L)

Check for

updates

Optimization Applications as Quantum Performance
Benchmarks

THOMAS LUBINSKI", Quantum Circuits Inc., New Haven, United States

CARLETON COFFRIN, Advanced Network Science Initiative, Los Alamos National Laboratory, Los
Alamos, United States

CATHERINE MCGEOCH, D-Wave Systems Inc, Burnaby, Canada

PRATIK SATHE, Department of Physics and Astronomy, University of California Los Angeles, Los An-
geles, United States, Theoretical Division (T-4), Los Alamos National Laboratory, Los Alamos, United States,
and Research Institute of Advanced Computer Science, Universities Space Research Association, Mountain
View, USA

JOSHUA APANAVICIUS, Applied Physics Laboratory, Johns Hopkins University, Baltimore, United
States

*QED-C Technical Advisory Committee on Standards and Performance Benchmarks.

"This work was sponsored by the Quantum Economic Development Consortium (QED-C) and was performed under
the auspices of the QED-C Technical Advisory Committee on Standards and Performance Benchmarks. The authors
acknowledge many committee members for their input to and feedback on the project and this manuscript.

The authors acknowledge the use of IBM Quantum services for this work. The views expressed are those of the authors
and do not reflect the official policy or position of IBM or the IBM Quantum team. IBM Quantum, https://quantum-
computing.ibm.com/. We acknowledge IonQ for the contribution of access to hardware. The views expressed are those of
the authors and do not reflect the official policy or position of IonQ. We acknowledge D-Wave Systems for contributing
access to both hardware and software tools. The views expressed are those of the authors and do not reflect the official
policy or position of D-Wave Systems. Contributions to this work from Los Alamos National Laboratory were conducted
under the auspices of the National Nuclear Security Administration of the U.S. Department of Energy under Contract
No. 89233218CNA000001. This research used resources provided by the Los Alamos National Laboratory Institutional
Computing Program and was supported by the Laboratory Directed Research and Development program under Project No.
20210114ER. D.B. acknowledges NASA Academic Mission Services (Contract No. NNA16BD14C, funded under Grant No.
SAA2-403506). P.S. acknowledges support from the NASA/USRA Feynman Quantum Academy Internship program. Both
D.B. and P.S. are supported by NSF Expeditions in Computing program CCF No. 1918549. This work used computational
and storage services associated with the Hoffman2 Shared Cluster provided by the UCLA Institute of Digital Research and
Education’s Research Technology Group.

Authors’ Contact Information: Thomas Lubinski, Quantum Circuits Inc., NewHaven, Connecticut, United States; e-mail:
tlubinski@quantumcircuits.com; Carleton Coffrin, Advanced Network Science Initiative, Los Alamos National Labora-
tory, Los Alamos, New Mexico, United States; e-mail: cjc@lanl.gov; Catherine McGeoch, D-Wave Systems Inc, Burnaby,
Canada; e-mail: cmcgeoch@dwavesys.com; Pratik Sathe, Department of Physics and Astronomy, University of Califor-
nia Los Angeles, Los Angeles, California, United States, Theoretical Division (T-4), Los Alamos National Laboratory, Los
Alamos, New Mexico, United States, and Research Institute of Advanced Computer Science, Universities Space Research
Association, Mountain View, California, USA; e-mail: sathepratik@gmail.com; Joshua Apanavicius, Applied Physics Lab-
oratory, Johns Hopkins University, Baltimore, Maryland, United States; e-mail: apanavicius.josh146@gmail.com; David
Bernal Neira, Research Institute of Advanced Computer Science, Universities Space Research Association, Mountain View,
California, United States, Quantum Artificial Intelligence Laboratory, NASA Ames Research Center, Mountain View, Cali-
fornia, United States, and Purdue University System, West Lafayette, Indiana, United States; e-mail: dbernalneira@usra.edu.

@ BY
This work is 1licensed under a Creative Commons Attribution International 4.0 License.

© 2024 Copyright held by the owner/author(s).
ACM 2643-6817/2024/08-ART18
https://doi.org/10.1145/3678184

ACM Trans. Quantum Comput., Vol. 5, No. 3, Article 18. Publication date: August 2024.

HTTPS://ORCID.ORG/0000-0002-3749-3430
HTTPS://ORCID.ORG/0000-0003-3238-1699
HTTPS://ORCID.ORG/0000-0002-4023-0551
HTTPS://ORCID.ORG/0000-0002-9978-8955
HTTPS://ORCID.ORG/0000-0002-6970-6074
https://quantum-computing.ibm.com/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1145/3678184
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3678184&domain=pdf&date_stamp=2024-08-14

DAVID BERNAL NEIRA, Research Institute of Advanced Computer Science, Universities Space Research
Association, Mountain View, United States, Quantum Artificial Intelligence Laboratory, NASA Ames Re-

search Center, Mountain View, United States, and Purdue University System, West Lafayette, United States
QUANTUM ECONOMIC DEVELOPMENT CONSORTIUM (QED-C) COLLABORATION

Combinatorial optimization is anticipated to be one of the primary use cases for quantum computation in the
coming years. The Quantum Approximate Optimization Algorithm and Quantum Annealing can potentially
demonstrate significant run-time performance benefits over current state-of-the-art solutions. Inspired by ex-
isting methods to characterize classical optimization algorithms, we analyze the solution quality obtained by
solving Max-cut problems using gate-model quantum devices and a quantum annealing device. This is used
to guide the development of an advanced benchmarking framework for quantum computers designed to
evaluate the trade-off between run-time execution performance and the solution quality for iterative hybrid
quantum-classical applications. The framework generates performance profiles through compelling visual-
izations that show performance progression as a function of time for various problem sizes and illustrates
algorithm limitations uncovered by the benchmarking approach. As an illustration, we explore the factors
that influence quantum computing system throughput, using results obtained through execution on various
quantum simulators and quantum hardware systems.

CCS Concepts: « Computing methodologies — Modeling and simulation; Simulation types and tech-
niques; « Information systems; « Applied computing — Physical sciences and engineering; Opera-
tions research;

Additional Key Words and Phrases: Quantum Computing, Benchmarks, Benchmarking, Algorithms, Applica-
tion Benchmarks, QAOA, Quantum Approximate Optimization Algorithm, Max-cut

ACM Reference Format:

Thomas Lubinski, Carleton Coffrin, Catherine McGeoch, Pratik Sathe, Joshua Apanavicius, David Bernal
Neira, and Quantum Economic Development Consortium (QED-C) collaboration'. 2024. Optimization Appli-
cations as Quantum Performance Benchmarks. ACM Trans. Quantum Comput. 5, 3, Article 18 (August 2024),
44 pages. https://doi.org/10.1145/3678184

1 Introduction

In many application domains, it is of utmost importance to efficiently find near-optimal solutions
to problems that involve many variables that affect the cost of some operation or function. For
example, in a large power grid, rapidly determining the best allocation of power distribution could
prevent a major blackout. These are known as combinatorial optimization problems and are often
cited as a potential use case for quantum computing [1-3].

Classical computer algorithms for addressing such problems are substantially advanced and
are implemented across industry, government, and academia. They perform critical functions in
optimizing resource utilization and minimizing cost. Combinatorial optimization applications are
often executed under tight resource constraints (e.g., time, memory, energy, or money), and there
is particular emphasis on quantifying the quality of results that could be obtained within a limited
budget. Standard techniques for measuring and comparing the performance of alternative solution
methods have matured and are in widespread use [1]. An illustrative example of a performance
profile is shown in Figure 1.

Quantum computing introduces new techniques for finding solutions to such combinatorial
challenges, such as Quantum Annealing (QA) [4, 5] and the Quantum Approximate Opti-
mization Algorithm (QAOA) [6] that may demonstrate some benefit over classical approaches.
Theory and classical simulations indicate that, for some problems, QAOA has the potential to

ACM Trans. Quantum Comput., Vol. 5, No. 3, Article 18. Publication date: August 2024.

HTTPS://ORCID.ORG/0000-0002-8308-5016
https://doi.org/10.1145/3678184

Optimization Applications as Quantum Performance Benchmarks 18:3

Optimization Performance Profiles

30

Problem Size Small
Problem Size Medium
Problem Size Large

N
S

timento-target

Optimality Gap (%)

Igap-at—time
|
|

0 100 200 300 400
Time (seconds)

Fig. 1. lllustration of a performance profile for benchmarking optimization methods. Performance Profile
plots, like the one shown here, are widely used by the Operations Research community to understand,
communicate, and compare the performance of optimization methods. The quality of the solution, as
the relative difference from optimal (optimality gap), can evolve over time during the execution of an
optimization algorithm. This permits the user to gauge the time required to obtain a solution of a desired
quality (time-to-target) or the solution quality achieved after a specified amount of time (gap-at-time).
The gap-at-time metric is the de facto standard used in Operations Research, reflecting use cases for most
industrial optimization applications. Performance profiles tend to change with problem size. It is common
for problems with a small number of decision variables to converge to an optimal solution reasonably
quickly. In contrast, with larger problems, achieving solutions above a quality threshold can be difficult,
which is expected due to the NP-HARD nature of challenging optimization tasks.

outperform classical algorithms [7, 8], and some empirical tests of QA systems have demonstrated
superior performance over classical alternatives in limited scenarios [3, 9-11].

Numerous efforts have emerged to characterize the performance of quantum computers for
applications in optimization (see Section 2). However, we find that for such benchmarks to be
accessible to users outside the quantum research community, they must both incorporate emerging
methods for quantum computing benchmarking and present results meaningfully to experts in
domains such as classical optimization and Operations Research (OR).

In this article, we demonstrate how a properly constructed benchmark program that monitors
and characterizes the execution of a combinatorial optimization application on a quantum comput-
ing system can provide valuable and critical insights into options for improving its performance
and overall throughput. Additionally, analysis and presentation methodology can be structured
in ways familiar to quantum computing specialists but are informed by how Operations Research
views the quality of results from a solver in addressing optimization problems. These enhanced
analysis and visualization techniques can provide useful information about the throughput a
quantum computing solution can offer and the factors that can be adjusted to improve perfor-
mance on these systems. While component and simple application-level benchmarks provide
useful information about general performance characteristics, the optimization application
supplements this with a detailed understanding of a quantum optimization application’s total cost
of ownership. While these techniques have long been used in Operations Research, their effective
application to quantum computing is still in the early stages.

Concretely, we introduce a methodology and versatile framework for characterizing the per-
formance of combinatorial optimization solvers executed on quantum computing systems based
on different underlying technologies. We demonstrate this framework’s features and highlight its
benefits using the QAOA algorithm for execution on gate model systems. We also demonstrate its
adaptability to other types of solvers by using QA on annealing hardware. In future work, we plan

ACM Trans. Quantum Comput., Vol. 5, No. 3, Article 18. Publication date: August 2024.

18:4 T. Lubinski et al.

Benchmark Results - MaxCut (2) - Qiskit Benchmark Results - MaxCut (2) - Ocean
Device=qasm_simulator Jan 06, 2023 08:00:46 UTC Device=advantage_systemd.1 Jan 06, 2025 67 15120 uTC Benchmark Results - MaxCut (2) - Qiskit
shots=1000, rounds=2, degree=3, restarts=1, fixed_angles=False, hots=1000, degree=3, restarts=1 Device=gasm_simulator Jan 06, 2023 08:00:55 UTC
Objective Function=Approximation Ratio e e e o shots=1000, rounds=, degree=5, restarts=1, fixed angles=False,
Objective Function=Approximation Ratio

18
60 —e— Approx. Ratio -®- Best Measurement Ratio,

-#- CVaR Ratio @ Quartiles

Problem Size (# of Variables)

Problem Size (# of Variables)

|u|||uuuﬂu

S PP NP VP00 B0 o o5 o S PPN NP V0 6 N5 o o
SV ORY VALY VA Ve Vel SV ORY IWAIR PR BN R 0 T
Cumulative Elapsed Quantum Execution Time (s) Cumulative Elapsed Quantum Execution Time (s) Problem Size (# of Variables)

(@ (b) (©

Fig. 2. Characterizing performance of quantum computing solutions. These new performance profiles de-
pict the trade-off between result quality and execution time for two quantum computing solutions to the
unweighted Max-cut problem: (a) the Quantum Approximate Optimization Algorithm and (b) Quantum An-
nealing. Each row shows a different problem size. The X-axis displays the cumulative execution time, and the
rectangle color measures the solution quality defined by the approximation ratio (= 1 — opt_gap/100). For
QAOA, successive rectangles depict its iterative execution, tracking the search for appropriate parameters to
converge to an optimal solution. For QA, each stacked rectangle represents a distinct execution at increasing
anneal times. Shown in panel (c) are several measures of algorithm success, variants of the approximation
ratio, plotted over the distribution of final measurements at each problem size.

14 16

to extend this to include other technologies, such as cold atoms. We demonstrate the capabilities of
our framework using the widely studied the Max-cut [12, 13] problem, in which the goal is to find
the maximum cut size of an undirected graph. The Max-cut problem offers a simple early stage
target for evaluating the effectiveness of quantum computing solutions. These solutions could also
scale to larger applications and incorporate constraints and other problem features that escalate
the challenge.

The new optimization application benchmark is provided as an enhancement to the existing
open-source QED-C Application-oriented Benchmark suite [14, 15]. This is a diverse collection of
algorithmic benchmarks for evaluating the performance of (gate-model) quantum computers on
problems not currently related to optimization, with support for execution on multiple systems
and for collecting, analyzing, and uniformly presenting performance metrics. Basing our work on
this existing framework enabled us to readily extend it with new functionality and make it easy
to use and accessible to a broad audience.

The new benchmark exercises multiple components of the integrated hybrid quantum-classical
computer systems on which quantum optimization applications run and mimics their real-world
use. Combining existing metrics visualization tools with new techniques specific to optimization
problems enables the deep exploration of algorithm performance across target systems. To illus-
trate these analytics features, we present in Figure 2 several visualizations generated by this new
benchmark. While many prior benchmarking studies use Max-cut as an example of an optimiza-
tion application, our approach provides a unique level of flexibility, generality, and customization.

We note that the work described in this article does not include a full-scale comparison between
quantum computing systems of different types. Nor does it address benchmarking of classical so-
lutions to optimization problems, as numerous in-depth studies exist in this area (see Section 2.4).
The performance results in this article are intended primarily to illustrate features and benefits
of our benchmarking framework and not to meet methodological expectations for heuristic
performance studies from Operations Research.

The inclusion of benchmarking in the QA algorithm has an essential purpose. QA has been
extensively studied over decades, and its performance characteristics on annealing hardware
are well understood. Including QA illustrates how our benchmark framework readily adapts to

ACM Trans. Quantum Comput., Vol. 5, No. 3, Article 18. Publication date: August 2024.

Optimization Applications as Quantum Performance Benchmarks 18:5

quantum computing technologies other than the gate model. We use QA as a proxy for other
solvers that may use quantum technologies in which a large part of the algorithm is executed
within the hardware of the remote computing service. We demonstrate how the framework man-
ages the execution of a series of benchmark problems and collects and analyzes metrics consis-
tently across different technologies.

Our work has identified many variables that impact how well a quantum computer will solve
an optimization problem. However, we did not perform an exhaustive study of these, nor could
we tune vendor-specific hardware settings in all cases to achieve optimal results. As a result, the
performance outcomes presented should not be considered generalizable to other test scenarios.
A full-scale study of all the factors contributing to quantum performance to tease out the separate
contributions of algorithms and hardware is beyond the scope of this article.

Our contributions to quantum benchmarking are threefold:

— Developing a methodology for evaluating the performance of quantum computers running
on heterogeneous quantum platforms inspired by standard procedures for assessing classical
optimization heuristics.

— Implementing and demonstrating an open-source benchmarking procedure for optimization
applications that integrates smoothly with the evolving QED-C benchmarking framework
and allows users to implement their performance studies easily.

— Illustrating the capabilities of this framework and the types of performance analysis that it
can support using a familiar NP-HARD problem of interest to applications. As an example,
we focus on throughput analysis of the application executed on several quantum hardware
backend systems as a factor contributing to the total cost of using quantum solutions.

We hope this work sheds light on the practical considerations associated with implementing
combinatorial optimization solvers on quantum computing systems and will encourage and en-
able others to measure and record progress in developing quantum algorithms and computing
systems. We propose that the framework could be used to explore many of the recent innovations
in quantum algorithms for optimization problems [16-22, 22-24].

The remainder of this article is structured as follows. Background on fundamentals of bench-
marking the performance of quantum computers and their applications is provided in Section 2.
Enhancements to the QED-C Application-oriented Benchmarks suite are described in Section 3,
where we describe the benchmark algorithms. This is followed by a discussion on how we
analyze and present the metrics collected by the benchmarks in Section 4. Results from execution
on classically implemented quantum simulators validate that results match expectations and
highlight the insights that can be gleaned from these benchmarks.

In Section 5, we analyze results obtained from executing these benchmarks on two gate-model
quantum hardware systems and a quantum annealing processor using the methods described in the
previous section. Several appendices are provided at the end of the manuscript to provide detailed
information about quantum solutions to combinatorial optimization and to highlight factors that
impact the quality of the result, trade-offs in parameter selection, and challenges in scalability
inherent in quantum algorithms.

2 Background

The benchmarking framework measures performance characteristics of the two leading quantum
heuristics for solving combinatorial optimization problems: the Quantum Approximate Optimiza-
tion Algorithm, which uses a gate-model quantum computer, and Quantum Annealing, which uses
an analog quantum computer.

This article presents a benchmark of these algorithms in the context of their application to
solving the Max-cut problem. This section provides an overview of the problem’s characteristics

ACM Trans. Quantum Comput., Vol. 5, No. 3, Article 18. Publication date: August 2024.

18:6 T. Lubinski et al.

Fig. 3. Max-cut problem. For an undirected graph consisting of nodes, or vertices (V) and edges (E), partition
the vertices into complementary sets such that the number of edges between the sets is the greatest. This
graph shows one solution to one instance of the Max-cut problem for a graph with eight nodes, using colored
nodes and edges. Nodes with different colors belong to the two sets of the solution cut. The number of solid
red edges that connect nodes from different sets is the Max-cut of that graph.

and then reviews the quantum solutions we propose to benchmark. We also offer a quick review
of existing methodologies for benchmarking and discuss the similarities and differences of our
approach with them.

2.1 Max-cut Optimization Problem

The Max-cut problem has emerged as a popular benchmark for quantum optimization [12, 25-27]
for two reasons: (1) it is among the most challenging combinatorial optimization tasks, even
to obtain an approximate solution, ie., APX-Hard [13, 28], (2) as an unconstrained discrete
optimization task, it has a natural encoding as a Quadratic Unconstrained Binary Optimiza-
tion (QUBO) [29, 30] or an Ising model [5, 31], ideally fitting current quantum optimization
algorithms (QAOA, QA). These problems often arise when mapping practical applications [32, 33]
to computing hardware and can appear as subroutines in composite algorithms.

The input for a Max-cut problem is an undirected graph consisting of nodes or vertices (V)
and edges (E). (Each edge of the graph can be accompanied by a “weight,” but we only consider
unweighted 3-regular graphs in this article.) A cut is a partition of the graph nodes into two sets.
The size of a cut is defined as the number of graph edges that connect nodes belonging to different
sets. The Max-cut problem is identifying a cut with the largest size of all possible cuts. (Here, we
consider the unweighted version of the Max-cut problem, so that each edge of the graph has the
same weight.)

Figure 3 presents a representative eight-node graph in which each node is connected to others
by precisely three edges. This type of graph is known as 3-regular or of degree 3. Graphs of degree
3 are considered the most difficult to solve [34]. This figure shows one solution to the Max-cut
problem, using colored nodes and edges. The number of red edges that connect the nodes is the
maximum cut of the graph.

Due to the challenges associated with finding even approximate solutions to the Max-cut
problem at a larger scale (for both classical and quantum algorithms), a quantity called the
approximation ratio is often computed to characterize the quality of the solution obtained. For
example, in the problem depicted in Figure 3, the Max-cut size is 10 (of 12 total edges). A naive
optimization algorithm that randomly tested various cuts but ran out of time to test them all
might conclude that the largest cut size was 9. In this case, the approximation ratio would be a
number smaller than 9/10 or 0.90, as it is a statistical function of the distribution of all solutions
found.

