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Abstract—Quantum low-density parity-check (LDPC) codes
are a promising family of quantum error-correcting codes for
fault tolerant quantum computing with low overhead. Decoding
quantum LDPC codes on quantum erasure channels has received
more attention recently due to advances in erasure conversion
for various types of qubits including neutral atoms, trapped
ions, and superconducting qubits. Belief propagation with guided
decimation (BPGD) decoding of quantum LDPC codes has
demonstrated good performance in bit-flip and depolarizing
noise. In this work, we apply BPGD decoding to quantum erasure
channels. Using a natural modification, we show that BPGD
offers competitive performance on quantum erasure channels for
multiple families of quantum LDPC codes. Furthermore, we show
that the performance of BPGD decoding on erasure channels can
sometimes be improved significantly by either adding damping
or adjusting the initial channel log-likelihood ratio for bits that
are not erased. More generally, our results demonstrate BPGD is
an effective general-purpose solution for erasure decoding across
the quantum LDPC landscape.

I. INTRODUCTION

For the development of scalable and fault-tolerant quantum
computation, quantum error correction is a crucial compo-
nent that protects quantum information against noise. Among
the proposed error correction schemes, quantum low-density
parity-check (LDPC) codes stand out as strong candidates
because they promise lower overhead [1], [2] when compared
to topological codes such as surface codes [3], [4] and
color codes [5]. Belief-propagation (BP) decoding of quan-
tum LDPC codes was first introduced in [6] and considered
further in [7]. Recent breakthrough results have introduced
constructions of asymptotically good quantum LDPC codes
with constant rate and linear minimum distance [8]-[10]. In
terms of practical implementation, results by Bravyi et al.
[11] have shown how certain quantum LDPC codes can be
embedded into a bilayer hardware architecture.

In this paper, we focus on decoding quantum LDPC
codes over the quantum erasure channel [12]. This model
has received more attention recently due to proposals and
demonstrations that erased qubits can be realized in several
architectures including neutral atom [13]-[15], trapped ions
[16], and superconducting qubits [17], [18]. Moreover, it has
been shown that quantum error correction schemes based on
erased qubits achieve better finite-length performance, and
higher thresholds compared to those designed for Pauli noise
[14], [19]-[21]. In the erasure model we use, a random subset
of the coded qubits is chosen and then subjected to uniform

random Pauli errors. While the subset is known to the decoder,
the error values are not.

Several decoding algorithms have been proposed for quan-
tum erasure correction, targeting various classes of quantum
codes in the code. In [22], a linear-time decoder was intro-
duced for surface codes, achieving maximum-likelihood (ML)
performance by peeling on a spanning tree of erasures on the
surface code lattice. This was later extended into the union-find
decoder, initially for topological codes [21] and subsequently
for more general quantum LDPC codes [23], which is capable
of correcting both Pauli errors and erasures with a higher
complexity. In [24], a trimming decoder was proposed for the
erasure decoding of color codes, that combines peeling on a
spanning tree with erasure set extension or vertex inactivation.
Erasure decoding of subsystem color codes has also been
studied using a combination of techniques, including peeling,
clustering, and gauge fixing [25], [26].

Two erasure decoding algorithms were proposed by Con-
nolly et al. in [27]: pruned peeling and vertical-horizontal
(VH) decoding. The pruned peeling decoder can be applied
to any code and it combines peeling with a greedy search
for stabilizers contained wholly within the erased qubits. The
VH decoder, which can only be applied to hypergraph product
(HGP) codes, integrates pruned peeling with an iterative pro-
cedure that mitigates vertical and horizontal stopping sets. For
the sub-threshold regime, simulation of the VH decoder has
demonstrated performance close to ML with a computational
complexity of O(n?) for codes of length n.

In this work, we evaluate belief propagation with guided
decimation (BPGD) decoding of quantum LDPC codes for the
quantum erasure channel. A recent study by Yao et al. demon-
strated that the BPGD decoder has excellent performance for
quantum LDPC codes under bit-flip noise and depolarizing
noise in the code capacity model [28]. Over circuit-level noise,
a recent study also shows that a variant of BPGD applied
as the inner decoder of sliding window decoding achieves
performance on par with BP+OSD for quantum LDPC codes
[29]. Here, we show that BPGD outperforms both the peeling
and pruned peeling decoders when applied to erasures. While
its performance lags slightly behind the VH decoder for HGP
codes, BPGD offers a significant computational advantage
with its reduced complexity. We further show that tuning the
prior log-likelihood ratios (LLRs) and introducing damping
techniques significantly improves performance and enables
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BPGD to approach the performance of VH decoding with
reduced complexity.

