and C? In essence, what is the qualitative difference
between high-dimensional energy landscapes described by
broken SUSY versus preserved SUSY? To obtain answers
to these questions, we develop a new generalized version of
the cavity method and demonstrate the equivalence
between our generalized cavity method and replica deri-
vations (see Appendix A and Ref. [44], Sec. S-IV, for
detailed derivations). Our generalized cavity method yields
considerable conceptual insights into the replica results
as well as a geometric interpretation of SUSY breaking.
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Note that readers who are less interested in the technical
details may skip this section.

A. The naive cavity method

We first take a naive approach to the cavity method,
which we see is appropriate when SUSY is preserved. The
cavity method, in general, for many mean-field systems
involves (i) analyzing the effect of adding a single new
degree of freedom to a system (called a cavity system
because it excludes the new degree of freedom), (ii) describ-
ing how the cavity system responds to the new degree of
freedom, often using simple perturbation theory under the
assumption that the single new degree of freedom exerts a
small effect on the large cavity, and (iii) quantifying how
the response of the cavity exerts a backreaction onto the
new degree of freedom as it comes to equilibrium with the
cavity system. The backreaction of the cavity onto the new
degree of freedom depends on certain order parameters
associated with the cavity. The cavity method then yields
self-consistent equations for these order parameters, assum-
ing the cavity system without the new degree of freedom
and the full system with the new degree of freedom have the
same order parameters, due to the existence of a thermo-
dynamic limit.
For example, in the context of the CIM, critical points of

any index (not necessarily energy minima) obey the
gradient equations

∂EIðxiÞ þ
XN−1

j¼1

Jijxj ¼ 0 for i ¼ 1;…; N − 1: ð43Þ

Here, this corresponds to a cavity system with only N − 1
spins. Next, we introduce a new spin x0 coupled to the
cavity system via new random coupling constants
fJ0igi¼1;…;N−1. The gradient equations for x1;…xN in
the presence of the new spin in the full system become

∂EIðxiÞ þ
XN−1

j¼1

Jijxj þ Ji0x0 ¼ 0; ð44Þ

while the new spin, after it equilibrates with the cavity, must
obey

∂EIðx0Þ þ
XN−1

i¼1

J0ixi ¼ 0: ð45Þ

The cavity method relates the critical point solutions of the
full system in Eqs. (44) and (45) to the critical point
solutions of the cavity system in Eq. (43). In particular, let
x=0i for i ¼ 1;…; N − 1 be a critical point of the cavity
system in the absence of spin 0. Thus, x=0i is a solution to
Eq. (43) for all i ¼ 1;…; N − 1. Now, when the new spin 0
is brought into contact with the cavity and held at a fixed

value x0, the cavity will react to the new spin so as to solve
the modified equations (44), which are simply equivalent to
the original cavity equations (43) plus a small perturbative
term Ji0x0 that is Oð1= ffiffiffiffi

N
p Þ.

Assuming the effect of the new spin x0 on the cavity is
small, one can solve Eq. (44) using perturbative linear
response theory, by Taylor expanding the first two terms
about xi ¼ x=0i and using the fact that x=0i satisfies Eq. (43).
The resulting approximate linear response of the cavity to
the new spin x0 [i.e., approximate solution to Eq. (44)] is

xi ¼ x=0i −
XN
j¼1

H−1
ij ðx=0ÞJj0x0: ð46Þ

Here, H−1
ij ðx=0Þ is the inverse Hessian of the cavity system

evaluated at its critical point x=0 before the new spin x0 is
introduced. As usual, this inverse Hessian acts as a linear
susceptibility matrix χ ¼ H−1ðx=0Þ that translates the force
Jj0x0 exerted by the new spin into the response of the cavity

from x=0i to xi in Eq. (46).
Now, with Eq. (44) solved perturbatively via the cavity

response in Eq. (46) for arbitrary x0, we must next find the
equilibrium value of x0 that generates an approximate
critical point of the full system by inserting Eq. (46) into
Eq. (45), obtaining

∂EIðx0Þ −
XN
i;j¼1

J0iH−1
ij ðx=0ÞJj0x0 þ

XN
i¼1

J0ix
=0
i ¼ 0: ð47Þ

Here, the final term

h=0 ≡ −
XN
i¼1

J0ix
=0
i ð48Þ

is the cavity field that the cavity would have exerted on the
new spin had it not reacted to the new spin at all and
remained at configuration x=0. The second term takes into
account the reaction of the cavity to x0 through the force
Jj0x0 and its resultant backreaction on the new spin through
the connections J0i. This is an example of an Onsager
backreaction-type term [32].
Now both the cavity field and the backreaction term

depend on the cavity system through two simple order
parameters. First, note that x=0i , a critical point of the cavity
system in the absence of the new spin x0, is necessarily
independent of the new connectivity J0i, which is not a part
of the cavity system. Thus, we can apply the central limit
theorem to conclude that h=0 in Eq. (48) is a random
Gaussian variable distributed as N ð0; qÞ, where the vari-
ance q is an order parameter given by
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q ¼ 1

N − 1

XN−1

i¼1

ðx=0i Þ2 ¼ 1

N

XN−1

i¼0

ðxiÞ2: ð49Þ

Here, we assume that the order parameter q is self-
averaging and is the same in both the cavity system and
the full system, at large N. Similarly, we assume that the
Onsager backreaction term is self-averaging, and we
replace it with its average over the connectivity in
Eq. (15), yielding a second-order parameter t which we
assume is the same both in the cavity and the full system:

t ¼ 1

N − 1
TrH−1ðx=0Þ ¼ 1

N
TrH−1ðxÞ: ð50Þ

While q is the squared length of a critical point, t is the trace
of a critical point’s linear susceptibility matrix to small
external forces.
With the definition of the cavity field h=0 in Eq. (48) and

the order parameters q in Eq. (49) and t in Eq. (50), the
solution(s) of x0 in Eq. (47) is in one-to-one correspon-
dence with critical points of a mean-field energy function

EMF½h�ðxÞ≡ EIðxÞ −
1

2
tx2 − hx; ð51Þ

where the random external cavity field h ∼N ð0; qÞ. Here,
we drop the index 0 from both the new spin x0 and its cavity
field h=0, because, under the randommean field connectivity
in Eq. (15), there is nothing special about removing and
adding back spin 0. We could have done this for any spin xi,
yielding its own cavity field h=i which is also distributed as
N ð0; qÞ. Moreover, each cavity field h=i in the absence of xi
is independent of any other cavity field h=j in the absence of
xj. Therefore, the empirical distribution of spins xi across the
index i, defined as PðxÞ ¼ ð1=NÞPN

i¼1 δðx − xiÞ can be
obtained, in the large-N limit, as

PðxÞ ∝
�X

x� ∈CrtðEMF½h�Þδðx − x�Þ
�

h
; ð52Þ

where CrtðEMF½h�Þ denotes the set of critical points of the
function EMF½h� in Eq. (51) and h·ih denotes an average with
respect to the Gaussian cavity field h ∼N ð0; qÞ. The
normalization factor in Eq. (52) is simply the mean number
of critical points in the random ensemble of mean-field
energy functions EMF½h�.
Now, with the distribution of spins PðxÞ in a typical

critical point in hand, we can derive self-consistent equa-
tions for the order parameters. In particular, it is clear that q
in Eq. (49) is simply the second moment of PðxÞ, yielding
the self-consistent equation

q ¼
Z

dxx2PðxÞ: ð53Þ

Furthermore, t in Eq. (50) is simply the mean of the diagonal
elements of the inverse Hessian. The Hessian of the mean-
field energy function is given byHðxÞ ¼ ∂

2EIðxÞ − t and is
independent of the cavity field h. Taking the average of its
inverse yields the self-consistent equation

t ¼
Z

dx
PðxÞ

∂
2EIðxÞ − t

: ð54Þ

Together, Eqs. (51)–(54) constitute a theoretical prediction
for the distribution of spins in a typical critical point [i.e., the
special case of β ¼ μ ¼ 0 in Eq. (35)]. Interestingly, the
cavity result appealingly and intuitively replaces the problem
of summing over critical points in a large-N-dimensional
system [i.e., Eqs. (2) and (35) with μ ¼ β ¼ 0] with the
problem of summing over critical points in a random
ensemble of one-dimensional systems [i.e., Eqs. (51)
and (52)].

B. Equivalence of the naive cavity method
with the supersymmetric replica method

We next show that these cavity results are exactly
equivalent to those of the replica method in the further
special case where SUSY is preserved (i.e., A ¼ C ¼ 0).
We can demonstrate the equivalence of the cavity result for
PðxÞ in Eq. (52) with the replica result for PðxÞ in Eq. (36)
with μ ¼ A ¼ C ¼ 0 as follows. First, we can apply the
Kac-Rice formula in Eq. (32) to Eq. (52) and perform the
resulting integral over x� which simply fixes it to x,
yielding

PðxÞ ∝ hδ½∂EIðxÞ − tx − h�j∂2EIðxÞ − tjih: ð55Þ

Then, performing the integral over h fixes it to be
hðxÞ ¼ ∂EIðxÞ − tx, and, recalling that h·ih denotes an
average with respect to the Gaussian distribution N ð0; qÞ,
we obtain

PðxÞ ∝ j∂2EIðxÞ − tj exp
�
−
hðxÞ2
2q

�
; ð56Þ

where hðxÞ ¼ ∂EIðxÞ − tx is the external field h required to
make x a critical point of the mean-field energy function in
Eq. (51). Thus, the distribution of spinsPðxÞ in Eq. (56), and,
therefore, in Eq. (52), is entirely equivalent to the replica
expression for PðxÞ when μ ¼ A ¼ C ¼ 0.

Moreover, given this equivalence of PðxÞ, the cavity-
derived self-consistent equations for the order parameters q
in Eq. (53) and t in Eq. (54) are entirely equivalent to the
first two self-consistent equations derived via the replica
method in Eq. (39). Thus, overall, the naive cavity method
recovers the results of the supersymmetric solution but
cannot account for supersymmetry breaking.
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C. Beyond the naive cavity method: Accounting for
supersymmetry breaking

Why does the naive cavity method recover the replica
results only in the case of preserved SUSY—i.e., Eq. (36)
when A ¼ C ¼ 0 and the first two equations in Eq. (39)?
Here, we resolve this issue as well as generalize to nonzero
μ. The key idea is that the naive cavity method makes an
implicit assumption about the nature of the perturbative
reaction of the cavity system to the addition of a single new
spin in Eq. (46). In particular, this account of the reaction
assumes that the only effect of adding a new spin x0 is to
move every critical point of the cavity system a small
amount to generate a critical point of the full system. Thus,
it is assumed that critical points of the cavity system and the
full system are in one-to-one correspondence with each
other.
This assumption is likely to be valid if the Hessian matrix

HðxÞ has an eigenvalue distribution ρHðλÞ which vanishes
in a finite region about λ ¼ 0. Because the susceptibility
matrix χ is the inverse Hessian, such a gap in the Hessian
spectrum yields a nondegenerate, structurally stable critical
point that is unlikely to undergo a bifurcation or change its
index upon the addition of a new spin. However, if the
Hessian spectral density ρHðλÞ extends continuously to
λ ¼ 0, such a critical point is degenerate with extremely
soft modes, and the addition of a single spin could cause it
to either disappear or bifurcate to create additional critical
points. If the landscape has exponentially many critical
points whose typical Hessian eigenspectra are gapless, then
the addition of a single new spin x0 could lead to
exponentially more or fewer critical points of any given
index, depending on the realization of the couplings Ji0 and
the value of x0 at its own equilibrium. This extreme
reactivity of the landscape to the addition of a single spin,
marked by an exponential change in the number of critical
points, is a fundamental possibility that is not accounted for
by the naive cavity method.
We provide a generalized cavity method that can account

for this extreme reactivity. We provide a detailed derivation
in Appendix A. Readers who are not familiar with spin-
glass methods can refer to the step-by-step derivations in
Ref. [44], Sec. S-IV, as well. Here, we simply outline the
key ideas and intermediate results. Our generalized cavity
method starts from the expression for the grand potential:

−βΩ ¼ 1

N
lnhZiJ; ð57Þ

where Z is the partition function given in Eq. (33). Thus, we
start from an annealed approximation. Next, because of the
critical importance of the presence of soft modes in the
energy landscape in the vicinity of critical points, corre-
sponding to eigenvectors of the Hessian with small eigen-
values, we soften the δ functions of the gradient in Eq. (33)
and replace them with Gaussians via

δ½∂iEðxÞ� →
ffiffiffi
γ

π

r
e−γ½∂iEðxÞ�2 : ð58Þ

We work at finite γ throughout the calculation, taking
γ → ∞ at the end. A finite γ crucially allows the partition
function Z in Eq. (33) to receive contributions not only
from critical points, but also from the geometry of the
landscape in the vicinity of critical points, including the
nature of the nonzero gradient in the neighborhood of each
critical point.
Next, we split the degrees of freedom x into that of a

cavity system x=0 with components x=0i for i ¼ 1;…; N − 1

and a single spin x0. Mirroring this split, we would like to
express the grand potential of the full system in Eq. (57) in
terms of the grand potential of the cavity system x=0 (taking
into account the effect of the new spin on it) and an
effective mean-field grand potential of the new spin x0
(taking into account the effect of the cavity on it in terms of
certain cavity fields and order parameters). Achieving this
decomposition prima facie poses several challenges,
because x0 and x=0 appear intricately coupled in the
expressions for the Hessian determinant j detHðxÞj and
the Hessian index IðxÞ in Z in Eq. (33). Despite this
seemingly intricate coupling, we can show that, upon
averaging over the random choice of coupling Ji0 between
the cavity x=0 and the new spin x0, the interaction between
them depends on the cavity system x=0 only through the
mean cavity susceptibility order parameter t, defined in
Eq. (50).
In particular, for the Hessian determinant, we show that,

after averaging over Ji0,

j detHðxÞj ¼ j∂2EIðx0Þ − tjj detHðx=0Þj: ð59Þ

The first term is nothing other than the absolute value of the
Hessian of the mean-field energy function EMF in Eq. (51)
evaluated at x ¼ x0, while the second term is the same
Hessian determinant for the cavity system.
Similarly, for the index of the Hessian, we show that,

after averaging over Ji0,

IðxÞ ¼ Īðx0Þ þ Iðx=0Þ: ð60Þ

Here, Īðx0Þ is defined in Eq. (37) and can be interpreted
simply as the index of the mean-field energy function EMF
in Eq. (51) evaluated at x ¼ x0. Thus, remarkably, the index
of the full system is simply the sum of the index of the
mean-field system and the cavity system, on average.
Now assuming formulas (59) and (60) are self-averaging

