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Abstract. Wildfires in the southwestern United States, particularly in northern California (nCA), have grown
in size and severity in the past decade. As they have grown larger, they have been associated with large emis-
sions of absorbing aerosols and heat into the troposphere. Utilizing satellite observations from MODIS, CERES,
and AIRS as well as reanalysis from MERRA-2, the meteorology associated with fires during the wildfire sea-
son (June–October) was discerned over the nCA-NV (northern California and Nevada) region during the period
2003–2022. Wildfires in the region have a higher probability of occurring on days of positive temperature (T )
anomalies and negative relative humidity (RH) anomalies, making it difficult to discern the radiative effects of
aerosols that are concurrent with fires. To attempt to better isolate the effects of large fire emissions on me-
teorological variables, such as clouds and precipitation, variable anomalies on high fire emission days (90th
percentile) were compared with low fire emission days (10th percentile) and were further stratified based on
whether surface relative humidity (RHs) was anomalously high (75th percentile) or low (25th percentile) com-
pared with typical fire season conditions. Comparing the simultaneously high fire emission and high RHs data
with the simultaneously low fire emission and high RHs data, positive tropospheric T anomalies were found to
be concurrent with positive AOD anomalies. Further investigation found that due to shortwave absorption, the
aerosols heat the atmosphere at a rate of 0.041± 0.016 to 0.093± 0.019 K d−1, depending on whether RH con-
ditions are anomalously positive or negative. The positive T anomalies were associated with significant negative
850–300 hPa RH anomalies during both 75th percentile RHs conditions. Furthermore, high fire emission days
under high RHs conditions are associated with negative CF anomalies that are concurrent with the negative RH
anomalies. This negative CF anomaly is associated with a significantly negative regional precipitation anomaly
and a positive net top-of-atmosphere radiative flux anomaly (a warming effect) in certain areas. The T , RH, and
CF anomalies under the simultaneously high fire emission and high RHs conditions compared with the simulta-
neously low fire emission and high RHs conditions have a significant spatial correlation with AOD anomalies.
Additionally, the vertical profile of these variables under the same stratification is consistent with positive black
carbon mass mixing ratio anomalies from MERRA-2. However, causality is difficult to discern, and further study
is warranted to determine to what extent the aerosols are contributing to these anomalies.
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1 Introduction

As a result of climate change, land use change, and for-
est management, the frequency of wildfires in California
has trended upward from 100 fires per year in the 1920s
to 300 fires per year in the late 2010s (Li and Banerjee,
2021). The size of these wildfires has also increased, with
total burned area (square distance burned by a fire) increas-
ing from roughly 1000 to almost 4000 km2 in the same pe-
riod (Li and Banerjee, 2021). According to a recent study,
the frequency of extreme daily wildfire events in the re-
gion is projected to increase by 59 %–172 % in coming years
due to climate change (Brown et al., 2023), which is con-
sistent with findings of numerous other studies (Palinkas,
2020; Ager et al., 2021; United Nations Environment Pro-
gramme, 2022). In both higher and lower CO2 mitigation
scenarios, large wildfire events are projected to become more
commonplace by the end of the 21st century worldwide as
well as in the southwestern US (United Nations Environ-
ment Programme, 2022). Large wildfire events in the late
2010s and early 2020s were associated with more intense
“fire weather”: high temperature (T ), low relative humid-
ity (RH), and high surface wind speeds (Us) (Varga et al.,
2022; Keeley and Syphard, 2019). These fire weather con-
ditions may be potentially intensified, or alleviated, by the
fires themselves. Higher burn severity wildfires, such as the
2020 wildfires in California (CA), have been observed to in-
ject smoke plumes higher into the troposphere than in pre-
vious years (Wilmot et al., 2022). These smoke plumes con-
sist of both shortwave (SW) absorbing aerosols such black
carbon (BC) and reflective aerosols such as organic aerosol
(OA) as well as brown carbon, which is absorbing and reflec-
tive. Additionally, wildfires have also been associated with
emissions of other aerosol species through feedbacks. While
dust is not emitted from biomass burning, a number of stud-
ies have linked fires to concurrent dust emissions through the
creation of convective updrafts (Wagner et al., 2018, 2021)
and delayed dust emissions through wildfire clearing of veg-
etation (Wagenbrenner et al., 2013, 2017; Yu and Ginoux,
2022). The absorbing properties of wildfire smoke and co-
emitted dust over the western US, measured using absorb-
ing aerosol optical depth (AAOD), is uncertain. However,
a recent study of CA fires indicates that wildfires increase
AAOD relative to the annual mean by 10-fold (Cho et al.,
2022). An injection of absorbing aerosols into the tropo-
sphere may cause a local warming affect, altering the hydro-
logical and radiative balance of the atmosphere (Allen and
Sherwood, 2010; Thornhill et al., 2018; Allen et al., 2019;
Herbert and Stier, 2023). Smoke plumes that reach the up-
per troposphere (pressures< 500 hPa) may deposit absorb-
ing aerosols that could burn off high clouds and promote
more stable low clouds (Stjern et al., 2017; Smith et al., 2018;
Allen et al., 2019), leading to SW and longwave (LW) cool-
ing. Alternatively, if the absorbing aerosols are concurrent
with low clouds, the relative humidity of the liquid cloud

layer would be decreased, burning off low clouds and lead-
ing to a decrease in outgoing SW flux (Koch and Del Genio,
2010; Allen and Sherwood, 2010). These are both examples
of aerosol semi-direct effects. Past observations and model-
ing experiments have shown dust aerosol is associated with
semi-direct effects (Tsikerdekis et al., 2019; Amiri-Farahani
et al., 2017; Helmert et al., 2007), as dust also has SW ab-
sorbing properties (Highwood and Ryder, 2014; Kok et al.,
2023). Furthermore, the higher altitude of absorbing aerosol
from California fires may alter cloud microphysics, which
also has the potential to change the radiative balance of the
surface and atmosphere. An influx of aerosols into the tro-
posphere may create an abundance of cloud condensation
nuclei (CCN) for droplets to condense onto, decreasing the
effective radius (Reff) of the clouds – an effect already ob-
served with smoke (OA and BC) particles in the northwest-
ern US (Twohy et al., 2021). A decrease in Reff would in-
crease the albedo of the clouds, assuming a constant water
path, which would then increase outgoing SW radiation. This
decrease in Reff can also affect the liquid water path (LWP),
as the smaller droplets can evaporate much faster than larger
droplets or the smaller droplets can suppress precipitation,
which increases LWP by reducing the liquid water leaving
the cloud (Goren and Rosenfeld, 2012). The lighter droplets
can also be lofted higher in the atmosphere, where they con-
densate further and release latent heat, then eventually fall
from this greater height and evaporate. Therefore, to compen-
sate, polluted clouds have more intense updrafts and down-
drafts than pristine clouds (Khain, 2009). SW absorption it-
self can also decrease precipitation (P ) in other ways, such as
reducing SW radiation reaching the surface or through rapid
atmospheric adjustments (Sand et al., 2020; Samset, 2022;
Allen et al., 2023).

Large fires are not limited to the western US only. Aus-
tralia, the Mediterranean Basin, and South America have
all experienced an increase in large fire events due to cli-
mate change and land management (Shi et al., 2021; Ruf-
fault et al., 2020; Artaxo et al., 2013; Allen et al., 2024a).
As the western US, and other parts of the world, enter
this new regime of large fires, the need arises for an im-
proved understanding of the effects of aerosols emitted pri-
marily (through biomass burning), secondarily (oxidation of
emitted volatiles), or through feedbacks (such as dust emis-
sions concurrent with fires) by wildfires. Models participat-
ing in the Coupled Model Intercomparison Project version 6
(CMIP6) (Eyring et al., 2016) do not have parameteriza-
tions of biomass burning (BB) aerosol emissions that respond
to CO2 emissions in most of their experiments, including
the DECK (Diagnosis, Evaluation, and Characterization of
Klima) experiments (Gomez et al., 2023). The models that
have interactive BB aerosol emissions tend to parameterize
them as a function of fuel flammability (temperature and
moisture), fuel density, and plant functional type (Mangeon
et al., 2016; Li et al., 2019). Most models participating in
CMIP6 do not have dynamic vegetation models (Li et al.,
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2019) and therefore are incapable of incorporating fire–dust
feedbacks. Instead, modelers rely on the prescription of BB
aerosols in most experiments.

Recent modeling experiments have found significant ef-
fects of wildfires on regional and global climate scales. Pre-
viously, using prescribed aerosol simulations in the Commu-
nity Earth System Model version 2 (CESM2), it was shown
that the large 2019 wildfires in Australia could have intensi-
fied that year’s La Niña through aerosols directly cooling the
ocean surface (Fasullo et al., 2021). Another CMIP6 study
observed a similar effect on La Niña as a result of a telecon-
nection caused by an influx of absorbing aerosols into the
atmosphere from South African wildfires (Amiri-Farahani et
al., 2020). Biomass burning aerosols may also have other ef-
fects on large-scale ocean circulation, such as an invigoration
of the Atlantic Meridional Overturning Circulation (Allen et
al., 2024b). As far as the southwestern US is concerned, a
modeling experiment using the WRF/CHEM model was run
to analyze the effects of a wildfire event on weather forecasts
(Chen et al., 2014). This study found that the BB aerosols
suppressed convection, prevented cloud formation, and de-
creased precipitation. While studies such as these demon-
strate that it is possible to model past effects of fires on
local and global climate, without parameterization of BB
aerosol emission, as well as parameterization of secondary
dust aerosol emission from wildfire-cleared vegetation, the
radiative forcing of the primary and secondary aerosols of
future fires will remain a source of uncertainty. Furthermore,
there are few, if any, studies that attempt to discern the im-
pacts of large fires over the southwestern US. Twohy et al.
(2021) analyzed satellite observations of cloud microphysi-
cal properties over part of the region; however, their study
was conducted during only one wildfire event in 2018. As
a result, there is no comprehensive long-term observational
study over the southwestern US concerning wildfire aerosol–
cloud interaction. Therefore, to further understand the effects
of wildfires on the climate of one of the most populated ar-
eas in the US, this paper aims to identify the radiative and
microphysical effects that these aerosols may have in the re-
gion under different atmospheric conditions utilizing satellite
data.

2 Satellite and reanalysis datasets

The objective of this study is to quantify the impacts of wild-
fire aerosol emissions on meteorological parameters, such as
clouds and precipitation, over the southwestern US using ob-
servations. This includes the Aqua satellite with the MODIS,
AIRS, and CERES instruments. The Modern-Era Retro-
spective analysis for Research and Applications version 2
(MERRA-2) reanalysis project (Randles et al., 2017; Global
Modeling And Assimilation Office and Pawson, 2015) is
used to obtain daily black carbon mass mixing ratio verti-
cal profiles. Fire dry matter (DM) emission data are used as

a proxy for fire severity and are derived from the Global Fire
Emissions Database 4.1s (GFED4.1s) (van der Werf et al.,
2017; Randerson et al., 2017). All datasets are globally grid-
ded observational datasets, with the exception of GFED4.1s
and MERRA-2, which are considered globally gridded re-
analysis datasets.

2.1 Global Fire Emissions Database (GFED4.1s)

GFED4.1s DM emissions are calculated in the Carnegie–
Ames–Stanford Approach (CASA) model, which requires
MODIS burned area data, meteorological data from the
ERA-Interim reanalysis dataset, photosynthetically active
radiation data based on Advanced Very High Resolution
Radiometer satellite instrument retrievals, and vegetation
continuous field data from the MODIS MOD44B dataset
(van der Werf et al., 2017). DM is the emission of any gas or
aerosol from burned vegetation, and a list of all these types
of emissions can be found in van der Werf et al. (2017). The
CASA model is run using burned area data from combined
MODIS–Aqua and MODIS–Terra level 3 data (MCD64A1).
Wildfire studies tend to use either fire power (from MODIS
or VIIRS) or burned-area-based datasets to quantify fire
severity. Burned area is determined by MODIS from a time
series of the burn-sensitive vegetation index, which compares
daily surface reflectances (Giglio et al., 2018). Fire power is
the radiated energy from fires over time, and MODIS deter-
mines this quantity by comparing the brightness temperature
of a fire pixel with the background brightness temperature
(Peterson et al., 2013). Use of a burned-area-based dataset
is preferable to a fire power dataset for this paper, as cloud
cover may obstruct fire power data retrievals, leading to an
underestimation of fire size and/or severity in a given time
period. While cloud cover can also block burned area re-
trievals, burned area can be recorded once cloud cover has
been dissipated, unlike fire power. This introduces a tempo-
ral uncertainty, however. This temporal uncertainty is ±1 d
for clear-sky conditions, ±5 d under consistent 75 % cloud
cover, and up to ±20 d over persistently very cloudy (85 %
or higher) intervals (Giglio et al., 2013). However, this tem-
poral uncertainty is likely of little significance for this paper,
as cloud cover over the western US during the wildfire sea-
son is rarely persistently high (aside from “June gloom” in
coastal regions), and the lifetime of biomass burning aerosols
(roughly 4–12 d) is generally greater than or equal to the tem-
poral uncertainty of clear-sky or consistently cloudy burned
area data (Cape et al., 2012). The daily underestimation of
fire power is demonstrated in Fig. S1 in the Supplement,
which indicates that Aqua fire power retrievals, taken from
the MYD14A1 dataset (Giglio and Justice, 2015), underes-
timate daily fire severity compared to DM, with 98 % of
days reporting a lower normalized fire power than normal-
ized DM. Therefore, for fire power to be a more useful met-
ric, a daily combined Aqua/Terra/VIIRS dataset would have
to be used, which is not available for the period of interest.
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GFED4.1s fire emissions are also preferred over fire power
data and raw burned area data, as the calculation of fire emis-
sions takes vegetation type and net primary production into
account. Raw burned area and fire power datasets yield infor-
mation about fire size and intensity, but as aerosol emission
also depends on the type of vegetation being burned, use of
either dataset over a fire emission dataset may underestimate
or overestimate the impact of biomass burning aerosols on
clouds. However, the use of GFED4.1s data has drawbacks.
While the use of burned area data reduces the chance of an
underestimation of fire impacts, the previously mentioned
temporal uncertainty is introduced. Additionally, the CASA
model itself is associated with uncertainties. Calculation of
net primary production in the model, for example, does not
take meteorological variables into account (Liu et al., 2018).
As a result, caution must be taken when analyzing the results.
To ensure results are robust, the GFED4.1s DM stratifica-
tion method was verified by analyzing MODIS AOD anoma-
lies (see Sect. 2.2) during large fire events (Sects. 3.3, 4.2)
and by performing cross correlations between AOD and DM
(Sect. S1 in the Supplement, Fig. S2). GFED4.1s emissions
and burned area data are available from 1997 to 2016. Data
for the period 2017–2022 are also available, but the data are
in “beta” and therefore are more limited. Both the complete
and the beta data contain total carbon emissions as well as
dry matter emissions. GFED4.1s also estimates the contribu-
tion of six different types of vegetation biomes (boreal for-
est, temperate forest, grassland, agriculture, peat, and trop-
ical forest) to the carbon and dry matter emissions. How-
ever, the beta dataset only estimates these contributions for
DM. Therefore, DM is used as a proxy for the severity of
the emissions of a given fire, as it is the only variable that
both the complete and beta data contain and speciate. All
observational datasets utilized in this study have a 1° reso-
lution; however, the GFED4.1s emission data are of a 0.25°
resolution. Therefore, these data were regridded to a 1° grid.
It should be noted that GFED5 has recently been released
(Chen et al., 2023); however, this dataset was not used as it
does not yet include emissions but only has data available up
to 2020, and it was released after analysis for this paper had
concluded.