II. PRELIMINARIES
A. Classical Erasure Correction

Error-correcting codes protect information against noise by
introducing redundancy. Let Fo = {0,1} denote the Galois
field with 2 elements. A binary linear code C C FJ is a
subspace of binary vectors satisfying x; + xo € C for all
x1,x2 € C. The code can be specified either by a generator
matrix G € F’;X" whose rows span the code or by a parity-
check matrix H € F5'*" whose rows are orthogonal to all
codewords.

When a codeword is transmitted over the classical binary
erasure channel (BEC), each bit is either received correctly
or erased with some probability. The received vector y €
{0,1,?}™ identifies the positions of the erasures. The de-
coder’s task is to recover the original codeword z from the
observation y. In erasure syndrome decoding, the decoder only
sees the locations of the erasures and the syndrome s = Hy,
where y € F5 is a binary version of y whose erasures are
replaced by uniform random bits. This allows the decoder
to recover z if a unique solution exists. For further details,
see [27, Section 2].

B. Stabilizer Formalism

For a single qubit, a pure state is defined by a unit vector
in C? and the Pauli matrices I, X,Y,Z generate a unitary
subgroup that acts on the qubit, where

1 0 0 1 0 —i 1 0
R e A
For an n-qubit system, the Hilbert space H = (C2)®" is used
to represent all pure quantum states. The Pauli group P, is
the subgroup of unitary transformations on H that consists of

all n-fold tensor products of the Pauli matrices along with a
coefficient in {£1,+i}. An element in P,, can be written as

P=aP®@P,® --QP,, (D

where « € {£1,+i} and P, P,..., P, € {[,X,Y, Z}.

An [[n, k]] stabilizer code is a quantum error-correcting code
that protects k logical qubits encoded into n physical qubits. A
stabilizer group S is an abelian subgroup of the Pauli group P,
that does not include —I®". The stabilizer code C defined by
the stabilizer group S is the subspace C C H that is invariant
under the action of all operators in S. For a stabilizer code,
the stabilizer generators are a set of operators that generate
the stabilizer group S.

Thus, for any state |¢)) € C and S € S, we have:

S|b) = |¢). )

The weight of a Pauli operator P € P, is the number of qubits
on which the Pauli operator acts non-trivially. For instance, the
weight of X ® I ® Z in Ps is 2. The distance d of a stabilizer
code is defined as the minimum weight of a Pauli operator
that is not in S but which commutes with all elements of the

stabilizer group S. Such an operator is referred to as a logical
operator, as it acts non-trivially on the encoded qubits.

In this paper, we focus on the Calderbank-Shor-Steane
(CSS) code, a class of stabilizer code constructed using two
classical linear codes C; and C5 satisfying CQJ- C Ci. The
stabilizer generators of a CSS code can be divided into X-
type and Z-type operators:

Sx ={XV:vely), Sz={Z":uccCi},
where XV = X{*' ® --- ® X~ and Z" is defined similarly.
The binary representations of these stabilizers are generated
by a pair of parity check matrices, Hx and Hz, satisfying

Hy H: =0. (3)

This condition is the specialization to CSS codes of the more
general commutativity constraint required by all stabilizer
codes (i.e., that the stabilizer group is commutative). For CSS
codes, the rows of Hx and Hz correspond to X-type and Z-
type stabilizer generators. Since stabilizers of the same type
automatically commute, the above condition ensures that the
stabilizer generators corresponding to Hx commute with those
defined by Hyz.

For noise model where the X- and Z-type errors are
independent, this structure simplifies the error correction pro-
cedure by leveraging the separation of X- and Z-type errors.
In this context, we cover the correction of X-type errors
using classical decoding of Cs, with the understanding that
the correction of Z-type errors follows the same approach
using classical decoding of Cj-, thus effectively reducing the
quantum error correction problem to two separate classical
decoding tasks.