(i.e., they also hold to high accuracy for typical random
choices of Ji0), we can substitute these formulas into
Eq. (33), thereby achieving a partial decomposition of
the full partition function Z into that of a cavity system of
sizeN − 1 and a mean-field system of size 1, coupled so far
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only through the cavity susceptibility order parameter t
in Eq. (50).
However, to fully complete this decomposition, we must

also account for interactions between the cavity system x=0

and the single spin x0 through the Gaussian softening in
Eq. (58) of the δ functions in Eq. (33). We show that these
interactions are mediated precisely by two fields:

h̄≡ −J0 · x=0;

z̄≡ −γJ0 ·∇Eðx=0Þ: ð61Þ

Here, J0 is the N − 1 dimensional coupling vector between
x0 and the cavity system x=0. Note that h̄ and z̄ are jointly
Gaussian distributed with a 2-by-2 covariance matrix that
depends on cavity order parameters specified by inner
products of x=0 and ∇Eðx=0Þ. In particular, h̄ is simply the
Gaussian cavity field that already appears in the naive
cavity method in Eq. (48) with variance q in Eq. (49).
But, most importantly, z̄ is a new cavity field that appears

only in our generalized cavity method and plays a funda-
mental role in accounting for the extreme sensitivity of the
landscape to the addition of a new spin x0. In particular, as
detailed in Ref. [44], Sec. S-IV.B.4, the field z̄ couples the
new spin x0 to the cavity system through an exponential
modification of the partition function Z in Eq. (33) via a
multiplicative factor expðx0z̄Þ. Given the form of z̄ in
Eq. (61), this means that if the coupling vector J0 were
aligned to the cavity gradient ∇Eðx=0Þ in the vicinity of a
typical critical point, so that z̄ is negative, then the partition
function Z would be exponentially enhanced (diminished)
if x0 were to assume larger negative (positive) values.
Conversely, if J0 were antialigned to the cavity gradient
∇Eðx=0Þ so that z̄ were positive, then Z would be
exponentially enhanced (diminished) if x0 were to assume
larger positive (negative) values. The end result of the field
z̄ is then to exponentially reweight the distribution of spins
in the mean-field theory of a single spin x0 according to the
exponential weight that different values of x0 exert on the
cavity partition function and, therefore, on the grand
potential and the complexity. Thus, while the usual cavity
field h̄ exerts a force on the new spin x0 through an energy
term −h̄x0 in the mean-field energy function EMF in
Eq. (51), we see that the new field z̄ yields an entropic
force on the new spin x0 through the proliferation or
destruction of exponentially many critical points in the
cavity system for different values of x0.
Now, in order to take the γ → ∞ limit, it is useful not to

work directly with the fields h̄ and z̄ but to perform a
change of variables (detailed in Appendix A and Ref. [44],
Sec. S-IV.B.4) to h and z which remain jointly Gaussian
distributed with density Pðh; zÞ given by

Pðh; zÞ ∼N
��

0

0

	
;

�
q A

A C

	�
: ð62Þ

Here, the covariance parameters at finite γ are given by

q ¼ 1

N − 1
jx=0j2;

A ¼ 2

N − 1
γ∇Eðx=0Þ · x=0 − t;

C ¼ 4

N − 1
γ2j∇Eðx=0Þj2 − 2γ ð63Þ

and correspond to cavity order parameters involving inner
products of x=0 and ∇Eðx=0Þ in the vicinity of critical
points.
Now, with the definition of the cavity order parameters q,

A, and C in Eq. (63) and t in Eq. (50), as well as the
Gaussian fields h and z with distribution Pðh; zÞ in
Eq. (62), we can achieve a decomposition of the partition
function Z in Eq. (33), and, therefore, of the grand potential
Ω in Eq. (57), into a cavity system x=0 and a single spin x0.
However, there is one remaining issue: The resultant grand
potential of the cavity system has a mismatched variance;
the size of the cavity system is N − 1, while the variance of
its connectivity in Eq. (15) for g ¼ 1 is 1=N. Given the
potentially extreme reactivity of the energy landscape, we
cannot ignore this mismatch. Indeed, to obtain self-
consistent equations for the order parameters q, A, C,
and t of the full system, we must analyze the susceptibility
of the grand potential in response to small changes in the
variance of its connectivity. We obtain a simple formula for
this susceptibility in terms of the cavity order parameters:

dΩðgÞ
dg






g¼1

¼ 1

2
ðqCþ A2Þ þ At: ð64Þ

Here, ΩðgÞ denotes the grand potential of the full system
with a general variance parameter g in Eq. (15). (See
Ref. [44], Sec. S-IV.B.6, for details.)
Finally, putting everything together and taking the

γ → ∞ limit, we find that the grand potential in Eq. (57)
or, equivalently, the annealed connectivity average of the
grand potential in Eq. (27) (in the special case of β ¼ 0
relevant to typical critical points and minima) is given by

−βΩð0; μÞ ¼ −
dΩðgÞ
dg






g¼1

−ΩMF: ð65Þ

Here, the first term is a simple function of the order
parameters given in Eq. (64), while the second term is the
mean-field grand potential ΩMF of a single spin given by

−ΩMF ¼ loghZMF½h; z�ih;z; ð66Þ

where h·ih;z denotes an average over the Gaussian distri-
bution Pðh; zÞ of cavity fields in Eq. (62) and ZMF½h; z�
denotes the mean-field partition function of a single spin in
the presence of cavity fields h and z, given by
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ZMF½h; z� ¼
X

x∈CrtðEMF½h�Þ
exzþμĪðxÞ: ð67Þ

Here, as above, CrtðEMF½h�Þ denotes the set of critical
points of the mean-field energy function EMF½h�ðxÞ in
Eq. (51), and the mean-field index function ĪðxÞ defined in
Eq. (37) is simply the index of EMF evaluated at x. Finally,
our generalized cavity method computes the distribution of
spins in a typical critical point, defined in Eq. (35), to be
(see Ref. [44], Sec. S-IV.C, for details)

PðxÞ ∝
�X

x� ∈CrtðEMF½h�Þe
xzþμĪðxÞδðx − x�Þ

�
h;z
: ð68Þ

Appealingly, Eqs. (66)–(68) all correspond to the problem
of counting critical points in a random ensemble of one-
dimensional systems with mean-field energy functions
EMF½h� subject to a random external field cavity field h, in
addition to a random exponential factor exz that reweights
both the partition function ZMF½h; z� in Eq. (67) and the spin
distributionPðxÞ inEq. (68).Notably,when thevarianceC of
z and, therefore, the covariance A between h and z is 0, the
reweighting factor exz plays no role, and PðxÞ in Eq. (68)
reduces to the prediction of the naive cavity method in
Eq. (52) (when μ ¼ 0). The origin of this reweighting factor
for nonzero A and C, as summarized above and described in
detail in Ref. [44], Sec. S-IV.B, arises from entropic effects in
the cavity system due to exponential changes in the number
of critical points, depending on the value x of an added spin
and the random alignment z of its coupling vector to the
cavity system gradient near critical points. This entropic
effect of the cavity on the new spin is encapsulated in the
mean-field theory of the new spin simply through the
reweighting factor exz.
Finally, we can directly obtain self-consistent equations

for the order parameters q, A, C, and t through our
generalized cavity method (see Appendix A or Ref. [44],
Sec. S-IV.C, for details). The self-consistent equations for q
and t are identical in form to those obtained in the naive
cavity method in Eqs. (53) and (54), respectively, with the
sole difference being that the distribution of spins PðxÞ
obtained in the naive cavity method in Eq. (52) is replaced
with the reweighted distribution of spins PðxÞ obtained in
the generalized cavity method in Eq. (68). The generalized
cavity method also enables us to find self-consistent
equations for the two new order parameters A and C
(see Appendix A or Ref. [44], Sec. S-IV.C, for details):

A ¼ eΩMF

�
∂

∂h

�X
x∈CrtðEMF½h�Þe

xzþμĪðxÞx
	�

h;z
− t;

C ¼ eΩMF

�
∂
2ZMF

∂h2

�
h;z
: ð69Þ

Furthermore, we show in Ref. [44], Sec. S-IV.C, that the
cavity-derived self-consistent equations for the order
parameters q in Eq. (53), t in Eq. (54), and A and C in
Eq. (69) are collectively equivalent to the four equations
obtained from extremizing the grand potentialΩ in Eq. (65)
with respect to q, t, A, and C. This extremization yields the
highly compact self-consistent equations

�
q A

A C

	
¼ −

�
2∂CΩMF ∂tΩMF

∂tΩMF 2∂qΩMF

	
;

t ¼ ∂AΩMF − A: ð70Þ

D. Equivalence between the generalized cavity method
and the supersymmetry-broken replica method

We now show the equivalence between the generalized
cavity method and SUSY-breaking replica method, identify-
ing the cavity order parameters A and C in the generalized
cavity method in Eq. (63) with the SUSY-breaking order
parameters A and C in Eqs. (34), (36), and (39).
First, we note that the distribution of spins PðxÞ in the

generalized cavity method in Eq. (68) is entirely equivalent
to the distribution of spins derived via the SUSY-broken
replica method in Eq. (36) for any values of the order
parameters A and C (as well as q and t). This can be seen by
applying the Kac-Rice formula to Eq. (68) and directly
performing the integrals over h and then z (see Ref. [44],
Sec. S-IV.F, for details).
Second, we note that the formula for the grand potential

Ω derived by the generalized cavity method in Eq. (65) is
entirely equivalent to that obtained by the SUSY-breaking
replica method in Eq. (34). However, the generalized cavity
method now provides a simple interpretation of each of the
terms in Eq. (34). In particular, the first part − 1

2
ðCqþ

A2Þ − At of Eq. (34) is equivalent to the first term in
Eq. (65) and is simply the susceptibility of the grand
potential to a change in variance, derived in Eq. (64). Its
origin lies in the mismatch between the size of the cavity
system (N − 1) and its connectivity variance (1=N). The
remaining term in Eq. (34) is equivalent to the remaining
term −ΩMF in Eq. (65) and is simply the grand potential of
an ensemble of single spins defined in Eqs. (66) and (67).
This equivalence can be seen by applying the Kac-Rice
formula to the mean-field partition function in Eq. (67) and
performing the integrals over h and z in Eq. (66). This
calculation yields the final term in Eq. (34) (see Ref. [44],
Sec. S-IV.F, for details).
Thus, we conclude that the expressions for Ω in the

generalized cavity method in Eq. (65) and the SUSY-
breaking replica method in Eq. (34) are equivalent.
However, the generalized cavity method provides the
important intuition, embodied in Eq. (65), that the grand
potential density Ω of the full N-dimensional system is
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simply the mean-field grand potential ΩMF of an ensemble
of random one-dimensional systems in Eq. (66) plus a
correction given in Eq. (64) due to the extreme reactivity of
the landscape to changes in connectivity variance.
Finally, given the equivalence of the grand potentials

derived via the generalized cavity and SUSY-breaking
replica method, as well as the demonstration in the previous
subsection that the self-consistent equations for the order
parameters in the generalized cavity method can be
obtained by extremizing the grand potential, we can
conclude that these self-consistent equations are the same
in both methods. To further corroborate this conclusion, we
provide a direct proof in Ref. [44], Sec. S-IV.F, that the self-
consistent equations derived via the generalized cavity
method for A and C in Eq. (69) are equivalent to those
derived via the SUSY-breaking replica method in Eq. (39).
Moreover, the equations for q and t in Eqs. (53) and (54),
respectively, are manifestly equivalent to those derived via
the SUSY-breaking replica method in Eq. (39) given the
equivalence of the distributions PðxÞ in Eqs. (68) and (36).

E. Supersymmetry-breaking order parameters
in terms of landscape susceptibility

The equivalence of the generalized cavity method and
the SUSY-breaking replica method at the level of the grand
potential Ω, self-consistent equations for order parameters,
and distribution of spins PðxÞ, thus, identifies the param-
eters A and C in the generalized cavity method with the
supersymmetry-breaking order parameters of the SUSY-
breaking replica method. We now provide a further geo-
metric interpretation of these order parameters in terms of
the susceptibility of the grand potential Ω to changes in the
energy landscape. In particular, consider adding two extra
perturbative terms to the original energy landscape EtotðxÞ
in Eq. (2) to obtain

E0
totðxÞ ¼ EtotðxÞ −

1

2
a0jxj2 þ

ffiffiffiffiffiffiffi
2s0

p
g · x: ð71Þ

Here, g is a zero mean random Gaussian vector with
identity covariance. Given the structure of the single-site
energy function EIðxÞ in Eq. (3), the first perturbation in
Eq. (71) corresponds in the CIM to changing the laser gain
from a to aþ a0. The second perturbation corresponds to
applying a random Gaussian field on the landscape with a
variance on each component of 2s0. We can then consider
computing the grand potential density Ωða0; s0Þ (we sup-
press the dependence on β ¼ 0 and μ here) in Eq. (27) by
replacing Etot in Eq. (2) with E0

tot in Eq. (71) and further
averaging over the random field g. We show in Appendix A
(see Ref. [44], Sec. S-IV.D, for detailed explanations) that
the supersymmetry-breaking order parameters A and C are
very simply related to the (connectivity and field averaged)
susceptibility of the grand potential Ω with respect to the
perturbation strengths a0 and s0, respectively:

A ¼ ∂Ω
∂a0






a0¼0;s0¼0

; C ¼ ∂Ω
∂s0






a0¼0;s0¼0

: ð72Þ

This result directly connects the supersymmetry-breaking
order parameters to the extreme reactivity of the landscape
to two specific small perturbations of the energy function.
In particular, A and C are nonzero if and only if the
potential Ω and, therefore, the landscape complexity Σ are
sensitive to these perturbations.
The expressions for A and C in Eq. (72) also have a

counterpart in the mean-field theory of a single spin.
Consider adding the same two perturbations to the
mean-field energy function EMF½h� in Eq. (51), obtaining
the perturbed energy function

E0
MF½h; a0; s0�ðxÞ ¼ EMF½h�ðxÞ −

1

2
a0x2 þ

ffiffiffiffiffiffiffi
2s0

p
gx; ð73Þ

where g is now a zero mean unit variance random Gaussian
scalar field. We can then consider computing the mean-
field grand potential ΩMFða0; s0Þ obtained by replacing
EMF½h�ðxÞ with E0

MF½h; a0; s0�ðxÞ in the defining formula
forΩMF in Eq. (66) and also further averaging over g. Then,
we show in Appendix A that the supersymmetry-breaking
order parameters A andC are also very simply related to the
susceptibility of the mean-field grand potential ΩMF with
respect to the perturbation strengths a0 and s0, respectively:

A ¼ ∂ΩMF

∂a0






a0¼0;s0¼0

; C ¼ ∂ΩMF

∂s0






a0¼0;s0¼0

: ð74Þ

This result provides an additional way to interpret the
SUSY-breaking order parameters A and C within the mean-
field theory and exhibits an appealing correspondence
to Eq. (72).