2.2 Aqua

MODIS-Aqua. Cloud and aerosol optical depth (AOD) data
were derived from Moderate Resolution Imaging Spectro-
radiometer (MODIS) level 3 data. Specifically, the MODIS
collection 6.1 1° level 3 product (MYD08_D3) (Platnick et
al., 2003; Salomonson et al., 2002; MODIS Atmosphere Sci-
ence Team, 2017) is utilized, which yields daily retrieval
products from the Aqua satellite. The Aqua satellite makes
two overpasses for the region of interest: one ascending run
from 14:00 to 15:00 LT (local time; all instances of time
in the text are in local time and one descending run from
02:00 to 03:00. The descending dataset is used, as most

MODIS level 3 cloud property products provided are de-
scending (morning) only. For MODIS cloud retrievals dur-
ing periods of large AOD, especially when the aerosols are
concurrent with clouds, it is possible for MODIS to misiden-
tify aerosols as clouds (Herbert and Stier, 2023). This may
cause errors in cloud property retrievals as well as an over-
estimation of cloud fraction (CF). This may lead to overesti-
mation of CF during anomalously large fire events. While the
MODIS Dark Target and Deep Blue AOD algorithms are ex-
tensively quality controlled and evaluated (Levy et al., 2013;
Platnick et al., 2017; Wei et al., 2019), there is still room
for error in AOD and cloud retrieval. Additionally, as it is
not possible to distinguish wildfire AOD from other AOD,
whenever possible, fire emissions from GFED4.1s are used
to discern the impacts of fires on cloud properties.

AIRS. Data concerning T , water mass mixing ratio MH2O,
CF, and RH profiles, as well as surface temperature Ts
and surface relative humidity RHs, were derived from At-
mospheric Infrared Sounder (AIRS) level 3 daily data
(AIRS3STD) (AIRS Science Team and Texeira, 2013). As
with the MODIS data, the descending dataset is used.

CERES. Top-of-atmosphere as well as in-atmosphere ra-
diative flux data were derived from Clouds and the Earth’s
Radiant Energy System (CERES) level 3 daily 1° Syn-
optic product (SYN1deg-Day) (NASA/LARC/SD/ASDC,
2015, 2017, 2023). This is a combined Terra and Aqua
dataset for the period 2002–2021, and for 2022 it is a com-
bined Terra and NOAA-20 dataset. This CERES dataset
combines cloud data from MODIS/VIIRS, aerosol data
from GEOS, and top-of-atmosphere radiative flux data from
CERES to produce all-sky, clear-sky, and aerosol-free radia-
tive flux profiles.

2.3 GPCP combined precipitation dataset

P data for this project were derived from the daily Global
Precipitation Climatology Project (GPCP daily) Climate
Data Record version 1.3 dataset (Huffman et al., 2001; Adler
et al., 2018). GPCP combines satellite observations as well
as rain gauge data to produce 1° daily precipitation amount
data.

2.4 MERRA-2 aerosol profiles

Daily vertical black carbon aerosol mass mixing ratio pro-
files are derived from the M2I3NVAER data product (Global
Modeling And Assimilation Office and Pawson, 2015;
Buchard et al., 2015). This product estimates aerosol pro-
files by assimilating MODIS AOD into the GEOS5 model,
which is radiatively coupled with the Goddard Chemistry,
Aerosol, Radiation, and Transport (GOCART) aerosol mod-
ule. The GOCART model includes biomass burning emis-
sions from the NASA Quick Fire Emission Dataset (QFED)
version 2.1, which provides daily biomass burning aerosol
estimates (Buchard et al., 2015). These profiles were then
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validated using ground and satellite observations of aerosol
profiles. This dataset has been previously used to determine
effects of wildfire aerosols in other parts of the world (Raga
et al., 2022; Nguyen et al., 2020). The aerosol profiles are
archived in a high-resolution hybrid sigma pressure grid and
therefore must be interpolated into 1° grid cells and con-
verted into traditional pressure levels. For the purposes of
this paper, only the black carbon variables are analyzed.
MERRA-2 separates BC into two types: hydrophobic black
carbon (BCpho) and hydrophilic black carbon (BCphi).

2.5 CALIPSO

The Cloud-Aerosol Lidar and Infrared Pathfinder Satellite
Observation satellite (CALIPSO) provides observations of
aerosol extinction coefficient profiles. MERRA-2 profiles are
utilized in the main analysis instead of CALIPSO profiles,
as gridded CALIPSO data are of too low resolution and are
monthly as opposed to daily. Additionally, CALIPSO started
collecting data in 2006, which makes the satellite not tempo-
rally consistent with MODIS and AIRS, which started col-
lecting data in 2002. More information on CALIPSO can be
found in Sect. S2.

3 Methods

3.1 Statistics

The bulk of the analysis for this paper involves empirical cu-
mulative distribution functions (CDFs). Empirical distribu-
tion functions are calculated for each variable of interest un-
der differing fire and meteorological conditions, and the shift
in each distribution is compared. Plotting two CDFs on the
same axis allows for comparison on how likely an anomaly
is to be positive or negative under differing circumstances,
such as how likely a positive or negative anomaly for a cer-
tain variable is to occur during a high (90th percentile) fire
dry matter emission (DM90) or low (10th percentile) fire dry
matter emission (DM10) event. The 90th percentile is cho-
sen, as the purpose of this paper is to analyze the effects of
large fire events on climate, not the effects of fires in general.
From the calculated normal distributions, the effect size of
one variable’s distribution on another variable’s distribution
is estimated using Cohen’s d. Cohen’s d is an approxima-
tion of by how many standard deviations (σ s) the distribu-
tion shifts in response to a change in a variable. In this paper,
d is calculated to determine the effect size of DM on other
variables. Here, d is approximated using

d =
a− b

0.5
√
σ 2
a + σ

2
b

, (1)

where a is the mean of the (DM90) group (group a), and b
is the mean of the (DM10) group (group b), σa is the stan-
dard deviation of group a, and σb is the standard deviation

of group b. d = 0.2–0.5 is considered to be a weak effect,
d = 0.5–0.8 is a moderate effect, and d = 0.8 or higher is
classified as a strong effect.

When comparing two datasets, a two-tailed pooled t test
is used to assess significance, where the null hypothesis of a
zero difference is evaluated, with n1+n2−2 degrees of free-
dom, where n1 and n2 are the number of elements in each
dataset, respectively. Here, the pooled variance

s2
=

(n1− 1)S2
1 + (n2− 1)S2

2
n1+ n2− 2

(2)

is used, where S1 and S2 are the sample variances. For the
purposes of this project, the t test is evaluated at 90 % signif-
icance.

3.2 Data stratification and comparison

In Sect. 3.1, it was mentioned that CDFs for variable anoma-
lies during anomalously high and low DM emission events
are generated to discern to what degree fires impact these
anomalies. The purpose of this stratification, particularly
stratification of days into anomalously high and low fire
events, is to isolate the effects of fires on clouds and/or
weather. The remainder of this section will detail how data
stratification is accomplished. First, a variable is chosen for
analysis (such as CF). Next, this variable as well as the vari-
ables that are used to stratify the variable are filtered to in-
clude only the region of interest. As the Aqua satellite does
not record data for each grid cell at every time step, wherever
a coordinate (latitude, longitude, time) is missing a value for
a specific variable, the variable(s) it is being stratified by also
has the value at that coordinate replaced by a missing value
(and vice versa). Next, to focus on potential feedbacks fires
may have on land, a land–sea mask is applied. Then, the daily
regional anomaly for each variable is taken. Subsequently,
the 2003–2022 wildfire seasons are spliced together, which
results in a time series of roughly 3060 d. From this 3060 d
time series, any days with no data are removed. Next, the av-
erage of each day of the wildfire season is removed from each
data point in the distribution to give a time series of anoma-
lies for each variable. Booleans that filter out days above or
below a certain percentile for the stratification variables are
then applied simultaneously. For each dataset, an empirical
CDF is then calculated. Following this, the means are dif-
ferentiated from each other to determine whether the strati-
fication variable (such as DM) leads to a significant change
in the variable anomaly in question. This process can be ap-
plied both for a regional average and on a grid cell-by-grid
cell basis. When this process is performed on a grid cell-
by-grid cell basis, the Pearson cross-correlation coefficient r
is determined by spatially correlating the stratified variables
with one another. This helps determine whether one change
in a variable as a result of fires (or other factors) feeds back
onto another to cause a change in anomaly. Figure 1 serves
as a verification of the stratification method and validation of
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Figure 1. Distribution of fires and the corresponding aerosol opti-
cal depth (AOD) anomaly impacts during the fire season. (a) 2003–
2022 average daily fire dry matter (DM) emissions for the south-
western United States during the fire season (June–October). Blue
box signifies the nCA (northern California) region, where average
daily fire emissions are the highest. (b) 2003–2022 June–October
daily MODIS Aerosol optical depth (AOD) difference between av-
erage AOD on 90th percentile DM (DM90) and average AOD on
10th percentile DM (DM10) days during the 2003–2022 June–
October period. 1AOD represents AOD(DM90)−AOD(DM10).
Green box symbolizes the nCA-NV (northern California–Nevada)
region, where increases in AOD and changes in cloud properties
(Fig. 11) are most significant. Black dots represent statistically sig-
nificant differences at 90 % confidence according to a two-tailed
test.

GFED4.1s emissions data. Monthly cross-correlation analy-
sis (Sect. S1, Fig. S2) as well as previous works (Wilmot et
al., 2022; Schlosser et al., 2017; Cho et al., 2022) indicate
that during large fire events, AOD and/or particulate mat-
ter concentrations are significantly larger compared with no
fire conditions. The significant increase in AOD over most of
the southwestern US supports the assertion that GFED4.1s
fire emissions are an acceptable indicator of large fire occur-
rences.

It should be noted that while this method allows for the
comparison of meteorology during very similar weather con-
ditions, it does not completely remove the possibility of ran-
dom meteorological fluctuations within the stratification that
can affect the anomalies. Therefore, if anomalies are found,
causality is difficult to discern.

3.3 Regions of interest

First, the region within the southwestern US in which
the most significant fire emissions originate was discerned.
Based on what is generally considered to be the time of year

in which most wildfires occur in the western US (Urbanski,
2013; Urbanski et al., 2011), data were collected from 1 June
to 31 October for the period 2003–2022. The period 2003–
2022 was chosen as this is the time period in which Aqua
satellite data are available for the fire season. Analysis was
limited to fire seasons as opposed to the entire year so that
the threshold for what constitutes a 90th percentile fire is
increased. First, for each grid cell, the 2003–2022 seasonal
average daily DM emission was taken. The portion of the
southwestern US that had the largest 2003–2022 seasonal av-
erage daily DM emissions is the region that is referred to as
“northern California” (nCA), which is highlighted in the blue
box in Fig. 1a. The reason for limiting DM data to this region
is again to ensure that the threshold for 90th percentile DM
is kept high. The nCA region is characterized by temperate
forests along the coastline in the far north and in the east.
Agricultural lands are scattered throughout almost every grid
cell in nCA, with higher concentrations in the central valley
and the coastal north. Grasslands are also found throughout
most grid cells in this region, with higher concentrations in
central CA. The dominant contributor of DM in this region
is the temperate forests in the north (Fig. S3). At this time of
year, predominant wind patterns in nCA would favor trans-
portation of smoke from these fires to northern Nevada. Dur-
ing the fire season, northwesterlies tend to blow across nCA
towards northern Nevada, and south westerlies blow through
the central valley and Sierra Nevada (Zaremba and Carroll,
1999; LeNoir et al., 1999). Therefore, the expectation is for
the majority of wildfire aerosols to be concentrated in nCA
and neighboring northern and central Nevada. In differentiat-
ing AOD anomalies on high nCA DM days and AOD anoma-
lies on low nCA DM days, AOD is found to be anomalously
positive in both nCA and Nevada (Fig. 1b), confirming this
hypothesis. However, there are also significant AOD anoma-
lies throughout the entire region. For reasons that will be ex-
plained in Sect. 4.1, the main analysis will still be concen-
trated on northern CA and Nevada. From this point forward,
the focus will be on the effects of the fires in the blue box
in Fig. 1a (nCA) on the area highlighted in the green box
(nCA-NV) in Fig. 1b.

3.4 Heating rate

The aerosol shortwave heating rate of the atmosphere,
SWHaer, was calculated using

∂T

∂t
= SWHaer =

g

cp
·
1Faer

1p
, (3)

where t is time in days, g is gravity, cp is the heat capacity
at constant pressure, Faer is the shortwave radiative effect of
the aerosols, and p is pressure. Faer itself was derived from
the CERES SYN1deg-Day downward and upward shortwave
radiative fluxes. Faer between two atmospheric layers is given
by

Faer = SWd1−SWu1− (SWd2−SWu2) , (4)
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where SWd1 denotes downward shortwave flux at the higher
layer, SWu1 denotes upward shortwave flux at the higher
layer, SWd2 denotes downward shortwave flux at the lower
layer, and SWu2 denotes upward shortwave flux at the lower
layer.

