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Abstract. Recent years have seen significant advances in quantum/quantum-inspired tech-
nologies capable of approximately searching for the ground state of Ising spin Hamiltonians. The
promise of leveraging such technologies to accelerate the solution of difficult optimization problems
has spurred an increased interest in exploring methods to integrate Ising problems as part of their
solution process, with existing approaches ranging from direct transcription to hybrid quantum-
classical approaches rooted in existing optimization algorithms. While it is widely acknowledged
that quantum computers should augment classical computers, rather than replace them entirely,
comparatively little attention has been directed toward deriving analytical characterizations of their
interactions. In this paper, we present a formal analysis of hybrid algorithms in the context of solving
mixed-binary quadratic programs (MBQP) via Ising solvers. By leveraging an existing completely
positive reformulation of MBQPs, as well as a new strong-duality result, we show the exactness
of the dual problem over the cone of copositive matrices, thus allowing the resulting reformulation
to inherit the straightforward analysis of convex optimization. We propose to solve this reformu-
lation with a hybrid quantum-classical cutting-plane algorithm. Using existing complexity results
for convex cutting-plane algorithms, we deduce that the classical portion of this hybrid framework
is guaranteed to be polynomial time. This suggests that when applied to NP-hard problems, the
complexity of the solution is shifted onto the subroutine handled by the Ising solver.
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1. Introduction. Recent years have seen significant advances in quantum and
quantum-inspired Ising solvers, such as quantum annealers [1], quantum approxi-
mate optimization circuits [2], or coherent Ising machines [3]. These are devices/
methodologies designed to heuristically compute solutions of optimization problems
of the form minz\in \{  - 1,1\} n

\sum 
i,j Ji,jzizj +

\sum 
i hizi, where Ji,j , hi are real coefficients

and zi \in \{  - 1,1\} are discrete variables to be optimized over. The promise of leverag-
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1456 BROWN, BERNAL NEIRA, VENTURELLI, AND PAVONE

ing such technologies to speed up the solution of complex optimization problems has
spurred many researchers to explore how Ising solvers can be applied to problems in
various domains.

A standard approach has emerged where an optimization problem is directly tran-
scribed into an Ising problem, and the returned solution is taken at face value or with
minimal postprocessing. While this method works well for problems that organically
have an Ising form, sequences of reformulations can result in ill-conditioning of the
problem in terms of the number of additional variables, the coupling strengths, and
the optimization landscape. Most unnaturally, however, relying solely on the Ising
solver means forgoing the advantages of already powerful classical computers.

In an effort to introduce meaningful interplay between classical and quantum
computers, a few authors have proposed decomposition methods based on the alter-
nating direction method of multipliers (ADMM) [4] or Benders decomposition (BD)
[5, 6, 7]. Critically, when ADMM is applied to nonconvex problems, it is not guaran-
teed to converge. When it does, it is often to a local optimum without convergence
guarantees to global optimality. On the other hand, while it may be possible to derive
optimality guarantees using BD, proving convergence typically relies on an exhaustive
search through the ``complicating variables."" This makes it unclear whether such an
algorithmic scaffold is primed to take advantage of speed-ups that the Ising solver
may offer.

Contributions. Our work is motivated by the desire to rigorously analyze the
interplay between classical and quantum machines in hybrid algorithms. Such analysis
is a cornerstone for articulating and setting standards for hybrid quantum-classical
optimization algorithms. Specifically, we espouse convergent hybrid quantum-classical
algorithms that (1) use Ising solvers as a primitive while offering some resilience to
their heuristic nature and (2) have polynomial complexity in the classical portions of
the algorithm. To this end, the contribution of this paper is an algorithmic framework
that satisfies these key desiderata:

1. We revisit and prove strong duality of a result in [8] to show that the convex
copositive formulation of many mixed-binary quadratic optimization prob-
lems is exact. Neglecting the challenges of working with copositive matrices,
convex programs are a well-understood class of optimization problems with a
wide variety of efficient solution algorithms. By reformulating mixed-binary
quadratic programs as copositive programs, we open the door for hybrid
quantum-classical algorithms that are based on existing convex optimization
algorithms.

2. To solve the copositive programs, we propose applying a standard cutting-
plane algorithm, which we modify in a novel way using a hybrid quantum-
classical approach. In particular, the cutting-plane algorithm serves as a
template for a solution algorithm that alternates between checking copositiv-
ity and other operations. We hybridize the algorithm by approximating the
copositivity checks via discretization and solving them with an Ising solver.
We show that the complexity of the portion of the algorithm handled by the
classical computer has polynomial scaling. This analysis suggests that when
applied to NP-hard problems, the complexity of the solution is shifted onto
the subroutine handled by the Ising solver.

3. We conducted benchmarking based on the maximum clique problem to val-
idate our theoretical claims and evaluate potential speed-ups from using a
stochastic Ising solver in lieu of a state-of-the-art deterministic solver or an
Ising heuristic. Results indicate that the Ising formulation of the subproblems

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

D
ow

nl
oa

de
d 

03
/3

0/
25

 to
 1

32
.1

74
.2

51
.2

 . 
R

ed
is

tri
bu

tio
n 

su
bj

ec
t t

o 
SI

A
M

 li
ce

ns
e 

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

s:
//e

pu
bs

.si
am

.o
rg

/te
rm

s-
pr

iv
ac

y



COPOSITIVE FRAMEWORK OF ISING-CLASSICAL ALGORITHMS 1457

of the hybrid algorithm is efficient versus a mixed-integer programming (MIP)
formulation in Gurobi, and the hybrid algorithm potentially is competitive
even against a nonhybridized Ising formulation of the full problem solved by
simulated annealing.

We emphasize that the contribution of this work is not the copositive reformulation or
a novel cutting-plane algorithm but rather the insight that these ideas are synergistic
with recent advances in quantum(-inspired) computing. In particular, copositive opti-
mization is useful for deriving and analyzing new hybrid algorithms rooted in existing
convex optimization algorithms, thus filling a gap in the hybrid algorithms literature.

While preparing this manuscript, a hybrid quantum-classical method relying upon
a Frank--Wolfe method was published [9]. This work also leverages a similar copositive
reformulation of quadratic binary optimization problems. We highlight the differences
between that work and the one in our manuscript below. This manuscript consid-
ers the optimization problem class of mixed-binary quadratic programs, while in [9],
the authors propose their method for quadratic binary optimization problems, a sub-
case of the problems considered herein. Moreover, we provide proof of the exactness
and strong duality for copositive/completely positive optimization stemming from the
mixed-integer quadratic reformulation, addressing an open question in the field. In
their manuscript, [9] conjectures the results proved in this manuscript to be true. Fi-
nally, our solution method, which is based on cutting-plane algorithms, has a potential
exponential speed-up in runtime compared to Frank--Wolfe algorithms.

1.1. Related work. One dominant method for mapping optimization problems
into Ising problems is through direct transcription. This process typically involves
discretizing continuous variables and passing constraints into the objective through a
penalty function; the returned solution is often taken at face value or with minimal
postprocessing to enforce feasibility. Owing to its simplicity, this process has found ap-
plications in a variety of problems, including jobshop scheduling [10], routing problems
[11], community detection [12], and all of Karp's 21 NP-complete models [13], among
others. Critically, unless a problem organically takes an Ising form, this approach
often requires many auxiliary variables (spins), introduces large skews in the coupling
coefficients, and can result in poor conditioning of the optimization landscape, thus
limiting the problems that can be solved on near-term devices. Similarly, extend-
ing the class of applicable problem instances requires deriving increasingly complex
sequences of reformulations, each of which reduces the solubility of the final reformula-
tion. More importantly, an algorithm with minimal interactions between classical and
quantum computers disregards the bountiful successes of classical computers in the
past decades. This has inspired some researchers to examine how quantum computers
can be used to augment classical computers instead of replacing them entirely [14].

As an alternative to direct transcription, there is a burgeoning body of litera-
ture exploring the potential of decomposition methods for designing hybrid quantum-
classical algorithms. These generally refer to algorithms that divide effort between a
classical and a quantum computer, with each computer informing the computation
carried out by the other. Among these, algorithms based on BD are gaining traction.
BD is particularly effective for problems characterized by ``complicating variables,""
for which the problem becomes easy once these variables are fixed. For example,
a mixed-integer linear program (MILP) becomes a linear program once the integer
variables are fixed---the integers are the complicating variables. BD iterates between
solving a master problem over the complicating variables and subproblems where the
complicating variables are fixed, whose solution is used to generate cuts for the master
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1458 BROWN, BERNAL NEIRA, VENTURELLI, AND PAVONE

problem. Both [5] and [6] consider MIP problems where the integer variables are linked
to the continuous variables through a polyhedral constraint and leverage a reformu-
lation where dependence on the continuous variables is expressed as constraints over
the extreme rays and points of the original feasible region. Because the number of
extreme rays and points may be exponentially large, the constraints are not written
down in full but are iteratively generated from the solutions of the subproblems. The
master problem is an integer program consisting of these constraints and is solved us-
ing the quantum computer. Notably, the generated constraint set may be large, with
the worst case being the generation of the entire constraint set, resulting in a large
number of iterations. The approach in [7] attempts to mitigate this by generating
multiple cuts per iteration and selecting the most informative subset of these cuts.
Instead of using the quantum computer to solve the master problem, the quantum
computer is used to heuristically select cuts based on a minimum set cover or maxi-
mum coverage metric. While this may effectively reduce the number of iterations and
size of the constraint set, the master problem is often an integer program that may
be computationally intractable. For each of the proposed approaches, it is unclear
how the complexity of the problem is distributed through the solution process. For
example, for [5, 6] the complexity might show up in the number of iterations, and for
[7] it might show up when solving the master problem. Consequently, it is ambiguous
whether BD-based approaches can take advantage of a speed-up in the Ising solver,
even if one were to exist.

Another decomposition that has been explored is based on ADMM) [4]. This is
an algorithm to decompose large-scale optimization problems into smaller, more man-
ageable subproblems [15]. While originally designed for convex optimization, ADMM
has shown great success as a heuristic for nonconvex optimization as well [16], and
significant progress has been made toward explaining its success in such settings [17].
In [4], the authors propose an ADMM-based decomposition with three subproblems,
the first being over just the binary variables, the second being the full problem with
a relaxed copy of the binary variables, and the third being a term that ties the binary
variables and their relaxed copies together. For quadratic pure-binary problems, the
authors show that the algorithm converges to a stationary point of the augmented
Lagrangian, which may not be a global optimizer. Convergence to a global optimum
is only guaranteed under the more stringent Kurdyka--\Lojasiewicz conditions on the
objective function [18]. Unfortunately, the assumptions guaranteeing convergence to
a stationary point fail in the presence of continuous variables.

A third class of decomposition proposed and implemented in the qbsolv solver
is based on tabu search [19]. qbsolv can be seen as iterating between a large-
neighborhood local search (using an Ising solver) and tabu improvements to locally
refine the solution (using a classical computer), where previously found solutions are
removed from the search space in each iteration. During the local search phase, sub-
sets of the variables are jointly optimized while the remaining variables are fixed to
their current values. The solution found in this phase is then used to initialize the
tabu search algorithm, and the process is repeated for a fixed number of iterations.
Critically, it is unclear whether the algorithm is guaranteed to converge and, if so,
what its optimality guarantees are. While finite convergence of tabu search is in-
vestigated in [20], it relies on either recency or frequency memory that ensures an
exhaustive search of all potential solutions.

Another approach for purely integer programming problems is based on the com-
putation of a Graver basis through the computation of the integer null-space of the
constraint set as proposed in [21]. This null-space computation is posed as a qua-
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COPOSITIVE FRAMEWORK OF ISING-CLASSICAL ALGORITHMS 1459

dratic unconstrained binary optimization (QUBO) and then postprocessed to obtain
the Graver basis of the constraint set, a test-set of the problem. The test-set provides
search directions for an augmentation-based algorithm. For a convex objective, it
provides a polynomial oracle complexity in converging to the optimal solution. The
authors initialize the problem by solving a feasibility-based QUBO and extend this
method to nonconvex objectives by allowing multiple starting points for the augmen-
tation. The multistart procedure also alleviates the requirement for computing the
complete Graver basis of the problem, which grows exponentially with the problem's
size. Considering an incomplete basis or nonconvex objectives makes the Graver aug-
mentation multistart algorithm a heuristic for general integer programming problems,
and it cannot address problems with continuous variables.