C. Syndrome Decoding for the Quantum Erasure Channel

Erasure channels provide a simplified model for information
loss by specifying the locations of likely errors. This allows
for efficient decoding, especially with LDPC codes, which
perform exceptionally well on these channels. In classical
coding theory, LDPC codes first demonstrated their potential
to approach channel capacity through iterative decoding al-
gorithms like belief propagation [30]-[32]. As the study of
erasure channels helped advance classical coding, we expect
similar benefits for quantum codes in terms of improving
decoding strategies and understanding performance limits.

In this work, we consider the quantum erasure channel [12],
[19] as our noise model, where each qubit in the encoded state
of a stabilizer code is independently erased with probability
p. When a qubit is erased, it is affected by a Pauli operator
in {I, XY, Z} chosen uniformly at random. The locations of
the erasures are given to the decoder as side information.

To correct the Pauli error £ € P, affecting the erased
qubits, we measure the syndrome of the stabilizers. The goal of
the decoder is to identify a Pauli error estimate F that matches
the syndrome and acts trivially outside of the erased locations.
This decoding process is successful if the decoded error either
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exactly matches the actual Pauli error or differs from it by a
stabilizer. In other words, the decoding is successful if:

ES = ES, “)

where S denotes the stabilizer group, and ES denotes its coset
shifted by FE. This condition implies that the identified error
is logically equivalent to the actual error up to a stabilizer
transformation.

The non-trivial elements of I are restricted to the locations
of the erased qubits. Since the locations of the erasures are
known, the decoding problem is constrained to finding an
error in the support of the known erasures that matches the
syndrome. There are four possible outcomes for this decoding
process:

1) Exact Match: The decoder identifies an error F that
exactly matches the actual error F/, meaning E=E.

2) Degenerate Match: The identified error E differs from
the error E' by a stabilizer, i.e., E.-S=FE-S. In this
case, the identified error is logically equivalent to the
actual error but does not affect the logical state.

3) Logical Error: The identified error FE differs from the
actual error F by a logical operator, i.e., E.S +FE-S,
resulting in a logical error that changes the logical state.

4) Decoder Failure: The decoder fails to find any error in
the support of the erasures that matches the syndrome,
resulting in no valid decoding solution.

The probability of each Pauli operator I, X, Y, or Z on
the erased qubits is 1/4, as previously stated. Importantly, for
CSS codes, these probabilities translate to independent 1/2
probabilities for X-type and Z-type errors. This is because
a Pauli-Y error corresponds to both an X-type error and a
Z-type error occurring on the same qubit.

Thus, the syndrome decoding process is separated into
independent corrections of X-type and Z-type errors. The
syndrome vector sy corresponding to Z-stabilizers provides
information about X-errors, and the syndrome vector sz
from X-stabilizers provides information about Z-errors. The
decoding problem reduces to solving:

sx =Hzek, sz;=Hxe}, (5)

where Hx and Hz are the parity-check matrices correspond-
ing to the X- and Z-stabilizers, and ex and ez are the error
vectors for X- and Z-type errors, respectively.

D. Quantum LDPC Codes

Quantum Low-Density Parity-Check (QLDPC) codes are
a class of quantum error-correcting codes characterized by
sparse parity check matrices. These codes are an extension
of classical LDPC codes [33], [34] and they offer promising
performance for fault-tolerant quantum computing due to their
low overhead relative to topological codes [1], [11], [35].

A CSS quantum LDPC code can be represented by a pair
of sparse matrices, Hx and Hz, whose rows and columns
each have only a small number of non-zero entries. This
sparsity is crucial both for the practical implementation of

stabilizer measurement and for decoding algorithms like belief
propagation.

Here we describe an important class of quantum LDPC
codes called hypergraph product (HGP) codes. Constructed
from two classical binary linear codes with parity-check
matrices H; € Fy" ™™ and Hy € F32*"2, the HGP code
is defined by the check matrices

Hx =(Hi®1I,, In ®HJ), (6)
Hz = (I, ® Hy H{ ®1I,). (7

An extension of this construction called the lifted product
construction generalizes the HGP framework [36]. While
HGP codes have binary entries in their parity-check matrices,
lifted product codes replace these scalar entries with higher-
dimensional objects such as circulant matrices. This process
is called lifting, as it effectively "lifts" scalar entries to matrix
entries, increasing the number of qubits and stabilizers

In the lifted product construction, the parity-check matrices
become:

Hx = (Hy ® I, In, ®HY]), (8)

HZ = (Inl ®I~{2 ﬁlT ®I7n2) 5 (9)

where H 1 and ﬁg are m1 X n; and mo X ny matrices, respec-
tively, whose elements are L x L binary circulant matrices.
The circulant matrices form a commutative ring under matrix
multiplication, which plays an essential role for maintaining
the commutation relations required for the code to satisfy the
commutativity constraint.