4 Results

4.1 High and low surface relative humidity stratification

The fingerprints of a traditionally defined semi-direct ef-
fect where aerosols coincide with clouds would entail an
anomalous warming of the cloud layer and a correspond-
ing decrease in RH. However, the meteorological condi-
tions around which fires tend to occur need to be consid-
ered. As previously stated, large fires tend to occur dur-
ing fire weather, which includes hot, dry, and windy condi-
tions (Varga et al., 2022). Hot and dry conditions themselves
are associated with high-pressure anomalies in this region
(Fig. S4). Therefore, these fire weather conditions need to
be “filtered out” as much as possible to isolate any poten-
tial semi-direct effects. Therefore, in addition to DM, vari-
ables need to be stratified by a second variable to account
for the influence of meteorology on P , CF, and cloud prop-
erties. Fire season data were stratified by high (75th per-
centile) vs. low (25th percentile) Ts, RHs, Us, and surface
pressure to determine which variable was associated with the
largest DM and successfully filtered out fire weather condi-
tion anomalies. The 75th and 25th percentiles were chosen
for the potential second stratification variables as opposed to
extremes (90th and 10th percentiles) so as to ensure a ro-
bust number of data points and to have a dataset that is more
representative of common conditions in the region. Figure 2
depicts CDFs for meteorological conditions and DM under
high RHs extremes (RHs75) and low RHs extremes (RHs25)
in the entire southwestern US. RHs was chosen as the sec-
ond stratification variable, as stratifying nCA DM by high
(RHs75) and low RHs conditions (RHs25) and differentiat-
ing the means of these distributions yields a significant DM
anomaly of1DM=−1.04×10−4

±3.5×10−5 kg m−2 d−1.
The absolute value of this anomaly is an order of magni-
tude higher than the differences in mean DM between high
and low conditions of the other potential stratification vari-
ables (surface pressure, Ts, and Us) (Figs. S4, S5, and S6).
This indicates that fire occurrence and/or fire emissions are
more dependent on RHs than these other fire weather vari-
ables. Low RHs extremes in the southwestern US are associ-
ated with significantly higher T throughout the troposphere
and surface, significantly reduced RH throughout the tropo-
sphere and surface, and significantly lower CF, while high
RHs extremes are associated with the opposite (Fig. 2). This
demonstrates a need to separate the effects of fires from the
meteorological effects of low RHs extremes, as positive DM
anomalies are significantly more likely to occur on (RHs25)
days as opposed to (RHs75) days, which is expected, as mois-

ture and moist plants suppress the ability of fires to grow and
be maintained (Minnich and Chou, 1997; Ford and Johnson,
2006). The immediate direct effect of BB aerosols tends to be
a net cooling of the surface (Sakaeda et al., 2011; Abel et al.,
2005). However, certain semi-direct effects, such as the burn-
ing off of low clouds, may overpower this effect, leading to a
net surface warming. As the meteorological conditions asso-
ciated with low RHs days are also hallmarks of a semi-direct
effect (Fig. 2), from here onward data will be stratified into
four categories: one with high DM and high RHs (DM90,
RHs75), one with low DM and high RHs (DM10, RHs75),
one with high DM and low RHs (DM90, RHs25), and one
with one with low DM and low RHs (DM10, RHs25). In dif-
ferentiating the average of the variables on (DM90, RHs75)
days and (DM10, RHs75) days, the effects of the meteoro-
logical conditions that come with high DM extremes can be
minimized. However, a caveat to this analysis is that it is
possible there may be a bias towards lower values of RHs
in the DM90 datasets compared with the DM10 datasets, as
fire weather conditions can invigorate fire activity. Therefore,
while this analysis removes a lot of weather variability as per
Fig. 2, it does not remove all of it and caution should be taken
when interpreting the results. Figure 3 demonstrates that dur-
ing large fires, AOD anomalies under both high and low RHs
stratifications are significantly positive in the nCA-NV re-
gion. The increase in mean AOD is larger under low RHs
at 0.24± 0.04. The corresponding change under high RHs
is 0.13± 0.05. As the AOD is consistently significant only
in the nCA-NV region under both stratifications, this region
will be the focus of the study.

4.2 Vertical distribution of black carbon and absorption
in nCA-NV region

Freshly emitted BC is highly hydrophobic, and as it ages
it becomes less resistant to accumulating water droplets
(Lohmann et al., 2020). BC has an average lifetime of 1 week
(Lohmann et al., 2020), and the aging process begins after 1–
2 d (He et al., 2016). Furthermore, in a region with such low
fire season wet deposition such as the southwest US, the BC
on average can live much longer than 1 week (Ogren and
Charlson, 1983). Therefore, hydrophobic and hydrophilic
BC profiles are important to differentiate because they can
give an idea of how long the BC stays in the atmosphere and
it hints at how much BC can contribute to indirect and semi-
direct effects. Figure 4 displays high compared with low DM
mass mixing ratio anomalies for BCphi, BCpho, and combined
BC on high and low RHs days. Significant positive anoma-
lies of BC mass mixing ratio are present from 950 to 300 hPa
for all types of BC under both (DM90, RHs75) and (DM90,
RHs25) conditions compared with the corresponding low
fire conditions. The most significant increase in BC is from
about 950 to 600 hPa for the (DM90, RHs75) days, and from
950 to 550 hPa for the (DM90, RHs25) days. Comparing the
MERRA-2 BC profiles with the CALIPSO DM90–DM10
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Figure 2. Dependence of meteorological variables on high versus low surface relative humidity (RHs) during the fire season. Regional
average cumulative distribution functions (CDFs) for variable anomalies stratified by 75th percentile surface relative humidity (RHs75)
days (red) and 25th percentile (RHs25) days (blue) during the 2003–2022 June–October period. Variables depicted include (a) northern
California (nCA) fire dry matter (DM) emissions, (b) southwestern US surface temperature Ts, (c) nCA-NV cloud layer (850–300 hPa)
average temperature TCL, (d) southwestern US surface relative humidity RHs, (e) southwestern US cloud layer average relative humidity
RHCL, (f) southwestern US cloud fraction CF, (g) southwestern US precipitation P , and (h) southwestern US surface wind speed U . 1
represents the difference between the variable’s average anomaly for RHs75 and RHs25 days.

months during 2006–2021 smoke aerosol daytime and night-
time extinction coefficient profile, MERRA-2 places more
absorbing aerosols below 700 hPa, while CALIPSO gener-
ally places more absorbing aerosols above 700 hPa (Fig. S7).
Therefore, it is important to note that CALIPSO profiles do
not agree with MERRA-2 when it comes to the positioning
of the smoke in the troposphere. However, as the MERRA-
2 and CALIPSO profiles are not temporally consistent, the
comparison between these profiles is not 1−1. Additionally,
as the CALIPSO profiles are not temporally consistent with
the rest of the data in this paper, their use is not preferred
over the MERRA-2 profiles.

There is roughly an equal amount of BCphi and BCpho dur-
ing both high and low RHs days, indicating that on these
days there is roughly as much fresh as aged aerosol in the
troposphere. This is important, as the quantity of BCpho in-
dicates that microphysical effects are possible, since it sug-
gests a large amount of CCN are present in the troposphere.
Additionally, the presence of aged BC indicates that the
BC can affect the atmosphere radiatively over the course
of multiple days. To estimate the impact of these aerosols
on the troposphere over time, an SWHaer profile was cre-
ated from CERES radiative flux data (Fig. 5). Shortwave
profiles used to generate these heating rate profiles, along
with LW profiles, are shown in Fig. S8. Under both (DM90,
RHs75) (Fig. 5a) and (DM90, RHs25) (Fig. 5b) RHs con-

ditions compared with the corresponding low DM condi-
tions, there is a positive SWHaer anomaly from 850 hPa
to the next highest pressure level in the CERES dataset,
500 hPa. For high RHs, this corresponds to a heating rate of
SWHaer = 0.041± 0.016 K d−1, and for low RHs, this corre-
sponds to a heating rate of SWHaer = 0.093± 0.019 K d−1.
Spatially, the 850–500 hPa heating rate is significant over al-
most all grid cells in the region of interest where there are
data, with the most positive heating rates over eastern nCA
and eastern Nevada (Fig. 5c, d).

It should be noted that aerosol absorption can be affected
by water vapor in the atmosphere, which can cause swelling
and lensing effects that increase absorption (Wu et al., 2018;
Peng et al., 2016). Therefore, this possibility will be investi-
gated in Sect. 4.3.

4.3 Responses in temperature, humidity, and cloud
profiles

Figure 6 displays the 2003–2022 June–October nCA-NV
vertical profiles of high minus low fire T (Fig. 6a, e) and RH
(Fig. 6c, g) profiles. Figure 6a–d are stratified by high RHs,
while Fig. 6e–h are stratified by low RHs. In both Fig. 6a
and e, the temperature anomalies in the 850–300 hPa pres-
sure level range are consistently significant and positive at
around 1 K. Comparing Fig. 6 with Fig. 4, the positive differ-
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Figure 3. Difference in AOD anomalies on high and low RHs days during the fire season. Daily northern California–Nevada (nCA-NV) AOD
anomalies stratified by nCA-NV RHs and nCA DM extremes during the 2003–2022 June–October period. Panel (a) displays cumulative dis-
tribution functions for daily June–October 2003–2022 daily nCA-NV AOD stratified by high (90th percentile) nCA DM emissions and high
nCA-NV RHs AOD(DM90, RHs75) (solid red line), low (10th percentile) DM and high RHs AOD(DM10, RHs75) (dashed red), simultane-
ously high DM and low RHs AOD(DM90, RHs25) (solid blue line), and simultaneously low nCA DM and low RHs AOD(DM10, RHs25)
(dashed blue line). The red 1AOD represents the difference between the solid red and dashed red line AOD(DM90, RHs75)−AOD(DM10,
RHs75) and the blue 1AOD represents the difference between the solid and dashed blue lines AOD(DM90, RHs25)−AOD(DM10, RHs25).
Panel (b) depicts a map of AOD(DM90, RHs25)−AOD(DM10, RHs25). Pearson cross-correlation coefficient r between 1AOD and nCA
DM emissions is depicted in the top left corner. Panel(c) depicts a map of average AOD(DM90, RHs75)−AOD(DM10, RHs75). Black dots
in panels (b) and (c) represent statistically significant differences at the 90 % confidence interval according to a two-tailed test.

ences in temperature anomaly are generally consistent with
the positive BC anomalies. Also, the changes in T from
850 to 500 hPa are spatially consistent with the 850–500 hPa
heating rate anomalies where data are available (Fig. 5c, d).
Under both high RHs (Fig. 6c) and low RHs (Fig. 6g) con-
ditions, RH anomalies throughout the entire profiles are neg-
ative but are only consistently significant during high RHs
extremes. The AIRS CF profile under high RHs conditions
(Fig. 6d) demonstrates significant negative anomalies from
300 to 600 hPa that are consistent with significant negative
RH anomalies and significant positive T anomalies. How-
ever, there is an increase in CF at 850 hPa (Fig. 6d). This
pressure level corresponds to the highest concentration of
BCphi (Fig. 4c), and perhaps this indicates there is cloud
seeding occurring at this pressure level. For the low RHs pro-
file, there is only a significant negative cloud anomaly close
to the surface at 925 hPa (Fig. 6h).

Aside from temperature, the other potential factor that
could affect RH is that of specific humidity, which is anal-
ogous to the water mass mixing ratio MH2O. Figure 6b and f
depict the effect of fires on MH2O anomalies under high RHs
and low RHs conditions, respectively. There is no signifi-
cant anomaly under high or low RHs conditions, but it is
consistently positive at 700 hPa and below. Furthermore, the
changes in the RH profile follow the changes in the T pro-
file as opposed to the MH2O profile, implying the positive T
anomalies generally dominate the change in RH anomalies.
The insignificant change in MH2O also casts doubt that wa-
ter vapor is affecting the absorption of the aerosols in any
significant way.

While these profiles provide a general overview of how T ,
MH2O, RH, and CF are changing over the region of interest, it
is important to determine whether these changes are consis-
tent spatially with one another as well as whether the changes
coincide with BC anomalies. As the T , RH, and CF anoma-
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Figure 4. Difference in MERRA-2 black carbon (BC) profiles on high vs. low fire days stratified by differing RHs conditions in the nCA-NV
region during the 2003–2022 June–October period. Profiles of both aged hydrophilic black carbon BCphi (a, d) as well as freshly emitted
hydrophobic black carbon BCpho (b, e) are depicted in addition to total BC (c, f). All types of BC have significant anomalies from 850 to
300 hPa under both high RHs (a–c) and low RHs conditions (d–f).

Figure 5. High minus low DM days regional average aerosol-only shortwave heating rate SWHaer profiles under differing RHs conditions
during the 2003–2022 June–October period. There is a significant shortwave aerosol heating rate from 850 to 500 hPa under both high RHs (a)
and low RHs conditions (b). Also depicted are spatial maps for high minus low fire days (c) under simultaneously high RHs conditions and
(d) under simultaneously low RHs conditions. Black dots represent statistical significance at the 90 % confidence interval. r represents the
cross correlation between SWHaer and AOD.
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Figure 6. Responses in AIRS temperature T , water mass mixing ratio MH2O, relative humidity RH, and cloud fraction CF profiles to large
fires under high and low RHs extremes during the fire season. nCA-NV regional temporal average differences in T , water mass mixing
ratio MH2O, and relative humidity RH profiles for high minus low DM conditions stratified by RHs75 (a–d) and RHs25 (e–h) during the
2002–2023 fire season (June–October). Error bars represent the 90 % confidence interval.

lies are strongest during high RHs days, the focus from here
will be on the meteorological effects of high DM on high
RHs days. Figures 7–11 depict the effect of fires on the spa-
tial distributions of BC, T , MH2O, RH, and CF anomalies
at each AIRS pressure level up to 200 hPa under high RHs
conditions. The positive MERRA-2 BC anomalies in Fig. 7
correlate positively and significantly with MODIS AOD for
each pressure level between 925 and 300 hPa (Fig. 7b–h),
and are spatially consistent with positive AIRS T anomalies
(Fig. 8). Shifting attention to Fig. 9, there appear to be sig-
nificant negative anomalies in MH2O in northeastern Nevada
from 700 to 400 hPa and significant positive anomalies over
grid cells associated with large fires (Fig. 1a) in the lower tro-
posphere (925–850 hPa). Comparing these changes in T and
MH2O spatially with changes in RH (Fig. 10), it appears that
changes in T tend to dominate changes in RH over CA, west-
ern NV, and southern NV, while changes in MH2O appear to
contribute to the negative RH anomaly in northeastern NV.
Additionally, the positive MH2O at 850 hPa appears to mit-
igate the negative RH anomalies at the same level, which
may explain why BC appears to be able to act as a CCN
at this level but not others: RH does not decrease enough to
prevent clouds from forming. The increase in MH2O has a
myriad of possible explanations. It may be due to the emis-
sion of moisture from the burned vegetation (Jacobson, 2014;
Dickinson et al., 2021), from lofting of water vapor from the
surface to higher levels of the atmosphere (Yu et al., 2024),
or from moisture advection due to a change in wind vec-
tors from the northeastern part of Nevada towards California

(Fig. S9). This scattered significant increase in MH2O, be-
ing relegated to a few grid cells in a few pressure levels, is
not generally spatially consistent with the changes in SWHaer
(Fig. 5c), especially compared with the spatial distribution of
BC (Fig. 7), further indicating that lensing effects are not the
dominant contributor to the increase in aerosol absorption.
Viewing Fig. 11c, the increase in CF at 850 hPa appears to be
driven predominantly by a few significant and large coastal
CF anomalies. This indicates that there is an increase in shal-
low marine clouds at this pressure level, while clouds at other
pressure levels are generally being suppressed. Figure 11
demonstrates that significant negative CF anomalies are gen-
erally spatially consistent with negative RH anomalies from
700 to 400 hPa. The significant negative CF anomalies in
northeastern Nevada that correspond to significant negative
RH anomalies, but not significant positive T anomalies, at
700 hPa and higher indicate that the difference in clouds in
this region is dependent on specific humidity. This may be
due to a transport of moisture outside of these grid cells due
to anomalously positive southeastern wind speed anomalies
in some of these grid cells (Fig. S9b) that advect moisture
towards southern California and southern Nevada; however,
further scrutiny is warranted to confirm this. It is not known
if these wind speed anomalies are related to T anomalies to
the west or if these wind speed anomalies in this region are
an artifact. Changes in wind vectors are further analyzed in
Sect. S3. As the change in T is the more robust signal over all
parts of the troposphere, the changes in T will be the focus
of the remainder of the paper.
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Figure 7. High minus low DM days MERRA-2 BC anomalies at all AIRS pressure levels from 1000 to 200 hPa (a–j) under high RHs
conditions during the 2003–2022 June–October period. Black dots indicate statistical significance at the 90 % confidence interval. r values
indicate spatial Pearson cross correlations between total BC and MODIS AOD.