In this paper, we seek to address a gap in the literature on a rigorous theory
of hybrid quantum-classical optimization. By revisiting the hidden convex structure
of nonconvex problems, we pave the way for hybrid algorithms based on efficient
convex optimization. We show that algorithms derived through this approach inherit
the straightforward analysis of convex optimization without sacrificing the potential
benefits of quantum computing for nonconvex problems.

While there is optimism regarding improvements to and our understanding of
quantum technology in the coming decades, few expect that they will replace clas-
sical computers entirely. We believe that the method presented in this paper is an
approach to algorithm design that anticipates a future where quantum computers and
classical computers work in tandem. In particular, we envision a mature theory of hy-
brid algorithms that clearly delineates how quantum and classical computers should
complement each other.

1.2. Quantum/quantum-inspired Ising solvers. Adiabatic quantum com-
puting (AQC) is a quantum computation paradigm that operates by initializing a
system in the ground state of an initial Hamiltonian (i.e., the optimal solution of
the corresponding objective function) and slowly sweeping the system to an objec-
tive Hamiltonian. This Hamiltonian, referred to as the cost Hamiltonian, maps the
objective function of the classical Ising model onto a system with as many quantum
bits, or qubits, as original variables in the Ising model. The adiabatic theorem of
quantum mechanics states that if the system evolution is ``sufficiently slow,"" the sys-
tem ends up in the ground state of the desired Hamiltonian. Here, ``sufficiently slow""
depends on the minimum energy gap between the ground and the first excited state
throughout the system evolution [22]. Since the evaluation of the minimal gap is
mostly intractable, one is forced to phenomenologically ``guess"" the evolution's speed,
and if it is too fast, the undesired nonadiabatic transitions can occur. Additionally,
real devices are plagued with various incarnations of physical noise, such as thermal
fluctuations or decoherence effects, that can hamper computation. The situation is
further exacerbated by the challenge of achieving dense connectivity between qubits.
Densely connected problems are embedded in devices by chaining together multiple
physical qubits to represent one logical qubit. The heuristic computational paradigm
that encompasses the additional noise and nonquantum effects is known as quantum
annealing (QA). [23] provides a review on QA with a focus on possible routes toward
solving the open questions in the field.

An alternative paradigm to AQC is the gate-based model of quantum computing.
Within the gate-based model, variational quantum algorithms (VQAs) are a class of
hybrid quantum-classical algorithms that can be applied to optimization [24]. VQAs
share a common operational principle where the ``loss function"" of a parameterized
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1460 BROWN, BERNAL NEIRA, VENTURELLI, AND PAVONE

quantum circuit is measured on a quantum device and evaluated on a classical proces-
sor, and a classical optimizer is used to update (or ``train"") the circuit's parameters
to minimize the loss. VQAs are often interpreted as a quantum analogue to machine
learning, leaving many similar questions open regarding their trainability, accuracy,
and efficiency. Most similar in spirit to this work is a theory of variational hybrid
quantum-classical algorithms proposed in [25]. However, they primarily focus on
algorithmic improvements to the quantum portion, with discussion of the classical
optimization being limited to empirical evaluations of existing derivative-free opti-
mization algorithms. More recently, [26] analyzed the complexity of training VQAs
and, through reductions from the maximum cut problem, showed that it is NP-hard.
The analysis presented in this paper complements these prior works in developing
a more complete picture of the interplay between quantum and classical comput-
ers.

The quantum approximate optimization algorithm (QAOA) is a specific instance
of a VQA where the structure of the quantum circuit is the digital analogue of AQC
[2]. QAOA operates by alternating the application of the cost Hamiltonian and a
mixing Hamiltonian; the number of alternating blocks is referred to as the circuit
depth. For each one of the alternating steps, either mixing or cost application, a
classical optimizer needs to determine how long each step should be performed, en-
coded as rotation angles. Optimizing the expected cost function with respect to the
rotation angles is a continuous low-dimensional nonconvex problem. QAOA is de-
signed to optimize cost Hamiltonians, such as the ones derived from classical Ising
problems. Performance guarantees can be derived for QAOA with well-structured
problems, given that the optimal angles are found in the classical optimization step.
Although approximation guarantees have not been derived for arbitrary cost Hamil-
tonians, even depth-one QAOA circuits have nontrivial performance guarantees for
specific problems and cannot be efficiently simulated on classical computers [27], thus
bolstering the hope for a speed-up in near-term quantum machines. Moreover, the
algorithm's characteristics, such as relatively shallow circuits, make it amenable to
being implemented in currently available noisy intermediate-scale quantum (NISQ)
computers compared to other algorithms requiring fault-tolerant quantum devices
[28]. While QAOA's convergence to optimal solutions is known to improve with
increased circuit depth and to succeed in the infinite depth limit following its equiva-
lence to AQC, its finite depth behavior has remained elusive due to the challenges in
analyzing quantum many-body dynamics and other practical complications such as
decoherence when implementing long quantum circuits, compilation issues, and hard-
ness of the optimal angle classical problem [29]. Even considering these complications,
QAOA has been extensively studied and implemented in current devices [30, 31], be-
coming one of the most popular alternatives to address combinatorial optimization
problems modeled as Ising problems using gate-based quantum computers. Several
other quantum heuristics for Ising problems have been proposed, usually requiring
fault-tolerant quantum computers. We direct the interested reader to a recent review
on the topic [32].

An alternative physical system for solving Ising problems that has emerged is
coherent Ising machines (CIMs), which are optically pumped networks of coupled
degenerate optical parametric oscillators. As the pump strength increases, the equi-
librium states of an ideal CIM correspond to the Ising Hamiltonian's ground states
encoded by the coupling coefficients. Large-scale prototypes of CIMs have achieved
impressive performance in the lab, thus driving the theoretical study of their fun-
damental operating principles. While significant advances have been made on this
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COPOSITIVE FRAMEWORK OF ISING-CLASSICAL ALGORITHMS 1461

front, we still lack a clear theoretical understanding of the CIMs' computational per-
formance. Since a thorough understanding of the CIM is limited by our capacity
to prove theorems about complex dynamic systems, near-term usage of CIMs must
treat them as a heuristic rather than a device with performance guarantees [33].
Even so, there are empirical observations that in many cases, the median complexity
of solving Ising problems using CIM scales as exp

\surd 
N , where N is the size of the

problem [34], making it a potential approach to solve these problems efficiently in
practice. We note that there are other types of Ising machines, including classical
thermal annealers (based on magnetic devices [35], optics [36], memristors [37], and
digital hardware accelerators [38]), dynamical-systems solvers (based on optics [39]
and electronics [40]), superconducting-circuit quantum annealers [41], and neutral
atoms arrays [42]. We direct the interested reader to [34], which provides a recent
review and comparison of various methods for constructing Ising machines and their
operating principles.

Organization. In section 2, we present notation, terminology, and the problem
setting covered by our approach. In section 3, we introduce the proposed framework,
including convex reformulation via copositive programming, a high-level overview of
cutting-plane algorithms, and a specific discussion of their application to copositive
programming. Section 4 provides numerical experiments supporting our assertions
about the proposed approach. Finally, we conclude and highlight future directions in
section 5.

2. Preliminaries.

2.1. Notation and terminology. In this paper, we solely work with vectors
and matrices defined over the real numbers and reserve lowercase letters for vectors
and uppercase letters for matrices. We will also follow the convention that a vector
x \in Rn is to be treated as a column vector, i.e., equivalent to a matrix of dimension
n \times 1. For a matrix M , we use Mi,j to denote the entry in the ith row and jth
column, Mi,\ast denotes the entire ith row, and M\ast ,j denotes the entire jth column. In
the text, we frequently use block matrices with structured zero entries; we use \cdot as
shorthand for zero entries. We use 1 to denote the all-ones vectors and 1\{ j\} to denote
the jth standard basis vector (i.e., a vector where all entries are zero except for a 1 for
the jth entry). The p-norm of a vector v \in Rn is defined as \| v\| p := (

\sum n
i=1 v

p
i )1/p. We

reserve the letter I to denote the identity matrix. For two matrices, M and N , we use
\langle M, N\rangle = Tr(M\top N) to denote the matrix inner product. Note that for two vectors,
Tr(x\top y) = x\top y because x\top y is a scalar, so the matrix inner product is consistent with
the standard inner product on vectors. For sets, SM + SN := \{ M + N | M \in SM ,N \in 
SN\} is their Minkowski sum, SM \cup SN their union, and SM \cap SN their intersection.
For a cone, \scrK , its dual cone is defined as \scrK \ast = \{ X | \langle X, K\rangle \geq 0 \forall K \in \scrK \} . While
we work with matrix cones in this paper, this definition of dual cones is consistent
with vector cones as well. In this paper, the two cones we will work with are the
cone of completely positive matrices and the cone of copositive matrices. The cone of
completely positive matrices, C\ast , is the set of matrices that have a factorization with
entrywise nonnegative entries:

\scrC \ast 
n :=

\Biggl\{ 
X \in Rn\times n | X =

\sum 

k

x(k)(x(k))\top , x(k) \in Rn
\geq 0

\Biggr\} 
.(2.1)

The cone of copositive matrices, \scrC , is the set of matrices defined by

\scrC n := \{ X \in Rn\times n | v\top Xv\geq 0 \forall v \in Rn
\geq 0\} .(2.2)
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1462 BROWN, BERNAL NEIRA, VENTURELLI, AND PAVONE

As suggested by the notation, the cones of completely positive and copositive matrices
are duals of each other. We use Sn

++ to denote the cone of positive definite matrices.
In this paper, we will use the terms Ising problem and QUBO interchangeably.

An Ising problem is an optimization problem of the form minz\in \{  - 1,1\} n

\sum 
i,j Ji,jzizj +\sum 

i hizi, where Ji,j , hi are real coefficients and zi \in \{  - 1,1\} are discrete variables
to be optimized over. A QUBO, which is an optimization problem of the form
minx\in \{ 0,1\} n

\sum 
i,j Qi,jxixj , can be reformulated as an Ising problem using the change

of variable z = 2x - 1. This translates to coefficients in the Ising problem Ji,j = 1
4Qi,j ,

hi = 1
2

\sum 
j Qi,j , and a constant offset of 1

4

\sum 
i,j Qi,j .

2.2. Problem setting. In this paper, we consider mixed-binary quadratic pro-
grams (MBQP) of the form

minimize
x\in Rn

x\top Qx + 2c\top x(MBQP)

subject to Ax = b, A\in Rm\times n, b\in Rm,

x\geq 0,

xj \in \{ 0,1\} , j \in B,

where the set B \subseteq \{ 1, . . . , n\} indexes which of the n variables are binary. This is a
general class of problems that encompasses problems including QUBOs, standard qua-
dratic programming, the maximum stable set problem, and the quadratic assignment
problem. Because mapping to an Ising problem can also be equivalently expressed
as a QUBO, many problems tackled with Ising solvers thus far pass through a for-
mulation similar to the form of problem (MBQP). Using the result in [8, section
3.2], the formulation considered in this paper can be extended to include constraints
of the form xixj = 0 that force at least one of xi or xj to be zero, i.e., comple-
mentarity constraints. For ease of notation, this extension is left out of the present
discussion.

3. Proposed methodology. In this section, we will discuss our proposed
methodology for solving problem (MBQP) given access to Ising solvers. Our result
relies on a convex reformulation of problem (MBQP) as a copositive program. Lever-
aging convexity, we propose to solve the problem using cutting-plane algorithms.
These belong to a broad class of convex optimization algorithms whose standard com-
ponents give rise to a natural separation between the role of the Ising solver versus a
classical computer.

We first state Burer's exact reformulation of problem (MBQP) as a completely
positive program and its dual copositive program. We then show that under mild
conditions (i.e., feasibility and boundedness) of the original MBQP, the copositive
and completely positive programs exhibit strong duality. We will then introduce the
class of cutting-plane algorithms and summarize the complexity guarantees of several
well-known variants. Finally, we explicitly show how cutting-plane algorithms can be
used to solve copositive optimization problems given a copositivity oracle and discuss
how to implement a copositivity oracle using an Ising solver.

