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Abstract. The Coherent Ising Machine (CIM) is a non-conventional
architecture that takes inspiration from physical annealing processes to
solve Ising problems heuristically. Its dynamics are naturally continuous
and described by a set of ordinary differential equations that have been
proven to be useful for the optimization of continuous variables non-
convex quadratic optimization problems. The dynamics of such Con-
tinuous Variable CIMs (CV-CIM) encourage optimization via optical
pulses whose amplitudes are determined by the negative gradient of the
objective; however, standard gradient descent is known to be trapped
by local minima and hampered by poor problem conditioning. In this
work, we propose to modify the CV-CIM dynamics using more sophis-
ticated pulse injections based on tried-and-true optimization techniques
such as momentum and Adam. Through numerical experiments, we show
that the momentum and Adam updates can significantly speed up the
CV-CIM’s convergence and improve sample diversity over the original
CV-CIM dynamics. We also find that the Adam-CV-CIM’s performance
is more stable as a function of feedback strength, especially on poorly
conditioned instances, resulting in an algorithm that is more robust, reli-
able, and easily tunable. More broadly, we identify the CIM dynamical
framework as a fertile opportunity for exploring the intersection of clas-
sical optimization and modern analog computing.

Keywords: Ising Model · Momentum · Analog Computing

1 Introduction

Optimization is a powerful and intuitive framework for expressing and reasoning
about the desirability of certain decisions subject to constraints. With diverse
applications ranging from supply chain management, vehicle routing, machine
learning, and chip design, it is difficult to overstate the ubiquity of optimization.
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In many contexts, casting a particular decision as an optimization problem–
deriving mathematical expressions for the costs and constraints–permits the
off-the-shelf application of commercial solvers as a satisfactory, general-purpose
resolution to the problem. However, even if a problem complies with a partic-
ular solver’s specifications, practical constraints, such as memory or time, may
bottleneck the size of problems that can be addressed or the quality of the solu-
tion obtainable. While computational power has increased exponentially in the
past few decades, according to Moore’s law, if it stagnates these bottlenecks will
persist, barring radical breakthroughs in computer engineering.

Quantum computing has emerged as an attractive and high-profile alterna-
tive to von Neumann computers based on its promise to accelerate specific com-
putational tasks. The past few years have seen significant commercial interest
in quantum computing, leading to the rapid development of prototype quantum
computers based on superconducting qubits [21], photonics [36], neutral atoms
[15], and trapped ions [5], encoding the gate-based model that underpins much of
the theoretical work on quantum complexity theory. However, due to the signif-
icant constant overhead induced by error correction, it is unlikely that quantum
computing will result in practical speed-ups for optimization, notably when the
best classical algorithms can be parallelized on specialized hardware, such as
graphics processing units (GPUs) [1]. A competing paradigm to the gate-based
model are quantum computers that can only solve particular forms of problems,
or “primitives”, including quantum annealers (which solve Ising problems) [14],
and Rydberg atom arrays (that encode the maximum independent set) [11].
While these are theoretically expressive primitives due to being NP-complete,
the number of additional variables and connections required to construct a reduc-
tion from other NP-complete problems to one of these forms may significantly
reduce the size of problems addressable on near-term hardware, despite only
being polynomial overheads [22,25]. It is against this backdrop that there has
been a recent surge of interest in non-quantum, yet non-conventional comput-
ing architectures for optimization based on coupled lasers [31], memristors [8],
polaritons [2,18], and optical parametric oscillators [26,27].

From an algorithmic perspective, the development of these architectures has
concurrently ushered in research on hybrid algorithms that explore how non-
conventional and classical computers should complement each other [9]. These
algorithms are typically developed with specific hardware abstractions in mind,
so their practical impact will depend heavily on which technologies prevail
in a highly dynamic field. In this paper, we pose a complementary question
of how classical optimization algorithms can inform the development of non-
conventional architectures. Despite their theoretical limitations, classical opti-
mization techniques have achieved impressive empirical success, even for diffi-
cult, non-convex optimization problems. Rather than discarding the innovations
developed in the context of classical optimization, we contend that these ideas
should be incorporated into future computing architectures. Crucially, much of
the discussion of these technologies has been couched in the language of physics
and optics, making it largely inscrutable for the optimization community and
obscuring the opportunities to incorporate well-known optimization techniques.
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This paper focuses on one such device, the Coherent Ising Machine (CIM),
which takes inspiration from the principles of thermalization to search for the
ground state of Ising problems heuristically. It was first prototyped in 2014
as a network of four optical parametric oscillators (OPOs) coupled by optical
delay lines [26]. Since then, the technology has rapidly developed, with prototype
devices reaching sizes of 100,000 spins [16]. One significant deviation in today’s
architecture versus the original architecture is the inclusion of a measurement-
feedback circuit implemented with a field programmable gate array (FPGA) [27].
Not only has this development enabled scalable all-to-all connections between
the OPOs, it has also enabled the implementation of more sophisticated feed-
back methods, which have primarily been focused on mitigating the “amplitude
heterogeneity” problem observed in early instantiations of the device [24]. This
paper focuses on the CIM because the measurement-feedback circuit allows for
modular modifications to the feedback term without otherwise affecting the oper-
ational principles of the device, making it a fertile opportunity for exploring the
intersection of classical optimization and analog computing.