4.4 Changes in cloud type, precipitation, and shortwave
flux

With AIRS data indicating that large fires are associated
with enhanced T , as well as lower RH and CF, it is essen-
tial to determine how liquid vs. ice clouds are impacted and
what the corresponding impacts on P and radiative balance
are. Figure 12 displays CDFs for nCA-NV regional average
variable anomalies during simultaneously high DM and low
RHs days (solid red), simultaneously low DM and high RHs
days (dashed red), simultaneously high DM and low RHs
days (solid blue), and simultaneously low DM and low RHs
days (dashed blue). Figure 12a and b demonstrate that dur-
ing high RHs extreme days, the effect of fires on the liquid
water cloud fraction CFlw distribution and cirrus cloud frac-
tion CFcir distribution is a significant shift towards a pref-
erence for negative anomalies. The effect of the large fires

creates an average −0.04± 0.02 CFlw anomaly and an aver-
age −0.05± 0.04 CFcir anomaly under high RHs conditions.
In addition, MODIS total CF shifts by −0.07± 0.05 under
the same stratifications. Precipitation also shifts significantly
by −0.3± 0.23 mm d−1. However, these shifts are signifi-
cant only for high RHs extreme days (Fig. 12). The expla-
nation of why the distribution shifts farther towards negative
anomalies when anomalously large fires occur during high
RHs compared with low RHs extremes lies in Fig. 2. During
low RHs days, RH throughout the troposphere is already sig-
nificantly lower than normal conditions (Fig. 2e), as temper-
atures throughout the troposphere are already high (Fig. 2c)
and atmospheric water vapor content is low. This creates con-
ditions of negative CF anomalies (Fig. 2f). Therefore, further
increasing the already high T should not lead to significantly
lower cloud fraction, as RH is already low and clouds re-
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Figure 8. High minus low DM days AIRS T anomalies at all AIRS pressure levels from 1000 to 200 hPa (a–j) under high RHs conditions
during the 2003–2022 June–October period. Black dots indicate statistical significance at the 90 % confidence interval. r values indicate
spatial Pearson cross correlations between T and MODIS AOD.

quire 100 % RH to form. This can also be explained by the
RH profile in Fig. 6g, which demonstrates through most parts
of the troposphere that RH is not significantly lowered during
fires. However, during simultaneously low DM and high RHs
days, Fig. 12 demonstrates that conditions are favorable for
clouds and rain. This is because during these high RHs ex-
tremes, T is lower and RH is high. Therefore, when anoma-
lously large fires introduce a positive T anomaly, the drop
in RH is significant enough to reduce the chances of seeing
positive cloud and/or precipitation anomalies. In response to
the higher probability of negative cloud fraction anomaly, the
probability that SW radiation will be reflected into space de-
creases. This reduction in top-of-atmosphere shortwave flux
leads to a net increase in cloud only (all-sky minus clear-
sky) top-of-atmosphere radiative forcing TOAcld (Fig. 12f).
Although it should be noted that this increase is not signif-

icant, it is significant and positive over much of the region
marked by a decrease in CF (Fig. 13e, h), with a significant
spatial cross correlation of r =−0.67. Regional all-sky SW
and LW responses are shown in Fig. S10.

Figure 13 displays composite differences between mete-
orological variables on simultaneously high DM and high
RHs and simultaneously low DM and high RHs days for each
grid cell over the entire southwestern US. Figure 13a and b
display the composite differences in cloud layer (850 hPa≥
p ≥ 300 hPa) temperature TCL and cloud layer relative hu-
midity RHCL. These plots depict that TCL significantly in-
creases almost everywhere across California and Nevada,
with the most significant increase in the green box (the nCA-
NV region). The differences in TCL correlate significantly
with differences in AOD at r = 0.72 across the entire south-
western US. The decreases in RHCL have a very similar
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Figure 9. High minus low DM days AIRS MH2O anomalies at all AIRS pressure levels from 1000 to 200 hPa (a–j) under high RHs
conditions during the 2003–2022 June–October period. Black dots indicate statistical significance at the 90 % confidence interval. r values
indicate spatial Pearson cross correlations between total MH2O and MODIS AOD.

spatial distribution to TCL, with the strongest decreases in
the nCA-NV region. Again, this correlates significantly with
AOD, with r =−0.55 over the entire southwest. The differ-
ences in all these variables across the southwestern US cor-
relate significantly with AOD, supporting the assertion that
aerosols concurrent with fires are associated with warming
and drying. Of note are the changes in Ts and P , which are
two variables intrinsically related to fire duration. Spatially
correlating P with RHCL yields a significant, but notably
weaker, correlation of r = 0.44, implying a relationship be-
tween the negative P anomalies and the biomass burning
aerosols. However, it should be noted that although the re-
gional P anomaly is significant and negative, it appears to

be dominated only by strong changes in just a few grid cells.
Ts correlates significantly with AOD over the southwestern
US, with r = 0.51, and is generally spatially concurrent with
increases in TCL with r = 0.72. The equivalent for Fig. 13
for low RHs days is given in Fig. S11. Of note for this sup-
plementary figure is that there are weak, but significant and
widespread, negative CF, RH, and P anomalies over nCA
and eastern Nevada, despite not being significant in the re-
gional average (Fig. 12c, e). This implies that the meteoro-
logical anomalies seen during high RHs days are also preva-
lent on low RHs days but weaker and less widespread due to
the lower availability of moisture.
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Figure 10. High minus low DM days AIRS RH anomalies at all AIRS pressure levels from 1000 to 200 hPa (a–j) under high RHs conditions
during the 2003–2022 June–October period. Black dots indicate statistical significance at the 90 % confidence interval. r values indicate
spatial Pearson cross correlations between RH and MODIS AOD.

While cross correlations indicate that there is a statistically
significant relationship between fires and meteorology, prac-
tical significance needs to be established as well. The effect
sizes of high DM emissions on nCA-NV regional averages of
the variables in Figs. 12 and 13 are depicted in Fig. 14. For
high RHs extremes (Fig. 14a), the anomalously large fires
are associated with a moderate to strong effect size on most
of the relevant variables. Figure 14b demonstrates that dur-
ing low RHs conditions, anomalously large fires are associ-
ated with a weak to no effect size on the relevant variables,
aside from TCL in which fires have a very strong effect size.
It should be noted that effect size does not imply causality
but instead only quantifies how different the mean of a distri-
bution is when a single variable is changed.

4.5 Cloud microphysical effects

Up to this point, we have investigated how cloud fraction and
type differ during large fires. Aerosols from wildfires may
also influence clouds via microphysical effects, which are in-
vestigated in this section. High fire emissions under high RHs
conditions are associated with non-significant differences in
microphysical variables (Fig. 15). Spatial maps of high mi-
nus low fire Reff and LWP under high RHs conditions show
a mix of areas with positive and negative changes, most of
which are not significant (Fig. S12). Although there is a small
tendency for negative Reff anomalies to occur in Nevada and
a small tendency for negative LWP anomalies to occur in
nCA and western NV. Since negative Reff anomalies can af-
fect precipitation, the spatial distribution of Reff anomalies
(Figs. S12, S13) was compared with the spatial distribution
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Figure 11. High minus low DM days AIRS CF anomalies at all AIRS pressure levels from 1000 to 200 hPa (a–j) under high RHs conditions
during the 2003–2022 June–October period. Black dots indicate statistical significance at the 90 % confidence interval. r values indicate
spatial Pearson cross correlations between CF and MODIS AOD.

of P anomalies (Figs. 13, S11) under high vs. low DM condi-
tions. Significant negative Reff anomalies were not found to
be spatially consistent with significant negative P anomalies
under either high or low RHs conditions. This casts doubt on
wildfires in this region creating microphysical suppression of
P .

There are significant regional changes in liquid Reff and
LWP under low RHs conditions (Figs. 15, S13). Liquid Reff
significantly increases under these conditions, which is con-
trary to what one would expect as a response to increased
AOD (Twohy et al., 2021; Conrick et al., 2021; Fan et al.,
2016). One possible explanation for this increase in Reff
is that Reff is directly proportional to temperature (Martins
et al., 2011), and perhaps the effects of the TCL anoma-
lies dominate over the condensation of new droplets onto

BCphi. Alternatively, this increase may be driven by changes
in atmospheric dynamics, as increased updraft strength and
enhanced turbulence could lead to increased coalescence
(Khain, 2009). Coincident with the strongest increase in Reff
(at the northernmost coast of California) under these con-
ditions is a significant negative (upward) pressure velocity
anomaly from 1000 to 925 hPa, which implies that an in-
crease in upward convection near the surface may be a fac-
tor of the increase in Reff, as an upward pressure velocity
should increase droplet lifetime (Fig. S14). It is also noted
that there are negative pressure velocity anomalies under
high RHs conditions from 1000 to 850 hPa (Fig. S15), and
this corresponds to an increase in Reff near the Bay Area.

Comparing high with low fire conditions, LWP under si-
multaneously low RHs conditions shows a significant de-
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Figure 12. Dependence of meteorological variables on high versus low RHs and fires during the fire season. Empirical CDFs for regional
average daily anomalies of meteorological variables over the nCA-NV region during the 2003–2022 June–October period. Solid red line
signifies variable anomalies are stratified by high nCA fire dry matter (DM) emissions and high nCA-NV RHs anomaly days (DM90,
RHs75). The dashed red line signifies variable anomalies stratified by low DM and high RHs anomaly days (DM10, RHs75). The solid
blue line represents variable anomalies stratified by high DM and low RHs anomaly days (DM90, RHs25). The dashed blue line symbolizes
variable anomalies stratified by low DM and RHs anomaly days (DM10, RHs25). Variables depicted include (a) liquid water cloud fraction
CFlw, (b) cirrus cloud fraction CFcir, (c) CF, (d) cloud top height CTH, (e) precipitation P , and cloud-only (all-sky minus clear-sky) net top-
of-atmosphere flux TOAcld. The red1 represents the differences in the mean of the solid red and dashed red lines (DM90, RHs75)−(DM10,
RHs75). The blue 1 represents the differences in the mean of the solid blue and dashed blue lines (DM90, RHs25)−(DM10, RHs25).

crease (Fig. 15c). This significant negative LWP anomaly
may be due to the negative RHCL anomaly (Fig. S11b), as
lower saturation of the air would reduce liquid water within
clouds. This decrease in LWP may be of importance, as LWP
scales positively with cloud albedo (Han et al., 1998). There-
fore, this decrease in LWP may contribute to an increase in
absorbed solar radiation at the surface. In summary, while the
nCA fires significantly inject aerosols into the troposphere,
these aerosols do not appear to generally act as CCN and
instead contribute to a positive T anomaly that burns off
clouds. This may be because BC is generally more hydropho-
bic than other aerosols, and instead the radiative effects of the
aerosol dominate.

5 Discussion

The results of this paper indicate that large fires in nCA are
concurrent with significant amounts of absorbing aerosols,
which themselves are associated with a shortwave heating
rate of 0.041± 0.016 to 0.093± 0.019 K d−1. This heating
rate contributes to positive atmospheric T anomalies in the
region that are concurrent with large fires; however, the ex-

tent of this contribution is unknown. When the fires oc-
cur during high RHs conditions, the positive T anomalies
(Figs. 8, 13a) are associated with significant negative RH
anomalies in the low, middle, and high cloud layers (850–
300 hPa) at the 90 % confidence interval (Figs. 10, 13b).
These negative RH anomalies are associated with a reduc-
tion in clouds, which is associated with significant negative P
anomalies in the nCA-NV region. These negative CF anoma-
lies are also associated with an increase in TOA radiative flux
(Fig. 13h), despite a decrease in CTH (Fig. 13f). In short,
wildfires in nCA are associated with region-wide negative CF
anomalies that are caused by positive T anomalies. Aerosols
emitted from biomass burning contribute to these positive
T anomalies through shortwave absorption, indicating that
the traditionally defined aerosol–cloud semi-direct effect is a
possible explanation for the decrease in clouds. Furthermore,
the TCL, RHCL, and CF anomalies correlate significantly with
positive BC and AOD anomalies (Figs. 7, 8, 10, 11, and 13),
further supporting the assertion that aerosols are contributing
to these anomalies. However, it is unknown to what extent the
aerosols contribute to the atmospheric T anomalies observed
and therefore to the negative RH, CF, and P anomalies. One
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Figure 13. Meteorological responses under high versus low nCA DM conditions with simultaneously high nCA-NV RHs during the fire
season. Difference between average variable anomalies on high (90th percentile) nCA fire dry matter (DM) emission days and low (10th
percentile) nCA DM emission days that occur on high nCA-NV RHs days during the 2003–2022 June–October period. Variables include
(a) 850–300 hPa average temperature TCL, 850–300 hPa average relative humidity RHCL, (c) surface temperature Ts, (d) RHs, (e) CF,
(f) CTH, (g) P , and (e) TOAcld. Black dots represent statistically significant differences at the 90 % confidence interval according to a
two-tailed test. Pearson cross-correlation r values in each plot represent the spatial correlation between MODIS aerosol optical depth (AOD)
anomaly and the variable anomaly depicted in the figure. All values of r are significant at the 90 % confidence interval according to a
two-tailed test.

possible source of noise is wind. Figure S9 depicts a posi-
tive wind speed in northern Nevada that may be influencing
cloud cover over that part of the region, and it is unknown
whether this signal has anything to do with the positive T
anomalies. Additionally, wildfires are associated with an in-
crease in sensible heat flux from the combustion of biofuels,
which may contribute to the positive T anomalies as well
(Dickinson et al., 2021). Furthermore, random weather vari-
ations within the stratification may also create anomalies that
are favorable for enhanced fire activity, which would increase
DM, making causality difficult to discern. However, another
study that utilized a similar methodology to this paper to an-
alyze the effects of large fires using combined aircraft obser-
vations and a climate model indicates the possibility that the
aerosols in this study are a significant contributor to the nega-
tive CF anomalies (Thornhill et al., 2018). The authors of that
study ran the Met Office Unified Model using aircraft obser-
vations of AOD and BB aerosol properties. They compared

meteorological variables in high vs. low fire emission con-
ditions over South America and found a clear-sky shortwave
heating rate of the low to middle troposphere that is larger
than (0.2 K d−1), but comparable to, the heating rates calcu-
lated in this paper. This was also associated with a higher BC
mass mixing ratio, and a significant negative CF anomaly of
around 0.08, which is a similar anomaly to the 0.07± 0.05
MODIS CF anomaly observed in this study during high RHs
conditions (Fig. 12c). Although not related to fire, an aircraft
observational study of anthropogenic BC over the Bay of
Bengal found a BC heating rate of around 0.5 K d−1 (Kant et
al., 2023), which further demonstrates that BC can be associ-
ated with atmospheric warming. Furthermore, the results of
this study are consistent with numerous other satellite obser-
vational studies over the tropics and subtropics that demon-
strate that aerosols associated with wildfires are shortwave
absorbing and can contribute to burn-off of clouds, resulting
in a positive radiative forcing (Wilcox, 2012; Kaufman et al.,
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Figure 14. Effect size of large fires in nCA on the mean of various
meteorological variables during the fire season of 2003–2022 June–
October. Cohen’s d values for the difference between nCA-NV re-
gional averages of variables on high DM days minus low nCA DM
emission days that coincide with (a) high RHs and (b) low RHs.
For Cohen’s d, values of 0.2–0.5 signify a weak effect size, values
of 0.5–0.8 represent a moderate effect size, and values greater or
equal to 0.8 signify a strong effect size. Red bars represent standard
error.