3.1. Convex formulation as a copositive program. In his seminal work,
Burer showed that MBQPs can be represented exactly as completely positive programs
of the form

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.
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COPOSITIVE FRAMEWORK OF ISING-CLASSICAL ALGORITHMS 1463

minimize
X\in Rn\times n, x\in Rn

\Bigl\langle \Bigl( 
Q c

c\top \cdot 

\Bigr) 
,
\Bigl( 

X x

x\top 1

\Bigr) \Bigr\rangle 
(CPP)

subject to
\Bigl\langle \Bigl( 

\cdot 1
2A

\top 
i,\ast 

1
2Ai,\ast \cdot 

\Bigr) 
,
\Bigl( 

X x

x\top 1

\Bigr) \Bigr\rangle 
= bi, i = 1, . . . ,m,

\Bigl\langle \Bigl( 
A\top 

i,\ast Ai,\ast \cdot 
\cdot \cdot 

\Bigr) 
,
\Bigl( 

X x

x\top 1

\Bigr) \Bigr\rangle 
= b2i , i = 1, . . . ,m,

\Bigl\langle \Bigl( 
 - 1\{ j\} 1\{ j\} 

\top 1
21\{ j\} 

1
21\{ j\} 

\top \cdot 

\Bigr) 
,
\Bigl( 

X x

x\top 1

\Bigr) \Bigr\rangle 
= 0, j \in B,

\Bigl( 
X x

x\top 1

\Bigr) 
\in \scrC \ast 

n+1,

where exactness means that problems (MBQP) and (CPP) have the same optimal
objective and for an optimal solution, (x\ast ,X\ast ), of (CPP), x\ast lies within the convex
hull of optimal solutions for (MBQP) [8, Theorem 2.6]. Similar to semidefinite pro-
gramming (SDP) relaxations, the completely positive formulation involves lifting the
variables in (MBQP) to a matrix variable representing their first- and second-degree
monomials, making the objective function and constraints linear. Unlike SDP relax-
ations, however, the complete positivity constraint is sufficient for ensuring that the
feasible region of (CPP) is exactly the convex hull of the feasible region of (MBQP).
This distinction is what ensures that the optimal value of (CPP) is exactly that of
(MBQP), whereas for an SDP relaxation, the optimal solution may lie outside of the
convex hull of (MBQP), resulting in a lower objective value (i.e., a relaxation gap).

Taking the dual of (CPP) yields a copositive optimization problem of the form
[43, section 5.9]

maximize
\mu ,\lambda ,\gamma 

\gamma +
m\sum 

i=1

\mu 
(lin)
i bi + \mu 

(quad)
i b2i(COP)

subject to M(\mu ,\lambda , \gamma ) \in \scrC n+1,

where

M(\mu ,\lambda , \gamma ) :=
\Bigl( 

Q c

c\top \cdot 

\Bigr) 
 - 

m\sum 

i=1

\mu 
(lin)
i

\Bigl( 
\cdot 1

2A
\top 
i,\ast 

1
2Ai,\ast \cdot 

\Bigr) 
 - 

m\sum 

i=1

\mu 
(quad)
i

\Bigl( 
A\top 

i,\ast Ai,\ast \cdot 
\cdot \cdot 

\Bigr) 

 - 
\sum 

j\in B

\lambda j

\Bigl( 
 - 1\{ j\} 1\{ j\} 

\top 1
21\{ j\} 

1
21\{ j\} 

\top \cdot 

\Bigr) 
 - \gamma 
\Bigl( 
\cdot \cdot 
\cdot 1

\Bigr) (3.1)

is a parametrized linear combination of the constraint matrices. The dual copositive
program has a linear objective and a single copositivity constraint---this is a convex
optimization problem. While weak duality always holds between an optimization
problem and its dual, strong duality is not generally guaranteed. Showing that strong
duality holds is critical for ensuring convergence of specific optimization algorithms
and exactness when solving the dual problem as an alternative to solving the primal.

Theorem 3.1 (strong duality). If problem (MBQP) is feasible with bounded
feasible region, then strong duality holds between problems (CPP) and (COP) (i.e.,
min (CPP) = max (COP)).

Proof sketch. Our proof proceeds by first showing strong duality between the
alternative representation of (CPP) (using a homogenized formulation of the equality
constraints) and its dual. By showing that the optimal value of (COP) is lower-
bounded by the optimal value of this homogenized dual problem, we can sandwich
the optimal values of problems (CPP) and (COP) by those of a primal-dual pair that
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1464 BROWN, BERNAL NEIRA, VENTURELLI, AND PAVONE

has been shown to exhibit strong duality. The complete proof of this result is provided
in the appendix, section 6.1.

In prior work, characterization of the duality gap between problems (CPP) and
(COP) has remained elusive because the feasible region of problem (CPP) never has
an interior, thus prohibiting straightforward application of Slater's constraint quali-
fication. This result is significant because it shows that under mild conditions, the
copositive formulation is exact. This means that the optimal values of problems
(MBQP) and (COP) are equivalent, so solving problem (COP) is a valid alternative
to solving problem (MBQP). The framework developed in this paper will ultimately
produce approximate solutions for problems (CPP) and (COP), which we anticipate
can be used to speed up the solution process of a purely classical solver for (MBQP).
For example, the heuristic solutions or cuts used to generate them might be used to
warm-start or initialize a purely classical solver.

While problems (CPP) and (COP) are both convex, neither resolve the difficulty
of problem (MBQP) as even checking complete positivity (resp., copositivity) of a
matrix is NP-hard (resp., co-NP-complete) [44]. Instead, they should be viewed as
``packaging"" the complexity of the problem entirely in the copositivity/complete pos-
itivity constraint. There are a number of classical approaches for (approximately)
solving copositive/completely positive programs directly, such as the sum of squares
hierarchy [45, 46], the feasible descent method in the completely positive cone, and
approximations of the copositive cone by a sequence of polyhedral inner and outer
approximations, among others [47, 48, 49]. In this paper, we will exploit the innate
synergy between checking copositivity, which is most naturally posed as a quadratic
minimization problem, and solving Ising problems. This perspective is suggestive of
a hybrid quantum-classical approach where the quantum computer is responsible for
checking feasibility (i.e., the ``hard part"") of the copositive program while the classical
computer directs the search toward efficiently reducing the search space.

3.2. Cutting-plane/localization algorithms. Cutting-plane/localization al-
gorithms are convex optimization algorithms that divide labor between checking fea-
sibility, abstracted as a separation oracle, and optimization of the objective.1 In this
section, we provide a high-level overview of each algorithmic step and summarize both
the runtime and oracle complexities of several well-known variants; these complexity
measures will ultimately correspond to the complexity of the subroutine handled by
the classical computer and the number of calls to the Ising solver, respectively.

While cutting-plane algorithms are often used to solve both constrained and un-
constrained optimization problems, they are generally evaluated in terms of their
complexity when solving the feasibility problem.

Definition 3.2 (feasibility problem). For a set of interest S \subset Rm, which can
only be accessed through a separation oracle, the feasibility problem is concerned with
either finding a point in the set x \in S or proving that S does not contain a ball of
radius r.

Definition 3.3 (separation oracle). A separation oracle for a set S, OracleS(\cdot )
takes as input a point x \in Rm and returns either True if x \in S or a separating

1The term ``cutting-plane algorithm"" is overloaded in the literature, with one class referring very
explicitly to those designed for convex/quasi-convex optimization problems (for a pedagogical refer-
ence, we refer the interested reader to [50]) and the second referring more broadly to algorithms that
iteratively generate cuts (including algorithms for integer programming and nonconvex optimization).
In this work, we refer specifically to those designed for convex/quasi-convex optimization.

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

D
ow

nl
oa

de
d 

03
/3

0/
25

 to
 1

32
.1

74
.2

51
.2

 . 
R

ed
is

tri
bu

tio
n 

su
bj

ec
t t

o 
SI

A
M

 li
ce

ns
e 

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

s:
//e

pu
bs

.si
am

.o
rg

/te
rm

s-
pr

iv
ac

y



COPOSITIVE FRAMEWORK OF ISING-CLASSICAL ALGORITHMS 1465

Table 1
This table summarizes the number of oracle queries and total runtime guarantees of a number

of well-known cutting-plane variants. The stated runtimes are in terms of the problem dimension,
m, the volume of the initial set, R, and the minimum volume of the set of interest, r. The constant
\omega represents the fast matrix multiplication constant.

Total runtime

Name Oracle queries (excluding oracle queries) References

Center of gravity \scrO (m log(R
r
)) \#P-hard [52] [53]

Ellipsoid \scrO (m2 log(mR
r
)) \scrO (m4 log(mR

r
)) [54, 55, 56]

Inscribed ellipsoid \scrO (m log(mR
r
)) \scrO ((m log(mR

r
))4.5) [57, 58]

Volumetric center \scrO (m log(mR
r
)) \scrO (m1+\omega log(mR

r
)) [59]

Analytic center \scrO (m log2(mR
r
)) \scrO (m1+\omega log2(mR

r
) + (m log(mR

r
))2+

\omega 
2 ) [60]

Random walk \scrO (m log(mR
r
)) \scrO (m7 log(mR

r
)) [61]

Lee, Sidford, Wong \scrO (m log(mR
r
)) \scrO (m3 log\scrO (1)(mR

r
)) [62]

hyperplane if x \not \in S. A separating hyperplane is defined by a vector a\in Rm and scalar
b\in R such that a\top s\leq b for all s\in S but a\top x\geq b.

The feasibility problem formulation is nonrestrictive because these methods can
be readily adapted to solving quasi-convex optimization problems with only a simple
modification to the separation oracle. In particular, if the separation oracle indicates
feasibility and returns a vector g \in Rm where any vectors x, y \in Rm with f(y) < f(x)
imply that g\top y \geq g\top x, this serves as a separating hyperplane for the subset of the
feasible region that has a better objective than the test point. If f is subdifferentiable,
any subgradient g \in \partial f(x) satisfies this condition, and for problem (COP), choosing
g as the objective's coefficient vector is sufficient.

Although there are many variations of cutting-plane algorithms, at a high level,
they follow a standard template that consists of alternating between checking feasi-
bility of a test point, updating an outer approximation of the feasible region, and
judiciously selecting the next test point. This standard template is summarized in
Algorithm 1. An overview of the ellipsoid algorithm is included in the appendix as a
representative example of cutting-plane algorithms, and we direct the interested reader
to the references listed in Table 1 for specific implementation details. By choosing
subsequent test points to be the center of the outer approximation, the algorithm is
guaranteed to make consistent progress in reducing the search space (where the metric
of progress may also vary across cutting-plane algorithms). Intuitively, cutting-plane
algorithms can be considered a high-dimensional analogue of binary search. We note
that the requirement Vol(S0) \leq R means that the initial set must be bounded. While
this is a standard assumption in the cutting-plane literature, finding such an S0 may
be nontrivial. Procedurally, one may construct a bounded outer approximation using
a linear program as in Step 1, Algorithm 1 of [51].

A number of well-known variants of cutting-plane algorithms are summarized in
Table 1. Differences across instantiations of cutting-plane algorithms vary in how
subsequent test points are chosen, how the outer approximation is updated, and how
progress in decreasing the outer approximation's size is measured. Each of the sur-
veyed variants strikes a different balance between the computational effort needed to
compute a good center versus the resolution used to represent the outer approxima-
tion. Critically, except for the center of gravity method, all cutting-plane algorithms
summarized in Table 1 have a polynomial complexity in the dimension of the opti-
mization variables in terms of both oracle queries and total runtime excluding the
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1466 BROWN, BERNAL NEIRA, VENTURELLI, AND PAVONE

Algorithm 1. Cutting-plane meta-algorithm (feasibility problem).