It is common to report the quality of a result in terms of its distance from an optimal solution
when benchmarking classical algorithms for optimization problems. The optimality gap is related
to the approximation ratio by Equation (1):

optimality_gap = (1.0 — approximation_ratio) X 100. (1)

ACM Trans. Quantum Comput., Vol. 5, No. 3, Article 18. Publication date: August 2024.

Optimization Applications as Quantum Performance Benchmarks 18:7

Both of these measures of quantum system performance are relevant in distinct contexts. In
our work, we incorporate both metrics to facilitate discussions on the outcomes attained with our
benchmarking implementation.

2.2 Quantum Algorithms for Optimization Problems

Quantum annealing and circuit-based quantum computers solve a combinatorial optimization
problem using fundamentally different strategies. To provide context for our work, we briefly out-
line how these quantum algorithms function to find solutions to these problems. Additional detail
about these algorithms is provided in Appendix B.

Optimization problems, such as Max-cut, can be described by a Hamiltonian Hp that is unique
to the problem and represents its variables and constraints. The optimal problem solution then
corresponds to this Hamiltonian’s ground state(s). The QAOA and QA algorithms use quantum
state evolution to compute the energy expectation value for Hp and identify values for variables
P and y that yield the lowest energy eigenstate(s) for

Fgy = (B.y|Hp|B.Y). (2)

The quality of solution, or approximation ratio (AR), can then be defined as the ratio of the
computed energy state Fg ,, and the true ground state energy Emin (assuming it is known). In our
case, the Hamiltonian energies are always negative or zero:

AR = Fﬂ,y/Emin- (3)

Quantum Approximate Optimization Algorithm. QAOA is arguably the leading candidate for
solving combinatorial optimization problems using gate-model quantum processors. QAOA be-
longs to the class of Variational Quantum Algorithms (VQA) [35] and is usually implemented
iteratively wherein a classical optimizer “trains” a parameterized quantum circuit. QAOA is a
heuristic that attempts to solve combinatorial optimization problems, such as QUBO problems.
Specifically, the problem is encoded in the form of a specified quadratic function of binary vari-
ables, and the objective is to find an assignment for those variables that minimizes the function.

At the core of QAOA is an “ansatz circuit,” a parameterized quantum circuit. Measurements in
the computational basis at the end of the circuit correspond to sampling from a probability distribu-
tion over possible answers to the problem. A classical optimizer is used to obtain parameter values
likely to produce optimal or near-optimal solutions by repeatedly taking circuit measurements
while varying parameter values.

Quantum Annealing. Quantum annealing effectively addresses optimization problems by using
a versatile approach to identifying the global minimum of a function using a systematic process.
The algorithmic approach of QA is inspired by the adiabatic theorem from quantum mechanics to
transform an easy-to-prepare ground state of an initial Hamiltonian into the ground state of the
“target” Hamiltonian that encodes the combinatorial optimization problem.

At a high level, the protocol strives to identify the low-energy states of a user-specified Hrarget
model by conducting an analog interpolation process of the following Hamiltonian, arriving at
minimum energy states at the end of the evolution:

H(s) = (1 — s)Hmit + (S)HTarget~ (4)

With quantum annealing, convergence to a solution is performed entirely within the quantum
system from the user’s view. The problem is mapped to an initial state (equal superposition with
respect to the problem basis) on the hardware, and the system is set to anneal toward a solution.
Longer annealing times are associated with higher solution quality.

ACM Trans. Quantum Comput., Vol. 5, No. 3, Article 18. Publication date: August 2024.

18:8 T. Lubinski et al.

2.3 Benchmarking Quantum Computers

This section reviews concepts and definitions from prior benchmarking work that we reference
throughout this manuscript. We focus primarily on the application-oriented level of performance
evaluation in our benchmarking of combinatorial optimization applications.

System-level Benchmarks. A large body of reference material exists for gate model comput-
ing systems on component and system-level benchmarks [36-42]. We use two well-known
system-level performance benchmarks, Quantum Volume (QV) [43, 44] and Volumetric
Benchmarking (VB) [45, 46] as a backdrop in several of our benchmark plots. While these two
methods characterize quantum circuit execution quality and scale, neither provides information
about the time it takes a program to run, which is a critical factor in evaluating the total cost of
any computing solution.

Quantum annealing systems have been available for empirical study since 2011 [47-49]. Ex-
amples of component- and system-level approaches to evaluating quantum annealing processors
may be found in early papers [47, 50, 51] and in recent proposals for benchmarking of large-scale
quantum annealing hardware [52-54].

Application-level Benchmarks. Component and system-level metrics offer valuable insights
into overall system capability, but predicting the effectiveness of a machine with a certain
level of general performance for a specific application class can be challenging [46, 55]. To
address this, application-focused benchmarks run well-defined programs tailored to provide
application-specific performance metrics.

Due to its relative maturity, benchmarking of QA tends to involve application-level tests us-
ing models with more than 100 qubits, which presents significant challenges for validation by
comparison to the classical simulation of ideal quantum systems [3, 56-58]. Such benchmarking
work often compares the runtime performance of quantum hardware to that of classical meth-
ods [3, 59-62]. Using synthetic optimization problems, a problem instance with a known optimal
solution is planted [63-65].

In contrast, early stage gate model quantum computers require benchmarks that involve smaller
problems and numbers of qubits. Application-oriented benchmark frameworks typically create cir-
cuits that use well-known quantum gate combinations or algorithms, provide inputs and expected
outputs, and execute them on quantum simulators or physical hardware [14, 15, 66-70]. Result
quality metrics are computed using statistical differences between expected and actual measure-
ments or proximity to an application-specific metric derived from the measurements.

Of particular relevance is the first QED-C application-oriented benchmark suite [14, 15],
upon which our work is based. The QED-C suite offers a practical methodology to evaluate the
performance of various quantum programs across a range of quantum hardware and simulator
systems. Its benchmark programs sweep over a range of problem sizes and input characteristics
while systematically capturing key performance metrics, such as quality of result, execution
run-time, and quantum gate resources consumed, as shown in Figure 4. Supporting infrastructure
and abstractions make these benchmarks accessible to a broad audience. The framework also
provides the structure to enable benchmarking of iterative algorithms, such as QAOA, or to
execute an algorithm in a single operation, as in QA.

The QED-C benchmarks compute several important figures of merit, which we use throughout
this manuscript. The quality of result for individual circuits is given by the “Normalized Hellinger
Fidelity,” a modification of the standard “Hellinger Fidelity” that scales the metric to account for the
uniform distribution produced by a completely noisy device. Resource consumption is quantified
as the total number of gate layers, or “Circuit Depth,” which can be “Algorithmic” or “Normalized”

ACM Trans. Quantum Comput., Vol. 5, No. 3, Article 18. Publication date: August 2024.

Optimization Applications as Quantum Performance Benchmarks 18:9

Volumetric Positioning - All Applications (Merged)
Device=gasm_simulator Oct 03, 2022 04:40:11 UTC

124
ikt on (W
114 piage® s n et) Tra\'\S“"m
104 t\’\'\\m“\a ourie’ X Seﬁ‘d‘ 1.0
W Grover®
94 082
g8] g
3 0.6 ic
7 || s
E H
: m ou
O 54 2
41 02<
31 0.0
5]
1 QV=32

R RIS S FE R
Circuit Depth

Fig. 4. Application-oriented benchmarks. Here, we present one way to illustrate the result fidelity obtained

by executing several application-oriented benchmarks up to 8 qubits on a noisy quantum computer simulator.

The plot shows the average result fidelity as a function of circuit width and the circuit depth plotted on a

volumetric background to visualize the “profile” and result fidelity of the benchmark circuits. (Plot produced

by QED-C benchmark suite.)

(transpiled to a normal basis). Execution time is captured as “Elapsed Quantum Execution Time”
(wall clock) or “Quantum Execution Time” (reported by quantum provider service) with more
granularity possible in some systems. These metrics are defined in detail in our prior work [15].

The framework to capture run-time metrics is fundamental to our new work in benchmarking al-
gorithms for combinatorial optimization. Although execution time was included in the first QED-C
benchmarks, benchmarking iterative and hybrid algorithms can provide a more complete picture
of a quantum computer’s run-time performance. The time required to execute circuits within a
quantum application is an essential metric of performance [71-74], often cited when comparing
quantum and classical computations. For example, quantum and classical computing times were
central to recent demonstrations of quantum advantage [75, 76].

2.4 Quantum Benchmarks for Optimization Tasks

Much background material is available on benchmarking classical solutions to optimization prob-
lems [3, 62, 77] and comparing quantum methods to classical solutions [78-80]. This work is often
oriented toward improving the performance of quantum algorithms, separate from the analysis
of specific hardware platforms. With QA and QAOA, this approach generally involves comparing
different implementations or tuning strategies of the quantum algorithm rather than performing
runtime comparisons against classical algorithms.

Quantum computation based on quantum annealing techniques has been used to address
combinatorial optimization problems for more than a decade (3, 9, 11, 62, 80-83]. In these studies,
the primary metrics of interest are expected solution quality and operation counts (i.e., circuit
depth), which are used as approximate runtime measurements. Within this context, two main
threads of execution time analysis have been used in comparing the performance of the quantum
annealing algorithm to classical heuristics. The time-to-solution (TTS) metric determines the
expected wall-clock time required to solve a problem to optimality [48, 82—85]. In contrast, the
time-to-target (TTT) metric determines the expected wall-clock time required to solve a problem
to a specified target solution quality [3, 9, 56, 80]. The typical approach is to measure how TTS
or TTT changes as a function of problem size for both the classical and quantum methods (i.e., a
scaling advantage) so that one can forecast at what system sizes the quantum solution approach is

ACM Trans. Quantum Comput., Vol. 5, No. 3, Article 18. Publication date: August 2024.

18:10 T. Lubinski et al.

likely to be faster than the classical one. In this work, we use these concepts to inform our analysis
of the trade-off between the quality of the solution and the time it takes to execute the quantum
algorithm.

Significant challenges exist for benchmarking quantum solutions on real-world hardware, as
quantum computer noise characteristics and runtime overhead introduce additional requirements.
Due to the implementation complexity of configuring optimization tasks for benchmarking quan-
tum hardware, several software frameworks have emerged to support the evaluation of the same
(or similar) optimization methods implemented on different platforms. Benchmark frameworks
such as SupermarQ [67] and QPack Scores [68] include one or more QAOA applications in their
sample benchmarks, while QUARK [69] considers specific optimization problems arising in in-
dustry. The Q-score metric [70] is claimed to apply to quantum processors in several categories,
measuring the size of the largest graph for which the solver outperforms random guessing within
a fixed time limit. All references present results that measure solution validity, feasibility, and run-
time on several backend quantum computers, some on both gate model and quantum annealing
devices. We used much of this work to guide our development of new benchmarks in the QED-C
suite based on combinatorial optimization problems.

3 QED-C Benchmark Framework Enhancements

In this section, we describe the enhancements to the QED-C benchmark suite that collect and
analyze application-specific quality and temporal metrics associated with hybrid quantum appli-
cations, e.g., QAOA and QA, where the trade-off between the quality of solution and utilization
of resources (here execution time) is essential. Our effort has two primary goals: (1) to integrate
and enhance critical concepts from other optimization-centric benchmark efforts into the QED-C
benchmark suite as a standard feature and (2) to present the results and analysis in ways recogniz-
able by practitioners in the operations research field who are already familiar with benchmarking
classical solutions to optimization problems.

This section describes specific features of the framework we developed for cross-paradigm
quantum optimization heuristics benchmarking. The enhancements to our original benchmark
framework are driven by specific features and challenges of optimization problems and heuristic
performance evaluation, distinct from the simple test scenarios used in our initial benchmark
suite. The OR community has developed methodologies and tools for evaluating computational
performance in this context, some of which we have adapted to the quantum scenario. See
Appendix A for a discussion of the theoretical foundations.

Several features distinguish our benchmarking framework from others. Users can evaluate
both execution time and solution quality in detail and explore the trade-offs (as opposed to fixing
a specific TTS or TTT metric). The platform supports benchmarking of quantum computing
hardware that can run quantum annealing or gate model algorithms. It also provides the ability
to select problems and inputs of interest beyond our simple illustrations using Max-cut inputs.
Presentation of benchmark results is aligned with standard methodologies of Operations Research
and the QED-C framework. As quantum computers grow in size, the benchmark framework will
be able to support testing on a wide variety of optimization problems.

We focus on its application to a combinatorial optimization problem to demonstrate the key
enhancements, using Max-cut as a specific example. Unlike the simple algorithms used in the ini-
tial benchmark suite, where circuit execution fidelity is the key metric, the enhanced benchmark
must derive a solution quality metric that is application-specific and accounts for the fact that
solutions to optimization problems are often approximate. Results from its execution on a classi-
cally implemented circuit-based quantum simulator illustrate how key metrics are collected and
presented.

ACM Trans. Quantum Comput., Vol. 5, No. 3, Article 18. Publication date: August 2024.

Optimization Applications as Quantum Performance Benchmarks 18:11

ALGORITHM 1: Benchmark Algorithm for QAOA

1: target « backend_id

2: initialize_metrics()

3: for size « min_size, max_size do

4: circuit_def « define_problem(problem,size, args, rounds)
5 for restart_id < 1, max_restarts do

6 cost_function < define_cost_function(problem)

7: circuit, num_params « create_circuit(circuit_def)
8
9

cached_circuit < compile_circuit(circuit)
params[B,y] < random(num_params)

10: while minimizer() not done do > minimizing
11: circuit « apply_params(cached_circuit, params)
12: counts < execute(target, circuit, num_shots)

13: energy, quality <« cost_function(counts)

14: store_iteration_metrics(quality, timing)

15: params[B,y] < optimize(params|p,y, energy])
16: done « True if lowest(energy) found

17: done « True if iteration_limit_reached()

18: end while

19: compute_and_store_restart_metrics()

20: end for

21: compute_and_store_group_metrics()

22: end for

The QED-C benchmark framework includes shared functions to manage the execution of
benchmark algorithms over a range of problem definitions, collect metrics during execution,
and present results consistently across backend targets. Both the Max-cut QAOA and QA bench-
mark algorithms operate on a target system backend_id, sweeping over a range of problem sizes
[min_size, max_size], to solve a problem defined by input args. An inner loop, controlled by the
max_restarts argument, provides the ability to execute the benchmark algorithm multiple times
at each problem size.

For each problem size tested, we consider a set of random 3-regular graphs using the networkx
package [86] and determine the maximum cut size for each using the gurobi package [87]. These
are used to generate the quantum circuits for testing and to determine solution quality after exe-
cution, respectively.

A key practical difference between the QAOA and QA algorithms lies within the restart loop,
where the specific solvers are applied to the input, and the quality of the solution is evaluated
over increasing execution times. A gate model device iterates through a series of quantum circuit
executions, testing parameter values, to find a set that yields a low-energy state. In contrast, a
quantum annealing system gradually attempts to reach its lowest energy state as a transverse Ising
model undergoing quantum mechanical evolution. Comparing the evolution of the state over time
in these systems requires different data collection and presentation. Below, we detail the related
algorithms used to benchmark these solutions and highlight differences between them and how
they impact the results, omitting some details for brevity.

3.1 Benchmark Algorithm for QAOA

The QAOA benchmarking method is defined in Algorithm 1. Nested within the first and second for
loops is the QAOA algorithm, which defines a cost_function based on the problem specifics and
a gate model quantum circuit that implements the Hamiltonian associated with the problem and

ACM Trans. Quantum Comput., Vol. 5, No. 3, Article 18. Publication date: August 2024.

18:12 T. Lubinski et al.

ALGORITHM 2: Benchmark Algorithm for QA

1: target < backend_id

2: initialize_metrics()

3: for size <« min_size, max_size do

4: for restart_id « 1, max_restarts do

5: compute_quality < define_compute_quality(problem)
6: for a_time < min_anneal time, max_anneal time do
7: embedding < de fine_problem(problem, size, args)
8: sampler « create_sampler(target, embedding)

9: samples «— sample_ising(sampler, a_time, reads)
10: quality « compute_quality(samples)

11: store_iteration_metrics(quality, timing)

12: end for

13: compute_and_store_restart_metrics()

14: end for

15: compute_and_store_group_metrics()

16: end for

is parameterized by variables f and y. The quantum circuit used with QAOA can be replicated by
some number of rounds (often referred to as p in code).

Starting with a random or fixed set of parameters params (corresponding to |f,y) from Equa-
tion (11). the quantum circuit is executed shots times to obtain the measurement counts and
compute a value for the cost function. Classical optimizer code explores the parameter landscape
by varying the set of parameters to obtain measurement counts representing the Hamiltonian’s
lowest energy state, iterating until either the lowest energy is determined or an iteration limit
is reached. A relevant quality metric is calculated and stored along with metrics that track the
quantum and classical timing information. Although we use random starting parameters for
the benchmark, users may have some information about a reasonable starting point in practice,
which could result in a better or faster solution (see Appendix E.2).

The results of this algorithm’s execution can be affected by a number of factors unique to
QAOA, such as the number of shots and rounds, the type of classical optimizer employed, and,
most importantly, the noise level in the target system. The quality of the results can also be
constrained by limiting the number of iterations the classical optimizer performs. In the QAOA
benchmark, this is a configurable option, but we set this limit to 30 by default to avoid runaway
execution on costly hardware.

The Max-cut benchmark can be executed using two different methods, enabling the study of
these factors independent of the complete QAOA algorithm. Method (1) executes one instance of
the ansatz circuit for a specific problem using configurable shots and rounds, permitting detailed
analysis of these factors. Method (2) executes the complete QAOA algorithm and provides the
option to specify the classical optimizer, with COBYLA as the default. Additionally, one of several
variants of the cost function may be selected. These variants are described below in Section 4.1.

3.2 Benchmark Algorithm for QA

The QA benchmarking method is described in Algorithm 2. The core of the QA benchmark algo-
rithm is within the first and second for loops. It uses a special metrics collection loop unique to
the QA benchmark.

From the user’s perspective, the convergence to a solution using a quantum annealer is
performed in a single step, entirely within the quantum system. A Hamiltonian describing the

ACM Trans. Quantum Comput., Vol. 5, No. 3, Article 18. Publication date: August 2024.

Optimization Applications as Quantum Performance Benchmarks 18:13

problem is embedded into the quantum components of the device and is evolved in time to settle
to the lowest energy state, representing an optimal solution.

In our QA benchmark, the QA algorithm is executed multiple times from the start within this
particular collection loop. The anneal_time is initialized to 1yus and doubled after each execution
until it reaches 256 ps (the range of annealing times is a configurable option in the benchmark).
Each time, the problem is mapped to an initial state (equal superposition with respect to the prob-
lem basis) on the hardware, and the system is set to anneal toward a solution. Longer annealing
times are associated with higher solution quality.

Using this approach, we are able to provide a measure of the time versus quality trade-off com-
parable to the QAOA benchmark by capturing the quality of the solution obtained at each value of
the annealing time. It is impossible to monitor the solution’s quality as it evolves within a single
execution of the QA algorithm.

For each of the executions performed in the benchmark, the algorithm queries (reads) samples
the same number of times as we do shots in QAOA. As with benchmarking QAQOA, a relevant
quality metric is calculated after each execution and stored along with metrics that track the
quantum and classical timing information.

The results of this algorithm’s execution are affected primarily by the number of shots or sam-
ples, the annealing time used, and the noise level in the target execution system. The Max-cut
benchmark can be executed using two different methods, enabling the study of these factors in-
dependently of the entire QA algorithm. Method (1) executes at a single, configurable annealing
time for each problem size using configurable shots, permitting detailed analysis of these factors.
Method (2) executes the complete QA described in this section algorithm. Note that in this case,
Method (1) is the same as Method (2), with the range collapsed to a single value.

4 Analysis of Max-cut Benchmark Metrics

In this section, we discuss our analysis of the data collected as the benchmarks execute. First,
we discuss the application-specific quality metrics explicitly computed for the Max-cut problem,
produced in common for both QAOA and QA algorithms. The benchmarking framework generates
optimality gap plots and cut-size distribution plots as practical tools to visualize these additional
metrics succinctly. Furthermore, metrics other than the approximation ratio can also be used to
assess result quality, which we discuss in this section.

We follow this with our visualization of the trade-off between execution time and the quality
of the result that can be obtained. While displaying these data in simple line charts is typical, we
generate informative plots that use color to represent the quality of execution, horizontal length to
represent the execution time of individual iterations, and vertical/horizontal position to indicate
problem size and the cumulative execution time. The section ends with our analysis of the effect
of shot count and the number of rounds on the quality of result for the QAOA implementation of
the benchmark.

