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Abstract—In the quantum compression scheme proposed by
Schumacher, Alice compresses a message that Bob decompresses.
In that approach, there is some probability of failure and, even
when successful, some distortion of the state. For sufficiently
large blocklengths, both of these imperfections can be made
arbitrarily small while achieving a compression rate that asymp-
totically approaches the source coding bound. However, direct
implementation of Schumacher compression suffers from poor
circuit complexity. In this paper, we consider a slightly different
approach based on classical syndrome source coding. The idea
is to use a linear error-correcting code and treat the state
to be compressed as a superposition of error patterns. Then,
Alice can use quantum gates to apply the parity-check matrix
to her message state. This will convert it into a superposition
of syndromes. If the original superposition was supported on
correctable errors (e.g., coset leaders), then this process can
be reversed by decoding. An implementation of this based on
polar codes is described and simulated. As in classical source
coding based on polar codes, Alice maps the information into
the “frozen” qubits that constitute the syndrome. To decompress,
Bob utilizes a quantum version of successive cancellation coding.

I. INTRODUCTION

Quantum computation is the use of quantum mechanical
effects for information processing. At sufficient scale, quantum
computers hold promise for myriad problems including integer
factorization, cryptography, and the simulation of physical
systems which are intractable on contemporary classical com-
puters [1]. As with classical computers, efficient methods for
the compression of quantum information will be instrumental
for practical quantum computation [2]. In 1995, Schumacher
proposed the first method for rate-optimal lossless quantum
state compression [3] and it can be seen as a generalization of
Shannon’s original protocol for rate-optimal lossless classical
compression. However, direct implementation on a quantum
computer is quite complex because, for n qubits, it involves
rearranging the 2" basis elements in a complicated fashion [4].

One can also use linear error-correcting codes to implement
rate-optimal classical compression [S]-[7]. Here, we describe
the associated method for rate-optimal quantum compression
based on linear error-correcting codes. In particular, we use
polar codes [8]. Polar codes are known to be rate-optimal
for many coding and compression problems [7]-[10] and, for
many of these, they allow efficient encoding and decoding.
Until recently, however, extensions to quantum problems did
not naturally lead to efficient decoding algorithms.
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For the pure-state classical-quantum (CQ) channel, belief-
propagation with quantum messages (BPQM) can provide
optimal decoding for systems defined by tree-like factor
graphs [11]-[14]. This approach has also been extended to
binary-input symmetric CQ channels and polar codes [15]-
[17]. In this paper, an efficient quantum successive cancellation
decoding algorithm is defined for the proposed scheme.

We begin with an overview of requisite classical and
quantum coding theory. Then, we describe the compression
protocol and provide results describing its asymptotic perfor-
mance. Next, we provide simulation results for our protocol
with blocklength 8 and 16. Finally, we conclude with a
discussion of this protocol’s relationship with, and implications
for, quantum compression more generally.

II. BACKGROUND
A. Binary Linear Codes

An [N, K] binary linear code C is a K-dimensional sub-
space of F}'. Such a code can be defined as the row space of
a generator matrix G € F' 5{ *N or as the null space of a parity-
check matrix H € FéN_K)XN. For an error vector z € FY,
the syndrome of z is defined as s = zH”. We note that s = 0
if and only if z € C. Since C is a subgroup of the additive
group of FY, it follows that F can be partitioned into cosets
of C and all elements in a coset will have the same syndrome.
In each coset, one can choose a coset leader by selecting
an element of minimum Hamming weight and breaking ties
arbitrarily [18]. For communication over a binary symmetric
channel (BSC), the transmitted codeword =z € Fév may be
corrupted by an error vector z € FY, resulting in the received
bit string y = x4+ 2. The decoder returns the codeword closest
to a codeword with ties broken arbitrarily. Such a scheme
can also be implemented by syndrome decoding, where the
syndrome s = yH?T is computed first and then the error
estimate 2 € FJ is computed from s by selecting the coset
leader of the coset associated with syndrome s [5].