Input: S0 ⊆ Rm (Initial Set) with Vol(S0) ≤ R
Output: x ∈ S or False if S does not contain a ball of volume r
x ← Center(S0);
k ← 0;
while Oracle(x) is not True and Vol(Sk) ≥ r do

Sk+1 ← Add Cut(Sk, Oracle(x));
x ← Center(Sk+1);
k ← k + 1;

end
if Oracle(x) is True then

return x;
else

return
end

oracle calls (i.e., the total complexity of adding the cuts and generating test points).
This suggests that if a cutting-plane algorithm were applied to problem (COP), the
complexity of the problem would be offloaded onto the separation oracle; this is the
subroutine we propose to handle using an Ising solver.

3.3. Application to copositive optimization. Now that we have introduced
cutting-plane algorithms, we are in a position to discuss their application to the
copositive program (COP). First, we will show how a copositivity oracle can be readily
transformed into a separation oracle for the feasible region of problem (COP). We will
conclude with a discussion of how a copositivity oracle can be implemented using an
Ising solver. Formally, we define a copositivity oracle as follows.

Definition 3.4 (copositivity oracle). A copositivity oracle takes as input a ma-
trix, M , and either returns True if M is copositive or returns a vector z \in Rn

\geq 0 such
that z\top Mz < 0 (a ``certificate of noncopositivity"").

A copositivity oracle can be turned into a separation oracle for the feasible region
of problem (COP) by expanding the terms in z\top M(\^\mu , \^\lambda , \^\gamma )z. Explicitly, a test point,
(\^\mu , \^\lambda , \^\gamma ), is infeasible if and only if M(\^\mu , \^\lambda , \^\gamma ) is not copositive. Given M(\^\mu , \^\lambda , \^\gamma )
as input, the copositivity oracle returns a certificate of noncopositivity z \in Rn+1

\geq 0

such that z\top M(\^\mu , \^\lambda , \^\gamma )z < 0. In contrast, feasibility means that z\top M(\mu ,\lambda , \gamma )z \geq 0.
Equivalently, the halfspace defined by

b = z\top 
\Bigl( 

Q c

c\top \cdot 

\Bigr) 
z,(3.2)

a[\mu 
(lin)
i ] = z\top 

\Bigl( 
\cdot 1

2A
\top 
i,\ast 

1
2Ai,\ast \cdot 

\Bigr) 
z,(3.3)

a[\mu 
(quad)
i ] = z\top 

\Bigl( 
A\top 

i,\ast Ai,\ast \cdot 
\cdot \cdot 

\Bigr) 
z,(3.4)

a[\lambda j ] = z\top 
\Bigl( 
 - 1\{ j\} 1\{ j\} 

\top 1
21\{ j\} 

1
21\{ j\} 

\top \cdot 

\Bigr) 
z,(3.5)

a[\gamma ] = z\top 
\Bigl( 
\cdot \cdot 
\cdot 1

\Bigr) 
z(3.6)
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COPOSITIVE FRAMEWORK OF ISING-CLASSICAL ALGORITHMS 1467

is a separating hyperplane for (\^\mu , \^\lambda , \^\gamma ), where we use symbolic indexing to explicitly
denote which variable each coefficient corresponds to. Explicitly, the inner product
between a and (\mu ,\lambda , \gamma ) is given by

a\top (\mu ,\lambda , \gamma ) =
\sum 

i

a[\mu 
(lin)
i ]\mu 

(lin)
i +

\sum 

i

a[\mu 
(quad)
i ]\mu 

(quad)
i +

\sum 

j

a[\lambda j ]\lambda j + a[\gamma ]\gamma .(3.7)

This shows that given a copositivity oracle, constructing a separation oracle for prob-
lem (COP), of dimension \scrO (m) and copositivity constraints on matrices of size \scrO (n),
entails evaluating \scrO (m) vector-matrix-vector products, each of dimension \scrO (n). The
cutting-plane algorithms presented in section 3.2 can then be applied without further
modification.

We note that the application of cutting-plane algorithms to copositive optimiza-
tion has been explored from a classical perspective in [63], which considered their
application to discrete markets and games, and [64], which applied the algorithm
to detect complete positivity of matrices. We believe our work is complementary to
these prior works. While our work relies on the off-the-shelf application of well-known
cutting-plane variants, the algorithmic modifications in [63] and [64] provide insight
for further improving our framework. For example, the cutting-plane algorithm in
[63] is readily hybridized leveraging our proposed approach. We do not explore this
extension in this paper due to their lack of convergence guarantees, while those of
the variants presented are central to our theoretical analysis. Moreover, the problem
settings considered in these works serve as inspiration for additional applications that
can be addressed with Ising solvers. On the other hand, the proof of strong duality
(Theorem 3.1) can be applied to address questions that were left open in [63]. We
emphasize that the contribution of this work is not the copositive reformulation or a
novel cutting-plane algorithm but rather the insight that these ideas are synergistic
with recent advances in quantum(-inspired) computing. In particular, copositive opti-
mization is useful for deriving and analyzing new hybrid algorithms rooted in existing
convex optimization algorithms, thus filling a gap in the hybrid algorithms literature.

3.4. QUBO approximation of copositivity checks. Checking copositivity
of M(\mu ,\lambda , \gamma ) is naturally posed as the following (possibly nonconvex) quadratic min-
imization problem:

minimize
z\in Rn+1

\geq 0

z\top M(\mu ,\lambda , \gamma )z(3.8)

subject to \| z\| p \leq 1,

where a matrix is copositive if and only if min(3.8) is nonnegative.2 There are several
alternative approaches for checking copositivity [65, 66, 67, 68, 69]; however, they are
typically derived with problem (3.8) as the starting point and designed to exploit
particular properties of problem (3.8). By choosing p = \infty , problem (3.8) can be
approximated by a QUBO where an approximation of the matrix M , \^M , is used such
that the optimization variables \^z represent a binary expansion of z with k bits as
follows:

minimize
\^z

\^z\top \^M(\mu ,\lambda , \gamma )\^z(QUBO)

subject to \^z \in \{ 0,1\} k(n+1).

2While copositivity is defined as a condition over all of Rn+1
\geq 0 , quadratic scaling of the objective

ensures that optimizing over a norm ball is sufficient for detecting copositivity.
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1468 BROWN, BERNAL NEIRA, VENTURELLI, AND PAVONE

Explicitly, \^M(\mu ,\lambda , \gamma ) and M(\mu ,\lambda , \gamma ) are related as follows:

\^M(\mu ,\lambda , \gamma ) = \scrD \top M(\mu ,\lambda , \gamma )\scrD ,(3.9)

where

\scrD :=
1

2k  - 1

\left( 
    

20 \cdot \cdot \cdot 2k - 1 0 \cdot \cdot \cdot 0 \cdot \cdot \cdot 0 \cdot \cdot \cdot 0
0 \cdot \cdot \cdot 0 20 \cdot \cdot \cdot 2k - 1 \cdot \cdot \cdot 0 \cdot \cdot \cdot 0
...

...
...

...
...

...
...

...
...

...
0 \cdot \cdot \cdot 0 0 \cdot \cdot \cdot 0 \cdot \cdot \cdot 20 \cdot \cdot \cdot 2k - 1

\right) 
    .(3.10)

The construction of (QUBO) is detailed in the appendix, section 6.2. The explicit
implementation of Oracle(\cdot ) is summarized in Algorithm 2. Critically, the constraints
of (3.8) are implied by the natural domain of the Ising solver, mitigating the need to
tune coefficients in a penalty method carefully.

3.5. Discussion. In summary, we propose to solve problem (MBQP) by con-
structing the equivalent copositive formulation in (COP) and applying any variant

Algorithm 2. Separation oracle, Oracle(\cdot ).

14 BROWN, BERNAL NEIRA, VENTURELLI, AND PAVONE

Explicitly, M̂(µ, λ, γ) and M(µ, λ, γ) are related as follows:

M̂(µ, λ, γ) = D⊤M(µ, λ, γ)D,(3.9)

where

D :=
1

2k − 1




20 · · · 2k−1 0 · · · 0 · · · 0 · · · 0
0 · · · 0 20 · · · 2k−1 · · · 0 · · · 0
...

...
...

...
...

...
...

...
...

...
0 · · · 0 0 · · · 0 · · · 20 · · · 2k−1


 ,(3.10)

The construction of (QUBO) is detailed in Appendix 6.2. The explicit implementa-
tion of Oracle(·) is summarized in Algorithm 2. Critically, the constraints of (3.8)
are implied by the natural domain of the Ising solver, mitigating the need to tune
coefficients in a penalty method carefully.

Algorithm 2: Separation oracle, Oracle(·).
Input: (µ̂, λ̂, γ̂) (Test point)
Output:

{
True if (µ̂, λ̂, γ̂) is feasible

Separating hyperplane for (µ̂, λ̂, γ̂) otherwise

// Solve (QUBO) using an Ising solver

z∗ ← arg min
ẑ

(QUBO)

if min (QUBO) ≥ 0 then
return True ;

else

z = Dz∗(3.11)

b = z⊤
(

Q c

c⊤ ·

)
z(3.12)

a[µ
(lin)
i ] = z⊤

(
· 1

2A
⊤
i,∗

1
2Ai,∗ ·

)
z(3.13)

a[µ
(quad)
i ] = z⊤

(
A⊤

i,∗Ai,∗ ·
· ·

)
z(3.14)

a[λj ] = z⊤
(
−1{j}1{j}

⊤ 1
21{j}

1
21{j}

⊤ ·

)
z(3.15)

a[γ] = z⊤
(
· ·
· 1

)
z(3.16)

return a, b;

end

3.5. Discussion. In summary, we propose to solve Problem (MBQP) by con-
structing the equivalent copositive formulation in (COP) and applying any variant of
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MBQP
Copositive 
Program

Cutting-plane: (Alg. 1)Pre-processing

Construct equivalent 
copositive program 
using (4) and (5)

Add cut

Generate 
test point

Check 
copositivity 
(Ising solver)

Form separation cut

Separation oracle 
(Alg. 2)

Fig. 1. This figure depicts the entire solution process for solving an MBQP of the form (MBQP).

of Algorithm 1. Within Algorithm 1, the implementation of Oracle(\cdot ) is specified by
Algorithm 2. This process is depicted in Figure 1. Now that we have presented our
method in full, several comments are in order.

Computational complexity. While the stated complexity of the cutting-plane al-
gorithms is applicable to any problem, it is suggestively stated in terms of the vari-
able m. This notational overload is a deliberate choice because the dimension of
the dual copositive program is equal to the total number of constraints in problem
(CPP), which is 2m + | B| + 1 = \scrO (m). The number of constraints can be reduced to
m + | B| + 1 using the homogenized completely positive reformulation presented in the
appendix, section 6.1. While this will have no impact on the asymptotic complexity
of the method, it can result in a practical reduction in runtime. If \scrT Q represents the
oracle complexity of a particular method, the total additional overhead of converting
the copositivity oracle into a separation oracle is given by \scrO (mn2\scrT Q).

Discretization size. Discretization of the copositivity check automatically intro-
duces an approximation to the copositivity checks. The approximation fidelity is
improved as the number of discretization points is increased, although it is limited by
the hardware. Not only does representing a finer discretization require more qubits,
but it also results in a greater skew in the coefficients of the Ising Hamiltonian. This
becomes challenging since many existing hardware platforms have limited precision
in their implementable couplings. In contrast, too coarse of a discretization runs the
risk of missing the certificate of noncopositivity entirely. This suggests that the dis-
cretization scheme should be well-tailored to the problem at hand; section 6.2 in the
appendix provides guidance for choosing a discretization size based on the coefficients
of the Ising Hamiltonian. A promising alternative is to circumvent discretization en-
tirely and apply quantum(-inspired) solvers that natively solve continuous variable
box-constrained quadratic programs, such as the coherent continuous-variable ma-
chine (CCVM) recently proposed in [70].