F. Structural stability of critical points implies
preserved supersymmetry

We further connect the Hessian eigenspectrum to SUSY
breaking by showing in Appendix A (or in Ref. [44],
Sec. S-IV.E) that if the typical Hessian eigenspectrum of
critical points has a gap away from 0, then the SUSY is
preserved, and A ¼ C ¼ 0. We do this by working at large
but finite γ and directly calculating A and C through
Eq. (63) and averaging over x=0 (or, equivalently, x) with
respect to a distribution with partition function given by Z
in Eq. (31), with δ functions softened to Gaussians via
Eq. (58). The key idea is that this distribution concentrates
in the vicinity of critical points, and if the Hessian has a gap
at typical critical points, one can perform a change of
variables from x to ∇EðxÞ, since there is a one-to-one map
between these quantities in the neighborhood of any critical
point with a gapped Hessian eigenspectrum. Direct calcu-
lation of the integral over gradients in the vicinity of a
critical point then reveals that A ¼ C ¼ 0.
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Thus, if typical critical points are structurally stable (i.e.,
with gapped Hessian eigenspectra), SUSY is preserved.
The contrapositive of this statement then tells us that SUSY
breaking implies a vanishing gap in the Hessian eigens-
pectrum and, therefore, structural instability in typical
critical points. If exponentially many critical points have
such structural instability, then SUSY will be broken. This
analytic calculation provides further justification for why
the generalized cavity method (and not just the naive cavity
method) is necessary when exponentially many critical
points are structurally unstable.

G. Convexity of the mean-field energy landscape
implies preserved supersymmetry

Suppose the mean-field energy function EMF½h� in
Eq. (51) is strictly convex. This happens only if aþ t < 0.
We provide a proof in Appendix A (or in Ref. [44],
Sec. S-IV.E) that, under this assumption of convexity, the
self-consistent equations for the order parameters in Eq. (69)
admit SUSY-preserving solutions with A ¼ C ¼ 0. We find
below in Sec. VI that these SUSY-preserving solutions
correctly predict the distribution of spins and Hessian
eigenspectra when aþ t < 0. In contrast, we also see that
when aþ t > 0, and, therefore, the mean-field energy
function EMF½h� is nonconvex, we must use SUSY-breaking
solutions to correctly predict the distribution of spins and
Hessian eigenspectra. Thus, just as SUSYbreaking implies a
highly reactive landscape in the full N-dimensional system,
as evidenced by the susceptibility formulas in Eq. (72), at the
level of the mean-field one-dimensional system, SUSY
breaking is closely related to nonconvexity in the mean-
field energy landscape.
We further show in Appendix A that, when the mean-

field energy function is convex, SUSY-preserving solutions
also exhibit vanishing complexity Σ. Thus, convexity of the
mean-field landscape implies simplicity of the full land-
scape under SUSY. Thus, in summary, the predictions of
our replica and generalized cavity theories are that, for
aþ t < 0, SUSY is preserved and landscape complexity is
0, and, when aþ t > 0, SUSY is broken.

VI. NUMERICAL TESTS OF SUPERSYMMETRY
BREAKING FOR TYPICAL CRITICAL

POINTS AND MINIMA

A. A supersymmetry-breaking phase transition
in the properties of typical critical points

Here, we test our theoretical predictions for the structure
of typical critical points derived from the grand potential in
Eq. (34) or, equivalently, Eq. (65) with μ ¼ 0. We directly
sample critical points of all indices in many finite-size SK
models. Across this ensemble of critical points, the dis-
tribution of intensive index r and energy E peak sharply at
their respective most likely values. Focusing on these
typical critical points (see Appendix B 1 for details of

the numerical sampling of critical points), we can measure
the distribution of spins PðxÞ, the distribution diagonal
elements HIðxÞii in Eq. (6), and the distribution of
Hessian eigenvalues ρHðλÞ, shown as blue histograms in
Figs. 3(a)–3(c), respectively. We can further compare these
observables to the theoretical predictions for PðxÞ in
Eq. (36) or (52), the distribution of HIðxÞii derived from
PðxÞ, and the Hessian eigenspectrum ρHðλÞ derived from
Eqs. (21) and (22). We obtain an excellent match between
theory and experiment for a range of laser gain a [compare
orange curves and blue histograms in Figs. 3(a)–3(c)].
A key feature of these results is that, as the laser gain a is

increased, the distribution of OPO amplitudes in Fig. 3(a)
bifurcates into a bimodal then trimodal distribution with an
increasing density of uncommitted spins with values near
the origin. Correspondingly, the distribution of diagonal
Hessian eigenvalues in Fig. 3(b) exhibits an increasing
density of negative values originating from these uncom-
mitted spins, which then corresponds to an increasing
density of negative Hessian eigenvalues in Fig. 3(c) via
Dyson’s Brownian motion in Eq. (17), starting from the
initial condition in Fig. 3(b).
We further compute the order parameters q, t, A, and C

arising from solutions of Eq. (39) or, equivalently, Eq. (69) or
(70) (see Appendix B 2 for numerical details of solving these
self-consistent equations). Figure 3(d) shows the evolution of
A and C with increasing laser gain a, indicating a super-
symmetry-breaking phase transition at a ¼ at ∼ −0.93,
when A and C first acquire nonzero values. Figure 3(e)
shows the evolution of aþ t, which, in both theory and
experiment, transitions from negative to positive also at
a ¼ at ∼ −0.93. Recall that the mean-field energy function
EMF½h�ðxÞ in Eqs. (51) and (3) is convex if and only if
aþ t < 0. Thus, together, Figs. 3(d) and 3(e) confirm our
theoretical prediction that SUSY is broken precisely when
the mean-field energy function becomes nonconvex.
Finally, Figs. 3(f)–3(i) demonstrate an excellent match

between theory (orange curves) and experiments (blue dots)
for the order parameter q, the complexity Σ [derived from
Eq. (28)], the intensive index r [derived from Eq. (42)], and
the intensive energy E [derived from Eq. (41)], respectively.
In particular, the complexity in Fig. 3(g) becomes nonzero at
the same transition a ¼ at ∼ −0.93 when SUSY is broken
and the mean-field energy function becomes nonconvex.
Quite remarkably, the intensive index r and complexity Σ

are exactly zero for a < at [Figs. 3(g) and 3(h)]. This
means that most critical points have a vanishing intensive
index, and the number of critical points is subexponential.
Therefore, we can expect that the energy landscape is
relatively flat and not so rugged at such low laser gain a. In
contrast, at very large a, the complexity approaches log 3
and the intensive index r approaches 1=3, as expected from
the discussion in Sec. II B 2, which suggests the existence
of 3N critical points at large a located near the points
f− ffiffiffi

a
p

; 0;
ffiffiffi
a

p gN , in which a typical critical point has 1=3 of

YAMAMURA, MABUCHI, and GANGULI PHYS. REV. X 14, 031054 (2024)

031054-20



its spins uncommitted near 0, contributing to a typical index
of r ¼ 1=3.

In summary, our combined theory and experiment
uncovers a phase transition between a supersymmetric
phase (when a < at ∼ −0.93), where the intensive index
and complexity of typical critical points is 0, the number of
critical points is subexponential in N, and the mean-field
energy function is convex, and a supersymmetry-broken
phase (when a > at ∼ −0.93), where the intensive index
and complexity of critical points is finite, there are
exponentially many structurally unstable critical points,
and the mean-field energy function is nonconvex.

B. A supersymmetry-breaking phase transition in the
properties of typical minima

We next test our theoretical predictions for the structure
of typical minima, derived from the grand potential in
Eq. (34) or, equivalently, Eq. (65) with μ → −∞. The
theoretical calculations are entirely parallel to those of the
previous subsection, with the sole replacement of μ ¼ 0
with μ → −∞, and the experimental results are also parallel
with the sampling restricted to minima as opposed to saddle
points of any index. We further compute the binned energy
of all minima found and focus on the typical minima with
the most likely binned value of energy (see Appendix B 1
for details). As we see below, the intensive energy of typical
minima can be strictly higher than the energy of the global
minimum, especially at large laser gain.
Figures 4(a)–4(c) demonstrate an excellent match

between theory and experiment for the distribution of spins

PðxÞ, the distribution diagonal elements HIðxÞii in Eq. (6),
and the distribution of Hessian eigenvalues ρHðλÞ, respec-
tively. Interestingly, the distribution of spins PðxÞ at large
laser gain exhibits exactly 0 density for a range of x values
around x ¼ 0 [see, e.g., the cases of a ¼ 0, 1, 2 in Fig. 4(a)].
This vanishing density can be understood through the cavity
method as a simple consequence of the structure of themean-
field energy function EMF½h�ðxÞ in Eqs. (51) and (3) and its
associated mean-field index function ĪðxÞ defined in
Eq. (37), which is simply the index of EMF evaluated at x.
ĪðxÞ plays a role in determining PðxÞ through Eq. (68), and,
whenμ → −∞, this equation indicates thatPðxÞmust vanish
whenever ĪðxÞ > 0, or, equivalently, PðxÞmust vanish over
any range of x where EMF½h�ðxÞ has a negative Hessian. For
the particular double-well form of EMF½h�ðxÞ in Eqs. (51)
and (3) with aþ t > 0, the theory implies PðxÞmust vanish
exactly when jxj ≤ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiðaþ tÞ=3p

. Remarkably, this striking
prediction of vanishing density inPðxÞ for typical minima at
large a when EMF½h�ðxÞ is nonconvex is verified in experi-
ments [vanishing of blue histograms in Fig. 4(a)].
Furthermore, Figs. 4(d) and 4(e) show a match between

theory and experiment for the order parameters aþ t and q,
respectively, while Fig. 4(f) shows the evolution of A and C
with a. Figure 4(f) indicates a supersymmetry-breaking
phase transition [50] at a ¼ at ∼ −0.93, when A and C first
become nonzero as laser gain a increases. This is exactly
the same transition value at which supersymmetry breaking
occurs for typical critical points. Indeed, this phase tran-
sition shares several similar properties with that of typical
critical points. At this transition, aþ t first becomes
positive as a increases [Fig. 4(d)], which means the

FIG. 3. A supersymmetry-breaking phase transition in the properties of typical critical points. All panels indicate theoretical results
(orange curves) and experimental results (blue histograms and markers). Details of experimental results are in Appendix B 1, and details
of theoretical solutions are in Appendix B 2. (a) The distribution of spins or OPO amplitudes as laser gain a increases. (b) The
distribution of Hessian diagonal elements HIðxÞii. (c) The Hessian eigenspectrum ρHðλÞ. The Hessian eigenspectra in (c) can be
understood intuitively as the outcome of Dyson’s Brownian motion starting from the initial condition of diagonal elements in (b).
(d)–(f) The order parameters A and C, aþ t, and q, respectively. A supersymmetry-breaking phase transition is observed at the
theoretically predicted point a ¼ at ∼ −0.93 (vertical dotted line). (g)–(i) The complexity Σ, the intensive index r, and the intensive
energy E, respectively, of typical critical points.
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mean-field energy function EMF½h�ðxÞ first becomes non-
convex. This nonconvexity of EMF½h�ðxÞ then generates an
increasingly large region of vanishing density in PðxÞ for
typical minima around x ¼ 0, as a increases beyond at
[Fig. 4(a)], as discussed above.
Finally, the complexity Σ first becomes nonzero just

above a ¼ at [Fig. 4(g)]. In the supersymmetric phase with
a ≤ at and A ¼ C ¼ 0, the complexity Σ of typical minima
is 0, indicating the number of minima in the energy
landscape is subexponential in N. On the other hand, there
are exponentially many minima in the supersymmetry-
broken phase. As a becomes large, we expect 2N minima,
and indeed the complexity converges to log 2 in the large-a
limit. Finally, Fig. 4(h) depicts the evolution of the intensive
energy of typical minima with increasing a, again indicating
an excellent match between theory and experiment.

VII. FULL REPLICA SYMMETRY BREAKING
AND RIGIDITY PHASE TRANSITIONS

IN GLOBAL MINIMA

We next move on from typical critical points and typical
minima to the properties of global energy minima. We
define global minima as those with the lowest intensive
energy. For a single sample, different global minima with
the same intensive energy in the large-N limit could have
different extensive energies with subleading oðNÞ
differences. Note that this definition allows the landscape
to have multiple global minima. We find that, at large laser
gain a, global minima have lower intensive energies than
local minima, and, to describe such low-energy global
minima, we must break replica symmetry, just like in the
SKmodel. In contrast for local minima, as described above,
replica symmetric solutions, albeit with broken SUSY,
sufficed to match numerical experiments.

A. A full replica symmetry-breaking
theory of global minima

We performed a full replica symmetry-breaking calcu-
lation (see Ref. [44], Secs. S-II.G and S-III, for details) for
global minima, which yields the following formula for the
grand potential in the low-temperature β → ∞ limit:

Ωð∞;−∞Þ ¼ lim
β→∞

1

2
qdtþ

β

4

�
q2d −

Z
1

0

dyq2ðyÞ
�

− fð0; 0Þ; ð75Þ

where the function fðy; hÞ obeys the Parisi differential
equation

∂

∂y
fðy; hÞ ¼ −

1

2

dq
dy

�
∂
2f
∂h2

þ βy

�
∂f
∂h

�
2
	
; ð76Þ

with the boundary condition

fð1; hÞ ¼ β−1 log

" X
x∈Crt0½EMFð·;hÞ�

e−βEMFðx;hÞ
#
: ð77Þ

This expression has order parameters t, qd, and qðyÞ, where
qðyÞ is a nondecreasing non-negative function defined in
y∈ ½0; 1�. The values of these order parameters are chosen
to extremize the grand potential in Eq. (75). The order
parameter t reflects, as above in Eq. (50), the trace of the
susceptibility matrix of the system to a small external field,
but this time while the system is in a global minimum. qd
reflects the self-overlap (i.e., the average of ð1=NÞPi x

2
i ).