Contribution: Our contribution hinges on the insight that all existing vari-
ations of the CIM rely on gradient descent to encourage the optimization of
a desired objective. In this paper, we contend that the feedback term should
be modularly swapped with more sophisticated optimization techniques, par-
ticularly the accelerated and adaptive optimizers that are tried and true for
large-scale non-convex optimization, such as neural network training. We con-
duct an extensive numerical evaluation of the proposed modifications to evaluate
the anticipated performance gains realizable in a physical device.

Organization: In Sect. 2, we will first define our notation and terminology.
We will then present a high-level overview of the CIM’s operational principles,
along with relevant developments, and conclude the section with a discussion of
the momentum and Adam optimizers. In Sect. 3, we will present the Gaussian-
state model of the CIM’s dynamics, highlighting opportunities to incorporate
other optimization techniques. We will also discuss the specific application of
the CIM to box-constrained quadratic programs, which we later use for bench-
marking. In Sect. 4, we present numerical experiments evaluating convergence
speed, diversity of solutions, and parameter sensitivity of the modified CIM
against its original dynamics.

2 Background and Related Work

In this section, we will first present our notation and terminology. We will then
provide a high-level overview of the CIM’s operational principles, discussing its
history and recent developments designed to improve optimization performance.
Finally, we will briefly introduce momentum and the Adam optimizer, overview-
ing some of their desirable properties, particularly for non-convex optimization.

2.1 Notation and Terminology

In this paper, we work with vectors and matrices defined over the real numbers
and reserve lowercase letters for vectors and uppercase letters for matrices. We
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will also follow the convention that a vector x ∈ R
n is to be treated as a column

vector, i.e., equivalent to a matrix of dimension n × 1. For a matrix M , we
use Mi,j to denote the entry in the ith row and jth column, Mi,∗ denotes the
entire ith row, and M∗,j denotes the entire jth column. An Ising problem is an
optimization problem of the form: minx∈{−1,1}n f(x) :=

∑
i,j Qi,jxixj +

∑
i cixi,

where Q ∈ R
n×n, c ∈ R

n are real coefficients and xi ∈ {−1, 1} are discrete
variables to be optimized over. We will use the convention that the discrete
variables are ±1, also known as spin variables.

2.2 Coherent Ising Machines

The Coherent Ising Machine (CIM) is an optical network of optical parametric
oscillators (OPOs) that was originally designed to heuristically search for the
solution (“ground state”) of Ising problems. At a high level, the CIM relaxes the
discrete variables to continuous variables and augments the Ising objective, f(x),
with a “double-well potential” of the form φ(x, a) :=

∑
i
1
4x4

i − a
2x2

i . The OPOs,
whose amplitudes represent the variables of the Ising problem, are encouraged to
optimize the Ising objective by evolving approximately in the negative gradient
direction of the augmented objective. At the same time, the parameter a (the
“pump term”) is gradually increased (“annealed”) during the device’s run. This
has the effect of deepening the wells of the potential and encouraging the OPOs
to take on the same magnitude. While this closely resembles the standard penalty
method (i.e., approximating constraints with a penalty term in the objective), it
also has the effect of gradually reshaping the energy landscape from a trivial form
to one that encodes the desired objective. Moreover, the wells of the potential
are at ±√

a, so the mapping from OPO amplitude to binary variables also varies
while the pump term is annealed.

The double-well potential is physically implemented using a pumped laser
and a periodically-poled lithium niobate (PPLN) crystal [26]. Early prototypes
encoded the objective with optical delay lines and only accommodated objectives
with linear gradients (i.e., quadratic functions), allowing the CIM to naturally
encode Ising problems, as its name suggests. Despite the simplicity of their func-
tional form, Ising problems are a rich class of problems encompassing Karp’s
NP-complete problems [25], and NP-hard problems such as job-shop scheduling
[38], vehicle routing [13], and community detection [28], to name a few.