Multiple cuts. Following standard convention, this work assumes that the copos-
itivity oracle returns a single value. In contrast, in practice, many of the aforemen-
tioned Ising solvers are heuristics that involve multiple readouts. Each of these reads
can be used to construct a cut, where negative, zero, and positive Ising objective val-
ues correspond to deep, neutral, and shallow cuts, respectively. Adding multiple cuts
during each iteration is a possible heuristic for improving the convergence rate of the
cutting-plane algorithm. While the true ground state corresponds to the deepest cut,
the convergence rate guarantees stated in Table 1 hold so long as a neutral or deep cut
is added at each iteration. Consequently, the proposed approach is not overly reliant
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1470 BROWN, BERNAL NEIRA, VENTURELLI, AND PAVONE

on the Ising solver's ability to identify the ground state and is resilient to heuristics.
Critically, this raises the question of how to proceed if the Ising solver fails to return
a certificate of noncopositivity, which will likely depend on problem specifics, such as
the current outer approximation, the objective values of the samples, and the solver
itself. For example, if the Ising solver returns positive but small solutions, depending
on the current outer approximation, the addition of shallow cuts can still reduce the
search space. On the other hand, if all nonzero solutions result in a large objective
value, one could increase confidence that the test point is feasible by increasing the
number of discretization points and readouts.

4. Experiments. We conducted an investigation of the proposed method on the
maximum clique problem, which finds the largest complete subgraph of a graph. Given
a graph, the maximum clique problem can be formulated as a completely positive
program

maximize
X\in Rn\times n

\bigl\langle 
11\top , X

\bigr\rangle 
(4.1)

subject to
\bigl\langle 
A + I, X

\bigr\rangle 
= 1,

X \in \scrC \ast 
n,

where A is the adjacency matrix of the graph's complement [71]. We note that solving
the maximum clique problem is equivalent to solving the maximum independent set
problem on the complement graph. The dual of (4.1) is the following copositive
program:

minimize
\lambda \in R

\lambda (4.2)

subject to \lambda (I + A)  - 11\top \in \scrC n.

This copositive program only has one variable regardless of the graph's number of
vertices or edges. Thus, we solve it with bisection, a special case of the ellipsoid
algorithm, as the cutting-plane algorithm. The copositivity check's size is determined
by the number of vertices, n, which impacts the complexity of computing the cuts
from the certificates of noncopositivity. The number of edges can be used to upper-
bound the size of the maximum clique, thus determining the size of the initial feasible
region; however, its effect on the complexity of checking copositivity is unclear. The
problem set-up and solution methodology are depicted in Figure 2.

4.1. QUBO subroutine. Many hybrid algorithms are designed by replacing
subroutines of existing (fully classical) algorithms with a quantum(-inspired) counter-
part. An oft-neglected consideration is whether the quantum(-inspired) computer is
applied to a bottleneck in the original algorithm. We contend that for a hybrid algo-
rithm to yield significant speed-ups, the quantized subroutine should constitute the
bulk of the algorithm's complexity. In keeping with this supposition, we first evaluated
whether the copositive cutting-plane algorithm shifts the complexity of the solution
process onto the copositivity checks by profiling each component of the algorithm
separately.

To study the scaling of each component of the proposed approach, we considered
random max-clique problems with up to 10,30, . . . ,270 vertices, where the maximum
graph size varies by edge density to ensure a reasonable computation time for this
experiment. For each graph size, we generated 25 random Erd\H os--Renyi instances
with edge densities p \in \{ 0.25, 0.5, 0.75\} and solved to an absolute gap of 0.9999
between upper and lower bounds (because the optimal solution is known to be integral)
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! !

! "

! #
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! %

(a)

(b) (c)

Fig. 2. Figure (a) depicts a small maximum clique example where there are edges between all
vertices except x4 and x5. Figure (b) depicts the adjacency matrix of graph (a)'s complement, which
has a single edge between vertices x4 and x5. Figure (c) depicts the solution process for the copositive
cutting-plane algorithm.
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Fig. 3. This figure plots the time spent on the copositivity checks versus all other operations in
the proposed method. The copositivity checks grow exponentially with the number of vertices, while
the other operations grow modestly.

using the proposed copositive cutting-plane algorithm. The copositivity checks were
conducted by solving Anstreicher's MILP characterization of copositivity [65] (which
we found to be one of the most competitive classical formulations), using Gurobi

version 9.0.3 [72].3

Figure 3 plots the time the copositive cutting-plane algorithm spent on the copos-
itivity checks versus other operations (updating the outer approximation and com-
puting test points). The time spent on the copositivity checks scales exponentially
with the number of vertices in the graph, while the time spent on other operations

3All experiments were run on an AMD Ryzen 7 1800X eight-core processor @3.6GHz with
64GB of RAM and 16 threads. All code needed to reproduce these experiments is available at
https://github.com/StanfordASL/copositive-cutting-plane-max-clique.

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

D
ow

nl
oa

de
d 

03
/3

0/
25

 to
 1

32
.1

74
.2

51
.2

 . 
R

ed
is

tri
bu

tio
n 

su
bj

ec
t t

o 
SI

A
M

 li
ce

ns
e 

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

s:
//e

pu
bs

.si
am

.o
rg

/te
rm

s-
pr

iv
ac

y

https://github.com/StanfordASL/copositive-cutting-plane-max-clique


1472 BROWN, BERNAL NEIRA, VENTURELLI, AND PAVONE

grows modestly. This is because problem (4.1) only has one constraint regardless of
the graph's number of vertices or edges. In contrast, the size of the copositivity check
is exactly equal to the number of vertices in the graph. Both the theoretical analysis
and empirical results confirm that the proposed approach shifts the complexity of
the copositive program onto the copositivity checks. This experiment shows that the
proposed methodology is particularly effective for problems whose constraints remain
constant or grow modestly with problem size.

While undesirable for a fully classical implementation, the overwhelming com-
plexity in the copositivity checks represents an opportunity for a quantum(-inspired)
solver to beget significant speed-up. They will result from being able to execute the
copositivity checks faster than the classical implementation (i.e., Anstreicher's MILP
formulation). To investigate potential speed-ups from using a stochastic Ising solver,
we re-solved each copositivity check that yielded a certificate of noncopositivity using
simulated annealing (SA) through the software Neal version 0.5.9, an SA sampler
[73], i.e., a solver that returns samples on the solutions distribution generated by SA.
Because SA is not guaranteed to find the global optima in a single annealing cycle,
we define a probabilistic notion of time to target. In particular, we follow [74] and
define the time to target with s confidence to be the number of repetitions to find the
ground state at least once with probability s multiplied by the time for each annealing
cycle, Tanneal, i.e.,

TTTs = Tanneal
log(1  - s)

log(1  - \^psucc)
,(4.3)

where \^psucc is the expected value of the returned solution divided by the ground
state/minimum. This results in a probability of success that interpolates between
counting only solutions corresponding to the ground state and counting all certificates
of noncopositivity as successes by considering the relative quality of each sample. We
will also consider analogous scenarios where only ground state solutions are counted
as successes; we reserve the terminology ``time to solution,"" TTSs = Tanneal

log(1 - s)
log(1 - p\mathrm{s}\mathrm{u}\mathrm{c}\mathrm{c})

,
for such cases to distinguish from the previously defined time to target. The values
of \^psucc and psucc were evaluated empirically over 1000 samples/reads. The time per
annealing cycle, Tanneal, was evaluated as the total wall-clock time (for all reads)
divided by the number of reads. All other Neal parameters were left as their default
values.

The time to solution and time to target metrics are intended to facilitate com-
parison between deterministic and stochastic solvers by taking into account both the
time needed to run the stochastic solver and its probability of success. It is impossible
to guarantee 100\% success for a stochastic solver under this formulation (mathemat-
ically, this would be equivalent to trying to compute TTS1 or TTT1, which are both
undefined). However, computing these metrics with a high degree of certainty (e.g.,
s = 1  - \epsilon ) is widely accepted as a tolerable, albeit imperfect, benchmark [75]. In the
remainder of this section, we will compare time to target metrics from SA against
solution time from Gurobi, but the astute reader should keep in mind that the two
solvers serve fundamentally different purposes. This comparison between the solvers
is not intended to be interpreted in isolation, but rather to highlight where it might be
appropriate and beneficial to substitute a heuristic Ising solver within the copositive
cutting-plane framework.

For each copositivity check solved, we considered discretizations corresponding
to min\^z\in \{ 0,1\} n \^z\top M \^z (i.e., no additional problem discretization). We solved each

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

D
ow

nl
oa

de
d 

03
/3

0/
25

 to
 1

32
.1

74
.2

51
.2

 . 
R

ed
is

tri
bu

tio
n 

su
bj

ec
t t

o 
SI

A
M

 li
ce

ns
e 

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

s:
//e

pu
bs

.si
am

.o
rg

/te
rm

s-
pr

iv
ac

y



COPOSITIVE FRAMEWORK OF ISING-CLASSICAL ALGORITHMS 1473

10 30 50 70 90 11
0
13

0
15

0
17

0
19

0
21

0
23

0
25

0
27

010 30 50 70 90 11
0
13

0
15

0
17

0
19

0
21

0
23

0
25

0
27

0
n

10 3

10 1

101

Ti
m

e 
(s

)

p = 0.25

10 30 50 70 90 11
0

13
010 30 50 70 90 11

0
13

0

Number of Vertices

10 4

10 2

100

102 p = 0.5

10 30 50 7010 30 50 70
n

10 4

10 2

100

102

p = 0.75
Gurobi
Neal

Fig. 4. This figure plots the time to target to 99\% confidence of the SA implementation in Neal

(replacing the continuous feasible region, [0,1]n, with its vertices, \{ 0,1\} n) against the solution time
of Gurobi for the copositivity checks. We solved each copositivity check with 100 sweeps and 1000
reads. For all densities, both methods scale exponentially with the number of vertices in the graph;
however, SA is several orders of magnitude faster than Gurobi.

copositivity check with 100 sweeps and 1000 reads.4 Figure 4 plots the time to target
with 99\% confidence from Neal against the solution time from Gurobi.5 We see that
for all graph sizes, Neal can consistently find certificates of noncopositivity in orders
of magnitude less time than Gurobi. Notably, Neal and Gurobi demonstrate similar
scaling with respect to the number of vertices.

Unlike SA, which operates without reference to rigorous optimality bounds,
Gurobi's solution process tracks both upper and lower bounds on the objective value
and terminates only when they reach user-specified stopping conditions. To evalu-
ate whether the optimal objective is found early in the solution process and time is
spent closing the upper bounds, we plotted Gurobi's lower and upper bounds progress
against time together with TTT0.99 and TTT0.999 in Figure 5 for instances with density
p = 0.25. Analogous plots for other densities are included in the appendix. For each
graph size, we plotted the instances where the ratio between Gurobi's solution time
and TTT0.99 is the greatest (top row) and least (bottom row)---all instances were run
with 100 sweeps. For each instance, we plot Gurobi's upper bound (purple, solid)
and best objective found (red, dashed), and Neal TTT0.99 (light teal, dashed), and
TTT0.999 (dark teal, dash-dot) (color figures are available online). We found that in
most instances, Neal reaches the time to target with 99.9\% confidence before Gurobi

even returns a callback (i.e., when the dark teal dash-dot line does not intersect either
of the purple solid or red-dashed lines); this is likely due to an initial preprocessing
step. Preprocessing is a necessary overhead for Gurobi's intended purpose of proving
optimality, thus hampering its relative performance on smaller or easier problems.
Critically, in the proposed approach, optimality guarantees are only necessary for
cases where the test point is copositive, while the algorithm can make progress with
any certificate of noncopositivity, even if it is not globally optimal. This suggests that
heuristics (e.g., Ising solvers) and complete methods (e.g., Gurobi) could play com-
plementary roles within the same copositive cutting-plane algorithm. For example,
for some test points, one may avoid the overhead of Gurobi altogether if the Ising

4While the performance of Neal depends on the number of sweeps, we found that optimizing the
number of sweeps does not result in significant reductions in the time to target. We provide further
discussion in the appendix, section 6.3.

5Note that Gurobi's solution time in Figure 4 is different from copositivity checks profiling in
Figure 3. This is because only noncopositive instances were considered for this comparison, while all
instances, including copositive ones, were included in the profiling comparison.
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Fig. 5. This figure depicts sample trajectories of Gurobi's upper and lower bounds against
TTT0.99 and TTT0.999 for edge density p = 0.25. For each graph size, the top row represents the
instance where the ratio between Gurobi's solution time and TTT0.99 is the greatest, and the bottom
row represents the instance where the ratio is the smallest---all instances were run with 100 sweeps.
In most instances, Neal reaches the TTT0.999 confidence before Gurobi even returns a callback.

solver quickly returns a certificate of noncopositivity. On the other hand, if the Ising
solver fails to generate such a certificate, one may rely on Gurobi for proving that the
test point is copositive.