The function qðyÞ is called the overlap function, whose
functional inverse represents the cumulative probability

FIG. 4. A supersymmetry-breaking phase transition in the properties of typical minima. All panels indicate theoretical results (orange
curves) and experimental results (blue histograms and markers). Details of experimental results are in Appendix B 1, and details of
theoretical solutions are in Appendix B 2. (a) The distribution of spins or OPO amplitudes as laser gain a increases. (b) The distribution
of Hessian diagonal elements HIðxÞii. (c) The Hessian eigenspectrum ρHðλÞ. The Hessian eigenspectra in (c) can be understood
intuitively as the outcome of Dyson’s Brownian motion starting from the initial condition of diagonal elements in (b). (d)–(f) The order
parameters aþ t, q, and A and C, respectively. A supersymmetry-breaking phase transition is observed at the theoretically predicted
point a ¼ at ∼ −0.93 (vertical dotted line). (g),(h) The complexity Σ and the intensive energy E, respectively, of typical minima.
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density of the overlap ð1=NÞPi x
1
i x

2
i of two different

randomly sampled global minima x1 and x2.
Furthermore, the distribution PðxÞ can be obtained from

a solution to the following differential equation for a
propagator Pðy; hÞ [85]:

∂P
∂y

¼ 1

2

dq
dy

�
∂
2P
∂h2

− 2βy
∂f
∂h

∂P
∂h

�
; ð78Þ

with a boundary condition at y ¼ 0 given by

Pð0; hÞ ¼ ½2πqð0Þ�−1 exp
�
−

h2

2qð0Þ
�
: ð79Þ

The distribution of spins PðxÞ in global minima can then be
written in terms of the propagator evaluated at y ¼ 1 and
the value of h ¼ EIðxÞ − tx which solves the extremization
condition for the mean-field energy function EMF½h� (see
Ref. [44], Sec. S-II.G, details):

PðxÞ ¼ j∂2EIðxÞ − tjP½1; ∂EIðxÞ − tx�: ð80Þ
Finally, with PðxÞ in hand, we can calculate the distribution
of Hessian eigenvalues ρHðλÞ as above, using Eqs. (21)
and (22).

B. Numerical tests of full replica symmetry
breaking for global minima

To test our theory for global minima, we numerically
solve the extremization conditions for the grand potential in

Eq. (75) by approximating the overlap function qðyÞ to be a
sum of 37 step functions. This corresponds to a 37-step
replica symmetry-breaking solution, approximating full
replica symmetry breaking. We exploit numerical tech-
niques addressed in Ref. [83] to find the order parameters
satisfying the extremization conditions.
In Fig. 5, we compare our theoretical predictions with

numerical experiments on finite-size systems. For the
numerical experiments, we find the lowest energy mini-
mum among many sampled minima for each sample
of J (see Appendix B 1 for details of the sampling).
Figures 5(a)–5(c) demonstrate an excellent match between
theory and experiment for the distribution of spins PðxÞ,
the distribution of diagonal elements HIðxÞii in Eq. (6),
and the distribution of Hessian eigenvalues ρHðλÞ, respec-
tively. Figures 5(d)–5(g) show a match between theory
and experiment for the order parameters aþ t, qd, and the
intensive energy, respectively. Finally, Fig. 5(h) shows the
overlap function qðyÞ.
Figure 5 implies the existence of two phase transitions

as a increases. First, a phase transition occurs at a ¼
λminðJÞ ¼ −2. This is the point where the origin x ¼ 0 first
bifurcates and the landscape starts to be nonconvex. Indeed,
Fig. 5(e) shows that the self-overlap qd starts to have a finite
value at a ¼ −2, which implies that the global minimum is
no longer at the origin. Moreover, the overlap function qðyÞ
function undergoes a transition from a vanishing flat
function for a < −2, indicating replica symmetry, to a
continuously increasing function for a > −2, indicating
full replica symmetry breaking (FRSB) [Fig. 5(h)].

FIG. 5. Replica symmetry breaking and rigidity phase transitions in the properties of global minima. All panels indicate theoretical
results (orange curves) and experimental results (blue histograms and markers). Details of experimental results are in Appendix B 1, and
details of theoretical solutions are in Appendix B 2. (a) The distribution of spins or OPO amplitudes as laser gain a increases. (b) The
distribution of Hessian diagonal elements HIðxÞii. (c) The Hessian eigenspectrum ρHðλÞ. The Hessian eigenspectra in (c) can be
understood intuitively as the outcome of Dyson’s Brownian motion starting from the initial condition of diagonal elements in (b). (d)–
(f) The order parameters aþ t, qd, and λminðHÞ, respectively. At a ¼ ar ¼ −2 there is a replica symmetry-breaking phase transition
where qd first acquires a nonzero value as a increases [see (e)]. At a ¼ ag ∼ −0.45, there is a rigidity phase transition in the global
minimum when aþ t first becomes positive (d) and the minimum Hessian eigenvalue transitions from 0 to positive (f). (g) The intensive
energy E of global minima. (h) The overlap function qðyÞ transitions from flat for a < −2 to continuously increasing for a > −2,
indicating a replica symmetric to full replica symmetry-breaking transition at a ¼ ar ¼ −2. The two phase transitions in replica
symmetry breaking at a ¼ ar ¼ −2 and rigidity at a ¼ ag ∼ −0.45 are shown as dotted vertical lines in (d)–(g).
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Within this FRSB regime, we find another phase
transition similar to the case of the typical minima, which
is again characterized by the sign of the aþ t, which now
goes from negative to positive at the critical point a ¼
ag ∼ −0.45 [Fig. 5(d)]. The global minimum is super-
symmetric (see Ref. [44], Sec. S-II.G, for details), so this
transition is not characterized by spontaneous SUSY
breaking as in the case of typical minima. Instead, it is
characterized by the minimum eigenvalue of the Hessian.
Figures 5(c) and 5(f) clearly show that this minimum
eigenvalue is close to vanishing for ar < a < ag. This
indicates that even the global minima, like all typical
minima, are marginally stable with soft or flat directions
corresponding to vanishingly small Hessian eigenvalues.
On the other hand, for a > ag, the global minimum
undergoes a rigidity phase transition in which the soft,
flat directions disappear, because the Hessian eigenspec-
trum is gapped away from 0 [Figs. 5(c) and 5(f)]. Thus, the
global minimum is rigid or stable to small perturbations. In
contrast, typical local minima remain soft and flat for all
values of a considered, since the Hessian eigenspectrum
always reaches to 0 [Fig. 4(c)].
Note that, while the global minima are marginally stable

when −2 < a < ag, they can still be described without
SUSY-breaking order parameters A andC, in contrast to the
case of the typical local minima. This phenomenon can
happen when the complexity of global minima is zero. In
this case, even if states are highly reactive to perturbations
of the energy landscape, the change in the number of the
global minima, in response to small changes in the energy
landscape, is still subexponential. Thus, the susceptibility
of the grand potential and complexity to such perturbations
is 0, which implies via Eq. (72) that the SUSY-breaking
order parameters obey A ¼ C ¼ 0.

VIII. THE PHASE DIAGRAM OF GEOMETRIC
LANDSCAPE ANNEALING

We can now put together a global view of the geometry of
the evolving energy landscape as the laser gain a is
annealed. Overall, the energy landscape experiences three
important phase transitions: (i) the replica symmetry-
breaking transition for global minima at a ¼ ar ¼ −2;
(ii) the SUSY-breaking transition for typical minima and
typical critical points at a ¼ at ∼ −0.93; and (iii) the rigidity
phase transition for global minima at a ¼ ag ∼ −0.45. The
entire phase diagram is shown in Fig. 6.
When a < ar ¼ −2, the landscape is convex, and the

single global minimum occurs at the origin x ¼ 0. Then, at
the first phase transition at a ¼ ar, the origin bifurcates,
and just above a ¼ ar many minima start to appear.
Figure 6 shows that the energy of global minima, typical
minima, and typical critical points are all essentially
equivalent for ar < a < at. This means that the majority
of critical points are minima, along with associated saddles

of finite or at most subleading oðNÞ index and energy
barrier heights. Moreover, typical minima are also almost
global minima. Finally, due to zero complexity of typical
critical points and minima in the range a < at [Figs. 3(g)
and 4(g), respectively], the total number of critical points is
subexponential within this phase, and, hence, so is the
number of minima. Thus, SUSY is preserved due to zero
complexity in the range ar < a < at, despite the fact that
typical critical points, minima, and global minima have
a Hessian eigenspectrum that extends to 0 in this range
[Figs. 3(c), 4(c), and 5(c)]. Thus, overall, in the SUSY phase
ar < a < at, the nonconvex energy landscape is relatively
flat, with all subexponentially many critical points having
essentially the same intensive energies and all having soft or
flat directions with near zero Hessian eigenvalues.
At a ¼ at, both typical critical points and minima expe-

rience SUSY breaking, due to the proliferation of exponen-
tially many critical points and minima with nonzero
complexity [Figs. 3(g) and 4(g), respectively] in conjunction
with their marginal stability [Figs. 3(c) and 4(c)]. Moreover,
an intensive energy gap starts to appear between typical
minima andglobalminima.Hence,we expect that finding the
lowest CIM energy state starts to get difficult at a > at due to
the exponential number of higher-energy typical minima.
Finally, while global minima are marginally stable until

a ¼ ag, with many soft or flat modes, they become fully
rigid for a > ag due to a Hessian eigenspectrum gapped
away from 0 [Fig. 5(c)].
In addition to a global view of how typical critical points,

minima, and global minima evolve as a function of laser
gain a, as depicted in Fig. 6, we can also obtain a global
view of the energies and locations of critical points of all
indices at a fixed laser gain a. Figure 7 depicts this global
view for both theory and experiment at large a (in this case,
a ¼ 4), which is the important case when the CIM energy

FIG. 6. The phase diagram of the energy landscape. The curves
are theoretically predicted energy of the typical critical points (top
blue line), typical minima (middle orange line), and global
minima (green dashed line). The markers are the numerically
obtained energies for typical critical points (triangles), typical
minima (circles), and global minima (crosses), respectively. We
observe three phase transitions at a ¼ ar, at, and ag. The insets
are sketches of the energy landscape in the four different phases.
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function approximates well the Ising energy function of
interest [see Eq. (13)].
In particular, Fig. 7(a) shows a heat map of the numeri-

cally estimated complexity of critical points in a finite-size
(N ¼ 12) system, as a joint function of their energy and
squared radius q ¼ ð1=NÞPi x

2
i and colored by their

index. This complexity heat map shows a clear correlation
between index, radius, and energy, with lower index critical
points occurring at lower energy and larger radius.
Moreover, for each index we plot the most likely location
in the energy-squared radius plane (i.e., the location where
the complexity of critical points of that index is maximized)
as black dots in Fig. 7(a).

We then compare the locations of these black dots with
theoretical predictions derived from our SUSY-breaking
theory of critical points. In particular, we continuously vary
the chemical potential μ in the expression for the grand
potential in Eq. (34) [or, equivalently, Eq. (65)] and solve
the self-consistent equations for the order parameters in
Eq. (39) [or, equivalently, Eqs. (69) and (70)] as a function
of μ, as well as computed the intensive energy as a function
of μ via Eq. (41). Altogether, this yields the average
squared radius qðμÞ and intensive energy EðμÞ over a
weighted averaged of critical points controlled by μ, as in
the partition function in Eq. (27) with β ¼ 0. As μ → −∞,
this weighted averaged is dominated by index 0 critical
points, or minima. As μ increases, the weighted average is
dominated by higher index critical points. Thus, a theo-
retical prediction is that the curve EðμÞ versus qðμÞ as μ
varies from −∞ to þ∞ should provide information about

the most likely location of saddle points of increasing index
in the E-q plane, thereby going through all the black points
in Fig. 7(a). Remarkably, this prediction is confirmed in
Fig. 7(a): The orange curve is a plot of the theoretically
derived curve EðμÞ versus qðμÞ, and it does indeed go
through all the black points, which indicate the experi-
mentally derived most likely locations in the E-q plane for
critical points of each index.
A schematic view of the energy landscape which is

justified by Fig. 7(a) is shown in Fig. 7(b). Schematically, at
large a, the CIM energy landscape exhibits a highly rough
structure with concentric shells of critical points of increas-
ingly lower index occurring at increasing lower energy and
increasingly larger radius. In particular, the global mini-
mum occurs at the largest radius and lowest energy. But,
just above this in energy and at a smaller radius, there is a
wall of exponentially many typical local minima that stand
as a potential barrier. Thus, despite the fact that at large a
the CIM energy landscape has the nice property that it
mimics the Ising energy landscape of interest [see Eq. (13)],
direct optimization at large a starting from the origin poses
a difficult problem, as energy minimization must traverse
successively lower index saddles and minima at lower
energy and larger radius that may prevent reaching the
deepest global minima at the largest radius.

IX. THE RELATIONSHIP BETWEEN
ANNEALING PERFORMANCE AND
ENERGY LANDSCAPE GEOMETRY

We next discuss the relationship between the phase
transitions in the energy landscape geometry discussed
above and the performance of geometric landscape
annealing. This analysis also reveals an optimal annealing
schedule to arrive at a low value of the Ising energy. Indeed,
it is this annealing schedule that we use to attain good
performance in Fig. 1 in Sec. III.
We simulate the annealing processes with various

annealing schedules with a system size of N ¼ 104. The
schedules aðtÞ are chosen as

aðtÞ ¼ min
�
t
τ
þ að0Þ; amax

�
; ð81Þ

i.e., aðtÞ linearly increases from að0Þwith slope of τ−1 until
it saturates at a ¼ amax (see top panel in Fig. 8). We set að0Þ
to be the smallest eigenvalue of J, i.e., approximately
ar ¼ −2, because the state x is always trivially at the origin
for a smaller than the eigenvalue. The initial state is chosen
as a random Gaussian vector with independent components
each drawn from a Gaussian distribution with zero mean
and standard deviation 0.1. We verify that the annealing
performance is not influenced by the choice of the standard
deviation unless it is much smaller than Oð1Þ. In that case,
the initial state is very close to the origin and takes a long
time to escape the saddle point at the origin. When it does,