While significant progress has recently been made towards deriving a theory
of the (fully classical) CIM’s performance on Sherington-Kirkpatrick spin glass
problems [41], a complete theory characterizing its performance on generic opti-
mization problems still remains elusive. Currently, the CIM is primarily bench-
marked by simulating a quantitative model of its behavior on different applica-
tions, such as MIMO detection [20] and compressed sensing [12]. Even though
this is a widely accepted approach, no single model of the CIMs dynamics exists.
Instead, different models have been constructed with varying degrees of fidelity
when modeling the quantum-mechanical effects.

In parallel with the theoretical developments, the hardware of the CIM has
matured considerably from the early prototypes [16]. Instead of implementing
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couplings between spins using optical delay lines, couplings are now implemented
using a measurement-feedback circuit designed to allow for scalable all-to-all
connections between OPOs [27]. This circuit consists of a measurement process
(optical homodyne detection) to determine the amplitudes of the OPOs, and a
feedback term based on these measurements computed on a field-programmable
gate array (FPGA). In this work, we propose to leverage the flexibility afforded
to us by the measurement-feedback circuit to modify the feedback computation.

While modifying the feedback term has been explored previously, efforts have
primarily been targeted toward heuristic resolutions to the “amplitude hetero-
geneity” problem. This occurs when the OPO amplitudes are not exactly ±√

a,
breaking the mapping between the CIM and Ising objectives. From an opti-
mization perspective, this can be seen as the infeasibility that may occur when
replacing a constraint with a penalty function. One such modification is the
amplitude heterogeneity correction proposed in [23], which introduced an auxil-
iary error correction variable that exponentially increases/decreases if the spin
amplitudes are greater/less than

√
a. These error variables modulate the relative

weights of the Ising objective and double-well potential and increase the latter
when the spins have different amplitudes. Later work extended this idea to addi-
tionally modulate the pump term, a, to encourage the CIM to continue exploring
the solution space within a single run rather than converging to a single solution
[17]. A fully optical implementation of the error correction mechanism was later
developed in [34], thus overcoming some of the downsides of having an electronic
component in the loop.

The focus on resolving the amplitude-heterogeneity problem has primarily
been motivated by problems whose complexity stems from optimizing over dis-
crete domains. This starkly contrasts the many applied works that artificially
discretize continuous variables to force them into the Ising form [3,10,30,39].
This encoding dramatically increases the number of OPOs mapped to a sin-
gle variable and may result in a significant skew in the coupling coefficients.
Recognizing the expressive power of continuous optimization problems, [19]
recently proposed embracing the naturally continuous nature of the OPOs to
solve box-constrained quadratic programs (BoxQPs), whose complexity stems
from non-convexity rather than discreteness–this modified device is called the
coherent continuous variable machine (CCVM). The CCVM does not funda-
mentally change the operational principles of the CIM but instead interprets the
OPO amplitudes as their native continuous values rather than projecting them
to binary values. While this primarily impacts how the resulting solution is inter-
preted, it can materially affect the dynamics of the device, as the feedback term
is also computed with the continuous values rather than their binary projection.
This modification was further supported by [4], who showed that BoxQPs are
an algorithmic primitive that enables copositive optimization, a broad class of
optimization problems that includes Ising problems.
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2.3 Accelerated and Adaptive Optimizers

Given an optimization problem, minx f(x), gradient descent is one of the most
primitive and fundamental algorithms one could use to solve it. It formalizes
the intuition that the optimization variable should be iteratively updated in the
direction of the greatest decrease in the objective. The variables are updated
according to x(t+1) = x(t) − γt∇f(x(t)), where γt > 0 are iteration-specific
step-sizes. Stochastic gradient methods replace ∇f(x(t)) with a cheap, unbiased
estimate, and are among the most popular methods for large-scale optimization
due to their broad applicability, simplicity, and efficiency.

One scenario known to cause slow convergence for gradient descent is when
the objective function is poorly-conditioned. Intuitively, the conditioning of an
optimization problem refers to the disparity in sensitivity of the objective func-
tion along different directions. A well-conditioned problem is one where the
objective function has roughly the same sensitivity in all directions. In contrast,
in a poorly conditioned problem, the objective is far more sensitive along some
directions than others. In the latter case, gradient descent exhibits oscillatory
behavior along the directions where the objective is most sensitive while making
little progress along directions of low sensitivity.