B. Polar Codes

Arikan’s polar transformation is defined by an invertible
matrix Gy € F5 ™ that maps FY to itself via z = uGy [8].
The vector x is transmitted over a memoryless channel with
capacity C' to give the output y. For the i-th input bit, one
can define an effective channel whose input is u; and whose
output is (y,ui"'). As N tends to infinity, the capacities of
the individual effective channels become polarized and, for any
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€ € (0,1/2), the proportion of “good” channels (i.e., channels
with capacity greater than 1 — €) converges to C while the
proportion of “bad” channels (i.e., channels with capacities
less than 1 —¢) converges to 1 — C'. When using a polar code
for communication, one only sends information over the good
channels. Thus, the N bit message consists of K “information”
bits which constitute a message and N — K “frozen” bits which
are known by the receiver and thus carry no information.
By freezing the bad channels, one enables the successive
cancellation decoder to recover bits transmitted across good
channels with high probability. The polar transformation Gy
on NN bits may be defined recursively as follows:

e Ry is the N x N permutation matrix for the reverse
shuffle permutation (1,3,...,N —1,2,4,...,N).

1 0
o Gn = (Inj2 ® G2) RN (L2 ® Gyy2), Go = [1 J .

While originally designed for error correction on classical
channels, polar codes have been adapted to many problems.

C. Syndrome Source Coding

Syndrome source coding is one popular method for adapting
linear codes to lossless compression [5], [7]. In syndrome
source coding, one compresses the vector x € FY by comput-
ing its syndrome s = xH” using the parity-check matrix H of
a linear code . To decompress, the decoder maps the syndrome
s to the coset leader of its associated coset. This scheme
is successful if and only if the message to be compressed
is a coset leader [5]. Likewise, syndrome decoding of an
error is successful if and only if the error is a coset leader.
Thus, syndrome source coding is successful if and only if the
vector to be compressed is an error that is correctable by the
syndrome decoder of the code. We also note that the successive
cancellation decoder for polar codes is easily transformed into
a polar syndrome decoder [7] which, for the BSC, corrects the
same errors as the original decoder.

D. Quantum Formalism

The set of natural numbers is denoted by N = {1,2,...}
and we use the shorthand [n] := {1,...,n} for n € N. We
denote the n-dimensional Hilbert space by #,,. We call a unit
length vector |¢)) € H,, a pure state. An ensemble of m pure
states {p;, |t;)} in which p; is the probability of choosing the
pure state [¢;) is represented using a positive semidefinite,
unit trace matrix p which we call a density matrix. In other
words, for the ensemble {p;,|1;)}, p can be written as

p=>_ pili)iil.
i€[m]

The map [¢p) — U |¢p) for unitary U € C**" is called the
unitary evolution of the state 1)) € H,,. Thus, the action of
U on the ensemble {p;, |1;)} is described by p, where

p=> piUl)ihi|UT = UpUT
i€[m]

and U is the Hermitian transpose of U. An m-outcome pro-
jective measurement on a state in H,, is implemented through

a set of m orthogonal projection matrices II; € C"*™ for
1 < j <m, where §; ; is the Kronecker delta function. These
projection matrices satisfy II;11; = 6; ;II; and Zj II; = 1. We
denote this measurement by II = {II;}|72,. When we apply
the measurement I on the state p, the probability of outcome
Jj is p; = Tr(IL;p) and the resulting post-measurement state is
p; = (IL;pIl;)/Tr(IL; p). We use the notation p4~ to denote
the tensor product state of N quantum states in quantum
systems Aj,... Ay such that

pPAN = pa, @@ pay,

where py, corresponds to quantum state in A;. Similarly,
we use the shorthand notation |t),~) 4~ to denote the tensor
product of pure states in system Ai,..., Ay i.e.