4.2. Overall cutting-plane algorithm. Next, we compared the copositive
cutting-plane algorithm with the SA implementation in Neal as the Ising solver
against solving a MILP formulation of maximum clique directly with Gurobi. Gurobi's
solution time was evaluated on the following MILP formulation of maximum clique:

maximize
x\in \{ 0,1\} n

1\top x(4.4)

subject to xi + xj \leq 1 \forall (i, j) \in E,

where E is the edges in the complement graph. This is a MILP with n binary vari-
ables, where n is the number of vertices in the graph, and | E| constraints (i.e., the
number of edges in the complement graph). The copositive cutting-plane algorithm
was tested with different sweeps and reads, which were fixed throughout each run
of the algorithm. The solid pink lines in Figure 6 plot the runtime of the coposi-
tive cutting-plane algorithm for a representative set of these parameters. Because
Neal may fail to find a certificate for some noncopositive matrices, this method may
incorrectly reduce the upper bound in the outer approximation; however, it cannot
incorrectly update the lower bound. Throughout the algorithm, we track the exact
lower bound and the approximate upper bound (which is updated when Neal fails
to find a certificate of noncopositivity). The algorithm is terminated when the lower
bound and approximate upper bound are within an absolute tolerance of 0.9999; this
is the same stopping condition as the exact case where we checked copositivity using
Anstreicher's MILP formulation. Consequently, the solution returned was determined
by rounding the lower bound up to the nearest integer. This means that the solution
returned is guaranteed to be a lower bound for the maximum clique instance. The
fraction of correct maximum clique solutions is indicated by the color of the markers.

From the pink plots, we see that for a fixed parameter setting, the copositive
cutting-plane algorithm exhibits polynomial scaling in the graph size. While it is
tempting to extrapolate this scaling relationship to larger graph sizes, the failure of
parameters that were successful on smaller graphs on larger graph sizes (denoted by
the green and blue markers) indicates that it is unlikely that fixed parameter settings
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Fig. 6. This figure plots the solution time for the copositive cutting-plane algorithm with the
SA implementation in Neal as the Ising solver (with various fixed parameters), the solution time
when solving a mixed-integer programming (MILP) formulation of maximum-clique directly with
Gurobi, and the corresponding TTT0.999 from Neal applied to the maximum clique formulation with
penalty weight 1. While Gurobi's solution time is orders of magnitude faster than the copositive
cutting-plane algorithm for the smallest graph sizes, the copositive cutting-plane algorithm starts
outperforming it for larger graph sizes.

will continue to be effective ad infinitum. In particular, we found that while smaller
and sparser instances are tolerant of fewer sweeps and reads (resulting in shorter calls
to the Ising solver), larger instances required more sweeps and reads to be accurate.
While the copositive cutting-plane algorithm is designed to benefit from speed-ups of
state-of-the-art Ising solvers, the converse is also expected; poor scaling of the Ising
solver will make its way into the runtime as the time spent in each oracle call, \scrT Q.

On the other hand, we observe that the confidence intervals for Neal are signifi-
cantly wider than those of Gurobi and the copositive cutting-plane algorithm. This is
potentially due to the sensitivity of Neal to its penalty weight. While Neal can also
produce lower bounds for the maximum clique, the bounds can only be updated when
it returns solution corresponds to a clique. In contrast, the copositive cutting-plane
algorithm can generate cuts from any certificate of noncopositivity, even those that
do not correspond to a clique at all. This means that the copositive cutting-plane
algorithm can make progress from a larger set of the solutions returned by the Ising
solver. This suggests that the copositive cutting-plane algorithm may even be com-
petitive against its underlying copositivity checker solving a direct formulation of the
problem, particularly if its performance is highly sensitive to parameter settings.

We note that Gurobi takes advantage of multithreading while neither Neal nor
the copositive cutting-plane algorithm does. This raises the important question of
how much the copositive cutting-plane algorithm (and Neal) will benefit from similar
decomposition and parallelization efforts.

Finally, we investigated the effectiveness of directly converting the maximum
clique problem to an Ising problem using a standard penalty formulation. To do so,
we solved each of the maximum clique problem instances using the maximum clique

formulator6 with Neal as the sampler and a range of penalty weights in \{ 2 - 1,20, . . . ,
24\} ; the number of sweeps was left to its default value of 1000. This results in a
QUBO with n variables and | E| quadratic terms. For each instance, we conducted
1000 reads and evaluated the average normalized sample size (the size of the returned
solution divided by the ground truth maximum clique size) and the fraction of reads

6https://docs.ocean.dwavesys.com/projects/dwave-networkx/en/latest/reference/algorithms/
generated/dwave networkx.maximum clique.html.
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Fig. 7. This figure plots the normalized sample size (the size of the returned solution divided
by the ground truth maximum clique size) and the fraction of reads that resulted in a valid clique for
graph density p= 0.25. These figures were used to compute the fraction of reads resulting in a ground
state solution and the corresponding TTT0.999 (also plotted). As the penalty weight is increased, the
normalized sample size decreases, and the fraction of valid cliques increases. This highlights the
delicate trade-off between constraints and the objective in penalty formulations.

that resulted in a valid clique; a ground state solution is one that both is a valid clique
and has a normalized sample size of 1. We computed the probability of success, psucc,
as the fraction of reads that resulted in a ground state solution, which was subse-
quently used to derive the time to solution to 99.9\% confidence. Figure 7 plots each
of these metrics as a function of the penalty weights and graph size for edge density
p = 0.25. Analogous plots for other densities are included in the appendix.

For penalty weights 0.5 and 1, the normalized sample size is often greater than 1,
resulting in samples that do not represent a valid clique. For penalty weights 2,4,8,
and 16, most samples were valid cliques; however, the normalized sample sizes were
typically less than 1; these represent nonmaximum cliques. Generally, as the penalty
weight is increased, the normalized sample size decreases, and the fraction of valid
cliques increases. This aligns with the interpretation that the penalty weight repre-
sents a trade-off between satisfying the constraints versus optimizing the objective.
These empirical results also corroborate the analytical results of [76], which state
that the minimum valid penalty weight for the stable set of a graph is 1. Given that
maximum clique represents the maximum clique problem as finding the stable set of
the graph built with the complement of the original edges, the bound on the penalty
weight is valid. This experiment demonstrates that while the penalty formulation may
be an effective heuristic, it typically requires carefully tuning the penalty weights to
optimize the trade-off between satisfying the constraints and optimizing the objec-
tive. Figure 6 also plots the corresponding TTT0.999 from Neal applied directly to the
maximum clique formulation with penalty weight 1 against the Gurobi solution time
and the copositive cutting-plane solution time.

5. Conclusions. In this paper, we advocate for the development of a theory of
hybrid quantum-classical algorithms that analytically quantifies their performance.
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COPOSITIVE FRAMEWORK OF ISING-CLASSICAL ALGORITHMS 1477

Metrics for comparing different hybrid algorithms may include the number of calls
to the quantum computer, the complexity of the classical portion, and the require-
ments on the quantum computer. As a step in this direction, we demonstrate a class
of hybrid algorithms for mixed-binary quadratic programming problems using Ising
solvers and report the aforementioned metrics. Our framework relies on Burer's con-
vex reformulation of such problems using completely positive programming. Our first
contribution is to extend this result and show that under mild conditions, the dual
copositive program exhibits strong duality. We then propose a hybrid quantum-classic
solution algorithm based on cutting-plane algorithms, where an Ising solver is used to
construct the separation oracle. This approach partially mitigates the heuristic na-
ture of many state-of-the-art Ising solvers. Moreover, the runtime of the components
handled by the classical computer scales polynomially with the number of constraints
in the original mixed-binary quadratic program. This suggests that if our approach
is applied to a problem with exponential scaling, the complexity is shifted on the
subroutine carried out by the hardware accelerator, e.g., the quantum computer. Our
proposed approach is particularly appealing because it suggests that the proposed
approach could take advantage of any speedup that exists even without an explicit
characterization of what that speedup is.

While the proposed framework seems like a promising way forward for utilizing
quantum/quantum-inspired Ising solvers, a crucial question remains regarding how
the algorithm should proceed if the Ising solver fails to find a certificate of noncoposi-
tivity. Could one design an efficient algorithm that circumvents the ambiguity due to
failure to find a certificate of noncopositivity (perhaps using a sum-of-squares-based
inner approximations of the copositive cone)? Alternatively, is there a complexity
barrier that prevents such a construction? More broadly, identifying fundamental
limitations, such as this example, is important for understanding what requirements
should be placed on new computing architectures. While the theory in this paper is
framed in the context of understanding algorithms that interact with existing hard-
ware, we believe its most potent impact is in informing the co-design of ``hardware
primitives"" and optimization algorithms. As a concrete example, the CCVM recently
proposed in [70] circumvents discretization of the copositivity checks entirely, thus
reducing the hardware resources and potentially improving problem conditioning for
each copositivity check. Not only does this hardware innovation directly benefit the
optimization community, but the analysis in this work helps to justify the development
of continuous variable devices.

6. Appendix.

6.1. Proof of strong duality. Problem (CPP) is equivalent to the following
homogeneous form completely positive program (i.e., min (CPP) = min (Hom-CPP)):

minimize
x\in Rn,X\in Rn\times n

\Bigl\langle \Bigl( 
Q c

c\top \cdot 

\Bigr) 
,
\Bigl( 

X x

x\top 1

\Bigr) \Bigr\rangle 
(Hom-CPP)

subject to
\Bigl\langle \Bigl( 

A\top 
i,\ast Ai,\ast  - biA

\top 
i,\ast 

 - biAi,\ast b2i

\Bigr) 
,
\Bigl( 

X x

x\top 1

\Bigr) \Bigr\rangle 
= 0,

\Bigl\langle \Bigl( 
 - 1\{ j\} 1\{ j\} 

\top 1
21\{ j\} 

1
21\{ j\} 

\top \cdot 

\Bigr) 
,
\Bigl( 

X x

x\top 1

\Bigr) \Bigr\rangle 
= 0 \forall j \in B,

\Bigl( 
X x

x\top 1

\Bigr) 
\in \scrC \ast 

n+1.

This form will be useful for proving strong duality. Because the homogenized form of
the equality constraints form a cone, this perspective will help prove strong duality
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1478 BROWN, BERNAL NEIRA, VENTURELLI, AND PAVONE

between problem (CPP) and its dual. The Lagrangian dual of (Hom-CPP) is the
following copositive optimization problem:

maximize
\mu ,\lambda ,\gamma 

\gamma (Hom-COP)

subject to \^M(\mu ,\lambda , \gamma ) \in \scrC n+1,

where \^M(\mu ,\lambda , \gamma ) is defined as

\^M(\mu ,\lambda , \gamma ) :=
\Bigl( 

Q c

c\top \cdot 

\Bigr) 
 - 
\sum 

i

\mu i

\Bigl( 
A\top 

i,\ast Ai,\ast  - biA
\top 
i,\ast 

 - biAi,\ast b2i

\Bigr) 

 - 
\sum 

j\in B

\lambda j

\Bigl( 
 - 1\{ j\} 1\{ j\} 

\top 1
21\{ j\} 

1
21\{ j\} 

\top \cdot 

\Bigr) 
 - \gamma 
\Bigl( 
\cdot \cdot 
\cdot 1

\Bigr) 
.

(6.1)

Theorem 6.1 (homogeneous strong duality). If problem (MBQP) is feasible with
bounded feasible region, then strong duality holds between problems (Hom-CPP) and
(Hom-COP). Moreover, an \epsilon optimal value of (Hom-COP) is obtained by a feasible
solution, where \epsilon > 0 can be arbitrarily small.