Momentum methods, named for the analogy to mechanical systems, have
been shown to improve convergence for poorly conditioned problems by updating
the variable with an exponentially decreasing weighted sum of all past gradients.
Mathematically, the updates are of the form

g(t+1) = θg(t) + (1 − θ)∇f(x(t)), (1)

x(t+1) = x(t) − γg(t+1), (2)

where θ ∈ [0, 1) is a damping parameter. In poorly conditioned problems, this
has the effect of smoothing out oscillations in the high sensitivity direction while
adding up contributions along the low sensitivity direction, thereby improving
convergence speed [33]. It is also effective for helping iterates escape saddle-points
and local minima, which can trap ordinary gradient descent methods.

In principle, if poor conditioning is a result of inconsistent scaling between
variables, it could be combated by using different step sizes per variable. How-
ever, this introduces additional challenges, as the step sizes must be individually
chosen for each variable. Instead, the Adam optimizer uses estimates of the
first and second moments of the gradient to adapt the step size for each vari-
able automatically. The complete algorithm is presented in Algorithm 1. Adam
is well-known for its empirical success on large-scale, non-convex optimization
problems, such as neural network training, for which it is often chosen as the
default optimizer.
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Algorithm 1: Adam optimizer updates
Input: f(·) function to be optimized; Parameters β1, β2 ∈ [0, 1);
Initial variable vector x(0)

Output: x(t) that approximately minimizes f(x)
t ← 0, m(0) ← 0, v(0) ← 0 ;

while x(t) has not converged do

g(t) ← ∇xf(x(t));

m(t) ← β1m
(t−1) + (1 − β1)g

(t);

v(t) ← β2v
(t−1) + (1 − β2)(g

(t))2;

m̂(t) ← m(t)

1−βt
1
;

v̂(t) ← v(t)

1−βt
2
;

x(t) ← x(t−1) − γ m̂(t)√
v̂(t)+ε

;

t ← t + 1
end

return x(t);

3 Dynamics of the CIM

In this section, we will present the Gaussian-state model of the CIM’s dynamics,
which will be the basis of our numerical experiments. While this is not a fully
quantum treatment of the device, as it only considers up to second-order quan-
tum correlations, it has been found to be consistent with experimental CIMs and
models important phenomena such as squeezing/anti-squeezing, measurement
uncertainty, and backaction, while maintaining the computational tractability
necessary to simulate large-scale systems [29]. Under this model, it is assumed
that each OPO pulse amplitude is a Gaussian distribution with mean μi and
variance σi that evolves according to the following dynamics [17]:

μ(t + Δt) = μ(t) +
[

(−(1 + jt) + pt − g2μ(t)2)μ(t) − λ∂f(μ̃(t))
]

Δt

+
[√

jt(σ(t) − 1/2)
]
Z(t)

√
Δt,

(3a)

σ(t + Δt) = σ(t) +
[

2(−(1 + jt) + pt − 3g2μ(t)2)σ(t) − 2jt(σ(t) − 1/2)2

+ ((1 + jt) + 2g2μ(t)2)
]

Δt,

(3b)

Zi(t) ∼ N (0, 1), μ̃(t) = μ(t) +
Z(t)√
4jtΔt

. (3c)

The remaining quantities in the above equations represent the normalized con-
tinuous measurement strength, jt, a normalized non-linearity coefficient, g, the
pump strength, pt, and feedback magnitude, λ (which is analogous to the step-
size in optimization algorithms). While these quantities are governed by the
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physical parameters of the device, in this work, we treat them abstractly as
hyperparameters that can be optimized to improve the performance of the CIM.
Following the treatment in [19], the hyperparameters jt and pt are indexed by t
to emphasize that they are modulated over the run of the device.

In Eq. (3a), the term (−(1 + jt) + pt − g2μ(t)2)μ(t) is the gradient of a
double-well potential with minima at ±

√
pt−(1+jt)/g. At each iteration (“round

trip”), the mean-field amplitude is measured using optical homodyne detection.
The measured amplitude, presented in Eq. (3c), may differ from its true value
by a finite uncertainty depending on the measurement strength. The measure-
ment also induces a shift in the mean-field amplitude, represented by the term√

jt(σ(t) − 1/2)Z(t)
√

Δt, through backaction. The feedback term, −λ∂f(μ̃(t)),
is computed based on the measured amplitudes. Crucially, for measurement-
feedback variants of the CIM, this term is computed on a field programmable
gate array (FPGA) rather than being implemented in optics and thus can be
modified modularly without otherwise altering the hardware.