In this work, we use quantum LDPC codes from the
two aforementioned code families to evaluate the decoding
performance of BPGD over the quantum erasure channel.

III. DECODING ERASURES WITH BPGD
A. Belief Propagation Decoding

BP is an iterative message-passing algorithm that operates
on the Tanner graph of an LDPC code [37]. For CSS codes,
the correction of independent X- and Z-type errors can be
treated separately. Thus, we focus on the correction of X-
type errors using the classical decoding with the parity-check
matrix Hz. For correction of Z-type errors, one can follow the
same approach using classical decoding with the parity-check
matrix Hy. BP decoding of quantum LDPC codes was first
introduced in [6] and considered further in [7].

In this context, the Tanner graph has variable nodes V' =
{v1,...,v,} representing elements of the X-error vector e =
(e1,...,ep) and check nodes C = {cq, ..., ¢} representing
the Z-stabilizers in the matrix Hz. A variable node v; is
connected to a check node ¢; if Hz (%, j) = 1, meaning that the
corresponding j-th qubit participates in the parity-check de-
fined by the i-th Z-stabilizer. The BP algorithm estimates the
most likely values for the error bits by exchanging messages
between the variable nodes and the check nodes (representing
stabilizers).

Let mg,tl,c denote the BP message passed from variable

node v to check node ¢ during the ¢-th iteration and let m‘(ﬁ,v
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denote the BP message passed from check node c to variable
node v during the ¢-th iteration. The messages are typically
represented by log-likelihood ratios (LLRs). For a channel
where X-errors occur with probability p, the variable nodes
are initialized to the channel LLR defined by

L—p

Alp) =In P

This LLR represents the initial belief that a qubit has an X-
error.

At the start of the BP algorithm, these initial LLRs are used
to set the messages sent from each variable node v to all its
connected check nodes c. Specifically, at iteration ¢ = 0, the
message from variable node v to check node c is set to

ml(J(gC = :uU?

(10)

(11

where p, = A(p,) and p, is the prior probability that qubit v
has an X-error.

Check nodes subsequently update their messages based on
the incoming messages from all connected variable nodes and
the syndrome bits s = {s1, s2, ..., S }, using the equation

[T tan(mi2.) ], a2
v’ €N (c)\v

m®, = (—1)°tanh !

c—v

where N (c) represents the set of variable nodes connected to
the check node ¢, and m, . is the message from variable
node v’ to check node c.

Then, the variable nodes update their beliefs using the
messages received from check nodes:

mtD = p, + Z mg)_m,
c'eN(v)\c

13)

where i, is the initial LLR for variable node v, and N (v) is
the set of check nodes connected to v. Finally, the variable
node output message is computed with

N
c'eN(v)

B. BP Convergence Issues for Quantum LDPC Codes

For stabilizer codes, the commutativity constraint requires
that all stabilizers commute. When applied to CSS codes,
this implies that the binary representations of all X-stabilizers
must be codewords of the binary linear code with parity-check
matrix Hz. In terms of erasure decoding, this means that the
variable nodes in the support of an X-stabilizer must be a
stopping set for the peeling decoder based on Hz. Moreover,
the subgraph of the Tanner graph induced by a stopping set
must contain ac cycle. Thus, short cycles in the Tanner graph
arise from the inherent degeneracy of CSS LDPC codes due
to low-weight stabilizers and this affects BP convergence.

While BP convergence suffers, there is no reason that
decoding performance must also suffer. This is because the
resulting uncertainty in the X-error pattern is exactly equal to
an X-stabilizer. This observation was highlighted in [27] and
used to motivate the pruned peeling decoder.

(14)

The key idea of pruned peeling is that, if a X-stabilizer
completely is covered by erasures, then any bit in its supprt
can be fixed to O (i.e., no error) without risk because applying
the stabilizer can always flip its value to 1. We note that this
operation “uses up” that stabilizer. Pruned peeling makes use
of this idea by searching for linear combinations of at most M
stabilizer generators which are completely covered by erasures
and fixing one of their variables to 0.