2005; Ackerman et al., 2000; Hansen et al., 1997). Addition-
ally, the reduction in CF and P is consistent with the results
of the study by Chen et al. (2014), which was a biomass burn-
ing modeling experiment conducted over the United States.
However, their proposed mechanism for these decreases was
a change in convection due to the distribution of warming of
the aerosols. Concerning the increase in MH2O above sites
of fire emission in Fig. 9b and c, this is consistent with a
recent study by Yu et al. that found comparable results (Yu
et al., 2024); however, they found more water vapor higher
in the troposphere than this paper. Additionally, it is noted
that the observed microphysical effects of the BB aerosols in
this paper, namely, the lack of a regional decrease in Reff, are
in contrast to another observational study that overlaps with

the region of interest in this paper (Twohy et al., 2021). An
important note about that study, however, is that it only sam-
pled the 2018 wildfire season while this study focuses on the
entire 2003–2022 period.

The results of this paper highlight that it is necessary to un-
derstand the contribution of biomass burning aerosols to the
anomalies that favor enhanced fire weather. If the aerosols
are a significant contributor to these anomalies, this can cre-
ate a positive feedback loop where large fires emit copious
amounts of BC, warm the atmosphere, reduce cloud cover,
suppress P , and therefore intensify fire activity. As this po-
tential feedback would prolong wildfires, it would therefore
also prolong poor air quality conditions inside the southwest-
ern US (Liu and Peng, 2019; O’Neill et al., 2021; Schlosser
et al., 2017) as well as other parts of the country (Hung et
al., 2020). Significant reductions in nCA P may prolong the
wildfire season further into autumn (Goss et al., 2020), and
increases in atmospheric T as well as decreases in atmo-
spheric RH may create conditions more favorable for more
fires to ignite and grow (Varga et al., 2022). Additionally, the
negative P anomalies and/or positive Ts anomalies in this
paper occur in heavily populated regions in the southwest-
ern US, including the San Francisco Bay Area, Humboldt
County in California, and Washoe County in Nevada. There-
fore, it is essential to further investigate the relationship be-
tween anomalously large fires in the region and the local me-
teorology, since if the fires are contributing to these meteo-
rological anomalies, this would dictate an increased need for
a curtailment of CO2 emissions (Ma et al., 2021; Touma et
al., 2021) and better land management practices (DellaSala
et al., 2022; Minnich et al., 2000; Minnich, 2001), as climate
change and land mismanagement have both contributed to
the large fires in nCA in recent years. Additionally, the con-
firmation that these BC anomalies are associated with a pos-
itive heating rate anomaly is enough to advocate for these
changes, as the fires are worsening already warm western
US weather. Furthermore, as large fires are projected to be-
come more commonplace throughout the 21st century due
to these factors (Flannigan et al., 2013; United Nations En-
vironment Programme, 2022), the results of this paper will
become more relevant over time as today’s 90th percentile
fire emission conditions become more common throughout
the 21st century.

Overall, to determine whether the fires are significantly
contributing to the negative RH, CF, and P anomalies, it is
essential to run a climate modeling experiment where BC is
increased over the region of interest and to quantify the ef-
fects of this increased BC on these meteorological variables.
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Figure 15. Dependence of microphysical variables on high versus low surface relative humidity RHs and fires during the fire season. Empiri-
cal CDFs for regional average daily anomalies of cloud microphysical variables over the nCA-NV region during the 2003–2022 June–October
period. Solid red line signifies variable anomalies stratified by (DM90, RHs75). The dashed red line signifies variable anomalies stratified
by (DM10, RHs75). The solid blue line represents variable anomalies stratified (DM90, RHs25). The dashed blue line symbolizes variable
anomalies stratified by (DM10, RHs25). Variables depicted include (a) liquid effective radius Reff, (b) ice Reff, (c) liquid water path LWP,
and (d) ice water path IWP. The red 1 represents the differences in the mean of the solid red and dashed red lines (DM90, RHs75)−(DM10,
RHs75). The blue 1 represents the differences in the mean of the solid blue and dashed blue lines (DM90, RHs25)−(DM10, RHs25).

Appendix A

Table A1. Definition of variables that were derived from satellite observational datasets as well as the instrument and dataset they are derived
from.

Symbol Definition Dataset derived from Name of product(s) used

BC Black carbon MERRA-2 BCPHILIC, BCPHOBIC

DM Fire dry matter emissions GFED4.1s DM, daily_fraction

AOD Aerosol optical depth MODIS Aerosol_Optical_Depth_Land_Ocean_Mean

MH2O Water mass mixing ratio AIRS H2O_MMR_D

T Temperature AIRS Temperature_D

Ts Surface temperature AIRS SurfAirTemp_D

RH Relative humidity AIRS RelHum_D
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Table A1. Continued.

Symbol Definition Dataset derived from Name of product(s) used

RHs Surface relative humidity AIRS RelHumSurf_D

CF Cloud fraction MODIS AIRS Cloud_Fraction_Mean FineCloudFrc_D

CFcir Cirrus cloud fraction MODIS Cirrus_Fraction_Infrared

CFlw Liquid water cloud fraction MODIS Cloud_Retrieval_Fraction_Liquid

CTH Cloud top height MODIS Cloud_Top_Height_Mean

P Precipitation GPCP precip

SWHaer Aerosol shortwave heating rate CERES adj_all_sw_dn, adj_all_sw_up, adj_naer_sw_dn,
adj_naer_sw_up

Faer Shortwave aerosol radiative forcing CERES Same as above variable

TOAcld Cloud-only net top-of-atmosphere flux CERES adj_all_sw_dn, adj_all_sw_up,
adj_all_lw_up adj_clr_sw_dn,
adj_clr_sw_up, adj_clr_lw_up

SWu Shortwave aerosol upward flux CERES adj_all_sw_up, adj_clr_sw_up

SWd Shortwave aerosol downward flux CERES adj_all_sw_dn, adj_clr_sw_dn

Us Surface wind speed CERES/GEOS sfc_wind_speed

Liquid Reff Liquid cloud effective radius MODIS Cloud_Effective_Radius_Ice_Mean

Ice Reff Ice cloud effective radius MODIS Cloud_Effective_Radius_Liquid_Mean

LWP Liquid water path MODIS Cloud_Water_Path_Liquid_Mean

IWP Ice water path MODIS Cloud_Water_Path_Ice_Mean

Table A2. Definitions of abbreviations used throughout the paper
that are not associated with a dataset.

Symbol Definition

nCA Northern California
nCA-NV Northern California–Nevada
US United States
BB Biomass burning
OA Organic aerosol
CA California
SW Shortwave
AAOD Absorbing aerosol optical depth
LW Longwave
TOA Top of atmosphere
CCN Cloud condensation nuclei
CDF Cumulative distribution function
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Table A3. Definitions of subscripts and other descriptors for variables.

Descriptor Definition

(DM90) Variable stratified by 90th percentile fire dry matter emission anomaly days in nCA

(RHs75) Variable stratified by 75th percentile surface relative humidity anomaly days in nCA-NV

(DM10) Variable stratified by 10th percentile fire dry matter emission anomaly days in nCA

(RHs25) Variable stratified by 25th percentile surface relative humidity anomaly days in nCA-NV

(DM90, RHs75) Variable stratified by 90th percentile fire dry matter emission anomaly days in nCA and 75th percentile
surface relative humidity anomaly days in nCA-NV

(DM10, RHs75) Variable stratified by 10th percentile fire dry matter emission anomaly days in nCA and 75th percentile
surface relative humidity anomaly days in nCA-NV

(DM90, RHs25) Variable stratified by 90th percentile fire dry matter emission anomaly days in nCA and 25th percentile
surface relative humidity anomaly days in nCA-NV

(DM10, RHs25) Variable stratified by 10th percentile fire dry matter emission anomaly days in nCA and 25th percentile
surface relative humidity anomaly days in nCA-NV

CL Cloud layer (850–300 hPa) average of variable

s Variable measured at the surface

pho Hydrophobic aerosol

phi Hydrophilic aerosol

aer Radiative forcing variable calculated from all-sky minus clear-sky products (aerosol only)

cld Radiative forcing variable calculated from all-sky minus no-aerosol products (cloud only)

1 Difference in variable under different fire and/or relative humidity conditions

Code availability. Code is available upon request from the au-
thors.

Data availability. All datasets utilized in this analysis are avail-
able online for free. The MODIS–Aqua MYD08_D3 dataset can be
found at the NASA Level-1 and Atmosphere Archive & Distribu-
tion System (LAADS) Distributed Active Archive Center (DAAC)
(https://doi.org/10.5067/MODIS/MYD08_D3.061, MODIS Atmo-
sphere Science Team, 2017). The AIRS–Aqua AIRS3STD dataset
can also be accessed through the Goddard Earth Sciences Data
and Information Services Center (GES DISC) (https://doi.org/
10.5067/AQUA/AIRS/DATA303, AIRS Science Team and Tex-
eira, 2013). The CERES Level 3 SYN1DEG-DAY dataset can
also be found at LAADS DAAC (https://doi.org/10.5067/Terra+
Aqua/CERES/SYN1degDay_L3.004A, NASA/LARC/SD/ASDC,
2017). The M2I3NVAER dataset can also be found at GES
DISC (https://doi.org/10.5067/LTVB4GPCOTK2, Global Model-
ing And Assimilation Office and Pawson, 2015). GFED4.1s fire
emissions data can be found at https://www.globalfiredata.org
(GFED, 2024), or on the Oak Ridge National Laboratory (ORNL)
DAAC (https://doi.org/10.3334/ORNLDAAC/1293, Randerson et
al., 2017).

Supplement. The supplement related to this article is available
online at: https://doi.org/10.5194/acp-24-6937-2024-supplement.

Author contributions. JLG conceived the project, designed the
study, performed the data analysis, and wrote the paper. RJA per-
formed analyses and wrote the paper. KFL advised on methods.

Competing interests. The contact author has declared that none
of the authors has any competing interests.

Disclaimer. Publisher’s note: Copernicus Publications remains
neutral with regard to jurisdictional claims made in the text, pub-
lished maps, institutional affiliations, or any other geographical rep-
resentation in this paper. While Copernicus Publications makes ev-
ery effort to include appropriate place names, the final responsibility
lies with the authors.

Financial support. This research has been supported by the Na-
tional Science Foundation (NSF; grant no. AGS-2153486 to Robert
J. Allen).

Atmos. Chem. Phys., 24, 6937–6963, 2024 https://doi.org/10.5194/acp-24-6937-2024

https://doi.org/10.5067/MODIS/MYD08_D3.061
https://doi.org/10.5067/AQUA/AIRS/DATA303
https://doi.org/10.5067/AQUA/AIRS/DATA303
https://doi.org/10.5067/Terra+Aqua/CERES/SYN1degDay_L3.004A
https://doi.org/10.5067/Terra+Aqua/CERES/SYN1degDay_L3.004A
https://doi.org/10.5067/LTVB4GPCOTK2
https://www.globalfiredata.org
https://doi.org/10.3334/ORNLDAAC/1293
https://doi.org/10.5194/acp-24-6937-2024-supplement


J. L. Gomez et al.: California wildfire smoke contributes to a positive temperature anomaly 6959

Review statement. This paper was edited by Matthew Chris-
tensen and reviewed by Michael Diamond and one anonymous ref-
eree.

References

Abel, S. J., Highwood, E. J., Haywood, J. M., and Stringer, M.
A.: The direct radiative effect of biomass burning aerosols
over southern Africa, Atmos. Chem. Phys., 5, 1999–2018,
https://doi.org/10.5194/acp-5-1999-2005, 2005.

Ackerman, A. S., Toon, O. B., Stevens, D. E., Heyms-
field, A. J., Ramanathan, V., and Welton, E. J.: Reduction
of Tropical Cloudiness by Soot, Science, 288, 1042–1047,
https://doi.org/10.1126/science.288.5468.1042, 2000.

Adler, R. F., Sapiano, M. R. P., Huffman, G. J., Wang, J.-J., Gu, G.,
Bolvin, D., Chiu, L., Schneider, U., Becker, A., Nelkin, E., Xie,
P., Ferraro, R., and Shin, D.-B.: The Global Precipitation Cli-
matology Project (GPCP) Monthly Analysis (New Version 2.3)
and a Review of 2017 Global Precipitation, Atmosphere, 9, 138,
https://doi.org/10.3390/atmos9040138, 2018.

Ager, A. A., Day, M. A., Alcasena, F. J., Evers, C. R., Short, K. C.,
and Grenfell, I.: Predicting Paradise: Modeling future wildfire
disasters in the western US, Sci. Total Environ., 784, 147057,
https://doi.org/10.1016/j.scitotenv.2021.147057, 2021.

AIRS Science Team and Texeira, J.: Aqua AIRS Level 3
Standard Daily Product using AIRS IR-only V6, God-
dard Earth Sciences Data and Information Services
Center (GES DISC) [data set], Greenbelt, MD, USA,
https://doi.org/10.5067/AQUA/AIRS/DATA303, 2013.

Allen, R. J. and Sherwood, S. C.: Aerosol-cloud semi-direct ef-
fect and land-sea temperature contrast in a GCM, Geophys. Res.
Lett., 37, L07702, https://doi.org/10.1029/2010GL042759, 2010.