Abstractly, this is represented by replacing the term ∂f(μ̃(t)) in Eq. (3a)
with an arbitrary update Φ({μ̃(t)}t). Because updates that are too complex
or compute-intensive may undermine the resource bottlenecks motivating the
CIM in the first place, we aim to design Φ to enhance the optimization perfor-
mance of the system defined by Eq. (3) while maintaining comparable complexity
to the feedback computations in the amplitude-heterogeneity-correction (AHC)
and chaotic-amplitude-control (CAC) variants of the CIM. In both variants, the
complexity of the update is dominated by the complexity of computing the gra-
dients, O(n3). At the same time, additional computations induce an additional
overhead of O(n), where n is the dimension of the decision variable x. Specifically,
the momentum and Adam updates from Eq. (1) and Algorithm 1, respectively,
satisfy these desiderata. In the remainder of the paper, we will refer to the CIM
with momentum or Adam updates as momentum-CV-CIM and Adam-CV-CIM,
respectively. The original CIM variant will be referred to as GD-CV-CIM to
emphasize that the updates are based on gradient descent.

3.1 Application to Box-Constrained Quadratic Programs

In this work, we will benchmark the proposed modifications of the continuous
CIM on box-constrained quadratic programs (BoxQP). These are optimization
problems of the form:

minimize
x∈Rn

x�Qx + c�x

subject to 0 ≤ x ≤ 1,
(BoxQP)

where there are no restrictions on Q ∈ R
n×n or c ∈ R

n. Equation (BoxQP)
has been shown to be NP-hard if Q is negative semi-definite or indefinite [32].
Furthermore, Eq. (BoxQP) is an expressive primitive that enables solving a
broader class of mixed-binary quadratic programs, including Ising problems [4].
In this work, we seek to evaluate whether momentum or Adam updates improve
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the convergence speed of the CIM dynamics, reducing the time needed to obtain
each sample from the device. Evaluating the CIM based on the continuous values
of the OPO amplitudes will allow us to detect mechanistic improvements to
convergence without the confounding and discontinuous process of projecting
OPO amplitudes to binary variables based on their sign.

While the double-well potential induces a bias for the amplitudes ±√
a (in Eq.

(3a), a = pT −(1+jT )/g2) we will map the entire domain of the OPOs, [−√
a,

√
a]n,

to the domain of Eq. (BoxQP). This is given by the transformation,

xi = max
(

min
(

1
2

(
μi√
a

+ 1
)

, 1
)

, 0
)

. (4)

Intuitively, this re-scales and shifts the range [−√
a,

√
a] to [0, 1] and projects any

infeasible variables to the feasible domain. We note that the double-well poten-
tial only softly confines the OPOs to this domain (akin to penalty functions),
so the OPOs may exceed the feasible region. It also introduces an extraneous
quadratic term due to its inception as an Ising solver rather than a continuous
optimization solver. While we expect this to degrade the performance of the
resulting solver, our objective is to assess the proposed modifications on already
realized instantiations of the CIM and thus should be reflected by the model.

4 Experiments

In Sect. 3, we presented a model of the CIM’s dynamics, highlighting an opportu-
nity to incorporate more sophisticated optimization techniques. In this section,
we aim to assess whether such substitutions have any performance benefit for the
CIM. The performance of quantum/quantum-inspired devices is often evaluated
on the time-to-target metric [35]. The time-to-target metric with s confidence
represents the number of repetitions to sample a state that achieves a partic-
ular “target” with probability s, multiplied by the time for a single run of the
algorithm, Tsingle, i.e.,

TTTs = Tsingle
log(1 − s)

log(1 − p̂succ)
. (5)

In the context of continuous optimization, the targets typically correspond to
achieving a particular relative optimality gap, i.e., gapf (x) := f(x)−f(x∗)

|f(x∗)| ≤ ε.
The time-to-target metric incorporates two figures of merit: the time to con-

vergence of a single run of the algorithm and the distribution to which the sam-
ples from the algorithm converge. If a particular method improves this metric,
it can be due to any combination of these two mechanisms. First, the samples
can converge to their final state more quickly, resulting in a decrease in the
multiplier Tsingle. Secondly, the method may change the distribution that the
samples converge to, effectively changing the probability of success p̂succ. Our
numerical experiments are intended to evaluate the performance of the modified
CIM against the original variant along these two metrics. In addition, we will



118 R. A. Brown et al.

evaluate the robustness of the different variants as a function of the feedback
strength. This is one component of the effort required for a practitioner to suc-
cessfully apply the CIM and its variants on an unseen problem instance; this is
an important, yet often neglected, factor in the practical applicability of a solver.

In this section, we report results on the standard benchmark instances from
[6,7,37], available at https://github.com/sburer/BoxQP instances. All code
required to replicate our experiments is available at https://github.com/SECQU
OIA/continuous-CIM.