4.1 Application-specific Result Quality Metrics

The QAOA and QA algorithms attempt to converge on a solution to an optimization problem by
finding the lowest energy state of a Hamiltonian after a sequence of parameter tests (QAOA) or
annealing operations (QA) on a target system. In both cases, the result is an energy value computed
as a function of the distribution of the energy samples obtained at the end of the execution.

This energy value can be compared against the precomputed optimal solution (i.e., the lowest
energy of the Hamiltonian). The ratio between the actual and expected energy values, or the ap-
proximation ratio [6, 30, 88], is the metric commonly used to quantify the quality of the results for
the Max-cut problem, as discussed in Section 2.1. It is formally defined as follows.

ACM Trans. Quantum Comput., Vol. 5, No. 3, Article 18. Publication date: August 2024.

18:14 T. Lubinski et al.

Benchmark Results - MaxCut (2) - Qiskit
Device=qasm_simulator Jan 06, 2023 08:00:55 UTC
shots=1000, rounds=2, degree=3, restarts=1, fixed_angles=False,
Objective Function=Approximation Ratio

& Quartiles

40t

351

)
3

25

Optimality Gap (%.
N
o

4 6 8 10 12 14 16
Problem Size (# of Variables)

Fig.5. Showing final optimality gap. As the QAOA program executes, the minimizer finds an optimal solution
to the Max-cut problem, represented by the approximation ratio computed after the final iteration. The
optimality gap for each problem size is computed from these values and shown in this bar chart, along with
quartile marks showing the distribution of the final measurement results. In some cases, the quality of the
results could improve with additional execution time, but we limit the benchmark to 30 iterations to conserve
computing resources.

Let M denote the number of shots so that for given values of (vectors) 8, y, we obtain M cut-sizes,
one corresponding to each of the bit-strings obtained from computational basis measurements. Let
these energies be denoted by E, ..., Ey, arranged in non-decreasing order. Since these energies
are < 0, |Eq], ..., |Em| are non-negative integers arranged in non-increasing order. Then, the en-
ergy expectation value is approximated by

M
- E;
N ®

Normalizing the result of this computation to the range [0, 1] is convenient. Hence, we define
the approximation ratio in

F =~

Fp.y
|Emin| '

where Ep;, < 0 is the actual ground state energy of the problem Hamiltonian.

Optimization performance studies typically use the complement of this, the optimality gap. In
Figure 5, we show the final optimality gap computed at the end of the execution of the benchmark
algorithm for each of the problem sizes tested. In this plot, we include quartile bars, which provide
information on the width of the distribution in addition to the mean. Although these results were
produced using the QAOA algorithm on a classically implemented quantum simulator, the results
of our QA algorithm are also plotted in this fashion.

The approximation ratio is a valuable measure of a quantum computing system’s ability to solve
the Max-cut problem. The higher the mean of the cut sizes found in the distribution, the more likely
the algorithm will produce a cut size that is the maximum. However, we note that the final output
of these quantum algorithms is not the approximation ratio but the best-measured cut (i.e., the cut
corresponding to the largest cut size) obtained across all iterations of the algorithm.

The best-measured cut is often a poor measure of the quality of the result, because it is
numerically unstable, particularly with smaller numbers of samples. However, it has inspired a
few other objective functions, such as the Conditional Value at Risk or CVaR [89], and the Gibbs

Approximation Ratior =

(6)

ACM Trans. Quantum Comput., Vol. 5, No. 3, Article 18. Publication date: August 2024.

Optimization Applications as Quantum Performance Benchmarks 18:15

Empirical Distribution of Cut Sizes - MaxCut-(2)
Device=qgasm_simulator Jan 06, 2023 08:01:05 UTC
shots=1000, rounds=2, degree=3, restarts=1, fixed_angles=False,
Objective Function=Approximation Ratio
Problem Size = 16

—— Circuit Sampling
Uniform Random Sampling
—— Approx. Ratio
—— CVaR Ratio
—— Best Measurement Ratio
Gibbs Objective Function

o
N
=)

o
=
=]

Fraction of Total Counts
o
i
o
T

o

=

G
T

0.00}+
0.0 02 0.4 06 0.8 1.0

Fig. 6. Cut-size distribution: The quality of the final output of QAOA can be understood by inspecting the
distribution of the cut-size values obtained at the final optimizer iteration. A distribution peaked closer to
the right indicates higher result quality. Also plotted here are the various metrics (vertical lines) and the
distribution corresponding to a uniform random sampling of bit-strings (pink line).

objective function [90]. Both metrics focus on the tail end of the distribution rather than treating
all measurements equally.

To illustrate how these different quality metrics relate to each other, in Figure 6, we illustrate the
distribution of cut sizes produced from the execution of our benchmark on a noiseless quantum
simulator at a problem size of 16 with 1,000 samples taken (shots). The distribution obtained from
our benchmark is shown with a black line. A wide pink line shows a simulated distribution that
would be obtained by executing the algorithm on a computing system that returns uniformly ran-
dom results. A distribution that peaks closer to the right indicates a higher result quality. In this
case, the best-measured result is shown at 1.0, indicating that the algorithm returned the expected
optimal Max-cut. The CVar and Gibbs ratios fall between the approximation and best-measured
ratios.

Formally, CVaR [89], for a chosen value of parameter a € (0, 1], is defined as

[aN1]

CVaR,(B.y) = Ml—NT Z Ei, (7)

where [.] denotes the ceiling function. CVaR, denotes the mean value of (the negative of) cut-
sizes over the lower a-tail of the measured energy distribution. The limit « — 0 corresponds to
the ground state energy value (i.e., E;), while @ = 1 corresponds to the energy expectation value
Fpg 5. The value of the metric depends on the choice of @. While the value of this parameter can be
configured, we default to @ = 0.1 in all plots and analyses.

Another choice is the Gibbs objective function [90], which is defined as

fy(B.y) =In(B.yle " |B.y), (®)
with n > 0, and where H denotes a Hamiltonian whose ground state is sought. The parameter 7
determines the relative weights of the low energy states of H in the expression. The parameter 7
tunes f; between two extreme values (similar to « in CVaR): f—o(B, y) = Fg ,,, while f;c = Emin,
i.e., the lowest measurable energy of H in the state |f, y).
We normalize each of these objective functions so that they lie in the range [0, 1] and thus define
the following quantities:

ACM Trans. Quantum Comput., Vol. 5, No. 3, Article 18. Publication date: August 2024.

18:16 T. Lubinski et al.

Benchmark Results - MaxCut (2) - Qiskit
Device=gasm_simulator Jan 06, 2023 08:00:55 UTC
shots=1000, rounds=2, degree=3, restarts=1, fixed_angles=False,
Objective Function=Approximation Ratio

60 ""3"”'”'"':‘” —@— Approx. Ratio -®- Best Measurement Ratio |
-®- CVaR Ratio & Quartiles
Gibbs Objective Function

Optimality Gap (%)
w
o

20} SN —— +

Tob ! I s - P
/ N
! ¢ 2]

ol & & b pU—

A 4 A d A4 A d hd
" 1 1 1 :
4 6 8 10 12 14 16

Problem Size (# of Variables)

Fig. 7. Detailed optimality gaps plots. A variety of metrics can be used to assess the quality of the final
distribution of outputs of QAOA. For each implemented problem size or circuit width (along the X-axis), we
plot the optimality gap (along the Y-axis). The obtained distributions of optimality gaps are shown as pink
half-violin plots. The optimality gap values regarding the CVaR ratio, approximation ratio, Gibbs Ratio, and
Best Cut ratio are shown as line plots.

CVaR,

CVaR,Ratio = ———%
|Emin|

. . Iy

Gibbs Ratio = R %)

n |Emin|
Best Measurement Ratio = .

|Emin|

In our benchmarking framework, the objective function may be set to any of these. The ap-
proximation ratio is commonly used in studies of quantum computing solutions to optimization
problems, and the other ratios appear less often in the literature. These are measures of the quality
of the solution where a value of 1.0 is optimal.

Our framework also generates “detailed optimality gap plots” (e.g., Figure 7). For each problem
size, the empirically obtained distribution of cut sizes is shown using a half-violin plot. (The plotted
distribution is that of the quantity 1— %, so it is normalized to be between [0,1]). The four
metrics in Equations (6)—(9) are shown in terms of their optimality gap, i.e., (1—metric_value)*100.
This provides a detailed snapshot of the quality of the result as a function of problem size in terms
of various quality metrics.

4.2 Result Quality and Time of Execution

In this section, we introduce a new method for visualizing the relationship between solution quality
and execution run-time in the results from our Max-cut benchmark. The methodology is inspired
by the typical visualizations used in Operations Research (e.g., the performance profile in Figure 1).
Still, it is enhanced in ways that yield valuable insights about execution time unique to hybrid
quantum computing algorithms. Some aspects of this approach are especially relevant in the early
stages of quantum computing maturity. They provide critical information about bottlenecks and
other drag factors that impact system throughput more than realized.

Our approach can be applied to both QAOA and QA, although the visuals vary slightly in ways
that mirror algorithm differences. In Figure 8, we illustrate the time versus quality trade-off for
the QAOA algorithm using a novel performance profile referred to as an “area plot” Similar to

ACM Trans. Quantum Comput., Vol. 5, No. 3, Article 18. Publication date: August 2024.

Optimization Applications as Quantum Performance Benchmarks 18:17

Benchmark Results - MaxCut (2) - Qiskit Benchmark Results - MaxCut (2) - Qiskit

Device=gasm_simulator Jan 06, 2023 08:00:49 UTC Device=gasm_simulator Jan 06, 2023 08:00:53 UTC
shots=1000, rounds=2, degree=3, restarts=1, fixed_angles=False, shots=1000, rounds=2, degree=3, restarts=1, fixed_angles=False,
Objective Function=Approximation Ratio Objective Function=Approximation Ratio

18 181

17 17t
2 s [T TT T T T T - 161 C LT TTT T T
15 o0 150 e
£ 1l (TI T T — £ 1a{ (LTI T
£ 08 sl 082

4 &

> 12 [T T T > 12 [T TTTTTI T
o1l 0.6 5 S 11 065
2 101 (MMM E 2 10 (TTTTTNOIN B
X0 04§ {9 04 £
@ | [§ S ol mmmm 5
§7 028 § 71 022
3 ol M 2 2 slm g
2 5 g st
& 0.0 [.0

+| [N arl °

3 3r

2 2

Q9 QP AX A A 9 R0 DD DO AD 0D DO QO D PPN DD D DDA AP DD DD
S SN APN 2,8 W R AR PP S S A AN A ANA TN N A R S AN SN
OGN Y GV TP 0 O (W T2 00 07 @ DTG O TN OGN TN OGN 9V (Y oV
Cumulative Quantum Execution Time (s) Cumulative Classical Optimization Time (s)
(@) (b)

Fig. 8. Iterative execution of QAOA max-cut algorithm. In QAOA, a classical minimizer function iteratively
executes an ansatz, varies its parameter values, and computes a cost function to converge to an optimal
solution. In panel (a), each horizontal row represents successive iterations at each problem size (number
of qubits), where the position on the X-axis represents the cumulative quantum execution time, and the
color tracks the approximation ratio of each iteration of the optimizer. In panel (b), the X-axis represents the
cumulative classical execution time (optimizer). Both of these times contribute to the total elapsed time that
a user experiences.

the volumetric plot of Figure 4, it shows the circuit width (problem size) on the Y-axis and uses
the color of rectangles to illustrate a metric score. In the area plot, the horizontal width of an
individual rectangle represents the execution time for a single ansatz, and its location along the
X-axis indicates the cumulative execution time, including prior iterations.

A key difference between the QAOA and QA benchmarks is in evaluating the execution times
to be plotted on the X-axis. With QAOA, the algorithm inherently executes in a series of iterations,
and the execution time accumulates with each, represented by stacked rectangles. With QA,
however, the complete algorithm is executed in a single step. To evaluate how well the algorithm
performs at different times, the algorithm is executed from the start each time with different
annealing times. Figure 2(b) shows how we visualize the re-initialization with rectangles that
overlap instead of being stacked. More detail about QA execution can be found in Section 5.3.

In the area plots shown here, we use the approximation ratio as the default figure of merit
to gauge the quality of the result. The approximation ratio ranges from 0 to 1.0, but for QAOA, it
usually starts above 0.5 and oscillates as the optimizer converges to a solution. Due to the annealing
computer’s nature, the QA’s starting point is often above 0.9. We use a different color scale for QA
to emphasize the fundamental difference between the algorithms. However, when running the
benchmarks, any objective functions in the previous section can be selected as the figure of merit
shown in the plots.

The benchmarking framework collects multiple measures of execution time. The first plot
of Figure 8 shows the cumulative quantum execution time or the time spent executing the
quantum processor. The second plot shows the cumulative classical execution time, primarily
consisting of the time taken by the optimizer in QAOA or the setup time in QA. In Figure 2(a),
we show the cumulative elapsed quantum execution time, which is the total wall clock time that
includes both of these plus other setup times such as compilation or time to load the program into
the quantum processor. We include a detailed analysis of these and other essential times related
to QAOA and QA algorithms in Appendix D

ACM Trans. Quantum Comput., Vol. 5, No. 3, Article 18. Publication date: August 2024.

18:18 T. Lubinski et al.

The quality versus time visualization we use here, the area plot, significantly enhances the in-
formation presented to users about executing a hybrid quantum algorithm such as QAOA or QA.
For example, this QAOA and QA evolution analysis can provide information about the incremental
time units consumed by execution. With some of the newer hybrid systems and the use of error miti-
gation, it is extremely valuable to inform the user of the bottlenecks or anomalies in the execution.

For example, in the plots of Figure 8, the width of several of the rectangles representing the
time of each iteration is not uniform. With quantum computing in its early stages of maturity, the
execution pipeline often contains many steps that involve non-deterministic classical computation,
some of which are unique to quantum computing, such as error mitigation. These plots effectively
convey a measure of the level of unpredictability in the execution times that may contribute to
throughput degradation.

Other types of information unique to quantum are also transmitted in these plots. For example,
QAOA can require classical pre-processing, specifically compilation, and transpilation to a target
topology and gate set from an intermediate representation. In contrast, QA requires embedding
the problem graph onto the device topology before execution. With gate model computers, inter-
mittent calibration processes can sometimes interrupt program execution and appear as rectangles
with larger widths. In addition, there is often a start-up cost associated with executing any circuit
component of these algorithms.

While we only show a few examples here, the area plots allow users to view all of these things
at a glance and can assist them in quickly interpreting how execution time impacts the quality of
results and overall throughput of the quantum algorithm.

4.3 Factors Affecting QAOA Ansatz Fidelity

Several factors can impact the results obtained from executing the QAOA algorithm. Here, we use
Method (1) of the QAOA benchmark to analyze how the number of shots and rounds can affect a
quantum computing system’s ability to execute the ansatz circuit used in the algorithm.

Each iteration of the QAOA algorithm involves repeatedly measuring a parameterized circuit,
executed with parameter values |f, y) determined by a classical optimizer routine. The algorithm’s
success relies on the ability of the quantum subroutine to compute an accurate value of the objec-
tive function. If the measurement probabilities obtained by the quantum subroutine do not match
sufficiently well with the probabilities from the ideal distribution Pigeal(s) = [(s | B,¥)|?, then the
effectiveness of the classical optimizer can be negatively affected.

Even in a noiseless simulator, perfect fidelity can be achieved only within the limit of an infinite
number of shots. On quantum hardware, noise and decoherence can exacerbate the drop in fidelity,
as can limited connectivity between qubits. To quantify circuit fidelity, we use both the Hellinger
fidelity and the normalized Hellinger fidelity as defined in our initial work on application-oriented
benchmarks [15]. The normalized fidelity is most useful in our context, recalling that a circuit
fidelity of 0 corresponds to a uniformly random probability distribution. In contrast, a fidelity of 1
corresponds to the ideal distribution.

In Figure 9, the number of measurements per iteration (which we call the number of “shots”)
is shown to affect the circuit fidelity significantly. For example, on the noiseless simulator used
here, the normalized circuit fidelity falls below 0.6 at 8 qubits with 1,000 shots, while it does so at
twelve qubits with 5,000 shots. As the circuit’s width increases, the number of shots required to
distinguish between the ideal and random distributions increases. With the variant of QAOA used
here, larger problems require a larger number of shots to effectively capture the cut sizes in the
resulting larger distributions.

Figure 10 illustrates how circuit fidelity is impacted as one of the arguments for the QAOA
ansatz definition, the number of rounds (referred to as p in code), is increased from 1 to 8.

ACM Trans. Quantum Comput., Vol. 5, No. 3, Article 18. Publication date: August 2024.

Optimization Applications as Quantum Performance Benchmarks 18:19

Benchmark Results - MaxCut (1) - Qiskit
Device=qgasm_simulator-s1000-r1 Nov 25, 2022 03:06:43 UTC
shots=1000, rounds=1

1.01 Emm Normalized
> Hellinger
= 0.8
o
i
+ 0.6
>
]
< 0.4
o
>
< 0.21

0.0 -

4 6 8 10 12 14 16

Circuit Width (Number of Qubits)

Benchmark Results - MaxCut (1) - Qiskit
Device=qgasm_simulator-s5000-r1 Nov 25, 2022 03:06:44 UTC
shots=5000, rounds=1

1.01 EmE Normalized
> Hellinger
Z 0.8
=
i
+ 0.6 -

3
@
CU
x 0.44
i<
>
< 0.2

4 6 8 10 12 14 16
Circuit Width (Number of Qubits)

Fig. 9. Impact of shots on fidelity of ansatz execution. Here, we illustrate the difference in fidelity when
executing the same Max-cut ansatz circuit at circuit widths ranging from 4 to 16 qubits, with 1,000 shots and
again with 5,000 shots, on an ideal quantum simulator. For each problem size, we use a single graph, which
defines an instance of the Max-cut problem. The resulting fidelity is greater when using a larger number of
shots.

Execution fidelity is expected to degrade not only as circuits become wider (i.e., comprise more
qubits) but also deeper (i.e., have a larger number of gate layers). More rounds result in deeper
circuits. The volumetric plot uses a color scale to represent the fidelity at each circuit width and
depth tested. In this case, the circuit was executed with 1,000 shots on a quantum simulator with
noise characteristics that mimic a typical quantum computer (one- and two-qubit gate error rates
of 0.003 and 0.03, respectively) and with a quantum volume equal to 32 (the region shown in the
dark rectangle). As the “rounds” parameter grows, the circuit becomes correspondingly deeper,
and the result fidelity degrades as a function of depth. A consequence is that the theoretical
benefit of using a larger number of rounds is countered by the lower fidelity that results from
executing a deeper circuit with a larger gate count.

5 Execution on Quantum Hardware

This section presents results from executing the Max-cut benchmark on several representative
quantum hardware systems based on underlying quantum technologies. Our objective is to demon-
strate the robust capability of the benchmark framework to accurately capture key performance
metrics that highlight fundamental distinctions between technologies.

This presentation can serve as a valuable resource for providers of these systems, providing
insight into incremental performance improvements across successive generations of hardware. It
can also equip users with tools to form a comprehensive understanding of the trade-offs inherent
in utilizing these emerging technologies. Particular attention is placed on the analysis of solution
quality versus execution run-time.

ACM Trans. Quantum Comput., Vol. 5, No. 3, Article 18. Publication date: August 2024.

18:20 T. Lubinski et al.

Volumetric Positioning - All Applications (Merged)
Device=qgasm_simulator-s1000-rN-n-fa Nov 25, 2022 17:22:14 UTC

194 \mds‘“/ _

18 Ma*c‘;i?\:xk\(;:‘c"\fﬁ’k};""f pis=®

171 W e Maxc“‘m

16| HHEE 10

154

141 0.8

134
] NN 2
g 114 063
o ma] | :
5 9 0.4
7 o OEm 2

7]

‘ CImE] o

5]

. EEE 0o

N

5]

QV=32
1]

Fig. 10. Volumetric presentation of fidelity and impact of rounds. The fidelity metrics obtained for the execu-
tion of any quantum circuit are influenced by both the width of the circuit and its depth or its total number of
quantum gate layers. Here, the Max-cut ansatz circuit with varying rounds is executed on a noisy quantum
simulator with a quantum volume of 32 (one- and two-qubit gate error rates 0.003 and 0.03, respectively). The
(normalized) result fidelity at a specific width and depth is represented by the color shown in the rectangle
at that location and degrades with increasing rounds (depth) or problem size (width).