Proof. Notice that the set of affine constraints,

\scrN \scrU \scrL \scrL :=
\Bigl\{ 

\~X | 
\Bigl\langle \Bigl( 

A\top 
i,\ast Ai,\ast  - biA

\top 
i,\ast 

 - biAi,\ast b2i

\Bigr) 
, \~X
\Bigr\rangle 

= 0,
\Bigl\langle \Bigl( 

 - 1\{ j\} 1\{ j\} 
\top 1

21\{ j\} 
1
21\{ j\} 

\top \cdot 

\Bigr) 
, \~X
\Bigr\rangle 

= 0
\Bigr\} 
,(6.2)

forms a cone. So, we could express (Hom-CPP) as the following optimization problem:

minimize
\~X\in R(n+1)\times (n+1)

\Bigl\langle \Bigl( 
Q c

c\top \cdot 

\Bigr) 
, \~X
\Bigr\rangle 

(6.3)

subject to
\Bigl\langle \Bigl( 

\cdot \cdot 
\cdot 1

\Bigr) 
, \~X
\Bigr\rangle 

= 1,

\~X \in \scrC \ast 
n+1 \cap \scrN \scrU \scrL \scrL .

As a quick aside, rewriting the problem in this way does not change the Lagrangian
dual problem. To see this, we first write the Lagrangian dual of problem (6.3) as

maximize
\gamma \in R, \~M\in R(n+1)\times (n)

\gamma (6.4)

subject to \~M =
\Bigl( 

Q c

c\top \cdot 

\Bigr) 
 - \gamma 
\Bigl( 
\cdot \cdot 
\cdot 1

\Bigr) 
,

\~M \in \scrC n+1 + \scrN \scrU \scrL \scrL \ast 

and notice that \scrN \scrU \scrL \scrL \ast is spanned by
\Bigl\{ \Bigl( 

A\top 
i,\ast Ai,\ast  - biA

\top 
i,\ast 

 - biAi,\ast b2i

\Bigr) \Bigr\} 
\cup 
\Bigl\{ \Bigl( 

 - 1\{ j\} 1\{ j\} 
\top 1

21\{ j\} 
1
21\{ j\} 

\top \cdot 

\Bigr) \Bigr\} 
.(6.5)

Here, we take care to note that the Lagrangian dual may differ from the conic dual.
In particular, feasibility of (MBQP) is sufficient for ensuring strong duality when \~M
is optimized over (C\ast \cap \scrN \scrU \scrL \scrL )\ast [77, Proposition 5.3.9]. However, it is not guaranteed
that (C\ast \cap \scrN \scrU \scrL \scrL )\ast is equal to C+\scrN \scrU \scrL \scrL \ast ; this is the case if and only if C+\scrN \scrU \scrL \scrL \ast 

is closed.
To establish strong duality, we will first assert that if problem (MBQP) is feasi-

ble with a bounded feasible region, then problem (Hom-CPP) has a nonempty and
bounded set of optimal solutions. This follows directly from [8, Corollary 2.6], which
states that for all optimal solutions, (x\ast ,X\ast ), of (Hom-CPP), x\ast must lie within

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

D
ow

nl
oa

de
d 

03
/3

0/
25

 to
 1

32
.1

74
.2

51
.2

 . 
R

ed
is

tri
bu

tio
n 

su
bj

ec
t t

o 
SI

A
M

 li
ce

ns
e 

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

s:
//e

pu
bs

.si
am

.o
rg

/te
rm

s-
pr

iv
ac

y



COPOSITIVE FRAMEWORK OF ISING-CLASSICAL ALGORITHMS 1479

the convex hull of optimal solutions for (MBQP). If the set of optimal solutions for
(MBQP) is nonempty and bounded, so is their convex hull, proving the boundedness
of x\ast . Moreover, because the optimal solution may be factored in the form

\Bigl( 
X\ast x\ast 

x\ast \top 1

\Bigr) 
=
\sum 

k

\biggl( 
x(k)

\xi (k)

\biggr) \bigl( 
x(k),\top \xi (k)

\bigr) 
(6.6)

with \xi (k) > 0 and
\sum 

k(\xi (k))2 = 1 (by definition of copositivity), X\ast can be expressed
as the sum of the outer products of optimal solutions of (MBQP) with themselves.
In other words, because each x(k) is bounded, X\ast =

\sum 
k x

(k)x(k),\top must be bounded
as well. This establishes that the set of optimal solutions of (Hom-CPP) is also
nonempty and bounded, allowing us to apply [78, Theorem 1.1], which establishes
strong duality of conic optimization problems with two cone constraints and a single
hyperplane constraint under nonemptiness and boundedness of the optimal solution
set. The establishes that

max(Hom  - COP) = min(Hom  - CPP).(6.7)

While the optimal objective of (Hom-COP) may not be exactly attainable, there
exists a feasible solution with objective value max (Hom-COP) - \epsilon , where \epsilon > 0 can be
arbitrarily small [79]. This is not restrictive, as most numerical solvers only compute
optimums with finite precision.

While Theorem 6.1 establishes strong duality of the homogeneous CPP, we have
yet to show that the nonhomogeneous form also exhibits strong duality. In order to
do so, we will show that the supremum of the (nonhomogeneous) copositive program
upper-bounds that of the homogeneous program.

Theorem 6.2 (inhomogeneous lower bound). The optimal objective of problem
(COP) is at least that of problem (Hom-COP) (i.e., max(COP) \geq max(Hom  - COP)).

Proof. We will do this by showing that for each (\^\mu , \^\lambda , \^\gamma ) there exists (\mu ,\lambda , \gamma ) such
that

M(\mu ,\lambda , \gamma ) = \^M(\^\mu , \^\lambda , \^\gamma ),(6.8)

and

\gamma +
\sum 

i

\mu 
(lin)
i bi + \mu 

(quad)
i b2i = \^\gamma .(6.9)

In other words, any feasible solution for (Hom-COP) can be transformed into a feasible
solution for (COP) with equal objective value. To see this, we will suggestively break
up \gamma = \gamma (res) +

\sum 
i \gamma i so (3.1) can be expanded as

M(\mu ,\lambda , \gamma ) =
\Bigl( 

Q c

c\top \cdot 

\Bigr) 

 - 
\sum 

i

\Bigl( 
\mu 
(lin)
i

\Bigl( 
\cdot 1

2A
\top 
i,\ast 

1
2Ai,\ast \cdot 

\Bigr) 
+ \mu 

(quad)
i

\Bigl( 
A\top 

i,\ast Ai,\ast \cdot 
\cdot \cdot 

\Bigr) 
+ \gamma i

\Bigl( 
\cdot \cdot 
\cdot 1

\Bigr) \Bigr) 

 - 
\sum 

j\in B

\lambda j

\Bigl( 
 - 1\{ j\} 1\{ j\} 

\top 1
21\{ j\} 

1
21\{ j\} 

\top \cdot 

\Bigr) 
 - \gamma (res)

\Bigl( 
\cdot \cdot 
\cdot 1

\Bigr) 
.

(6.10)

Then, the proposed (\mu ,\lambda , \gamma ) is given by
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1480 BROWN, BERNAL NEIRA, VENTURELLI, AND PAVONE

\lambda j = \^\lambda j ,(6.11)

\mu 
(lin)
i =  - 2bi\^\mu i,(6.12)

\mu 
(quad)
i = \^\mu i,(6.13)

\gamma i = b2i \^\mu i,(6.14)

\gamma (res) = \^\gamma .(6.15)

Then, notice that

\mu 
(lin)
i

\Bigl( 
\cdot 1

2A
\top 
i,\ast 

1
2Ai,\ast \cdot 

\Bigr) 
+ \mu 

(quad)
i

\Bigl( 
A\top 

i,\ast Ai,\ast \cdot 
\cdot \cdot 

\Bigr) 
+ \gamma i

\Bigl( 
\cdot \cdot 
\cdot 1

\Bigr) 
(6.16)

=  - 2bi\^\mu i

\Bigl( 
\cdot 1

2A
\top 
i,\ast 

1
2Ai,\ast \cdot 

\Bigr) 
+ \^\mu i

\Bigl( 
A\top 

i,\ast Ai,\ast \cdot 
\cdot \cdot 

\Bigr) 
+ b2i \^\mu i

\Bigl( 
\cdot \cdot 
\cdot 1

\Bigr) 
(6.17)

= \^\mu i

\Bigl( 
 - 2bi

\Bigl( 
\cdot 1

2A
\top 
i,\ast 

1
2Ai,\ast \cdot 

\Bigr) 
+
\Bigl( 
A\top 

i,\ast Ai,\ast \cdot 
\cdot \cdot 

\Bigr) 
+ b2i

\Bigl( 
\cdot \cdot 
\cdot 1

\Bigr) \Bigr) 
(6.18)

= \^\mu i

\Bigl( 
A\top 

i,\ast Ai,\ast  - biA
\top 
i,\ast 

 - biAi,\ast b2i

\Bigr) 
,(6.19)

so by matching up terms in the sums, we see that M(\mu ,\lambda , \gamma ) = \^M(\^\mu , \^\lambda , \^\gamma ). As for the
objective value,

\gamma +
\sum 

i

\mu 
(lin)
i bi + \mu 

(quad)
i b2i(6.20)

= \gamma (res) +
\sum 

i

\mu 
(lin)
i bi + \mu 

(quad)
i b2i + \gamma i(6.21)

= \^\gamma +
\sum 

i

 - 2b2i \^\mu i + b2i \^\mu i + b2i \^\mu i(6.22)

= \^\gamma +
\sum 

i

\^\mu i( - 2b2i + b2i + b2i )(6.23)

= \^\gamma ,(6.24)

so for each (\^\mu , \^\lambda , \^\gamma ) the proposed (\mu ,\lambda , \gamma ) has equal objective value.

Corollary 6.3. If problem (MBQP) is feasible with bounded feasible region, then
strong duality holds between problems (CPP) and (COP).

Proof. Theorem 6.2 shows that max (COP) \geq max (Hom-COP). So we have
max(Hom-COP) \leq max (COP) \leq min (CPP) = min (Hom-CPP). Combining this
with max (Hom-COP) = min (Hom-CPP) we get

max (Hom-COP) = max (COP) = min (CPP) = min (Hom-CPP).(6.25)

Thus, strong duality must hold between (COP) and (CPP).

6.2. Discretizing the copositivity checks.

6.2.1. Constructing the QUBO. In this section, we will discuss forming the
QUBO to approximate the copositivity checks. Formally, instead of solving (3.8) with
feasible region \{ z \in Rn+1

\geq 0 | \| z\| \infty \leq 1\} , we will approximate the feasible region with
\{ 0, 1

K , . . . , K - 1
K ,1\} n+1, leading to a quadratic unconstrained integer optimization,

minimize
z

z\top M(\mu ,\lambda , \gamma )z(QUIO)

subject to z \in 
\biggl\{ 

0,
1

K
, . . . ,

K  - 1

K
,1

\biggr\} n+1

.

For simplicity, assume that K = 2k  - 1 for some k \in Z>0. Then problem (QUIO) is
equivalent to minimizing (QUBO), where
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COPOSITIVE FRAMEWORK OF ISING-CLASSICAL ALGORITHMS 1481

\^M(\mu ,\lambda , \gamma ) = \scrD \top M(\mu ,\lambda , \gamma )\scrD (6.26)

and

\scrD :=
1

K

\left( 
    

20 \cdot \cdot \cdot 2k - 1 0 \cdot \cdot \cdot 0 \cdot \cdot \cdot 0 \cdot \cdot \cdot 0
0 \cdot \cdot \cdot 0 20 \cdot \cdot \cdot 2k - 1 \cdot \cdot \cdot 0 \cdot \cdot \cdot 0
...

...
...

...
...

...
...

...
...

...
0 \cdot \cdot \cdot 0 0 \cdot \cdot \cdot 0 \cdot \cdot \cdot 20 \cdot \cdot \cdot 2k - 1

\right) 
    ,(6.27)

over the variables \^z \in \{ 0,1\} k(n+1). The new variables \^z simply represent the binary
expansion of z, i.e., z = 1

K\scrD \^z. One could also use a unary expansion at the expense of
a larger size expansion and redundancy in the encoding. Additionally, while we have
written out a uniform expansion for all variables, it is possible to have a heterogeneous
discretization scheme. More sophisticated discretization schemes are discussed in
depth in [80].