W)wN)AN = ‘¢r1 -~-sz>AN = |7/}J:1>A1 @ ® |1r/}-TN>AN

We also define the embedding of F2 into C2" via the mapping
(a1, a9, ...,an) € FY to |aias...ay). Similarly, given a one-
to-one boolean function f : F} — FY with N > M, we
define E(f) to be its embe}glding into the space of isometries

from A =C2" to B=C2
E(f):= > glf@")"],. (1)
xM cF)M

E. Quantum Compression by Schumacher

Schumacher [3] proposed a direct generalization of Shan-
non’s protocol for lossless compression to the quantum setting.
To understand Schumacher’s protocol, we begin with defini-
tions related to classical compression. As usual, the aim of
the compression protocol is for Alice to compress a message
which Bob subsequently decompresses. Consider /V-bit strings
produced by a classical source with alphabet X, alphabet size
|X| = n and distribution px. The entropy H(X) of such a

source is defined as
H(X):=— Y px(z)logpx(x).
reEX

The sample entropy H (zV) of a sequence z” is defined as

— 1
H(zN) = N log (px~ (zV)).
The d-typical set T is defined as
X" = (2N [H(2N) - H(X)| < 6}

With these classical definitions, we are equipped to understand
the quantum problem. Consider a guantum information source
described by the state p. We can express the state p using the
eigenvalue decomposition as

P—ZPX

reX

) [V Xzl s (2)
where px(x) corresponds to the probability of choosing the
pure state |1),) and (1, |1),/) = 0 if z # z’. The von Neumann
entropy of p is defined by

-2 rxla

zEX

S(p) = —Tr(plogp) = z) log(px ().
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In other words, the state p can be represented by the ensemble
{px(x), |[tz)}. p can be decomposed in many ways using non-
orthogonal states. However, the representation of state p in
terms of eigenvectors achieves von Neumann entropy which
ensures maximum compressibility. Similarly, consider joint
quantum state py~ with N states drawn from the ensemble
{px(x),|t=)}. Using the representation of p in Eq. (2), we
can decompose p 4~ in the following form

pAN = Z pXN(‘/L'N) |w1‘1 .. ’/l/)l'N><w$1 .. 'wa

zNexnN

AN >

where py~(zN) = px(z1)...px(zn). The classical se-
quences ¥ € XN correspond to the indices of the quan-
tum state in the decomposition of p, ~. To define quantum
typicality, we construct the typical subspace as follows

74N = span{|t,n) s 2™ € T5XN}.

This is exactly the subspace spanned by states |1, ~) whose
labels 2™V € XN are J-typical with respect to the distribution
px~ (zN). In other words, the notion of quantum typical is
similar to classical typicality but quantum typicality is con-
sidered in the eigenbasis. Schumacher compression exploits
this notion of quantum typicality and the typical subspace
corresponding to the state p4~ to achieve the quantum com-
pression limit i.e. the von Neumann entropy S(p) [9]. The
typical projector projects into the typical subspace T; AN and
is given by

8
Iy =

Z W)TN ><¢wN |AN .

arNETLSXN
Consider the projective measurement defined by
,0 ,0
{55, 1 - 1195}

If the first outcome occurs, then the quantum state is projected
onto a typical subspace. If the second outcome occurs, it
is projected onto the orthogonal complement and failure is
declared. With the addition of a flag qubit F', the action of
this measurement on the density matrix p 4~ is given by

pan = (I=T1%) pan (I-T15%) @[0)0] - +
% pan T8 @ |11

This measurement is called the typical subspace projection as
it projects to the §-typical subspace of AY. In general, this also
causes a small distortion of the state because a small fraction
state’s mass lies outside of the typical set. More precisely, it
follows from Tr(H'i’,i) < 2N that ||panv —E(pan)|| > 0if p
is non-singular, where £ is the channel defined by the typical
subspace projection. However, this error vanishes as N — oo
provided that 6 > 0 and S(p) < 1. After the ?rojection, Alice’s
task is to compress the projected state H’;’N p ANH’;{i, before
sending it to Bob. Since

T (152) = ‘Hrzg’ < oN(S(p)+),

there is a bijective boolean function that maps the classical
typical sequences to the set of binary sequences of length

N(S(p) + &) denoted by f : T(SXN — {0, 1}NIS()+3] Thys,
Alice can use Eq. (1) to construct the isometry Uy = E(f)
mapping AV to 2" Observe that this isometry maps
the set of message strings into the set of typical strings
used in Shannon’s protocol. To decompress Alice’s state, Bob
. T . .

applies U 7 on the received state. This strategy approaches the
fundamental limiting compression rate of S(p) .