Allen, R. J., Hassan, T., Randles, C. A., and Su, H.: En-
hanced land–sea warming contrast elevates aerosol pollu-
tion in a warmer world, Nat. Clim. Change, 9, 300–305,
https://doi.org/10.1038/s41558-019-0401-4, 2019.

Allen, R. J., Zhao, X., Randles, C. A., Kramer, R. J., Samset, B. H.,
and Smith, C. J.: Surface warming and wetting due to methane’s
long-wave radiative effects muted by short-wave absorption,
Nat. Geosci., 16, 314–320, https://doi.org/10.1038/s41561-023-
01144-z, 2023.

Allen, R. J., Gomez, J., Horowitz, L. W., and Shevliakova, E.:
Enhanced future vegetation growth with elevated carbon diox-
ide concentrations could increase fire activity, Communications
Earth & Environment, 5, 1–15, https://doi.org/10.1038/s43247-
024-01228-7, 2024a.

Allen, R. J., Vega, C., Yao, E., and Liu, W.: Impact of industrial ver-
sus biomass burning aerosols on the Atlantic Meridional Over-
turning Circulation, npj Climate and Atmospheric Science, 7, 1–
16, https://doi.org/10.1038/s41612-024-00602-8, 2024b.

Amiri-Farahani, A., Allen, R. J., Neubauer, D., and Lohmann,
U.: Impact of Saharan dust on North Atlantic marine stra-
tocumulus clouds: importance of the semidirect effect, Atmos.
Chem. Phys., 17, 6305–6322, https://doi.org/10.5194/acp-17-
6305-2017, 2017.

Amiri-Farahani, A., Allen, R. J., Li, K.-F., Nabat, P., and
Westervelt, D. M.: A La Niña-Like Climate Response to
South African Biomass Burning Aerosol in CESM Sim-

ulations, J. Geophys. Res.-Atmos., 125, e2019JD031832,
https://doi.org/10.1029/2019JD031832, 2020.

Artaxo, P., Rizzo, L. V., Brito, J. F., Barbosa, H. M. J., Arana, A.,
Sena, E. T., Cirino, G. G., Bastos, W., Martin, S. T., and Andreae,
M. O.: Atmospheric aerosols in Amazonia and land use change:
from natural biogenic to biomass burning conditions, Faraday
Discuss., 165, 203–235, https://doi.org/10.1039/c3fd00052d,
2013.

Brown, P. T., Hanley, H., Mahesh, A., Reed, C., Strenfel, S. J.,
Davis, S. J., Kochanski, A. K., and Clements, C. B.: Climate
warming increases extreme daily wildfire growth risk in Califor-
nia, Nature, 621, 760–766, https://doi.org/10.1038/s41586-023-
06444-3, 2023.

Buchard, V., da Silva, A. M., Colarco, P. R., Darmenov, A., Ran-
dles, C. A., Govindaraju, R., Torres, O., Campbell, J., and Spurr,
R.: Using the OMI aerosol index and absorption aerosol optical
depth to evaluate the NASA MERRA Aerosol Reanalysis, At-
mos. Chem. Phys., 15, 5743–5760, https://doi.org/10.5194/acp-
15-5743-2015, 2015.

Cape, J. N., Coyle, M., and Dumitrean, P.: The atmospheric
lifetime of black carbon, Atmos. Environ., 59, 256–263,
https://doi.org/10.1016/j.atmosenv.2012.05.030, 2012.

Chen, D., Liu, Z., Schwartz, C. S., Lin, H.-C., Cetola, J. D., Gu,
Y., and Xue, L.: The impact of aerosol optical depth assimila-
tion on aerosol forecasts and radiative effects during a wild fire
event over the United States, Geosci. Model Dev., 7, 2709–2715,
https://doi.org/10.5194/gmd-7-2709-2014, 2014.

Chen, Y., Hall, J., van Wees, D., Andela, N., Hantson, S., Giglio,
L., van der Werf, G. R., Morton, D. C., and Randerson, J. T.:
Multi-decadal trends and variability in burned area from the fifth
version of the Global Fire Emissions Database (GFED5), Earth
Syst. Sci. Data, 15, 5227–5259, https://doi.org/10.5194/essd-15-
5227-2023, 2023.

Cho, C., Kim, S.-W., Choi, W., and Kim, M.-H.: Signifi-
cant light absorption of brown carbon during the 2020
California wildfires, Sci. Total Environ., 813, 152453,
https://doi.org/10.1016/j.scitotenv.2021.152453, 2022.

Conrick, R., Mass, C. F., Boomgard-Zagrodnik, J. P., and Ovens, D.:
The Influence of Wildfire Smoke on Cloud Microphysics dur-
ing the September 2020 Pacific Northwest Wildfires, Weather
Forecast., 36, 1519–1536, https://doi.org/10.1175/WAF-D-21-
0044.1, 2021.

DellaSala, D. A., Baker, B. C., Hanson, C. T., Ruedi-
ger, L., and Baker, W.: Have western USA fire suppres-
sion and megafire active management approaches become
a contemporary Sisyphus?, Biol. Conserv., 268, 109499,
https://doi.org/10.1016/j.biocon.2022.109499, 2022.

Dickinson, M. B., Wold, C. E., Butler, B. W., Kremens, R. L.,
Jimenez, D., Sopko, P., and O’Brien, J. J.: The Wildland Fire
Heat Budget—Using Bi-Directional Probes to Measure Sensi-
ble Heat Flux and Energy in Surface Fires, Sensors, 21, 2135,
https://doi.org/10.3390/s21062135, 2021.

Eyring, V., Bony, S., Meehl, G. A., Senior, C. A., Stevens, B.,
Stouffer, R. J., and Taylor, K. E.: Overview of the Coupled
Model Intercomparison Project Phase 6 (CMIP6) experimen-
tal design and organization, Geosci. Model Dev., 9, 1937–1958,
https://doi.org/10.5194/gmd-9-1937-2016, 2016.

Fan, J., Wang, Y., Rosenfeld, D., and Liu, X.: Review of Aerosol–
Cloud Interactions: Mechanisms, Significance, and Challenges,

https://doi.org/10.5194/acp-24-6937-2024 Atmos. Chem. Phys., 24, 6937–6963, 2024

https://doi.org/10.5194/acp-5-1999-2005
https://doi.org/10.1126/science.288.5468.1042
https://doi.org/10.3390/atmos9040138
https://doi.org/10.1016/j.scitotenv.2021.147057
https://doi.org/10.5067/AQUA/AIRS/DATA303
https://doi.org/10.1029/2010GL042759
https://doi.org/10.1038/s41558-019-0401-4
https://doi.org/10.1038/s41561-023-01144-z
https://doi.org/10.1038/s41561-023-01144-z
https://doi.org/10.1038/s43247-024-01228-7
https://doi.org/10.1038/s43247-024-01228-7
https://doi.org/10.1038/s41612-024-00602-8
https://doi.org/10.5194/acp-17-6305-2017
https://doi.org/10.5194/acp-17-6305-2017
https://doi.org/10.1029/2019JD031832
https://doi.org/10.1039/c3fd00052d
https://doi.org/10.1038/s41586-023-06444-3
https://doi.org/10.1038/s41586-023-06444-3
https://doi.org/10.5194/acp-15-5743-2015
https://doi.org/10.5194/acp-15-5743-2015
https://doi.org/10.1016/j.atmosenv.2012.05.030
https://doi.org/10.5194/gmd-7-2709-2014
https://doi.org/10.5194/essd-15-5227-2023
https://doi.org/10.5194/essd-15-5227-2023
https://doi.org/10.1016/j.scitotenv.2021.152453
https://doi.org/10.1175/WAF-D-21-0044.1
https://doi.org/10.1175/WAF-D-21-0044.1
https://doi.org/10.1016/j.biocon.2022.109499
https://doi.org/10.3390/s21062135
https://doi.org/10.5194/gmd-9-1937-2016


6960 J. L. Gomez et al.: California wildfire smoke contributes to a positive temperature anomaly

J. Atmos. Sci., 73, 4221–4252, https://doi.org/10.1175/JAS-D-
16-0037.1, 2016.

Fasullo, J. T., Rosenbloom, N., Buchholz, R. R., Danabasoglu, G.,
Lawrence, D. M., and Lamarque, J.-F.: Coupled Climate Re-
sponses to Recent Australian Wildfire and COVID-19 Emis-
sions Anomalies Estimated in CESM2, Geophys. Res. Lett., 48,
e2021GL093841, https://doi.org/10.1029/2021GL093841, 2021.

Flannigan, M., Cantin, A. S., de Groot, W. J., Wotton, M., New-
bery, A., and Gowman, L. M.: Global wildland fire season
severity in the 21st century, Forest Ecol. Manag., 294, 54–61,
https://doi.org/10.1016/j.foreco.2012.10.022, 2013.

Ford, P. L. and Johnson, G. V.: Effects of dormant- vs.
growing-season fire in shortgrass steppe: Biological soil crust
and perennial grass responses, J. Arid Environ., 67, 1–14,
https://doi.org/10.1016/j.jaridenv.2006.01.020, 2006.

Giglio, L. and Justice, C.: MYD14A1 MODIS/Aqua Thermal
Anomalies/Fire Daily L3 Global 1km SIN Grid V006, NASA
EOSDIS Land Processes Distributed Active Archive Center [data
set], https://doi.org/10.5067/MODIS/MYD14A1.006, 2015.

Giglio, L., Randerson, J. T., and Van Der Werf, G. R.: Analy-
sis of daily, monthly, and annual burned area using the fourth-
generation global fire emissions database (GFED4), J. Geophys.
Res.-Biogeo., 118, 317–328, https://doi.org/10.1002/jgrg.20042,
2013.

Giglio, L., Boschetti, L., Roy, D. P., Humber, M. L., and Jus-
tice, C. O.: The Collection 6 MODIS burned area mapping
algorithm and product, Remote Sens. Environ., 217, 72–85,
https://doi.org/10.1016/j.rse.2018.08.005, 2018.

Global Fire Emissions Database (GFED): https://www.
globalfiredata.org, last access: 4 May 2024.

Global Modeling And Assimilation Office and Pawson, S.:
MERRA-2 inst3_3d_aer_Nv: 3d,3-Hourly,Instantaneous,Model-
Level,Assimilation,Aerosol Mixing Ratio V5.12.4, God-
dard Earth Sciences Data and Information Services
Center (GES DISC) [data set], Greenbelt, MD, USA,
https://doi.org/10.5067/LTVB4GPCOTK2, 2015.

Gomez, J., Allen, R. J., Turnock, S. T., Horowitz, L. W., Tsigaridis,
K., Bauer, S. E., Olivié, D., Thomson, E. S., and Ginoux, P.:
The projected future degradation in air quality is caused by more
abundant natural aerosols in a warmer world, Communications
Earth & Environment, 4, 1–11, https://doi.org/10.1038/s43247-
023-00688-7, 2023.

Goren, T. and Rosenfeld, D.: Satellite observations of ship emission
induced transitions from broken to closed cell marine stratocu-
mulus over large areas, J. Geophys. Res.-Atmos., 117, D17206,
https://doi.org/10.1029/2012JD017981, 2012.

Goss, M., Swain, D. L., Abatzoglou, J. T., Sarhadi, A., Kolden,
C. A., Williams, A. P., and Diffenbaugh, N. S.: Climate change
is increasing the likelihood of extreme autumn wildfire con-
ditions across California, Environ. Res. Lett., 15, 094016,
https://doi.org/10.1088/1748-9326/ab83a7, 2020.

Han, Q., Rossow, W. B., Chou, J., and Welch, R. M.:
Global Survey of the Relationships of Cloud Albedo
and Liquid Water Path with Droplet Size Using ISCCP,
J. Climate, 11, 1516–1528, https://doi.org/10.1175/1520-
0442(1998)011<1516:GSOTRO>2.0.CO;2, 1998.

Hansen, J., Sato, M., and Ruedy, R.: Radiative forcing and
climate response, J. Geophys. Res.-Atmos., 102, 6831–6864,
https://doi.org/10.1029/96JD03436, 1997.

He, C., Li, Q., Liou, K.-N., Qi, L., Tao, S., and Schwarz, J. P.:
Microphysics-based black carbon aging in a global CTM: con-
straints from HIPPO observations and implications for global
black carbon budget, Atmos. Chem. Phys., 16, 3077–3098,
https://doi.org/10.5194/acp-16-3077-2016, 2016.

Helmert, J., Heinold, B., Tegen, I., Hellmuth, O., and Wendisch,
M.: On the direct and semidirect effects of Saharan dust over Eu-
rope: A modeling study, J. Geophys. Res.-Atmos., 112, D13208,
https://doi.org/10.1029/2006JD007444, 2007.

Herbert, R. and Stier, P.: Satellite observations of smoke–cloud–
radiation interactions over the Amazon rainforest, Atmos.
Chem. Phys., 23, 4595–4616, https://doi.org/10.5194/acp-23-
4595-2023, 2023.

Highwood, E. J. and Ryder, C. L.: Radiative Effects of Dust,
in: Mineral Dust: A Key Player in the Earth System, edited
by: Knippertz, P. and Stuut, J.-B. W., Springer Netherlands,
Dordrecht, 267–286, https://doi.org/10.1007/978-94-017-8978-
3_11, ISBN 978-94-017-8978-3, 2014.

Huffman, G. J., Adler, R. F., Morrissey, M. M., Bolvin,
D. T., Curtis, S., Joyce, R., McGavock, B., and
Susskind, J.: Globa Precipitation at One-Degree Daily
Resolution from Multisatellite Observations, J. Hy-
drometeorol., 2, 36–50, https://doi.org/10.1175/1525-
7541(2001)002<0036:GPAODD>2.0.CO;2, 2001.

Hung, W.-T., Lu, C.-H. S., Shrestha, B., Lin, H.-C., Lin,
C.-A., Grogan, D., Hong, J., Ahmadov, R., James, E.,
and Joseph, E.: The impacts of transported wildfire smoke
aerosols on surface air quality in New York State: A
case study in summer 2018, Atmos. Environ., 227, 117415,
https://doi.org/10.1016/j.atmosenv.2020.117415, 2020.

Jacobson, M. Z.: Effects of biomass burning on climate, account-
ing for heat and moisture fluxes, black and brown carbon, and
cloud absorption effects, J. Geophys. Res.-Atmos., 119, 8980–
9002, https://doi.org/10.1002/2014JD021861, 2014.

Kant, S., Sarangi, C., and Wilcox, E. M.: Aerosol processes
perturb cloud trends over Bay of Bengal: observational
evidence, npj Climate and Atmospheric Science, 6, 1–8,
https://doi.org/10.1038/s41612-023-00443-x, 2023.

Kaufman, Y. J., Koren, I., Remer, L. A., Rosenfeld, D.,
and Rudich, Y.: The effect of smoke, dust, and pollu-
tion aerosol on shallow cloud development over the At-
lantic Ocean, P. Natl. Acad. Sci. USA, 102, 11207–11212,
https://doi.org/10.1073/pnas.0505191102, 2005.