C. Belief Propagation with Guided Decimation

Building on BP, the BPGD decoding algorithm operates by
sequentially running BP and fixing values of variable nodes
based on the resulting BP beliefs. Message-passing algorithms
that incorporate “decimation” were first introduced in the
classical context for constraint satisfaction problems [38], [39].
For quantum LDPC codes, BPGD decoding seems to mitigate
the non-convergence issue of BP due to the commutativity
constraint of stabilizer codes. In [28], the BPGD decoding
algorithm is shown to be effective for correcting bit-flip errors
in quantum CSS codes.

BPGD begins by initializing the LLRs for each variable
node on the Tanner graph, similar to the standard BP algo-
rithm. The process proceeds iteratively where, in each round,
BP is run for a fixed number of iterations 7' using the sum-
product algorithm to compute the estimated beliefs for the
variable nodes.

If BP converges and the resulting error estimate matches
the observed syndrome, the decoding process terminates, and
the hard values of the variable nodes are returned as the
estimated error. However, if convergence is not achieved,
the algorithm identifies the variable node with the highest
reliability, defined by the magnitude of the LLR, and decimates
that bit. Decimation involves fixing the value of this variable
node based on the sign of its current bias and marking
the bit as decimated, effectively reducing the complexity of
subsequent BP iterations.

The decimation step is controlled by a parameter [lr,x,
which is set to a large value (typically llry,x = 25) to ensure
numerical stability in practical implementations. This fixed
value serves as a strong bias, guiding the remaining variable
nodes toward a solution in the subsequent rounds of BP. The
process repeats, with each round consisting of BP followed by
decimation, until either all variable nodes have been decimated
or BP successfully converges.

While BPGD often enhances the probability of conver-
gence compared to standard BP, there is a potential for non-
convergence failure if the final set of hard-decimated values
does not match the syndrome. Nonetheless, BPGD seems to be
a valuable approach, particularly in scenarios where traditional
BP struggles to find a solution. The effectiveness of BPGD
in such cases underscores its utility as a robust decoder for
quantum error correction.

D. BPGD Decoding for the Quantum Erasure Channel

Here, we apply the BPGD algorithm to quantum erasure
channels by choosing the initial LLRs correctly. Specifically,

Authorized licensed use limited to: Duke University. Downloaded on March 30,2025 at 19:31:26 UTC from IEEE Xplore. Restrictions apply.



(7 I S S

10
11

12
13
14

15

16

Algorithm 1 BPGD over erasures
Input: erasure locations Vg, block length n, H; Tanner graph
G=(V,C, E), syndrome s, BP iterations per round T’
Output: estimated Z or non-convergence
for i =1ton do
if v; € V, then
‘ Moy, = rmin
else
L Moy, = lleax
B m'(u?LCj
Vu=V
for r =1 to n do
run BP on Tanner graph G for T iterations
Z + hard values of the variable nodes
if ZH! = s then
| return T
else

“— fy,; for all ¢; € N(v;)

v; = argmaxy,cv, (Vi)
if mg,:T) > 0 then

| P, = Urmax
else

L Koy =

L Vu= Vu\{vi}

return non-convergence

—Urmax

when a bit is erased, the implied error rate is 1/2 and the
corresponding LLR value is A(1/2) = 0. One can also use a
very small value, llry;, ~ 0, to avoid numerical issues.

Conversely, when a qubit is not erased, the decoder is very
confident that the qubit is not in error. While the formal LLR
value should be A(0) = oo, a large finite value is used for
numerical reasons. We define llr ., = 25 to be this value.

These modifications align the decoder with the character-
istics of erasure channels and result in reasonable decoding
performance. The pseudo-code for the BPGD algorithm, along
with further technical details, can be found in Algorithm 1.

To compare BPGD with pruned peeling, consider the case
where llry.x = oo and BP iterates to a fixed point. This
is equivalent to the peeling decoder and always outputs a
stopping set. At this point, the pruned peeling decoder will
make a guess only if there is a stabilizer that can absorb
the possible error. On the other hand, the BPGD decoder
simply guesses bits in the stopping set randomly and continues
decoding. While this approach has no guarantees, some of
the guesses will be correct and the others can hopefully be
absorbed by the stabilizer. Overall, performance is improved
over pruned peeling.