4.1 Time to Optimality Gaps

The first experiment evaluates the relative convergence speed of the modified
CIMs versus the original dynamics. For each problem instance, we evaluate the
relative optimality gaps for the Xth percentile, with X = [5, 10, 25, 50], through-
out the CIM’s evolution and determine the best gap achieved by the Xth per-
centile of both variants (hereafter referred to as the target gap). We then evaluate
the roundtrip where each variant achieves the target gap for the first time. We
record the ratio of the faster variant’s roundtrip value to that of the slower vari-
ant, along with which one was faster. Figure 1 plots how this metric is calculated
for a single problem instance. Intuitively, the roundtrip fraction represents the
relative improvement in Tsingle.

We note that the roundtrip fraction metric does not capture whether a sam-
ple achieves its minimum optimality gap only transiently or if the dynamics
stabilize around that value. Consequently, this metric makes the most sense in
contexts where the optimality gaps are close to decreasing monotonically. In
this paper, we leave the OPO bounds to their “natural” values of [−√

a,
√

a],
with a = pT −(1+jT )

g2 .1 Setting the bounds to be significantly smaller than those
encouraged by the double-well potential means that the OPO amplitudes are
primarily evolving outside the feasible domain. This induces fast transients in
optimality gaps when a particular variable can be updated from one side of the
feasible domain to another within a single iteration. Because the roundtrip frac-
tion metric is designed to measure differences in mechanistic convergence to a
solution, the bounds are left to the natural domain of the OPOs, instead of the
aggressive clipping proposed in [19].

Figure 2 plots the histogram of roundtrip fractions, with the top row compar-
ing the Adam-CV-CIM to the GD-CV-CIM and the bottom row comparing the
momentum-CV-CIM to the GD-CV-CIM. We find that both the momentum-CV-
CIM and Adam-CV-CIM consistently reach the target gap before the GD-CV-
CIM does. However, for Adam-CV-CIM, the roundtrip fractions are normally
distributed around 0.5 (meaning the Adam-CV-CIM is ∼2 times faster), while for
the momentum-CV-CIM, the roundtrip fractions are more uniformly distributed
across the entire range of values with a slight peak in the 0–0.1 bucket (≥10 times
faster than the GD-CV-CIM). The difference between the momentum-CV-CIM

1 The remaining parameters are given by: T = 15000, dt = 0.0025, g = 0.01, λ =
550, pt = 2.5 t

T
, jt = 25 exp

(−3 t
T

)
.

https://github.com/sburer/BoxQP_instances
https://github.com/SECQUOIA/continuous-CIM
https://github.com/SECQUOIA/continuous-CIM
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Fig. 1. This figure shows how the roundtrip ratio is computed for a single problem
instance. We determine the best relative optimality gap achieved by the 5th percentile
of both CIM variants (8e−3 at the end of GD-CV-CIM’s evolution) and compare the
roundtrip numbers where the 5th percentile first reaches this gap (∼9500 for momen-
tum, 30000 for gradient descent). The roundtrip ratio is approximately 0.32, and we
indicate which variant achieves the target gap faster.

and ordinary CIM is most pronounced for the top percentiles of samples, while
it is less pronounced for the 50th percentile (i.e., median of samples). In con-
trast, the relative performance of the Adam-CV-CIM is more consistent across
percentiles.

4.2 Sample Distribution

Secondly, we sought to understand whether there was a difference in the distri-
butions found by the modified CIMs. Figure 3 depicts violin plots of the relative
optimality gaps for three representative instances. In all instances, we find that
the Adam-CV-CIM and momentum-CV-CIM achieve a greater diversity of sam-
ples with multi-modal distributions. In contrast, for the spar040-040-3 and
spar080-050-3 instances, all samples from the GD-CV-CIM achieve the same
optimality gap; they concentrate on the global optimum for spar040-040-3, but
only achieve a relative optimality gap of 0.003275 for spar080-050-3. For the
instance spar125-025-1, all variants result in multi-modal distributions, which
share peaks in optimality gaps. The momentum-CV-CIM has three peaks in its
distribution with relative optimality gaps of 0, 0.007, and 0.018. The GD-CV-
CIM shares two of these peaks at 0 and 0.018, while the momentum-CV-CIM
shares the peaks at 0 and 0.007.
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Fig. 2. This figure plots the histogram of roundtrip fractions, computed according
to the process illustrated in Fig. 1. The top row compares the Adam-CV-CIM to the
GD-CV-CIM, while the bottom row compares the momentum-CV-CIM to the GD-
CV-CIM. The data points are categorized depending on which CIM feedback variant
converged faster.