However, we emphasize that the results in this section should not be taken as representative
of the comparative performance of these quantum platforms in general. They are designed for
illustrative purposes and are not intended to be a formal comparison between quantum systems.
Furthermore, we use the respective manufacturers’ default software and parameter settings. To-
gether with the quantum systems, these software tool sets are developing rapidly; therefore, our
conclusions about quantum system performance represent a snapshot of progress over time. We
hope that users will use the framework to create more thorough benchmark tests and utilize them
to draw conclusions.

Several critical factors affect benchmark algorithm outcomes on current quantum computing
hardware. Errors from gate infidelity and decoherence can lead to significant differences between
the obtained measurement distribution and an ideal system, especially with larger circuits. These
errors accumulate in iterative algorithms like QAOA, reducing the quality of the results. Noise
in QA, such as thermal energy and control line fluctuations, can disrupt qubit states. Inefficient
mappings or embeddings onto specific hardware topologies worsen these effects.

Apart from purely quantum computation, the quality of solutions returned by QAOA depends
significantly on the quality of classical computations, such as compilation and optimization of
beta and gamma for each round. Similarly, the quality of solutions returned by QA depends on the
classical operations of minor embedding and post-processing and the user parameters that control
the quantum computation. In this sense, our benchmark framework should be viewed as a tool to
evaluate the performance of the quantum system performance in combination with algorithmic
choices and parameter settings rather than the performance of a standalone circuit.

When quantum optimization applications are run on hardware, the quality of the result will
degrade compared to a simulator, as the programs will be negatively impacted by noise. To
illustrate the practical limits to execution on hardware, the benchmarks are executed on three

ACM Trans. Quantum Comput., Vol. 5, No. 3, Article 18. Publication date: August 2024.

Optimization Applications as Quantum Performance Benchmarks 18:21

Benchmark Results - MaxCut (2) - Qiskit
Device=ionq_gpu.aria-1-r2-51000 Jan 07, 2023 01:09:18 UTC Benchmark Resuls - MaxCut (2)_ s
shots=1000, rounds=2, degree=3, restarts=1, fixed_angles=False, ~ -r2-51000 Jan 21, 2023 H:27:40 urC
Objective Function=Approximation Ratio 3, restarts=1, fixed_angles=False, Max-Cut Benchmark Quantum Execution Times
 Function=Approximation Ratio 1000 shots vs 5000 shots, 30 iterations
o Ldpu-221006 Jan 07, 2023 01:48:53 UTC UTC

12 50

e
[T TTT T T e e aa RSN s0 X 25m,—sooosmm

(LTI T T T AT e 05§

Problem Size (# of Variables)

Approximation R
Optimality Gap (%)
L a ¥ T

B! |

6 8
4 6 8 10 Problem Size (# of Variables)
ion Time (5) Problem Size (# of Variables)

(a) (b) (©

Fig. 11. Execution on lon trap system. These plots present results from executing the Max-cut benchmark on
the lonQ Aria QPU at different problem sizes (30 iterations, each with 1,000 shots). The area plot (a) shows the
approximation ratio improving for each problem size as the cumulative quantum execution time increases
(to around 2,400 s at ten qubits). The violin plot (b) shows the final optimality gap for each computed ratio
and illustrates how the approximation ratio declines with larger problem sizes (to around 20% at ten qubits).
Plot (c) presents data from a different system, lonQ Harmony, comparing the total quantum execution times,
using 1,000 shots (568 s at ten qubits) and again using 5,000 shots (2,817 s at ten qubits). This indicates that
the cost of executing the Max-cut algorithm on these systems is nearly proportional to the number of shots
used. (Data collected via cloud service).

different classes of quantum computers: ion trap, superconducting transmon, and quantum
annealing system.

5.1 Execution on lon Trap Systems

We first show results from executing the Max-cut benchmark on two remotely accessed gate model
quantum computing systems that use ion trap technology. Quantum computers based on ion traps
offer all-to-all connectivity and high fidelity, but this advantage is offset by longer execution times
than with other technologies.

Figure 11 presents results obtained using the IonQ Aria QPU, a second-generation ion trap com-
puter, and its first-generation predecessor, [onQ Harmony. At each problem size, from 4 qubits to
10 qubits, we executed the benchmark on both systems with a maximum of 30 iterations using
1000 shots each.

The first plot (a) uses the area plot of Section 4.2 to illustrate, for each problem size, how the
approximation ratio improves as the cumulative quantum execution time increases with each it-
eration (to ~ 2,400 s at ten qubits on Aria). At larger problem sizes, the ansatz circuit becomes
deeper, which increases the total execution time and lowers the quality. The degradation in the
final result quality is visible in the violin plot (b), which shows the final optimality gap for each
computed ratio increasing with problem size (to ~ 20% at ten qubits.) However, note that the best
measurement ratio gap is 0%.

Plot (c) of this figure presents data generated using IonQ Harmony, on which we executed the
Max-cut benchmark twice, once using 1,000 shots and again using 5,000 shots. For all problem
sizes, the increase in the cumulative quantum execution time is roughly proportional to the
rise in the number of shots. For example, at ten qubits, the time increases from 568 to 2,817 s,
a factor of 4.959. The height difference between the bars at a specific problem size represents
the difference in time spent executing an additional 4,000 shots over 30 iterations, since both
runs share the same initialization time. From this, we can compute the execution time per shot.
For example, at six qubits, this is (2, 168 — 413)/(4, 000 = 30) or 14.6 ms/shot for ITonQ) Harmony.
These results indicate that the total cost to a user to execute the Max-cut or similar algorithms
on this class of quantum computers includes not only the financial cost, which depends on the

ACM Trans. Quantum Comput., Vol. 5, No. 3, Article 18. Publication date: August 2024.

18:22 T. Lubinski et al.

Benchmark Results - MaxCut (2) - Qiskit
5

Device=ibm_algiers-1k-res-0-240115 Jan 16, 2024 13:53:07 UTC Benchmark Results - MaxCut (2) - Qiskit
shots=1000, rounds=2, degree=3, restarts=1, fixed_angles=False, Device=ibm_algiers-Ik-res-0-240115 Jan 16, 2024 13:53:10 UTC
Obijective Function=Approximation Ratio shots=1000, rounds=2, degree=3, restarts=1, fixed_angles=False, Max-Cut Benchmark Quantum Execution Times
Objective Function=Approximation Ratio 1000 shots vs 5000 shots, 30 iterations
. 0 e Approx. Ratio =~ Tre—— 400 DeVice=ibma guadalupe 221013-p Jan 07, 2023 01:48:53 UTC UTC
o “e- CVaR Ratio @ Quartes = 1000 Shors
3, i~ Gibbs Objective Function 5000 Shote
55 g H
g z <
R :
3 &2 g
g3 &
< 00
10
2
° 6 s
R R Y
SIVSTATAT L 2R R 7 Y B 80T 6T 0l @ 4 6 Problem Size (# of Variables)
Cumulative Quantum Execution Time (s) Problem Size (# of Variables)
@ (b) (©

Fig. 12. Execution on superconducting transmon system. These plots present results from executing the
Max-cut benchmark on the IBM Quantum ibm_algiers system at different problem sizes (30 iterations, each
with 1,000 shots). Execution was performed using the Sampler primitive without error mitigation (resilience
level 0). The area plot (a) shows the approximation ratio improving for each problem size as the cumulative
quantum execution time increases (to ~ 33 s at six qubits). The violin plot (b) shows the final optimality gap for
each computed ratio and illustrates how the approximation ratio declines with larger problem size (to ~ 25%
at six qubits.) Plot (c) presents data from a different system, IBM Quantum ibm_guadalupe, comparing the
total quantum execution times, using 1,000 shots (124 s at ten qubits) and again using 5,000 shots (160 s at
ten qubits). This indicates that the cost of executing the Max-cut algorithm on this system is only marginally
increased using more shots. (Data collected via cloud service.)

shot count but also a reduction in total throughput that is a consequence of the longer execution
times.

We observe that execution times on IonQ Aria are longer than on IonQ) Harmony. For example,
at ten qubits, we see approximately 2,400 and 568 s approximately, respectively. The Aria device
applies an error mitigation scheme to measurement data to improve results. Still, we did not
investigate the reasons behind the increased execution time and improvement in quality on Aria.

5.2 Execution on Superconducting Transmon Systems

Here, we present results from executing the Max-cut benchmark on two gate-model quantum
computing systems that use superconducting transmon technology and can be remotely accessed.
These results highlight and quantify the characteristics of quantum program execution inherent in
hardware implementations built on this technology. Quantum computers based on superconduct-
ing transmons execute more quickly than other technologies. However, this advantage is offset by
reductions in fidelity that can result from the introduction of swap operations to compensate for
limited connectivity between qubits.

Execution on both of the systems was performed using the Qiskit Sampler primitive run
through the IBM Cloud Qiskit Runtime service [91]. Error mitigation was turned off by setting the
“resilience_level” execution argument to 0. While the Sampler offers automatic error mitigation,
we elected not to enable it in our hardware demonstrations. Users are encouraged to gauge for
themselves the impact of selecting this option on both the quality of the result and the total
execution time.

The plots in Figure 12 present results from executing the Max-cut benchmark on the IBM Quan-
tum ibm_algiers system at different problem sizes (30 iterations, each with 1,000 shots). The area
plot (a) shows the approximation ratio improving for each problem size as the cumulative quantum
execution time increases with each iteration (to ~33 s at six qubits). With deeper ansatz circuits at
larger problem sizes, the total execution time grows longer, and the result quality declines. How-
ever, note this system’s overall run-time performance. Each iteration of 1,000 shots requires ~1 s

ACM Trans. Quantum Comput., Vol. 5, No. 3, Article 18. Publication date: August 2024.

Optimization Applications as Quantum Performance Benchmarks 18:23

at four qubits and ~1.1 s at six qubits. This results in completing the QAOA execution, limited to
30 iterations, in 30 and 33 s, respectively.

The violin plot (b) shows the final optimality gap for each computed ratio increasing with larger
problem size (to ~ 25% at six qubits.) as the approximation ratio declines. However, the best mea-
surement ratio gap is 0%, indicating that the algorithm could identify the maximum cut at both
problem sizes.

Plot (c) presents data from the execution of the benchmark on a different system, IBM Quantum
ibm_guadalupe. This is an earlier generation system with execution times that are longer than on
ibm_algiers. However, we use these results to illustrate an important aspect of quantum program
execution on superconducting transmon computers. Here, we compare the total quantum execu-
tion times obtained when running the benchmark using 1,000 shots (124 s at ten qubits) and again
using 5,000 shots (160 s at ten qubits). Since both runs perform similar initialization processing, the
height difference between the bars at each problem size represents the difference in time required
to execute an additional 4,000 shots over 30 iterations. This lets us determine the time to execute
a shot on this quantum computing device. For example, at six qubits, the execution time per shot
can be computed as (160 — 108)/(4, 000 X 30) or 0.43 ms/shot.

These results suggest that using more shots to execute quantum programs only marginally in-
creases the cost of executing the Max-cut optimization or similar algorithms on this system. Users
may take advantage of significantly higher throughput on this class of devices to execute the cir-
cuit repeatedly to search for an optimal result while still achieving a shorter total execution than
with alternative technologies. Additionally, the ability to execute more shots could be explored to
achieve higher-quality results.

5.3 [Execution on a Quantum Annealing System

An important focus of our work was to structure the QED-C benchmark suite to enable the exe-
cution of some benchmarks on back-end systems implemented using quantum technologies other
than gate model quantum circuits. In this section, we describe the execution of the Max-cut bench-
mark on a D-Wave Advantage system, accessed through LEAP Solver “advantage_system4.1,”
as a way to illustrate the framework’s support for test orchestration with varying parameters,
capture of relevant performance metrics, and presentation of results consistently across quantum
technologies.

The plots in Figure 13 present results from executing the Max-cut benchmark on the D-Wave
advantage_system4.1 quantum annealing system at problem sizes ranging from 4 to 320 variables
(each executed with 1,000 shots). As in the corresponding gate-model displays, the area plot (a)
shows the approximation ratio improving for each problem size as the cumulative quantum ex-
ecution time increases (to ~ 0.31 s at 320 variables). Similarly, the violin plot (b) shows the final
optimality gap for each computed ratio, and we see the approximation ratio declining with larger
problem sizes (to ~2% at 320 variables.)

However, the QA benchmark implementation (described in Section 3.2) differs from the QAOA
benchmark, affecting how the results are presented. At each problem size, the QA algorithm is
re-executed from the beginning, doubling the annealing time in steps from 1 to 128 ys. In the
annealing version of the plot (a), for each problem size, the rectangles are drawn overlaid to high-
light this difference from the QAOA benchmark algorithm. Each rectangle represents a complete
execution but with a larger anneal time.

In this way, we illustrate the quality versus time trade-off for quantum annealing in the same
way we do for the QAOA algorithm but unambiguously convey the difference between the algo-
rithms. The intent is to permit a user to quickly see the level of quality that can be expected for a

ACM Trans. Quantum Comput., Vol. 5, No. 3, Article 18. Publication date: August 2024.

18:24 T. Lubinski et al.

Benchmark Results - MaxCut (2) - Ocean

Device=advantage_system4.1 Jan 06, 2023 07:15:23 UTC Benchmark Results - MaxCut (2) - Oce:
shots=1000, degree=3, restarts=1, Device=advantage_systemd.1 Jan 06, 2023 0724152 uTC
Objective Function=Approximation Ratio shots=1000, degree=3, restarts= L
Objective Functi Ratio

—e— Approx. Ratio -®- Best Measurement Ratio
8 -®- CVaR Ratio @ Quartiles
Gibbs Objective Function

Optimality Gap (%)
-

Problem Size (# of Variables)
N
®

°
*
L 3
*
4

J > P \ QA VAV A 2 AV A oo 4D N
B Q B Q S ‘\ N YV w ’b ARG
OV eTe7eY Vateteter 007670707 4 8 12 16 20 24 40 80 160 320
Cumulative Quantum Execution Time (s) Problem Size (# of Variables)

(@) (b)

Fig. 13. Execution on quantum annealing system. These plots present results from executing the Max-cut
benchmark on the D-Wave advantage_system4.1 quantum annealing system at different problem sizes (each
with 1,000 shots). The problem is embedded once and executed over a range of annealing times from 1 ms to
256 ms to evaluate the impact of quantum annealing time on the resulting quality. The area plot (a) shows the
approximation ratio improving for each problem size as the cumulative quantum execution time increases
(to ~ 0.31 s at 320 variables). The violin plot (b) shows the final optimality gap for each computed ratio and
illustrates how the approximation ratio declines with larger problem sizes (to ~2% at 320 variables.) (Data
collected via cloud service).

specific annealing time, which is essential to evaluate the overall cost of the quantum annealing
solution.

The total quantum execution time for the annealing algorithm increases only slightly as the
problem grows, from ~0.22 s at 4 variables. to ~0.32 s at 320 variables. This is because the quantum
execution reported in the plot includes the non-quantum operations of chip programming and
readout in addition to the actual annealing time, which is small relative to these. This suggests
that while increasing the annealing time of the computation may increase the financial cost, it
does not impact the throughput that can be achieved when using quantum annealing.

At the problem sizes tested in this benchmark, the approximation ratios obtained with the QA
benchmark are above 0.90 in all cases. Therefore, the QA area plots use a different color scale to
represent the approximation ratio, making the evolution of the quality visible in this different range
of values. Note also that the QA algorithm benchmark identifies the best cut size for problems with
up to 160 variables.

5.4 Discussion of Hardware Results

The Max-cut extension to the QED-C benchmark suite enables user control over problem definition
and size, shots, rounds, restarts, initial angles, and the choice of optimizer and its parameters. The
number of possible combinations of these settings is large, and we explored a limited subset. In the
hardware tests above, we execute benchmark problems of different sizes on three distinct classes of
quantum computers and explore how the quality of the solution varies as execution time increases.
In two of the tests, we also varied the number of shots (1,000 and 5,000) to gauge the impact of this
parameter on system throughput.

In other tests, using simulations implemented with noise characteristics of these target systems,
we found that setting the rounds parameter to 2 provides a good balance between the QAOA
algorithm’s effectiveness and the degradation from noise in longer circuits. Other tests indicated
that at the small scale to the tests run using QAOA on gate model hardware, a setting of 1,000
shots and two rounds offers the best default configuration for executing on quantum hardware to
minimize utilization of hardware resources during benchmarking.

ACM Trans. Quantum Comput., Vol. 5, No. 3, Article 18. Publication date: August 2024.

Optimization Applications as Quantum Performance Benchmarks 18:25

For interested readers, we reference Appendix E, in which we discuss more extensive demonstra-
tions executed to determine how the many different parameters affect result quality. The results
suggest that multiple restarts could improve benchmark results. Importantly, using fixed initial
angles combined with multiple restarts could be an effective way to provide a standard optimiza-
tion benchmark that does not require complete QAOA execution to evaluate the effectiveness of a
target system, reducing the resources necessary for benchmarking. Also presented in that section
is a parameter-tuning strategy developed with the help of these benchmarks to identify the best
combination of several of the parameters for QAOA execution.

In the results presented above, we depict cumulative quantum execution time using area plots
to illustrate how the quality of the result improves as execution progresses. This time, reported
by hardware providers, reflects the quantum processor (or simulator) usage. It holds significant
importance as it directly impacts the financial cost of utilizing quantum computers, which varies
substantially across systems. Our analysis revealed significant variations in execution throughput
across different classes of quantum computing technology. When evaluating the utility of a quan-
tum computer, it is essential to consider both the financial cost and the time required to complete
tasks.

Another critical factor to consider in evaluating the total cost of a quantum computing solution
is other time costs beyond execution time in the quantum processing. Preparing the quantum pro-
gram for execution involves resources overhead. This can include compilation time, transpilation
to the target topology and gate set, loading the compiled program, and data transfer into and out of
the quantum system. These overhead components directly impact the optimization application’s
total throughput, as every execution will include some or all of them.

These throughput factors can vary widely between vendors, particularly within the execution
environment, and uniquely between users. For example, pre-compilation of the program or co-
location of the classical and quantum processors can dramatically impact total throughput. There
are also numerous vendor-specific hardware settings that we did not test that could potentially
improve results.

Furthermore, the QAOA and QA algorithms, tailored to match their corresponding gate model
and annealing-based hardware paradigms, possess different properties and structures, significantly
impacting computation time and solution quality. This complexity can obscure the effects of hard-
ware and system performance. For QAOA, the choice of optimizer and its parameters can dramat-
ically impact benchmark results.

As stated earlier, the performance results in our study are intended for illustration purposes only
and should not be taken as representative of relative performance in general. Too many variables
contribute to both the quality of the solution and the total run time for these results to be viewed as
a definitive characterization of these systems’ performance. For these reasons, we do not provide
an exhaustive analysis of these factors. A full-scale study of all the factors contributing to quantum
performance to tease out the hardware contribution is beyond the scope of this article. Instead, we
propose that users include the total cost of execution, including these additional overheads, in any
of their studies using the benchmark suite presented here.

It is worth noting that inherent variations can significantly influence the quality of results
in the quantum algorithms employed in these benchmarks. While our study did not delve into
such variations, our benchmark framework offers a platform to explore recent advancements
in optimization algorithms. For instance, the framework could be configured to incorporate
innovations such as pre-computing diagonal matrices [16], investigating the impact of multiple
rounds [17, 18], adopting a multi-angle ansatz [19-22], utilizing an expressive ansatz [23], or
employing a large-scale solver with few qubits [24]. As quantum computing hardware progresses
to incorporate fault tolerance and error correction features, it becomes imperative to advance

ACM Trans. Quantum Comput., Vol. 5, No. 3, Article 18. Publication date: August 2024.

18:26 T. Lubinski et al.

algorithms in tandem. Utilizing more focused versions of the tests illustrated here will be crucial
in assessing the concurrent improvement in performance.

6 Summary and Conclusions

While the current generation of quantum computers may be limited in computational power, these
systems are expected to rapidly evolve and become capable of performing increasingly complicated
tasks. It is thus critical to this advancement effort to establish accurate and validated methods for
measuring progress that are readily available to the developers of these systems and the users who
utilize the resource in solving real-world problems.