IV. BPGD WITH DAMPING AND ADJUSTED LLRS

The performance of BPGD for quantum LDPC codes with
erasures can be improved by adjusting the initial LLRS and
incorporating damping into the belief propagation process. In
particular, we observed experimentally that the convergence
rate of BPGD on quantum LDPC codes over erasures can be

TABLE 1
OPTIMIZED VALUES OF copt FOR SIMULATIONS

[[1600,64]1] HGP code

Erasure Rate < 0.08 0.10 0.12  0.14-0.24 026 > 0.28
Copt 0.1 0.2 0.1 0.2 0.3 0.5
[[2025,81]] HGP code
Erasure Rate < 0.12 0.14-0.22 > 0.24
Copt 0.1 0.15 0.3
B1 code
Erasure Rate < 0.34 0.36-0.46 0.48 0.50
Copt 0.3 0.5 0.8 0.9
TABLE 2
OPTIMIZED VALUES OF 7y FOR SIMULATIONS
[[1600,64]] HGP code
Erasure Rate < 0.06 0.08-0.20 0.22-0.24 0.26 0.28 0.30 0.32
¥ 0.87 0.88 0.90 0.93 0.94 0.95 0.96
[[2025,81]] HGP code
Erasure Rate < 0.08 0.10-0.16 0.18-0.22 0.24 0.26 0.28 0.30
¥ 0.86 0.87 0.88 0.90 0.92 0.95 0.96
Erasure Rate 0.32
¥ 0.97
B1 code

Erasure Rate < 0.36 0.38-0.40 0.42-0.48 0.50
0 0.90 0.95 0.94 0.95

significantly improved by these modifications. This, in turn,
reduces the failure rate especially at erasure rates where the
rate of non-convergence dominates the rate of logical error.

A. BPGD with Adjusted LLRs

It has been observed that, for BP decoding over both
classical [40] and quantum LDPC codes [41], adjusting the
initialization of BP on the variable nodes can potentially
improve performance. In the content of BPGD decoding of
quantum LDPC codes over erasures, we have also observed
performance improvement upon adjusting the priors on the
variable nodes.

In particular, we found that reducing the initial confidence
in the known bits can improve the convergence of the decoder.
To achieve this, we introduce a scaling factor c,p,; and adjust
the initial LLRs for non-erased bits to be

llr;nax = copt ”Tmax- (15)

By choosing ¢, < 1, we reduce the initial LLR magnitude
for non-erased bits and this decreases the number of decoder
failures due to non-convergence.

To select the optimal value of c,,;, we performed exper-
iments over different ranges of values for different erasure
rates, fine-tuning to narrower intervals when necessary. We
observed that lower erasure rates required lower values of
Copt than higher erasure rates for to better convergence and
lower failure rates. The optimized values of c,,; used in our
simulations is provided in Table 1.

B. BPGD with Damping

During the BPGD decoding process, BP is applied to
compute approximate marginals for the variable nodes that
guide the decimation. This approximation is exact if the
underlying Tanner graph is a tree [37]. However, the Tanner
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TABLE 3
OPTIMIZED VALUES OF Copt WITH ¥ VALUES FROM TABLE 2

[12025,81]] HGP code

Erasure Rate 0.10 0.12 0.14 0.16 0.18 020 0.22
Copt 0.065 0.077 0.077 0.089 0.101 0.11 0.115
Erasure Rate 0.24 026 028 0.30 0.32
Copt 0.135 0.14 0.19 023 025

graphs of quantum LDPC codes have many short cycles due to
low-weight stabilizers and BP may approximate the marginal
poorly. If the main problem is that BP is not converging to a
fixed point, then one technique that can be used to improve
the BP performance is called damping [42]-[44].

At each step of the BP iteration in equation (13), the
evaluation of mffié) is taken to be a weighted average between

the old estimate and the new estimate:

Thgii) = fy + Z mff)—w
c¢’eN(v)\c

(16)

The damped variable-to-check messages are computed with

(t+1) _ = (t41)

m{ED = (1—7)-mi), + v it (17)

where 7 € [0, 1] is the damping factor.

By choosing an appropriate value for the damping factor
v we can affect the influence of new messages versus old
messages. A smaller y provides more damping to help prevent
oscillations and improves convergence of BP especially for
lower erasure rates. The optimized values of + used in our
simulations are provided in Table 2.