FIG. 7. A schematic view of the energy landscape at large laser
gain. (a) A two-dimensional heat map of the experimentally
derived distribution of intensive energy and squared radius q of
critical points with a ¼ 4, N ¼ 12, derived from the sampled
points depicted in Fig. 3. The color gradient denotes the index of
critical points, while the opacity illustrates the complexity. The
black points are the experimentally derived most likely location
of critical points for each index I ¼ 0;…; 12. The orange curve is
a theoretically predicted relationship between the energy and
squared radius q of critical points obtained by solving Eq. (39) for
varying μ in Eq. (34) and plotting qðμÞ versus EðμÞ [given in
Eq. (41)]. (b) A schematic depiction of the energy landscape at
large laser gain, consisting of concentric shells of increasing
radius and decreasing index and energy.
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it aligns with the principal eigenvector of J, which is the
most negative curvature direction around the saddle at the
origin. Therefore, initializing very close to the origin is
almost equivalent to the case of initializing the state along
the principal eigenvector of J, a possibility which we
discuss further below.
In Fig. 8, we show the trajectory of an annealing process

with amax ¼ 1.5 and τ ¼ 100 for the CIM energy (second
panel), Ising energy (third panel), and several snapshots of
the distribution of OPO amplitudes PðxÞ (fourth panel).
Since the initial state is a random vector around the origin,
both the CIM energy E and the Ising energy EIsing are close
to zero [86]. As the laser gain aðtÞ increases, both energies
decrease monotonically, and the distributionPðxÞ gradually
transforms from an unimodal shape around the origin to a
bimodal shape. During this transformation, small OPO
amplitudes xi around the origin are driven to either large
positive or negative values, causing sign flips of xi that
lower EIsing. However, once the distribution PðxÞ gets
completely separated into positive and negative parts at
t ∼ 200, fewer amplitudes xi can flip their signs, and the
Ising energy freezes.
To understand the dependency of the final CIM and Ising

energies on the annealing schedule, we simulate the
annealing processes with various amax and τ. Figure 9(a)
shows the CIM and Ising energy trajectories for three

different amax and ten different τ. Each row and color
corresponds to a certain value of amax and τ, respectively.
Figures 9(b) and 9(c) show the final achieved CIM and
Ising energies, respectively at t ¼ 6 × 102, averaged over
five different realizations of the random initial state and the
connectivity J. In particular, Fig. 9(b) shows for each amax
the difference ΔE between the final CIM energy achieved
by annealing to amax and the corresponding global mini-
mum energy at amax, while Fig. 9(c) shows the correspond-
ing Ising energy EIsing of the Ising sign pattern of the CIM
state found by annealing. The colored solid lines represent
the final achieved energy for different amax on the x axis
and different colors for different τ. The dotted black curve
with triangle markers above these colored solid lines
corresponds to τ ¼ 0, i.e., a rapid quench or gradient
descent from a random initial state at fixed amax. On the
other hand, the solid black curve with inverted triangle
markers below all the colored solid lines corresponds to
τ ¼ ∞, or the slowest possible annealing process obtained
by integrating the following adiabatic evolution:

dx
da

¼ H−1x; ð82Þ

with HessianH given in Eq. (5). Note that this equation can
be obtained by differentiating the stationary condition
½dEtotðxÞ=dxi� ¼ 0 with respect to a. For comparison,
Figs. 9(b) and 9(c) also show the results of gradient descent
starting from the principal eigenvector (the black dashed
line with rectangle markers) [87]. This corresponds to the
limit of an extremely small standard deviation of the initial
random Gaussian state. In Fig. 9(b), we also show for
reference the CIM energy of typical minima (the highest
black dotted line with “x” markers).
In the following subsections, we discuss the major

features observed in Fig. 9 when the annealing process
terminates in different phases of the energy landscape
geometry revealed in previous sections. In particular, we
discuss in succession (i) the small-gain supersymmetric
phase where ar < amax < at [the left column in Fig. 9(a)];
(ii) the intermediate-gain supersymmetry-breaking phase
where at < amax < ag [the middle column in Fig. 9(a)]; and
(iii) large-gain rigid global minimum phase of amax > ag
[the right column in Fig. 9(a)]. Note that when the gain is
smaller than ar ¼ −2, the energy landscape is convex and
the CIM state is confined to the origin.

A. The small-gain supersymmetric phase ar < amax < at
As is shown in Fig. 9(b), all the final achieved CIM

energies are very close to the ΔE ¼ 0 horizontal line,
regardless of annealing time constant τ. This is because the
majority of minima in the supersymmetric phase are almost
global minima (Fig. 6). The final achieved Ising energy is
also almost independent of the annealing schedule, as is
shown in Fig. 9(c). However, unlike the final achieved

FIG. 8. An example of annealing trajectories (a) The annealing
schedule given by Eq. (81) with amax ¼ 1.5 and τ ¼ 102. (b) the
trajectory of soft-spin network’s energy E. (c) The trajectory of
Ising energy EIsing of the corresponding spin configuration.
The green dashed line represents the Ising energy obtained by
the spectral method EIsing ¼ −ð2=πÞ, and the red dotted line the
ground-state energy in the large-N limit (approximately −0.76).
(d) The local variables’ distributions PðxÞ. The plots represent the
snapshots of the distribution at time t ¼ 0, 50, 100, 150, 200,
400, which are shown as vertical dotted lines above.
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CIM energy in Fig. 9(b), the final achieved Ising energy in
Fig. 9(c) decreases rapidly with increasing amax in the range
ar < amax < at. This decrease occurs because the distribu-
tion ofOPOamplitudesPðxÞ has a finite density at the origin,
and so ramping up the laser gain allows some of these small
amplitude spins to flip their signs, thereby lowering the
achieved Ising energy.

B. The intermediate-gain SUSY-breaking
phase at < amax < ag

Once a exceeds at, the complexity of minima becomes
positive [Fig. 4(g)], and the energy of typical minima
becomes strictly larger than that of global minima (Fig. 6).
This means there are exponentially many local minima
above the global minima in the energy landscape. Thus, if

FIG. 9. The performance of geometric landscape annealing and its dependence on annealing schedules. We simulate geometric
landscape annealing with a two-parameter family of annealing schedules in Eq. (81) parametrized by the final laser gain amax and time
constant τ. (a) Trajectories of the CIM energy E (top) and corresponding Ising energy EIsing (bottom) in the three different phases for
amax. The color bar indicates the annealing time constant τ. In the three top plots of CIM energy, the green dashed and red dotted lines
represent the energy of typical local minima and the global minima, respectively. In the bottom plots of Ising energy, the green dashed
and red dotted horizontal lines represent Esp ¼ −2=π and ESK ∼ −0.763, respectively. (b) The solid colored lines (with color indicating
annealing time constant according to the color bar) indicate the final achieved CIM energy E for each amax at t ¼ 6 × 102 minus the
theoretically calculated CIM ground-state energy for the same value of amax. The dotted horizontal line of ΔE ¼ 0 represents the
baseline ground-state energy. The very top dotted black line indicates the theoretically calculated CIM energy of typical local minima
(again, minus the energy of the corresponding global minima). (c) The final achieved Ising energy at t ¼ 6 × 102 as a function of
annealing time constant τ indicated by color and final gain amax on the horizontal axis. The horizontal dotted line is the ground-state
Ising energy ESK ≈ −0.763. In (b) and (c), the solid colored lines are the annealing processes with mean and standard deviation
computed across five different initializations and connectivities J. The black line above these colored lines is the case of τ ¼ 0, which
corresponds to rapid quench from a ¼ ar to a ¼ amax. The black line below all the colored lines is the trajectory of the energy obtained
by integrating the adiabatic differential equation (82), which essentially corresponds to τ ¼ ∞. The black dashed line in the midst of the
colored lines represents the energy trajectory of gradient descent dynamics initialized along the principal eigenvector of J when a is
fixed at amax.
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we rapidly increase the laser gaina and relax the system from
a high-energy state near the origin, the resultant trajectory is
likely to be trapped by a high-energy local minimum. This
effect makes the final achieved CIM energy of rapid
annealing higher than that of slow annealing [Fig. 9(a),
middle top, andFig. 9(b)].Moreover, since theCIMenergy is
correlated with the Ising energy, rapid annealing also yields
higher Ising energy than slow annealing [Fig. 9(a), middle
bottom, and Fig. 9(c)]. However, since the complexity of
minima is still relatively low in the rangeat < amax < ag, the
increment of final achieved CIM and Ising energies with
annealing speed is relatively small.
On the other hand, another effect decreases the Ising

energy with increasing amax at all annealing speeds in the
range at < amax < ag [Fig. 9(c)]. As seen in the top middle
panel in Figs. 9(a) and 9(b), the final CIM energy achieved
by annealing is still lower than that of typical minima and is
rather closer to that of global minima. Therefore, the states
obtained by annealing are likely to have features of the
global minima rather than the typical minima. Indeed, the
slowest annealing process has energy very close to that of
global minima. This observation is bolstered by the
numerical results shown in Fig. 10, which indicates that
the trajectories of the slowest possible annealing processes
have the features of the global minima’s rigidity phase

transition; i.e., the trajectory experiences the transition from
marginal stability to full stability and the localization of
PðxÞ exactly at a ¼ ag. Since PðxÞ has a finite density
around the origin below ag, the signs of some OPO
amplitudes can still be flipped by ramping up the gain
up to a ¼ ag. This effect allows EIsing to decrease further in
the range at < amax < ag, especially for slow annealing, as
seen in Fig. 9(c).

C. The large-gain rigid global minima phase amax > ag
First, we focus on the black bottom lines in Figs. 9(b)

and 9(c) representing the trajectory of the slowest possible
annealing process. As we discuss above, this trajectory
experiences a rigidity phase transition similar to that of
global minima, and the Hessian of the energy landscape
along this trajectory becomes gapped away from 0 for
a > ag, just as it does for global minima [Fig. 5(f)]. This
implies that the adiabatic evolution (82) is nonsingular, and
the time derivative of xi cannot be large. Because the
distribution PðxÞ is localized and separated into two sets of
xi with positive and negative signs, only a few numbers of
xi can flip their signs by this bounded state evolution.
Hence, it is unlikely that many xi flip their signs, and,
therefore, it is also unlikely that the Ising energy is lowered
for a > ag. Indeed, the final achieved Ising energy for the
slowest annealing process [lower solid black curve in
Fig. 9(c)] is flat for amax > ag. Thus, interestingly, as we
ramp up the laser gain beyond ag, even though the CIM
energy landscape becomes more like the Ising landscape,
the final achieved Ising energy via annealing cannot be
lowered. In other words, the geometric landscape annealing
process at slow annealing speeds is effectively terminated
by the rigidity phase transition in global minima at a ¼ ag,
well before the CIM energy landscape looks like the Ising
energy landscape at large a as in Eq. (13).

When the annealing speed is faster, the trajectory is more
likely to be trapped by a higher-energy local minimum,
leading to both higher final CIM and Ising energies. This
increase of final energies with increased annealing speeds
becomes stronger as the final gain amax increases because
of both the complexity growth of typical minima with a
[Fig. 4(g)] and the growing energy gap between typical and
global minima (Fig. 6). Likely because of both of these
landscape properties, the final achieved CIM and Ising
energies are significantly larger under faster annealing
compared to slower process at very large amax > ag
[Fig. 9(a), right, and Figs. 9(b) and 9(c)].

D. The optimal annealing schedule terminates at the
rigidity phase transition for global minima

In summary, out of the general space of annealing
schedules in Eq. (81), the optimal schedule with lowest
achievable Ising energy is given by amax ¼ ag and large τ.
If the annealing speed is slow enough, a further increase of

FIG. 10. Slow annealing trajectories exhibit the same phase
transition as that of CIM global minima. We simulate the
geometric landscape annealing process by integrating Eq. (4)
with five different samples of J with system size N ¼ 104. The
annealing schedule is given by Eq. (81) with τ ¼ 102 and
amax ¼ 4. Each color represents a trajectory of a single instance.
Top: the minimum eigenvalue of the Hessian along the trajectory.
We observe a similar rigidity phase transition as that of global
minima in Fig. 5(f) wherein the minimal eigenvalue of the
Hessian transitions from 0 to nonzero values at a ¼ ag. Bottom:
The fraction of the number of OPOs with small amplitudes jxij <
0.01 starts to vanish at a ¼ ag, similar to how the distribution
Pðx ¼ 0Þ for global minima vanishes at a ¼ ag. These two
observations provide evidence that the slow annealing process
can find the near-global CIM energy minima at least
around a ¼ ag.
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amax does not further lower the Ising energy, because the
annealing trajectory tracks the evolution of a CIM global
minimum found at a ¼ ag, which remains rigid for a > ag.
Also, more rapid annealing (smaller τ) yields much less
optimal, much higher Ising energies at larger amax > ag.
However, at a ¼ ag, the dependence of the final achieved
Ising energy on the speed of the annealing process is
remarkably weak, ranging from approximately −0.75 to
approximately −0.73 as τ ranges from 1 to 100. Thus,
geometric landscape annealing in this case is surprisingly
robust to annealing speed, provided annealing is optimally
terminated at the rigidity phase transition for global minima.
Note that we also discover that the suboptimal higher

Ising energies found by fast annealing can be mitigated by
initializing the state along the principal eigenvector of the
connectivity J. The performance of gradient descent at
fixed amax with this initialization is shown as a dashed back
line with square markers in Figs. 9(b) and 9(c). The final
Ising energy of this process also achieves the lowest value
around a ¼ ag, and the Ising energy difference from the
slowest annealing process is < 0.01. Since the slow
annealing process can reach a global minimum of the
CIM energy at a ¼ ag, the best achievable Ising energy can
be simply characterized as the Ising energy of the CIM
global minimum specifically when a ¼ ag. Note, however,
that as amax increases beyond ag, even at extremely slow
annealing, the CIM energy found by annealing is no longer
equivalent to the CIM energy of the global minimum, as
reflected by the detachment of the lower black solid line
from the lowest horizontal dotted line of ΔE ¼ 0 in
Fig. 9(b) for a ≫ ag. This means geometric landscape
annealing cannot find a CIM global energy minimum for
a ≫ ag. Since the CIM energy global minimum at very
large a is also an Ising energy global minimum, according
to Eq. (13), this means the annealing process cannot find
the exact Ising ground state either, as reflected by the gap in
Fig. 9(c), between the solid black bottom curve and the
dotted horizontal line of ESK ∼ −0.763. As discussed
above, the adiabatic evolution for a > ag is continuous
due to the nondegeneracy of Hessian along the trajectory.
This implies that the near-global CIM energy minimum at
a ¼ ag that originates from the bifurcation at the origin is
itself not continuously connected to global CIM energy
minima at very large a. This type of discontinuity around
phase transitions has been known as a major challenge for
annealing processes such as simulated annealing and
quantum annealing.