To this end, we built on the existing open-source QED-C Application-oriented Benchmark suite,
enhancing it to support benchmarking of hybrid quantum-classical solutions to combinatorial
optimization problems, often cited as a use case for quantum computing. Multiple factors affect
the ability of a quantum computer to produce solutions to combinatorial optimization problems ef-
fectively. The algorithms used to find these solutions provide only an approximate answer, and the
quality of the results is typically a function of the time available for processing, often under tight
constraints. Our benchmarks are designed to provide a mechanism to evaluate these and to provide
valuable and critical insights into options for improving its performance and overall throughput.

We demonstrate the features of this framework and highlight its benefits using the Quantum
Approximate Optimization Algorithm algorithm for execution on gate model systems and demon-
strate its adaptability to other types of solvers by using a Quantum Annealing algorithm executed
on an analog quantum computer system. We demonstrate the capabilities of our framework
using the widely studied Max-cut problem, which offers a simple early stage target for evaluating
quantum computing solutions but can scale to larger application challenges in the future. In future
work, we plan to extend this demonstration to include other technologies, such as cold atoms.

A primary goal of this work was to structure our analysis and presentation methodology to
use methods familiar to quantum computing specialists but inspired by how Operations Research
views the quality of results from a solver in addressing optimization problems. The methods are en-
hanced to account for specific characteristics of quantum solutions, such as statistical sampling or
the iterative nature of the QAQA algorithm. They can inform the user of bottlenecks or anomalies
in execution, which is extremely valuable.

These enhanced analysis and visualization techniques can provide useful information about a
quantum computing solution’s throughput and a detailed understanding of its total cost of owner-
ship. Results from these benchmarks can inform the user about the factors that can be adjusted to
improve performance on these systems. While these techniques have been used in Operations Re-
search for a long time, applying them effectively to quantum computing is still in the early stages.

This article does not include a full-scale comparison between quantum computing systems of
different types, nor does it address benchmarking of classical solutions to optimization problems,
as numerous in-depth studies exist in this area. The performance results in this article are intended
to illustrate the features and benefits of our benchmarking framework. We include benchmarking
the QA algorithm on annealing hardware as a proxy for other solvers using different quantum
technologies. Our work has identified many parameters that impact how a quantum computer
solves an optimization problem well. However, we did not perform an exhaustive study of these or
all options that might produce optimal results. We do not attempt to provide coverage or analysis
over all possible settings of algorithm parameters or vendor-specific execution options.

While we generally show that one class of device may provide higher-quality results while an-
other may execute more quickly, the emphasis in this article is on how the benchmark framework
is structured and how it can be used to explore quantum algorithm execution and performance.
Users can execute these benchmark programs on devices to which they have access and evaluate

ACM Trans. Quantum Comput., Vol. 5, No. 3, Article 18. Publication date: August 2024.

Optimization Applications as Quantum Performance Benchmarks 18:27

for themselves the total cost of ownership of this technology. This is crucial to understanding how
and when quantum computers may be able to offer measurable value.

We consider this work to be forward-looking with respect to the available technology. The com-
plexity of discrete optimization problems motivates the development of methods, such as QAOA,
QA, and others, that may be challenging in the worst-case complexity analysis yet provide value
in practice. Performance-based metrics and benchmarking tools can quantify the progress of these
proposed methods and provide a way of comparing alternative solutions whose capabilities are be-
yond those currently available. As quantum computers evolve, the benchmark methods we have
defined here will be critical to gauge performance improvement.

Code Availability

The code for the benchmark suite introduced in this work is available at https://github.com/SRI-
International/QC-App-Oriented-Benchmarks. Detailed instructions are provided in the repository.

Appendices
A Methods for Combinatorial Optimization

We present a general introduction to the theoretical foundations of combinatorial optimization
problems and their implications for developing the hardware demonstrations to study solver per-
formance (a solver is an algorithm or heuristic implemented in software or hardware). The issues
discussed here informed our decisions about the choice of inputs and performance metrics in de-
signing the QED-C benchmarking framework.

A.1 Combinatorial Optimization Theory

For concreteness, we consider the class of combinatorial optimization problems defined on n
integer-valued variables x = {xy, . .. x,}, containing m constraint functions c(x), and one objective
function f that is a polynomial in x, as follows:

min : f(x)
s.tuci(x) <0 Vie{l,...,m}
x; €Z VYie{l,...,n}. (10)

Given a problem thus described, the algorithmic goal is to find an assignment of integer values to
x that obeys all the constraints and minimizes the value of f(x). For example, this simple problem,

flx) = x1+2x
c(x) : —x1+1<0
ox) @ —x+1<0,

asks to find two positive integers that minimize f(x); an optimal solution x; = 1,x, = 1 has the
objective value f(x) = 3.

This notation is general enough to cover an enormous variety of optimization problems of in-
terest to all industry sectors. To name just a few:

— The Job Shop Scheduling problem and its variations are ubiquitous in industry scheduling
problems associated with the efficient assignment of multiple resources to multiple tasks.
— The Portfolio Optimization problem is of interest to finance. For example, given a list of
items to purchase, select a subset of items to maximize profit and minimize risk.

— The Airport Gate Scheduling problem in the transportation industry is as follows: Given a
list of airport arrival times and passenger connections, assign gates to airplanes to minimize
the total distance passengers must walk to the connecting gates.

ACM Trans. Quantum Comput., Vol. 5, No. 3, Article 18. Publication date: August 2024.

https://github.com/SRI-International/QC-App-Oriented-Benchmarks

18:28 T. Lubinski et al.

— Machine Learning (ML) is a core problem of Artificial Intelligence. Most ML tech-
niques require access to good-quality optimization heuristics as part of an inner-loop
computation that may be performed hundreds or thousands of times. The heuristic finds
input/output pairs that constitute diverse samples of the near-optimal solution space of a
given optimization problem.

The complexity class NP-OPT contains optimization problems (including (A1)) that are defined
in terms of an objective function with a numerical result, as opposed to decision problems with
binary outcomes (e.g., Yes/No or True/False), which inhabit the more famous class NP.

Every problem P in NP can be reformulated (also called translated) as a problem P-OPT in
NP-OPT. For example, in the binary Satisfiability (SAT) problem, Given the Boolean expression
B, does there exist an assignment of variables such that B evaluates to True? can be translated to an
equivalent problem in NP-OPT: Given B-OPT, find an assignment of variables that maximizes the
number of satisfied clauses. The transformation guarantees that an optimal solution to SAT-OPT
is a yes answer to SAT. In this case, the maximum number of satisfied clauses equals the total
number of clauses in B — OPT, then the answer to the binary problem is yes.

The translated SAT-OPT problem is called NP-HARD, because a polynomial-time algorithm for
SAT-OPT could be used to solve SAT, and by extension, every problem in NP could be solved in
polynomial time. Problems that are both NP-HARD and in NP (i.e., binary decision problems) are
called NP-COMPLETE. The famously open question Does P = NP? captures the current unhappy
state of knowledge about these problems: no polynomial-time algorithm is known to exist, and no
one can prove that they cannot exist.

Solving Problems by Translation Among many approaches to solving problems in NP and NP-OPT,
solution-by-transformation has been studied for a handful of problems and algorithms.

This approach is attractive to practitioners when a single solver for the target problem T can
be applied to a wide variety of problems that arise in practice: that is when the overhead cost
of translating individual inputs to match the formulation for T is less than the overhead cost of
implementing a problem-specific solver for each new problem that arises.

The most widely studied versions of this approach involve a subset of problems formulated as
(A1), known as integer linear problems, which can be solved in polynomial time when the objec-
tive function f(x) and constraints c;(x) are all linear. Another common approach is translating
problems to SAT or SAT-OPT, for which efficient heuristics are sometimes known.

The quadratic unconstrained binary optimization (QUBO) problem has also been con-
sidered as a general-purpose target formulation, especially for problems defined on graphs,
before quantum computing came onto the scene [92, 93]. The emergence of quantum annealing
processors that solve QUBOs natively in hardware has sparked recent interest in QUBO and its
variation, the Ising Model (IM) problem, often used in physics applications. The two problems
are identical, except for the change in the domain from binary variables x € {0, 1} (QUBO) to spin
variables s € {—1,+1} (IM).

The theory of NP-COMPLETEness tells us that, in principle, any input for a problem formulated
as (A1) can be transformed in polynomial time into a formulation that can be solved directly using
a quantum computer. See References [29, 31] for tutorials on formulating general optimization
problems expressed by (A1) as QUBOs and IMs. However, due to their small size, the problems
currently being tested on quantum platforms are significantly restricted.

B Quantum Heuristics for Optimization Problems

The benchmarking framework measures performance characteristics of the two leading quantum
heuristics for solving combinatorial optimization problems: the QAOA, which uses a gate-model

ACM Trans. Quantum Comput., Vol. 5, No. 3, Article 18. Publication date: August 2024.

Optimization Applications as Quantum Performance Benchmarks 18:29

quantum computer, and QA, which uses an analog quantum computer. This article presents
a benchmark of these algorithms in the context of their application to solving the Max-cut
problem.

The input for a Max-cut problem is an undirected graph consisting of nodes or vertices (V)
and edges (E). In general, each edge of the graph can be accompanied by a “weight,” but we only
consider unweighted 3-regular graphs in this article. A cut partitions the graph’s nodes into two
sets. Its size is defined as the number of graph edges connecting nodes belonging to different sets.
The Max-cut problem is identifying a cut with the largest size out of all possible cuts.

Max-cut has emerged as a popular benchmark for quantum optimization [12, 25-27] for two
reasons: (1) it is among the most challenging combinatorial optimization tasks, even to obtain
an approximate solution, i.e., APX-Hard [13, 28], (2) as an unconstrained discrete optimization
task, it has a natural encoding as a QUBO [29, 30] or an Ising model [5, 31], ideally fitting cur-
rent quantum optimization algorithms (QAOA, QA). Although Max-cut provides a reasonable first
step for benchmarking current methods, testing more complex optimization tasks, including prob-
lems with constraints, will be important in future work to demonstrate that quantum-accelerated
optimization can impact a broad range of optimization applications.

B.1 Quantum Approximate Optimization Algorithm

The Quantum Approximate Optimization Algorithm [6] is arguably the leading candidate for solv-
ing combinatorial optimization problems using gate model quantum processors. QAOA belongs to
the class of VQA [35] and is usually implemented iteratively wherein a classical optimizer “trains”
a parameterized quantum circuit. QAOA is a heuristic that attempts to solve combinatorial opti-
mization problems such as QUBO problems. Specifically, the problem is encoded in the form of
a specified quadratic function of binary variables, and the objective is to find an assignment for
those variables that minimizes the function.

At the core of QAOA is an “ansatz circuit,” a parameterized quantum circuit. Measurements
in the computational basis at the end of the circuit correspond to sampling from a probability
distribution over possible answers to the problem. A classical optimizer obtains parameter values
with a significant probability of producing optimal or near-optimal solutions. Finally, repeatedly
measuring the circuit with the parameter values the optimizer determines provides approximate
solutions to the problem.

The problem is first codified as a Hamiltonian Hp, such that an optimal problem solution cor-
responds to a ground state(s) or lowest energy eigenstate(s). For a given choice of the number of
“rounds” denoted by p, the QAOA ansatz is given by

B, y) = e PrHmemivpte o=ibiHu pmiviHle |y (11)

where Hyr = ; Xj, is the so-called mixer Hamiltonian, and |+) = ®;H |0) is the equal superposi-
tion state. Here, X is the Pauli X matrix, defined by X |0) = |1) and X |1) = |0). The ansatz state
is thus obtained by implementing repeating and alternating rotations about Hp and Hys as shown
in Figure 14.

The Max-cut problem can be framed in terms of obtaining the ground state of the Hamiltonian

-1
Hp = - Z (1-2:Z), (12)
(i,j)€E

where E denotes the set of (undirected) edges of the graph, and Z is the Pauli-Z matrix satisfying
Z|0) = |0) and Z |1) = —|1). Each computational basis vector corresponds to a possible cut, and its
energy represents the negative of the cut size. Note that the eigenvalues of Hp are all nonnegative

ACM Trans. Quantum Comput., Vol. 5, No. 3, Article 18. Publication date: August 2024.

18:30 T. Lubinski et al.

1 p

(C Tttt T T T - I’ ________________ \

e N N s N\ N !
P H B H B

1 : : :

1

1 : : 1
WM SRt I &

| | eminHp e~ iPHM ! 1 | e~ivpHP e~ iBpHm | |

1 ! 1

] || L. - || I

1 1 .

1 : : 1

! . ! !
+) + = SRS = —{~A]

1 J J : \ J J

v ’ 1

Fig. 14. QAOA circuit consists of p repeating parameterized blocks. First, each qubit is acted upon with
the Hadamard gate to obtain the |+) state. Each block further consists of a rotation involving the problem
Hamiltonian Hp, followed by a rotation involving the mixer Hamiltonian Hy;. Finally, all qubits are measured
on the computational basis {|0), [1)}.

integers and that Equation (12) corresponds to an Ising model with all the coupling constants set
to1/2.

A quantity called the approximation ratio is usually computed to characterize the quality of
solutions. The approximation ratio r is defined as the ratio of the energy expectation value Fg ,, =
(B.y|Hp |B,y), and the ground state energy value Ep;n:

(B.ylHp|B.y)

Emin Emin

= Fﬁ’y =

(13)

"By

Note that the numerator is less than or equal to zero, whereas the denominator, which is the neg-
ative of the largest cut size, is strictly negative. Consequently, 0 < r < 1. The classical optimizer
routine aims to obtain optimal values of the angles f and y, i.e., values corresponding to the high-
est approximation ratio value. Fg ,,, and hence rg , cannot be computed exactly and are instead
approximated by measuring |8, ¥) many (say M) times, or shots, in the computational basis at the
end of the circuit (see Figure 14). Specifically, Fg ,, are approximated by the empirical average of
energy.

B.2 Quantum Annealing

With quantum annealing, an optimization problem is encoded into the machine, after which the
solution is determined through quantum adiabatic evolution to arrive at a near-optimal final state.
The algorithmic approach of quantum annealing is to take advantage of the dynamic evolution of
a quantum system to transform an initial ground state (which is easy to prepare) into the ground
state of a target Hamiltonian, which is unknown and difficult to compute by other means. At a
high level, the protocol strives to identify the low-energy states of a user-specified Hrager model
by conducting an analog interpolation process of the following Hamiltonian:

H(s) = (1 = s)Hit + (S)HTarget- (14)

The interpolation process starts with s = 0 and in the ground state of Hy,;. The annealing pro-
cess involves a smooth interpolation of s from 0 to 1. For a sufficiently long annealing time, the
adiabatic theorem demonstrates that a quantum system remains at the minimal eigenvector of the
interpolating Hamiltonian, H(s) [94-96], and therefore arrives at minimum energy states of Hrarget
at the end of the evolution.

ACM Trans. Quantum Comput., Vol. 5, No. 3, Article 18. Publication date: August 2024.

Optimization Applications as Quantum Performance Benchmarks 18:31

Currently, available quantum annealing hardware focuses on a particular case of Equation (14)
that is limited to the Transverse Field Ising model,

le) + B(S) (Z h,‘Zi + Z]ijZiZj
i i LJ

where X; denotes the Pauli X operator applied to qubit i, Z; denotes the Pauli Z operator applied
to qubit i, and Z;Z; is the tensor product of Z operators on qubits i and j. The two interpolation
functions A(s) and B(s) control a transition from a strong Hj; and weak H; 4 g¢; to a weak Hppi; and
strong Hyargers that is, A(0) > B(0) and A(1) < B(1). The hardware implements a default anneal-
ing “path” through these functions, which user parameters can modify. This way, this hardware,
and the QA algorithm can find ground and low-energy states of a user-specified classical Ising
model specified on the Z basis via the parameters h and J, which encode the local fields and cou-
pling strengths, respectively. Note that the Max-cut problem considered in this work is encoded in
this model by setting h = 0 and J;; = +1 for each edge (i, j) € E that appears in the given Max-cut
graph. If the Max-cut graph cannot be encoded naively in the quantum annealing hardware (i.e.,
the edge set of the Max-cut problem is not a subgraph of the Z;Z; terms in the quantum annealing
hardware), then a process known as minor embedding [97] is used to map the Max-cut problem
into a mathematically equivalent hardware-native problem.

It is interesting to note that the QAOA algorithm outlined in Appendix B.1 can be interpreted as
a Trotterized version of Equation (15) where the number of rounds p determines the Trotter order.
That is, the limit of a QAOA circuit can model the smooth analog QA transition as p — oo. The
approximation ratio is computed for QA in the same way as QAOA by transforming the samples
obtained after annealing to an equivalent distribution.

H(s) = As) ; (15)

C Problem and Implementation Details

To generate the results presented in this article, we execute the Max-cut benchmark on a sin-
gle problem instance at each problem size (or number of qubits). The instance is a randomly
chosen 3-regular graph at each size. A data set defining each instance is contained in the QED-
C benchmark repository at https://github.com/SRI-International/QC-App-Oriented-Benchmarks.
The benchmark can be modified to use other graphs if desired.

bl g Ny oA S gy

Fig. 15. Graph instances chosen for the benchmark implementations. For each problem size ranging from 4
to 16 in increments of 2, we used both QAOA and QA to solve the Max-cut problem for one 3-regular graph
with that number of nodes. (For QA, larger graphs up to 320 nodes were also generated). These graphs show
one solution to the Max-cut problem using colored nodes and edges. Nodes with different colors belong to
the two sets of the solution cut. The number of red edges connecting nodes from different sets is the Max-cut
for that graph.

For reference, in Figure 15, we present some of the graphs used for different size problems. Each
graph shows one solution to the Max-cut problem using colored nodes and edges, as described in
the caption.

In Figure 16, we show the QAOA ansatz circuit generated for the problem of size 6 (number of
variables/qubits) used in this benchmark. The caption describes how the components of the circuit
represent the Hamiltonian that defines the problem.

Below, we show the] matrix required to specify the 6-variable Max-cut problem for the quantum
annealing hardware according to Equation (15):

ACM Trans. Quantum Comput., Vol. 5, No. 3, Article 18. Publication date: August 2024.

https://github.com/SRI-International/QC-App-Oriented-Benchmarks

18:32 T. Lubinski et al.

o i— — —— —
. E—
a1 .
-
- 2
- 5
Rx.
o i 8
R
o 4l b
s
meas
Re |
% —a
— Ry
a 0585
| Rx.
o
Ry
@
-
Ry
as 0585
meas

Fig. 16. Sample QAOA ansatz circuit diagram. The quantum circuit shown here is the ansatz created for the
Max-cut problem with 6 variables shown above, implemented using two rounds on 6 qubits. Each of the two
sets of nine parameterized RZZ gates maps the edges within the graph to the circuit and represents the
problem Hamiltonian. The two sets of parameterized RX gates represent the mixer Hamiltonian. This circuit
implements what is shown in Figure 14 for the specific graph used in the benchmark.

J= . (16)

D Analysis of Execution Time

Execution Time in QAOA. The total time the QAOA algorithm consumes includes both quantum
and classical components. There is a time associated with executing the quantum ansatz circuit on
the quantum processor. Additionally, time is spent on a classical processor to perform the minimiza-
tion function that computes new parameters from measurements obtained after each execution of
the ansatz.

The time to execute the quantum portion of the algorithm itself is broken down into several
components. One is the “Quantum Execution Time,” defined as the time to execute N shots of a
quantum circuit within a quantum processor. Quantum computer hardware providers typically
report this time in a result record and include the time required to initialize the quantum system
before execution and the delay between shots [98] as shown in Equation (17):

tquantum = finit + Nshots - (tshot + tdelay)- (17)

Using QAOA, a quantum circuit is executed repeatedly but with varying parameters. The total
time to execute the circuit, the “Elapsed Quantum Execution Time,” includes the time required to
either compile the circuit or to apply parameters before execution, and to validate and load the
compiled circuit for execution. Another highly variable component is the time spent in a queue
awaiting execution. The elapsed quantum execution time is defined in Equation (18) and must be
collected as part of the benchmarking algorithm, as we did not find this metric directly available

ACM Trans. Quantum Comput., Vol. 5, No. 3, Article 18. Publication date: August 2024.