Fig. 3. This figure plots the relative optimality gaps for three representative instances.
In all instances, the Adam-CV-CIM and momentum-CV-CIM achieve a greater diver-
sity of samples with multi-modal distributions. For spar040-040-3, all samples from
GD-CV-CIM concentrate on the global optimum, while for spar080-050-3, all sam-
ples concentrate on a suboptimal solution. For spar125-025-1, all variants result in
multi-modal distributions with some shared modes between solvers.

We aggregate these metrics over all problem instances by computing the stan-
dard deviation in the relative optimality gap achieved by each sample. Figure 4
plots the histogram of optimality gap standard deviations for all CIM variants.
We find that the momentum-CV-CIM has the highest standard deviations, with
values roughly double that of the Adam-CV-CIM. In contrast, consistent with
the examples depicted in Fig. 3, the GD-CV-CIM has very low variation in opti-
mality gaps, with most instances having no variation. We note that the relation-
ship between the degree of variation and solver performance is not monotonic.
In the context of Eq. (5), if all samples converge to the same value, p̂succ will
be either 0 or 1, depending on the desired target. This means that the solver
will either achieve the target with a single sample or not at all. While this may
improve the time-to-target for problems that are particularly amenable to the
solver, it will result in a complete failure for problems that are not. This is con-
trary to the perspective of the CIM as a sampler, from which one may expect a
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diverse sample of high-quality, albeit sub-optimal, solutions. Instead, the solver
should strike a delicate balance between achieving a good diversity of samples
while still concentrating on those with good objective value.

Fig. 4. This figure plots the histogram of optimality gap standard deviations for all
CIM variants. The momentum-CV-CIM has the highest standard deviations, with val-
ues roughly double that of the Adam-CV-CIM. The GD-CV-CIM has very low variation
in optimality gaps, with most instances having no variation.

Fig. 5. This plot shows the likelihood of samples having a relative optimality gap ≤
0.1%. Adam-CV-CIM and momentum-CV-CIM consistently achieved this, while GD-
CV-CIM often met the target, except in 17 instances out of 99.

Figure 5 plots the probability that each variant finds samples with a relative
optimality gap of at most 0.1%. On the standard benchmarks, using default
parameters, both the Adam-CV-CIM and momentum-CV-CIM had non-zero
probabilities of finding a solution within a 0.1% gap on all instances. In con-
trast, the GD-CV-CIM frequently had all samples converging within a 0.1%
gap, however in 17 (out of 99 total) instances, the GD-CV-CIM failed to find
any solutions within a 0.1% gap.

4.3 Sensitivity to Feedback Strength

In Sects. 4.1 and 4.2, we found that all variants of the CIM had reasonable
performance on the standard benchmarks, even using default parameters. How-
ever, one commonly neglected factor is the degree to which solver performance
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Fig. 6. Each plot in the grid illustrates the convergence in relative optimality gaps
over roundtrips for varying combinations of κ and feedback strengths, λ. We plot the
kernel-density estimate of the best optimality gaps on the right axis of each subplot to
illustrate their distributions. Notably, the GD and momentum CV-CIMs show limited
consistency in successful feedback strengths with respect to problem size, while the
Adam-CV-CIM exhibits more consistent dynamics across instances of varying κ.

depends on its hyperparameters. Indeed, performance metrics are often reported
based on hyperparameters that have been meticulously hand-tuned, typically in
an opaque process that obscures the effort required for a practitioner to apply
the solver to a new problem. In this section, we introduce a new benchmark
set designed to test the CIM variants on problems with poor conditioning. At
a high level, these instances are generated to have a non-convex landscape and
are additionally parameterized by a constant κ ∈ R++, that dictates the skew
when re-scaling the objective along different axes.2

In this section, we evaluate the sensitivity of each of the variants to the
feedback strength, λ in Eq. (3a), analogous to step-size in classical optimiza-
tion. Figure 6 plots the convergence in relative optimality gaps for representative