X. DISCUSSION

In an effort to develop a theoretical understanding of how
a physical computing device, the coherent Ising machine,
solves discrete combinatorial optimization problems by
embedding them in annealed nonlinear analog dynamics,
we engaged in an extensive study of the geometry of the

energy landscape of this system and how it evolves as the
laser gain is annealed, when the system is attempting to find
the ground state of the SK spin glass. We were able to
quantitatively describe the geometry of the landscape at all
laser gains in terms of the number of critical points, and
their locations (distance from the origin), energies, indices,
and Hessian eigenspectra. We found at large laser gain,
when the CIM energy function mimics the Ising energy
function, the CIM energy landscape exhibits a complex
hierarchical concentric shell structure in which saddle
points of successively lower index and energy are located
at successively larger radii (Fig. 7). This complex landscape
presents a challenge to dissipative gradient descent dynam-
ics, which at a fixed large laser gain cannot come close to
either the CIM or Ising energy global minimum [top
solid quenched τ ¼ 0 black line with triangle markers in
Figs. 9(b) and 9(c)].
However, annealing the laser gain takes the CIM land-

scape through a sequence of phase transitions, each one
introducing successive complexity. For a < ar, the land-
scape is convex with a single global minimum at the origin.
Then, for ar < a < at, there are many (though subexpo-
nential in N) critical points. The intensive energies of all
critical points are close to those of both typical and global
minima. Hessian eigenspectra of all critical points extend to
zero, indicating extensively many soft modes. This repre-
sents a highly flat landscape with many minima with
similar energies tightly concentrated around a specific
value, separated by saddle points whose energy barrier
heights relative to minima and whose indices both scale
sublinearly in N. The existence of such soft modes implies
that the CIM undergoes subsequent bifurcations, called
retarded bifurcations [29], flipping the signs of frustrated
soft spins. This situation is described by supersymmetric
solutions. Then, for at < a < ag, supersymmetry for typ-
ical critical points and minima is broken; there are
exponentially many of them with Hessian eigenspectra
extending to 0. Furthermore, the intensive energies of
typical critical points, typical minima, and global minima
start to separate, indicating the beginnings of a rugged
landscape (Fig. 6). The global minimum still has extensively
many soft modes. Finally, for a > ag, the global minimum
undergoes a rigidity phase transition and all its soft modes
disappear. Moreover, our cavity method for deriving these
results yields conceptual insight into the meaning of SUSY
breaking and the resultant order parameters, in terms of the
extreme reactivity of the landscape to specific external
perturbations, originating from exponentially many critical
points with extensively many soft modes.
This detailed analysis of the landscape not only provides

conceptual insights into why geometric landscape annealing
works, through annealing the laser gain of the CIM, but also
suggests an optimal annealing schedule. Basically, the Ising
energy along a slow CIM annealing trajectory continuously
decreases as a increases until a hits ag. At this point, the CIM
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annealing trajectory,whose energy has been following that of
the CIM global minimum [bottom solid adiabatic τ ¼ ∞
black line with inverted triangle markers in Fig. 9(b)],
becomes trapped in a rigid minimum that it cannot escape
with further annealing. Thus, no further sign flips can occur
and the Ising energy is fixed; there is no advantage to
terminating the annealing process at any amax > ag. In fact,
there is a disadvantage: If one terminates annealing at some
amax > ag, the results can depend strongly on the annealing
speed τ [i.e., substantial height variation of the colored lines
for amax ≫ ag in Figs. 9(b) and 9(c)]. However, if one
terminates at amax ¼ ag, the final achieved CIM or Ising
energies do not depend strongly on annealing speed [i.e.,
very little height variation of the colored lines for amax ¼ ag
in Figs. 9(b) and 9(c)]. This robustness to annealing speed is a
consequence of the landscape geometry: For a up to ag the
intensive energy gap between typical local minima and
global minima is not so large (Fig. 6), so if faster annealing
results in trappingby localminima, such trapping cannot lead
to substantially higher CIM energy.
All of this landscape analysis together points to an

optimal and robust annealing schedule: Simply anneal a to
amax ¼ ag when the global minima of the CIM energy
landscape become rigid. The slower the annealing, the
better, but excessive slowness is not required due to the
robustness of the final energies to annealing speed. Indeed,
this landscape-derived annealing schedule allowed us to
find SK spin configurations with energies in the large-N
limit close to within about 1% of the true ground-state
energy (Fig. 2). This final mismatch between the Ising
energy found by CIM annealing and the actual Ising energy
means that the global minimum of the CIM energy land-
scape at a ¼ ag (or at least the state, with energy close to
that of the global minimum, found by annealing) is not
continuously connected to the global minimum of the CIM
energy landscape at a ≫ ag, when the CIM energy land-
scape approximates well the Ising energy landscape. One
possible scenario is an energy level crossing between two
far apart local minima between ag and large a, which leads
to a different state becoming the global minimum at large a
than the state that is a global minimum at a ¼ ag.
Overall, this extensive analysis of energy landscape

geometry and its relation to annealing dynamics opens
the door to several interesting directions. Most importantly,
while we have focused on the SK spin-glass problem due to
its combined mathematical simplicity and high degree of
frustration, it would be interesting to extend our proposed
theoretical framework to more realistic problem instances,
which typically exhibit more structure than the SK
instances. We believe our theoretical framework can be
adapted to such structured instances by introducing addi-
tional order parameters, thereby providing a pathway
toward tackling more realistic problem instances. A logical
first step would be to generalize our results for previously

studied structured instances, such as the Wishart planted
ensemble [88] or the spiked Wigner model [89]. These
problem instances incorporate low-rank term(s) in their
Ising coupling matrices of the form ssT , where s is an
N-dimensional vector. In such cases, it would be natural to
introduce an order parameter quantifying the inner product
between s and the position of typical critical points of CIM.
Elucidating the phase diagram of the energy landscape with
this new order parameter presents a challenging yet
promising avenue for future research.
Moreover, there exist many other ensembles of random

optimization problems that can be efficiently mapped to
Ising energy minimization, including, for example, parti-
tioning, covering, packing, matching, clique finding, graph
coloring, minimum spanning trees, and the traveling sales-
man problem [17]. Each of these ensembles of random
problems could exhibit different geometric properties under
landscape annealing, and analyzing the relationship
between the evolution of landscape geometry, optimal
annealing schedules, and annealing performance in these
different ensembles could shed light on different univer-
sality classes of possible scenarios. To address these varied
random problem instances, we can no longer rely on
Pastur’s formula (22), which stems from the properties
of the Gaussian orthogonal ensemble. Consequently, we
must develop and employ alternative theoretical methods
tailored to each ensemble. Furthermore, while our current
work assumes that the eigenvalue density of the Hessian
vanishes at the origin (an assumption validated by our
numerical results), this may not hold true for other cases.
Investigating the conditions under which this assumption
breaks down represents another intriguing area for future
exploration.
Second, we have considered gradient descent dynamics

on an evolving energy landscape. One could also analyze
nongradient descent dynamics. For instance, a few previous
works discuss the addition of nonconservative feedback
such as the error-correcting scheme [28] or manifold
reduction method [30], which introduce better control of
soft-spin amplitudes. Another possibility is the addition of
asymmetric parts to the connectivity matrix [90]. Such
additional nongradient dynamics can typically induce
chaos and destabilize the least stable minima. Just as the
Kac-Rice formula can be used to count critical points of an
energy landscape, as we have done here, it can also be used
to count fixed points in nongradient dynamical systems, for
example, in neural network dynamics [91] or ecological
dynamics [92–94]. Such a Kac-Rice analysis of the CIM
dynamics with an asymmetric connectivity component,
which can be implemented physically in the CIM hardware,
may provide an intriguing window into whether and how
chaos might aid optimization [95,96].
Third, our analysis methods may also be useful for

exploring the potential utility of nondegenerate OPO
dynamics [42] for evading obstacles in the CIM energy
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landscape. Such nondegenerate OPO dynamics can be
modeled as a set of coupled oscillatory phase variables,
akin to a network of Kuramoto oscillators [97], which have
also been employed in physical computing devices to solve
Ising energy minimization problems [98–100]. The geo-
metric landscape annealing considered here can be thought
of as gradually interpolating between soft-spin variables to
strongly bistable binary variables while keeping the Ising
connectivity fixed. On the other hand, the flexibility of
physical OPO devices also opens the door to more general
dynamics annealing strategies that interpolate between
nondegenerate oscillatory phaselike dynamics and degen-
erate soft-spin dynamics or strongly bistable binary dynam-
ics [42]. Exploring and analyzing the utility of this broader
class of annealing strategies in solving diverse optimization
problems constitutes an interesting direction for future
research.
Fourth, and perhapsmost interestingly, OPOnetworks can

be constructed in ways that interpolate between classical and
quantum operating regimes, as a function, e.g., of linear
decoherence rates relative to coherent nonlinear dynamical
rates [18]. Our work in the classical setting here provides a
foundation for exploring how novel emergent information
dynamics in the classical-quantum crossover [19] may
impact optimization performance. Indeed, a key open ques-
tion is, how does open dissipative quantum dynamics
negotiate high-dimensional spaces riddledwith saddle points
and local minima as in Fig. 7? Is there some balance between
coherent quantum evolution and environment-induced dis-
sipation that can aid in optimization through energy mini-
mization? Perhaps an interesting place to start is small
systems of N ¼ 4 coupled OPOs whose open dissipative
quantum dynamics can both be tractably simulated on
classical computers [101], aswell as physically implemented
in circuit QED [102] or nanophotonic [18] devices. An
interesting question is to map out the computational phase
diagram of such problems, parametrized by 4-by-4 connec-
tivity matrices, and determine the boundaries between two
computational phases in which the classical CIM either
succeeds or fails. Then, one could explore how the quantum
CIM behaves differently in each of these phases.
Along these quantum lines, recent work has examined

how quantum or other physical effects in open dissipative
physical systems modify their classical dissipative dynam-
ics, yielding optimization benefits. For example, in a
multimode cavity QED system whose classical dynamics
mimics a Hopfield associative memory [103], the natural
cavity dynamics yield the steepest energy descent dynamics
that enhance both the capacity and robustness of memories
relative to that of the classical Hopfield model [104]. Also,
when the same cavity QED system implements an SK spin
glass, simulations of the system reveal that the open
dissipative quantum dynamics drive the coupled spins to
enter highly entangled quantum states, which, in turn, allow

the system to evade semiclassical energy barriers, thereby
arriving at lower-energy states more quickly relative to the
more semiclassical dissipative dynamics [105]. It would be
interesting to explore whether analogous effects related to
optimization benefits arise in quantum versions of the CIM.
In summary, the solution of combinatorial optimization

algorithmsusingnovel physical computing hardware is a rich
and emerging field. Our initial theoretical analysis of the
coherent Ising machine in the classical limit reveals a rich
theory with diverse connections across physics and math-
ematics, spanning spin glasses, the replicamethod, the cavity
method, supersymmetry breaking, Dyson’s Brownian
motion, random matrix theory, and the statistical mechanics
of random landscapes. Moreover, analysis combining these
topics yields geometric insights into the nature of optimal
annealing schedules and the computational power of geo-
metric landscape annealing in optimization. Future direc-
tions of theory suggest the potential for usefully connecting
to even more diverse topics, including Kuramoto networks,
chaos, and open dissipative quantum dynamics. Given the
recent emerging interest in diverse physical computing
devices, spanning spintronic [106], memristor [107], pho-
tonic and optical [2,108], and CMOS substrates [109], for
solving diverse NP-hard combinatorial optimization prob-
lems, we hope our theoretical analysis may inspire much
future work aimed at understanding general approaches for
how annealed nonlinear analog dynamical systems can aid in
solving discrete optimization problems, thereby merging the
primarily analog worlds of physics with the primarily
discrete worlds of computer science.
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APPENDIX A: DERIVATION OF GRAND
POTENTIAL

In this appendix, we present two detailed derivations of
the grand potential. Our first derivation employs the replica
method, while our second derivation involves a novel
generalized cavity method. For readers less acquainted
with these methodologies, we recommend consulting
Ref. [44], where step-by-step derivations are provided
for pedagogical purposes.
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1. Replica-based calculation

As is shown in Eq. (30), the grand potential can be calculated by the ensemble average of Zn where the partition function
Z is given by Eq. (31). By introducing new auxiliary variables ua for a ¼ 1; 2;…; n, Zn can be written as

Zn ¼
Z Y

i;a

dxai

Z
i∞

−i∞

Y
i;a

duai
2πi

j det½HðxaÞ�jeμIðxaÞ exp
�X

i

uai ∂iEðxaÞ − βEðxaÞ
	
:

Then, inserting this expression for Zn, performing a change of variables in Jij [45], and introducing new auxiliary variables
via Hubbard-Stratonovich transformations [73], we obtain

−βΩðβ; μÞ ¼ lim
n→0

1

n
ExtΘ

�
Ω0

0ðΘÞ þ
1

N
log

�Z
Dx

Z
Due

P
i
S0ðΘ;xi;uiÞ

�Y
a
j detHðxaÞjeμIðxaÞ

�
J

	�
;

where
R
Dx ¼ R Q

i;a dx
a
i and

R
Du ¼ R

i∞
−i∞

Q
i;aðduai =2πiÞ. Θ ≔ ðfqabg; fwabg; fλabgÞ is a tuple of several auxiliary

variables, ExtΘ means extremization with respect all variables Θ, and Ω0
0ðΘÞ and S0ðΘ; x; uÞ are given, respectively, by

Ω0
0ðΘÞ ¼

X
a;b

�
−
1

2
ðwabÞ2 − βwabqab −

β2

4
ðqabÞ2 − λabqab

	
;

S0ðΘ; x; uÞ ¼
X
a

½−βEIðxaÞ þ ua∂EIðxaÞ� þ
X
ab

�
wabxaub þ 1

2
qabuaub þ λabxaxb

	
:

We assume that the average of the product of the deter-
minant and the chemical potential factor factorizes into the
product of the averages:

�Y
a
j detHðxaÞjeμIðxaÞ

�
J
≈
Y
a

hj detHðxaÞjiJ
D
eμIðxaÞ

E
J
:

To evaluate the chemical potential term, we exploit the
formula [110]

IðxÞ ¼ lim
ϵ→0

1

2πi
ðlog det½HðxÞ − iϵ� − log det½HðxÞ þ iϵ�Þ:

Further assuming that the Hessian’s eigenspectrum density
at the origin vanishes, the average of the chemical potential
term is calculated as

log
D
eμIðxÞ

E
J
¼ μ

X
i

ĪðxiÞ;

where ĪðxÞ is given in Eq. (37). Similarly, we obtain

loghj det½HðxÞ�jiJ ¼
X
i

log½∂2EIðxiÞ − t�:

We substitute these equations and introduce new variables
Aab and Cabð¼ CbaÞ, as is done for supersymmetry-
breaking complexity calculations [54]. Specifically, we
perform the change of variables

wab ¼ −taδab − βqab − Aab;

λab ¼ β

2
taδab þ

β2

2
qab þ β

2
ðAab þ AbaÞ þ 1

2
Cab:

While wab and λab are difficult to interpret, the new
variables Aab and Cab have clear physical interpretations
as the susceptibility of the complexity to certain perturba-
tions in the energy landscape, which we discuss later. In
terms of the new variables Aab and Cab, the grand potential
is expressed as

−βΩðβ; μÞ ¼ lim
n→0

1

n
Ext

�
Ω0 þ log

Z Y
a

½dxaduawðxaÞ�eSþμ
P

a
ĪðxaÞ

�

with wðxaÞ ¼ ∂
2EIðxaÞ − ta and
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Ω0 ¼
X
a;b

�
−
1

2
ðAabÞ2 − AaataRδab −

β

2
qaataδab −

β2

4
ðqabÞ2

− βAabqab −
1

2
Cabqab

	
;

S ¼
X
ab

�
1

2
qabuaub þ Aabuaxb þ 1

2
Cabxaxb

	

þ
X
a

�
−uaha þ βxaha − βðEIðxaÞ −

ta

2
ðxaÞ2Þ

	
;

ðA1Þ

where ha ¼ ∂EIðxaÞ − taxa.