F. Quantum Compression via Syndrome Source Coding

Linear codes may also be adapted to implement lossless
quantum state compression. We describe this adaptation here
in a generic way before later addressing the particular case
of polar codes, which is the main subject of this paper. As
described in section II-C, any linear code can be used to
implement lossless classical compression via syndrome source
coding. Let C be an [N, K] binary linear code with full-rank
parity-check matrix H. Let H’ be an invertible extension of
H that is formed by adding K rows to the bottom of H so
that H' is full rank. Suppose Alice wants to compress a state
drawn a quantum information source described by p®%, where
p describes a single qubit state with spectral decomposition

p = (1—=p) [o)tho| + p |1 ).

Then, Alice and Bob may compress and decompress p&V by
embedding the syndrome-source coding protocol for C into the
quantum domain as follows:

1) Alice applies UP®N to her state, where U, is the unitary
that diagonalizes p, to get

p=U,pU} = (1—p)|0X0] + p1)(1].

2) Alice applies the quantum instrument map & defined by
7 (MEPIR) @ (1) (1 g + (Iv — TF)A(In —1IF)) @
0) (0| 5 to her state, where IT} = > n ;. [2™) (V|
and T is the set of computational basis states indexed by
coset leaders of C (i.e., the set of errors correctable by
syndrome decoding). The state of the resulting system is
denoted by p'.

3) Alice measures system B with the projective measure-
ment {|0)0], |1)1]}. If the outcome is |0), failure is de-
clared. Otherwise, the outcome is |1) and she applies the
unitary embedding of H’, represented by Upr = E(H'x),
to p'. We use the extended matrix H' because the matrix
H is typically not invertible and thus cannot be embedded
into a unitary. Then, Alice sends the first N — K qubits
to Bob. This is equivalent to computing the partial trace
over the system Z which consists of the last K qubits.
Thus, Bob receives the state ¥ = 'IlrI(UH,pUT /), which
is the mapping into syndrome space of the projection of
p onto the correctable errors in 7.

4) To decompress ¥, Bob implements syndrome decoding
as an isometry. Consider the isometry mapping N — K
qubits to N qubits, that is defined by

U= 3l (B2,

N eT

Authorized licensed use limited to: Duke University. Downloaded o §i§fzh 30,2025 at 19:35:41 UTC from IEEE Xplore. Restrictions apply.



Applying Up to ¥ gives p' because the image of H%
is supported on 7" by construction and thus Up inverts
both the partial trace and the syndrome mapping. Finally,

. N . . . .
Bob applies U; to invert the diagonalization operation
applied by Alice. This gives the desired approximation of
Alice’s initial state.

ITI. PROTOCOL

Suppose Alice wants to store an N-qubit tensor product
state using as few qubits as possible; she intends to give her
stored state to Bob who will then decompress it to recover
Alice’s original state. Alice’s message may be understood as
being drawn from a quantum information source described by
the state p® where p describes a single qubit state. Suppose
that p has a spectral decomposition

p = (1 =p)[Po)ool + Pl )l

where 1,11 € Ho are eigenvectors of state p. Subsequently,
we refer to the probabilities {p,1 — p} as probabilities of
source qubits for the state p. We also assume that Alice has
access to the unitary U, € C?*2 such that diagonalizes p. This
assumption is valid because Alice knows the state p and we
assume that Bob also knows the unitary U,, which he uses
while recovering the compressed state.