Optimization Applications as Quantum Performance Benchmarks 18:33

in most systems:
telapsedfquantum = Iqueue T tcompile + tload T fquantum- (18)
The sum of the quantum and elapsed quantum times for all iterations of the QAOA algorithm,
the “Cumulative Quantum Execution Time” and “Cumulative Elapsed Quantum Execution Time,’
respectively, are defined in Equations (19) and (20). The financial cost of quantum computation is
often tied to the cumulative quantum execution time in many hardware systems. The elapsed time
for each iteration depends on the execution parameters and may be influenced by the system’s
ability to support parameterized execution or the inclusion of hidden classical post-processing
time, such as error mitigation:

Mter
12 cum_quantum — tquantum(iter) P (1 9)
iter=1
Mter
tcum_elapsed_quantum = telapsed_quantum(iter) . (2 0)
iter=1

“Classical Execution Time” for QAOA is the sum of the time needed to create the ansatz with spe-
cific parameters and the time used by the minimizer to process measurement results and generate
new parameters during a particular iteration iter, as in Equation (21). The “Cumulative Classical
Execution Time” is the sum of the classical execution times for all iterations as in Equation (22). For
small problems, this time is typically insignificant but can increase with problem size and rounds.
It may also be impacted by the system’s ability to support parameterized execution and reduce
creation time:

Lclassical = Icreate T Loptimizes (21)
Mter

tcum_classical = tclassical(iter)' (22)
iter=1

The total execution time for QAOA is the sum of the cumulative elapsed quantum time
teum_elapsed_quantum» and classical compute time tcum_classical- Variability due to different processing
options or choice of classical optimizer can result in widely differing result quality and execution
times.

Execution time in QA. For QA, the “Quantum Execution Time” is defined as the time the quan-
tum processing unit (QPU) takes to execute N reads (samples) using a specified anneal time. This
time is reported by the hardware as “qpu_access_time” and includes “qpu_programming_time” of
~ 16ms, and “qpu_sampling_time,” which is “anneal_time” plus “readout_time” (~ 0.25ms), multi-
plied by the number of reads. Quantum execution time is defined in Equation (23):

tquantum = zLqpufaccess = zLqpufpmgramming + tqpu_sampling' (23)

The “Elapsed Quantum Execution Time” includes the time required to issue the sample com-
mand to the (remote) backend hardware system, wait for it to complete, and receive a fully re-
solved sample set. It is defined in Equation (24). It includes the quantum execution time, along
with the time for computing a minor embedding of the input to match the specific qubit connec-
tion structure inside the QPU, and the time to resolve solutions by mapping them back to the
original (unembedded) problem. The embedding cost is measured once for each annealing time
we test, which is not always necessary in practice, because embeddings can be reused:

telapsed_quantum = tqueue + Tembed + tsample + tquantum + Tresolve- (24)

ACM Trans. Quantum Comput., Vol. 5, No. 3, Article 18. Publication date: August 2024.

18:34 T. Lubinski et al.

For QA, the cumulative times reported in Figure 2 reflect measurements of tquantum for increas-
ing anneal times, as specified on line 6 of the benchmarking code. The tclapsed_quantum Mmetric
includes all the time needed to perform the annealing operation and obtain a final sample set.
This is comparable to the cumulative times in QAOA. To illustrate the difference between the two,
we visualize the data in a slightly different style. Each bar represents a different anneal time and
has a slight vertical offset from the one before it to convey that it represents the time starting at 0.
See Section 5.3 for a presentation of these metrics collected from execution on quantum annealing
hardware.

E Result Quality and Hyper-Parameters

The performance of an optimization algorithm is often studied in terms of the trade-off between
the quality of the obtained result and the resources required to achieve it. In many real-world
applications, a high-quality result is required in a limited time. It is desirable to predict whether
obtaining a solution with acceptable quality within the available time budget and to determine the
parameter values that result in high-quality outputs is possible.

However, many options (or “hyper-parameters”) can be used to control the execution of QAOA,
and conclusions must not be drawn from just one set of results obtained with limited exploration.
While various hyper-parameters, such as the number of shots, choice of the classical optimizer,
number of iterations, and rounds, affect result quality, we focus on the effects of values of initial
angles on the performance in this section. We end this section by discussing a parameter tuning
strategy to help identify good hyper-parameters for QAOA execution. (Similar strategies can be
developed for QA but are not discussed here.)

While this section refers to QAOA in the context of the Max-cut problem, most of the conclusions
hold more generally for QAOA. Throughout this section, we use the terms cut size and energy
interchangeably, where energy refers to the eigenvalues of the Hamiltonian in Equation (12).

E.1 Initial Angles and Restarts

While several hyper-parameters, such as rounds, shots, number of optimizer iterations, and so on,
affect the ability of the iterative QAOA execution to obtain a high-quality output, perhaps the most
critical and non-trivial choice is that of the initial values of the angles.

The classical optimization routine faces several challenges. Finding the optimal angles for QAOA
has been shown to be an NP-HARD problem [99]. Additionally, the landscape of the objective
function suffers from “barren plateaus,” a condition where the gradient of the objective function
is close to zero, hindering training of the angles [100]. Barren plateaus can also be exacerbated by
the choice of objective function [101], noise in quantum hardware [102], or large entanglement in
the ansatz [103].

A consequence of these challenges is that the choice of the initial angles (i.e., f and p) can
substantially affect the optimizer’s ability to reach the optimal value of the objective function.
For example, Figure 17(a) shows the trajectories of the angles probed by the optimizer for two
randomly chosen initial angles. The distribution of the cut sizes obtained at the end of 30 optimizer
iterations is substantially different, as shown in Figure 17(c). While one choice results in an output
practically indistinguishable from a random sampling of bitstrings, the other results in a high-
quality distribution of cuts. We also plot a histogram of the approximation ratios in Figure 17(b)
from 100 random initializations.

These issues have spurred substantial research to address and overcome these challenges.
Although many proposals have been put forth, keeping in mind our objective of benchmarking
the performance of quantum solutions available to end users, we focus on implementing the most

ACM Trans. Quantum Comput., Vol. 5, No. 3, Article 18. Publication date: August 2024.

Optimization Applications as Quantum Performance Benchmarks 18:35

Nodes=4, Rounds=1 parameter sweep

Histogram of Approximation Ratios Empirical Distribution of cut sizes
Device=gasm_simulator Sep 09, 2022 22:49:48 UTC Device=gasm_simulator Sep 09, 2022 22:49:44 UTC
shots=5000, width=12, degree=3, restarts=100 Shots=5000; width=12, degree=3, restarts=100

Fraction of Total Counts

(@) (b) (©

Fig. 17. Values of initial angles affect result quality. (a) Parameter trajectories and approximation ratio land-
scape: The COBYLA optimizer navigates the parameter space differently depending on the initial parameter
values. The trajectory taken for two randomly chosen initial angle values (labeled s1 and s2) is shown in the
background of the approximation ratio landscape, obtained from a state-vector simulation. The parameters at
the end of the 30 iterations are labeled f1and f2, respectively. (b) Histogram of approximation ratios obtained
at the end of 30 COBYLA iterations from QAOA simulations for 100 restarts succinctly shows the variability
associated with initial conditions. Although most restarts result in an approximation ratio between 0.75 and
0.85, some result in a substantially lower approximation ratio. (c) The distribution of cut sizes at the end of
30 iterations for two initial conditions is substantially different, with initial condition 2 almost overlapping
with a random sampling of bit-strings, while initial condition 1 results in a relatively high approximation
ratio of ~ 0.83.

Benchmark Results - MaxCut (2) - Qiskit
Device=gasm_simulator_mc10 Jan 07, 2023 21:00:20 UTC
shots=1000, rounds=2, degree=3, restarts=10, fixed_angles=False,
Objective Function=Approximation Ratio

@ Quartiles

Optimality Gap (%)

4 6 8 10 12 14 16
Problem Size (# of Variables)

Fig. 18. Optimality gap with multiple restarts. We show the results obtained when executing the Max-cut
benchmark 10 times at each problem size. The result shown for each problem size represents the “best” result
obtained for that problem size across all 10 restarts, defined as the result showing the highest approximation
ratio.

basic approach for mitigating some of these effects. Specifically, we implement multiple “restarts,’
i.e.,, we run QAOA multiple times using random angles as initial angles for the optimizer and
report the output corresponding to the best restart.

To this end, our benchmarking framework allows users to specify the number of restarts through
aparameter called max_circuits. This parameter is set to 1, and all the initial f and y angles are set
to 1. Thus, all the results in Section 5 use these starting angles. For restarts > 1, for each problem
size, the output corresponding to the best restart is displayed in the plots. Figure 18 shows the
output corresponding to 10 restarts for the same parameters as Figure 5. The quality of the results
is noticeably better for smaller problem sizes. The user can also specify initial angles manually
using the thetas_array parameter.

ACM Trans. Quantum Comput., Vol. 5, No. 3, Article 18. Publication date: August 2024.

18:36 T. Lubinski et al.

Benchmark Results - MaxCut (2) - Qiskit
Device=qgasm_simulator_fa_1 Jan 07, 2023 20:35:15 UTC
shots=1000, rounds=2, degree=3, restarts=1, fixed_angles=True,
Objective Function=Approximation Ratio

& Quartiles

40

351

w
S

251

Optimality Gap (%)

4 6 8 10 12 14 16
Problem Size (# of Variables)
Fig. 19. Optimization-free QAOA implementation using fixed angles. To avoid restarts and the costly opti-
mization loop, one may use the “fixed angles” guaranteed to produce a good quality output [104]. Here is
the optimality gap using fixed angles for rounds=2 without implementing the minimizer routine.

E.2 Fixed Angle Conjecture

Although multiple initializations or restarts mitigate some of the difficulties faced by the optimizer,
the cost of implementing the optimizer routine multiple times can be substantial, requiring many-
fold quantum) processing unit access time.

A recent study [104] proposes an optimization-free QAOA implementation, executing the
ansatz for each problem only once using the so-called “fixed angles” The authors show that at
these angles, the approximation ratio is higher than the threshold for every problem instance for
3-regular graphs. Although these angles are not the global maxima of the approximation ratio
landscape, they guarantee close to optimal performance without performing the costly optimizer
loop. For example, Figure 19 shows that the optimality gap for all problem sizes (except 4) with
fixed angles is practically the same as in Figure 18, which required 10 restarts with 30 optimizer
iterations each. This corresponds to a reduction in QPU access time by a factor of 300 while
yielding similar quality results.

Hence, the benchmark framework includes a provision for choosing the initial angles to be the
fixed angles by setting the use_fixed_angles flag to True. The optimizer iterations can be set
simultaneously to 1 to avoid using the optimizer routine.

In Figure 20, we present results from a test run using this benchmark feature to explore
“parameter concentration” [105]. For problem sizes ranging from 4 to 20 qubits on 3-regular
graphs, 100 random initial angles were tested using the Max-cut benchmark, with 30 optimizer
iterations each. This plot shows the y values obtained as final values by the optimizer and the
corresponding approximation ratios. The angles obtained by the optimizer are shown to cluster
around four values, most of which match the values proposed in Reference [104]. The choice
of initial angles influences the algorithm’s outcome, and a strategy for selecting these angles is
critical for optimal performance.

E.3 Parameter Selection Strategy

Previously, we showed how the choice of initial angles and the number of rounds, shots, and
restarts could affect the performance of the QAOA implementation. In addition, the performance
could vary from one problem instance to another. These considerations raise the following ques-
tion: For previously unseen problem instances, can we predict parameter values that are likely to
result in the best performance? Specifically, given a notion of resource (e.g., QPU access time) and

ACM Trans. Quantum Comput., Vol. 5, No. 3, Article 18. Publication date: August 2024.

Optimization Applications as Quantum Performance Benchmarks 18:37

Benchmark Results - MaxCut (2) - Qiskit
rounds=1, Objective Function=Approximation Ratio
Y1

Energy Approximation Ratio

Fig. 20. Angles cluster around certain values. For 3-regular graphs with sizes ranging from 4 qubits to 20
qubits, we choose 100 random initial angles and run 30 (COBYLA) optimizer iterations each. The final angles
obtained by the optimizer cluster around four values. The y values are shown here, along with the corre-
sponding approximation ratios.

a metric for result quality (e.g., approximation ratio), what parameter values should be used to get
optimal performance given a resource budget?

With that goal in mind, a benchmarking framework is being developed for parameterized
stochastic optimization algorithms such as QAOA and quantum annealing in a parallel effort [106].
Although this framework [107] applies to other algorithms, we apply it to the QAOA simulations
using results obtained from the QED-C benchmarking framework. This framework generates
parameter recommendations over a grid of resource values and also plots the corresponding
performance compared to the best performance seen in the data.

The input to the framework consists of performance data obtained empirically by implementing
an algorithm on various problem instances. The data includes the quality of the result, which
we call the performance metric, corresponding to many algorithm executions over a range of
parameter value settings. A function is provided to compute the resources expended for each
execution.

The framework splits the problem instances into testing and training sets. A statistical analysis
of the training set data is then used to identify the parameter values likely to lead to high perfor-
mance when applied to the test set. However, for each instance in the test set, parameter values as
a function of the resource corresponding to the highest result quality found so far are identified
from the available data for all resource grid values. These are summarized in a curve denoted as
“virtual best”

Thus, the parameter values corresponding to the virtual best simulate knowing ahead of time
for each instance what the best parameters would be for any resource value. The virtual best pro-
vides a bound on the performance that any parameter-setting strategy using the data provided
for the analysis can provide. Thus, the recommended and virtual best parameters are plotted to-
gether in a “strategy plot.” The virtual best performance is plotted in a separate plot along with
the performance obtained on the test set using the recommended parameters.

We now present an analysis of QAOA using this framework. Figure 21 shows the obtained per-
formance profile, while Figure 22 shows the strategy plots generated by the framework, using
an 80%-20% train/test instances split. The QAOA algorithm uses noiseless simulations with two

ACM Trans. Quantum Comput., Vol. 5, No. 3, Article 18. Publication date: August 2024.

18:38 T. Lubinski et al.

Approximation Ratio

—e— VirtualBest
—e— Recommended Averaged Parameters

162 163 16‘ 10° 108 107
Resource=COBYLA Iterations x Shots x Restarts

Fig. 21. Solution quality vs. total resource utilization: The virtual best provides a bound on the best perfor-
mance attainable by any parameter strategy. Here are the performance profiles of the virtual best, along with
the performance obtained from the parameters recommended by the stochastic-benchmarking framework
[107]. The red dashed vertical line corresponds to the resource value used throughout the hardware section
(30 iterations, 1,000 shots, 1 restart). The shaded area highlights the regime, after which the approximation
ratio drops with increasing resources.

w
S

0.85

N
=)

COBYLA lterations
=
o

L
e
3
bl

Shots
pproximation Ratio

—0.70

Restarts
=
A

0.60

100 b W e VR " fol = i
102 10° 104 10° 10°¢ 107
Resource=COBYLA lterations x Shots x Restarts

I virtualBest ~—— Recommended Averaged Parameter

Fig. 22. Strategy plots: For each resource value, the framework recommends values for minimizer iterations,
shots, and the number of restarts likely to lead to the best performance. For comparison, the virtual best
parameters are also plotted as colored curves, with the colors indicating the corresponding approximation
ratio. The red dashed vertical line corresponds to the resource value used throughout the hardware section
(30 iterations, 1,000 shots, 1 restart). The shaded area highlights the regime, after which the approximation
ratio drops with increasing resources.

rounds for 50 distinct 3-regular graphs of size 12. We implemented runs corresponding to a range
of values for restarts [1,...,100], number of classical optimizer (COBYLA) iterations [1,...,30], and
shots [50.,...,5,000]. We capture the number of times the processing unit was accessed by defining
the resource as the product of these parameters.

ACM Trans. Quantum Comput., Vol. 5, No. 3, Article 18. Publication date: August 2024.

Optimization Applications as Quantum Performance Benchmarks 18:39

Figure 21 can be used to determine the relative performance of the recommended parameter val-
ues with respect to the optimistic bound given by the virtual best. In this example, we observe that
both lines almost overlap, showing that good parameter values are shared across the training (rec-
ommended parameter values) and testing (virtual best parameter values) instances. In particular,
these results show that, with increasing access to the processing unit, the quality of the response
increases, as measured by the approximation ratio up to a certain point. The shaded area in this
figure shows a regime of the resource quantity in which the performance metric decreases with
increasing resources. This is counterintuitive and reveals that, given the data used to generate
this analysis, the best parameter values are given with the COBYLA iterations set to 30 and 100
restarts and only 50 shots. Combinations of parameter values that yield larger resource usage can
diminish the approximation ratio. This observation suggests that increasing the number of shots
deteriorates the performance if allowed more processing unit access.

Moreover, it highlights that the number of classical minimizer iterations should be increased
before the number of restarts when more resources become available, always aiming to keep
the number of shots small. The dashed red line shows the equivalent resource usage of the
simulations in the remaining of Appendix E. Notice how the recommended parameter values, as
seen in Figure 22, i.e., 27 COBYLA iterations, 20 restarts, and 50 shots, are not the same as the ones
used in the other hardware demonstrations, i.e., 30 COBYLA iterations, 1 restart, and 1000 shots.
Using this analysis and specifying a performance metric and a resource function, empirical data
can be used to inform parameter setting values. Moreover, these results can also inform about
the instances themselves. In this example, the problem instances are relatively small, i.e., 12 node
graphs with a solution space of size 2'? = 4,096. When solving the problem with QAOA, sampling
the output distributions extensively with many shots does not improve the approximation
ratio as much as reinitializing the problem (restarts) or allowing more classical optimization
iterations.

These parameter-setting strategy analyses provide practical recommendations for using algo-
rithms like the one discussed in this manuscript.

Acknowledgments

D-Wave, Ocean, and Advantage are trademarks of D-Wave Systems, Inc. IBM, Qiskit, IBM Q, and
IBM Quantum System Two are trademarks of International Business Machines Corporation. IonQ,
IonQ Harmony, and IonQ Aria are trademarks of IonQ, Inc. We acknowledge Jerry Gamble of
Verizon Corporation for his contribution to code development and editorial efforts on this manu-
script. We acknowledge Jason Necaise in the Department of Physics and Astronomy, Dartmouth
College (previously with D-Wave Systems), for his contribution to code development. We thank
Mark Johnson (D-Wave), Andrew Wack (IBM), David McKay (IBM), Paul Nation (IBM), Luning
Zhao (IonQ), Ananth Kaushik (IonQ), Farshud Sorouifar (Ohio State University), Amos Anderson
(Quantum Circuits), Steve Reinhardt (Quantum Machines), Davide Venturelli (USRA/NASA), Filip
Maciejewski (USRA/NASA), and others for providing comments on this manuscript.

References

[1] Ehsan Zahedinejad and Arman Zaribafiyan. 2017. Combinatorial Optimization on Gate Model Quantum Computers:
A Survey. Retrieved from http://dx.doi.org/10.48550/ARXIV.1708.05294

[2] Daniel J. Egger, Claudio Gambella, Jakub Marecek, Scott McFaddin, Martin Mevissen, Rudy Raymond, Andrea
Simonetto, Stefan Woerner, and Elena Yndurain. 2020. Quantum computing for finance: State-of-the-art and future
prospects. IEEE Trans. Quantum Eng. 1 (2020), 1-24. DOI : http://dx.doi.org/10.1109/TQE.2020.3030314

[3] Catherine C. McGeoch and Cong Wang. 2013. Experimental evaluation of an adiabiatic quantum system for combi-
natorial optimization. In Proceedings of the ACM International Conference on Computing Frontiers (CF’13). ACM, New
York, NY, Article 23, 11 pages. DOI : http://dx.doi.org/10.1145/2482767.2482797

ACM Trans. Quantum Comput., Vol. 5, No. 3, Article 18. Publication date: August 2024.

http://dx.doi.org/10.48550/ARXIV.1708.05294
http://dx.doi.org/10.1109/TQE.2020.3030314
http://dx.doi.org/10.1145/2482767.2482797

18:40 T. Lubinski et al.