We next derive the grand potential for β ¼ 0 with the
replica symmetric ansatz. Under this ansatz, qab is para-
metrized as qab ¼ qδab þ q̄, with two parameters q and q̄.
Similarly, A andC are parametrized as Aab ¼ Aδab þ Ā and
Cab ¼ Cδab þ C̄, respectively, and ta is now independent
of the replica index a, which we denote t. It is easy to see
that the terms including q̄, Ā, and C̄ are proportional to n2,
where n is the number of replicas, and, hence, we ignore
such terms, meaning that all the replicas are decoupled.
Then, under this ansatz, we obtain

−βΩð0; μÞ ¼ Ext

�
−
1

2
ðCqþ A2Þ − Atþ log

Z
i∞

−i∞

du
2πi

Z
dxwðxÞ exp

�
1

2

�
u

x

�T� q A

A C

��
u

x

�
− uhþ μĪðxÞ

�	
:

By integrating out u, we get Eq. (34). The self-consistent
equations [Eq. (39)] are obtained by the stationary con-
dition of the extermination.
Lastly, we discuss how we obtain the expression for

distribution PðxÞ [Eq. (36)] and the Hessian eigenvalue
spectrum [Eq. (22)]. For an arbitrary well-behaved function
OðxiÞ, we define the following expectation value:

hOi ≔
�
1

Z

X
α∈CrtðEÞe

−βEðxαÞþμIðxαÞ
�
1

N

X
i
OðxiÞ

��
J
:

This quantity is equivalent to the following derivative:

1

N
d
ds






s¼0

�
log

X
α∈CrtðEÞe

−βEðxαÞþμIðxαÞþs
P

i
OðxiÞ

�
J
:

Following the derivation of grand potential above, we can
calculate this quantity, resulting in hOi ¼ R

dxPðxÞOðxÞ,
where PðxÞ is given by Eq. (36).
The Hessian eigenspectrum can be obtained from the

resolvent RðzÞ via the inverse Stieltjes transform. The
resolvent can be written as a derivative as follows:

RðzÞ ¼ −
1

N
d
dẑ






ẑ¼z

det½HðxÞ − ẑI�
det½HðxÞ − zI� : ðA2Þ

We calculate the average of log det½HðxαÞ − ẑI� −
log det½HðxαÞ − zI� and then obtain an ensemble-averaged
resolvent through Eq. (A2). Following this strategy, the
average of log det½HðxαÞ − ẑI� − log det½HðxαÞ − zI� is
given by

hlog det½HðxαÞ − ẑI� − log det½HðxαÞ − zI�iβ;μ
¼ N−1 d

ds






s¼0

log
X

α∈CrtðEÞ
exp

�
−βEIðxαÞ þ μIðxαÞ

þ sflog det½HðxαÞ − ẑI� − log det½HðxαÞ − zI�g
�
:

Here, h·iβ;μ represents the weighted average over all critical
points xα with the Boltzmann weights exp ð−βEIðxαÞþ
μIðxαÞÞ. The modified free energy parametrized by s can be
calculated using the replicamethod in amanner parallel to the
previous calculation and also by exploiting the formula for
the average of the determinant. In the end, we obtain

�
log

X
α∈CrtðEÞ

exp

�
−βEIðxαÞ þ μIðxαÞ þ sflog det½HðxαÞ − ẑI� − log det½HðxαÞ − zI�g

��
J

¼ lim
n→0

1

n
Ext

�
Ω0 þ log

Z Y
a

½dxaduawðxaÞ�eSþμ
P

a
ĪðxaÞ exp

�
s

�
N
2
f½taðẑÞ�2 − ½taðzÞ�2g þ log

∂EIðxaÞ − ẑ − taðẑÞ
∂EIðxaÞ − z − taðzÞ

	��
;

where the stationary condition gives taðzÞ ¼ h½∂2EðxaÞ − z − taðzÞ�−1iS, with Ω0 and S defined in Eq. (A1). By taking the
derivative with respect to s, we obtain
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hlog det½HðxαÞ − ẑI� − log det½HðxαÞ − zI�iβ;μ;J ¼
N
2
½tðẑÞ�2 − N

2
½tðzÞ�2 þ N

�
log

∂EIðxaÞ − ẑ − tðẑÞ
∂EIðxaÞ − z − tðzÞ

�
S
:

Here, we exploit the fact that ta is independent of the replica index a and write it as twithout its replica index. Assuming that
the quantity above is self-averaging,

RðzÞ ¼ −N−1 d
dẑ






ẑ¼z

exp

�
N
2
½tðẑÞ�2 − N

2
½tðzÞ�2 þ N

�
log

∂EIðxaÞ − ẑ − tðẑÞ
∂EIðxaÞ − z − tðzÞ

�
S

�
¼ tðzÞt0ðzÞ − h½∂EIðxaÞ − z − tðzÞ�−1½1þ t0ðzÞ�iS
¼ tðzÞ:

Therefore, the function t defined in Eq. (39) is nothing other than the resolvent of the Hessian at the origin z ¼ 0. Moreover,
through the inverse Stieltjes transform, the eigenvalue density of the Hessian is simply proportional to the imaginary part of
tðzÞ near the real axis.

2. The generalized cavity method

In this section, we derive the grand potential at the annealed level via a generalized cavity method with more detailed
mathematical expressions. We start from the Kac-Rice formula for the grand potential, but we relax the delta-function
constraint on the gradient and replace it with a soft Gaussian function with effective inverse temperature β. The relaxed
grand potential is given as follows:

expðNΩβÞ ¼ EJ

�Z YN−1

i¼0

dxi

�
β

π

�
N=2

j detHðxÞjeμIðxÞ exp
�
−β

XN−1

i¼0

�
∂EIðxiÞ þ

XN−1

j¼0

Jijxj

�2�	
:

We split the system of N soft spins into a single soft spin x0 and the rest of the spins, i.e., the cavity system
x=0 ¼ ðx1;…; xNÞ. Note that the joint distribution of x ¼ x0 and gradient y ¼ ∇0EðxÞ is given by

Pβðx; yÞ ∝ EJ

�Z YN−1

i¼0

dxi exp
�
−β

XN−1

i¼0

�
∂EIðxiÞ þ

XN−1

j¼0

Jijxj

�2�
j detHðxÞjeμIðxÞδðx0 − xÞδ½∇0EðxÞ − y�

	
: ðA3Þ

The grand potential can be factorized as follows:

expðNΩβÞ ¼ EJ=0

�Z YN−1

i¼0

dxiEJ0

�
ωðx0J0;x=0Þ

ffiffiffi
β

π

r
exp

�
−β

�XN−1

i¼1

J0ixi þ ∂EIðx0Þ
�2� jdetHðxÞj

jdetHðx=0Þje
μðIðxÞ−Iðx=0ÞÞ

		
: ðA4Þ

Here, Hðx=0Þ is the N − 1 × N − 1 submatrix of HðxÞ and is simply the Hessian of the cavity system in the absence of x0.
EJ0 represents an average over the vector J0 ≔ ðJ01; J02;…; J0ðN−1ÞÞ which couples x0 to the cavity system x=0. Also, EJ=0

represents an average over J=0 which is the N − 1 × N − 1 submatrix of J corresponding to the connectivity matrix of the
cavity. Finally, ωðs;x=0Þ is the grand potential density of the cavity system x=0 in the absence of x0 but in the presence of an
external field s that tilts the gradient:

ωðs;x=0Þ ¼
�
β

π

�ðN−1Þ=2
j detHðx=0ÞjeμIðx=0Þ exp

�
−β

XN−1

i¼1

�
∂EIðxiÞ þ

XN−1

j¼1

Jijxj þ si

�2�
:

Assuming that t ≔ N−1TrH−1ðxÞ is self-averaging, the determinant ratio in Eq. (A4) is calculated as
j detHðxÞ= detHðx=0Þj ¼ j∂2EIðx0Þ − tj. Furthermore, the difference of indices IðxÞ − Iðx=0Þ in Eq. (A4) is calculated
as follows:
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IðxÞ−Iðx=0Þ

¼ lim
ϵ→0

1

2πi

�
log

det½HðxÞ− iϵ�
det½Hðx=0Þ− iϵ�− log

det½HðxÞþ iϵ�
det½Hðx=0Þþ iϵ�

�
¼ Īðx0Þ;

where ĪðxÞ is given by Eq. (37). The grand potential
density ωðs;x=0Þ can be factored into the product of
ωð0;x=0Þ and a function of s: ωðx0J0; x=0Þ ¼
ωð0; x=0Þ exp ð−2x0β

P
N−1
i¼1 ∇iEðx=0ÞJ0i − βx20Þ, where

∇iEðx=0Þ ¼ ∂EIðxiÞ þ
P

N
j¼1 Jijxj. Substituting these

expressions into Eq. (A4), we notice that the expression
depends on the coupling vector J0 only through
two variables h̄ ≔ −

PN−1
i¼1 J0ixi and z̄ ≔ −2β

P
N−1
i¼1 ×

∇iEðx=0ÞJ0i. These two scalars are jointly Gaussian distrib-
uted with zero mean, and the integration over J0 can be
replaced with the two-dimensional integration over ðh̄; z̄Þ.
Then, the integration over J0 can be replaced with the
expectation value h·ih̄;z̄ with respect to random Gaussian
variables h̄ and z̄:

expðNΩβÞ ¼ EJ=0

�Z YN−1

i¼0

dxiωð0;x=0Þ
�
β

π

�
1=2

�
exp

�
x0z̄ − βð∂EIðx0Þ − h̄Þ2 − βx20

��
h̄;z̄
j∂2EIðx0Þ − tRjeμĪðx0Þ

	
:

Furthermore, the expectation value can be rewritten by a
change of Gaussian variables h̄ → h and z̄ → z as follows:

�
exp

�
x0z̄ − βð∂EIðx0Þ − h̄Þ2 − βx20


�
h̄;z̄

¼
�
exp

�
x0z − βð∂EIðx0Þ − tRx0 − hÞ2


�
h;z
;

where the covariance of the new centered Gaussian random
variables z and h is now given by

hh2i ¼ N−1jx=0j2;
hhzi ¼ 2N−1β∇Eðx=0Þ · x=0 − t;

hz2i ¼ 4N−1β2j∇Eðx=0Þj2 − 2β:

After this change of variables, it is not difficult to see that
the expression is equivalent to the following:

expðNΩβÞ ¼ EJ=0

�Z YN−1

i¼1

dxiωð0;x=0Þ

×

�Z
dy

ffiffiffi
β

π

r
e−βy

2
X

x∈CrtðEMF½yþh�Þ
exzþμĪðxÞ

�
h;z

	
;

where EMF½hþ y�ðxÞ ≔ EIðxÞ − ðt=2Þx2 − ðhþ yÞx.
In this equation, the Gaussian average h·ih;z has a

covariance matrix that depends on the cavity system x=0

only through the following three quantities, which we
define to be qðx=0Þ, Aðx=0Þ, and Cðx=0Þ:

qðx=0Þ ¼ ðN − 1Þ−1jx=0j2 ≈ hh2i;
Aðx=0Þ ¼ 2ðN − 1Þ−1β∇Eðx=0Þ · x=0 − t ≈ hhzi;
Cðx=0Þ ¼ 4ðN − 1Þ−1β2j∇Eðx=0Þj2 − 2β ≈ hz2i:

We assume that qðx=0Þ, Aðx=0Þ, and Cðx=0Þ concentrate
around their expectation values q, A, andC under the cavity
grand potential density ωð0;x=0Þ. Under this assumption,
the average h·ih;z can be taken outside of the integral over
x=0, obtaining

Ωβ ¼ ðN − 1ÞðΩ̃β − ΩβÞ

þ log

�Z
dy

ffiffiffi
β

π

r
e−βy

2
X

x∈CrtðEMF½yþh�Þ
exzþμĪðxÞ

�
h;z
;

where the covariance of h and z is given by

�
q A

A C

�

and Ω̃β is defined as

exp½ðN − 1ÞΩ̃β� ≔ EJ=0

�Z YN−1

i¼1

dxiωð0;x=0Þ
	
:

In the limit of large N, the first term of the equation above
converges to a derivative, which can be written in terms of
order parameters:

lim
N→∞

ðN − 1ÞðΩ̃β −ΩβÞ ¼ −
dΩβðσÞ
dσ






σ¼1

¼ 1

2
qCþ 1

2
A2 þ At:

Substituting this expression and taking the limit of large β,
we recover Eq. (65).
Lastly, we discuss the derivation of the self-consistent

equations via the cavity method. We assume that the joint
distribution of x and ∇EðxÞ can be factorized into a
product of N copies of the independent distribution
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Pβðx; yÞ, defined in Eq. (A3). Under this assumption, any
self-averaging function of x and ∇EðxÞ that tightly con-
centrates about its mean can be well approximated as an
average over the mean-field distribution Pβðx; yÞ. Under
this assumption, the functions qðxÞ, AðxÞ, and CðxÞ
concentrate about their means as follows:

qðxÞ ¼
Z

dxdyPβðx; yÞx2;

AðxÞ ¼ 2β

Z
dxdyPβðx; yÞxy − t;

CðxÞ ¼ 4β2
Z

dxdyPβðx; yÞy2 − 2β:

The distribution Pβðx; yÞ can be obtained similarly to the
grand potential, resulting in

Pβðx; yÞ ¼ Z−1
β

�Z
dy�δðx� − xÞδðy� − yÞ

ffiffiffi
β

π

r
e−βy

2�

×
X

x� ∈CrtðEMF½y�þh�Þ
ex�zþμĪðx�Þ

�
h;z
; ðA5Þ

where

Zβ ¼
�Z

dy

�
β

π

�
1=2

e−βy
2
X

x∈CrtðEMF½yþh�Þe
xzþμĪðxÞ

�
h;z
:

Substituting this expression into Eq. (A5) and taking the
low-temperature limit β → ∞, we obtain self-consistent
equations for the order parameters associated with critical
points:

q ¼ Z−1
�X

x∈CrtðEMF½h�Þe
xzþμĪðxÞx2

�
h;z
;

A ¼ Z−1
�

d
dh

X
x∈CrtðEMF½h�Þe

xzþμĪðxÞx
�

h;z
− t;

C ¼ Z−1
�

d2

dh2
X

x∈CrtðEMF½h�Þe
xzþμĪðxÞ

�
h;z
;

with Z ¼ hPx∈CrtðEMF½h�Þ e
xzþμĪðxÞi

h;z
. Note that, while the

derivatives with respect to h can be undefined with some
values of h, we can always define the expectation value of
the derivatives through integration by parts. Similarly, the
self-consistent equation for t can be obtained under the
limit β → ∞:

t ¼ lim
β→∞

Z
dxdyPβðx; yÞ

1

∂
2EIðxÞ − t

¼ Z−1
�X

x∈CrtðEMF½h�Þe
xzþμĪðxÞ dx

dh

�
h;z
:

These self-consistent equations can also be given a
variational characterization. Indeed, they are equivalent
to the equations obtained by extremizing the right-hand
side of Eq. (65) with respect to q, A, C, and t, i.e.,

Ω ¼ ext
ðq;A;C;tÞ

�
−
1

2
ðCqþ A2Þ − At

þ log

�X
x∈CrtðEMF½h�Þe

xzþμĪðxÞ
�

h;z

	
: ðA6Þ

This equivalence can be seen by explicitly calculating the
stationary condition of the right-hand side.
It is not difficult to see that Eq. (A6) is equivalent to an

extremizer of Eq. (34). This means that the cavity method
and the aforementioned replica-based calculation give the
equivalent result.