2 Specifically, instances are constructed as M = D(κ)UΣ(n)U�D(κ), where U ∈
R

n×n is a random orthogonal matrix, Σ(n) ∈ R
n×n is a diagonal matrix with

Σ(n)ii = 1 if i ≤ n
2

and −1 otherwise (to induce a non-convex landscape), and
D(κ) = diag(1, 1 + κ−1

n
, . . . , κ).
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instances of dimension 20 with κ ∈ [1, 10, 1000, 1000] across feedback strengths
of λ ∈ [0.04, 326, 701, 1076]. We plot the kernel-density estimate of the best gap
per sample on the right axes. We note that absence of samples from an indi-
vidual plot indicates that the sample diverged, and the best gap is computed
until the point of divergence. We find that there is limited consistency in suc-
cessful feedback strengths as a function of problem size for the GD-CV-CIM
and momentum-CV-CIM; the step sizes required for converge on instances with
small κ lead to divergent behavior when κ is large. We expect that, much like
classical optimization, problem conditioning is a primary factor dictating stable
feedback strengths. While setting the feedback strength to be too small hampers
the convergence of the Adam-CV-CIM, its dynamics tend to be consistent as a
function of feedback strength, even across instances of varying κ. This is likely
because Adam regularizes the momentum updates using the second-moment
estimates, and is scale-invariant as a result. Moreover, the learning rate auto-
matically adapted per variable, allowing Adam to explicitly combat the poor
problem scaling when κ is large.

Surprisingly, momentum is more unstable than gradient descent, while it is
typically known for improving stability for poorly conditioned instances. This is
likely because the CIM relies solely on the double-well potential to enforce the
constraints, and they are not otherwise incorporated in the feedback calculation.
As a consequence, the momentum update continues to add up the contribution
from the gradients, even if they lead to constraints violation. This suggest that
the feedback term should also take constraints into account, similarly to the
approach taken by the AHC-CIM.

The purpose of this experiment is not to suggest that there are no values of λ
or re-parameterizations of the instances where the performance of the GD-CV-
CIM and momentum-CV-CIM are comparable to that of the Adam-CV-CIM.
In fact, a diagonal pre-conditioner that undoes the skew-inducing step in the
instance construction would suffice. However, parameter-tuning can be tedious
process that may result in disparate results depending on the expertise and per-
sistence of the user, particularly when differences in problem characteristics pre-
vent extrapolating good parameter settings from one set of instances to another.
While it is unlikely to make these solvers fully parameter-free, a solver that is
robust, reliable, and user-friendly will be accommodating of some user-error in
the parameter settings. These qualities are part of the reason for Adam’s wide
adoption in deep-learning, and we believe that adoption of non-conventional
optimization architectures will follow similar desiderata.

5 Discussion

In this work, we introduced the CIM and the Gaussian-state model of its dynam-
ics, highlighting clear opportunities to incorporate more sophisticated optimiza-
tion techniques in the feedback term. We benchmarked variants with the Adam
and momentum updates, replacing the standard feedback term. We found that
both the Adam-CV-CIM and momentum-CV-CIM greatly improved convergence
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speed over the GD-CV-CIM. While they did not consistently improve the proba-
bility of reaching specific optimality gap targets within our benchmarks, particu-
larly when all samples from the GD-CV-CIM converged to the global optimum,
they generally resulted in a greater diversity of samples. We also found that
the performance of the Adam-CV-CIM was significantly less sensitive to the
feedback strength parameter (analogous to step size in classical optimization),
resulting in one fewer parameter that needs to be meticulously tuned.

Many of the same benefits that Adam and momentum confer to classical
optimization also translate to the CIM. While this is unsurprising when the
exposition of the CIM is couched in the language of optimization, it typically is
not, obscuring the connections to classical optimization theory. Despite the limi-
tations of classical optimization algorithms running on von Neumann computers,
they have undoubtedly achieved impressive empirical success, including on dif-
ficult, non-convex optimization problems. Even if non-conventional computing
architectures are intended to address the limitations of von Neumann computers,
we contend that the lessons learned from classical optimization theory should be
re-purposed where appropriate. For example, some challenges identified by the
numerical experiments include: (1) better incorporation of the constraints in the
feedback computation, which could potentially be addressed with a Lagrangian-
inspired update, and (2) standardization of problem inputs to ease parameter
tuning, which could take inspiration from preconditioning.

This raises the question of how one should trade off the complexity of
Φ({μ̃(t)}t) and the performance of the solver as a whole. One can envision
increasingly complicated feedback terms, Φ({μ̃(t)}t), that start to resemble
higher-order optimization algorithms at the expense of more computational
effort. We expect a Pareto frontier of feedback terms with different trade-offs
between time/energy-per-iteration and the number of iterations required to reach
a desired optimization target. The optimal feedback term for a particular sce-
nario will likely depend on resource constraints, such as wall clock time or energy
usage.

In this work, we consider a discrete-time perspective of the dynamical system
for ease of simulation; however, the continuous-time dynamical systems perspec-
tive has recently had significant impacts on optimization theory [40]. Exploring
the continuous-time models of optimization algorithms will likely result in tighter
analogs with the continuous-time models often used to describe non-conventional
architecture, which we leave to future work.
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