[4] A. B. Finnila, M. A. Gomez, C. Sebenik, C. Stenson, and J. D. Doll. 1994. Quantum annealing: A new method for
minimizing multidimensional functions. Chem. Phys. Lett. 219, 5 (1994), 343-348. DOI : http://dx.doi.org/10.1016/0009-
2614(94)00117-0

[5] Tadashi Kadowaki and Hidetoshi Nishimori. 1998. Quantum annealing in the transverse Ising model. Phys. Rev. E 58
(Nov. 1998), 5355-5363. Issue 5. DOI : http://dx.doi.org/10.1103/PhysRevE.58.5355

[6] Edward Farhi, Jeffrey Goldstone, and Sam Gutmann. 2014. A quantum approximate optimization algorithm. Retrieved
from https://arXiv:1411.4028. DOI : http://dx.doi.org/10.48550/arXiv.1411.4028

[7] Gavin E. Crooks. 2018. Performance of the Quantum Approximate Optimization Algorithm on the Maximum Cut
Problem. Retrieved from https://arxiv:quant-ph/1811.08419

[8] Jonathan Wurtz and Peter Love. 2021. MaxCut quantum approximate optimization algorithm performance guaran-
tees for p>1. Phys. Rev. A 103, 4 (Apr. 2021), 042612. DOI : http://dx.doi.org/10.1103/PhysRevA.103.042612

[9] Immanuel Trummer and Christoph Koch. 2015. Multiple Query Optimization on the D-Wave 2X Adiabatic Quantum
Computer. Retrieved from http://dx.doi.org/10.48550/ ARXIV.1510.06437

[10] Yuchen Pang, Carleton Coffrin, Andrey Y. Lokhov, and Marc Vuffray. 2021. The potential of quantum annealing for
rapid solution structure identification. Constraints 26, 1 (Oct. 2021), 1-25. DOI : http://dx.doi.org/10.1007/s10601-020-
09315-0

[11] Byron Tasseff, Tameem Albash, Zachary Morrell, Marc Vuffray, Andrey Y. Lokhov, Sidhant Misra, and Carleton Cof-
frin. 2022. On the Emerging Potential of Quantum Annealing Hardware for Combinatorial Optimization. Retrieved
from http://dx.doi.org/10.48550/ARXIV.2210.04291

[12] M.R. Garey, D. S. Johnson, and L. Stockmeyer. 1976. Some simplified NP-complete graph problems. Theor. Comput.
Sci. 1, 3 (Feb. 1976), 237-267. DOI : http://dx.doi.org/10.1016/0304-3975(76)90059- 1

[13] Christos H. Papadimitriou and Mihalis Yannakakis. 1991. Optimization, approximation, and complexity classes. 7.
Comput. Syst. Sci. 43, 3 (1991), 425-440. DOI : http://dx.doi.org/10.1016/0022-0000(91)90023-X

[14] Application-Oriented Performance Benchmarks for Quantum Computing. 2020. Retrieved from https://github.com/
SRI-International/QC-App-Oriented-Benchmarks

[15] Thomas Lubinski, Sonika Johri, Paul Varosy, Jeremiah Coleman, Luning Zhao, Jason Necaise, Charles H. Baldwin,
Karl Mayer, and Timothy Proctor. 2023. Application-oriented performance benchmarks for quantum computing.
IEEE Trans. Quant. Eng. 4 (2023), 1-32. DOI : http://dx.doi.org/10.1109/TQE.2023.3253761

[16] Danylo Lykov, Ruslan Shaydulin, Yue Sun, Yuri Alexeev, and Marco Pistoia. 2023. Fast simulation of high-depth
QAOA circuits. In Proceedings of the Workshops of The International Conference on High Performance Computing,
Network, Storage, and Analysis (SC-W’23). ACM. DOI: http://dx.doi.org/10.1145/3624062.3624216

[17] Yingyue Zhu, Zewen Zhang, Bhuvanesh Sundar, Alaina M. Green, C. Huerta Alderete, Nhung H. Nguyen, Kaden
R. A. Hazzard, and Norbert M. Linke. 2022. Multi-round QAOA and advanced mixers on a trapped-ion quantum
computer. Quantum Sci. Technol. 8, 1 (Nov. 2022), 015007. DOI : http://dx.doi.org/10.1088/2058-9565/ac91ef

[18] Ritajit Majumdar, Dhiraj Madan, Debasmita Bhoumik, Dhinakaran Vinayagamurthy, Shesha Raghunathan, and
Susmita Sur-Kolay. 2021. Optimizing Ansatz Design in QAOA for Max-cut. Retrieved from https://arxiv:quant-
ph/2106.02812 https://arxiv.org/abs/2106.02812

[19] Rebekah Herrman, Phillip C. Lotshaw, James Ostrowski, Travis S. Humble, and George Siopsis. 2021. Multi-
angle Quantum Approximate Optimization Algorithm. Retrieved from https://www.nature.com/articles/s41598-022-
10555-8

[20] Rebekah Herrman. 2022. Relating the Multi-angle Quantum Approximate Optimization Algorithm and Continuous-
time Quantum Walks on Dynamic Graphs. Retrieved from https://arxiv.org/abs/2209.00415

[21] Kaiyan Shi, Rebekah Herrman, Ruslan Shaydulin, Shouvanik Chakrabarti, Marco Pistoia, and Jeffrey Larson. 2022.

Multiangle QAOA does not always need all its angles. In Proceedings of the IEEE/ACM 7th Symposium on Edge Com-

puting (SEC’22). IEEE. DOI : http://dx.doi.org/10.1109/sec54971.2022.00062

Michelle Chalupnik, Hans Melo, Yuri Alexeev, and Alexey Galda. 2022. Augmenting QAOA Ansatz with Multiparam-

eter Problem-Independent Layer. Retrieved from https://ieeexplore.icee.org/document/9951267

[23] V. Vijendran, Aritra Das, Dax Enshan Koh, Syed M. Assad, and Ping Koy Lam. 2023. An Expressive Ansatz for Low-
Depth Quantum Optimisation. Retrieved from https://arxiv.org/abs/2302.04479

[24] Marco Sciorilli, Lucas Borges, Taylor L. Patti, Diego Garcia-Martin, Giancarlo Camilo, Anima Anandkumar, and
Leandro Aolita. 2024. Towards Large-scale Quantum Optimization Solvers with Few Qubits. Retrieved from https:
//arxiv:quant-ph/2401.09421

[25] Daniel Beaulieu and Anh Pham. 2021. Evaluating Performance of Hybrid Quantum Optimization Algorithms for
MAXCUT Clustering using IBM Runtime Environment. Retrieved from http://dx.doi.org/10.48550/ ARXIV.2112.03199

[26] David Amaro, Carlo Modica, Matthias Rosenkranz, Mattia Fiorentini, Marcello Benedetti, and Michael Lubasch.
2022. Filtering variational quantum algorithms for combinatorial optimization. Quantum Sci. Technol. 7, 1 (Jan. 2022),
015021. DOI : http://dx.doi.org/10.1088/2058-9565/ac3e54

[22

—

ACM Trans. Quantum Comput., Vol. 5, No. 3, Article 18. Publication date: August 2024.

http://dx.doi.org/10.1016/0009-2614(94)00117-0
http://dx.doi.org/10.1103/PhysRevE.58.5355
https://arXiv:1411.4028
http://dx.doi.org/10.48550/arXiv.1411.4028
https://arxiv:quant-ph/1811.08419
http://dx.doi.org/10.1103/PhysRevA.103.042612
http://dx.doi.org/10.48550/ARXIV.1510.06437
http://dx.doi.org/10.1007/s10601-020-09315-0
http://dx.doi.org/10.48550/ARXIV.2210.04291
http://dx.doi.org/10.1016/0304-3975(76)90059-1
http://dx.doi.org/10.1016/0022-0000(91)90023-X
https://github.com/SRI-International/QC-App-Oriented-Benchmarks
http://dx.doi.org/10.1109/TQE.2023.3253761
http://dx.doi.org/10.1145/3624062.3624216
http://dx.doi.org/10.1088/2058-9565/ac91ef
https://arxiv:quant-ph/2106.02812
https://arxiv.org/abs/2106.02812
https://www.nature.com/articles/s41598-022-10555-8
https://arxiv.org/abs/2209.00415
http://dx.doi.org/10.1109/sec54971.2022.00062
https://ieeexplore.ieee.org/document/9951267
https://arxiv.org/abs/2302.04479
https://arxiv:quant-ph/2401.09421
http://dx.doi.org/10.48550/ARXIV.2112.03199
http://dx.doi.org/10.1088/2058-9565/ac3e54

Optimization Applications as Quantum Performance Benchmarks 18:41

[27]

[28]
[29]

[30]

[31]

[32]

[33]

[34]

[35]

[36]

[37]

[38]

[39]

[40]

[41]

[42]

[43]

[44]
[45]
[46]

[47]

Linghua Zhu, Ho Lun Tang, George S. Barron, F. A. Calderon-Vargas, Nicholas J. Mayhall, Edwin Barnes, and Sophia E.
Economou. 2020. An Adaptive Quantum Approximate Optimization Algorithm for Solving Combinatorial Problems
on a Quantum Computer. Retrieved from https://dx.doi.org/10.48550/ARXIV.2005.10258

Johan Hastad. 2001. Some optimal inapproximability results. J. ACM 48, 4 (July 2001), 798-859. DOI : http://dx.doi.
org/10.1145/502090.502098

Fred Glover, Gary Kochenberger, and Yu Du. 2018. A Tutorial on Formulating and Using QUBO Models. Retrieved
from http://dx.doi.org/10.48550/ARXIV.1811.11538

Leo Zhou, Sheng-Tao Wang, Soonwon Choi, Hannes Pichler, and Mikhail D. Lukin. 2020. Quantum approximate
optimization algorithm: Performance, mechanism, and implementation on near-term devices. Phys. Rev. X 10, 2 (June
2020). DOI : http://dx.doi.org/10.1103/physrevx.10.021067

Andrew Lucas. 2014. Ising formulations of many NP problems. Front. Phys. 2 (2014). Retrieved from http://dx.doi.org/
10.3389/fphy.2014.00005

Francisco Barahona, Martin Grétschel, Michael Jiinger, and Gerhard Reinelt. 1988. An application of combinatorial
optimization to statistical physics and circuit layout design. Oper. Res. 36, 3 (June 1988), 493-513. DOI : http://dx.doi.
org/10.1287/opre.36.3.493

Bahram Alidaee, Gary A. Kochenberger, and Ahmad Ahmadian. 1994. 0-1 quadratic programming approach for
optimum solutions of two scheduling problems. Int. J. Syst. Sci. 25, 2 (Feb. 1994), 401-408. DOI : http://dx.doi.org/10.
1080/00207729408928968

Cristina Bazgan and Zsolt Tuza. 2008. Combinatorial 5/6-approximation of max cut in graphs of maximum degree 3.
7. Discrete Algor. 6, 3 (2008), 510-519. DOI : http://dx.doi.org/10.1016/j.jda.2007.02.002

M. Cerezo, Andrew Arrasmith, Ryan Babbush, Simon C. Benjamin, Suguru Endo, Keisuke Fujii, Jarrod R. McClean,
Kosuke Mitarai, Xiao Yuan, Lukasz Cincio, and Patrick J. Coles. 2021. Variational quantum algorithms. Nature Rev.
Phys. 3, 9 (Aug. 2021), 625-644. DOI : http://dx.doi.org/10.1038/s42254-021-00348-9

E.Knill, D. Leibfried, R. Reichle, J. Britton, R. B. Blakestad, J. D. Jost, C. Langer, R. Ozeri, S. Seidelin, and D. J. Wineland.
2008. Randomized benchmarking of quantum gates. Phys. Rev. A 77 (Jan. 2008), 012307. Issue 1. DOI:http://dx.doi.
org/10.1103/PhysRevA.77.012307

Easwar Magesan, J. M. Gambetta, and Joseph Emerson. 2011. Scalable and robust randomized benchmarking of
quantum processes. Phys. Rev. Lett. 106 (May 2011), 180504. Issue 18. DOI : http://dx.doi.org/10.1103/PhysRevLett.106.
180504

Robin Blume-Kohout, John King Gamble, Erik Nielsen, Kenneth Rudinger, Jonathan Mizrahi, Kevin Fortier, and Peter
Maunz. 2017. Demonstration of qubit operations below a rigorous fault tolerance threshold with gate set tomography.
Nat. Commun. 8 (Feb. 2017), 14485. DOI : http://dx.doi.org/10.1038/ncomms14485

Jay M. Gambetta, A. D. Cércoles, Seth T. Merkel, Blake R. Johnson, John A. Smolin, Jerry M. Chow, Colm A. Ryan,
Chad Rigetti, S. Poletto, Thomas A. Ohki, et al. 2012. Characterization of addressability by simultaneous randomized
benchmarking. Phys. Rev. Lett. 109, 24 (2012), 240504. Retrieved from https://journals.aps.org/prl/abstract/10.1103/
PhysRevLett.109.240504

Mohan Sarovar, Timothy Proctor, Kenneth Rudinger, Kevin Young, Erik Nielsen, and Robin Blume-Kohout. 2020. De-
tecting crosstalk errors in quantum information processors. Quantum 4 (2020), 321. Retrieved from https://quantum-
journal.org/papers/q-2020-09-11-321/

Timothy Proctor, Stefan Seritan, Kenneth Rudinger, Erik Nielsen, Robin Blume-Kohout, and Kevin Young. 2022. Scal-
able randomized benchmarking of quantum computers using mirror circuits. Phys. Rev. Lett. 129, 15 (Oct. 2022).
DOI : http://dx.doi.org/10.1103/physrevlett.129.150502

David C. McKay, Ian Hincks, Emily J. Pritchett, Malcolm Carroll, Luke C. G. Govia, and Seth T. Merkel. 2023. Bench-
marking Quantum Processor Performance at Scale. Retrieved from https://arxiv.org/abs/2311.05933

Andrew W. Cross, Lev S. Bishop, Sarah Sheldon, Paul D. Nation, and Jay M. Gambetta. 2019. Validating quantum
computers using randomized model circuits. Phys. Rev. A 100, 3 (Sep. 2019). DOI : http://dx.doi.org/10.1103/physreva.
100.032328

The Qiskit Team. 2021. Measuring Quantum Volume. Retrieved from https://qiskit.org/textbook/ch-quantum-
hardware/measuring-quantum-volume.html

Robin Blume-Kohout and Kevin C. Young. 2020. A volumetric framework for quantum computer benchmarks. Quan-
tum 4 (Nov. 2020), 362. DOI : http://dx.doi.org/10.22331/q-2020-11-15-362

Timothy Proctor, Kenneth Rudinger, Kevin Young, Erik Nielsen, and Robin Blume-Kohout. 2020. Measuring the
Capabilities of Quantum Computers. Retrieved from https://arxiv:quant-ph/2008.11294

Mark Johnson, Mohammad Amin, S. Gildert, Trevor Lanting, F. Hamze, N. Dickson, R. Harris, Andrew Berkley, Jan
Johansson, Paul Bunyk, E. Chapple, C. Enderud, Jeremy Hilton, Kamran Karimi, E. Ladizinsky, Nicolas Ladizinsky,
T. Oh, I. Perminov, C. Rich, and Geordie Rose. 2011. Quantum annealing with manufactured spins. Nature 473 (Sep.
2011), 194-198. DOI : http://dx.doi.org/10.1038/nature10012

ACM Trans. Quantum Comput., Vol. 5, No. 3, Article 18. Publication date: August 2024.

https://dx.doi.org/10.48550/ARXIV.2005.10258
http://dx.doi.org/10.1145/502090.502098
http://dx.doi.org/10.48550/ARXIV.1811.11538
http://dx.doi.org/10.1103/physrevx.10.021067
http://dx.doi.org/10.3389/fphy.2014.00005
http://dx.doi.org/10.1287/opre.36.3.493
http://dx.doi.org/10.1080/00207729408928968
http://dx.doi.org/10.1016/j.jda.2007.02.002
http://dx.doi.org/10.1038/s42254-021-00348-9
http://dx.doi.org/10.1103/PhysRevA.77.012307
http://dx.doi.org/10.1103/PhysRevLett.106.180504
http://dx.doi.org/10.1038/ncomms14485
https://journals.aps.org/prl/abstract/10.1103/PhysRevLett.109.240504
https://quantum-journal.org/papers/q-2020-09-11-321/
http://dx.doi.org/10.1103/physrevlett.129.150502
https://arxiv.org/abs/2311.05933
http://dx.doi.org/10.1103/physreva.100.032328
https://qiskit.org/textbook/ch-quantum-hardware/measuring-quantum-volume.html
http://dx.doi.org/10.22331/q-2020-11-15-362
https://arxiv:quant-ph/2008.11294
http://dx.doi.org/10.1038/nature10012

18:42 T. Lubinski et al.

[48] Alejandro Perdomo-Ortiz, Alexander Feldman, Asier Ozaeta, Sergei V. Isakov, Zheng Zhu, Bryan O’Gorman,

Helmut G. Katzgraber, Alexander Diedrich, Hartmut Neven, Johan de Kleer, Brad Lackey, and Rupak Biswas.

2019. Readiness of quantum optimization machines for industrial applications. Phys. Rev. Appl. 12, 1 (July 2019).

DOI : http://dx.doi.org/10.1103/physrevapplied.12.014004

Bikas K. Chakrabarti and Sudip Mukherjee. 2022. Quantum Annealing and Computation. Retrieved from http://dx.

doi.org/10.48550/ARXIV.2203.15839

Neil G. Dickson, M. William Johnson, Mohammad H. S. Amin, R. Harris, F. Altomare, Andrew J. Berkley, Paul 1.

Bunyk, J. Cai, E. M. Chapple, P Chavez, Florentin Cioatd, T Cirip, P Debuen, Marshall Drew-Brook, C. Enderud, S.

Gildert, Firas Hamze, Jeremy P. Hilton, E. Hoskinson, Kamran Karimi, Eric Ladizinsky, Nicolas Ladizinsky, Trevor

Lanting, Timothy Mahon, Richard Bryon Neufeld, Travis Oh, I. G. Perminov, C. P. Petroff, Anthony J. Przybysz,

Chris Rich, P. Spear, Adi Tcaciuc, Murray C. Thom, Elena Tolkacheva, Sergey Uchaikin, J. Wang, A. B. Wilson, Zeeya

Merali, and Geordie Rose. 2013. Thermally assisted quantum annealing of a 16-qubit problem. Nature Commun. 4

(2013), 1903.

T. Lanting, A. J. Przybysz, A. Yu. Smirnov, F. M. Spedalieri, M. H. Amin, A. J. Berkley, R. Harris, F. Altomare, S. Boixo,

P. Bunyk, N. Dickson, C. Enderud, J. P. Hilton, E. Hoskinson, M. W. Johnson, E. Ladizinsky, N. Ladizinsky, R. Neufeld,

T. Oh, L. Perminov, C. Rich, M. C. Thom, E. Tolkacheva, S. Uchaikin, A. B. Wilson, and G. Rose. 2014. Entanglement

in a quantum annealing processor. Phys. Rev. X 4, 2 (May 2014). DOI : http://dx.doi.org/10.1103/physrevx.4.021041

Tristan Zaborniak and Rogério de Sousa. 2021. Benchmarking hamiltonian noise in the D-Wave quantum annealer.

IEEE Trans. Quantum Eng. 2 (2021), 1-6. DOI : http://dx.doi.org/10.1109/TQE.2021.3050449

[53] Jon Nelson, Marc Vuffray, Andrey Y. Lokhov, and Carleton Coffrin. 2021. Single-qubit fidelity assessment of quantum

annealing hardware. IEEE Trans. Quantum Eng. 2 (2021), 1-10. DOI : http://dx.doi.org/10.1109/TQE.2021.3092710

Marc Vuffray, Carleton Coffrin, Yaroslav A. Kharkov, and Andrey Y. Lokhov. 2022. Programmable quantum annealers

as noisy gibbs samplers. PRX Quantum 3 (Apr. 2022), 020317. Issue 2. DOI : http://dx.doi.org/10.1103/PRXQuantum.3.

020317

Daniel C. Murphy and Kenneth R. Brown. 2019. Controlling error orientation to improve quantum algorithm success

rates. Phys. Rev. A 99, 3 (2019), 032318. Retrieved from https://journals.aps.org/pra/abstract/10.1103/PhysRevA.99.

032318

[56] James King, Sheir Yarkoni, Mayssam M. Nevisi, Jeremy P. Hilton, and Catherine C. McGeoch. 2015. Benchmarking
a Quantum Annealing Processor with the Time-to-target Metric. Retrieved from http://dx.doi.org/10.48550/ARXIV.
1508.05087

[57] David Subires, Fernando J. Gémez-Ruiz, Antonia Ruiz-Garcia, Daniel Alonso, and Adolfo del Campo. 2022. Bench-

marking quantum annealing dynamics: The spin-vector Langevin model. Phys. Rev. Res. 4, 2 (May 2022). DOI : http:

//dx.doi.org/10.1103/physrevresearch.4.023104

Antika Sinha. 2022. Development of Research Network on Quantum Annealing Computation and Information using

Google Scholar Data. Retrieved from http://dx.doi.org/10.48550/ARXIV.2206.02176

S. Kirkpatrick, C. D. Gelatt, and M. P. Vecchi. 1983. Optimization by simulated annealing. Science 220, 4598 (1983),

671-680. DOI : http://dx.doi.org/10.1126/science.220.4598.671

Charlie J. Geyer. 1991. Parallel tempering. In Proceedings of the Computing Science and Statistics Proceedings of the

23rd Symposium on the Interface, E. M. Keramidas and S. M. Kaufman (Eds.). American Statistical Association, New

York, NY, 156.