3. A geometric interpretation of the
supersymmetry-breaking order parameters

Here, we show that the supersymmetry-breaking order
parameters A and C can be interpreted as susceptibilities of
the grand potential Ω to certain perturbations. Specifically,
we consider the perturbations of the quadratic term and a
random magnetic field:

E0ðxÞ ¼ EðxÞ − a
2
jxj2 þ

ffiffiffiffiffi
2s

p
g · x;

where a is a constant for the quadratic term and the other
term g · x represents the coupling with the external random
field g, a centered Gaussian vector with unit variance. s is
the scalar coupling constant. The corresponding mean-field
energy is defined as

E0
MF½h; a;

ffiffiffiffiffi
2s

p
g�ðxÞ ¼ EMF½h�ðxÞ −

a
2
x2 þ

ffiffiffiffiffi
2s

p
gx:

We first consider the case where we have only the
quadratic perturbation (a > 0 and s ¼ 0). The grand
potential ΩðaÞ of the perturbed energy function has the
form of Eq. (A6) with different mean-field energy function
E0
MF½h; a;

ffiffiffiffiffi
2s

p
g�ðxÞ. The order parameters qðaÞ, AðaÞ,

CðaÞ, and tðaÞ all depend on a and satisfy the stationary
condition for ΩðaÞ. Hence, the derivative of ΩðaÞ with
respect to a is given by

dΩ
da






a¼0

¼ ∂Ω
∂a






a¼0

¼ 1

Z
∂

∂t

�X
x∈CrtðEMF½h�Þe

xzþμĪðxÞ
�

h;z

¼ A: ðA7Þ
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This equality shows that A can be interpreted as a
susceptibility of the grand potential with respect to the
strength of the quadratic perturbation.
Similarly, we consider the case only with the coupling

with the random external field (i.e., a ¼ 0, s > 0). We
define the averaged grand potential as follows:

exp½NΩðsÞ� ¼ EgEJ

�Z YN−1

i¼0

dxij detHðxÞjeμIðxÞ

×
YN−1

i¼0

δ

�
∂EIðxiÞ þ

XN−1

j¼0

Jijxj þ
ffiffiffiffiffi
2s

p
gi

�	
;

where Eg represents the average over the random external
field g. By calculating the average over g, we get
exp½NΩðsÞ� ¼ expðNΩ 1

4s
Þ. Therefore, the derivative with

respect to s is given by

dΩ
ds






s¼0

¼ 2
dΩβ

d 1
2
β−1






β¼∞

¼ 1

Z

�
d2

dh2
X

x∈CrtðE0
MF½h�Þ

exzþμĪðxÞ
�

h;z
¼ C:

Thus, C can be interpreted as the susceptibility of the grand
potential with respect to the coupling with the random
external field.
It is not difficult to see that A and C can be understood

also as the derivatives of the mean-field grand potential
ΩMFða;sÞ≔ loghPx∈CrtðE0

MF½h;a;
ffiffiffiffi
2s

p
g�Þ e

xzþμĪðxÞi
h;z;g

. Indeed,

for the order parameter A, it is clear that Eq. (A7) implies
A ¼ ð∂=∂aÞja¼0ΩMF. Similarly, the following argument
shows C ¼ ð∂=∂sÞjs¼0ΩMF. Notice that the quantity inside
the bracket

P
x∈CrtðE0

MF½h;0;
ffiffiffiffi
2s

p
g�Þ e

xzþμĪðxÞ is a function of

hþ ffiffiffiffiffi
2s

p
g, which is a centered random Gaussian variable.

Its variance and covariance with z are hðhþ ffiffiffiffiffi
2s

p
gÞ2i ¼

qþ 2s and hðhþ ffiffiffiffiffi
2s

p
gÞzi ¼ A, respectively. Hence, the

Gaussian average over h, z, and g is equivalent to the
average over hþ ffiffiffiffiffi

2s
p

g and z with the covariance matrix

�
qþ 2s A

A C

�
:

Therefore, the derivative by s is equivalent to the derivative
by q=2. Thus,

∂ΩMF

∂s






s¼0

¼ 2
d
dq

�X
x∈CrtðEMF½h�Þe

xzþμĪðxÞ
�

h;z
¼ C:

4. Nondegeneracy of critical points implies
supersymmetry and structural stability

Next, we show that if typical critical points have eigen-
values bounded away from 0, then its supersymmetry-
breaking order parameters are vanishing, which implies
the structural stability of the typical critical points (since
A and C are susceptibilities of the grand potential to certain
perturbations of the energy landscape.)
Recall that, with a finite inverse temperature, A and C

are defined as AðxÞ ¼ 2N−1β∇EðxÞ · x − t and CðxÞ ¼
4N−1β2j∇EðxÞj2 − 2β, respectively. If β is large enough,
we anticipate that the order parameters of a typical critical
point can be obtained by averaging AðxÞ and CðxÞ over a
small neighborhood U around the critical point, i.e.,

Aþ tR ¼
�Z

U

YN−1

i¼0

dxie−βj∇EðxÞj
2 j detHðxÞj

	
−1

×
Z
U

YN−1

i¼0

dxi2β
∇EðxÞ · x

N
e−βj∇EðxÞj2 j detHðxÞj:

Here, we exploit the fact that IðxÞ is constant in the small
neighborhood because the eigenvalues are bounded away
from zero. Similarly,

Cþ 2β ¼
�Z

U

YN−1

i¼0

dxie−βj∇EðxÞj
2 j detHðxÞj

	
−1

×
Z
U

YN−1

i¼0

dxi4β2
j∇EðxÞj2

N
e−βj∇EðxÞj2 j detHðxÞj:

By the assumption, we can apply the inverse function
theorem to yi ≔ ∇iEðxÞ around the neighborhood of the
critical point. The Jacobian is given by the Hessian
ðdyi=dxjÞ¼Hij, and we approximately see that xi¼H−1

ij yj.
Therefore,

A ≈
2β

N

Z
RN

dyyTH−1ye−βjyj2
.Z

RN
dye−βjyj2 − t

¼ N−1TrH−1 − t ¼ 0;

C ≈
2β2

N

Z
RN

dyjyj2e−βjyj2
.Z

RN
dye−βjyj2 − 2β ¼ 0;

where dy ≔
Q

N−1
i¼0 dyi.

The contrapositive of this result then immediately tells us
that if supersymmetry-breaking order parameters are non-
zero, then typical critical points are marginally unstable
(with no gap in the eigenvalue density away from 0). Earlier
results additionally imply such marginally unstable critical
points are also structurally unstable to small perturbations
in the energy landscape.
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a. Convexity of the mean-field energy landscape implies
vanishing complexity and supersymmetry

In the following discussion, we address two statements
on the convexity of the mean-field energy landscape and
supersymmetry of the typical critical points. First, we
show that the strict convexity of the mean-field energy
landscape EMF½0�ðxÞ is a sufficient condition for the self-
consistent equations to have a supersymmetric fixed point
with A ¼ C ¼ 0, resulting in vanishing complexity.
Suppose that the supersymmetry-breaking order parame-
ters vanish A ¼ C ¼ 0. In this setting, the Gaussian
random variable z is always zero, and the average h·ih;z
is only over h with variance of q, which we denote h·ih.
Therefore, the self-consistent equations for A and C are
reduced to A ¼ Z−1hðd=dhÞPx∈CrtðEMF½h�Þ xih − t and
C ¼ Z−1hðd2=dh2ÞPx∈CrtðEMF½h�Þ 1ih, respectively. It is
easy to see that these self-consistent equations hold when
the mean-field energy function without external field
EMF½0�ðxÞ is strictly convex and has a monotonically
increasing gradient. Indeed, CrtðEMF½h�Þ contains only a
single element for any h∈R, and, therefore,

A ¼ Z−1
�

d
dh

X
x∈CrtðEMF½h�Þx

�
h
− t;

C ¼ Z−1
�

d2

dh2
X

x∈CrtðEMF½h�Þ1
�

h
: ðA8Þ

Hence, the convexity of the mean-field energy implies
supersymmetry and, therefore, also implies structural
stability of typical critical points. In this case, the grand
potential (and, therefore, the complexity) of typical
critical points vanishes:

Ω ¼ −
1

2
ðCqþ A2Þ − Atþ log

�X
x∈CrtðEMF½h�Þe

xz

�
h;z

¼ log
�X

x∈CrtðEMF½h�Þ1
�

h
¼ 0:

Next, we prove that the convexity is a necessary condition
when the mean-field energy is given by the quartic

function EMF½0�ðxÞ ¼ x4=4 − aeffx2=2; i.e., aeff ≤ 0 is a
necessary condition for the existence of supersymmetric
solutions—i.e., if aeff > 0, the self-consistent equations
do not have any supersymmetric solution. Suppose
aeff > 0 and a supersymmetric solution exists, with which
Eq. (A8) holds. The second equation of Eq. (A8) can be
calculated as C ¼ ð2h̃=

ffiffiffiffiffiffiffiffiffiffi
2πq3

p
Þ exp ½−ðh̃2=2qÞ�, where

h̃ ¼ ð2a2=3eff =3
ffiffiffi
3

p Þ. This is strictly positive and contradicts
our assumption of supersymmetry A ¼ C ¼ 0. Hence, the
SUSY solution does not exist.

APPENDIX B: DETAILS OF COMPARISON
OF THEORY AND NUMERICAL
EXPERIMENTS IN FIGS. 3–5

1. Numerical exploration of critical points

Here, we explain how we numerically sample typical
critical points in Fig. 3, typical minima in Fig. 4, and global
minima in Fig. 5 for different realizations of J.
In Fig. 3, we sample critical points via Newton’s method

with many different initializations. Note that Newton’s
method converges not only to local minima, but also to
critical points of any index [111] and, hence, works as an
efficient sampler of all critical points. The detailed exper-
imental parameters are shown in Table I, including the
system size N, chosen for each value of a. The chosen
system size N decreases as a grows. This is because the
number of critical points increases exponentially, and,
hence, it is difficult to sample all the critical points with
large N in the large-a regime. The initial states are sampled
from a centered Gaussian distribution for a ≤ 1, while for
a > 1 we initialize at every point of f− ffiffiffi

a
p

; 0;
ffiffiffi
a

p gN . After
the deduplication of the sampled critical points, we estimate
the most frequent values of the energy and the index. In
order to select specifically the most typical critical points,
we focus only on sampled critical points with the most
frequent values of both the energy and index. The most
frequent index is plotted in the figure with the error bar of
length 1=N reflecting the minimum discretization of the
fractional index r at finite N. To find the most likely energy,
we discretize energy into Nbins bins and include only

TABLE I. Parameters for sampling typical critical points.

Param Description Values

a Gain parameter −1.5 −1.0 −0.5 0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0
N System size 400 400 120 48 20 20 14 14 12 12 12 12 12 12
Nsample Number of sampled

minima for each
instance

1 × 103 2 × 103 1 × 105 3 × 105 4 × 105 1.6 × 106 314 314 312 312 312 312 312 312

NJ Number of sampled
instances

20 20 20 10 10 5 5 5 5 5 5 5 5 5

Nbins Number of bins for
energy histogram

100 100 100 100 100 100 100 100 100 100 100 100 100 100
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critical points whose energy is in the most likely bin. From
this restricted set of the most typical critical points, we can
directly compute order parameters q in Eq. (49) and t in
Eq. (50) for each typical critical point. Then, we compute
the average values of q and t over all the typical critical
points for each instance. For each sampled instance J, we
compute the means of order parameters across all the
typical critical points. In the plots of q and t in Fig. 3, the
error bars represent the standard deviation of the mean over
the different instances of J. We sample more realizations of
J at smaller a to compensate for the fact that there are fewer
critical points at smaller a. To compute the distribution of
spins PðxÞ, we compute the empirical histogram of
individual spin values across the ensemble of typical
critical points with the most frequent energy and index.
The Hessian eigenspectrum is computed similarly as
ensembles of the eigenvalues of those sampled critical
points.
In Fig. 4, we minimize the energy function by the

Newton-Conjugate-Gradient algorithm from many ran-
domly initialized points to sample minima. The detailed
experimental parameters are shown in Table II, such as the
number of samples Nsample and the system size N chosen
for each value of a. After the deduplication of the sampled
minima, we focus on the typical minima, defined as the
minima with the most likely energy in a bin among Nbins
energy bins (just as we do for critical points above). We
compute the order parameters q and t from this set of
minima. The error bars in the figure represent the standard
deviation across instances of J of the values over all typical
minima for each instance. The complexity is calculated for
a > −1.5 as N−1 logðN max=δEÞ, where N max is the num-
ber of minima in the most likely energy bin and δE is the
bin width. For a ≤ −1.5, the numbers of minima we obtain
are not enough to estimate the density N max=δE, and,
hence, we instead estimate the complexity as the logarithm
of the total number of minima, divided by N. We compute
the ensemble of PðxÞ [Fig. 4(a)] and the Hessian spectrum
[Fig. 4(b)] across all minima in the most likely energy bin.
The system size N is selected according to the value of a,
fromN ¼ 15 toN ¼ 103. Since the complexity Σ is smaller
for smaller a, we use a larger N for smaller a to be able to
more accurately estimate the smaller complexity.
In Fig. 5, we sample minima in the same manner above

using the Newton-CG method with Nsample different ini-
tialized points and choose the lowest energy state from each
of NJ instances. The values of N, Nsample, and NJ for each
value of a are displayed in Table III. The order parameters
and the distributions are computed as the ensemble of those
sampled lowest-energy states.

2. Solving self-consistent equations
for order parameters

In the following, we describe our approach to solving the
self-consistent equations (39), for each value of the gainTA
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parameter a. Our solution is obtained by iteratively updat-
ing the order parameters until they satisfy the self-
consistent relations. To simplify the iterative process, we
fix a value of aeff ¼ aþ t rather than fixing the gain
parameter a.
With a fixed value of aeff , we proceed to iteratively

update q, A, and Cq with the following equations starting
from q ¼ 1.0, A ¼ 0.5, and Cq ¼ 2.0:

q ← hx2i;

A ←
hxhðxÞi

2q
−
1

2

�
1

3x2 − aeff

�
;

Cq ← −1þ q−1hh2ðxÞi − 2q−1AhxhðxÞi þ A2:

We perform these updates for a total of 300 iterations,
after which the variables converge within an error margin of
10−6. Subsequently, we compute t using the following
equation: t ¼ h1=3x2 − aeffi. Finally, we determine the
value of a by calculating a ¼ aeff − t.
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