Below, we describe how polar codes can be used to im-
plement lossless quantum compression, which we call Schu-
macher compression in a generic sense. Since U, corresponds
to a qubit unitary, both Alice and Bob can inexpensively
apply it to their states to realize our compression protocol.
We propose that Alice encode her state by embedding the
syndrome source coding procedure into the group of unitary
operators on her state space. Following the discussion in
section II-B, we can embed the binary polar transform G into
a unitary transform Vi on N qubits (c.f., [19]). While Gy is
designed to act on binary vectors via right multiplication (i.e.,
u — uG ), we define Viy act on qubits via left multiplication.
Thus, we have Vy = E(G%) and this gives

. VQ = E(Gg(ﬁl,ﬂlg)T) - CNOTQHI
« Ul = E(RLzN) = E(Ryz") is a SWAP opera-
tor on qubits defined by the permutation (1,3,..., N —
1,2,4,...,N).
o« Vy = E(G%ZL‘N) = E((IN/Q®G§)RN(IQ®G7]\}/2)$N)
which implies Vi := (In/2 ® Vi/2) UR (In—2 @ V2).
where I, denotes the identity operator on M qubits. We
propose the following compression protocol:

1) Alice and Bob design an N-bit classical polar code for
the BSC with error probability p, or BSC(p). They agree
on the set Z of indices for the K information qubits so
that Z¢ contains the indices of the N — K frozen bits.
Let f: FY' =K — F) be the boolean function defined
by polar syndrome decoding that maps syndromes to
error patterns. Let T be the range of f (i.e., the set of
correctable error patterns for polar syndrome decoding).

2) Alice applies a unitary U™ to p®~ where U, is a change
of basis operator from the eigenbasis of p to the compu-
tational basis: she obtains the state p = USN p®NU SN f

3) Alice encodes the message:

(a) Alice must apply the quantum instrument map &
defined by p — (IFpIY) @ [1) (1 + ((In —
H%)p(IN — %)) ® 10) <0‘3 to her state, where
Ox = > ~ver ‘.LN> <J,N‘ is the projection onto
the set of correctable error patterns, obtaining p'.
However, directly applying this isometry is intractable
for large block lengths. Thus, Alice instead makes
use of the efficient quantum successive cancellation
decoding algorithm described in Section IV to apply
this projection.

(b) Alice measures system B with the projective measure-
ment {|0)0], |1X1|}. If the outcome is |0)0|, failure
is declared. Otherwise, the outcome is |1)1| and she
applies Viy to system A.

(c) Alice sends the frozen qubits with indices in Z¢ to
Bob. Thus, Bob receives quantum state ¥ where U =
Tez (£ Viv (In @ [1{1]) 7 (I @111 5) Vi) and
pp =Tr((Iy @[1)1]5) 7).

4) To decode, Bob must apply the isometry Up = E(f)
to the received qubits. However, directly applying this
isometry is intractable for large block lengths. Thus, Bob
instead makes use of the efficient quantum successive
cancellation decoding algorithm described in Section IV
to decompress Alice’s state. Lastly, Bob applies U}:®N
to invert the diagonalization operation Alice applied, thus
obtaining an approximation of Alice’s initial state.

Whereas Schumacher compression, as it was initially pro-
posed, involves projecting Alice’s state onto the subspace of
d-typical strings, in the new protocol, Alice projects onto the
subspace of errors which are correctable with respect to a polar
code. In the next section, we will discuss how Bob can utilize
efficient quantum successive cancellation decoding to realize
the required isometry in practice.

IV. EFFICIENT IMPLEMENTATION

Belief propagation (BP) is the name used for a class
of message-passing algorithms that provide low-complexity
decoding for the codes represented by factor graphs [20].
Such codes include low-density parity check (LDPC) [21]
and polar [8] codes. While some versions appeared earlier,
BP was named by Pearl in 1982 [22] and was later shown
to be efficient for decoding codes [23]-[25]. Recently, BP
has been generalized via belief propagation with quantum
messages (BPQM) for pure-state CQ channels [11]-[14] and
subsequently for general binary symmetric CQ (BSCQ) chan-
nels [15]-[17].

In this paper, we exploit the factor graph structure of the
polar code to recover the compressed quantum state using a
BPQM-type algorithm. In our method, the decoder receives
frozen qubits constituting the compressed quantum state which
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Fig. 1: Probability of success as a function of binary entropy
bit-flip probability for blocklength 16. Horizontal lines indicate
compression rates.

are used to recover information qubits via successive cancel-
lation decoding of a polar code [8]. In classical BP for a polar
code, while decoding a noisy codeword the decoder utilizes
channel error probabilities as inputs. It combines these mes-
sages across the factor graph, employing successive cancella-
tion decoding to determine the error pattern. Similarly, BP can
be used for compression where we recover the complete binary
sequence/codeword from the frozen bits. In this scenario, the
frozen bits are used as a syndrome i.e. a compressed sequence
and instead of channel error probabilities, the decoder uses
source probabilities as input.