Zheng Zhu, Andrew]. Ochoa, and Helmut G. Katzgraber. 2015. Efficient cluster algorithm for spin glasses in any space

dimension. Phys. Rev. Lett. 115 (Aug. 2015), 077201. Issue 7. DOI:http://dx.doi.org/10.1103/PhysRevLett.115.077201

arXiv:1501.05630

Carleton Coffrin, Harsha Nagarajan, and Russell Bent. 2019. Evaluating ising processing units with integer pro-

gramming. In Integration of Constraint Programming, Artificial Intelligence, and Operations Research, Louis-Martin

Rousseau and Kostas Stergiou (Eds.). Springer International Publishing, Cham, 163-181.

Itay Hen, Joshua Job, Tameem Albash, Troels F. Rennow, Matthias Troyer, and Daniel A. Lidar. 2015. Probing for

quantum speedup in spin-glass problems with planted solutions. Phys. Rev. A 92, 4 (Oct. 2015), 042325. DOIL : http:

//dx.doi.org/10.1103/PhysRevA.92.042325

[64] Dilina Perera, Inimfon Akpabio, Firas Hamze, Salvatore Mandra, Nathan Rose, Maliheh Aramon, and Helmut G.

Katzgraber. 2020. CHook—A Comprehensive Suite for Generating Binary Optimization Problems with Planted Solu-

tions. Retrieved from http://dx.doi.org/10.48550/ARXIV.2005.14344

Matthew Kowalsky, Tameem Albash, Itay Hen, and Daniel A. Lidar. 2021. 3-Regular 3-XORSAT planted solutions

benchmark of classical and quantum heuristic optimizers. Quantum Sci. Technol. 7 025008 (2022), (2021). DOI : http:

//dx.doi.org/10.1088/2058-9565/ac4d1b

[66] Ang Li, Samuel Stein, Sriram Krishnamoorthy, and James Ang. 2020. QASMBench: A Low-level QASM Benchmark
Suite for NISQ Evaluation and Simulation. Retrieved from http://dx.doi.org/10.48550/ARXIV.2005.13018

[49

—

(50

[t

(51

—

(52

—

[54

=

[55

=

(58

[t

(59

—

(60

=

(61

—

(62

—

(63

—_

[65

—

ACM Trans. Quantum Comput., Vol. 5, No. 3, Article 18. Publication date: August 2024.

http://dx.doi.org/10.1103/physrevapplied.12.014004
http://dx.doi.org/10.48550/ARXIV.2203.15839
http://dx.doi.org/10.1103/physrevx.4.021041
http://dx.doi.org/10.1109/TQE.2021.3050449
http://dx.doi.org/10.1109/TQE.2021.3092710
http://dx.doi.org/10.1103/PRXQuantum.3.020317
https://journals.aps.org/pra/abstract/10.1103/PhysRevA.99.032318
http://dx.doi.org/10.48550/ARXIV.1508.05087
http://dx.doi.org/10.1103/physrevresearch.4.023104
http://dx.doi.org/10.48550/ARXIV.2206.02176
http://dx.doi.org/10.1126/science.220.4598.671
http://dx.doi.org/10.1103/PhysRevLett.115.077201
https://arxiv.org/abs/1501.05630
http://dx.doi.org/10.1103/PhysRevA.92.042325
http://dx.doi.org/10.48550/ARXIV.2005.14344
http://dx.doi.org/10.1088/2058-9565/ac4d1b
http://dx.doi.org/10.48550/ARXIV.2005.13018

Optimization Applications as Quantum Performance Benchmarks 18:43

[67]

[68]

[69]

[70]

[71]

[72]

[73]

[74]

[75]

[76]

[77]

[78]
[79]

[80]

[81]
[82]

[83]

Teague Tomesh, Pranav Gokhale, Victory Omole, Gokul Subramanian Ravi, Kaitlin N. Smith, Joshua Viszlai,
Xin-Chuan Wu, Nikos Hardavellas, Margaret R. Martonosi, and Frederic T. Chong. 2022. SupermarQ: A Scalable
Quantum Benchmark Suite. Retrieved from http://dx.doi.org/10.48550/ARXIV.2202.11045

Huub Donkers, Koen Mesman, Zaid Al-Ars, and Matthias Méller. 2022. QPack Scores: Quantitative Performance Met-
rics for Application-oriented Quantum Computer Benchmarking. Retrieved from http://dx.doi.org/10.48550/ARXIV.
2205.12142

Jernej Rudi Finzgar, Philipp Ross, Leonhard Hélscher, Johannes Klepsch, and Andre Luckow. 2022. QUARK: A Frame-
work for Quantum Computing Application Benchmarking. Retrieved from http://dx.doi.org/10.48550/ARXIV.2202.
03028

Ward van der Schoot, Daan Leermakers, Robert Wezeman, Niels Neumann, and Frank Phillipson. 2022. Evaluating
the Q-score of quantum annealers. In Proceedings of the IEEE International Conference on Quantum Software (QSW’22).
IEEE. DOI: http://dx.doi.org/10.1109/qsw55613.2022.00017

Blake Johnson and Ismael Faro. 2021. IBM Quantum Delivers 120x Speedup of Quantum Workloads with Qiskit
Runtime. Retrieved from https://research.ibm.com/blog/120x-quantum-speedup?Ink=ushpv18re2

K. Bertels, A. Sarkar, T. Hubregtsen, M. Serrao, A. A. Mouedenne, A. Yadav, A. Krol, and I. Ashraf. 2020. Quantum
computer architecture: Towards full-stack quantum accelerators. In Proceedings of the Design, Automation & Test in
Europe Conference & Exhibition (DATE’20). DOI : http://dx.doi.org/10.23919/date48585.2020.9116502

Matthias Méller and Cornelis Vuik. 2017. On the impact of quantum computing technology on future developments
in high-performance scientific computing. Ethics Info Technol 19, 4 (Aug. 2017), 253-269. DOI : http://dx.doi.org/10.
1007/510676-017-9438-0

Yudong Cao and Timothy Hirzel. 2020. Quantum Acceleration in 2020. Retrieved from https://www.infoq.com/
articles/quantum-acceleration-2020

Frank Arute, Kunal Arya, Ryan Babbush, Dave Bacon, Joseph C. Bardin, Rami Barends, Rupak Biswas, Sergio Boixo,
Fernando G. S. L. Brandao, David A Buell, Brian Burkett, Yu Chen, Zijun Chen, Ben Chiaro, Roberto Collins, William
Courtney, Andrew Dunsworth, Edward Farhi, Brooks Foxen, Austin Fowler, Craig Gidney, Marissa Giustina, Rob
Graff, Keith Guerin, Steve Habegger, Matthew P Harrigan, Michael J. Hartmann, Alan Ho, Markus Hoffmann, Trent
Huang, Travis S. Humble, Sergei V. Isakov, Evan Jeffrey, Zhang Jiang, Dvir Kafri, Kostyantyn Kechedzhi, Julian
Kelly, Paul V. Klimov, Sergey Knysh, Alexander Korotkov, Fedor Kostritsa, David Landhuis, Mike Lindmark, Erik
Lucero, Dmitry Lyakh, Salvatore Mandra, Jarrod R. McClean, Matthew McEwen, Anthony Megrant, Xiao Mi, Kristel
Michielsen, Masoud Mohseni, Josh Mutus, Ofer Naaman, Matthew Neeley, Charles Neill, Murphy Yuezhen Niu, Eric
Ostby, Andre Petukhov, John C. Platt, Chris Quintana, Eleanor G. Rieffel, Pedram Roushan, Nicholas C. Rubin, Daniel
Sank, Kevin J. Satzinger, Vadim Smelyanskiy, Kevin J. Sung, Matthew D. Trevithick, Amit Vainsencher, Benjamin
Villalonga, Theodore White, Z. Jamie Yao, Ping Yeh, Adam Zalcman, Hartmut Neven, and John M. Martinis. 2019.
Quantum supremacy using a programmable superconducting processor. Nature 574, 7779 (2019), 505-510. DOI : http:
//dx.doi.org/10.1038/s41586-019-1666-5

Han-Sen Zhong, Hui Wang, Yu-Hao Deng, Ming-Cheng Chen, Li-Chao Peng, Yi-Han Luo, Jian Qin, Dian Wu, Xing
Ding, Yi Hu, Peng Hu, Xiao-Yan Yang, Wei-Jun Zhang, Hao Li, Yuxuan Li, Xiao Jiang, Lin Gan, Guangwen Yang,
Lixing You, Zhen Wang, Li Li, Nai-Le Liu, Chao-Yang Lu, and Jian-Wei Pan. 2020. Quantum computational advantage
using photons. Science 370, 6523 (2020), 1460—-1463. DOI : http://dx.doi.org/10.1126/science.abe8770

Juneseo Lee, Alicia B. Magann, Herschel A. Rabitz, and Christian Arenz. 2021. Progress toward favorable landscapes
in quantum combinatorial optimization. Phys. Rev. A 104, 3 (Sep. 2021). DOI : http://dx.doi.org/10.1103/physreva.104.
032401

Jonathan Ward, Johannes Otterbach, Gavin Crooks, Nicholas Rubin, and Marcus da Silva. 2018. QAOA performance
benchmarks using max-cut. In APS March Meeting Abstracts, Vol. 2018. R15.007.

Gavin E. Crooks. 2018. Performance of the Quantum Approximate Optimization Algorithm on the Maximum Cut
Problem. Retrieved from http://dx.doi.org/10.48550/ARXIV.1811.08419

Byron Tasseff, Tameem Albash, Zachary Morrell, Marc Vuffray, Andrey Y. Lokhov, Sidhant Misra, and Carleton Cof-
frin. 2022. On the Emerging Potential of Quantum Annealing Hardware for Combinatorial Optimization. Retrieved
from http://dx.doi.org/10.48550/ARXIV.2210.04291

Hristo N. Djidjev, Guillaume Chapuis, Georg Hahn, and Guillaume Rizk. 2018. Efficient Combinatorial Optimization
Using Quantum Annealing. Retrieved from http://dx.doi.org/10.48550/ARXIV.1801.08653

Tameem Albash and Daniel A. Lidar. 2018. Demonstration of a scaling advantage for a quantum annealer over sim-
ulated annealing. Phys. Rev. X 8, 3 (July 2018). DOI : http://dx.doi.org/10.1103/physrevx.8.031016

S. Ebadi, A. Keesling, M. Cain, T. T. Wang, H. Levine, D. Bluvstein, G. Semeghini, A. Omran, J.-G. Liu, R. Samajdar,
X.-Z. Luo, B. Nash, X. Gao, B. Barak, E. Farhi, S. Sachdev, N. Gemelke, L. Zhou, S. Choi, H. Pichler, S.-T. Wang, M.
Greiner, V. Vuleti¢, and M. D. Lukin. 2022. Quantum optimization of maximum independent set using Rydberg atom
arrays. Science 376, 6598 (2022), 1209-1215. DOI : http://dx.doi.org/10.1126/science.abo6587

ACM Trans. Quantum Comput., Vol. 5, No. 3, Article 18. Publication date: August 2024.

http://dx.doi.org/10.48550/ARXIV.2202.11045
http://dx.doi.org/10.48550/ARXIV.2205.12142
http://dx.doi.org/10.48550/ARXIV.2202.03028
http://dx.doi.org/10.1109/qsw55613.2022.00017
https://research.ibm.com/blog/120x-quantum-speedup?lnk=ushpv18re2
http://dx.doi.org/10.23919/date48585.2020.9116502
http://dx.doi.org/10.1007/s10676-017-9438-0
https://www.infoq.com/articles/quantum-acceleration-2020
http://dx.doi.org/10.1038/s41586-019-1666-5
http://dx.doi.org/10.1126/science.abe8770
http://dx.doi.org/10.1103/physreva.104.032401
http://dx.doi.org/10.48550/ARXIV.1811.08419
http://dx.doi.org/10.48550/ARXIV.2210.04291
http://dx.doi.org/10.48550/ARXIV.1801.08653
http://dx.doi.org/10.1103/physrevx.8.031016
http://dx.doi.org/10.1126/science.abo6587

18:44

(84]

— =
o 00 X
(SIS BN
[l V]

(89

—

[90]

[91
[92]

—

(93]
[94]
[95]

[96]

[97]

(98]

[99]

T. Lubinski et al.

Troels F. Rennow, Zhihui Wang, Joshua Job, Sergio Boixo, Sergei V. Isakov, David Wecker, John M. Martinis, Daniel A.
Lidar, and Matthias Troyer. 2014. Defining and detecting quantum speedup. Science 345, 6195 (July 2014), 420-424.
DOI : http://dx.doi.org/10.1126/science.1252319

Salvatore Mandra and Helmut G. Katzgraber. 2018. A deceptive step towards quantum speedup detection. Quantum
Sci. Technol. 3, 4 (July 2018), 04LT01. DOI : http://dx.doi.org/10.1088/2058-9565/aac8b2

NetworkX. 2023. NetworkX—Network Analysis in Python. Retrieved from https://networkx.org/

Gurobi. 2023. Gurobi Optimization. Retrieved from https://www.gurobi.com/

Madita Willsch, Dennis Willsch, Fengping Jin, Hans De Raedt, and Kristel Michielsen. 2020. Benchmarking the quan-
tum approximate optimization algorithm. Quantum Info. Process. 19, 7 (July 2020), 197. DOI : http://dx.doi.org/10.1007/
511128-020-02692-8

Panagiotis Kl Barkoutsos, Giacomo Nannicini, Anton Robert, Ivano Tavernelli, and Stefan Woerner. 2020. Improving
variational quantum optimization using CVaR. Quantum 4 (Apr. 2020), 256. DOI : http://dx.doi.org/10.22331/q-2020-
04-20-256

Li Li, Minjie Fan, Marc Coram, Patrick Riley, and Stefan Leichenauer. 2020. Quantum optimization with a novel gibbs
objective function and ansatz architecture search. Phys. Rev. Res. 2, 2 (Apr. 2020), 023074. DOI : http://dx.doi.org/10.
1103/PhysRevResearch.2.023074

2023. IBM Cloud Qiskit Runtime. Retrieved from https://cloud.ibm.com/quantum. Accessed 2023-05-15.

Endre Boros, Peter L. Hammer, and Gabriel Tavares. 2007. Local search heuristics for quadratic unconstrained binary
optimization (QUBO). j. Heuristics 13, 2 (2007), 99-132.

Gary Kochenberger, Jin-Kao Hao, Fred Glover, Mark Lewis, Zhipeng Lii, Haibo Wang, and Yang Wang. 2014. The
unconstrained binary quadratic programming problem: A survey. J. Comb. Optimiz. 28, 1 (2014), 58-81.

M. Born and V. Fock. 1928. Beweis des Adiabatensatzes. Zeitschrift fiir Physik 51, 3 (1928), 165-180. DOI : http://dx.
doi.org/10.1007/BF01343193

Tosio Kato. 1950. On the adiabatic theorem of quantum mechanics. 7. Phys. Soc. Japan 5, 6 (1950), 435-439. DOI : http:
//dx.doi.org/10.1143/]JPS].5.435

Sabine Jansen, Mary-Beth Ruskai, and Ruedi Seiler. 2007. Bounds for the adiabatic approximation with applications
to quantum computation. J. Math. Phys. 48, 10 (2007), 102111. DOI : http://dx.doi.org/10.1063/1.2798382 arXiv:quant-
ph/0603175

Vicky Choi. 2008. Minor-embedding in adiabatic quantum computation: I. The parameter setting problem. Quantum
Info. Process. 7 (2008), 193-209.

Andrew Wack, Hanhee Paik, Ali Javadi-Abhari, Petar Jurcevic, Ismael Faro, Jay M. Gambetta, and Blake R. Johnson.
2021. Quality, Speed, and Scale: Three Key Attributes to Measure the Performance of Near-term Quantum Computers.
Retrieved from http://dx.doi.org/10.48550/ARXIV.2110.14108

Lennart Bittel and Martin Kliesch. 2021. Training variational quantum algorithms is NP-Hard. Phys. Rev. Lett. 127,
12 (Sept. 2021), 120502. DOI : http://dx.doi.org/10.1103/PhysRevLett.127.120502

[100] Jarrod R. McClean, Sergio Boixo, Vadim N. Smelyanskiy, Ryan Babbush, and Hartmut Neven. 2018. Barren plateaus

[101]

[102]

[103]

in quantum neural network training landscapes. Nature Commun. 9, 1 (Nov. 2018), 4812. DOI : http://dx.doi.org/10.
1038/541467-018-07090-4

M. Cerezo, Akira Sone, Tyler Volkoff, Lukasz Cincio, and Patrick J. Coles. 2021. Cost function dependent barren
plateaus in shallow parametrized quantum circuits. Nature Commun. 12, 1 (Mar. 2021), 1791. DOI : http://dx.doi.org/
10.1038/s41467-021-21728-w

Samson Wang, Enrico Fontana, M. Cerezo, Kunal Sharma, Akira Sone, Lukasz Cincio, and Patrick J. Coles. 2021.
Noise-induced barren plateaus in variational quantum algorithms. Nature Commun. 12, 1 (Nov. 2021), 6961. DOI : http:
//dx.doi.org/10.1038/s41467-021-27045-6

Carlos Ortiz Marrero, Maria Kieferova, and Nathan Wiebe. 2021. Entanglement induced barren plateaus. Retrieved
from https://arXiv:2010.15968. DOI : http://dx.doi.org/10.48550/arXiv.2010.15968

[104] Jonathan Wurtz and Danylo Lykov. 2021. Fixed-angle conjectures for the quantum approximate optimization algo-

[105]

[106]

[107]

rithm on regular MaxCut graphs. Phys. Rev. A 104, 5 (Nov. 2021), 052419. DOI : http://dx.doi.org/10.1103/PhysRevA.
104.052419

V. Akshay, D. Rabinovich, E. Campos, and J. Biamonte. 2021. Parameter concentrations in quantum approximate
optimization. Phys. Rev. A 104, 1 (July 2021), L010401. DOI : http://dx.doi.org/10.1103/PhysRevA.104.0L010401

David Bernal Neira, Davide Venturelli, Filip Wudarski, and Eleanor Rieffel. 2022. Benchmarking the operation of
quantum heuristics and ising machines: Scoring parameter setting strategies on real world optimization applications.
In APS March Meeting Abstracts, Vol. 2022. F38-005.

Stochastic Benchmark. 2022. Retrieved from https://github.com/usra-riacs/stochastic-benchmark

Received 22 March 2023; revised 30 January 2024; accepted 1 July 2024

ACM Trans. Quantum Comput., Vol. 5, No. 3, Article 18. Publication date: August 2024.

http://dx.doi.org/10.1126/science.1252319
http://dx.doi.org/10.1088/2058-9565/aac8b2
https://networkx.org/
https://www.gurobi.com/
http://dx.doi.org/10.1007/s11128-020-02692-8
http://dx.doi.org/10.22331/q-2020-04-20-256
http://dx.doi.org/10.1103/PhysRevResearch.2.023074
https://cloud.ibm.com/quantum
http://dx.doi.org/10.1007/BF01343193
http://dx.doi.org/10.1143/JPSJ.5.435
http://dx.doi.org/10.1063/1.2798382
https://arxiv.org/abs/quant-ph/0603175
http://dx.doi.org/10.48550/ARXIV.2110.14108
http://dx.doi.org/10.1103/PhysRevLett.127.120502
http://dx.doi.org/10.1038/s41467-018-07090-4
http://dx.doi.org/10.1038/s41467-021-21728-w
http://dx.doi.org/10.1038/s41467-021-27045-6
https://arXiv:2010.15968
http://dx.doi.org/10.48550/arXiv.2010.15968
http://dx.doi.org/10.1103/PhysRevA.104.052419
http://dx.doi.org/10.1103/PhysRevA.104.L010401
https://github.com/usra-riacs/stochastic-benchmark