Keeley, J. E. and Syphard, A. D.: Twenty-first century California,
USA, wildfires: fuel-dominated vs. wind-dominated fires, Fire
Ecol., 15, 24, https://doi.org/10.1186/s42408-019-0041-0, 2019.

Khain, A. P.: Notes on state-of-the-art investigations of aerosol ef-
fects on precipitation: a critical review, Environ. Res. Lett., 4,
015004, https://doi.org/10.1088/1748-9326/4/1/015004, 2009.

Koch, D. and Del Genio, A. D.: Black carbon semi-direct effects
on cloud cover: review and synthesis, Atmos. Chem. Phys., 10,
7685–7696, https://doi.org/10.5194/acp-10-7685-2010, 2010.

Kok, J. F., Storelvmo, T., Karydis, V. A., Adebiyi, A. A., Ma-
howald, N. M., Evan, A. T., He, C., and Leung, D. M.:
Mineral dust aerosol impacts on global climate and climate
change, Nature Reviews Earth & Environment, 4, 71–86,
https://doi.org/10.1038/s43017-022-00379-5, 2023.

LeNoir, J. S., McConnell, L. L., Fellers, G. M., Cahill, T. M., and
Seiber, J. N.: Summertime transport of current-use pesticides

Atmos. Chem. Phys., 24, 6937–6963, 2024 https://doi.org/10.5194/acp-24-6937-2024

https://doi.org/10.1175/JAS-D-16-0037.1
https://doi.org/10.1175/JAS-D-16-0037.1
https://doi.org/10.1029/2021GL093841
https://doi.org/10.1016/j.foreco.2012.10.022
https://doi.org/10.1016/j.jaridenv.2006.01.020
https://doi.org/10.5067/MODIS/MYD14A1.006
https://doi.org/10.1002/jgrg.20042
https://doi.org/10.1016/j.rse.2018.08.005
https://www.globalfiredata.org
https://www.globalfiredata.org
https://doi.org/10.5067/LTVB4GPCOTK2
https://doi.org/10.1038/s43247-023-00688-7
https://doi.org/10.1038/s43247-023-00688-7
https://doi.org/10.1029/2012JD017981
https://doi.org/10.1088/1748-9326/ab83a7
https://doi.org/10.1175/1520-0442(1998)011<1516:GSOTRO>2.0.CO;2
https://doi.org/10.1175/1520-0442(1998)011<1516:GSOTRO>2.0.CO;2
https://doi.org/10.1029/96JD03436
https://doi.org/10.5194/acp-16-3077-2016
https://doi.org/10.1029/2006JD007444
https://doi.org/10.5194/acp-23-4595-2023
https://doi.org/10.5194/acp-23-4595-2023
https://doi.org/10.1007/978-94-017-8978-3_11
https://doi.org/10.1007/978-94-017-8978-3_11
https://doi.org/10.1175/1525-7541(2001)002<0036:GPAODD>2.0.CO;2
https://doi.org/10.1175/1525-7541(2001)002<0036:GPAODD>2.0.CO;2
https://doi.org/10.1016/j.atmosenv.2020.117415
https://doi.org/10.1002/2014JD021861
https://doi.org/10.1038/s41612-023-00443-x
https://doi.org/10.1073/pnas.0505191102
https://doi.org/10.1186/s42408-019-0041-0
https://doi.org/10.1088/1748-9326/4/1/015004
https://doi.org/10.5194/acp-10-7685-2010
https://doi.org/10.1038/s43017-022-00379-5


J. L. Gomez et al.: California wildfire smoke contributes to a positive temperature anomaly 6961

from California’s Central Valley to the Sierra Nevada Moun-
tain Range, USA, Environ. Toxicol. Chem., 18, 2715–2722,
https://doi.org/10.1002/etc.5620181210, 1999.

Levy, R. C., Mattoo, S., Munchak, L. A., Remer, L. A., Sayer, A.
M., Patadia, F., and Hsu, N. C.: The Collection 6 MODIS aerosol
products over land and ocean, Atmos. Meas. Tech., 6, 2989–
3034, https://doi.org/10.5194/amt-6-2989-2013, 2013.

Li, F., Val Martin, M., Andreae, M. O., Arneth, A., Hantson, S.,
Kaiser, J. W., Lasslop, G., Yue, C., Bachelet, D., Forrest, M.,
Kluzek, E., Liu, X., Mangeon, S., Melton, J. R., Ward, D. S., Dar-
menov, A., Hickler, T., Ichoku, C., Magi, B. I., Sitch, S., van der
Werf, G. R., Wiedinmyer, C., and Rabin, S. S.: Historical (1700–
2012) global multi-model estimates of the fire emissions from
the Fire Modeling Intercomparison Project (FireMIP), Atmos.
Chem. Phys., 19, 12545–12567, https://doi.org/10.5194/acp-19-
12545-2019, 2019.

Li, S. and Banerjee, T.: Spatial and temporal pattern of wildfires
in California from 2000 to 2019, Scientific Reports, 11, 8779,
https://doi.org/10.1038/s41598-021-88131-9, 2021.

Liu, J. C. and Peng, R. D.: The impact of wildfire smoke
on compositions of fine particulate matter by ecoregion in
the Western US, J. Expo. Sci. Env. Epid., 29, 765–776,
https://doi.org/10.1038/s41370-018-0064-7, 2019.

Liu, Z., Hu, M., Hu, Y., and Wang, G.: Estimation of net pri-
mary productivity of forests by modified CASA models and
remotely sensed data, Int. J. Remote Sens., 39, 1092–1116,
https://doi.org/10.1080/01431161.2017.1381352, 2018.

Lohmann, U., Friebel, F., Kanji, Z. A., Mahrt, F., Mensah,
A. A., and Neubauer, D.: Future warming exacerbated by aged-
soot effect on cloud formation, Nat. Geosci., 13, 674–680,
https://doi.org/10.1038/s41561-020-0631-0, 2020.

Ma, W., Zhai, L., Pivovaroff, A., Shuman, J., Buotte, P., Ding, J.,
Christoffersen, B., Knox, R., Moritz, M., Fisher, R. A., Koven,
C. D., Kueppers, L., and Xu, C.: Assessing climate change
impacts on live fuel moisture and wildfire risk using a hy-
drodynamic vegetation model, Biogeosciences, 18, 4005–4020,
https://doi.org/10.5194/bg-18-4005-2021, 2021.

Mangeon, S., Voulgarakis, A., Gilham, R., Harper, A., Sitch, S., and
Folberth, G.: INFERNO: a fire and emissions scheme for the UK
Met Office’s Unified Model, Geosci. Model Dev., 9, 2685–2700,
https://doi.org/10.5194/gmd-9-2685-2016, 2016.

Martins, J. V., Marshak, A., Remer, L. A., Rosenfeld, D.,
Kaufman, Y. J., Fernandez-Borda, R., Koren, I., Correia, A.
L., Zubko, V., and Artaxo, P.: Remote sensing the verti-
cal profile of cloud droplet effective radius, thermodynamic
phase, and temperature, Atmos. Chem. Phys., 11, 9485–9501,
https://doi.org/10.5194/acp-11-9485-2011, 2011.

Minnich, R. A.: An Integrated Model of Two Fire Regimes,
Conserv. Biol., 15, 1549–1553, https://doi.org/10.1046/j.1523-
1739.2001.01067.x, 2001.

Minnich, R. A. and Chou, Y. H.: Wildland Fire Patch Dy-
namics in the Chaparral of Southern California and North-
ern Baja California, Int. J. Wildland Fire, 7, 221–248,
https://doi.org/10.1071/wf9970221, 1997.

Minnich, R. A., Barbour, M. G., Burk, J. H., and Sosa-Ramírez,
J.: Californian mixed-conifer forests under unmanaged fire
regimes in the Sierra San Pedro Mártir, Baja California, Mex-
ico, J. Biogeogr., 27, 105–129, https://doi.org/10.1046/j.1365-
2699.2000.00368.x, 2000.

MODIS Atmosphere Science Team: MYD08_D3 MOD-
IS/Aqua Aerosol Cloud Water Vapor Ozone Daily L3
Global 1Deg CMG, NASA MODIS Adaptive Processing
System, Goddard Space Flight Center [data set], USA,
https://doi.org/10.5067/MODIS/MYD08_D3.061, 2017.

NASA/LARC/SD/ASDC: CERES Time-Interpolated TOA Fluxes,
Clouds and Aerosols Daily Aqua Edition4A, NASA Langley At-
mospheric Science Data Center DAAC [data set], https://doi.org/
10.5067/AQUA/CERES/SSF1DEGDAY_L3.004A, 2015.

NASA/LARC/SD/ASDC: CERES and GEO-Enhanced TOA,
Within-Atmosphere and Surface Fluxes, Clouds and Aerosols
Daily Terra-Aqua Edition4A, NASA Langley Atmospheric Sci-
ence Data Center DAAC [data set], https://doi.org/10.5067/
Terra+Aqua/CERES/SYN1degDay_L3.004A, 2017.

NASA/LARC/SD/ASDC: CERES and GEO-Enhanced TOA,
Within-Atmosphere and Surface Fluxes, Clouds and Aerosols
Daily Terra-NOAA20 Edition4A, NASA Langley Atmospheric
Science Data Center DAAC [data set], https://doi.org/10.5067/
Terra-NOAA20/CERES/SYN1degDay_L3.004A, 2023.

Nguyen, L. S. P., Huang, H.-Y., Lei, T. L., Bui, T. T.,
Wang, S.-H., Chi, K. H., Sheu, G.-R., Lee, C.-T., Ou-Yang,
C.-F., and Lin, N.-H.: Characterizing a landmark biomass-
burning event and its implication for aging processes dur-
ing long-range transport, Atmos. Environ., 241, 117766,
https://doi.org/10.1016/j.atmosenv.2020.117766, 2020.

Ogren, J. A. and Charlson, R. J.: Elemental carbon in the
atmosphere: cycle and lifetime, Tellus B, 35B, 241–254,
https://doi.org/10.1111/j.1600-0889.1983.tb00027.x, 1983.

O’Neill, S. M., Diao, M., Raffuse, S., Al-Hamdan, M., Barik,
M., Jia, Y., Reid, S., Zou, Y., Tong, D., West, J. J., Wilkins,
J., Marsha, A., Freedman, F., Vargo, J., Larkin, N. K., Al-
varado, E., and Loesche, P.: A multi-analysis approach for
estimating regional health impacts from the 2017 Northern
California wildfires, J. Air Waste Manage., 71, 791–814,
https://doi.org/10.1080/10962247.2021.1891994, 2021.

Palinkas, L. A.: The California Wildfires, in: Global Climate
Change, Population Displacement, and Public Health: The Next
Wave of Migration, edited by: Palinkas, L. A., Springer Interna-
tional Publishing, Cham, 53–67, https://doi.org/10.1007/978-3-
030-41890-8_4, ISBN 978-3-030-41890-8, 2020.

Peng, J., Hu, M., Guo, S., Du, Z., Zheng, J., Shang, D.,
Levy Zamora, M., Zeng, L., Shao, M., Wu, Y.-S., Zheng,
J., Wang, Y., Glen, C. R., Collins, D. R., Molina, M. J.,
and Zhang, R.: Markedly enhanced absorption and direct ra-
diative forcing of black carbon under polluted urban en-
vironments, P. Natl. Acad. Sci. USA, 113, 4266–4271,
https://doi.org/10.1073/pnas.1602310113, 2016.

Peterson, D., Wang, J., Ichoku, C., Hyer, E., and Ambrosia,
V.: A sub-pixel-based calculation of fire radiative power
from MODIS observations: 1: Algorithm development and
initial assessment, Remote Sens. Environ., 129, 262–279,
https://doi.org/10.1016/j.rse.2012.10.036, 2013.

Platnick, S., King, M., Ackerman, S., Menzel, W., Baum, B., Riedi,
J., and Frey, R.: The MODIS cloud products: algorithms and ex-
amples from Terra, IEEE T. Geosci. Remote, Sensing, 41, 459–
473, https://doi.org/10.1109/TGRS.2002.808301, 2003.

Platnick, S., Meyer, K. G., King, M. D., Wind, G., Amarasinghe,
N., Marchant, B., Arnold, G. T., Zhang, Z., Hubanks, P. A., Holz,
R. E., Yang, P., Ridgway, W. L., and Riedi, J.: The MODIS Cloud

https://doi.org/10.5194/acp-24-6937-2024 Atmos. Chem. Phys., 24, 6937–6963, 2024

https://doi.org/10.1002/etc.5620181210
https://doi.org/10.5194/amt-6-2989-2013
https://doi.org/10.5194/acp-19-12545-2019
https://doi.org/10.5194/acp-19-12545-2019
https://doi.org/10.1038/s41598-021-88131-9
https://doi.org/10.1038/s41370-018-0064-7
https://doi.org/10.1080/01431161.2017.1381352
https://doi.org/10.1038/s41561-020-0631-0
https://doi.org/10.5194/bg-18-4005-2021
https://doi.org/10.5194/gmd-9-2685-2016
https://doi.org/10.5194/acp-11-9485-2011
https://doi.org/10.1046/j.1523-1739.2001.01067.x
https://doi.org/10.1046/j.1523-1739.2001.01067.x
https://doi.org/10.1071/wf9970221
https://doi.org/10.1046/j.1365-2699.2000.00368.x
https://doi.org/10.1046/j.1365-2699.2000.00368.x
https://doi.org/10.5067/MODIS/MYD08_D3.061
https://doi.org/10.5067/AQUA/CERES/SSF1DEGDAY_L3.004A
https://doi.org/10.5067/AQUA/CERES/SSF1DEGDAY_L3.004A
https://doi.org/10.5067/Terra+Aqua/CERES/SYN1degDay_L3.004A
https://doi.org/10.5067/Terra+Aqua/CERES/SYN1degDay_L3.004A
https://doi.org/10.5067/Terra-NOAA20/CERES/SYN1degDay_L3.004A
https://doi.org/10.5067/Terra-NOAA20/CERES/SYN1degDay_L3.004A
https://doi.org/10.1016/j.atmosenv.2020.117766
https://doi.org/10.1111/j.1600-0889.1983.tb00027.x
https://doi.org/10.1080/10962247.2021.1891994
https://doi.org/10.1007/978-3-030-41890-8_4
https://doi.org/10.1007/978-3-030-41890-8_4
https://doi.org/10.1073/pnas.1602310113
https://doi.org/10.1016/j.rse.2012.10.036
https://doi.org/10.1109/TGRS.2002.808301


6962 J. L. Gomez et al.: California wildfire smoke contributes to a positive temperature anomaly

Optical and Microphysical Products: Collection 6 Updates and
Examples From Terra and Aqua, IEEE T. Geosci. Remote, 55,
502–525, https://doi.org/10.1109/TGRS.2016.2610522, 2017.