C. BPGD with Combined Adjustments

For the [[2025, 81]] HGP code, neither adjusting the initial
LLR nor the damping factor were enough by themselves for
the BPGD performance to match the VH decoder. But, jointly
optimizing LLR adjustment and damping factor provided
further improvement. First, we performed a grid search over
both parameters and found that the damping cofficient v did
not change much for a given erasure rate. Thus, we found
suitable parameters by fixing v for each erasure rate and
searching over possible values of c,,;. The chosen values
minimized the failure rates in our experiments.

Table 3 summarizes the optimized values of c¢,,; used in
our simulations for different erasure rates with the + values
being same as in Table 2.

V. NUMERICAL RESULTS

In Figures 1 and 2, we show simulation results for the
BPGD decoder on the quantum erasure channel for two HGP
QLDPC codes. These figures present the performance of
peeling, pruned peeling, and VH decoders for comparison. The
data points for the latter decoders were obtained by executing
the code available in the publicly accessible GitHub repository
referenced by [27]. BPGD decoding performs better than the
peeling decoder for both codes but performs worse than pruned
peeling for the [[2025, 81]] code. BPGD with adjustments
outperforms pruned peeling decisively, achieving proximity

10!
1072 1
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Q
s .l —e— VH
f 10 —e— BPGD
E 10-5 |- —e— Peeling
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II Damped BPGD
10~7 |-=# - -2~ - Adjusted LLR BPGD
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Fig. 1. Comparison the quantum erasure channel of BPGD decoding with

peeling, pruned peeling, VH, and ML decoding. The plot presents the
decoder failure rates for the HGP QLDPC code [[1600, 64]] from [27], with
convergence to a degenerate codeword considered a success. The number of
simulations per data point varies and was chosen to ensure short error bars.
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Fig. 2. Comparison on the quantum erasure channel of BPGD decoding with
peeling, pruned peeling, VH, and ML decoding. The plot presents the decoder
failure rates for the HGP QLDPC code [[2025, 81]] from [27].

to VH decoder which itself is close to the ML decoding
performance for most data points.

In Figure 3, we show the simulation results for the [[882,
24, 18 < d < 24]] Bl lifted-product code' from [45].
Adjusted versions of BPGD decoding are compared with
peeling, pruned peeling, and ML decoding, all on the quantum
erasure channel. While the original BPGD decoder does not
uniformly outperform pruned peeling due to convergence
issues, BPGD with the proposed modifications is much closer
to ML decoding than all other decoders. We also want to
highlight the sharp threshold-like behavior of both BPGD
and ML decoding for the B1 code with erasures. While this
type of performance is typical for classical LDPC codes, the
performance of quantum LDPC codes usually has the slower
decay rate shown, for example, by pruned peeling with M = 2.

VI. CONCLUSION
In this paper, we present and analyze the performance of the
belief propagation with guided decimation (BPGD) decoder

IThis was called a generalized hypergraph product code in the original
paper but the literature now uses the term lifted-product code.
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Fig. 3. Comparison of BPGD decoding over the quantum erasure channel
with peeling, pruned peeling, and ML decoding. The curves show the decoder
failure rates for the [[882, 24, 18 < d < 24]] B1 lifted-product QLDPC code
from [45].

on the quantum erasure channel. Specifically, we compare the
performance of BPGD decoding with other established erasure
decoders via simulation for a lifted product QLDPC code and
two hypergraph product (HGP) QLDPC codes. The impressive
performance of BPGD decoding for the [[882, 24, 18 < d <
24]] B1 QLDPC code demonstrates the potential of BPGD as
a generic decoder for QLDPC codes.

For the tested HGP codes, our results show that the BPGD
decoder outperforms both peeling and pruned peeling decoders
when correcting erasures. Although the BPGD decoder with-
out adjustment is slightly inferior to the Vertical-Horizontal
(VH) decoder for these codes, its computational complexity is
substantially lower.

Moreover, we observe that small adjustments to the BP
algorithm can enhance BPGD decoding performance by en-
couraging the decoder to converge. In particular, by adjusting
the initial LLRs and applying damping techniques, we find
that BPGD decoding can approach the performance of the VH
decoder.

Finally, we note that quantum codes with erasure conversion
are likely to have both erasures and errors. Due to its good
performance for channels with erasures and channels with
erros, the BPGD decoder is an ideal candidate for channels
with both errors and erasures.
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