The syndrome-based algorithm can be lifted to the quantum
domain by considering all possible messages sent back from
frozen qubits in superposition when frozen qubits are used as a
syndrome. This allows the combining of messages classically
while accounting for the indeterminate nature of quantum
information. This observation plays a key role in our lifted BP
algorithm. While the classical messages, when passed through
the factor graph, become conditional on nature depending
on the number of frozen qubits and are written as a list of
probabilities, the quantum part of the algorithm involves de-
signing appropriate unitary based on these conditional classical
messages.

This idea extends Arikan’s method of source polarization [6]
to give a coherent quantum decompressor i.e. source decoder.
In [26], we also show how the same idea can be used to realize
the coherent quantum compressor i.e. source encoder. Initially,
the information qubits are prepared as ancilla qubits in state
|0). To realize the successive cancellation for decoding bit u;,
we construct a factor graph with root node u; and decoder
output for past bits as @)~ from the decoding factor graph of
the polar code. The factor graph takes message probabilities
associated with the distribution of the source qubits after
diagonalization as inputs. The messages are passed through
the factor graph through check-node (E) and bit-node (®)
combining rules. In the probability domain, the check-node

and bit-node combining rules of messages p; and po are
realized as

prEp2 =pi(l—p2) +p2(l —p1)
_ P1p2

pip2 + (1 —p1)(1 —p2)’

Since the frozen qubits are in a superposition of |0), |1)
qubit states, while decoding the root nodes corresponding
to the frozen qubits, a conditional message is sent back to
continue the successive cancellation decoding. To decode root
nodes associated with information qubits, we construct an
appropriate unitary based on conditional messages sent back
from the frozen qubits and apply the conditional unitary to
decide whether or not to flip the information qubit (which is
set as an ancilla in state |0)).

Our method can be thought of as the “quantization” of a
classical SC decoder and polar source coding [6], [7] methods;
i.e. adopting the SC decoder to maintain the superposition of
the compressed quantum data. The primary drawback of this
algorithm is that decoding each information qubit depends on
all the preceding frozen qubits. So, the required conditioning
grows linearly with the number of frozen qubits that precede
each information qubit. It may be possible to reduce the com-
plexity of conditioning by efficiently computing and storing
the required condition in a smaller number of ancilla qubits.
While we do not provide an exact complexity comparison with
existing literature [4], we believe improvements could allow
the order N log(N) complexity of polar codes. For a complete
description, see [26].

P1 ® p2

V. NUMERICAL RESULTS

In Figure 1, we plot the probability of successful quantum
state compression for length 16 as a function of bit-flip prob-
ability p for various code designs via Monte Carlo simulation.
For blocklengths 8 and 16 (see [26]), our protocol performs
as we would expect: the probability of successful compression
strictly decreases as entropy increases and the compression
rates of codes designed via Monte Carlo simulation strictly
increase as design error probability increases. For larger block-
lengths, we expect this protocol to achieve higher accuracy and
lower compression rates as source entropy decreases.

VI. DiscussioN

In this paper, we consider the problem of quantum state
compression and propose an efficient solution using polar
codes. We provide an efficient quantum successive cancellation
decoding algorithm based on the factor graph of polar codes.
This provides low-complexity compression and decompression
protocols that allow Alice to reliably transmit a multi-qubit
quantum state to Bob at a rate approaching the source entropy.
Since our algorithm is based on lifting a classical message-
passing decoder to operate on a quantum superposition, the
analysis only depends on the classical performance of the
polar code. Thus, we can achieve the Schumacher compression
limit S(p) using this protocol. We have also implemented our
algorithm for arbitrary length N = 2" in Python. The code
can be found on GitHub [27].
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