Raga, G. B., Baumgardner, D., Rios, B., Díaz-Esteban, Y.,
Jaramillo, A., Gallagher, M., Sauvage, B., Wolff, P., and
Lloyd, G.: High concentrations of ice crystals in upper-
tropospheric tropical clouds: is there a link to biomass and
fossil fuel combustion?, Atmos. Chem. Phys., 22, 2269–2292,
https://doi.org/10.5194/acp-22-2269-2022, 2022.

Randerson, J., van der Werf, G., Giglio, L., Collatz, G.,
and Kasibhatla, P.: Global Fire Emissions Database,
Version 4.1 (GFEDv4), p. 1925.7122549999906 MB,
ORNL DAAC, Oak Ridge, Tennessee, USA,
https://doi.org/10.3334/ORNLDAAC/1293, 2017.

Randles, C. A., Silva, A. M. d., Buchard, V., Colarco, P. R., Dar-
menov, A., Govindaraju, R., Smirnov, A., Holben, B., Ferrare,
R., Hair, J., Shinozuka, Y., and Flynn, C. J.: The MERRA-2
Aerosol Reanalysis, 1980 Onward. Part I: System Description
and Data Assimilation Evaluation, J. Climate, 30, 6823–6850,
https://doi.org/10.1175/JCLI-D-16-0609.1, 2017.

Ruffault, J., Curt, T., Moron, V., Trigo, R. M., Mouillot, F., Kout-
sias, N., Pimont, F., Martin-StPaul, N., Barbero, R., Dupuy, J.-
L., Russo, A., and Belhadj-Khedher, C.: Increased likelihood
of heat-induced large wildfires in the Mediterranean Basin, Sci-
entific Reports, 10, 13790, https://doi.org/10.1038/s41598-020-
70069-z, 2020.

Sakaeda, N., Wood, R., and Rasch, P. J.: Direct and semidi-
rect aerosol effects of southern African biomass burn-
ing aerosol, J. Geophys. Res.-Atmos., 116, D12205,
https://doi.org/10.1029/2010JD015540, 2011.

Salomonson, V., Barnes, W., Xiong, J., Kempler, S., and Masuoka,
E.: An overview of the Earth Observing System MODIS in-
strument and associated data systems performance, in: IEEE
International Geoscience and Remote Sensing Symposium,
Toronto, ON, Canada, 24–28 June 2002, IEEE, 2, 1174–1176,
https://doi.org/10.1109/IGARSS.2002.1025812, 2002.

Samset, B. H.: Aerosol absorption has an underappreciated role
in historical precipitation change, Communications Earth & En-
vironment, 3, 1–8, https://doi.org/10.1038/s43247-022-00576-6,
2022.

Sand, M., Samset, B. H., Tsigaridis, K., Bauer, S. E., and
Myhre, G.: Black Carbon and Precipitation: An Energetics
Perspective, J. Geophys. Res.-Atmos., 125, e2019JD032239,
https://doi.org/10.1029/2019JD032239, 2020.

Schlosser, J. S., Braun, R. A., Bradley, T., Dadashazar, H., Mac-
Donald, A. B., Aldhaif, A. A., Aghdam, M. A., Mardi, A. H.,
Xian, P., and Sorooshian, A.: Analysis of aerosol composi-
tion data for western United States wildfires between 2005 and
2015: Dust emissions, chloride depletion, and most enhanced
aerosol constituents, J. Geophys. Res.-Atmos., 122, 8951–8966,
https://doi.org/10.1002/2017JD026547, 2017.

Shi, G., Yan, H., Zhang, W., Dodson, J., Heijnis, H., and Bur-
rows, M.: Rapid warming has resulted in more wildfires
in northeastern Australia, Sci. Total Environ., 771, 144888,
https://doi.org/10.1016/j.scitotenv.2020.144888, 2021.

Smith, C. J., Kramer, R. J., Myhre, G., Forster, P. M., Soden,
B. J., Andrews, T., Boucher, O., Faluvegi, G., Fläschner, D.,
Hodnebrog, Ø., Kasoar, M., Kharin, V., Kirkevåg, A., Lamar-
que, J.-F., Mülmenstädt, J., Olivié, D., Richardson, T., Samset,

B. H., Shindell, D., Stier, P., Takemura, T., Voulgarakis, A.,
and Watson-Parris, D.: Understanding Rapid Adjustments to Di-
verse Forcing Agents, Geophys. Res. Lett., 45, 12023–12031,
https://doi.org/10.1029/2018GL079826, 2018.

Stjern, C. W., Samset, B. H., Myhre, G., Forster, P. M., Hodne-
brog, Ø., Andrews, T., Boucher, O., Faluvegi, G., Iversen, T.,
Kasoar, M., Kharin, V., Kirkevåg, A., Lamarque, J.-F., Olivié,
D., Richardson, T., Shawki, D., Shindell, D., Smith, C. J.,
Takemura, T., and Voulgarakis, A.: Rapid Adjustments Cause
Weak Surface Temperature Response to Increased Black Carbon
Concentrations, J. Geophys. Res.-Atmos., 122, 11462–11481,
https://doi.org/10.1002/2017JD027326, 2017.

Thornhill, G. D., Ryder, C. L., Highwood, E. J., Shaffrey, L. C.,
and Johnson, B. T.: The effect of South American biomass
burning aerosol emissions on the regional climate, Atmos.
Chem. Phys., 18, 5321–5342, https://doi.org/10.5194/acp-18-
5321-2018, 2018.

Touma, D., Stevenson, S., Lehner, F., and Coats, S.: Human-
driven greenhouse gas and aerosol emissions cause distinct re-
gional impacts on extreme fire weather, Nat. Commun., 12, 212,
https://doi.org/10.1038/s41467-020-20570-w, 2021.

Tsikerdekis, A., Zanis, P., Georgoulias, A. K., Alexandri, G., Ka-
tragkou, E., Karacostas, T., and Solmon, F.: Direct and semi-
direct radiative effect of North African dust in present and fu-
ture regional climate simulations, Clim. Dynam., 53, 4311–4336,
https://doi.org/10.1007/s00382-019-04788-z, 2019.

Twohy, C. H., Toohey, D. W., Levin, E. J. T., DeMott, P. J., Rainwa-
ter, B., Garofalo, L. A., Pothier, M. A., Farmer, D. K., Kreiden-
weis, S. M., Pokhrel, R. P., Murphy, S. M., Reeves, J. M., Moore,
K. A., and Fischer, E. V.: Biomass Burning Smoke and Its Influ-
ence on Clouds Over the Western U. S., Geophys. Res. Lett., 48,
e2021GL094224, https://doi.org/10.1029/2021GL094224, 2021.

United Nations Environment Programme: Spreading
like Wildfire – The Rising Threat of Extraordinary
Landscape Fires, A UNEP Rapid Response Assess-
ment, Nairobi, https://www.unep.org/resources/report/
spreading-wildfire-rising-threat-extraordinary-landscape-fires
(last access: 4 May 2024), 2022.

Urbanski, S. P.: Combustion efficiency and emission factors for
wildfire-season fires in mixed conifer forests of the northern
Rocky Mountains, US, Atmos. Chem. Phys., 13, 7241–7262,
https://doi.org/10.5194/acp-13-7241-2013, 2013.

Urbanski, S. P., Hao, W. M., and Nordgren, B.: The wildland
fire emission inventory: western United States emission esti-
mates and an evaluation of uncertainty, Atmos. Chem. Phys.,
11, 12973–13000, https://doi.org/10.5194/acp-11-12973-2011,
2011.

van der Werf, G. R., Randerson, J. T., Giglio, L., van Leeuwen, T.
T., Chen, Y., Rogers, B. M., Mu, M., van Marle, M. J. E., Morton,
D. C., Collatz, G. J., Yokelson, R. J., and Kasibhatla, P. S.: Global
fire emissions estimates during 1997–2016, Earth Syst. Sci. Data,
9, 697–720, https://doi.org/10.5194/essd-9-697-2017, 2017.

Varga, K., Jones, C., Trugman, A., Carvalho, L. M. V.,
McLoughlin, N., Seto, D., Thompson, C., and Daum, K.:
Megafires in a Warming World: What Wildfire Risk Factors
Led to California’s Largest Recorded Wildfire, Fire, 5, 16,
https://doi.org/10.3390/fire5010016, 2022.

Wagenbrenner, N. S., Germino, M. J., Lamb, B. K., Ro-
bichaud, P. R., and Foltz, R. B.: Wind erosion from a sage-

Atmos. Chem. Phys., 24, 6937–6963, 2024 https://doi.org/10.5194/acp-24-6937-2024

https://doi.org/10.1109/TGRS.2016.2610522
https://doi.org/10.5194/acp-22-2269-2022
https://doi.org/10.3334/ORNLDAAC/1293
https://doi.org/10.1175/JCLI-D-16-0609.1
https://doi.org/10.1038/s41598-020-70069-z
https://doi.org/10.1038/s41598-020-70069-z
https://doi.org/10.1029/2010JD015540
https://doi.org/10.1109/IGARSS.2002.1025812
https://doi.org/10.1038/s43247-022-00576-6
https://doi.org/10.1029/2019JD032239
https://doi.org/10.1002/2017JD026547
https://doi.org/10.1016/j.scitotenv.2020.144888
https://doi.org/10.1029/2018GL079826
https://doi.org/10.1002/2017JD027326
https://doi.org/10.5194/acp-18-5321-2018
https://doi.org/10.5194/acp-18-5321-2018
https://doi.org/10.1038/s41467-020-20570-w
https://doi.org/10.1007/s00382-019-04788-z
https://doi.org/10.1029/2021GL094224
https://www.unep.org/resources/report/spreading-wildfire-rising-threat-extraordinary-landscape-fires
https://www.unep.org/resources/report/spreading-wildfire-rising-threat-extraordinary-landscape-fires
https://doi.org/10.5194/acp-13-7241-2013
https://doi.org/10.5194/acp-11-12973-2011
https://doi.org/10.5194/essd-9-697-2017
https://doi.org/10.3390/fire5010016


J. L. Gomez et al.: California wildfire smoke contributes to a positive temperature anomaly 6963

brush steppe burned by wildfire: Measurements of PM10
and total horizontal sediment flux, Aeolian Res., 10, 25–36,
https://doi.org/10.1016/j.aeolia.2012.10.003, 2013.

Wagenbrenner, N. S., Chung, S. H., and Lamb, B. K.: A large source
of dust missing in Particulate Matter emission inventories? Wind
erosion of post-fire landscapes, Elementa: Science of the Anthro-
pocene, 5, 2, https://doi.org/10.1525/elementa.185, 2017.

Wagner, R., Jähn, M., and Schepanski, K.: Wildfires as a source
of airborne mineral dust – revisiting a conceptual model using
large-eddy simulation (LES), Atmos. Chem. Phys., 18, 11863–
11884, https://doi.org/10.5194/acp-18-11863-2018, 2018.

Wagner, R., Schepanski, K., and Klose, M.: The dust emis-
sion potential of agricultural-like fires – Theoretical esti-
mates from two conceptually different dust emission param-
eterizations, J. Geophys. Res.-Atmos., 126, e2020JD034355,
https://doi.org/10.1029/2020JD034355, 2021.

Wei, J., Li, Z., Peng, Y., and Sun, L.: MODIS Collection
6.1 aerosol optical depth products over land and ocean:
validation and comparison, Atmos. Environ., 201, 428–440,
https://doi.org/10.1016/j.atmosenv.2018.12.004, 2019.

Wilcox, E. M.: Direct and semi-direct radiative forcing of smoke
aerosols over clouds, Atmos. Chem. Phys., 12, 139–149,
https://doi.org/10.5194/acp-12-139-2012, 2012.

Wilmot, T. Y., Mallia, D. V., Hallar, A. G., and Lin, J. C.: Wildfire
plumes in the Western US are reaching greater heights and inject-
ing more aerosols aloft as wildfire activity intensifies, Scientific
Reports, 12, 12400, https://doi.org/10.1038/s41598-022-16607-
3, 2022.

Wu, C., Wu, D., and Yu, J. Z.: Quantifying black carbon light ab-
sorption enhancement with a novel statistical approach, Atmos.
Chem. Phys., 18, 289–309, https://doi.org/10.5194/acp-18-289-
2018, 2018.

Yu, J., Jiang, X., Zeng, Z.-C., and Yung, Y. L.: Fire mon-
itoring and detection using brightness-temperature differ-
ence and water vapor emission from the atmospheric in-
frared sounder, J. Quant. Spectrosc. Ra., 317, 108930,
https://doi.org/10.1016/j.jqsrt.2024.108930, 2024.

Yu, Y. and Ginoux, P.: Enhanced dust emission following large
wildfires due to vegetation disturbance, Nat. Geosci., 15, 878–
884, https://doi.org/10.1038/s41561-022-01046-6, 2022.

Zaremba, L. L. and Carroll, J. J.: Summer Wind Flow
Regimes over the Sacramento Valley, J. Appl. Meteo-
rol. Clim., 38, 1463–1473, https://doi.org/10.1175/1520-
0450(1999)038<1463:SWFROT>2.0.CO;2, 1999.

https://doi.org/10.5194/acp-24-6937-2024 Atmos. Chem. Phys., 24, 6937–6963, 2024

https://doi.org/10.1016/j.aeolia.2012.10.003
https://doi.org/10.1525/elementa.185
https://doi.org/10.5194/acp-18-11863-2018
https://doi.org/10.1029/2020JD034355
https://doi.org/10.1016/j.atmosenv.2018.12.004
https://doi.org/10.5194/acp-12-139-2012
https://doi.org/10.1038/s41598-022-16607-3
https://doi.org/10.1038/s41598-022-16607-3
https://doi.org/10.5194/acp-18-289-2018
https://doi.org/10.5194/acp-18-289-2018
https://doi.org/10.1016/j.jqsrt.2024.108930
https://doi.org/10.1038/s41561-022-01046-6
https://doi.org/10.1175/1520-0450(1999)038<1463:SWFROT>2.0.CO;2
https://doi.org/10.1175/1520-0450(1999)038<1463:SWFROT>2.0.CO;2

	Abstract
	Introduction
	Satellite and reanalysis datasets
	Global Fire Emissions Database (GFED4.1s)
	Aqua
	GPCP combined precipitation dataset
	MERRA-2 aerosol profiles
	CALIPSO

	Methods
	Statistics
	Data stratification and comparison
	Regions of interest
	Heating rate

	Results
	High and low surface relative humidity stratification
	Vertical distribution of black carbon and absorption in nCA-NV region
	Responses in temperature, humidity, and cloud profiles
	Changes in cloud type, precipitation, and shortwave flux
	Cloud microphysical effects

	Discussion
	Appendix A
	Code availability
	Data availability
	Supplement
	Author contributions
	Competing interests
	Disclaimer
	Financial support
	Review statement
	References