6.2.2. Choosing a discretization size. When discretizing the copositivity
checks, it is critical to ensure that the discretization size is fine enough. This sec-
tion provides guidance for choosing a discretization size given a particular QUBO. To
do so, we will consider minimizing z\top Mz over a discrete grid z \in \{ 0, 1

K , . . . , K - 1
K ,1\} n

and bound the difference if we have minimized \^z\top M \^z over the hypercube instead,
\^z \in [0,1]n. In particular, we are interested in the case where there are no certificates
of noncopositivity on the discrete grid, i.e., z\top Mz \geq 0 for all z \in \{ 0, 1

K , . . . , K - 1
K ,1\} n,

yet there is \^z \in [0,1]n with \^z\top M \^z =  - \delta < 0. We will decompose \^z = z + \Delta as the
nearest grid point, z \in \{ 0, 1

K , . . . , K - 1
K ,1\} n, plus a small correction factor \Delta \in Rn.

Because the norm of this correction factor is bounded by \| \Delta \| \infty \leq 1
2K (i.e., by

rounding), we will lower-bound (z + \Delta )\top M(z + \Delta ) as a function of \| \Delta \| . Expanding
(z + \Delta )\top M(z + \Delta ) out we get

(z + \Delta )\top M(z + \Delta ) = z\top Mz + 2\Delta \top Mz + \Delta \top M\Delta .(6.28)

Applying the assumption that z\top Mz \geq 0 for all z \in \{ 0, 1
K , . . . , K - 1

K ,1\} n, we get

(z + \Delta )\top M(z + \Delta ) \geq  - | 2\Delta \top Mz + \Delta \top M\Delta | .(6.29)

In order to lower-bound, \^z\top M \^z, we upper-bound | 2\Delta \top Mz + \Delta \top M\Delta | ,
| 2\Delta \top Mz + \Delta \top M\Delta | =

\bigm\| \bigm\| 2\Delta \top Mz + \Delta \top M\Delta 
\bigm\| \bigm\| 
\infty (6.30)

\leq 2\| \Delta \| \infty \| z\| \infty \| M\| \infty + \| \Delta \| 2\infty \| M\| \infty (6.31)

\leq (2\| \Delta \| \infty + \| \Delta \| 2\infty )\| M\| \infty (6.32)

\leq 
\biggl( 

1

K
+

1

4K2

\biggr) 
\| M\| \infty .(6.33)

Recall that we assume the minimum copositivity check is achieved at  - \delta = (z +
\Delta )\top M(z + \Delta ), so if K > 1

2(
\sqrt{} 

\delta 
\| M\| \infty 

+1 - 1)
, then there exists z \in \{ 0, 1

K , . . . , K - 1
K ,1\} n

with z\top Mz < 0. This represents the coarsest discretization where optimizing over the
discrete grid rather than the unit hypercube is insufficient for detecting the certificate
of noncopositivity.

6.3. Hyperparameter optimization. To investigate further speed-ups from
turning the SA parameters, we optimized the number of sweeps using Hyperopt [81]
with 25 trials for each instance. Figure 8 plots the optimized TTT0.99 and the TTT0.99
when Neal was run with 100 sweeps. While the optimization produced significant
relative improvements for graphs with 10 nodes, the improvement for larger graphs
remained marginal, especially in light of the computational overhead required to op-
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Fig. 8. This figure plots the optimized TTT0.999 when Neal was run with 100 sweeps. Opti-
mization produces an order of magnitude speed-up for graphs with 10 nodes but does not result in
significant speed-ups for larger graphs.
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Fig. 9. This figure plots the optimal number of sweeps for each of the problem instances. The
optimal number of sweeps increases with the graph size. However, graphs of densities p= 0.25 and
p= 0.75 require a comparable number of sweeps for graphs of the same size, while fewer sweeps are
required for graphs with density p= 0.5.

timize the parameters. Figure 9 plots the optimal number of sweeps for each problem
instance. Generally, the optimal number of sweeps increases with the number of ver-
tices. While graphs of densities p = 0.25 and p = 0.75 require a comparable number of
sweeps for graphs of the same size, fewer sweeps are required for graphs with density
p = 0.5.

6.4. Illustrative example. In this section, we will walk through a small MBQP
to illustrate the translation into the equivalent copositive program. Consider the
following mixed-binary optimization problem:

minimize
x1,x2

\bigl( 
x1 x2

\bigr) \biggl( 1  - 1
 - 1 \cdot 

\biggr) \biggl( 
x1

x2

\biggr) 
(Ex-MBQP)

subject to x1 + x2 = 1,

x1, x2 \in R\geq 0.

The optimal solution is given by

x\ast 
1 =

1

3
, x\ast 

2 =
2

3
,(6.34)

which gives an optimal objective value of  - 1
3 .
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The equivalent completely positive program is given by

minimize
X\in R2\times 2,x\in R2

\Biggl\langle \Biggl( 
1  - 1 \cdot 
 - 1 \cdot \cdot 
\cdot \cdot \cdot 

\Biggr) 
,
\Bigl( 

X x

x\top 1

\Bigr) \Biggr\rangle 
(Ex-CPP)

subject to

\Biggl\langle \Biggl( \cdot \cdot 1
\cdot \cdot 1
1 1 \cdot 

\Biggr) 
,
\Bigl( 

X x

x\top 1

\Bigr) \Biggr\rangle 
= 2,

\Biggl\langle \Biggl( 
1 1 \cdot 
1 1 \cdot 
\cdot \cdot \cdot 

\Biggr) 
,
\Bigl( 

X x

x\top 1

\Bigr) \Biggr\rangle 
= 1,

\Biggl\langle \Biggl( \cdot \cdot \cdot 
\cdot \cdot \cdot 
\cdot \cdot 1

\Biggr) 
,
\Bigl( 

X x

x\top 1

\Bigr) \Biggr\rangle 
= 1,

\Bigl( 
X x

x\top 1

\Bigr) 
\in \scrC \ast 

3 .

The optimal solution of (Ex-CPP) is determined by the quadratic expansion of the
optimal solution of (Ex-MBQP) as follows:

\Bigl( 
X\ast x\ast 

x\ast \top 1

\Bigr) 
=

\left( 
 
x\ast 
1

x\ast 
2

1

\right) 
 \bigl( x\ast 

1 x\ast 
2 1

\bigr) 
=

\left( 
 

1/9 2/9 1/3
2/9 4/9 2/3
1/3 2/3 1

\right) 
 .(6.35)

The dual copositive program is given by

maximize
\mu ,\lambda ,\gamma 

\gamma + 2\mu (lin) + \mu (quad)(Ex-COP)

subject to M(\mu ,\lambda , \gamma ) \in \scrC 3,
where

M(\mu ,\lambda , \gamma ) =

\left( 
 

1  - \mu (quad)  - 1  - \mu (quad)  - \mu (lin)

 - 1  - \mu (quad)  - \mu (quad)  - \mu (lin)

 - \mu (lin)  - \mu (lin)  - \gamma 

\right) 
 .(6.36)

Figure 10 plots the outer bounding ellipsoid for the first nine iterations of the copos-
itive cutting-plane algorithm (with the ellipsoid method as the cutting-plane algo-
rithm) applied to problem (Ex-COP). For each iteration, the red dot depicts the test
point, and the blue ellipsoid plots the outer bounding ellipsoid at the start of the it-
eration. The initial ellipsoid is chosen to be a sphere, but as the algorithm progresses,
we observe that the outer bounding ellipsoid becomes elongated. This behavior is ex-
plained by the fact that the optimal solution set for this particular problem is a line.

6.5. Ellipsoid algorithm. In this section, we will overview the ellipsoid algo-
rithm as a representative example of cutting-plane algorithms [50]. As suggested by
its name, the outer approximation is defined by an ellipsoid. An ellipsoid in Rm is
parametrized by a center, x \in Rm, and positive definite matrix, P \in \scrS m

++, and is
defined as

\scrE (x,P ) := \{ s\in Rm | (s - x)P - 1(s - x) \leq 1\} .(6.37)

The volume of \scrE (x,P ) scales with the determinant of P ,

Vol(\scrE (x,P )) =
\pi m/2

\Gamma 
\Bigl( m

2
+ 1
\Bigr) 
\sqrt{} 

det(P ).(6.38)
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Fig. 10. This figure plots the outer bounding ellipsoid for the first nine iterations of the copos-
itive cutting-plane algorithm applied to problem (Ex-COP). In each plot, the red dot depicts the test
point, and the blue ellipsoid plots the outer bounding ellipsoid at the start of the iteration.

In the ellipsoid algorithm, the center will always be the test point. Given a separating
hyperplane for x (recall that this is defined by a vector a\in Rm such that a\top s\leq a\top x for
all s \in S), the ellipsoid updates the outer approximation with the minimum volume
ellipsoid containing both \scrE (x,P ) and \{ s \in Rm | a\top s \leq a\top x\} . Conveniently, this
ellipsoid, \scrE (\^x, \^P ), has a closed form representation with

\^x(x,P,a) = x - Pa

(m + 1)
\surd 
a\top Pa

,(6.39)

\^P (x,P,a) =
m2

m2  - 1

\biggl( 
P  - 2Paa\top P

(m + 1)a\top Pa

\biggr) 
.(6.40)

Now we are in a position to present the ellipsoid algorithm in the terminology of
section 3.2. To initialize the algorithm, the user chooses x0 and P0 appropriately and
chooses a final tolerance r. The outer approximations for each iteration are main-
tained via xk and Pk, i.e., Sk = \scrE (xk, Pk). Evaluating the center of Sk involves simply
returning the stored value for xk, i.e., Center(Sk) = xk. The initial volume is deter-
mined from (6.38) as R = Vol(\scrE (x0, P0)). At each iteration, the separation oracle,
Oracle(xk), is evaluated using Algorithm 2, and outer approximation is updated as
follows:

xk+1 = \^x(xk, Pk,Oracle(xk)),(6.41)

Pk+1 = \^P (xk, Pk,Oracle(xk)),(6.42)

Add Cut(Sk,Oracle(x)) = \scrE (xk+1, Pk+1).(6.43)

6.6. Additional plots. Additional plots are given in Figures 11, 12, and 13.
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Fig. 11. This figure depicts sample trajectories of Gurobi’s upper and lower bounds against
TTT0.99 and TTT0.999 for edge density p = 0.5 (above) and p = 0.75 (below). For each graph size,
the top row represents the instance where the ratio between Gurobi’s solution time and TTT0.99 is
the greatest, and the bottom row represents the instance where the ratio is the smallest–all instances
were run with 100 sweeps. In most instances, Neal reaches the TTT0.999 confidence before Gurobi

even returns a callback.

Fig. 11. This figure depicts sample trajectories of Gurobi's upper and lower bounds against
TTT0.99 and TTT0.999 for edge density p= 0.5 (above) and p= 0.75 (below). For each graph size, the
top row represents the instance where the ratio between Gurobi's solution time and TTT0.99 is the
greatest, and the bottom row represents the instance where the ratio is the smallest---all instances
were run with 100 sweeps. In most instances, Neal reaches the TTT0.999 confidence before Gurobi

even returns a callback.
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Fig. 12. This figure plots the normalized sample size (the size of the returned solution divided
by the ground truth maximum clique size) and the fraction of reads that resulted in a valid clique for
graph density p= 0.5. These figures were used to compute the fraction of reads resulting in a ground
state solution and the corresponding TTT0.999 (also plotted). As the penalty weight is increased, the
normalized sample size decreases, and the fraction of valid cliques increases. This highlights the
delicate trade-off between constraints and the objective in penalty formulations.
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Fig. 13. This figure plots the normalized sample size (the size of the returned solution divided
by the ground truth maximum clique size) and the fraction of reads that resulted in a valid clique for
graph density p= 0.75. These figures were used to compute the fraction of reads resulting in a ground
state solution and the corresponding TTT0.999 (also plotted). As the penalty weight is increased, the
normalized sample size decreases, and the fraction of valid cliques increases. This highlights the
delicate trade-off between constraints and the objective in penalty formulations.
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